
 1

PSoC Designer:
Integrated Development Environment

Getting Started 25-Minute Tutorial
Revision 1.0

CMS10006A

Last Revised: July 3, 2001
Cypress MicroSystems, Inc.

 2

Overview

This tutorial of PSoC Designer: Integrated Development Environment is designed
to demonstrate the use of the tools in a hands-on application using PSoC
Designer, the ICE, Pod, and PSoC Pup™ board. Note that this is a basic project
with the sole purpose of giving you a taste for what can be done. The media
presentation for this tutorial can be accessed by double-clicking xxx.exe. The
time for the demonstration is approximately 25 minutes. (Note: this video demo is
still being created as of this release of this document).

This project demonstrates the use of two User Modules, the DAC6 and Timer16.
DAC6 is the 6-bit voltage output DAC and the Timer16 is a 16-bit down timer with
period and capture registers. Complete functional descriptions for all User
Modules are found in the data sheets contained within PSoC Designer.

The software project that will be developed in assembly code cycles through the
63 possible values of the DAC6 using the Timer16 module interrupt routine as a
delay. The current digital value is then supplied to the DAC and LEDs attached to
port 2 of the PSoC Pup™ board. The analog output of the DAC is routed through
the analog buffer for column 3 and connected to port 0 pin 2 that is available on
the user header of the PSoC Pup board. Using a voltmeter, the output analog
voltage can be observed.

If difficulties are encountered with this project, additional information can be
found in PSoC Designer: Integrated Development Environment User Guide as
well as in the new redesigned PSoC Designer help system. A fully documented
example for this project is available in the …\Examples folder of the PSoC
Designer installation directory. It is called Example_DAC_output_28pin.

For comprehensive details on developing systems, compiling, and assembling,
see:

o PSoC Designer: Integrated Development Environment User Guide

o PSoC Designer: C Language Compiler User Guide

o PSoC Designer: Assembly Language User Guide

o 8C20000 Family of Devices Data Sheet

For specific technical application questions please refer to our web site
(www.cypressmicro.com) under the technical support forums.

http://www.cypressmicro.com/

 3

Table of Contents

Overview ... 2

Section 1. Getting Started... 4

Section 2: Create the DAC6 Project with Timer16.............................. 5

Section 3: Configure your Project ... 8

Section 4: Generate Application Files .. 14

Section 5: Develop System Software.. 15

Section 6: Debug the Project with the ICE .. 18

Section 7: You Are Done 25 Minutes… Summary 25

Figure 1: New Project Dialog Box..5
Figure 2: New Configuration Dialog Box..5
Figure 3: Parts Catalog Dialog Box..6
Figure 4: Device Editor Default Entry...7
Figure 5: User Module Selections..8
Figure 6: Place User Modules Mode..9
Figure 7: DAC6 User Module Parameters ...10
Figure 8: Timer16 User Module Parameters..10
Figure 9: Global Resources...11
Figure 10: AnalogOutBuffer_3 Port_0_2..12
Figure 11: Specify Pin-out Mode ...13
Figure 12: PortPin P0[2] Settings ..13
Figure 13: Application Generation Status ..14
Figure 14: main.asm Source Code for Tutorial ..15
Figure 15: Timer16_1INT.asm Source Code for Tutorial ...16
Figure 16: Status Window ...16
Figure 17: Debugger Subsystem ...20
Figure 18: Breakpoints Dialog Box ..21
Figure 19: ASM Watch Variables...22
Figure 20: Debugger Subsystem Toolbar ..22

 4

Section 1. Getting Started

There are two ways to use this tutorial:

1. In conjunction with the video media presentation xxx.exe. (still being
developed)

2. As a stand-alone document to create your own application.

If you are using this tutorial alongside the video/media presentation, get your
coffee cup and schedule yourself about 25 minutes. Hit Go and you will be off
and running.

If you are creating this project on your own workstation you must have the
current release of PSoC Designer installed and the ICE hardware connected.
(PSoC Designer can be downloaded from the web site at
www.cypressmicro.com). If this is not the case, refer to sections 2 and 9 in the
PSoC Designer: Integrated Development Environment User Guide.

The arrow ⇒ symbol signifies actions by the user. This project walks the user
through most elements of PSoC Designer.

http://www.cypressmicro.com/

 5

Section 2: Create the DAC6 Project with Timer16

Creating a new project is the first step in the tutorial. In this section you will:

⇒ Create a New Project
⇒ Create Project Directory and Files
⇒ Select a Part
⇒ Select a Programming Language

Create a New Project

� To access the New Project dialog box you can either click the New

Project icon or select Start new project from the Start dialog box upon
system entry.

Create Project Directory and Files

� Inside New Project dialog box, click once on Create a new
Configuration, type Tutorial_DAC in the Project name field, and either
type or Browse to designate the location of your new project directory.

Figure 1: New Project Dialog Box

� When finished, click Next. Once you click Next, you will see the New
Configuration dialog box.

Figure 2: New Configuration Dialog Box

 6

Select a Part

� Click the drop-arrow in the Select Base Part field and select the 28-Pin
Dual inline part for this tutorial. Click Select to save your selection and exit
the dialog box.

Figure 3: Parts Catalog Dialog Box

Select a Programming Language

 Assembly language will be selected by default.

� (Note that C will only be an option if the C Compiler has been enabled in
your version of PSoC Designer. See PSoC Designer: C Language Compiler
Tutorial for enabling instructions.)

� Click Finish.

After clicking Finish, you will be in the Select User Module mode of the Device
Editor subsystem (which is the default). You will see the ADCINC12 User Module
and its data sheet. See the following figure.

 7

Figure 4: Device Editor Default Entry

In the left frame, you will see options of available User Modules grouped by type.
To view the individual User Modules, click one of the group titles (ADCs,
Amplifiers, Serial User Modules, Counters, DACs, PRSs, PWMs, Timers). The
technical data sheet for the User Module you have clicked will be in the lower
window. To quickly access specific information in the data sheet, click the
different tab options (Resources, Overview, Diagram, Features, etc.).

To view the files and project folders that were created when you entered “Finish,”
access View >> Project. The folders and files will all start with the project name,
“Tutorial_DAC.” PSoC Designer will update these files and the interfaces
between the User Modules upon application generation.

The Resource Manager window resides on the far upper right. With each
module you add, the system updates the Analog Blocks, Digital Blocks, ROM,
and RAM usage used by the current set of “selected” User Modules. If you
attempt to select a User Module that requires more resources than are currently
available, PSoC Designer will not allow the selection.

Tracking the available space and memory of configurations for your device is
something you do intermittently during the whole process of configuring your
target device.

 8

Section 3: Configure your Project

Configuring your chosen device is the next step to programming your PSoC
Microcontroller. It is a six-step process, all of which are performed in Device
Editor:

1. Select Applicable User Modules
2. Place User Modules
3. Configure User Module Parameters
4. Specify Global Resources
5. Make Interconnections
6. Specify Pin-out

Step 1: Select Applicable User Modules

Here, we will be selecting the DAC6 and Timer16 User Modules. A User Module,
as defined in PSoC Designer, is an accessible, pre-configured function that once
placed and programmed will work as a peripheral on the target device.

⇒ Click the DAC title in the left frame then select the DAC6 User Module.
⇒ Double-click the module. It will appear in the upper active window.
⇒ Click the Timers title and select Timer16 by double-clicking.
⇒ View your selections in the upper active window.

Figure 5: User Module Selections

 9

Two additional features for configuring User Modules are remove and rename. At
any time during device configuration you can add and remove User Modules to
and from your device.

To remove User Modules from your collection (undo placement), click on the
User Module that you wish to remove and click the Undo Placement icon . This
will not remove User Modules from PSoC Designer, just from your collection.

The development tool also allows the user to rename User Modules to company-
specific naming conventions. To rename a User Module, right-click on the
module, select Rename, and type a new name. All related files and routine calls
will dynamically be renamed.

Step 2: Place User Modules.

Here, we will place the DAC6 in analog block ASB13, and the Timer16 in digital
blocks DBA00 and DBA01. (Note: The 16-bit timer uses 2 digital blocks.)

⇒ To access the Place User Module mode of Device Editor, click the Place
User Modules icon in the Device Editor toolbar. See Figure 6.

Figure 6: Place User Modules Mode

⇒ Single-click on the DAC6 User Module icon.

Next

Position

Click the Next Position icon to advance the highlights to the next
available location (identified with green cross-hatch background).

When you click the module, the first available location for the User Module
on the device is highlighted. Note that if your User Module occupies a
combination of blocks (both digital and analog), the active blocks (green
cross-hatch) will advance as you click the Next Position icon and the inactive
blocks (blue cross-hatch) will remain static.

⇒ Using the Next Position icon, advance placement position to analog block
ASB13 then click the Place User Module icon or right-click and select Place

Once you have placed the module, it will appear on the device, color-coded,
baring the module name and its position on the device.

⇒ Repeat the previous action to place the Timer16 User Module, however,
this time leave Timer16 in its default position, digital blocks DBA00 and
DBA01.

 10

Step 3: Configure User Module Parameters

User Module parameters are the internal block specifications defined in the
applicable data sheets. Each User Module must be configured individually. As
you single-click a selected User Module you can view its parameters under User
Module Parameters in the lower left window.

⇒ For this tutorial, the DAC6 requires that the analog output bus be enabled.
Under User Module Parameters, set A_Bus to Enabled and the ClockPhase
to Normal for the DAC6. See Figure 7.

Figure 7: DAC6 User Module Parameters

Configure the Timer16 User Module as follows:

⇒ Timer User Modules are quite flexible and provide greater configurability.
For this tutorial, set the following User Module Parameters for the Timer16
User Module:

Clock: Set to 24V2. This will provide a 93.75 kHz clock. The value is the
CPU_Clock 24 MHz calculated by divided by 24V1 = 16 and then 24V2 = 16.
Input: Set to High. We will not be using the Capture Val.
Interrupt_Type: Set to Terminal_Count. This will pick the rising edge of the
terminal count. For further details, see section 8 in the Device Data Sheet
(accessed at http://www.cypressmicro.com/).
LSB_Captureval: Set to 0. This is the DR2 register described in the Timer16
User Module Data Sheet (accessed in PSoC Designer). Because we have set
the Input to High, there is no rising edge, hence no capture.
MSB_Captureval: Set to 0.
LSB_Period: Set to 0.
MSB_Period: Set to 155. This will set the terminal count to a rate of
615.4 /256 Hz.
Output: Set to None, as this project is completely interrupt driven.

Figure 8: Timer16 User Module Parameters

http://www.cypressmicro.com/

 11

Step 4: Specify Global Resources

Global resources are hardware settings that determine the underlying operation
of the entire part. Such settings include the CPU_Clock, Analog Power, and
Reference Power. They are located in the upper left window.

To update the project global resources, click each option and make applicable
selections.

⇒ Select the following parameters for this project:

CPU_Clock: Set to 3MHz.
32K_Select: Set to Internal, as no external crystal is needed.
PLL_MODE: Set to Disable. PLL can only be enabled when 32K_Select is
External.
Sleep_Timer: Set to the default value of 512_Hz.
24V1= 24Mhz/ N: Set to 16. This signal is used for the DAC6.
24V2=24V1/N: Set to 16. This sets the Timer16 clock.
Analog Power: Set to ON. This is required to power up all the analog
sections.
Ref Power: Set to LOW. Ref_Power adjusts the power output of the
references. It should be low for most projects. If you have several analog
PSoC blocks you may want to use the High setting.
Ref Mux: Set to Refs=AGND+/-Bandgap, which is the default.
Op-Amp Bias: Set to Low, which is the default (lower power consumption
and slower slew rate).
SC Power: Set to ON. This powers the Switch Capacitor Analog PSoC
blocks. DAC6 is in a Switch Capacitor Analog PSoC block.
A_Buff_Bypass: Set to Drive, which is the default. A_Buff_Bypass bypasses
the buffer and is used for characterization purposes only. It should be left in
Drive.
A_Buff_Power: Set to Low, which is the default. A_Buff_Power selects the
power level of the buffer and is a tradeoff between drive output power and
power consumption. Low is adequate for most projects.
SwitchModePump: Set to Off.
VoltMonRange: Set to 3.3V.
VoltMonThreshold: Set to 80%.

Figure 9: Global Resources

 12

Step 5: Make Interconnections

User Module interconnections consist of connections to surrounding PSoC
blocks, output bus, input bus, system clock, references, external pins, and analog
output buffers. Multiplexers may also be configured to route signals throughout
the PSoC block.

Connect the analog output buffer to Port 0_2, which will result in output to the
“Pup.” The Pup is the hardware containing the LEDs. It is provided with the
Software Development Kit.

⇒ Set interconnectivity parameters by left-clicking the lower right hand
output bus “pa3” then double-clicking Port_0_2.

Figure 10: AnalogOutBuffer_3 Port_0_2

 13

Step 6: Specify Pin-out

When you specify a PSoC block connection to a pin you are making a physical
connection to the hardware of the M8C device. These configurations will later be
emulated and debugged within the device simulation unit (In-Circuit Emulator).

� Click the Specify Pin-out icon.

Figure 11: Specify Pin-out Mode

Enable AnalogOutBuffer_3 to connect to Port_0_2 by right-clicking the Analog
Bus and double-clicking Port_0_2.

⇒ At PortPin P0[2] (in left frame), select AnalogOutBuf_3 and leave the
drive at its default, HighZ. This will also update the Pin-out view of the
physical Hardware, P0[2] should turn to dark green to reflect Analog Output.

Figure 12: PortPin P0[2] Settings

You have completed device configuration for the project. Now would be a good
time to save your project!

⇒ To save the project, click File >> Save Project.

 14

Section 4: Generate Application Files

Generating application files is the final step to configuring your target device.

When you generate application files, PSoC Designer takes all device
configurations and updates existing assembly-source and C compiler code files
(including the project library source, PSoCConfig.asm) and generates API
(Application Program Interface) and ISR (Interrupt Service Routine) shells.

At this time, the system also creates a data sheet based on your part
configurations that can be accessed in the View menu under Data Sheet. This
data sheet is specific to your project.

You can generate application files from within any of the three Device Editor
modes; Select User Module, Place User Module, or Specify Pin-out.

⇒ To generate application files, click the Generate Configuration icon .
This process in transparent to you and takes less than a minute.

Once the process is complete, a graphic dialog box will appear informing you that
the application code has been generated successfully. Now, click Application
Editor to begin source programming.

Figure 13: Application Generation Status

It is important to note that if you modify any device configurations, you must re-
generate the application files before you resume source programming.

 15

Section 5: Develop System Software

Source Programming

At this point in the project you are ready to develop your system software. The
interfaces and interrupt tables (API and ISR files) have been created
dynamically, based on your device configuration. Now you will:

⇒ Develop Source Code
⇒ Build the Project

Develop Source Code

⇒ In the source tree under Source Files double-click main.asm and type the
following source code:

Figure 14: main.asm Source Code for Tutorial

⇒ In the source tree under Library Source double-click Timer16_1INT.asm
and type the following source code:

 16

Figure 15: Timer16_1INT.asm Source Code for Tutorial

This would be a great time to save your project!

Build the Project

When you build your project, PSoC Designer automatically compiles/assembles
first. The build will not run if there are any compilation errors. If there are errors,
compilation will error-out, list errors, and halt the build. You must resolve all
syntax errors before you can build the project.

Building your project links all the programmed functionality of the source files
(with device configurations) and loads it into a .rom file, which is the file you
download for debugging. Building is the final step before entering the debugging
phase of the programming-a-system-on-chip process.

⇒ To build the current project, click the Build icon in the toolbar.

The status (or error-tracking) window in the bottom left-hand corner of Application
Editor is where the status of file building resides. Each time you build your
project, the status window is cleared and the current status entered as the
process occurs.

Figure 16: Status Window

 17

When the build is complete, you will the see the number of errors. Zero errors
signify that the build was successful. One or more errors indicate problems with
one or more files. Unlike the compilation/assemblage process, where syntax
errors are revealed, this process focuses on revealing location and value
conflicts. Such conflicts/errors include undefined symbol and address already
contains a value.

If errors do occur, modify your files and re-compile using the Compile icon .
After successful compilation, the project must be re-built.

 18

Section 6: Debug the Project with the ICE

Debug the Project

The PSoC Designer Debugger provides in-circuit emulation (ICE) that allows you
to test the project in a hardware environment while viewing and debugging
device activity in a software environment. In this section we will:

⇒ Enter Debugger Subsystem and Connect to Test Pod
⇒ Employ Test Strategies to Monitor the Project

Enter Debugger Subsystem and Connect to Test Pod

⇒ Access the Debugger subsystem by clicking the Debugger icon .

⇒ Physically connect your computer and PSoC Designer to the In-Circuit
Emulator. The ICE must be connected before you can download and
debug your project. Click the Connect icon .

Details for connecting the ICE can be found in section 9 of the PSoC
Designer: Integrated Development Environment User Guide.

⇒ Download the project .rom file to the Pod by clicking the Download to
Emulator icon .

The system automatically downloads your project .rom file located in the
…\output folder of your project directory. A progress indicator will report
download status.

Upon successful connection, you will receive notification and a green light
displaying a status of Connected will display in the lower-right corner of
the subsystem.

An important general rule to remember before downloading is to make
sure there is not a part (M8C) in the programming socket of the Pod.
Otherwise, debug sessions will fail.

 19

Employ Test Strategies to Monitor the Project

In this section we will briefly touch on the following system features:

o Debug Strategy
o Trace File
o Breakpoints
o Watch Variables
o Execute the Program
o Monitor Program Output
o View Registers
o Dynamically Changing Accumulator Value
o Verify Program Functionality
o Dynamically Changing RAM to Demonstrate Code/Path Coverage

Debug Strategy

Following is a summary of our debug strategy:

o The ICE provides the ability to select variables of interest (from the users
program) that can be monitored real time. These variables are called
Watch Variables. The Watch Variable from the code that we will
view/monitor is the “OutputV” value. This value should range from 63 to 0
and then reset again.

o We will set breakpoints on both routines to see the decrementing of the
OutputV value as well as the transfer to the Accumulator.

o Finally, we will see the output to Port 2 register.
o Global reference register variables that were initialized in the Device

Editor will also be verified.

The debugging window has many useful features: Register Memory space,
Watch Variable list, output files, source files, and CPU registers (see the device
Data Sheet, section 2.0 for details).

In the status bar of the Debugger subsystem you will find ICE connection
indication, debugger target state information, and (in blue) Accumulator, X
register, Stack Pointer, Program Counter, and Flag register values, as well as
the line number of the current code.

 20

Figure 17: Debugger Subsystem

Trace File

⇒ To view the trace file, click the Trace icon . The file should be empty
at this point.

The trace feature of PSoC Designer enables you to track and log device activity
at either a high or detailed level. The contents can be selected to include register
values, data memory, and time stamps. The Trace window displays a continuous
listing of program addresses and operations from the last breakpoint. Each time
program execution starts, the trace buffer is cleared. When the trace buffer
becomes full it continues to operate and overwrite old data.

Breakpoints

This feature of PSoC Designer allows you to stop program execution at
predetermined address locations. When a break is encountered, the program is
halted at the address of the break, without executing the address’s code. Once
halted, the program can be restarted using any of the available menu/icon
options.

 21

For our example we will set two breakpoints:

⇒ Open the main.asm file by highlighting it in the source tree. (If the source
tree is not showing, access View >> Project.)
⇒ Scroll down in the file to the statement: M8C_EnableGInt.
⇒ Go to the left margin next to this statement and left click. A red dot will
signify that you have just set a breakpoint.

⇒ The second breakpoint we will set in the Timer16_1Int.asm file. Open
Timer16_1Inst.asm.
⇒ Scroll down to the statement “dec [outputV]”

⇒ Click on the left margin next to this statement. A red dot will signify that
you have set a breakpoint.

⇒ To view all the breakpoints you have set, access Debug >> Breakpoints.
 (Note: the line number of the breakpoints (90 and 92) may be different)

Figure 18: Breakpoints Dialog Box

 �Press OK to close the Breakpoint Dialog Box.

Watch Variables

We will set a watch on the variable “OutputV.” The address for this variable is
0Eh. This can be found in the Trace window or in the output.mp file.

⇒ To set OutputV as a Watch Variable, access Debug >> Watch Variables
and fill in the following details:

 22

Figure 19: ASM Watch Variables

Execute the Program

We are now ready to start execution of the program. Our example should stop on
the first breakpoint in main.asm. A yellow arrow will point to the M8C_EnableGInt
line of code when this happens.

⇒ Click the Start/Go icon to execute the program.

⇒ To view the trace buffer click the Trace icon . The buffer will contain
all the code initialization and boot.asm executable codes.

⇒ Click the Start/Go icon to execute the program. The program will stop
on the second breakpoint in Timer16_1INT.asm, “dec [outputV]”

⇒ Use the “Step Into…” functions to execute the next several instructions.
Watch what happens to outputV, the Accummulator and the LEDs on the
PuP at each step.

Figure 20: Debugger Subsystem Toolbar

Monitor Program Output

The OutputV value will be put into the Accumulator and then transferred through
a call to the DAC routine.

The LED output should be equivalent to the output on Port 2. Note that the four
LEDs closest to the header are not used.

View Registers

Bank Registers

At this point in our tutorial we can view the I/O registers. The results of the
“OutputV” variable will be output onto Port 2 data line, which is located at I/O
Address Register 008.

 23

⇒ In the right frame of the Debugger subsystem, click the Flash (Bank0) tab
and go to memory location 008. This is the Port 2 data line, which will be
output to the Pod LED display. At this point, the LEDs should be lit
representing this value.

View RAM Registers

⇒ View the OutputV variable in the RAM section of the Debugger. Click
the RAM tab and scroll over to the address location 0E. The value is “3E”
This is also shown in the Watch Variable window in the lower right corner
of the subsystem.

Dynamically Changing Accumulator Value

Execute the following actions to see PSoC Designers’ ability to change the
Accumulator (A):

⇒ Remove all Breakpoints (Debug>>Breakpoints and click Remove All, or
click on the Breakpoints to remove them.)

⇒ Set a Breakpoint in Timer16_1INT.asm at the following line,

“mov reg[PRT2DR], A”
⇒ Click the Start/Go icon to execute the program.
� Access View >> Debug Windows >> CPU Registers.
� Double Click the data field for A, enter “00.”

⇒ Use the Step Into icon to execute the next line of code.

Results: The Accumulator value is no longer the “OutputV” variable. All LEDs
should now be off.

Verify Program Functionality

The program should be cycling through the OutputV value from 63-0 decimal.
The LEDs should cycle through the output values sequentially.

⇒ To test functionality, click the Reset icon.
⇒ To clear all Breakpoints, access Debug >> Breakpoints and hit the
Remove All button.
⇒ Execute normal program operation by clicking the Start/Go icon .
⇒ After program executes through several cycles of LEDs, click the Halt

 icon.

Verify the values for the LEDs (Port 2 output), Watch Variable “OutputV,” and
the Accumulator (A). They should all be the same.

A good debugging strategy is to force path coverage through logical branches.
Let’s see if the OutputV is reset to 63 in the Timer16_1Int.asm routine.

 24

Dynamically Changing RAM to Demonstrate Code/Path Coverage

The ICE allows dynamic editing of memory. We will change the OutputV value to
force path coverage through the “jnz” logical branch.

⇒ Set a Breakpoint in Timer16_1Int.asm at the command
“mov A, [ouputV]” (after the call to the DAC6 routine).
⇒ Click the Start/Go icon to execute the program.
⇒ Click the RAM tab and change the OutputV value to “00.”

⇒ Use the Step Into icon to execute the next several lines of code.

The “ jnz” command should fail and the “OutputV” value will be reset to “3fh.”

Side Note to Tutorial: You have now successfully built and tested your project.
If you were developing a system you would be ready to program the part.

Programming the part stores the ROM data directly in the FLASH memory of the
part. The Cypress MicroSystems device can be reprogrammed multiple times
due to its FLASH Program Memory.

To program a part follow these steps:

⇒ Click the Program Part icon .
⇒ Place part to be programmed on Pod when prompted and select the .rom
file from the …\output folder of your project directory.

NOTE: The emulator socket cannot be connected during programming.

Once programming is complete, you can connect the Pod or part to your
development circuit board to see how the M8C integrates with your existing
product architecture.

 25

Section 7: You Are Done 25 Minutes… Summary

Results

You have just programmed and created your part. The expected output for this
tutorial uses the LEDs on the Pup board. The LEDs should sequence from 0 to
63 continually. The analog output of the DAC is routed through the analog buffer
for column 3 and connected to port 0 pin 2 that is available on the user header of
the PSoC Pup board. Using a voltmeter, the output analog voltage can be
observed.

Note that you have only used 2 digital blocks and 1 analog, leaving lots of room
to spare.

For you advanced users, try the following changes to the project:

o Change the Timer16 User Module Timer8
o Change the position of the DAC6 user module
o Change the position of the Timer16 User Module

Copyright  2000-2001 Cypress MicroSystems, Inc. All rights reserved.
PSoC™ (Programmable System on Chip) is a trademark of Cypress MicroSystems, Inc.

The information contained herein is subject to change without notice.

	Getting Started 25-Minute Tutorial
	Revision 1.0
	Source Programming
	Debug the Project
	Results

