
PSoC Designer: Assembly Language User Guide 0

PSoC™ Designer:

Assembly Language
User Guide

Revision 1.07

CMS10003A
Last Revised: May 30, 2001
Cypress MicroSystems, Inc.

PSoC Designer: Assembly Language User Guide 1

Copyright Information

Copyright © 2000-2001 Cypress MicroSystems, Inc. All rights reserved.

Programmable System on Chip: PSoC™ is a trademark of
Cypress MicroSystems.

Copyright © 1999-2000 ImageCraft Creations Inc. All rights reserved.

The information contained herein is subject to change without notice.

PSoC Designer: Assembly Language User Guide 2

Two-Minute Overview

This two-minute overview of PSoC Designer: Assembly Language User Guide
was purposefully placed up front for you advanced engineers who are ready to
program the chip but need a quick point in the right direction. (Now we only have
a minute and-a-half left.)

Overview 35 seconds You have the chip, configured the device, and

placed the User Modules in the PSoC blocks, now
you are ready to program the chip using assembly
language code.

This guide provides:

��instructions related to address spaces,
modes, and destination of results

��explanation of assembly-file syntax, input
and output

��assembler directives
��the complete instruction set.

Basics 15 seconds Upon opening PSoC Designer, click the Application

Editor icon in the toolbar to access the Assembler
and pre-configured source files.

The source files appear in the left frame. Double-
click individual files to appear in the main frame
where you can add and modify code using the
enabled edit icons.

Quick
Reference

30 seconds Click a hyperlink to reference key material:

Notation Standards
Microprocessor and related address information
Assembly File Syntax
List File Format
Assembler Directives
Instruction Set or Instruction Set Reference Table

Bottom Line 10 seconds Programmable System on Chip PSoC™ Designer

empowers you to customize the functionality you
desire into the M8C microprocessor.

 Time’s up… Now get to work.

PSoC Designer: Assembly Language User Guide 3

Documentation Conventions

Following, are easily identifiable conventions used throughout the PSoC
Designer suite of product documentation.

Convention Usage
Times New Roman Size 10-12 Displays an input command:

iasm8c -g
Courier New Size 10 Displays output:

 // Created by PSoC Designer
 // from template BOOT.ASM
 // Boot Code, from Reset
 //
 // Change this file at your own risk!

--- 000AREA TOP(ABS)
 org 0
 0000 8033 jmp __start
 0002 8031 jmp __start
 0004 801F jmp Interrupt0
 0006 801E jmp Interrupt1

Courier Size 12 Displays file locations:
…\…\Project Name\output

Arial Size 8 Displays Instruction Set Reference Table data:
01h ADD A k

Italics Displays file names:
projectname.rom

[Ctrl] [C] Displays keyboard commands:
[Enter]

File >> Open Displays menu paths:
Edit >> Cut

PSoC Designer: Assembly Language User Guide 4

Notation Standards

Following, is input notation referenced throughout this guide and wherever
applicable in the PSoC Designer suite of product documentation.

Internal Registers:

Notation Description
A Primary Accumulator

CF Carry Flag
expr Expression

F Flags (ZF, CF, and Others)
I Operand 1 Value
K Operand 2 Value

PC (PCH,PCL)
SP Stack Pointer
X X Register

ZF Zero Flag

Assembler Directives:

Symbol Assembler Directive
AREA Area
BLK RAM Block (in Bytes)

BLKW RAM Block in Words (16 Bits)
DB Define Byte
DS Define ASCII String

DSU Define UNICODE String
DW Define Word (2 Bytes)
DWL Define Word with Little Endian Ordering
ELSE Alternative Result of IF…ELSE…ENDIF
ENDIF End of IF…ELSE…ENDIF
EQU Equate Label to Variable Value

EXPORT Export
IF Conditional Assembly

INCLUDE Include Source File
MACRO/ENDM Macro Definition Start/End

ORG Area Origin

PSoC Designer: Assembly Language User Guide 5

Assembly Syntax Expressions:

Precedence Expression Symbol Form
1 Bitwise Complement ~ (~ a)
2 Multiplication

Division
*
/

(a * b)
(a / b)

3 Addition
Subtraction

+
-

(a + b)
(a – b)

4 Bitwise AND & (a & b)
5 Bitwise XOR ^ (a ^ b)
6 Bitwise OR | (a | b)
7 High Byte of an Address > (>a)
8 Low Byte of an Address < (< a)

Only the Addition expression (+) may apply to a relocatable symbol (i.e., an
external symbol). All other expressions must be applied to constants or symbols
resolvable by the assembler (i.e., a symbol defined in the file).

If a dot (.) appears in an expression, then the current value of the Program
Counter (PC) is used in place of the dot.

PSoC Designer: Assembly Language User Guide 6

Table of Contents

Two-Minute Overview.. 2

Quick-start summary for advanced users who are ready to dive in.

Documentation Conventions .. 3

Lists conventions used in this guide and throughout the PSoC Designer suite.

Notation Standards ... 4
Lists notation referenced in this guide and throughout the PSoC Designer suite.

Section 1. Introduction.. 9

Describes purpose of user guide, overviews sections, and summarizes product information.
1.1. Purpose.. 9
1.2. Section Overview ... 9
1.3. Product Updates .. 10
1.4. Support .. 10

Section 2. Accessing the Assembler ... 11

Describes how to access the Assembler and use its features.
2.1. Opening PSoC Designer .. 11
2.2. Accessing the Assembler ... 11
2.3. Menu Options ... 12

Section 3. The Microprocessor... 13

Discusses the microprocessor and setting instructions.
3.1. Address Spaces ... 14
3.2. Instruction Format... 15
3.3. Addressing Modes.. 16
3.4. Destination of Instruction Results ... 22

Section 4. Assembly File Syntax .. 23

Discusses assembly source-file syntax.
4.1. Syntax Details .. 23
4.2. Syntax.. 23

Section 5. List File Format .. 27

Displays and explains assembly-file formats.

PSoC Designer: Assembly Language User Guide 7

Section 6. Assembler Directives .. 29
Lists and defines all assembler directives.

6.1. Area... 29
6.2. RAM Block .. 31
6.3. RAM Block in Words ... 31
6.4. Define Byte.. 32
6.5. Define ASCII String ... 32
6.6. Define UNICODE String .. 33
6.7. Define Word .. 33
6.8. Define Word, Little Endian Ordering.. 34
6.9. Alternative Result of IF…ELSE…ENDIF 34
6.10. IF…ELSE…ENDIF - ENDIF .. 34
6.11. Equate Label ... 35
6.12. Export.. 35
6.13. IF…ELSE…ENDIF - IF.. 35
6.14. Include Source File.. 36
6.15. Macro Definition Start/Macro Definition End.................................. 36
6.16. Area Origin .. 37

Section 7. Instruction Set.. 39
Describes notation for the instruction set.

7.1. Add with Carry... 40
7.2. Add without Carry.. 41
7.3. Bitwise AND .. 42
7.4. Arithmetic Shift Left ... 43
7.5. Arithmetic Shift Right... 43
7.6. Call Function ... 44
7.7. Non-destructive Compare ... 45
7.8. Complement Accumulator ... 45
7.9. Decrement... 46
7.10. Halt.. 47
7.11. Increment .. 48
7.12. Table Read INDEX.. 49
7.13. Jump Accumulator... 50
7.14. Jump if Carry... 51
7.15. Jump ... 52
7.16. Jump if No Carry ... 53
7.17. Jump if Not Zero.. 54
7.18. Jump if Zero .. 55
7.19. Long Call ... 56
7.20. Long Jump .. 56
7.21. Move ... 57
7.22. Move Indirect, Post-Increment to Memory..................................... 58
7.23. No Operation... 59
7.24. Bitwise OR .. 60
7.25. Pop Stack into Register... 61
7.26. Push Register onto Stack.. 61
7.27. Return ... 62

PSoC Designer: Assembly Language User Guide 8

7.28. Return from Interrupt ... 62
7.29. Rotate Left through Carry.. 63
7.30. Table Read ROMX.. 63
7.31. Rotate Right through Carry ... 64
7.32. Subtract with Borrow ... 65
7.33. Subtract without Borrow .. 66
7.34. Swap ... 67
7.35. System Supervisory Call ... 68
7.36. Test with Mask .. 69
7.37. Bitwise XOR .. 70

Section 8. Compile/Assemble Error Messages 71

Lists all PSoC Designer compile/assemble errors and warnings.
8.1. Preprocessor... 71
8.2. C Compiler .. 72
8.3. Assembler ... 75
8.4. Linker .. 76

Instruction Set Reference Table ... 77

Supplies instruction set in a quick-reference table.

Appendix A: Application Interface Notes 78

Discusses interfacing between assembly language and ‘C’ in PSoC Designer.

Index ... 79

PSoC Designer: Assembly Language User Guide 9

Section 1. Introduction

1.1. Purpose

The PSoC Designer: Assembly Language User Guide will guide you through the
process of programming the M8C microprocessor in the assembly language.

1.2. Section Overview

Following, is a brief description of each section in this user guide:

Section 1. Introduction This section describes the purpose of

this guide, overviews each section, and
gives product upgrade and support
information.

Section 2. Accessing the Assembler This section describes how to open
PSoC Designer and access the
Assembler. It also defines applicable
menu options.

Section 3. The Microprocessor This section discusses the M8C and
explains address spaces, instruction
format, and destination of instruction
results. It also lists all the addressing
modes with examples.

Section 4. Assembly File Syntax This section provides assembly-
language-source syntax including
labels, mnemonics, operands,
expressions, and comments.

Section 5. List File Format This section displays a small assembly
program with its listing file generated
from the assembly-source input. An
explanation for the file contents is also
provided.

Section 6. Assembler Directives This section lists and describes, with
examples, all active assembler
directives. These directives
communicate commands to the
assembler program.

PSoC Designer: Assembly Language User Guide 10

Section 7. Instruction Set This section provides a detailed list of
all M8C instructions.

Section 8. Compile/Assemble Error
Messages

This section provides several lists of
compile/assemble and related errors
and warnings.

1.3. Product Upgrades

Cypress MicroSystems provides scheduled upgrades and version enhancements
for PSoC Designer free of charge. You can order the upgrades from your
distributor on CD-ROM or, better yet, download them directly from the Cypress
MicroSystems web site at http://www.cypressmicro.com/.

Also provided at the web site are critical updates to system documentation. To
stay current with system functionality you can find documentation updates under
the Documentation hyperlink, again, at http://www.cypressmicro.com/.

Check the Cypress MicroSystems web site frequently for both product and
documentation updates. As the M8C and PSoC Designer evolve, you can be
sure that new features and enhancements will be added. To register and receive
product update notification go to http://www.cypressmicro.com/registerme/.

1.4. Support

Support for the Assembler is free. For details, see the PSoC Designer: Integrated
Development Environment User Guide.

http://www.cypressmicro.com/
http://www.cypressmicro.com/
http://www.cypressmicro.com/
http://www.cypressmicro.com/registerme/

PSoC Designer: Assembly Language User Guide 11

Section 2. Accessing the Assembler

In this section you will learn to quickly access the Assembler and work its
functionality from within PSoC Designer.

It is assumed that PSoC Designer is installed and up and running on your
computer. It is also assumed that a project has been created and the device
configured. If not, see the PSoC Designer: Integrated Development Environment
User Guide.

2.1. Opening PSoC Designer

To open PSoC Designer go to:

Start >> Programs >> Cypress MicroSystems >> PSoC Designer.

Note that upon opening the system, that last project you were in will be loaded as
the default.

2.2. Accessing the Assembler

The Assembler is an application accessed and run as a batch process from
within PSoC Designer, much like the C Compiler. It operates on assembly-
language source, constructed by you, to produce executable code. This code is
then built into a single executable file that can be downloaded into the In-Circuit
Emulator (ICE), where the functionality of the microprocessor can be emulated
and debugged.

To access assembly-language source, click the Application Editor icon in
the toolbar.

The project source files appear in the left frame (source tree). Double-click
individual files to appear in the main active window where you can add and
modify code using the enabled edit icons.

To compile the source files for the current project, click the
Compile/Assemble icon in the toolbar.

 To build the current project, click the Build icon in the toolbar.

PSoC Designer: Assembly Language User Guide 12

These combined actions construct the entire project by assembling.asm files and
compiling.c files from the c:\project name\ directory. The intermediate files
generated are then placed in the c:\project name\obj directory as .o and
.lis files. Building (linking) the intermediate files generates the program files and
places them in c:\project name\output directory as projectname.dbg,
projectname.hex, projectname.mp, projectname.rom, and projectname.lst.

2.3. Menu Options

Following, is a description of the menu options available for use with the
Assembler:

Icon Menu Shortcut Feature

 Compile/Assemble [Ctrl] [F7] Compiles/assembles the most prominent open, active
file (.c or .asm)

 Build [F7] Builds entire project and links applicable files

PSoC Designer: Assembly Language User Guide 13

Section 3. The Microprocessor

In this section you will learn about the M8C, address spaces, instruction
format, and destination of instruction results. You can also view and reference all
the addressing modes with examples.

The M8C is an enhanced 8-bit microprocessor core. It supports 8-bit operations
and has been optimized to be small and fast.

The Internal registers are: the accumulator 'A'; the ‘F’ flag register; the index
register ‘X’; the stack pointer 'SP'; and the program counter 'PC'. All registers are
8 bits wide except 'PC' which is composed of two 8-bit registers (PCH and PCL)
which together form a 16-bit register. The M8C supports a full 16-bit address to
program memory. Following is a look at PCH and PCL:

PCH PCL
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
a a a a a a a a a a a a a a a a

Upon reset, A, X, PC, and SP are reset to 0x00. The SP grows up, with a post-
increment, and always points to the next free byte for pushing. The flag (‘F’)
register is cleared except for the Z status bit.

F
7 6 5 4 3 2 1 0

XA[2] XA[1] XA[0] XIO -- C Z IE

The flag register has three status bits: Global Interrupt Enable bit 0; Zero flag bit
1; Carry Flag bit 2; and three extended RAM address bits XA[2:0] at 7:5, and the
extended IO address at bit 4. Bit 3 is the supervisory state and will remain
cleared. The flags are affected by arithmetic, logic, and shift operations. The
manner in which each flag is changed is dependent upon the instruction being
executed. Section 7. Instruction Set includes information about how each
instruction affects the flags.

All instructions are 1, 2, or 3 bytes wide and fetched from program memory, in a
separate address space from data memory. The first byte of an instruction is an
8-bit constant, referred to as the Opcode. Depending on the instruction, there can
be one or two succeeding bytes that encode address or operand information.

PSoC Designer: Assembly Language User Guide 14

3.1. Address Spaces

There are three separate address spaces implemented in the Assembler:
Register space (REG), data RAM space, and program memory space.

The Register space is accessed through the MOV and LOGICAL instructions.
There are 8 address bits available to access the Register space, plus an
extended address bit via the flag register bit 4.

The data RAM space contains the data/program stack, and space for variable
storage. All the read and write instructions, as well as instructions which operate
on the stacks, use data RAM space. Data RAM addresses are 8 bits wide,
although for RAM sizes 128 bytes or smaller, not all bits are used. The Extended
Address flag bits (XA[2:0]) are used to address beyond the first 256 bytes of
RAM. Depending on the memory size implemented on a particular device, any or
all of the Extended Address bits may not be implemented. These 3 bits provide
an 11-bit RAM address for addressing up to 2 kilobytes as 8 pages of 256 bytes
each. The flag register must be manipulated to change RAM page addresses.

All stack operations force XA[2:0] on the bus to be zero (leaving flag values
intact) so that the stack is constrained to the first 256 bytes page.

The program memory space is organized into 256 byte pages, such that the PCH
register contains the memory page number and the PCL register contains the
offset into that memory page. The M8C automatically advances PCH when a
page boundary needs to be crossed. The user need not be concerned with
program memory page boundaries, as they are invisible within the programming
module. The one exception to this is that non-jump instructions ending on a page
boundary will take an extra cycle to complete. Jump instructions are not affected
in this manner.

The INDEX instruction is used to move information in table form from the
program memory space into the accumulator. It has one operand, which is the
lower part of the base address of a program memory table. The lower nibble of
the INDEX opcode forms the upper part of the base address. This yields a 12-bit-
twos-complement-relative-address that when added to the PC, yields the base
address of the table. The offset into the table is taken as the value of the
accumulator when the INDEX instruction is executed. The maximum readable
table size, when using a single INDEX instruction, is limited by the range of the
accumulator to 256 bytes. An example of using an INDEX instruction is shown
below:

tab1: DS “hello” ;define a table called tab1
 MOV A, 04
 INDEX tab1 ;fetch the 5th byte (“o”) from table tab1.

PSoC Designer: Assembly Language User Guide 15

The ROMX instruction will also move information from the program memory
space into the accumulator.

There are several types of jump instructions to control program flow. The Long
Jump (LJMP) instruction has two operands that together form a 16-bit absolute
address. All other jump instructions have 12-bit-twos-complement-relative-
addresses that are added to the PC to form the jump target. The lower 8 bits of
the relative address are contained in the operand, and the upper 4 bits are the
lower nibble of the opcode.

As you will see, the Long Call (LCALL) instruction is the same as the LJMP
instruction in that it too has two operands that together form a 16-bit absolute
address. The other call instruction has a 12-bit-twos-complement-relative-
address that is added to the PC to form the jump target. The lower 8 bits of the
relative address are contained in the operand, and the upper 4 bits are the lower
nibble of the opcode. For further reference, see Section 7. Instruction Set.

3.2. Instruction Format

Instruction addressing is divided into two groups: (1) Logic, arithmetic, and data
movement functions (unconditional); (2) jump and call instructions, including
INDEX (conditional).

In the following descriptions “0” indicates unconditional instruction bit, “1”
indicates conditional instruction bit, “a” indicates bits used to store an address,
“d” indicates bits used to store a data value, and “i” indicates indeterminate data
(as related to instruction format).

Logic, arithmetic, and data movement functions are one-, two-, or three-byte
instructions. The first byte of the instruction contains the opcode for that
instruction. In two-byte instructions, the second byte contains either an address
data value. Following, is the format for logic, arithmetic, and data movement
instructions:

PSoC Designer: Assembly Language User Guide 16

Single-Byte Instruction:

Instruction
7 6 5 4 3 2 1 0
0 i i i i i i i

Double-Byte Instruction:

Instruction Byte Instruction Data Byte
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
0 i i i i i i i a/d a/d a/d a/d a/d a/d a/d a/d

Triple-Byte Instruction:

Instruction Byte Address Byte Address or Data Byte
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
0 i i i i i i i a a a a a a a a a/d a/d a/d a/d a/d a/d a/d a/d

Most jumps, plus CALL and INDEX, are 2-byte instructions. The opcode is
contained in the upper 4 bits of the first instruction byte, and the destination
address is stored in the remaining 12 bits. For memory sizes larger than 4
kilobytes, a three-byte format is used in Big Endian format. Following, is the
format for these short instructions:

Instruction Byte Address Byte
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
1 i i i a a a a a a a a a a a a

The long CALL and JUMP have the following format:

Instruction Byte MS Address Byte LS Address Byte
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
1 i i i i i i i a a a a a a a a a a a a a a a a

3.3. Addressing Modes

Ten addressing modes are supported; Source Immediate, Source Direct, Source
Indexed, Destination Direct, Destination Indexed, Destination Direct Immediate,
Destination Indexed Immediate, Destination Direct Direct, Source Indirect Post
Increment, and Destination Indirect Post Increment.

The address mode is inferred from the syntax of the assembly code. The square
brackets [] are used to denote one level of indirection. The active addressing
modes are illustrated in the following examples:

PSoC Designer: Assembly Language User Guide 17

3.3.1. Source Immediate

The result of an instruction using this addressing mode is placed in the A
register, F register, or X register, which is specified as part of the instruction
opcode. Operand 1 is an immediate value that serves as a source for the
instruction. Arithmetic instructions require two sources, the second source is the
A register or X register specified in the opcode. Instructions using this addressing
mode are two bytes in length.

Opcode Operand 1
Instruction Immediate Value

Example:
ADD A, 7 ; In this case, the immediate value of 7 is added with

the Accumulator, and the result is placed in the
Accumulator.

MOV X, 8 ; In this case, the immediate value of 8 is moved to
the X register.

AND F, 9 ; In this case, the immediate value of 8 is logically
Anded with the F register and the result is placed in
the F register.

3.3.2. Source Direct

The result of an instruction using this addressing mode is placed in either the A
register or the X register, which is specified as part of the instruction opcode.
Operand 1 is an address that points to a location in either the RAM memory
space or the Register space that is the source for the instruction. Arithmetic
instructions require two sources, the second source is the A register or X register
specified in the opcode. Instructions using this addressing mode are two bytes in
length.

Opcode Operand 1
Instruction Source Address

Example:

ADD A, [7] ; In this case, the value in the memory location at
address 7 is added with the Accumulator, and
the result is placed in the Accumulator.

MOV X, REG[8] ; In this case, the value in the Register space at
address 8 is moved to the X register.

PSoC Designer: Assembly Language User Guide 18

3.3.3. Source Indexed

The result of an instruction using this addressing mode is placed in either the A
register or the X register, which is specified as part of the instruction opcode.
Operand 1 is added to the X register forming an address that points to a location
in either the RAM memory space or the Register space that is the source for the
instruction. Arithmetic instructions require two sources, the second source is the
A register or X register specified in the opcode. Instructions using this addressing
mode are two bytes.

Opcode Operand 1
Instruction Source Index

Example:
ADD A, [X+7] ; In this case, the value in the memory location at

address X + 7 is added with the Accumulator,
and the result is placed in the Accumulator.

MOV X, REG[X+8] ; In this case, the value in the Register space at
address X + 8 is moved to the X register.

3.3.4. Destination Direct

The result of an instruction using this addressing mode is placed within either the
RAM memory space or the Register space. Operand 1 is an address that points
to the location of the result. The source for the instruction is either the A register
or the X register, which is specified as part of the instruction opcode. Arithmetic
instructions require two sources, the second source is the location specified by
Operand 1. Instructions using this addressing mode are two bytes in length.

Opcode Operand 1
Instruction Destination Address

Example:

ADD [7] A ; In this case, the value in the memory location at
address 7 is added with the Accumulator, and the
result is placed in the memory location at address
7. The Accumulator is unchanged.

MOV REG[8] A ; In this case, the Accumulator is moved to the
Register space location at address 8. The
Accumulator is unchanged.

PSoC Designer: Assembly Language User Guide 19

3.3.5. Destination Indexed

The result of an instruction using this addressing mode is placed within the either
the RAM memory space or the Register space. Operand 1 is added to the X
register forming the address that points to the location of the result. The source
for the instruction is either the A register or the X register, which is specified as
part of the instruction opcode. Arithmetic instructions require two sources, the
second source is the location specified by Operand 1 added with the X register.
Instructions using this addressing mode are two bytes in length.

Opcode Operand 1
Instruction Destination Index

Example:

ADD [X+7] A ; In this case, the value in the memory location at
address X+7 is added with the Accumulator, and
the result is placed in the memory location at
address X+7. The Accumulator is unchanged.

3.3.6. Destination Direct Immediate

The result of an instruction using this addressing mode is placed within either the
RAM memory space or the Register space. Operand 1 is the address of the
result. The source for the instruction is Operand 2, which is an immediate value.
Arithmetic instructions require two sources, the second source is the location
specified by Operand 1. Instructions using this addressing mode are three bytes
in length.

Opcode Operand 1 Operand 2
Instruction Destination Address Immediate Value

Example:

ADD [7] 5 ; In this case, value in the memory location at
address 7 is added to the immediate value of 5,
and the result is placed in the memory location at
address 7.

MOV REG[8] 6 ; In this case, the immediate value of 6 is moved
into the Register space location at address 8.

PSoC Designer: Assembly Language User Guide 20

3.3.7. Destination Indexed Immediate

The result of an instruction using this addressing mode is placed within either the
RAM memory space or the Register space. Operand 1 is added to the X register
to form the address of the result. The source for the instruction is Operand 2,
which is an immediate value. Arithmetic instructions require two sources, the
second source is the location specified by Operand 1 added with the X register.
Instructions using this addressing mode are three bytes in length.

Opcode Operand 1 Operand 2
Instruction Destination Index Immediate Value

Example:

ADD [X+7] 5 ; In this case, the value in the memory location at
address X+7 is added with the immediate value
of 5, and the result is placed in the memory
location at address X+7.

MOV REG[X+8] 6 ; In this case, the immediate value of 6 is moved
into the location in the Register space at address
X+8.

3.3.8. Destination Direct Direct

The result of an instruction using this addressing mode is placed within the RAM
memory. Operand 1 is the address of the result. Operand 2 is an address that
points to a location in the RAM memory that is the source for the instruction. This
addressing mode is only valid on the MOV instruction. The instruction using this
addressing mode is three bytes in length.

Opcode Operand 1 Operand 2
Instruction Destination Address Source Address

Example:
MOV 7 8 ; In this case, the value in the memory location at

address 7 is moved to the memory location at
address 8.

PSoC Designer: Assembly Language User Guide 21

3.3.9. Source Indirect Post Increment

The result of an instruction using this addressing mode is placed in the
Accumulator. Operand 1 is an address pointing to a location within the memory
space, which contains an address (the indirect address) for the source of the
instruction. The indirect address is incremented as part of the instruction
execution. This addressing mode is only valid on the MVI instruction. The
instruction using this addressing mode is two bytes in length. See Section 7.
Instruction Set for further details on MVI instruction.

Opcode Operand 1
Instruction Source Address Address

Example:

MVI A [8] ; In this case, the value in the memory location at
address 8 points to a memory location that
contains an indirect address. The memory
location pointed to by the indirect address is
moved into the Accumulator. The indirect
address is then incremented.

3.3.10. Destination Indirect Post Increment

The result of an instruction using this addressing mode is placed within the
memory space. Operand 1 is an address pointing to a location within the memory
space, which contains an address (the indirect address) for the destination of the
instruction. The indirect address is incremented as part of the instruction
execution. The source for the instruction is the Accumulator. This addressing
mode is only valid on the MVI instruction. The instruction using this addressing
mode is two bytes in length.

Opcode Operand 1
Instruction Destination Address Address

Example:

MVI [8] A ; In this case, the value in the memory location at
address 8 points to a memory location that
contains an indirect address. The accumulator is
moved into the memory location pointed to by the
indirect address. The indirect address in then
incremented.

PSoC Designer: Assembly Language User Guide 22

3.4. Destination of Instruction Results

The result of a given instruction is stored in the entity, which is placed next to the
opcode in the assembly code. This allows for a given result to be stored in a
location other than the accumulator. Direct and Indexed addressed Data RAM
locations, as well as the X register, are additional destinations for some
instructions. The AND instruction is a good illustration of this feature (i2 ==
second instruction byte, i3 == third instruction byte):

Syntax Operation
AND A, expr acc ← acc & i2
AND A, [expr] acc ← acc & [i2]
AND A, [X+expr] acc ← acc & [x + i2]
AND [expr], A [i2] ← acc & [i2]
AND [X+expr], A [x + i2] ← acc & [x + i2]
AND [expr], expr [i2] ← i3 & [i2]
AND [X+expr], expr [x + i2] ← i3 & [x + i2]

The ordering of the entities within the instruction determines where the result of
the instruction is stored.

PSoC Designer: Assembly Language User Guide 23

Section 4. Assembly File Syntax

In this section you will learn applicable assembly file syntax and placement.
You can also view real-life assembly language input from PSoC Designer.

4.1. Syntax Details

Assembly language instructions reside in source files with .asm extensions in the
left frame of Application Editor. (See Section 7. Instruction Set for the complete
set.) Each line of the source file may contain up to five keyword-types of
information.

The following table gives critical details about each keyword-type:

Keyword Type Critical Details
Label A symbolic name followed by a colon (:).
Mnemonic An assembly language keyword.
Operands Follows the Mnemonic.
Expression Is usually addressing modes with labels and should be inside parenthesis.
Comment Can follow Operands or Expressions and start in any column if the first non-

space character is either a C++ style comment (//) or semi-colon (;).

4.2. Syntax

Instructions in an assembly file have one operation on a single line. For
readability, separate each keyword-type by tabbing once or twice (approximately
5-10 white spaces).

Note that in all source files, including .asm, the maximum number of characters
allowed per line is 2,048. The maximum number of characters allowed per word
is 256. These limits are imposed by the PSoC Designer development software.

Following are type definitions and an example of assembly-file syntax:

4.2.1. Labels

A label is a case sensitive set of alphanumeric characters and underscores (_)
followed by a colon. A label will be assigned a value, but may also be used as
operands.

A label is assigned the value of the current Program Counter unless it is defined
on a line with an EQU directive. (See Section 6. Assembler Directives for the
entire list with sample directives.) Labels can be included on any line, including
blank lines. A label may only be defined once in an assembly program, but may
be used as an operand multiple times.

PSoC Designer: Assembly Language User Guide 24

If the label begins with the period (.) character then that label has only local
scope and/or existence between two global labels, i.e. labels that do not begin
with a period (.) character and are exported. These local labels can re-use the
same names within differing global scopes.

Local labels are restricted to use between global labels, i.e. you cannot use one
before a global label has been defined.

4.2.2. Mnemonics

A mnemonic is an assembly instruction, assembler directive, or a user-defined
macro name. All are defined in more detail in sections 6. Assembler Directives
and 7. Instruction Set. There can be 0 or 1 mnemonic on a line of assembly
code. Mnemonics, with the exception of macro names, are case-sensitive.

4.2.3. Operands

Operands either specify the addressing mode for an instruction as described in
Addressing Modes and Destination of Instruction Results of Section 3. The
Microprocessor, or are an expression that specifies a value used by an
instruction. The number and type of operands accepted on a line depends on the
mnemonic on that line. See sections 6. Assembler Directives and 7. Instruction
Set for information on operands accepted by specific mnemonics. A line with no
mnemonic must have no operands.

There are two types of operands; labels and constants. Following, is a
description of each:

��Labels: Labels used as operands are replaced with their defined value.
Definitions may be made anywhere within the source file as described in
the previous information on labels. A label is defined with a colon following
the name, but the colon is not part of the name. That is, when used as an
operand, do not include the colon as part of the label name.

PSoC Designer: Assembly Language User Guide 25

��Constants: Constants are specified as binary, decimal, hexadecimal, or
character. The radix of a number prefixes the number. Standard radixes
include 0b or % for binary, 0 for octal, and 0x or $ for hexadecimal.

Note that the Assembler will not generate an error if values following a
binary prefix contain non binary values (e.g., 2..Z).

A hexadecimal number can also be specified by a number followed by h or
H. If no radix is specified, the number is assumed to be decimal. For
example, 0b1010, 10, 0xA, and Ah are all equivalent.

Character constants are enclosed by single quotes and have the ASCII
value of the character. For example, ‘A’ has the value of 41h. The
backslash (\) is used as an escape character. To enter a single quote (‘)
as a character, use ‘\’’. To enter a backslash (\), use ‘\\’.

A “.” is shorthand for the current value of the Program Counter. Following
are a few examples:

 MOV A,. ; Moves to low byte of the Program Counter to A

JMP.+2 ; Jumps to 2 bytes past the current Program
; Counter location

4.2.4. Expressions

Expressions may be constructed using a number of algebraic and logical
operators with either labels or constants. See the order of precedence:

Precedence Expression Symbol Form
1 Bitwise Complement ~ (~ a)
2 Multiplication

Division
*
/

(a * b)
(a / b)

3 Addition
Subtraction

+
-

(a + b)
(a – b)

4 Bitwise AND & (a & b)
5 Bitwise XOR ^ (a ^ b)
6 Bitwise OR | (a | b)
7 High Byte of an Address > (>a)
8 Low Byte of an Address < (< a)

Only the Addition expression (+) may apply to a relocatable symbol (i.e., an
external symbol). All other expressions must be applied to constants or symbols
resolvable by the assembler (i.e., a symbol defined in the file).

If a dot (.) appears in an expression, then the current value of the Program
Counter (PC) is used in place of the dot.

Currently, expressions must be enclosed by parenthesis.

PSoC Designer: Assembly Language User Guide 26

4.2.5. Comments

A Comment is anything following a semicolon (;) or a double slash (//) to the end
of a line. It is usually used to explain the assembly code and may be placed
anywhere in the source file. The Assembler ignores comments, however they are
written to the listing file.

PSoC Designer: Assembly Language User Guide 27

Section 5. List File Format

In this section you will view an assembly program with its output generated
from the input described. You will also find an explanation of the data.

When you build a project (using all assembly files), a listing file with an .lst
extension is created. The listing shows how the assembly program is mapped
into a section of code beginning at address 0. The linking (building) process will
resolve the final addresses. This file also provides a listing of errors and
warnings, and a reference table of labels.

Below is an assembly-language excerpt (main.asm) of Example_ADC_28pin
(PSoC Designer Example project) and its listing file (Example_ADC_28pin.lst):

main.asm File:

;**
; Example_ADC_28pin, a PSoC Pup Board Project.
;
; Purpose:
; To demonstrate the operation of the 12-Bit Incremental Analog-to-
; Digital Converter User Module of the PSoC micro controller. A
; Programmable Gain Amplifier with unity gain is also incorporated.
;**

include "m8c.inc"
include "PGA_1.inc"
include "ADCINC12_1.inc"

area bss(RAM)

ADCVal: BLK 1 ;Temp variable containing 8
 ;most significant bits of ADC
 ;result
area text(ROM,REL)

export ADCVal
export _main

_main:
 or F,01h ;Enable interrupts
 mov A,ADCINC12_1_FULLPOWER ;Set power level
 call ADCINC12_1_Start
 mov A,00h ;Set for continuous sampling
 call ADCINC12_1_GetSamples
 mov A,PGA_1_FULLPOWER
 call PGA_1_Start

PSoC Designer: Assembly Language User Guide 28

Example_ADC_28pin.lst File (After Project Build):

(0083) include "m8c.inc"
(0084) include "PGA_1.inc"
(0085) include "ADCINC12_1.inc"
(0086)
(0087) area bss(RAM)
(0088) ADCVal: BLK 1 ;Temp variable
 ;containing 8 most
 ;significant bits of
 ;ADC result
(0089) area text(ROM,REL)
(0090)
(0091) export ADCVal
(0092) export _main
(0093)
(0094) _main:
(0095) or F,01h ;Enable interrupts
 _main:
 0100: 71 01 OR F,1
(0096) mov A,ADCINC12_1_FULLPOWER ;Set power level
 0102: 50 03 MOV A,3
(0097) call ADCINC12_1_Start
 0104: 91 5D CALL ADCINC12_1_SetPower
(0098) mov A,00h ;Set for continuous
 ;sampling
 0106: 50 00 MOV A,0
(0099) call ADCINC12_1_GetSamples
 0108: 91 64 CALL ADCINC12_1_GetSamples
(0100) mov A,PGA_1_FULLPOWER
 010A: 50 03 MOV A,3
(0101) call PGA_1_Start
 010C: 90 D3 CALL _PGA_1_Start

The first column of the listing file identifies the line in the code.

Starting at “0100: ” location is the absolute address at which the corresponding
instruction is stored. Example:

 0100: 71 01 OR F,1

“71” is the operand for the OR instruction and the F register. “01” (and “1”) is the
value.

The last column shows the source description contained in the assembly source
file.

The .lst file will ONLY be created if there are no source errors resulting from a
build. If there are compile/assemble or linker errors upon a project build, the .lst
file retains source from the last successful build.

PSoC Designer: Assembly Language User Guide 29

Section 6. Assembler Directives

In this section you will learn all active assembler directives that can be used in
the assembly language code.

The PSoC Designer Assembler allows the assembler directives listed below:

Symbol Assembler Directive
AREA Area
BLK RAM Block (in Bytes)

BLKW RAM Block in Words (16 Bits)
DB Define Byte
DS Define ASCII String

DSU Define UNICODE String
DW Define Word (2 Bytes)
DWL Define Word with Little Endian Ordering
ELSE Alternative Result of IF…ELSE…ENDIF
ENDIF End of IF…ELSE…ENDIF
EQU Equate Label to Variable Value

EXPORT Export
IF Conditional Assembly

INCLUDE Include Source File
MACRO/ENDM Macro Definition Start/End

ORG Area Origin

6.1. Area - AREA

The AREA directive ”name” is the name you give to this area. The linker gathers
all areas with the same name together from different .c and .asm files. “memtype”
is either ROM or RAM, and “mode” is either REL or ABS. RAM memtype cannot
have initialized data (including code) and the assembler uses the memtype to
warn illegal usage. Only an area with ABS mode can have the ORG directive.
Areas with REL mode are concatenated by the linker.

label: AREAname(memtype,mode) ;comment

This directive AREA <name> [(attributes)] also defines a memory region to load
the following code or data. The linker gathers all areas with the same name
together and either concatenates or overlays them depending on the attributes.
The attributes are:

abs, or <- absolute area
rel <- relocatable area

followed by

con, or <- concatenated
ovr <- overlay

PSoC Designer: Assembly Language User Guide 30

The starting address of an absolute area is specified within the assembly file
itself whereas the starting address of a relocatable area is specified as a
command option to the linker. For an area with the “con” attribute, the linker
concatenates areas of that name one after another. For an area with the “ovr”
attribute, for each file, the linker starts an area at the same address. The
following illustrates the differences:

file1.o:
 area text <- 10 bytes, call this text_1
 area data <- 10 bytes
 area text <- 20 bytes, call this text_2
file2.o:
 area data <- 20 bytes
 area text <- 40 bytes, call this text_3

text_1, text_2, and so on are just names used in this example. In practice, they
are not given individual names. Let’s assume that the starting address of the text
area is set to zero. Then, if the text area has the "con” attribute, text_1 would start
at 0, text_2 at 10, and text_3 at 30. If the text area has the “ovr” attribute, then
text_1 and text_2 would again have the addresses 0 and 10 respectively. text_3,
since it starts in another file, would also have 0 as the starting address.

All areas of the same name must have the same attributes, even if they are used
in different modules. Here are examples of the complete permutations of all
acceptable attributes:

area foo(abs)
area foo(abs,con)
area foo(abs,ovr)
area foo(rel)
area foo(rel,con)
area foo(rel,ovr)
ascii “string”
ds “string”
dsu “string”
asciz “string”

PSoC Designer: Assembly Language User Guide 31

6.2. RAM Block - BLK

The RAM Block directive reserves blocks of RAM in bytes.

label: BLK<expr> ;comment

The operand is an expression, specifying the size of the block (in bytes) to
reserve. BLKB is synonymous with BLK, and BLKW is to reserve blocks in
words. The AREA directive must be used to ensure the block of bytes will reside
in the correct memory location. PSoC Designer requires that the ‘bss’ area be
used for RAM variable. The following is an example of declaring the variable ‘x’:

AREA bss(ram)
x: BLK

AREA text

Note: Remember to change AREA to ‘text’ upon the conclusion of defining your
RAM variables.

area bss(RAM) ;inform assembler that variables follow

TX8_1_bytecount: blk 1 ;declare local variable to index byte
 ;to TX
countL: blk 1 ;declare local variable to hold delay
 ;value

area text(ROM,REL) ;inform assembler that relocatable
 ;program code follows

6.3. RAM Block in Words - BLKW

The RAM Block in Words directive is to reserve blocks of RAM in words.

label: BLKW<expr> ;comment

area bss(RAM) ;inform assembler that variables follow

countword: blkw 1 ;declare local 16-bit variable to hold
 ;delay value

area text(ROM,REL) ;inform assembler that relocatable
 ;program code follows

PSoC Designer: Assembly Language User Guide 32

6.4. Define Byte - DB

The Define Byte directive reserves a byte of ROM and assigns the specified
value to the reserved byte. This directive is useful for creating tables in ROM.

label: DB operand1, operand2, ... operand(n) ;comment

The operands may be constant or a label. The number of operands in a DB
statement can be zero, up to as many as will fit on the source line.

00D1 00 [00] tab1: DB 0,3,4
00D2 03 [00]
00D3 04 [00]
00D4 06 [00] DB 0110b

6.5. Define ASCII String - DS

The Define String directive stores a string of characters as ASCII values. The
string must start and end with quotation marks "".

label: DS "String of characters" ;comment

The string is stored character by character in ASCII hex format. The listing file
shows the first two ASCII characters on the line with the source code. The
backslash character \ is used in the string as an escape character. The \ is not
assembled as part of the string, but the character following it is, even if it is a \. A
quotation mark “ can be entered into the middle of a string as \”.

The remaining characters are shown on the following line. The string is not null
terminated. To create a null terminated string; follow the DS with a DB or use
ASCIZ.

00D8 41 42 ... DS "ABCDEFGHIJK"
 43 44 45 46 47 48 49 4A 4B
00E3 00 [00] DB 0

ASCII is synonymous with DS. ASCIZ can be used to define a NUL terminated
string.

PSoC Designer: Assembly Language User Guide 33

6.6. Define UNICODE String - DSU

The Define UNICODE String directive stores a string of characters as UNICODE
values with little endian byte order. The string must start and end with quotation
marks "".

label: DSU "String of characters " ;comment

The string is stored character by character in UNICODE format. Each character
in the string is stored with the low byte followed by the high byte. The backslash
character \ is used in the string as an escape character. The \ is not assembled
as part of the string, but the character following it is, even if it is a \. A quotation
mark “ can be entered into the middle of a string as \”.

The listing file shows the first character on the line with the source code. The
remaining characters are shown on the following line. The string is not null
terminated.

08FE 41 00 ... DSU "ABCDE"
 42 00 43 00 44 00 45 00

6.7. Define Word - DW

The Define Word directive reserves two bytes of ROM and assigns the specified
words to the reserved two bytes. This directive is useful for creating tables in
ROM.

label: DW operand1, operand2, ... operand(n) ;comment

The operands may be constant or a label. The length of the source line limits the
number of operands in a DW statement.

00D1 FF FE [00] tab2: DW -2
00D3 01 DF [00] DW 01DFh
00D5 00 11 [00] DW x
00D7 x: EQU 11h

PSoC Designer: Assembly Language User Guide 34

6.8. Define Word, Little Endian Ordering - DWL

The Define Word directive reserves two bytes of ROM and assigns the specified
words to the reserved two bytes, swapping the upper and lower bytes.

label: DWL operand1, operand2, ... operand(n) ;comment

The operands may be constant or a label. The length of the source line limits the
number of operands in a DWL statement.

00D1 FE FF [00] tab3: DWL -2
00D3 DF 01 [00] DWL 01DFh
00D5 11 00 [00] DWL y
00D7 y: EQU 11h

6.9. Alternative Result of IF…ELSE…ENDIF - ELSE

The ELSE directive delineates a “Not True” action for a previous IF directive.

label: ELSE ;comment

--- 0000 DEBUG: EQU 0
--- 0014 _main:
 IF (DEBUG)
 mov a, 90h

--- 000ELSE
--- 0014 5000 mov a, 0
--- 000ENDIF

6.10. IF…ELSE…ENDIF - ENDIF

The ENDIF directive finishes a section of conditional assembly.

label: ENDIF value ;comment

--- 0000 DEBUG: EQU 0
--- 0014 _main:
 IF (DEBUG)
 mov a, 90h

--- 000ELSE
--- 0014 5000 mov a, 0
--- 000ENDIF

PSoC Designer: Assembly Language User Guide 35

6.11. Equate Label - EQU

The Equate Label directive is used to assign an integer value to a label.

label: EQU operand ;comment

The label and operand are required for an EQU directive. The operand must be a
constant or label or . (dot, the Program Counter). Each EQU directive may have
only one operand and if a label is defined more than once, an assembly error will
occur.

00D4 10 [00] DB zz
00D5 00 11 [00] DW yy ;Example of how label is used
00D7 xx: EQU 10h
00D7 yy: EQU 11h
00D7 zz: EQU xx

6.12. Export - EXPORT

The EXPORT directive is used to designate that a label can be referenced in
another file. Otherwise, the label is not visible to another file. Another method to
achieve this is to end a label definition with two colons instead of one.

 EXPORT label ;comment

EXPORT foo and bar:: ret can also be referenced in separate files.

foo: MOV A,X
bar:: ret

6.13. IF…ELSE…ENDIF - IF

All source lines between the IF and ENDIF (or IF and ELSE) directives are
assembled if the condition is true.

label: IF value ;comment

The following example shows a simple usage for IF, ELSE, and ENDIF. Since
the label DEBUG’ is set to zero the mov a, 90h did not generate code because the
IF condition was not met (e.g., DEBUG was not > 0). The ELSE condition was
then taken, and code was generated.

--- 0000 DEBUG: EQU 0
--- 0000 _main:
 IF (DEBUG)
 mov a, 90h
--- 000ELSE
--- 0000 5000 mov a, 0h
--- 000ENDIF

PSoC Designer: Assembly Language User Guide 36

6.14. Include Source File - INCLUDE

The INCLUDE directive is used to include additional source files into the main file
being assembled.

label: INCLUDE "source_file" ;comment

Once an INCLUDE directive is encountered, the Assembler reads in the new
source file (source_file) until either another INCLUDE is encountered or the end
of file is found. When an end of file is encountered, the Assembler resumes
reading the previous file immediately following the INCLUDE directive. In other
words, INCLUDE directives cause nesting of source code being assembled. The
source_file specified should contain a full path name if it does not reside in the
current directory.

 //Port 0 (8-wide) MEM BANK
--- 0000 PRT0DR: EQU 00h ;Port 0 data register 0
--- 0001 PRT0IM: EQU 01h ;Port 0 interrupt mask 0
--- 0002 PRT0BP: EQU 02h ;Port 0 bypass enable 0
--- 0000 PRT0DM0: EQU 00h ;Port 0 drive mode 0 1

 // END

6.15. Macro Definition Start - MACRO/Macro Definition End –

ENDM

The MACRO and ENDM directives are used to specify the start and end of a
macro definition. The lines of code defined between a MACRO statement and an
ENDM statement is not directly assembled into the program. Instead, it forms a
macro that can later be substituted into the code by a macro call. Following the
MACRO directive is the name used to call the macro as well as a list of
parameters. Each time a parameter is used in the macro body of a macro call, it
will be replaced by the corresponding value from the macro call.

Any assembly statement is allowed in a macro body except for another macro
statement. Within a macro body, the expression @digit, where digit is between 0
and 9, is replaced by the corresponding macro argument when the macro is
invoked.

You cannot define a macro name that conflicts with an instruction mnemonic or
an assembly directive.

PSoC Designer: Assembly Language User Guide 37

Following, is an example of an implicit macro:

Defines a macro named "foo:"

macro foo
mov @0,24
mov @1,@0
ENDM

Invoking foo with two arguments…

foo A,X

is equivalent to writing:

mov A,24
mov X,A

A macro must be defined in the assembly file before it is called. Macro definitions
may not be nested, but macros that are already defined may be used in following
macro definitions.

6.16. Area Origin - ORG

The ORG directive allows the programmer to set the value of the Program/Data
Counter during assembly. This is most often used to set the start of a table in
conjunction with the define directives DB, DS, and DW. The ORG directive can
only be used in the area with the ABS mode.

label: ORG operand ;comment

The operand is required for an ORG directive and may be an integer constant, a
label, or . (dot, the Program Counter). The Assembler does not keep track of
areas previously defined and will not flag overlapping areas in a single source
file.

00D1 ORG 00D1h
00D1 03 [00] DB 3
00FD ORG 00FDh

PSoC Designer: Assembly Language User Guide 38

This page has intentionally been left blank.

PSoC Designer: Assembly Language User Guide 39

Section 7. Instruction Set

In this section you will learn (or can reference) the instruction set for the M8C.

All instructions are 1, 2, or 3 bytes wide and fetched from program memory, in a
separate address space from data memory. The first byte of an instruction is an
8-bit constant, referred to as the Opcode. Depending on the instruction, there can
be one or two succeeding bytes that encode address or operand information.

The following notation will be used throughout this section:

Notation Description
A Primary Accumulator

CF Carry Flag
expr Expression

F Flags (ZF, CF, and Others)
I Operand 1 Value
K Operand 2 Value

PC (PCH,PCL)
SP Stack Pointer
X X Register

ZF Zero Flag

To access a complete instruction in detail within PSoC Designer, click your
cursor on the target instruction in the file and hit [F1].

PSoC Designer: Assembly Language User Guide 40

7.1. Add with Carry ADC

Add with Carry: ADC

Description: Adds the content of the Carry flag and destination with the source and places

the result in the destination.

Source Format Machine Code
Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3

Cycles

ADC A expr 09h Immediate 4
ADC A [expr] 0Ah Direct Address 6
ADC A [X+expr] 0Bh Index 7
ADC [expr] A 0Ch Direct Address 7
ADC [X+expr] A 0Dh Index 8
ADC [expr] expr 0Eh Direct Address Immediate 9
ADC [X+expr] expr 0Fh Index Immediate 10

CF Set if, treating the numbers as unsigned, the result > 255; cleared

otherwise.

Condition Flags:

ZF Set if the result is zero; cleared otherwise.

Notes:

Example: or F,FlagCarry
adc A,12

PSoC Designer: Assembly Language User Guide 41

7.2. Add without Carry ADD

Add without Carry: ADD

Description: Adds the content of the destination with the source and places the result in

the destination.

Source Format Machine Code
Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3

Cycles

ADD A expr 01h Immediate 4
ADD A [expr] 02h Direct Address 6
ADD A [X+expr] 03h Index 7
ADD [expr] A 04h Direct Address 7
ADD [X+expr] A 05h Index 8
ADD [expr] expr 06h Direct Address Immediate 9
ADD [X+expr] expr 07h Index Immediate 10
ADD SP expr 38h Immediate 5

CF Set if, treating the numbers as unsigned, the result > 255; cleared

otherwise.

Condition Flags:

ZF Set if the result is zero; cleared otherwise. (ADD SP, expr does not
affect the flags).

Notes:

Example: add A,12

PSoC Designer: Assembly Language User Guide 42

7.3. Bitwise AND AND

Bitwise AND: AND

Description: A bitwise AND of the destination and source.

Source Format Machine Code
Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3

Cycles

AND A expr 21h Immediate 4
AND A [expr] 22h Direct Address 6
AND A [X+expr] 23h Index 7
AND [expr] A 24h Direct Address 7
AND [X+expr] A 25h Index 8
AND [expr] expr 26h Direct Address Immediate 9
AND [X+expr] expr 27h Index Immediate 10
AND REG[expr] expr 41h REG Direct

Address
Immediate 9

AND REG[X+expr] expr 42h REG Index Immediate 10
AND F expr 70h Immediate 4

CF Unchanged (unless F is destination).

Condition Flags:

ZF Set if the result is zero; cleared otherwise (unless F is destination).

Notes:

Example: and F,~FlagCarry

PSoC Designer: Assembly Language User Guide 43

7.4. Arithmetic Shift Left ASL

Arithmetic Shift Left: ASL

Description: Shifts all bits of specified location one place to the left. The most

significant is loaded into the Carry flag. Bit 0 is loaded with a zero.

Source Format Machine Code
Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3

Cycles

ASL A 64h 4
ASL [expr] 65h Direct Address 7
ASL [X+expr] 66h Index 8

CF Set if the MSB of the source was set before the shift, cleared otherwise.

Condition Flags:

ZF Set if the result is zero; cleared otherwise.

Notes:

Example: asl A ; Multiply by 2 and put MSB in Carry flag

7.5. Arithmetic Shift Right ASR

Arithmetic Shift Right: ASR

Description: Shifts all bits of the source one place to the right. Bit 0 of the source is

loaded into the Carry flag. Bit 7 remains the same.

Source Format Machine Code
Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3

Cycles

ASR A 67h 4
ASR [expr] 68h Direct Address 7
ASR [X+expr] 69h Index 8

CF Set if LSB of the source was set before the shift, cleared otherwise.

Condition Flags:

ZF Set if the result is zero; cleared otherwise.

Notes:

Example: asr A ; Divide by two

PSoC Designer: Assembly Language User Guide 44

7.6. Call Function CALL

Call Function: CALL

Description: Executes a jump to a subroutine starting at the address given as an

operand. The Program Counter (PC) is pushed onto the stack. The stack
pointer is post-incremented. The PC is loaded with the address value. This
instruction has a 12-bit-twos-complement-relative-address that is added to
the PC to form the jump target. In contrast, the Long Call instruction has two
operands that together form a 16-bit absolute address.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

CALL Address 90h Address 11
CALL Address 91h Address 11
CALL Address 92h Address 11
CALL Address 93h Address 11
CALL Address 94h Address 11
CALL Address 95h Address 11
CALL Address 96h Address 11
CALL Address 97h Address 11
CALL Address 98h Address 11
CALL Address 99h Address 11
CALL Address 9Ah Address 11
CALL Address 9Bh Address 11
CALL Address 9Ch Address 11
CALL Address 9Dh Address 11
CALL Address 9Eh Address 11
CALL Address 9Fh Address 11

CF Carry flag unaffected.

Condition Flags:

ZF Zero flag unaffected.

Notes: This is a 12-bit address. The upper 4 bits of the address come from the lower
(nibble) 4 bits of the Opcode. (9xh where x = lower 4 bits.) The lower 8 bits
of the address come from Operand 1.

Example: call LoadConfig
.
.
LoadConfig:
ret

PSoC Designer: Assembly Language User Guide 45

7.7. Non-destructive Compare CMP

Non-destructive Compare: CMP

Description: Subtracts two operands and records the result in flags. The

contents of the accumulator are unaffected.

Source Format Machine Code
Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3

Cycles

CMP A expr 39h Immediate 5
CMP A [expr] 3Ah Direct Address 7
CMP A [X+expr] 3Bh Index 8
CMP [expr] expr 3Ch Direct Address Immediate 8
CMP [X+expr] expr 3Dh Index Immediate 9

CF Set if the Operand 1 < Operand 2 value; cleared otherwise.

Condition Flags:

ZF Set if the operands are equal; cleared otherwise.

Notes:

Example: cmp A, END_CONFIG_TABLE

7.8. Complement Accumulator CPL

Complement Accumulator: CPL

Description: Replace each bit in the accumulator with its complement.

Source Format Machine Code
Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3

Cycles

CPL A 73h 4

CF Unchanged.

Condition Flags:

ZF Set if the result is zero; cleared otherwise.

Notes:

Example: cpl A

PSoC Designer: Assembly Language User Guide 46

7.9. Decrement DEC

Decrement: DEC

Description: Subtract one from the contents of a register or Data RAM space. The field to

the right of the Opcode determines which entity is affected: accumulator; x
register; direct or index addressed Data RAM location.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

DEC A 78h 4
DEC X 79h 4
DEC [expr] 7Ah Direct Address 7
DEC [X+expr] 7Bh Index 8

CF Set if the result is -1; cleared otherwise.

Condition Flags:

ZF Set if the result is zero; cleared otherwise.

Notes:

Example: loop2: ;loop takes 12 CPU cycles
 dec [countL]
 jnz loop2

PSoC Designer: Assembly Language User Guide 47

7.10. Halt HALT

Halt: HALT

Description: Halts the execution of the processor. The processor will remain halted until a

Power On Reset (POR) or Watchdog Timer Reset (WDR) event happens, either
of which will cause the processor to begin execution again.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

HALT 30h

CF Carry flag unaffected.

Condition Flags:

ZF Zero flag unaffected.

Notes:

Example: halt

PSoC Designer: Assembly Language User Guide 48

7.11. Increment INC

Increment: INC

Description: Add one to the contents of a register or Data RAM location. The field to the

right of the Opcode determines which entity is affected: accumulator; X
register; direct or index addressed Data RAM location.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

INC A 74h 4
INC X 75h 4
INC [expr] 76h Direct Address 7
INC [X+expr] 77h Index 8

CF Set if value after the increment is 0; cleared otherwise.

Condition Flags:

ZF Set if the result is zero; cleared otherwise.

Notes:

Example: inc X

PSoC Designer: Assembly Language User Guide 49

7.12. Table Read INDEX

Table Read: INDEX

Description: Places the contents of ROM location indexed by the sum of the accumulator

and the address operand, into the accumulator. This instruction has a 12-bit-
twos-complement-address, relative to the PC as it points to the next
instruction.

This instruction is used to move information in table form from the program
memory space into the accumulator. It has one operand, which is the lower
part of the base address of a program memory table. The lower nibble of the
INDEX Opcode forms the upper part of the base address. This 12-bit value is
a sign - extended 12-bit-twos-complement-address that when added to the
PC + 2, yields the base address of the table.

The offset into the table is taken as the value of the accumulator when the
INDEX instruction is executed. The maximum readable table size, when using
a single INDEX instruction, is limited by the range of the accumulator to 256
bytes.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

INDEX Address F0h Address Offset 13
INDEX Address F1h Address Offset 13
INDEX Address F2h Address Offset 13
INDEX Address F3h Address Offset 13
INDEX Address F4h Address Offset 13
INDEX Address F5h Address Offset 13
INDEX Address F6h Address Offset 13
INDEX Address F7h Address Offset 13
INDEX Address F8h Address Offset 13
INDEX Address F9h Address Offset 13
INDEX Address FAh Address Offset 13
INDEX Address FBh Address Offset 13
INDEX Address FCh Address Offset 13
INDEX Address FDh Address Offset 13
INDEX Address FEh Address Offset 13
INDEX Address FFh Address Offset 13

CF Unchanged.

Condition Flags:

ZF Set if A is zero.

Notes: This is a 12-bit address. The upper 4 bits of the address come from the lower
(nibble) 4 bits of the Opcode. (Fxh where x = lower 4 bits.) The lower 8 bits
of the address come from Operand 1.

Example: inc A ;increment index value for next TX
index TXoutput ;retrieve indexed TX value
ret
TXoutput:
 db 00h,55h,ffh,55h ;data sent to TX

PSoC Designer: Assembly Language User Guide 50

7.13. Jump Accumulator JACC

Jump Accumulator: JACC

Description: Jump unconditionally to the address computed by the sum of the

accumulator and the 12-bit address operand. The accumulator is not
affected by this instruction. This instruction has a 12-bit-twos-
complement-relative-address that is added to the PC to form the jump
target. In contrast, the Long Jump instruction has two operands that
together form a 16-bit absolute address.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

JACC Address E0h Address 7
JACC Address E1h Address 7
JACC Address E2h Address 7
JACC Address E3h Address 7
JACC Address E4h Address 7
JACC Address E5h Address 7
JACC Address E6h Address 7
JACC Address E7h Address 7
JACC Address E8h Address 7
JACC Address E9h Address 7
JACC Address EAh Address 7
JACC Address EBh Address 7
JACC Address ECh Address 7
JACC Address EDh Address 7
JACC Address EEh Address 7
JACC Address EFh Address 7

CF Unchanged.

Condition Flags:

ZF Unchanged.

Notes: This is a 12-bit address. The upper 4 bits of the address come from the lower
(nibble) 4 bits of the Opcode. (Exh where x = lower 4 bits.) The lower 8 bits
of the address come from Operand 1.

Example: jacc maintable

PSoC Designer: Assembly Language User Guide 51

7.14. Jump if Carry JC

Jump if Carry: JC

Description: If the carry flag is set (1 = true), jump to the address (place the address in the

Program Counter). This instruction has a 12-bit-twos-complement-relative-
address that is added to the PC to form the jump target. In contrast, the Long
Jump instruction has two operands that together form a 16-bit absolute
address.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

JC Address C0h Address 4/5*
JC Address C1h Address 4/5
JC Address C2h Address 4/5
JC Address C3h Address 4/5
JC Address C4h Address 4/5
JC Address C5h Address 4/5
JC Address C6h Address 4/5
JC Address C7h Address 4/5
JC Address C8h Address 4/5
JC Address C9h Address 4/5
JC Address CAh Address 4/5
JC Address CBh Address 4/5
JC Address CCh Address 4/5
JC Address CDh Address 4/5
JC Address CEh Address 4/5
JC Address CFh Address 4/5

CF Carry flag unaffected.

Condition Flags:

ZF Zero flag unaffected.

Notes: This is a 12-bit address. The upper 4 bits of the address come from the lower
(nibble) 4 bits of the Opcode. (Cxh where x = lower 4 bits.) The lower 8 bits
of the address come from Operand 1.

* If the carry flag is true (1), 5 cycles are consumed because the jump is
taken. If the carry flag is false (0), 4 cycles are consumed because the jump
is not taken.

Example: cmp [TX8_1_bytecount],4 ;rotate through 4 TX values
jc branch2

PSoC Designer: Assembly Language User Guide 52

7.15. Jump JMP

Jump: JMP

Description: Jump unconditionally to the address (place the address in the Program

Counter). This instruction has a 12-bit-twos-complement-relative-address that is
added to the PC to form the jump target. In contrast, the Long Jump instruction
has two operands that together form a 16-bit absolute address.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

JMP Address 80h Address 5
JMP Address 81h Address 5
JMP Address 82h Address 5
JMP Address 83h Address 5
JMP Address 84h Address 5
JMP Address 85h Address 5
JMP Address 86h Address 5
JMP Address 87h Address 5
JMP Address 88h Address 5
JMP Address 89h Address 5
JMP Address 8Ah Address 5
JMP Address 8Bh Address 5
JMP Address 8Ch Address 5
JMP Address 8Dh Address 5
JMP Address 8Eh Address 5
JMP Address 8Fh Address 5

CF Carry flag unaffected.

Condition Flags:

ZF Zero flag unaffected.

Notes: This is a 12-bit address. The upper 4 bits of the address come from the lower
(nibble) 4 bits of the Opcode. (8xh where x = lower 4 bits.) The lower 8 bits
of the address come from Operand 1.

Example: loop:
 cmp [__r0],<__bss_end
 jz done
 jmp loop
done:

PSoC Designer: Assembly Language User Guide 53

7.16. Jump if No Carry JNC

Jump if No Carry: JNC

Description: If the carry flag is not set (0 = false), jump to the address (place the address

in the Program Counter). This instruction has a 12-bit-twos-complement-
relative-address that is added to the PC to form the jump target. In contrast,
the Long Jump instruction has two operands that together form a 16-bit
absolute address.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

JNC Address D0h Address 4/5*
JNC Address D1h Address 4/5
JNC Address D2h Address 4/5
JNC Address D3h Address 4/5
JNC Address D4h Address 4/5
JNC Address D5h Address 4/5
JNC Address D6h Address 4/5
JNC Address D7h Address 4/5
JNC Address D8h Address 4/5
JNC Address D9h Address 4/5
JNC Address DAh Address 4/5
JNC Address DBh Address 4/5
JNC Address DCh Address 4/5
JNC Address DDh Address 4/5
JNC Address DEh Address 4/5
JNC Address DFh Address 4/5

CF Carry flag unaffected.

Condition Flags:

ZF Zero flag unaffected.

Notes: This is a 12-bit address. The upper 4 bits of the address come from the lower
(nibble) 4 bits of the Opcode. (Dxh where x = lower 4 bits.) The lower 8 bits
of the address come from Operand 1.

* If the carry flag is false (0), 5 cycles are consumed because the jump is
taken. If the carry flag is true (1), 4 cycles are consumed because the jump is
not taken.

Example: cmp [TX8_1_bytecount],4 ;rotate through 4 TX values
jnc branch2

PSoC Designer: Assembly Language User Guide 54

7.17. Jump if Not Zero JNZ

Jump if Not Zero: JNZ

Description: If the zero flag is not set (0 = false), jump to the address. This instruction

has a 12-bit-twos-complement-relative-address that is added to the PC to
form the jump target. In contrast, the Long Jump instruction has two
operands that together form a 16-bit absolute address.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

JNZ Address B0h Address 4/5*
JNZ Address B1h Address 4/5
JNZ Address B2h Address 4/5
JNZ Address B3h Address 4/5
JNZ Address B4h Address 4/5
JNZ Address B5h Address 4/5
JNZ Address B6h Address 4/5
JNZ Address B7h Address 4/5
JNZ Address B8h Address 4/5
JNZ Address B9h Address 4/5
JNZ Address BAh Address 4/5
JNZ Address BBh Address 4/5
JNZ Address BCh Address 4/5
JNZ Address BDh Address 4/5
JNZ Address BEh Address 4/5
JNZ Address BFh Address 4/5

CF Carry flag unaffected.

Condition Flags:

ZF Zero flag unaffected.

Notes: This is a 12-bit address. The upper 4 bits of the address come from the lower
(nibble) 4 bits of the Opcode. (Bxh where x = lower 4 bits.) The lower 8 bits
of the address come from Operand 1.

* If the zero flag is false (0), 5 cycles are consumed because the jump is
taken. If the zero flag is true (1), 4 cycles are consumed because the jump is
not taken.

Example: mov a,[_c32c]
jnz lp1

PSoC Designer: Assembly Language User Guide 55

7.18. Jump if Zero JZ

Jump if Zero: JZ

Description: If the zero flag is set (1 = true), jump to the address (add the address to the

Program Counter). This instruction has a 12-bit-twos-complement-relative-
address that is added to the PC to form the jump target. In contrast, the
Long Jump instruction has two operands that together form a 16-bit
absolute address.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

JZ Address A0h Address 4/5*
JZ Address A1h Address 4/5
JZ Address A2h Address 4/5
JZ Address A3h Address 4/5
JZ Address A4h Address 4/5
JZ Address A5h Address 4/5
JZ Address A6h Address 4/5
JZ Address A7h Address 4/5
JZ Address A8h Address 4/5
JZ Address A9h Address 4/5
JZ Address AAh Address 4/5
JZ Address ABh Address 4/5
JZ Address ACh Address 4/5
JZ Address ADh Address 4/5
JZ Address AEh Address 4/5
JZ Address AFh Address 4/5

CF Carry flag unaffected.

Condition Flags:

ZF Zero flag unaffected.

Notes: This is a 12-bit address. The upper 4 bits of the address come from the lower
(nibble) 4 bits of the Opcode. (Axh where x = lower 4 bits.) The lower 8 bits
of the address come from Operand 1.

If the zero flag is true (1), 5 cycles are consumed because the jump is taken.
If the zero flag is false (0), 4 cycles are consumed because the jump is not
taken.

Example: cmp A, END_CONFIG_TABLE ;check for end of table

jz EndLoadConfig ;if so, end of load

PSoC Designer: Assembly Language User Guide 56

7.19. Long Call LCALL

Long Call: LCALL

Description: Executes a jump to a subroutine starting at the address given as an

operand. The PC is pushed onto the stack. The stack pointer is post-
incremented. The PC is loaded with the address value. The Long Call
instruction has two operands that together form a 16-bit absolute address.
The other call instruction has a 12-bit-twos-complement-relative-address
that is added to the PC to form the jump target.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

LCALL Address 7Ch 16-bit
Address

(High Byte)

16-bit
Address

(Low Byte)

13

CF

Condition Flags:

ZF

Notes: Again, LCALL is a 16-bit address. Its instruction is identical to a CALL but
can jump to a subroutine over a wider address range.

Example: lcall PWMDB8_1INT

7.20. Long Jump LJMP

Long Jump: LJMP

Description: Jump unconditionally to the address (place the address in the Program

Counter). The Long Jump instruction has two operands that together form a
16-bit absolute address. All other jump instructions have 12-bit-twos-
complement-relative-addresses that are added to the PC to form the jump
target.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

LJMP Address 7Dh 16-bit
Address

(High Byte)

16-bit
Address

(Low Byte)

7

CF

Condition Flags:

ZF

Notes: Again, LJMP is a 16-bit address. Its instruction is identical to a JMP but can
jump over a wider address range.

Example: ljmp PWMDB8_1INT

PSoC Designer: Assembly Language User Guide 57

7.21. Move MOV

Move: MOV

Description: This instruction allows for a number of combinations of moves. Immediate,

direct, and indexed addressing are supported.

Source Format Machine Code
Instruction Operand 1 Operand 2 Opcode/

Byte 1
Byte 2 Byte 3 Cycles

MOV X SP 4Fh 4
MOV A expr 50h Immediate 4
MOV A [expr] 51h Direct Address 5
MOV A [X+expr] 52h Index 6
MOV [expr] A 53h Direct Address 5
MOV [X+expr] A 54h Index 6
MOV [expr] expr 55h Direct Address Immediate 8
MOV [X+expr] expr 56h Index Immediate 9
MOV X expr 57h Immediate 4
MOV X [expr] 58h Direct Address 6
MOV X [X+expr] 59h Index 7
MOV [expr] X 5Ah Direct Address 5
MOV A X 5Bh 4
MOV X A 5Ch 4
MOV A REG[expr] 5Dh REG Direct Address 6
MOV A REG[X+expr] 5Eh REG Index 7
MOV [expr] [expr] 5Fh Direct Address Direct

Address
10

MOV REG[expr] A 60h REG Direct Address 5
MOV REG[X+expr] A 61h REG Index 6
MOV REG[expr] expr 62h REG Direct Address Immediate 8
MOV REG[X+expr] expr 63h REG Index Immediate 9

CF Carry flag unaffected.

Condition Flags:

ZF Set if A is updated with zero.

Notes:

Example: mov A, ProjectName
mov X, ProjectName

PSoC Designer: Assembly Language User Guide 58

7.22. Move Indirect, Post-Increment to Memory MVI

Move Indirect, Post-
Increment to Memory:

MVI

Description: The address for memory is specified by the contents of memory at the
direct address given by the operand. Memory is indirectly read or
written to by this address. The contents of the original direct memory
location is incremented and can only be located in the first SRAM
page. The indirect address is wherever the Extended Addressing
points are located.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/
Byte 1

Byte 2 Byte
3

Cycles

MVI A [expr] 3Eh Direct Address (Page 0) 10
MVI [expr] A 3Fh Direct Address (Page 0) 10

CF Unaffected.

Condition Flags:

ZF Set if A is updated with zero.

Notes:

Example: mvi [location],A

PSoC Designer: Assembly Language User Guide 59

7.23. No Operation NOP

No Operation:

NOP

Description: This one-byte instruction performs no operation.

Source Format Machine Code
Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3

Cycles

NOP 40h 4

CF Carry flag unaffected.

Condition Flags:

ZF Zero flag unaffected.

Notes:

Example: nop

PSoC Designer: Assembly Language User Guide 60

7.24. Bitwise OR OR

Bitwise OR: OR

Description: A Bitwise OR of a value; K, [K] or [X + K] and the contents of the

accumulator. The result is placed in either the accumulator, [K], or [X + K]
according to the field just to the right of the Opcode.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

OR A expr 29h Immediate 4
OR A [expr] 2Ah Direct Address 6
OR A [X+expr] 2Bh Index 7
OR [expr] A 2Ch Direct Address 7
OR [X+expr] A 2Dh Index 8
OR [expr] expr 2Eh Direct Address Immediate 9
OR [X+expr] expr 2Fh Index Immediate 10
OR REG[expr] expr 43h REG Direct

Address
Immediate 9

OR REG[X+expr] expr 44h REG Index Immediate 10
OR F expr 71h Immediate 4

CF Unchanged (unless F is destination).

Condition Flags:

ZF Set if the result is zero; cleared otherwise (unless F is destination).

Notes:

Example: or F, FLAG_CFG_MASK

PSoC Designer: Assembly Language User Guide 61

7.25. Pop Stack into Register POP

Pop Stack into Register: POP

Description: Place the contents of the top of the stack into the designated

register(s). Pre-decrement the stack pointer.

Source Format Machine Code
Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3

Cycles

POP A 18h 5
POP X 20h 5

CF Carry flag unaffected.

Condition Flags:

ZF Set if A is updated to zero.

Notes:

Example: pop A
reti

7.26. Push Register onto Stack PUSH

Push Register onto Stack: PUSH

Description: Push the contents of the designated register(s) onto the stack.

Post-increment the stack pointer.

Source Format Machine Code
Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3

Cycles

PUSH A 08h 4
PUSH X 10h 4

CF Carry flag unaffected.

Condition Flags:

ZF Zero flag unaffected.

Notes:

Example: push A

PSoC Designer: Assembly Language User Guide 62

7.27. Return RET

Return: RET

Description: Pop two bytes off of the stack into the Program Counter.

Source Format Machine Code
Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3

Cycles

RET 7Fh 8

CF Carry unchanged by this instruction.

Condition Flags:

ZF Zero unchanged by this instruction.

Notes:

Example: ret

7.28. Return from Interrupt RETI

Return from Interrupt: RETI

Description: Pop flag then pop two bytes off of the stack into the Program Counter.

The previous flag interrupt enable status is restored. Do not use an
RETI to return from a subroutine call.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

RETI 7Eh 10

CF All flag bits are restored to the value pushed during an interrupt call.

Condition Flags:

ZF All flag bits are restored to the value pushed during an interrupt call.

Notes: Flags restored.

Example: Interrupt6:
 reti

PSoC Designer: Assembly Language User Guide 63

7.29. Rotate Left through Carry RLC

Rotate Left through Carry: RLC

Description: Shifts all bits of the specified location one place to the left. Bit 0 is

loaded with the carry flag. The most significant bit of the specified
location is loaded into the carry flag.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

RLC A 6Ah 4
RLC [expr] 6Bh Direct Address 7
RLC [X+expr] 6Ch Index 8

CF Set if the MSB of the specified accumulator was set before the shift.

Condition Flags:

ZF Set if the result is zero; cleared otherwise.

Notes:

Example: rlc [shiftout]

7.30. Table Read ROMX

Table Read: ROMX

Description: Places the contents of ROM into the accumulator, indexed by the address

generated by concatenating the A and X registers (A is Most Significant and X
is Least Significant).

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

ROMX 28h 11

CF Unchanged.

Condition Flags:

ZF Set if A is zero.

Notes:

Example: mov A,42
inc X
romx ;load config address

PSoC Designer: Assembly Language User Guide 64

7.31. Rotate Right through Carry RRC

Rotate Right through Carry: RRC

Description: Shifts all bits of the specified location one place to the right. The

carry flag is loaded into the most significant bit of the specified
location - bit 7. Bit 0 of the source is loaded into the carry flag.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

RRC A 6Dh 4
RRC [expr] 6Eh Direct Address 7
RRC [X+expr] 6Fh Index 8

CF Set if LSB of the specified accumulator was set before the shift.

Condition Flags:

ZF Set if the result is zero; cleared otherwise.

Notes:

Example: rrc [shiftout]

PSoC Designer: Assembly Language User Guide 65

7.32. Subtract with Borrow SBB

Subtract with Borrow: SBB

Description: Subtracts a value; K, [K] or [X + K], plus the carry flag, from the

destination contents and places the result in the destination.

Source Format Machine Code
Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3

Cycles

SBB A expr 19h Immediate 4
SBB A [expr] 1Ah Direct Address 6
SBB A [X+expr] 1Bh Index 7
SBB [expr] A 1Ch Direct Address 7
SBB [X+expr] A 1Dh Index 8
SBB [expr] expr 1Eh Direct Address Immediate 9
SBB [X+expr] expr 1Fh Index Immediate 10

CF Set if, treating the numbers as unsigned, the result < 0; cleared

otherwise.

Condition Flags:

ZF Set if the result is zero; cleared otherwise.

Notes:

Example: sbb A,[oldvalue]

PSoC Designer: Assembly Language User Guide 66

7.33. Subtract without Borrow SUB

Subtract without Borrow: SUB

Description: Subtracts a value; K, [K] or [X + K] from the contents of the

destination.

Source Format Machine Code
Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3

Cycles

SUB A expr 11h Immediate 4
SUB A [expr] 12h Direct Address 6
SUB A [X+expr] 13h Index 7
SUB [expr] A 14h Direct Address 7
SUB [X+expr] A 15h Index 8
SUB [expr] expr 16h Direct Address Immediate 9
SUB [X+expr] expr 17h Index Immediate 10

CF Set if, treating the numbers as unsigned, the result < 0; cleared

otherwise.

Condition Flags:

ZF Set if the result is zero; cleared otherwise.

Notes:

Example: sub A, 31 ; Apply the offset

PSoC Designer: Assembly Language User Guide 67

7.34. Swap SWAP

Swap: SWAP

Description: Operates on X register, memory, or the stack pointer with the primary

accumulator. An internal temporary register is used to facilitate the swap.

Source Format Machine Code
Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3

Cycles

SWAP A X 4Bh 5
SWAP A [expr] 4Ch Direct Address 7
SWAP X [expr] 4Dh Direct Address 7
SWAP A SP 4Eh 5

CF Carry flag unaffected.

Condition Flags:

ZF Set if accumulator is cleared.

Notes:

Example: swap SP,A

PSoC Designer: Assembly Language User Guide 68

7.35. System Supervisor Call SSC

System Supervisor Call: SSC

Description: The System Supervisor Call instruction provides the method for the

user to access pre-existing routines in the Supervisor ROM to
invoke various system-related functions. The user must set several
parameters when utilizing these functions. The parameters are
written to a block near the top of RAM memory space.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

SSC 00h 4

CF Unchanged.

Condition Flags:

ZF Unchanged.

Notes: The functions and parameters are device-specific. See the device Data
Sheet for details. (Access it at http://www.cypressmicro.com.)

Example:

http://www.cypressmicro.com/download/body.htm#manuals

PSoC Designer: Assembly Language User Guide 69

7.36. Test with Mask TST

Test with Mask: TST

Description: A Read-Only operation on an IO port or memory addressed by the first

argument, with a bit mask given by the second argument. The operand is not
modified.

Source Format Machine Code

Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3
Cycles

TST [expr] expr 47h Direct Address Immediate 8
TST [X+expr] expr 48h Index Immediate 9
TST REG[expr] expr 49h REG Direct

Address
Immediate 8

TST REG[X+expr] expr 4Ah REG Index Immediate 9

CF Unaffected.

Condition Flags:

ZF Set if the addressed location is zero; cleared otherwise.

Notes:

Example: tst reg[TX8_1_CONTROL_0],TX_REG_EMPTY

PSoC Designer: Assembly Language User Guide 70

7.37. Bitwise XOR XOR

Bitwise XOR: XOR

Description: A Bitwise Exclusive OR of a value; K, [K] or [X + K] and the

destination contents.

Source Format Machine Code
Instruction Operand 1 Operand 2 Opcode/Byte 1 Byte 2 Byte 3

Cycles

XOR A expr 31h Immediate 4
XOR A [expr] 32h Direct Address 6
XOR A [X+expr] 33h Index 7
XOR [expr] A 34h Direct Address 7
XOR [X+expr] A 35h Index 8
XOR [expr] expr 36h Direct Address Immediate 9
XOR [X+expr] expr 37h Index Immediate 10
XOR REG[expr] expr 45h REG Direct

Address
Immediate 9

XOR REG[X+expr] expr 46h REG Index Immediate 10
XOR F expr 72h Immediate 4

CF Unchanged (unless F is destination).

Condition Flags:

ZF Set if the result is zero; cleared otherwise (unless F is destination).

Notes:

Example: xor A,[bitmask]

PSoC Designer: Assembly Language User Guide 71

Section 8. Compile/Assemble Error Messages

In this section you will learn (or can reference) all PSoC Designer C Compiler
and Assembler errors and warnings.

Again, once you have added and modified assembly-language source and/or C
Compiler files, you must compile/assemble the files and build the project. This is
done so PSoC Designer can generate a .rom file to be used to debug the M8C
program.

To compile the source files for the current project, click the
Compile/Assemble icon in the toolbar.

 To build the current project, click the Build icon in the toolbar.

Each time you compile/assemble files or build the project, the status window is
cleared and the current status entered as the process occurs.

When compiling or building is complete, you will the see the number of errors.
Zero errors signify that the compilation/assemblage or build was successful. One
or more errors indicate problems with one or more files. For further information
on the PSoC Designer status window refer to section 3 in the PSoC Designer:
Integrated Development Environment User Guide.

The remainder of this section lists all compile/assemble and build (linker) errors
and warnings you might encounter from your code.

8.1. Preprocessor

Note that these errors and warnings are associated with C Compiler errors and
warnings.

Error/Warning
not followed by macro parameter
occurs at border of replacement
#defined token can’t be redefined
#defined token is not a name
#elif after #else
#elif with no #if
#else after #else
#else with no #if
#endif with no #if
#if too deeply nested
#line specifies number out of range
Bad ?: in #if/endif
Bad syntax for control line
Bad token r produced by ## operator
Character constant taken as not signed
Could not find include file

PSoC Designer: Assembly Language User Guide 72

(Preprocessor cont.)
Disagreement in number of macro arguments
Duplicate macro argument
EOF in macro arglist
EOF in string or char constant
EOF inside comment
Empty character constant
Illegal operator * or & in #if/#elsif
Incorrect syntax for ‘defined’
Macro redefinition
Multibyte character constant undefined
Sorry, too many macro arguments
String in #if/#elsif
Stringified macro arg is too long
Syntax error in #else
Syntax error in #endif
Syntax error in #if/#elsif
Syntax error in #if/#endif
Syntax error in #ifdef/#ifndef
Syntax error in #include
Syntax error in #line
Syntax error in #undef
Syntax error in macro parameters
Undefined expression value
Unknown preprocessor control line
Unterminated #if/#ifdef/#ifndef
Unterminated string or char const

8.1.1. Preprocessor Command Line Errors

Error/Warning
Can’t open input file
Can’t open output file
Illegal -D or -U argument
Too many -I directives

8.2. C Compiler

Error/Warning
expecting <character>
literal too long
IO port <name> cannot be redeclared as local
variable
IO port <name> cannot be redeclared as parameter
IO port variable <name> cannot have initializer
<n> is a preprocessing number but an invalid %s
constant
<n> is an illegal array size
<n> is an illegal bit-field size
<type> is an illegal bit-field type
<type> is an illegal field type
‘sizeof’ applied to a bit field
addressable object required

PSoC Designer: Assembly Language User Guide 73

(C Compiler cont.)
asm string too long
assignment to const identifier
assignment to const location
cannot initialize undefined
case label must be a constant integer expression
cast from <type> to <type> is illegal in constant
expressions
cast from <type> to <type> is illegal
conflicting argument declarations for function
<name>
declared parameter <name> is missing
duplicate case label <n>
duplicate declaration for <name> previously declared
at <line>
duplicate field name <name> in <structure>
empty declaration
expecting an enumerator identifier
expecting an identifier
extra default label
extraneous identifier <id>
extraneous old-style parameter list
extraneous return value
field name expected
field name missing
found <id> expected a function
ill-formed hexadecimal escape sequence
illegal break statement
illegal case label
illegal character <c>
illegal continue statement
illegal default label
illegal expression
illegal formal parameter types
illegal initialization for <id>
illegal initialization for parameter <id>
illegal initialization of ‘extern <name>’
illegal return type <type>
illegal statement termination
illegal type <type> in switch expression
illegal type ‘array of <name>’
illegal use of incomplete type
illegal use of type name <name>
initializer must be constant
insufficient number of arguments to <function>
integer expression must be constant
interrupt handler <name> cannot have arguments
invalid field declarations
invalid floating constant
invalid hexadecimal constant
invalid initialization type; found <type> expected
<type>
invalid octal constant
invalid operand of unary &; <id> is declared register
invalid storage class <storage class> for <id>

PSoC Designer: Assembly Language User Guide 74

(C Compiler cont.)
invalid type argument <type> to ‘sizeof’
invalid type specification
invalid use of ‘ typedef’
left operand of -> has incompatible type
left operand of . has incompatible type
lvalue required
missing <c>
missing tag
missing array size
missing identifier
missing label in goto
missing name for parameter to function <name>
missing parameter type
missing string constant in asm
missing { in initialization of <name>
operand of unary <operator> has illegal type
operands of <operator> have illegal types <type>
and <type>
overflow in value for enumeration constant
redeclaration of <name> previously declared at
<line>
redeclaration of <name>
redefinition of <name> previously defined at <line>
redefinition of label <name> previously defined at
<line>
size of <type> exceeds <n> bytes
size of ‘array of <type>’ exceeds <n> bytes
syntax error; found
too many arguments to <function>
too many errors
too many initializers
too many variable references in asm string
type error in argument <name> to <function>; <type>
is illegal
type error in argument <name> to <function>; found
<type> expected <type>
type error
unclosed comment
undeclared identifier <name>
undefined label
undefined size for <name>
undefined size for field <name>
undefined size for parameter <name>
undefined static <name>
unknown #pragma
unknown size for type <type>
unrecognized declaration
unrecognized statement

PSoC Designer: Assembly Language User Guide 75

8.3. Assembler

Error/Warning
’[’ addressing mode must end with ’]’
) expected
.if/.else/.endif mismatched
<character> expected
EOF encountered before end of macro definition
No preceding global symbol
absolute expression expected
badly formed argument, (without a matching)
branch out of range
cannot add two relocatable items
cannot perform subtract relocation
cannot subtract two relocatable items
cannot use .org in relocatable area
character expected
comma expected
equ statement must have a label
identifier expected, but got character <c>
illegal addressing mode
illegal operand
input expected
label must start with an alphabet, ’.’ or ’_’
letter expected but got <c>
macro <name> already entered
macro definition cannot be nested
maximum <#> macro arguments exceeded
missing macro argument number
multiple definitions <name>
no such mnemonic <name>
relocation error
target too far for instruction
too many include files
too many nested .if
undefined mnemonic <word>
undefined symbol
unknown operator
unmatched .else
unmatched .endif

8.3.1. Assembler Command Line Errors

Error/Warning
cannot create output file %s\n
Too many include paths

PSoC Designer: Assembly Language User Guide 76

8.4. Linker

Error/Warning
Address <address> already contains a value
can’t find address for symbol <symbol>
can’t open file <file>
can’t open temporary file <file>
cannot open library file <file>
cannot write to <file>
definition of builtin symbol <symbol> ignored
ill-formed line <%s> in the listing file
multiple define <name>
no space left in section <area>
redefinition of symbol <symbol>
undefined symbol <name>
unknown output format <format>

PSoC Designer: Assembly Language User Guide 77

M8C Instruction Set Reference Table
Program Flow Instructions Flags Cycles Movement Instructions Flags Cycles
CALL Call (relative) INDEX Table Read (relative)

9xh CALL addr LSB Address Byte (MSN in opcode, x) 11 Fxh INDEX addr LSB Address Byte (MSN in opcode, x) z 13

HALT Halt NA MOV Move
30h HALT 4Fh MOV X,SP 4

JACC Jump Accumulator (relative) 50h MOV A,expr Immediate z 4
Exh JACC addr LSB Address Byte (MSN in opcode, x) 7 51h MOV A,[expr] Direct Address z 5

JC Jump if Carry (relative) 52h MOV A,[X+expr] Index z 6
Cxh JC addr LSB Address Byte (MSN in opcode, x) 5/4 53h MOV [expr],A Direct Address 5

JMP Jump (relative) 54h MOV [X+expr],A Index 6
8xh JMP addr LSB Address Byte (MSN in opcode, x) 5 55h MOV [expr],expr Direct Address Immediate 8

JNC Jump if No Carry (relative) 56h MOV [X+expr],expr Index Immediate 9
Dxh JNC addr LSB Address Byte (MSN in opcode, x) 5/4 57h MOV X,expr Immediate 4

JNZ Jump if Not Zero (relative) 58h MOV X,[expr] Direct Address 6
Bxh JNZ addr LSB Address Byte (MSN in opcode, x) 5/4 59h MOV X,[X+expr] Index 7

JZ Jump if Zero (relative) 5Ah MOV [expr],X Direct Address 5
Axh JZ addr LSB Address Byte (MSN in opcode, x) 5/4 5Bh MOV A,X z 4

LCALL Long Call 5Ch MOV X,A 4
7Ch LCALL addrl addr MSB addr LSB 13 5Dh MOV A,REG[expr] Reg Direct Address z 6

LJMP Long Jump 5Eh MOV A,REG[X+expr] Reg Index z 7
7Dh LJMP addrl addr MSB addr LSB 7 5Fh MOV [expr],[expr] Direct Address Direct Address 10

NOP No Operation 60h MOV REG[expr],A Reg Direct Address 5
40h NOP 4 61h MOV REG[X+expr],A Reg Index 6

RET Return from Call 62h MOV REG[expr],expr Reg Direct Address Immediate 8
7Fh RET 8 63h MOV REG[X+expr],expr Reg Index Immediate 9

RETI Return from Interrupt MVI Move Indirect, Post Increment to Memory
7Eh RETI 10 3Eh MVI A,[expr] Direct Address (Page 0) z 10

SSC System Supervisor Call NA 3Fh MVI [expr],A Direct Address (Page 0) 10
00h SSC POP Pop Stack into Register

18h POP A z 5
Non Destructive Test Instructions 20h POP X 5

CMP Non Destructive Compare PUSH Push Register onto Stack
39h CMP A,expr Immediate c z 5 08h PUSH A 4
3Ah CMP A,[expr] Direct Address c z 7 10h PUSH X 4

3Bh CMP A,[X+exr] Index c z 8 ROMX Table Read
3Ch CMP [expr],expr Direct Address Immediate c z 8 28h ROMX z 11

3Dh CMP [X+expr],expr Index Immediate c z 9 SWAP Swap
TST Test with Mask 4Bh SWAP A,X z 5

47h TST [expr],expr Direct Address Bit Mask z 8 4Ch SWAP A,[expr] Direct Address z 7
48h TST [X+expr],expr Index Bit Mask z 9 4Dh SWAP X,[expr] Direct Address z 7
49h TST REG[expr],expr Reg Direct Address Bit Mask z 8 4Eh SWAP A,SP z 5
4Ah TST REG[X+expr],expr Reg Index Bit Mask z 9

Logical Instructions Flags Cycles
Arithmetic Instructions Flags Cycles AND Bitwise AND
ADC Add with Carry 21h AND A,expr Immediate z 4

09h ADC A,expr Immediate c z 4 22h AND A,[expr] Direct Address z 6
0Ah ADC A,[expr] Direct Address c z 6 23h AND A,[X+expr] Index z 7
0Bh ADC A,[X+expr] Index c z 7 24h AND [expr],A Direct Address z 7
0Ch ADC [expr],A Direct Address c z 7 25h AND [X+expr],A Index z 8
0Dh ADC [X+expr],A Index c z 8 26h AND [expr],expr Direct Address Immediate z 9
0Eh ADC [expr],expr Direct Address Immediate c z 9 27h AND [X+expr],expr Index Immediate z 10
0Fh ADC [X+expr],expr Index Immediate c z 10 41h AND REG[expr],expr Reg Direct Address Immediate z 9

ADD Add without Carry 42h AND REG[X+expr],expr Reg Index Immediate z 10
01h ADD A,expr Immediate c z 4 70h AND F,expr Immediate c z 4

02h ADD A,[expr] Direct Address c z 6 OR Bitwise OR
03h ADD A,[X+expr] Index c z 7 29h OR A,expr Immediate z 4
04h ADD [expr],A Direct Address c z 7 2Ah OR A,[expr] Direct Address z 6
05h ADD [X+expr],A Index c z 8 2Bh OR A,[X+expr] Index z 7
06h ADD [expr],expr Direct Address Immediate c z 9 2Ch OR [expr],A Direct Address z 7
07h ADD [X+expr],expr Index Immediate c z 10 2Dh OR [X+expr],A Index z 8
38h ADD SP,expr Immediate c z 5 2Eh OR [expr],expr Direct Address Immediate z 9

SBB Subtract with Borrow 2Fh OR [X+expr],expr Index Immediate z 10
19h SBB A,expr Immediate c z 4 43h OR REG[expr],expr Reg Direct Address Immediate z 9
1Ah SBB A,[expr] Direct Address c z 6 44h OR REG[X+expr],expr Reg Index Immediate z 10
1Bh SBB A,[X+expr] Index c z 7 71h OR F,expr Immediate c z 4

1Ch SBB [expr],A Direct Address c z 7 XOR Bitwise XOR
1Dh SBB [X+expr],A Index c z 8 31h XOR A,expr Immediate z 4
1Eh SBB [expr],expr Direct Address Immediate c z 9 32h XOR A,[expr] Direct Address z 6
1Fh SBB [X+expr],expr Index Immediate c z 10 33h XOR A,[X+expr] Index z 7

SUB Subtract without Borrow 34h XOR [expr],A Direct Address z 7
11h SUB A,expr Immediate c z 4 35h XOR [X+expr],A Index z 8
12h SUB A,[expr] Direct Address c z 6 36h XOR [expr],expr Direct Address Immediate z 9
13h SUB A,[X+expr] Index c z 7 37h XOR [X+expr],expr Index Immediate z 10
14h SUB [expr],A Direct Address c z 7 45h XOR REG[expr],expr Reg Direct Address Immediate z 9
15h SUB [X+expr],A Index c z 8 46h XOR REG[X+expr],expr Reg Index Immediate z 10
16h SUB [expr],expr Direct Address Immediate c z 9 72h XOR F,expr Immediate c z 4
17h SUB [X+expr],expr Index Immediate c z 10 CPL Complement Accumulator

DEC Decrement 73h CPL A z 4

78h DEC A c z 4 RLC Rotate Left through Carry
79h DEC X c z 4 6Ah RLC A c z 4
7Ah DEC [expr] Direct Address c z 7 6Bh RLC [expr] Direct Address c z 7
7Bh DEC [X+expr] Index c z 8 6Ch RLC [X+expr] Index c z 8

INC Increment RRC Rotate Right through Carry
74h INC A c z 4 6Dh RRC A c z 4
75h INC X c z 4 6Eh RRC [expr] Direct Address c z 7
76h INC [expr] Direct Address c z 7 6Fh RRC [X+expr] Index c z 8
77h INC [X+expr] Index c z 8

ASL Arithmetic Shift Left
64h ASL A c z 4
65h ASL [expr] Direct Address c z 7
66h ASL [X+expr] Index c z 8

ASR Arithmetic Shift Right
67h ASR A c z 4
68h ASR [expr] Direct Address c z 7
69h ASR [X+expr] Index c z 8

PSoC Designer: Assembly Language User Guide 78

Appendix A: Application Interface Notes

Interfacing C and Assembly

To optimize argument passing and return value activities between the PSoC
Designer C Compiler and Assembler, employ the #pragma fastcall.

The fastcall convention was devised to create an efficient argument/return value
mechanism between ‘C’ and assembly language functions.

Fastcall is only used by ‘C’ functions calling assembly written functions.
Functions written in ‘C’ cannot utilize the fastcall convention.

The following table reflects the set of #pragma fastcall conventions used for
argument passing register assignments:

Argument Type Argument Register Comment
char A
char, char A, X First char in A and second in X
int X, A MSB in X and LSB in A
Pointer A, X MSB in A and LSB in X
char, … A, X First argument passed in A. Successive arguments

are pointed to by X, where X is set up as a pointer
to the remaining arguments. Typically, these
arguments are stored on the stack

Int,… X X is set up as a pointer that points to the contiguous
block of memory that stores the arguments.
Typically, the arguments are stored on the stack.

All the others X Same as above

Arguments that are pushed on the stack are pushed from right to left.

The reference of returned structures reside in the A and X registers. If passed by
value, a structure is always passed through the stack, and not in registers.
Passing a structure by reference (i.e., passing the address of a structure) is the
same as passing the address of any data item, that is, a pointer (which is 2
bytes).

The following table reflects the set of #pragma fastcall conventions used for
return value register assignments:

Return Type Return Register Comment

char A
int X, A
long __r0..__r3 Delivered in the virtual registers
pointer A, X

PSoC Designer: Assembly Language User Guide 79

Index

Accessing the Assembler 11
ADC... 40
ADD... 41
Address Spaces 6, 14
Addressing Modes................................. 6, 16
Alternative Result of IF…ELSE…ENDIF -

ELSE ... 34
AND... 42
Appendix A: Application Interface Notes... 78
Area - AREA.. 29
Area Origin - ORG..................................... 37
ASL.. 43
ASR ... 43
CALL.. 44
CMP... 45
CPL.. 45
DEC... 46
Define ASCII String - DS........................... 32
Define Byte - DB.. 32
Define UNICODE String - DSU 33
Define Word - DW 33
Define Word, Little Endian Ordering - DWL

.. 34
Destination of Instruction Results.......... 6, 22
Documentation Conventions 3, 6
Equate Label - EQU 35
Export - EXPORT 35
HALT ... 47
IF…ELSE…ENDIF - ENDIF...................... 34
IF…ELSE…ENDIF - IF.............................. 35
INC .. 48
Include Source File - INCLUDE 36
INDEX.. 49
Instruction Format 6, 15
Instruction Set Reference Table............ 8, 77
JACC ... 50
JC .. 51
JMP ... 52
JNC.. 53
JNZ.. 54
JZ 55
LCALL.. 56

LJMP..56
Macro Definition Start - MACRO/Macro

Definition End – ENDMACRO...............36
Menu Options ..12
MOV...57
MVI ..58
NOP...59
Notation Standards..................................4, 6
Opening PSoC Designer11
OR ...60
POP ...61
Product Upgrades......................................10
Purpose ...9
PUSH...61
RAM Block - BLK.......................................31
RAM Block in Words - BLKW31
RET..62
RETI...62
RLC..63
ROMX..63
RRC...64
SBB..65
Section 1. Introduction..........................6, 9
Section 2. Accessing the Assembler.6, 11
Section 3. The Microprocessor6, 13
Section 4. Assembly File Syntax6, 23
Section 5. List File Format..................6, 27
Section 6. Assembler Directives........7, 29
Section 7. Instruction Set7, 39
Section 8. Compile/Assemble Error

Messages ...8, 71
Section Overview...9
SSC ...68
SUB ...66
Support ..10
SWAP ..67
Syntax..6, 23
Syntax Details..6
Syntax Details..23
TST ..69
Two-Minute Overview..............................2, 6
XOR...70

	Purpose
	Section Overview
	Product Upgrades
	Support
	Opening PSoC Designer
	Accessing the Assembler
	Menu Options
	Address Spaces
	Instruction Format
	Addressing Modes
	Destination of Instruction Results
	Syntax Details
	Syntax
	Area - AREA
	RAM Block - BLK
	RAM Block in Words - BLKW
	Define Byte - DB
	Define ASCII String - DS
	Define UNICODE String - DSU
	Define Word - DW
	Define Word, Little Endian Ordering - DWL
	Alternative Result of IF…ELSE…ENDIF - ELSE
	IF…ELSE…ENDIF - ENDIF
	Equate Label - EQU
	Export - EXPORT
	IF…ELSE…ENDIF - IF
	Include Source File - INCLUDE
	Macro Definition Start - MACRO/Macro Definition End – ENDM
	Area Origin - ORG
	Add with Carry	ADC
	Add without Carry	ADD
	Bitwise AND	AND
	Arithmetic Shift Left	ASL
	Arithmetic Shift Right	ASR
	Call Function	CALL
	Non-destructive Compare	CMP
	Complement Accumulator	CPL
	Decrement	DEC
	Halt	HALT
	Increment	INC
	Table Read	INDEX
	Jump Accumulator	JACC
	Jump if Carry	JC
	Jump	JMP
	Jump if No Carry	JNC
	Jump if Not Zero	JNZ
	Jump if Zero	JZ
	Long Call	LCALL
	Long Jump	LJMP
	Move	MOV
	Move Indirect, Post-Increment to Memory	MVI
	No Operation	NOP
	Bitwise OR	OR
	Pop Stack into Register	POP
	Push Register onto Stack	PUSH
	Return	RET
	Return from Interrupt	RETI
	Rotate Left through Carry	RLC
	Table Read	ROMX
	Rotate Right through Carry	RRC
	Subtract with Borrow	SBB
	Subtract without Borrow	SUB
	Swap	SWAP
	System Supervisor Call	SSC
	Test with Mask	TST
	Bitwise XOR	XOR
	Preprocessor
	C Compiler
	Assembler
	Linker

