



MOTOROLA INC., 1992

MOTOROLA
M68000 FAMILY

Programmer’s Reference Manual

(Includes CPU32 Instructions)

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

iii

TABLE OF CONTENTS

Paragraph
Number

Title Page
Number

Section 1
Introduction

1.1 Integer Unit User Programming Model. 1-2
1.1.1 Data Registers (D7 – D0) . 1-2
1.1.2 Address Registers (A7 – A0) . 1-2
1.1.3 Program Counter . 1-3
1.1.4 Condition Code Register . 1-3
1.2 Floating-Point Unit User Programming Model . 1-4
1.2.1 Floating-Point Data Registers (FP7 – FP0) . 1-4
1.2.2 Floating-Point Control Register (FPCR) . 1-5
1.2.2.1 Exception Enable Byte. 1-5
1.2.2.2 Mode Control Byte. . 1-5
1.2.3 Floating-Point Status Register (FPSR) . 1-5
1.2.3.1 Floating-Point Condition Code Byte. 1-5
1.2.3.2 Quotient Byte. . 1-6
1.2.3.3 Exception Status Byte.. 1-6
1.2.3.4 Accrued Exception Byte. 1-7
1.2.4 Floating-Point Instruction Address Register (FPIAR) 1-8
1.3 Supervisor Programming Model. 1-8
1.3.1 Address Register 7 (A7) . 1-10
1.3.2 Status Register . 1-10
1.3.3 Vector Base Register (VBR) . 1-11
1.3.4 Alternate Function Code Registers (SFC and DFC) 1-11
1.3.5 Acu Status Register (MC68EC030 only) . 1-11
1.3.6 Transparent Translation/access Control Registers 1-12
1.3.6.1 Transparent Translation/access Control Register Fields for the

M68030. 1-12
1.3.6.2 Transparent Translation/access Control Register Fields for the

M68040. 1-13
1.4 Integer Data Formats . 1-14
1.5 Floating-Point Data Formats . 1-15
1.5.1 Packed Decimal Real Format . 1-15
1.5.2 Binary Floating-Point Formats . 1-16
1.6 Floating-Point Data Types . 1-17
1.6.1 Normalized Numbers. 1-18
1.6.2 Denormalized Numbers. 1-18
1.6.3 Zeros . 1-19
1.6.4 Infinities . 1-19
1.6.5 Not-A-Numbers . 1-19
1.6.6 Data Format and Type Summary . 1-20
1.7 Organization of Data in Registers . 1-25
1.7.1 Organization of Integer Data Formats in Registers 1-25

iv

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

 MOTOROLA

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

1.7.2 Organization of Integer Data Formats in Memory 1-27
1.7.3 Organization of Fpu Data Formats in Registers and Memory 1-30

Section 2
Addressing Capabilities

2.1 Instruction Format . 2-1
2.2 Effective Addressing Modes. 2-4
2.2.1 Data Register Direct Mode . 2-5
2.2.2 Address Register Direct Mode. 2-5
2.2.3 Address Register Indirect Mode . 2-5
2.2.4 Address Register Indirect with Postincrement Mode. 2-6
2.2.5 Address Register Indirect with Predecrement Mode 2-7
2.2.6 Address Register Indirect with Displacement Mode 2-8
2.2.7 Address Register Indirect with Index (8-Bit Displacement) Mode 2-9
2.2.8 Address Register Indirect with Index (Base Displacement) Mode. . . 2-10
2.2.9 Memory Indirect Postindexed Mode . 2-11
2.2.10 Memory Indirect Preindexed Mode . 2-12
2.2.11 Program Counter Indirect with Displacement Mode 2-13
2.2.12 Program Counter Indirect with Index (8-Bit Displacement) Mode . . . 2-14
2.2.13 Program Counter Indirect with Index (Base Displacement) Mode. . . 2-15
2.2.14 Program Counter Memory Indirect Postindexed Mode 2-16
2.2.15 Program Counter Memory Indirect Preindexed Mode 2-17
2.2.16 Absolute Short Addressing Mode . 2-18
2.2.17 Absolute Long Addressing Mode. 2-18
2.2.18 Immediate Data . 2-19
2.3 Effective Addressing Mode Summary . 2-19
2.4 Brief Extension Word Format Compatibility . 2-21
2.5 Full Extension Addressing Modes . 2-22
2.5.1 No Memory Indirect Action Mode . 2-24
2.5.2 Memory Indirect Modes . 2-25
2.5.2.1 Memory Indirect with Preindex. 2-25
2.5.2.2 Memory Indirect with Postindex. . 2-26
2.5.2.3 Memory Indirect with Index Suppressed.. 2-27
2.6 Other Data Structures . 2-28
2.6.1 System Stack. 2-28
2.6.2 Queues . 2-29

Section 3
Instruction Set Summary

3.1 Instruction Summary . 3-1
3.1.1 Data Movement Instructions . 3-5
3.1.2 Integer Arithmetic Instructions . 3-6

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

v

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

3.1.3 Logical Instructions . 3-8
3.1.4 Shift and Rotate Instructions . 3-8
3.1.5 Bit Manipulation Instructions . 3-10
3.1.6 Bit Field Instructions . 3-10
3.1.7 Binary-Coded Decimal Instructions . 3-11
3.1.8 Program Control Instructions. 3-11
3.1.9 System Control Instructions. 3-12
3.1.10 Cache Control Instructions (MC68040) . 3-14
3.1.11 Multiprocessor Instructions . 3-14
3.1.12 Memory Management Unit (MMU) Instructions. 3-15
3.1.13 Floating-Point Arithmetic Instructions . 3-15
3.2 Integer Unit Condition Code Computation . 3-17
3.3 Instruction Examples . 3-20
3.3.1 Using the Cas and Cas2 Instructions . 3-20
3.3.2 Using the Moves Instruction . 3-20
3.3.3 Nested Subroutine Calls . 3-20
3.3.4 Bit Field Instructions . 3-20
3.3.5 Pipeline Synchronization with the Nop Instruction. 3-21
3.4 Floating-Point Instruction Details . 3-21
3.5 Floating-Point Computational Accuracy . 3-23
3.5.1 Intermediate Result . 3-24
3.5.2 Rounding the Result . 3-25
3.6 Floating-Point Postprocessing . 3-27
3.6.1 Underflow, Round, Overflow . 3-28
3.6.2 Conditional Testing . 3-28
3.7 Instruction Descriptions . 3-32

Section 4
Integer Instructions

Section 5
Floating Point Instructions

Section 6
Supervisor (Privileged) Instructions

Section 7
CPU32 Instructions

Section 8
Instruction Format Summary

8.1 Instruction Format . 8-1

vi

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

 MOTOROLA

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

8.1.1 Coprocessor ID Field. 8-1
8.1.2 Effective Address Field . 8-1
8.1.3 Register/Memory Field . 8-1
8.1.4 Source Specifier Field . 8-1
8.1.5 Destination Register Field . 8-2
8.1.6 Conditional Predicate Field . 8-2
8.1.7 Shift and Rotate Instructions . 8-2
8.1.7.1 Count Register Field. 8-2
8.1.7.2 Register Field. 8-2
8.1.8 Size Field. 8-4
8.1.9 Opmode Field . 8-4
8.1.10 Address/Data Field . 8-4
8.2 Operation Code Map . 8-4

Appendix A
Processor Instruction Summary

A.1 MC68000, MC68008, MC68010 Processors . A-12
A.1.1 M68000, MC68008, and MC68010 Instruction Set A-12
A.1.2 MC68000, MC68008, and MC68010 Addressing Modes A-16
A.2 MC68020 Processors. A-17
A.2.1 MC68020 Instruction Set . A-17
A.2.2 MC68020 Addressing Modes . A-20
A.3 MC68030 Processors. A-21
A.3.1 MC68030 Instruction Set . A-21
A.3.2 MC68030 Addressing Modes . A-24
A.4 MC68040 Processors. A-25
A.4.1 MC68040 Instruction Set . A-25
A.4.2 MC68040 Addressing Modes . A-29
A.5 MC68881/MC68882 Coprocessors . A-30
A.5.1 MC68881/MC68882 Instruction Set . A-30
A.5.2 MC68881/MC68882 Addressing Modes . A-31
A.6 MC68851 Coprocessors. A-31
A.6.1 MC68851 Instruction Set . A-31
A.6.2 MC68851 Addressing Modes . A-31

Appendix B
Exception Processing Reference

B.1 Exception Vector Assignments for the M68000 Family B-1
B.2 Exception Stack Frames . B-3
B.3 Floating-Point Stack Frames . B-10

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

vii

TABLE OF CONTENTS

 (

Concluded

)

Paragraph
Number

Title Page
Number

Appendix C
S-Record Output Format

C.1 S-Record Content. C-1
C.2 S-Record Types . C-2
C.3 S-Record Creation . C-3

viii

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

 MOTOROLA

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

ix

LIST OF FIGURES

Figure
Number

Title Page
Number

1-1 M68000 Family User Programming Model... 1-2
1-2 M68000 Family Floating-Point Unit User Programming Model 1-4
1-3 Floating-Point Control Register .. 1-5
1-4 FPSR Condition Code Byte.. 1-6
1-5 FPSR Quotient Code Byte ... 1-6
1-6 FPSR Exception Status Byte ... 1-6
1-7 FPSR Accrued Exception Byte .. 1-7
1-8 Status Register... 1-11
1-9 MC68030 Transparent Translation/MC68EC030 Access

Control Register Format... 1-12
1-10 MC68040 and MC68LC040 Transparent Translation/MC68EC040

Access Control Register Format .. 1-13
1-11 Packed Decimal Real Format .. 1-16
1-12 Binary Floating-Point Data Formats ... 1-16
1-13 Normalized Number Format... 1-18
1-14 Denormalized Number Format... 1-18
1-15 Zero Format ... 1-19
1-16 Infinity Format .. 1-19
1-17 Not-A-Number Format.. 1-19
1-19 Organization of Integer Data Formats in Address Registers.......................... 1-26
1-18 Organization of Integer Data Formats in Data Registers 1-26
1-20 Memory Operand Addressing .. 1-27
1-21 Memory Organization for Integer Operands... 1-29
1-22 Organization of FPU Data Formats in Memory .. 1-30

2-1 Instruction Word General Format... 2-1
2-2 Instruction Word Specification Formats ... 2-2
2-3 M68000 Family Brief Extension Word Formats.. 2-21
2-4 Addressing Array Items.. 2-23
2-5 No Memory Indirect Action... 2-24
2-6 Memory Indirect with Preindex... 2-26
2-7 Memory Indirect with Postindex .. 2-27
2-8 Memory Indirect with Index Suppress... 2-27

3-1 Intermediate Result Format.. 3-24
3-2 Rounding Algorithm Flowchart ... 3-26
3-3 Instruction Description Format ... 3-33

B-1 MC68000 Group 1 and 2 Exception Stack Frame ...B-3
B-2 MC68000 Bus or Address Error Exception Stack Frame.................................B-3
B-3 Four-Word Stack Frame, Format $0 ..B-3
B-4 Throwaway Four-Word Stack Frame, Format $1...B-3

x

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Figure
Number

Title Page
Number

LIST OF FIGURES (Concluded)

B-5 Six-Word Stack Frame, Format $2...B-4
B-6 MC68040 Floating-Point Post-Instruction Stack Frame, Format $3.................B-4
B-7 MC68EC040 and MC68LC040 Floating-Point Unimplemented

Stack Frame, Format $4 ..B-5
B-8 MC68040 Access Error Stack Frame, Format $7 ...B-5
B-9 MC68010 Bus and Address Error Stack Frame, Format $8B-6
B-10 MC68020 Bus and MC68030 Coprocessor Mid-Instruction

Stack Frame, Format $9 ..B-6
B-11 MC68020 and MC68030 Short Bus Cycle Stack Frame, Format $A...............B-7
B-12 MC68020 and MC68030 Long Bus Cycle Stack Frame, Format $B...............B-8
B-13 CPU32 Bus Error for Prefetches and Operands Stack Frame, Format $C.....B-8
B-14 CPU32 Bus Error on MOVEM Operand Stack Frame, Format $CB-9
B-15 CPU32 Four- and Six-Word Bus Error Stack Frame, Format $C....................B-9
B-16 MC68881/MC68882 and MC68040 Null Stack Frame..................................B-10
B-17 MC68881 Idle Stack Frame ..B-10
B-18 MC68881 Busy Stack Frame ..B-11
B-19 MC68882 Idle Stack Frame ...B-11
B-20 MC68882 Busy Stack Frame ...B-11
B-21 MC68040 Idle Busy Stack Frame ..B-12
B-22 MC68040 Unimplimented Instruction Stack Frame..B-12
B-23 MC68040 Busy Stack Frame ...B-13

C-1 Five Fields of an S-Record...C-1
C-2 Transmission of an S1 Record...C-4

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

xi

LIST OF TABLES

Table
Number

Title Page
Number

1-1 Supervisor Registers Not Related To Paged Memory Management 1-9
1-2 Supervisor Registers Related To Paged Memory Management................... 1-10
1-3 Integer Data Formats .. 1-15
1-4 Single-Precision Real Format Summary Data Format 1-21
1-5 Double-Precision Real Format Summary.. 1-22
1-6 Extended-Precision Real Format Summary.. 1-23
1-6 Extended-Precision Real Format Summary (Continued) 1-24
1-7 Packed Decimal Real Format Summary ... 1-24
1-8 MC68040 FPU Data Formats and Data Types ... 1-30

2-1 Instruction Word Format Field Definitions ... 2-3
2-2 IS-I/IS Memory Indirect Action Encodings... 2-4
2-3 Immediate Operand Location.. 2-19
2-4 Effective Addressing Modes and Categories .. 2-20

3-1 Notational Conventions... 3-2
3-1 Notational Conventions (Continued) ... 3-3
3-1 Notational Conventions (Concluded) .. 3-4
3-2 Data Movement Operation Format.. 3-6
3-3 Integer Arithmetic Operation Format... 3-7
3-4 Logical Operation Format.. 3-8
3-5 Shift and Rotate Operation Format ... 3-9
3-6 Bit Manipulation Operation Format ... 3-10
3-7 Bit Field Operation Format .. 3-10
3-8 Binary-Coded Decimal Operation Format ... 3-11
3-9 Program Control Operation Format... 3-12
3-10 System Control Operation Format .. 3-13
3-11 Cache Control Operation Format .. 3-14
3-12 Multiprocessor Operations .. 3-14
3-13 MMU Operation Format .. 3-15
3-14 Dyadic Floating-Point Operation Format... 3-16
3-15 Dyadic Floating-Point Operations ... 3-16
3-16 Monadic Floating-Point Operation Format .. 3-16
3-17 Monadic Floating-Point Operations... 3-17
3-18 Integer Unit Condition Code Computations... 3-18
3-19 Conditional Tests .. 3-19
3-20 Operation Table Example (FADD Instruction)... 3-22
3-21 FPCR Encodings... 3-25
3-22 FPCC Encodings... 3-29
3-23 Floating-Point Conditional Tests ... 3-31
5-1 Directly Supported Floating-Point Instructions.. 5-2
5-2 Indirectly Supported Floating-Point Instructions.. 5-3

xii

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Table
Number

Title Page
Number

LIST OF TABLES (Continued)

7-1 MC68020 Instructions Not Supported... 7-1
7-2 M68000 Family Addressing Modes... 7-2
7-3 CPU32 Instruction Set... 7-3

8-1 Conditional Predicate Field Encoding ... 8-3
8-2 Operation Code Map... 8-4

A-1 M68000 Family Instruction Set And Processor Cross-Reference...................A-1
A-2 M68000 Family Instruction Set..A-8
A-3 MC68000 and MC68008 Instruction Set ...A-12
A-4 MC68010 Instruction Set...A-14
A-5 MC68000, MC68008, and MC68010 Data Addressing Modes.....................A-16
A-6 MC68020 Instruction Set Summary ..A-17
A-7 MC68020 Data Addressing Modes ...A-20
A-8 MC68030 Instruction Set Summary ..A-21
A-9 MC68030 Data Addressing Modes ...A-24
A-10 MC68040 Instruction Set...A-25
A-11 MC68040 Data Addressing Modes ...A-29
A-12 MC68881/MC68882 Instruction Set ..A-30
A-13 MC68851 Instruction Set...A-31

B-1 Exception Vector Assignments for the M68000 Family...................................B-2

C-1 Field Composition of an S-Record ..C-1
C-2 ASCII Code ...C-5

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

5-1

SECTION 5
FLOATING POINT INSTRUCTIONS

This section contains information about the floating-point instructions for the MC68881,
MC68882, and MC68040. In this section, all references to the MC68040 do not include the
MC68LC040 and MC68EC040. Each instruction is described in detail, and the instruction
descriptions are arranged in alphabetical order by instruction mnemonic.

All floating-point instructions apply to the MC68881 and MC68882 processors. The
MC68040 directly supports part of the floating-point instructions through hardware. It
indirectly supports the remainder by providing special traps and/or stack frames for the
unimplemented instructions and data types. The following identification is noted under the
instruction title for the MC68040:

Directly Supported—(MC6888X, MC68040)

Software Supported—(MC6888X, MC68040FPSW)

For all MC68040 floating-point instructions, the coprocessor ID field must be 001.

Table 5-1 lists the floating-point instructions directly supported by the MC68040, and Table
5-2 lists the floating-point instructions indirectly supported.

Floating Point Instructions

5-2

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

*These are privileged instructions; refer to

Section 6 Supervisor (Privaleged) Instructions

 for
detailed information.

Table 5-1. Directly Supported Floating-Point Instructions

Mnemonic Description

FABS Floating-Point Absolute Value

FADD Floating-Point Add

FBcc Floating-Point Branch Conditionally

FCMP Floating-Point Compare

FDBcc Floating-Point Test Condition, Decrement, and Branch

FDIV Floating-Point Divide

FMOVE Move Floating-Point Data Register

FMOVE Move Floating-Point System Control Register

FMOVEM Move Multiple Floating-Point System Data Register

FMOVEM Move Multiple Floating-Point Control Data Register

FMUL Floating-Point Multiply

FNEG Floating-Point Negate

FNOP No Operation

FRESTORE* Restore Internal Floating-Point State*

FSAVE* Save Internal Floating-Point State*

FScc Set According to Floating-Point Condition

FSORT Floating-Point Square Root

FSUB Floating-Point Subtract

FSGLDIV Floating-Point Single-Precision Divide

FSFLMUL Floating-Point Single-Precision Multiply

FTRAPcc Trap on Floating-Point Condition

FTST Test Floating-Point Operand

Floating Point Instructions

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

5-3

Table 5-2. Indirectly Supported Floating-Point Instructions

Mnemonic Description

FACOS Floating-Point Arc Cosine

FASIN Floating-Point Arc Sine

FATAN Floating-Point Arc Tangent

FATANH Floating-Point Hyperbolic Arc Tangent

FCOS Floating-Point Cosine

FCOSH Floating-Point Hyperbolic Cosine

FETOX Floating-Point e

x

FETOXM1 Floating-Point e

x

 – 1

FGETEXP Floating-Point Get Exponent

FGETMAN Floating-Point Get Mantissa

FINT Floating-Point Integer Part

FINTRZ Floating-Point Integer Part, Round-to- Zero

FLOG10 Floating-Point Log10

FLOG2 Floating-Point Log2

FLOGN Floating-Point Loge

FLOGNP1 Floating-Point Log

e
 (x + 1)

FMOD Floating-Point Modulo Remainder

FMOVECR Floating-Point Move Constant ROM

FREM Floating-Point IEEE Remainder

FSCALE Floating-Point Scale Exponent

FSIN Floating-Point Sine

FSINCOS Floating-Point Simultaneous Sine and Cosine

FSINH Floating-Point Hyperbolic Sine

FTAN Floating-Point Tangent

FTANH Floating-Point Hyperbolic Tangent

FTENTOX Floating-Point 10

x

FTWOTOX Floating-Point 2

x

Floating Point Instructions

5-4

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

FABS

Floating-Point Absolute Value

FABS

(MC6888X, MC68040)

Operation:

Absolute Value of Source

→

 FPn

Assembler
Syntax:

FABS. < fmt > < ea > ,FPn
FABS.X FPm,FPn
FABS.X FPn
*FrABS. < fmt > < ea > ,FPn
*FrABS.X FPm,FPn
*FrABS.X Pn
where r is rounding precision, S or D

*Supported by MC68040 only.

Attributes:

Format = (Byte, Word, Long, Single, Quad, Extended, Packed)

Description:

Converts the source operand to extended precision (if necessary) and stores
the absolute value of that number in the destination floating-point data register.

FABS will round the result to the precision selected in the floating-point control register.
FSABS and FDABS will round the result to single or double precision, respectively,
regardless of the rounding precision selected in the floating-point control register.

Operation Table:

NOTE: If the source operand is a NAN, refer to

1.6.5 Not-A-Numbers

 for more information

DESTINATION
SOURCE

+ In Range – + Zero – + Infinity –

Result

Absolute Value Absolute Value Absolute Value

Floating Point Instructions

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

5-5

FABS

Floating-Point Absolute Value

FABS

(MC6888X, MC68040)

Floating-Point Status Register:

Condition Codes: Affected as described in

3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to

1.6.5 Not-A-Numbers

OPERR Cleared
OVFL Cleared
UNFL If the source is an extended-precision

denormalized number, refer to exception
processing in the appropriate user’s manual;
cleared otherwise.

DZ Cleared
INEX2 Cleared
INEX1 If < fmt > is packed, refer to exception

processing in the appropriate user’s manual;
cleared otherwise.

Accrued Exception Byte: Affected as described in exception processing; refer to the
appropriate user’s manual.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
OPMODE

Floating Point Instructions

5-6

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

FABS

Floating-Point Absolute Value

FABS

(MC6888X, MC68040)

Instruction Fields:

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field specifies the location of the source operand. Only data

addressing modes can be used as listed in the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d

16

,An) 101 reg. number:An (d

16

,PC) 111 010

(d

8

,An,Xn) 110 reg. number:An (d

8

,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

5-7

FABS

Floating-Point Absolute Value

FABS

(MC6888X, MC68040)

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)*
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

*This encoding will cause an unimplemented
data type exception in the MC68040 to allow emulation in software.

Destination Register field—Specifies the destination floating- point data register.

Opmode field—Specifies the instruction and rounding precision.

0011000 FABS Rounding precision specified by the floating-point control
register.

1011000 FSABS Single-precision rounding specified.
1011100 FDABS Double-precision rounding specified.

Floating Point Instructions

5-8

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

FACOS

Arc Cosine

FACOS

(MC6888X, M68040FPSP)

Operation:

Arc Cosine of Source

→

 FPn

Assembler

FACOS. < fmt > < ea > ,FPn

Syntax:

FACOS.X FPm,FPn
FACOS.X FPn

Attributes:

Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description:

Converts the source operand to extended precision (if necessary) and
calculates the arc cosine of that number. Stores the result in the destination floating-
point data register. This function is not defined for source operands outside of the range
[– 1... + 1]; if the source is not in the correct range, a NAN is returned as the result and
the OPERR bit is set in the floating- point status register. If the source is in the correct
range, the result is in the range of [0...

π

].

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to

1.6.5 Not-A-Numbers

for more information.
2. Sets the OPERR bit in the floating-point status register exception byte.

Floating-Point Status Register:

Condition Codes: Affected as described in

3.6.2 Conditional Testing

.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to

1.6.5 Not-A-Numbers

.
OPERR Set if the source is infinity, > + 1 or < – 1;

cleared otherwise.
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

DESTINATION
SOURCE

+ In Range – + Zero – + Infinity –

Result

Arc Cosine +

π

/2 NAN

Floating Point Instructions

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

5-9

FACOS

Arc Cosine

FACOS

(MC6888X, M68040FPSP)

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 1 1 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d

16

,An) 101 reg. number:An (d

16

,PC) 111 010

(d

8

,An,Xn) 110 reg. number:An (d

8

,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

5-10

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

FACOS

Arc Cosine

FACOS

(MC6888X, M68040FPSP)

Source Specifier field—Specifies the source register or data format.

If R/M = 0, specifies the source floating-point data register.

If R/M = 1, specifies the source data format:
000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register, and the result is then written
into the same register. If the single register syntax is used, Motorola assemblers
set the source and destination fields to the same value.

Floating Point Instructions

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

5-11

FADD

Floating-Point Add

FADD

(MC6888X, MC68040)

Operation:

Source + FPn

→

 FPn

Assembler FADD. < fmt > < ea > ,FPn
Syntax: FADD.X FPm,FPn

*FrADD. < fmt > < ea > ,FPn
*FrADD.X FPm,FPn
where r is rounding precision, S or D

*Supported by MC68040 only.

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and adds
that number to the number contained in the destination floating-point data register.
Stores the result in the destination floating-point data register.

FADD will round the result to the precision selected in the floating-point control register.
FSADD and FDADD will round the result to single or double-precision, respectively,
regardless of the rounding precision selected in the floating-point control register.

Operation Table:

1. If either operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Returns + 0.0 in rounding modes RN, RZ, and RP; returns – 0.0 in RM.
3. Sets the OPERR bit in the floating-point status register exception byte.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

In Range +
–

Add Add + inf – inf

Zero +
–

Add + 0.0 0.02

0.02 – 0.0
+ inf – inf

Infinity +
–

+ inf

– inf

+ inf

– inf
+ inf NAN3
NAN‡ – inf

Floating Point Instructions

5-12 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FADD Floating-Point Add FADD
(MC6888X, MC68040)

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the source and the destination are

opposite-signed infinities; cleared otherwise.
OVFL Refer to exception processing in the

appropriate user’s manual.
UNFL Refer to exception processing in the

appropriate user’s manual.
DZ Cleared
INEX2 Refer to exception processing in the

appropriate user’s manual.
INEX1 If < fmt > is packed, refer to exception

processing in the appropriate user’s manual;
cleared otherwise.

Accrued Exception Byte: Affected as described in exception processing in the appro-
priate user’s manual.

Instruction Format:

Instruction Fields:

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
OPMODE

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-13

FADD Floating-Point Add FADD
(MC6888X, MC68040)

If R/M = 1, specifies the location of the source operand location. Only data
addressing modes can be used as listed in the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)*
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)
*This encoding will cause an unimplemented data type exception to allow

emulation in software.

Destination Register field—Specifies the destination floating- point data register.

Opmode field—Specifies the instruction and rounding precision.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

0100010 FADD Rounding precision specified by the floating-point control
register.

1100010 FSADD Single-precision rounding specified.
1100110 FDADD Double-precision rounding specified.

Floating Point Instructions

5-14 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FASIN Arc Sine FASIN
(MC6888X, M68040FPSP)

Operation: Arc Sine of the Source → FPn

Assembler FASIN. < fmt > < ea > ,FPn
Syntax: FASIN.X FPm,FPn

FASIN.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates the arc sine of the number. Stores the result in the destination floating-point
data register. This function is not defined for source operands outside of the range [–
1... + 1]; if the source is not in the correct range, a NAN is returned as the result and
the OPERR bit is set in the floating- point status register. If the source is in the correct
range, the result is in the range of [– π/2... + π/2].

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the OPERR bit in the floating-point status register exception byte.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

Result Arc Sine + 0.0 – 0.0 NAN2

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-15

FASIN Arc Sine FASIN
(MC6888X, M68040FPSP)

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the source is infinity, > + 1 or < – 1;

cleared otherwise
OVFL Cleared
UNFL Can be set for an underflow condition.
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 1 1 0 0

Floating Point Instructions

5-16 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FASIN Arc Sine FASIN
(MC6888X, M68040FPSP)

Effective Address field—Determines the addressing mode for external operands.

If R/M = 0, this field is unused and should be all zeros.

If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in
the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register, and the result is then written
into the same register. If the single register syntax is used, Motorola assemblers
set the source and destination fields to the same value.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-17

FATAN Arc Tangent FATAN
(MC6888X, M68040FPSP)

Operation: Arc Tangent of Source → FPn

Assembler FATAN. < fmt > < ea > ,FPn
Syntax: FATAN.X FPm,FPn

FATAN.X FPm,FPnz

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates the arc tangent of that number. Stores the result in the destination floating-
point data register. The result is in the range of [– π/2... + π/2].

Operation Table:

NOTE: If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Cleared
OVFL Cleared
UNFL Refer to underflow in the appropriate user’s

manual.
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

DESTINATION
SOURCE

+ In Range – + Zero – + Infinity –

Result Arc Tangent + 0.0 – 0.0 + π/2 – π/2

Floating Point Instructions

5-18 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FATAN Arc Tangent FATAN
(MC6888X, M68040FPSP)

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 1 1 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-19

FATAN Arc Tangent FATAN
(MC6888X, M68040FPSP)

Source Specifier field—Specifies the source register or data format.

If R/M = 0, specifies the source floating-point data register.

If R/M = 1, specifies the source data format:
000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register, and the result is then written
into the same register. If the single register syntax is used, Motorola assemblers
set the source and destination fields to the same value.

Floating Point Instructions

5-20 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FATANH Hyperbolic Arc Tangent FATANH
(MC6888X, M68040FPSP)

Operation: Hyperbolic Arc Tangent of Source → FPn

Assembler FATANH. < fmt > < ea > ,FPn
Syntax: FATANH.X FPm,FPn

FATANH.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates the hyperbolic arc tangent of that value. Stores the result in the destination
floating-point data register. This function is not defined for source operands outside of
the range (– 1... + 1); and the result is equal to – infinity or + infinity if the source is
equal to + 1 or – 1, respectively. If the source is outside of the range [– 1... + 1], a NAN
is returned as the result, and the OPERR bit is set in the floating-point status register.

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the OPERR bit in the floating-point status register exception byte.

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

Result
Hyperbolic

Arc Tangent
+ 0.0 – 0.0 NAN2

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-21

FATANH Hyperbolic Arc Tangent FATANH
(MC6888X, M68040FPSP)

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the source is > + 1 or < – 1; cleared

otherwise.
OVFL Cleared
UNFL Refer to underflow in the appropriate user’s

manual.
DZ Set if the source is equal to + 1 or – 1; cleared

otherwise.
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 1 1 0 1

Floating Point Instructions

5-22 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FATANH Hyperbolic Arc Tangent FATANH
(MC6888X, M68040FPSP)

Effective Address field—Determines the addressing mode for external operands.

If R/M = 0, this field is unused and should be all zeros.

If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in
the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register, and the result is then written
into the same register. If the single register syntax is used, Motorola assemblers
set the source and destination fields to the same value.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-23

FBcc Floating-Point Branch Conditionally FBcc
(MC6888X, MC68040)

Operation: If Condition True
Then PC + dn → PC

Assembler:
Syntax: FBcc. < size > , < label >

Attributes: Size = (Word, Long)

Description: If the specified floating-point condition is met, program execution continues at
the location (PC) + displacement. The displacement is a twos-complement integer that
counts the relative distance in bytes. The value of the program counter used to
calculate the destination address is the address of the branch instruction plus two. If
the displacement size is word, then a 16- bit displacement is stored in the word
immediately following the instruction operation word. If the displacement size is long
word, then a 32-bit displacement is stored in the two words immediately following the
instruction operation word. The conditional specifier cc selects any one of the 32
floating- point conditional tests as described in 3.6.2 Conditional Testing.

Floating-Point Status Register:

Condition Codes: Not affected.

Quotient Byte: Not affected.

Exception Byte: BSUN Set if the NAN condition code is set and the
condition selected is an IEEE nonaware test.

SNAN Not Affected.
OPERR Not Affected.
OVF Not Affected.
UNFL Not Affected.
DZ Not Affected.
INEX2 Not Affected.
INEX1 Not Affected.

Accrued Exception Byte: The IOP bit is set if the BSUN bit is set in the exception
byte. No other bit is affected.

Floating Point Instructions

5-24 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FBcc Floating-Point Branch Conditionally FBcc
(MC6888X, MC68040)

Instruction Format:

Instruction Fields:

Size field—Specifies the size of the signed displacement.
If Format = 0, then the displacement is 16 bits and is sign- extended before use.
If Format = 1, then the displacement is 32 bits.

Conditional Predicate field—Specifies one of 32 conditional tests as defined in Table
3-23 Floating-Point Conditional Tests.

NOTE

When a BSUN exception occurs, the main processor takes a
preinstruction exception. If the exception handler returns without
modifying the image of the program counter on the stack frame
(to point to the instruction following the FBcc), then it must clear
the cause of the exception (by clearing the NAN bit or disabling
the BSUN trap), or the exception will occur again immediately
upon return to the routine that caused the exception.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 1 SIZE CONDITIONAL PREDICATE

16-BIT DISPLACEMENT OR MOST SIGNIFICANT WORD OF 32-BITDISPLACEMENT

LEAST SIGNIFICANT WORD OF 32-BIT DISPLACEMENT (IF NEEDED)

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-25

FCMP Floating-Point Compare FCMP
(MC6888X, MC68040)

Operation: FPn – Source

Assembler FCMP. < fmt > < ea > ,FPn
Syntax: FCMP.X FPm,FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
subtracts the operand from the destination floating- point data register. The result of the
subtraction is not retained, but it is used to set the floating-point condition codes as
described in 3.6.2 Conditional Testing.

Operation Table: The entries in this operation table differ from those of the tables
describing most of the floating-point instructions. For each combination of input
operand types, the condition code bits that may be set are indicated. If the name of a
condition code bit is given and is not enclosed in brackets, then it is always set. If the
name of a condition code bit is enclosed in brackets, then that bit is either set or
cleared, as appropriate. If the name of a condition code bit is not given, then that bit is
always cleared by the operation. The infinity bit is always cleared by the FCMP
instruction since it is not used by any of the conditional predicate equations. Note that
the NAN bit is not shown since NANs are always handled in the same manner (as
described in 1.6.5 Not-A-Numbers).

NOTE: If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.

DESTINATION
SOURCE

+ In Range – + Zero – + Infinity –

In Range +
–

{NZ} none
N {NZ}

none none
N N

N none
N none

Zero +
–

N none
N none

Z Z
NZ NZ

N none
N none

Infinity +
–

none none
N N

none none
N N

Z none
N NZ

Floating Point Instructions

5-26 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FCMP Floating-Point Compare FCMP
(MC6888X, MC68040)

Floating-Point Status Register:

Condition Codes: Affected as described in the preceding operation table.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Cleared
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Cleared
INEX1 If < fmt > is packed, refer to exception

processing in the appropriate user’s manual;
cleared otherwise.

Accrued Exception Byte: Affected as described in exception processing in the appro-
priate user’s manual.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 1 1 0 0

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-27

FCMP Floating-Point Compare FCMP
(MC6888X, MC68040)

Instruction Fields:

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, specifies the location of the source operand location. Only data

addressing modes can be used as listed in the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)*
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)
*This encoding in the MC68040 will cause an unimplemented data type

exception to allow emulation in software.

Destination Register field—Specifies the destination floating- point data register.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

5-28 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FCOS Cosine FCOS
(MC6888X, M68040FPSP)

Operation: Cosine of Source → FPn

Assembler FCOS. < fmt > < ea > ,FPn
Syntax: FCOS.X FPm,FPn FCOS.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates the cosine of that number. Stores the result in the destination floating-point
data register. This function is not defined for source operands of ± infinity. If the source
operand is not in the range of [– 2π... + 2π], then the argument is reduced to within that
range before the cosine is calculated. However, large arguments may lose accuracy
during reduction, and very large arguments (greater than approximately 1020) lose all
accuracy. The result is in the range of [– 1... + 1].

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the OPERR bit in the floating-point status register exception byte.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

Result Cosine + 1.0 NAN2

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-29

FCOS Cosine FCOS
(MC6888X, M68040FPSP)

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the source operand is ± infinity; cleared

otherwise.
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 1 1 0 1

Floating Point Instructions

5-30 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FCOS Cosine FCOS
(MC6888X, M68040FPSP)

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should contain zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Motorola assemblers set
the source and destination fields to the same value.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-31

FCOSH Hyperbolic Cosine FCOSH
(MC6888X, M68040FPSP)

Operation: Hyperbolic Cosine of Source → FPn

Assembler FCOSH. < fmt > < ea > ,FPn
Syntax: FCOSH.X FPm,FPn FCOSH.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates the hyperbolic cosine of that number. Stores the result in the destination
floating-point data register.

Operation Table:

NOTE: If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Cleared
OVFL Refer to overflow in the appropriate user’s

manual.
UNFL Cleared
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

DESTINATION
SOURCE

+ In Range – + Zero – + Infinity –

Result Hyperbolic Cosine + 1.0 + inf

Floating Point Instructions

5-32 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FCOSH Hyperbolic Cosine FCOSH
(MC6888X, M68040FPSP)

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point coprocessor.

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 1 1 0 1

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-33

FCOSH Hyperbolic Cosine FCOSH
(MC6888X, M68040FPSP)

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Motorola assemblers set
the source and destination fields to the same value.

Floating Point Instructions

5-34 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FDBcc Floating-Point Test Condition, FDBcc
Decrement, and Branch

(MC6888X, MC68040)

Operation: If Condition True
Then No Operation

Else Dn – 1 → Dn
If Dn ≠ – 1

Then PC + dn → PC
Else Execute Next Instruction

Assembler
Syntax: FDBcc Dn, < label >

Attributes: Unsized

Description: This instruction is a looping primitive of three parameters: a floating-point
condition, a counter (data register), and a 16-bit displacement. The instruction first tests
the condition to determine if the termination condition for the loop has been met, and if
so, execution continues with the next instruction in the instruction stream. If the
termination condition is not true, the low-order 16 bits of the counter register are
decremented by one. If the result is – 1, the count is exhausted, and execution
continues with the next instruction. If the result is not equal to – 1, execution continues
at the location specified by the current value of the program counter plus the sign-
extended 16-bit displacement. The value of the program counter used in the branch
address calculation is the address of the displacement word.

The conditional specifier cc selects any one of the 32 floating- point conditional tests
as described in 3.6.2 Conditional Testing.

Floating-Point Status Register:

Condition Codes: Not affected.

Quotient Byte: Not affected.

Exception Byte: BSUN Set if the NAN condition code is set and the
condition selected is an IEEE nonaware test.

SNAN Not Affected.
OPERR Not Affected.
OVFL Not Affected.
UNFL Not Affected.
DZ Not Affected.
NEX2 Not Affected.
INEX1 Not Affected.

Accrued Exception Byte: The IOP bit is set if the BSUN bit is set in the exception
byte. No other bit is affected.

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-35

FDBcc Floating-Point Test Condition, FDBcc
Decrement, and Branch

(MC6888X, MC68040)

Instruction Format:

Instruction Fields:

Count Register field—Specifies data register that is used as the counter.

Conditional Predicate field—Specifies one of the 32 floating-point conditional tests as
described in 3.6.2 Conditional Testing.

Displacement field—Specifies the branch distance (from the address of the instruction
plus two) to the destination in bytes.

NOTE

The terminating condition is like that defined by the UNTIL loop
constructs of high-level languages. For example: FDBOLT can
be stated as "decrement and branch until ordered less than".

There are two basic ways of entering a loop: at the beginning or
by branching to the trailing FDBcc instruction. If a loop structure
terminated with FDBcc is entered at the beginning, the control
counter must be one less than the number of loop executions
desired. This count is useful for indexed addressing modes and
dynamically specified bit operations. However, when entering a
loop by branching directly to the trailing FDBcc instruction, the
count should equal the loop execution count. In this case, if the
counter is zero when the loop is entered, the FDBcc instruction
does not branch, causing a complete bypass of the main loop.

When a BSUN exception occurs, a preinstruction exception is
taken by the main processor. If the exception handler returns
without modifying the image of the program counter on the stack
frame (to point to the instruction following the FDBcc), then it
must clear the cause of the exception (by clearing the NAN bit or
disabling the BSUN trap), or the exception will occur again im-
mediately upon return to the routine that caused the exception.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 1 0 0 1

COUNT
REGISTER

0 0 0 0 0 0 0 0 0 0 CONDITIONAL PREDICATE

16-BIT DISPLACEMENT

Floating Point Instructions

5-36 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FDIV Floating-Point Divide FDIV
(MC6888X, MC68040)

Operation: FPn ÷ Source → FPn

Assembler FDIV. < fmt > < ea > ,FPn
Syntax: FDIV.X FPm,FPn

*FrDIV. < fmt > < ea > ,FPn
*FrDIV.X FPm,FPn
where r is rounding precision, S or D

*Supported by MC68040 only

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and divides
that number into the number in the destination floating-point data register. Stores the
result in the destination floating-point data register.

FDIV will round the result to the precision selected in the floating-point control register.
FSDIV and FDDIV will round the result to single or double precision, respectively,
regardless of the rounding precision selected in the floating-point control register.

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the DZ bit in the floating-point status register exception byte.
3. Sets the OPERR bit in the floating-point status register exception byte.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

In Range +
–

Divide
+ inf2 – inf2

– inf2 + inf2
+ 0.0 – 0.0
– 0.0 + 0.0

Zero +
–

+ 0.0 + 0.0
– 0.0 + 0.0 NAN3 + 0.0 – 0.0

– 0.0 + 0.0

Infinity +
–

+ inf – inf
– inf + inf

+ inf – inf
– inf + inf NAN‡

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-37

FDIV Floating-Point Divide FDIV
(MC6888X, MC68040)

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set for 0 ÷ 0 or infinity ÷ infinity; cleared

otherwise.
OVFL Refer to exception processing in the

appropriate user’s manual.
UNFL Refer to exception processing in the

appropriate user’s manual.
DZ Set if the source is zero and the destination is

in range; cleared otherwise.
INEX2 Refer to exception processing in the

appropriate user’s manual.
INEX1 If < fmt > is packed, refer to exception

processing in the appropriate user’s manual;
cleared otherwise.

Accrued Exception Byte: Affected as described in exception processing in the appro-
priate user’s manual.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
OPMODE

Floating Point Instructions

5-38 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FDIV Floating-Point Divide FDIV
(MC6888X, MC68040)

Instruction Fields:

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, specifies the location of the source operand location. Only data

addressing modes can be used as listed in the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)*
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)
*This encoding in the MC68040 will cause an unimplemented data type

exception to allow emulation in software.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-39

FDIV Floating-Point Divide FDIV
(MC6888X, MC68040)

Destination Register field—Specifies the destination floating- point data register.

Opmode field—Specifies the instruction and rounding precision.

0100000 FDIV Rounding precision specified by the floating- point
control register.

1100000 FSDIV Single-precision rounding specified.
1100100 FDDIV Double-precision rounding specified.

Floating Point Instructions

5-40 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FETOX ex FETOX
(MC6888X, M68040FPSP)

Operation: eSource → FPn

Assembler FETOX. < fmt > < ea > ,FPn
Syntax: FETOX.X FPm,FPn
Syntax: FETOX.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates e to the power of that number. Stores the result in the destination floating-
point data register.

Operation Table:

NOTE: If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Cleared
OVFL Refer to overflow in the appropriate user’s

manual.
UNFL Refer to underflow in the appropriate user’s

manual.
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

DESTINATION
SOURCE

+ In Range – + Zero – + Infinity –

Result ex + 1.0 + inf + 0.0

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-41

FETOX ex FETOX
(MC6888X, M68040FPSP)

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 1 1 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

5-42 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FETOX ex FETOX
(MC6888X, M68040FPSP)

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier Field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)*
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Motorola assemblers set
the source and destination fields to the same value.

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-43

FETOXM1 ex – 1 FETOXM1
(MC6888X, M68040FPSP)

Operation: eSource – 1 → FPn

Assembler FETOXM1. < fmt > < ea > ,FPn
Syntax: FETOXM1.X FPm,FPn

FETOXM1.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates e to the power of that number. Subtracts one from the value and stores the
result in the destination floating-point data register.

Operation Table:

NOTE: If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.
Exception Byte: BSUN Cleared

SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Cleared
OVFL Refer to overflow in the appropriate user’s

manual.
UNFL Refer to underflow in the appropriate user’s

manual.
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

DESTINATION
SOURCE

+ In Range – + Zero – + Infinity –

Result ex – 1 + 0.0 – 0.0 + inf – 1.0

Floating Point Instructions

5-44 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FETOXM1 ex – 1 FETOXM1
(MC6888X, M68040FPSP)

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 1 1 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-45

FETOXM1 ex – 1 FETOXM1
(MC6888X, M68040FPSP)

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier Field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Motorola assemblers set
the source and destination fields to the same value.

Floating Point Instructions

5-46 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FGETEXP Get Exponent FGETEXP
(MC6888X, M68040FPSP)

Operation: Exponent of Source → FPn

Assembler FGETEXP. < fmt > < ea > ,FPn
Syntax: FGETEXP.X FPm,FPn

FGETEXP.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
extracts the binary exponent. Removes the exponent bias, converts the exponent to an
extended-precision floating- point number, and stores the result in the destination
floating- point data register.

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the OPERR bit in the floating-point status register exception byte.

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the source is ± infinity; cleared

otherwise.
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Cleared
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

Result Exponent + 0.0 – 0.0 NAN2

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-47

FGETEXP Get Exponent FGETEXP
(MC6888X, M68040FPSP)

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 1 1 1 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

5-48 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FGETEXP Get Exponent FGETEXP
(MC6888X, M68040FPSP)

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Motorola assemblers set
the source and destination fields to the same value.

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-49

FGETMAN Get Mantissa FGETMAN
(MC6888X, M68040FPSP)

Operation: Mantissa of Source → FPn

Assembler FGETMAN. < fmt > < ea > ,FPn
Syntax: FGETMAN.X FPm,FPn

FGETMAN.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
extracts the mantissa. Converts the mantissa to an extended-precision value and
stores the result in the destination floating-point data register. The result is in the range
[1.0...2.0] with the sign of the source mantissa, zero, or a NAN.

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the OPERR bit in the floating-point status register exception byte.

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the source is ± infinity; cleared

otherwise.
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Cleared
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

Result Mantissa + 0.0 – 0.0 NAN2

Floating Point Instructions

5-50 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FGETMAN Get Mantissa FGETMAN
(MC6888X, M68040FPSP)

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 1 1 1 1

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-51

FGETMAN Get Mantissa FGETMAN
(MC6888X, M68040FPSP)

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Motorola assemblers set
the source and destination fields to the same value.

Floating Point Instructions

5-52 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FINT Integer Part FINT
(MC6888X, M68040FPSP)

Operation: Integer Part of Source → FPn

Assembler FINT. < fmt > < ea > ,FPn
Syntax: FINT.X FPm,FPn

FINT.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary), extracts
the integer part, and converts it to an extended-precision floating-point number. Stores
the result in the destination floating-point data register. The integer part is extracted by
rounding the extended-precision number to an integer using the current rounding mode
selected in the floating-point control register mode control byte. Thus, the integer part
returned is the number that is to the left of the radix point when the exponent is zero,
after rounding. For example, the integer part of 137.57 is 137.0 for the round-to-zero
and round-to- negative infinity modes and 138.0 for the round-to-nearest and round-to-
positive infinity modes. Note that the result of this operation is a floating-point number.

Operation Table:

NOTE: If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.

DESTINATION
SOURCE

+ In Range – + Zero – + Infinity –

Result Integer + 0.0 – 0.0 + inf – inf

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-53

FINT Integer Part FINT
(MC6888X, M68040FPSP)

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Cleared
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 0 0 0 1

Floating Point Instructions

5-54 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FINT Integer Part FINT
(MC6888X, M68040FPSP)

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Motorola assemblers set
the source and destination fields to the same value.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-55

FINTRZ Integer Part, Round-to-Zero FINTRZ
(MC6888X, M68040FPSP)

Operation: Integer Part of Source → FPn

Assembler FINTRZ. < fmt > < ea > ,FPn
Syntax: FINTRZ.X FPm,FPn

FINTRZ.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
extracts the integer part and converts it to an extended-precision floating-point number.
Stores the result in the destination floating-point data register. The integer part is
extracted by rounding the extended-precision number to an integer using the round-to-
zero mode, regardless of the rounding mode selected in the floating-point control
register mode control byte (making it useful for FORTRAN assignments). Thus, the
integer part returned is the number that is to the left of the radix point when the
exponent is zero. For example, the integer part of 137.57 is 137.0; the integer part of
0.1245 x 102 is 12.0. Note that the result of this operation is a floating-point number.

Operation Table:

NOTE: If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.

DESTINATION
SOURCE

+ In Range – + Zero – + Infinity –

Result
Integer, Forced
Round-to- Zero

+ 0.0 – 0.0 + inf – inf

Floating Point Instructions

5-56 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FINTRZ Integer Part, Round-to-Zero FINTRZ
(MC6888X, M68040FPSP)

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Cleared
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 0 0 1 1

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-57

FINTRZ Integer Part, Round-to-Zero FINTRZ
(MC6888X, M68040FPSP)

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If RM = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Motorola assemblers set
the source and destination fields to the same value.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

5-58 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FLOG10 Log10 FLOG10
(MC6888X, M68040FPSP)

Operation: Log10 of Source → FPn

Assembler FLOG10. < fmt > < ea > ,FPn
Syntax: FLOG10.X FPm,FPn

FLOG10.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Convert the source operand to extended precision (if necessary) and
calculates the logarithm of that number using base 10 arithmetic. Stores the result in
the destination floating-point data register. This function is not defined for input values
less than zero.

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the OPERR bit in the floating-point status register exception byte.
3. Sets the DZ bit in the floating-point status register exception byte.

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the source operand is < 0; cleared

otherwise.
OVFL Cleared
UNFL Cleared
DZ Set if the source is ± 0; cleared otherwise
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

Result Log10 NAN2 – inf3 + inf NAN2

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-59

FLOG10 Log10 FLOG10
(MC6888X, M68040FPSP)

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 0 1 0 1

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

5-60 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FLOG10 Log10 FLOG10
(MC6888X, M68040FPSP)

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Motorola assemblers set
the source and destination fields to the same value.

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-61

FLOG2 Log2 FLOG2
(MC6888X, M68040FPSP)

Operation: Log2 of Source → FPn

Assembler FLOG2. < fmt > < ea > ,FPn
Syntax: FLOG2.X FPm,FPn

FLOG2.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates the logarithm of that number using base two arithmetic. Stores the result in
the destination floating- point data register. This function is not defined for input values
less than zero.

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the OPERR bit in the floating-point status register exception byte.
3. Sets the DZ bit in the floating-point status register exception byte.

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the source is < 0; cleared otherwise
OVFL Cleared
UNFL Cleared
DZ Set if the source is ± 0; cleared otherwise
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

Result Log2 NAN2 – inf3 + inf NAN2

Floating Point Instructions

5-62 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FLOG2 Log2 FLOG2
(MC6888X, M68040FPSP)

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 0 1 1 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-63

FLOG2 Log2 FLOG2
(MC6888X, M68040FPSP)

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Motorola assemblers set
the source and destination fields to the same value.

Floating Point Instructions

5-64 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FLOGN Loge FLOGN
(MC6888X, M68040FPSP)

Operation: Loge of Source → FPn

Assembler FLOGN. < fmt > < ea > ,FPn
Syntax: FLOGN.X FPm,FPn

FLOGN.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates the natural logarithm of that number. Stores the result in the destination
floating-point data register. This function is not defined for input values less than zero.

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the OPERR bit in the floating-point status register exception byte.
3. Sets the DZ bit in the floating-point status register exception byte.

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the source operand is < 0; cleared

otherwise.
OVFL Cleared
UNFL Cleared
DZ Set if the source is ± 0; cleared otherwise
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

Result In(x) NAN2 – inf3 + inf NAN2

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-65

FLOGN Loge FLOGN
(MC6888X, M68040FPSP)

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 0 1 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

5-66 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FLOGN Loge FLOGN
(MC6888X, M68040FPSP)

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Motorola assemblers set
the source and destination fields to the same value.

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-67

FLOGNP1 Loge (x + 1) FLOGNP1
(MC6888X, M68040FPSP)

Operation: Loge of (Source + 1) → FPn

Assembler FLOGNP1. < fmt > < ea > ,FPn
Syntax: FLOGNP1.X FPm,FPn

FLOGNP1.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary), adds one
to that value, and calculates the natural logarithm of that intermediate result. Stores the
result in the destination floating-point data register. This function is not defined for input
values less than – 1.

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. If the source is – 1, sets the DZ bit in the floating-point status register

exception byte and returns a NAN. If the source is < – 1, sets the OPERR bit
in the floating-point status register exception byte and returns a NAN.

3. Sets the OPERR bit in the floating-point status register exception byte.

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

Result In(x + 1) In(x + 1)2 + 0.0 – 0.0 + inf NAN23

Floating Point Instructions

5-68 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FLOGNP1 Loge (x + 1) FLOGNP1
(MC6888X, M68040FPSP)

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the source operand is < – 1; cleared

otherwise.
OVFL Cleared
UNFL Refer to underflow in the appropriate user’s

manual.
DZ Set if the source operand is – 1; cleared

otherwise
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 0 1 1 0

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-69

FLOGNP1 Loge (x + 1) FLOGNP1
(MC6888X, M68040FPSP)

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Motorola assemblers set
the source and destination fields to the same value.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

5-70 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FMOD Modulo Remainder FMOD
(MC6888X, M68040FPSP)

Operation: Modulo Remainder of (FPn ÷ Source) → FPn

Assembler FMOD. < fmt > < ea > ,FPn
Syntax: FMOD.X FPm,FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates the modulo remainder of the number in the destination floating-point data
register, using the source operand as the modulus. Stores the result in the destination
floating-point data register and stores the sign and seven least significant bits of the
quotient in the floating-point status register quotient byte (the quotient is the result of
FPn ÷ Source). The modulo remainder function is defined as:

FPn – (Source x N)

where N = INT(FPn ÷ Source) in the round-to-zero mode.

The FMOD function is not defined for a source operand equal to zero or for a destination
operand equal to infinity. Note that this function is not the same as the FREM instruction,
which uses the round-to-nearest mode and thus returns the remainder that is required by
the IEEE Specification for Binary Floating-Point Arithmetic.

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the OPERR bit in the floating-point status register exception byte.
3. Returns the value of FPn before the operation. However, the result is

processed by the normal instruction termination procedure to round it as
required. Thus, an overflow and/or inexact result may occur if the rounding
precision has been changed to a smaller size since the FPn value was
loaded

DESTINATION
SOURCE1

+ In Range – + Zero# – + Infinity –

In Range +
–

Modulo Remainder NAN2 FPn3

Zero +
–

+ 0.0
– 0.0

NAN2 + 0.0
– 0.0

Infinity +
–

NAN2 NAN2 NAN2

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-71

FMOD Modulo Remainder FMOD
(MC6888X, M68040FPSP)

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Loaded with the sign and least significant seven bits of the
quotient (FPn ÷ Source). The sign of the quotient is the
exclusive-OR of the sign bits of the source and destination
operands.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the source is zero or the destination is

infinity; cleared otherwise.
OVFL Cleared
UNFL Refer to underflow in the appropriate user’s

manual.
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, in the appropriate user’s

manual for inexact result on decimal input;
cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 1 0 1 1 0 1

Floating Point Instructions

5-72 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FMOD Modulo Remainder FMOD
(MC6888X, M68040FPSP)

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-73

FMOVE Move Floating-Point Data Register FMOVE
(MC6888X, MC68040)

Operation: Source → Destination

Assembler FMOVE. < fmt > < ea > ,FPn
Syntax: FMOVE. < fmt > FPm, < ea >

FMOVE.P FPm, < ea > {Dn}
FMOVE.P FPm, < ea > {k}
*FrMOVE. < fmt > < ea > ,FPn
where r is rounding precision, S or D

 *Supported by MC68040 only

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Moves the contents of the source operand to the destination operand.
Although the primary function of this instruction is data movement, it is also considered
an arithmetic instruction since conversions from the source operand format to the
destination operand format are performed implicitly during the move operation. Also,
the source operand is rounded according to the selected rounding precision and mode.

Unlike the MOVE instruction, the FMOVE instruction does not support a memory-to-
memory format. For such transfers, it is much faster to utilize the MOVE instruction to
transfer the floating- point data than to use the FMOVE instruction. The FMOVE
instruction only supports memory-to-register, register-to- register, and register-to-
memory operations (in this context, memory may refer to an integer data register if the
data format is byte, word, long, or single). The memory-to-register and register- to-reg-
ister operation uses a command word encoding distinctly different from that used by
the register-to-memory operation; these two operation classes are described sepa-
rately.

Memory-to-Register and Register-to-Register Operation: Converts the source operand
to an extended-precision floating-point number (if necessary) and stores it in the
destination floating-point data register. MOVE will round the result to the precision
selected in the floating-point control register. FSMOVE and FDMOVE will round the
result to single or double precision, respectively, regardless of the rounding precision
selected in the floating-point control register. Depending on the source data format and
the rounding precision, some operations may produce an inexact result. In the following
table, combinations that can produce an inexact result are marked with a dot (⋅), but all
other combinations produce an exact result.

Floating Point Instructions

5-74 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FMOVE Move Floating-Point Data Register FMOVE
(MC6888X, MC68040)

Floating-Point Status Register (< ea > to Register):

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Cleared
OVFL Cleared
UNFL Refer to exception processing in the

appropriate user’s manual if the source is an
extended-precision denormalized number;
cleared otherwise.

DZ Cleared
INEX2 Refer to exception processing in the

appropriate user’s manual if < fmt > is L,D, or
X; cleared otherwise.

INEX1 Refer to exception processing in the
appropriate user’s manual if < fmt > is P;
cleared otherwise.

Accrued Exception Byte: Affected as described in exception processing in the appro-
priate user’s manual.

Rounding
Precision

Source Format

B W L S D X P

Single ⋅ ⋅ ⋅ ⋅
Double ⋅ ⋅

Extended ⋅

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-75

FMOVE Move Floating-Point Data Register FMOVE
(MC6888X, MC68040)

Instruction Format:

< EA > TO REGISTER

Instruction Fields:

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, specifies the location of the source operand. Only data addressing modes

can be used as listed in the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
OPMODE

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

5-76 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FMOVE Move Floating-Point Data Register FMOVE
(MC6888X, MC68040)

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)*
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)
*This encoding in the MC68040 will cause an unimplemented data type

exception to allow emulation in software.

Destination Register field—Specifies the destination floating- point data register.

Opmode field—Specifies the instruction and rounding precision.

Register-to-Memory Operation: Rounds the source operand to the size of the specified
destination format and stores it at the destination effective address. If the format of the
destination is packed decimal, a third operand is required to specify the format of the
resultant string. This operand, called the k-factor, is a 7-bit signed integer (twos
complement) and may be specified as an immediate value or in an integer data
register. If a data register contains the k-factor, only the least significant seven bits are
used, and the rest of the register is ignored.

0000000 FMOVE Rounding precision specified by the floating-point
control register.

1000000 FSMOVE Single-precision rounding specified.
1000100 FDMOVE Double-precision rounding specified.

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-77

FMOVE Move Floating-Point Data Register FMOVE
(MC6888X, MC68040)

Floating-Point Status Register (Register-to-Memory):

Condition Codes: Not affected.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared

< fmt > is B, W, or L SNAN Refer to 1.6.5 Not-A-Numbers.

OPERR Set if the source operand is infinity or if the
destination size is exceeded after conversion
and rounding; cleared otherwise.

OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to exception processing in the

appropriate user’s manual.
INEX1 Cleared

< fmt > is S, D, or X BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers
OVFL Refer to exception processing in the

appropriate user’s manual.
UNFL Refer to exception processing in the

appropriate user’s manual.
DZ Cleared
INEX2 Refer to exception processing in the

appropriate user’s manual.
INEX1 Cleared

< fmt > is P BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the k-factor > + 17 or the magnitude of

the decimal exponent exceeds three digits;
cleared otherwise.

OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to exception processing in the

appropriate user’s manual.
INEX1 Cleared

Accrued Exception Byte: Affected as described in exception processing in the appro-
priate user’s manual.

Floating Point Instructions

5-78 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FMOVE Move Floating-Point Data Register FMOVE
(MC6888X, MC68040)

Instruction Format:

REGISTER—TO-MEMORY

Instruction Fields:

Effective Address field—Specifies the destination location. Only data alterable
addressing modes can be used as listed in the following table:

*Only if < fmt > is byte, word, long, or single.

Destination Format field—Specifies the data format of the destination operand:
000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real with Static k-Factor (P{#k})*
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)
111 — Packed-Decimal Real with Dynamic k-Factor (P{Dn})*
*This encoding will cause an unimplemented data type exception in the

MC68040 to allow emulation in software.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1
COPROCESSOR

ID
1 0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 1 1
DESTINATION

FORMAT
SOURCE

REGISTER
K-FACTOR

(IF REQUIRED)

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-79

FMOVE Move Floating-Point Data Register FMOVE
(MC6888X, MC68040)

Source Register field—Specifies the source floating-point data register.

k-Factor field—If the destination format is packed decimal, used to specify the format
of the decimal string. For any other destination format, this field should be set to
all zeros. For a static k-factor, this field is encoded with a twos-complement
integer where the value defines the format as follows:

– 64 to 0—Indicates the number of significant digits to the right of the decimal
point (FORTRAN "F" format).
+ 1 to + 17—Indicates the number of significant digits in the mantissa (FOR-
TRAN "E" format).
+ 18 to + 63—Sets the OPERR bit in the floating-point status register exception
byte and treated as + 17.

The format of this field for a dynamic k-factor is:

r r r 0 0 0 0

where "rrr" is the number of the main processor data register that contains the k-factor
value.

The following table gives several examples of how the k-factor value affects the format
of the decimal string that is produced by the floating-point coprocessor. The format of
the string that is generated is independent of the source of the k-factor (static or
dynamic).

k- Factor Source Operand Value Destination String

– 5 + 12345.678765 + 1.234567877E + 4

– 3 + 12345.678765 + 1.2345679E + 4

– 1 + 12345.678765 + 1.23457E + 4

0 + 12345.678765 + 1.2346E + 4

+ 1 + 12345.678765 + 1.E + 4

+ 3 + 12345.678765 + 1.23E + 4

+ 5 + 12345.678765 + 1.2346E + 4

Floating Point Instructions

5-80 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FMOVE Move Floating-Point FMOVE
System Control Register

(MC6888X, MC68040)

Operation: Source → Destination

Assembler FMOVE.L < ea > ,FPCR
Syntax: FMOVE.L FPCR, < ea >

Attributes: Size = (Long)

Description: Moves the contents of a floating-point system control register (floating-point
control register, floating-point status register, or floating-point instruction address
register) to or from an effective address. A 32-bit transfer is always performed, even
though the system control register may not have 32 implemented bits. Unimplemented
bits of a control register are read as zeros and are ignored during writes (must be zero
for compatibility with future devices). For the MC68881, this instruction does not cause
pending exceptions (other than protocol violations) to be reported. Furthermore, a write
to the floating-point control register exception enable byte or the floating-point status
register exception status byte cannot generate a new exception, regardless of the
value written.

Floating-Point Status Register: Changed only if the destination is the floating-point status
register, in which case all bits are modified to reflect the value of the source operand.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

1 0 dr
REGISTER

SELECT
0 0 0 0 0 0 0 0 0 0

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-81

FMOVE Move Floating-Point FMOVE
System Control Register

(MC6888X, MC68040)

Instruction Fields:

Effective Address field—(Memory-to-Register) All addressing modes can be used as
listed in the following table:

*Only if the source register is the floating-point instruction address register.

Effective Address field—(Register-to-Memory) Only alterable addressing modes can
be used as listed in the following table:

*Only if the source register is the floating-point instruction address register.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

Floating Point Instructions

5-82 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FMOVE Move Floating-Point FMOVE
System Control Register

(MC6888X, MC68040)

dr field—Specifies the direction of the data transfer.
0 — From < ea > to the specified system control register.
1 — From the specified system control register to < ea > .

Register Select field—Specifies the system control register to be moved:
100 Floating-Point Control Register
010 Floating-Point Status Register
001 Floating-Point Instruction Address Register

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-83

FMOVECR Move Constant ROM FMOVECR
(MC6888X, M68040FPSP)

Operation: ROM Constant → FPn

Assembler
Syntax: FMOVECR.X # < ccc > ,FPn

Attributes: Format = (Extended)

Description: Fetches an extended-precision constant from the floating- point coprocessor
on-chip ROM, rounds the mantissa to the precision specified in the floating-point
control register mode control byte, and stores it in the destination floating-point data
register. The constant is specified by a predefined offset into the constant ROM. The
values of the constants contained in the ROM are shown in the offset table at the end
of this description.

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Cleared
OPERR Cleared
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 Cleared

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0 0 0 0 0 0 0

0 1 0 1 1 1
DESTINATION

REGISTER
ROM OFFSET

Floating Point Instructions

5-84 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FMOVECR Move Constant ROM FMOVECR
(MC6888X, M68040FPSP)

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

Destination Register field—Specifies the destination floating- point data register.

ROM Offset field—Specifies the offset into the floating-point coprocessor on-chip
constant ROM where the desired constant is located. The offsets for the available
constants are as follows:

The on-chip ROM contains other constants useful only to the on- chip microcode rou-
tines. The values contained at offsets other than those defined above are reserved for
the use of Motorola and may be different on various mask sets of the floating-point
coprocessor. These undefined values yield the value 0.0 in the M68040FPSP.

Offset Constant
$00 π
$0B Log10(2)
$0C e
$0D Log2(e)

$0E Log10(e)
$0F 0.0
$30 1n(2)
$31 1n(10)
$32 100
$33 101
$34 102
$35 104
$36 108
$37 1016
$38 1032
$39 1064
$3A 10128
$3B 10256
$3C 10512
$3D 101024
$3E 102048
$3F 104096

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-85

FMOVEM Move Multiple Floating-Point FMOVEM
Data Registers

(MC6888X, MC68040)

Operation: Register List → Destination
Source → Register List

Assembler FMOVEM.X < list > , < ea >
Syntax: FMOVEM.X Dn, < ea >

FMOVEM.X < ea > , < list > FMOVEM.X < ea > ,Dn

Attributes: Format = (Extended)

Description:Moves one or more extended-precision numbers to or from a list of floating-
point data registers. No conversion or rounding is performed during this operation, and
the floating-point status register is not affected by the instruction. For the MC68881, this
instruction does not cause pending exceptions (other than protocol violations) to be
reported. Furthermore, a write to the floating- point control register exception enable
byte or the floating-point status register exception status byte connot generate a new
exception, despite the value written.

Any combination of the eight floating-point data registers can be transferred, with the
selected registers specified by a user- supplied mask. This mask is an 8-bit number,
where each bit corresponds to one register; if a bit is set in the mask, that register is
moved. The register select mask may be specified as a static value contained in the
instruction or a dynamic value in the least significant eight bits of an integer data reg-
ister (the remaining bits of the register are ignored).

FMOVEM allows three types of addressing modes: the control modes, the predecre-
ment mode, or the postincrement mode. If the effective address is one of the control
addressing modes, the registers are transferred between the processor and memory
starting at the specified address and up through higher addresses. The order of the
transfer is from FP0 – FP7.

Floating Point Instructions

5-86 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FMOVEM Move Multiple Floating-Point FMOVEM
Data Registers

(MC6888X, MC68040)

If the effective address is the predecrement mode, only a register- to-memory opera-
tion is allowed. The registers are stored starting at the address contained in the
address register and down through lower addresses. Before each register is stored, the
address register is decremented by 12 (the size of an extended-precision number in
memory) and the floating-point data register is then stored at the resultant address.
When the operation is complete, the address register points to the image of the last
floating- point data register stored. The order of the transfer is from FP7 – FP0.

If the effective address is the postincrement mode, only a memory- to-register opera-
tion is allowed. The registers are loaded starting at the specified address and up
through higher addresses. After each register is stored, the address register is incre-
mented by 12 (the size of an extended-precision number in memory). When the oper-
ation is complete, the address register points to the byte immediately following the
image of the last floating-point data register loaded. The order of the transfer is the
same as for the control addressing modes: FP0 – FP7.

Floating-Point Status Register: Not Affected. Note that the FMOVEM instruction provides
the only mechanism for moving a floating- point data item between the floating-point
unit and memory without performing any data conversions or affecting the condition
code and exception status bits.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

1 1 dr MODE 0 0 0 REGISTER LIST

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-87

FMOVEM Move Multiple Floating-Point FMOVEM
Data Registers

(MC6888X, MC68040)

Instruction Fields:

Effective Address field—(Memory-to-Register) Only control addressing modes or the
postincrement addressing mode can be used as listed in the following table:

Effective Address field—(Register-to-Memory) Only control alterable addressing
modes or the predecrement addressing mode can be used as listed in the
following table:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + 011 reg. number:An

– (An) — —

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + — —

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

Floating Point Instructions

5-88 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FMOVEM Move Multiple Floating-Point FMOVEM
Data Registers

(MC6888X, MC68040)

dr field—Specifies the direction of the transfer.
0 — Move the listed registers from memory to the floating-point unit.
1 — Move the listed registers from the floating-point unit to memory.

Mode field—Specifies the type of the register list and addressing mode.
00 — Static register list, predecrement addressing mode.
01 — Dynamic register list, predecrement addressing mode.
10 — Static register list, postincrement or control addressing mode.
11 — Dynamic register list, postincrement or control addressing mode.

Register List field:

Static list—contains the register select mask. If a register is to be moved, the corre-
sponding bit in the mask is set as shown below; otherwise it is clear.

Dynamic list—contains the integer data register number, rrr, as listed in the following
table:

The format of the dynamic list mask is the same as for the static list and is contained
in the least significant eight bits of the specified main processor data register.

Programming Note: This instruction provides a very useful feature, dynamic register list
specification, that can significantly enhance system performance. If the calling
conventions used for procedure calls utilize the dynamic register list feature, the
number of floating-point data registers saved and restored can be reduced.

To utilize the dynamic register specification feature of the FMOVEM instruction, both
the calling and the called procedures must be written to communicate information
about register usage. When one procedure calls another, a register mask must be
passed to the called procedure to indicate which registers must not be altered upon
return to the calling procedure. The called procedure then saves only those registers
that are modified and are already in use. Several techniques can be used to utilize this
mechanism, and an example follows.

List Type Register List Format

Static, – (An) FP7 FP6 FP5 FP4 FP3 FP2 FP1 FP0

Static, (An) + ,
or Control

FP0 FP1 FP2 FP3 FP4 FP5 FP6 FP7

Dynamic 0 r r r 0 0 0 0

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-89

FMOVEM Move Multiple Floating-Point FMOVEM
Data Registers

(MC6888X, MC68040)

In this example, a convention is defined by which each called procedure is passed a
word mask in D7 that identifies all floating-point registers in use by the calling proce-
dure. Bits 15 – 8 identify the registers in the order FP0 – FP7, and bits 7 – 0 identify the
registers in the order FP7 – FP0 (the two masks are required due to the different trans-
fer order used by the predecrement and postincrement addressing modes). The code
used by the calling procedure consists of simply moving the mask (which is generated
at compile time) for the floating-point data registers currently in use into D7:

Calling procedure...

The entry code for all other procedures computes two masks. The first mask identifies
the registers in use by the calling procedure that are used by the called procedure (and
therefore saved and restored by the called procedure). The second mask identifies the
registers in use by the calling procedure that are used by the called procedure (and
therefore not saved on entry). The appropriate registers are then stored along with the
two masks:

Called procedure...

If the second procedure calls a third procedure, a register mask is passed to the third
procedure that indicates which registers must not be altered by the third procedure.
This mask identifies any registers in the list from the first procedure that were not saved
by the second procedure, plus any registers used by the second procedure that must
not be altered by the third procedure.

MOVE.W #ACTIVE,D7 Load the list of FP registers that are
in use.

BSR PROC_2

MOVE.W D7,D6 Copy the list of active registers.
AND.W #WILL_USE,D7 Generate the list of doubly-used

registers.
FMOVEM D7, – (A7) Save those registers.
MOVE.W D7, – (A7) Save the register list.
EOR.W D7,D6 Generate the list of not saved active

registers.
MOVE.W D6, – (A7) Save it for later use.

Floating Point Instructions

5-90 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FMOVEM Move Multiple Floating-Point FMOVEM
Data Registers

(MC6888X, MC68040)

An example of the calculation of this mask is as follows:

Nested calling sequence...

Upon return from a procedure, the restoration of the necessary registers follows the
same convention, and the register mask generated during the save operation on entry
is used to restore the required floating-point data registers:

Return to caller...

MOVE.W UNSAVED (A7),D7 Load the list of active registers not
saved at entry.

OR.W #WILL_USE,D7 Combine with those active at this time
BSR PROC_3

ADDQ.L #2,A7 Discard the list of registers not saved.
MOVE.B (A7) + ,D7 Get the saved register list (pop word,

use byte).
FMOVEM (A7) + ,D7 Restore the registers.

*
*
*

RTS Return to the calling routine.

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-91

FMOVEM Move Multiple Floating-Point FMOVEM
Control Registers
(MC6888X, MC68040)

Operation: Register List → Destination
Source → Register List

Assembler FMOVEM.L < list > , < ea >
Syntax: FMOVEM.L < ea > , < list >

Attributes: Size = (Long)

Description: Moves one or more 32-bit values into or out of the specified system control
registers. Any combination of the three system control registers may be specified. The
registers are always moved in the same order, regardless of the addressing mode
used; the floating-point control register is moved first, followed by the floating-point
status register, and the floating-point instruction address register is moved last. If a
register is not selected for the transfer, the relative order of the transfer of the other
registers is the same. The first register is transferred between the floating-point unit and
the specified address, with successive registers located up through higher addresses.

For the MC68881, this instruction does not cause pending exceptions (other than pro-
tocol violations) to be reported. Furthermore, a write to the floating-point control regis-
ter exception enable byte or the floating-point status register exception status byte
connot generate a new exception, despite the value written.

When more than one register is moved, the memory or memory- alterable addressing
modes can be used as shown in the addressing mode tables. If the addressing mode
is predecrement, the address register is first decremented by the total size of the reg-
ister images to be moved (i.e., four times the number of registers), and then the regis-
ters are transferred starting at the resultant address. For the postincrement addressing
mode, the selected registers are transferred to or from the specified address, and then
the address register is incremented by the total size of the register images transferred.
If a single system control register is selected, the data register direct addressing mode
may be used; if the only register selected is the floating-point instruction address reg-
ister, then the address register direct addressing mode is allowed. Note that if a single
register is selected, the opcode generated is the same as for the FMOVE single system
control register instruction.

Floating Point Instructions

5-92 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FMOVEM Move Multiple Floating-Point FMOVEM
Control Registers
(MC6888X, MC68040)

Floating-Point Status Register: Changed only if thedestinationlist includes the floating-
point status register in which case all bits are modified to reflect the value of the source
register image.

Instruction Format:

Instruction Fields:

Effective Address field—Determines the addressing mode for the operation.

Memory-to-Register—Only control addressing modes or the postincrement
addressing mode can be used as listed in the following table:

*Only if a single floating-point instruction address register, floating-point status register, or
floating-point control register is selected.

**Only if the floating-point instruction address register is the single register selected.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

1 0 dr
REGISTER

LIST
0 0 0 0 0 0 0 0 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An** 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-93

FMOVEM Move Multiple Floating-Point FMOVEM
Control Registers
(MC6888X, MC68040)

Register-to-Memory—Only control alterable addressing modes or the predecrement
addressing mode can be used as listed in the following table:

*Only if a single floating-point control register is selected.
**Only if the floating-point instruction address register is the single register selected.

dr field—Specifies the direction of the transfer.
0 — Move the listed registers from memory to the floating-point unit.
1 — Move the listed registers from the floating-point unit to memory.

Register List field—Contains the register select mask. If a register is to be moved, the
corresponding bit in the list is set; otherwise, it is clear. At least one register must
be specified.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An** 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

Bit Number Register

12 Floating-Point Control Register

11 Floating-Point Status Register

10
Floating-Point Instruction

Address Register

Floating Point Instructions

5-94 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FMUL Floating-Point Multiply FMUL
(MC6888X, MC68040)

Operation: Source x FPn → FPn

Assembler FMUL. < fmt > < ea > ,FPn
Syntax: FMUL.X FPm,FPn

*FrMUL < fmt > < ea > ,FPn
*FrMUL.X FPm,FPn
where r is rounding precision, S or D
 *Supported by MC68040 only

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
multiplies that number by the number in the destination floating-point data register.
Stores the result in the destination floating-point data register.

FMUL will round the result to the precision selected in the floating-point control register.
FSMUL and FDMUL will round the result to single or double precision, respectively,
regardless of the rounding precision selected in the floating-point control register.

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the OPERR bit in the floating-point status register exception byte.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

In Range +
–

Multiply + 0.0 – 0.0
– 0.0 + 0.0

+ inf – inf
– inf + inf

Zero +
–

+ 0.0 – 0.0
– 0.0 + 0.0

+ 0.0 – 0.0
– 0.0 + 0.0 NAN2

Infinity +
–

+ inf – inf
– inf + inf NAN2 + inf – inf

– inf + inf

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-95

FMUL Floating-Point Multiply FMUL
(MC6888X, MC68040)

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set for 0 x infinity; cleared otherwise.
OVFL Refer to exception processing in the

appropriate user’s manual.
UNFL Refer to exception processing in the

appropriate user’s manual.
DZ Cleared
INEX2 Refer to exception processing in the

appropriate user’s manual.
INEX1 If < fmt > is packed, refer to exception

processing in the appropriate user’s manual;
cleared otherwise.

Accrued Exception Byte: Affected as described in exception processing in the appro-
priate user’s manual.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
OPMODE

Floating Point Instructions

5-96 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FMUL Floating-Point Multiply FMUL
(MC6888X, MC68040)

Instruction Fields:

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, specifies the location of the source operand location. Only data

addressing modes can be used as listed in the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)*
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)
*This encoding will cause an unimplemented data type exception in the

MC68040 to allow emulation in software.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-97

FMUL Floating-Point Multiply FMUL
(MC6888X, MC68040)

Destination Register field—Specifies the destination floating- point data register.

Opmode field—Specifies the instruction and rounding precision.

0100011 FMUL Rounding precision specified by the floating-point
control register.

1100011 FSMUL Single-precision rounding specified.
1100111 FDMUL Double-precision rounding specified.

Floating Point Instructions

5-98 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FNEG Floating-Point Negate FNEG
(MC6888X, MC68040)

Operation: – (Source) → FPn

Assembler FNEG. < fmt > < ea > ,FPn
Syntax: FNEG.X FPm,FPn

FNEG.X FPn
*FrNEG. < fmt > < ea > ,FPn
*FrNEG.X FPm,FPn
*FrNEG.X FPn
where r is rounding precision, S or D
*Supported by MC68040 only

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and inverts
the sign of the mantissa. Stores the result in the destination floating-point data register.

FNEG will round the result to the precision selected in the floating-point control register.
FSNEG and FDNEG will round the result to single or double precision, respectively,
regardless of the rounding precision selected in the floating-point control register.

Operation Table:

NOTE: If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.

DESTINATION
SOURCE

+ In Range – + Zero – + Infinity –

Result Negate – 0.0 + 0.0 – inf + inf

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-99

FNEG Floating-Point Negate FNEG
(MC6888X, MC68040)

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Cleared
OVFL Cleared
UNFL If source is an extended-precision

denormalized number, refer to exception
processing in the appropriate user’s manual;
cleared otherwise.

DZ Cleared
INEX2 Cleared
INEX1 If < fmt > is packed, refer to exception

processing in the appropriate user’s manual;
cleared otherwise.

Accrued Exception Byte: Affected as described in exception processing in the appro-
priate user’s manual.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
OPMODE

Floating Point Instructions

5-100 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FNEG Floating-Point Negate FNEG
(MC6888X, MC68040)

Instruction Fields:

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, specifies the location of the source operand. Only data addressing modes

can be used as listed in the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)*
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)
*This encoding will cause an unimplemented data type exception to allow

emulation in software.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-101

FNEG Floating-Point Negate FNEG
(MC6888X, MC68040)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register and the result is written into
the same register. If the single register syntax is used, Motorola assemblers set
the source and destination fields to the same value.

Opmode field—Specifies the instruction and rounding precision.

0011010 FNEG Rounding precision specified by the floating-point
control register.

1011010 FSNEG Single-precision rounding specified.
1011110 FDNEG Double-precision rounding specified.

Floating Point Instructions

5-102 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FNOP No Operation FNOP
(MC6888X, MC68040)

Operation: None

Assembler
Syntax: FNOP

Attributes: Unsized

Description: This instruction does not perform any explicit operation. However, it is useful
to force synchronization of the floating- point unit with an integer unit or to force
processing of pending exceptions. For most floating-point instructions, the integer unit
is allowed to continue with the execution of the next instruction once the floating-point
unit has any operands needed for an operation, thus supporting concurrent execution
of floating-point and integer instructions. The FNOP instruction synchronizes the
floating-point unit and the integer unit by causing the integer unit to wait until all
previous floating-point instructions have completed. Execution of FNOP also forces
any exceptions pending from the execution of a previous floating-point instruction to be
processed as a preinstruction exception.

The MC68882 may not wait to begin execution of another floating- point instruction until
it has completed execution of the current instruction. The FNOP instruction synchro-
nizes the coprocessor and microprocessor unit by causing the microprocessor unit to
wait until the current instruction (or both instructions) have completed.

The FNOP instruction also forces the processing of exceptions pending from the exe-
cution of previous instructions. This is also inherent in the way that the floating-point
coprocessor utilizes the M68000 family coprocessor interface. Once the floating-point
coprocessor has received the input operand for an arithmetic instruction, it always
releases the main processor to execute the next instruction (regardless of whether or
not concurrent execution is prevented for the instruction due to tracing) without report-
ing the exception during the execution of that instruction. Then, when the main proces-
sor attempts to initiate the execution of the next floating-point coprocessor instruction,
a preinstruction exception may be reported to initiate exception processing for an
exception that occurred during a previous instruction. By using the FNOP instruction,
the user can force any pending exceptions to be processed without performing any
other operations.

Floating-Point Status Register: Not Affected.

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-103

FNOP No Operation FNOP
(MC6888X, MC68040)

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

NOTE

FNOP uses the same opcode as the FBcc.W < label > instruc-
tion, with cc = F (nontrapping false) and < label > = + 2 (which
results in a displacement of 0).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 COPROCESSOR ID 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Floating Point Instructions

5-104 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FREM IEEE Remainder FREM
(MC6888X, M68040FPSP)

Operation: IEEE Remainder of (FPn ÷ Source) → FPn

Assembler FREM. < fmt > < ea > ,FPn
Syntax: FREM.X FPm,FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates the modulo remainder of the number in the destination floating-point data
register, using the source operand as the modulus. Stores the result in the destination
floating-point data register and stores the sign and seven least significant bits of the
quotient in the floating-point status register quotient byte (the quotient is the result of
FPn ÷ Source). The IEEE remainder function is defined as:

FPn – (Source x N)

where N = INT (FPn ÷ Source) in the round-to-nearest mode.

The FREM function is not defined for a source operand equal to zero or for a destina-
tion operand equal to infinity. Note that this function is not the same as the FMOD
instruction, which uses the round-to-zero mode and thus returns a remainder that is dif-
ferent from the remainder required by the IEEE Specification for Binary Floating-Point
Arithmetic.

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the OPERR bit in the floating-point status register exception byte.
3. Returns the value of FPn before the operation. However, the result is

processed by the normal instruction termination procedure to round it as
required. Thus, an overflow and/or inexact result may occur if the rounding
precision has been changed to a smaller size since the FPn value was loaded.

DESTINATION
SOURCE1

+ In Range – + Zero# – + Infinity –

In Range +
–

IEEE Remainder NAN2 FPn2

Zero +
–

+ 0.0
– 0.0

NAN2 + 0.0
– 0.0

Infinity +
–

NAN2 NAN2 NAN†2

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-105

FREM IEEE Remainder FREM
(MC6888X, M68040FPSP)

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Loaded with the sign and least significant seven bits of the
qotient (FPn ÷ Source). The sign of the quotient is the
exclusive-OR of the sign bits of the source and destination
operands.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the source is zero or the destination is

infinity; cleared otherwise.
OVFL Cleared
UNFL Refer to underflow in the appropriate user’s

manual.
DZ Cleared
INEX2 Cleared
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 1 0 0 1 0 1

Floating Point Instructions

5-106 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FREM IEEE Remainder FREM
(MC6888X, M68040FPSP)

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-107

FSCALE Scale Exponent FSCALE
(MC6888X, M68040FPSP)

Operation: FPn x INT(2Source) → FPn

Assembler FSCALE. < fmt > < ea > ,FPn
Syntax: FSCALE.X FPm,FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to an integer (if necessary) and adds that integer
to the destination exponent. Stores the result in the destination floating-point data
register. This function has the effect of multiplying the destination by 2Source, but is
much faster than a multiply operation when the source is an integer value.

The floating-point coprocessor assumes that the scale factor is an integer value before
the operation is executed. If not, the value is chopped (i.e., rounded using the round-
to-zero mode) to an integer before it is added to the exponent. When the absolute value
of the source operand is ≥ 214, an overflow or underflow always results.

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Returns the value of FPn before the operation. However, the result is

processed by the normal instruction termination procedure to round it as
required. Thus, an overflow and/or inexact result may occur if the rounding
precision has been changed to a smaller size since the FPn value was
loaded.

3. Sets the OPERR bit in the floating-point status register exception byte.

DESTINATION

SOURCE1

+ In Range – + Zero – + Infinity –

In Range + – Scale Exponent FPn2 NAN3

Zero + – + 0.0 – 0.0 + 0.0 – 0.0 NAN3

Infinity + – + inf – inf + inf – inf NAN3

Floating Point Instructions

5-108 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FSCALE Scale Exponent FSCALE
(MC6888X, M68040FPSP)

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected

Exception Byte: BSUN Cleared

SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the source operand is ± infinity; cleared

otherwise.
OVFL Refer to overflow in the appropriate user’s

manual.
UNFL Refer to underflow in the appropriate user’s

manual.
DZ Cleared
INEX2 Cleared
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 1 0 0 1 1 0

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-109

FSCALE Scale Exponent FSCALE
(MC6888X, M68040FPSP)

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

5-110 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FScc Set According to Floating-Point Condition FScc
(MC6888X, MC68040)

Operation: If (Condition True)
Then 1s → Destination

Else 0s → Destination

Assembler
Syntax: FScc. < size > < ea >

Attributes: Size = (Byte)

Description: If the specified floating-point condition is true, sets the byte integer operand at
the destination to TRUE (all ones); otherwise, sets the byte to FALSE (all zeros). The
conditional specifier cc may select any one of the 32 floating-point conditional tests as
described in Table 3-23 Floating-Point Conditional Tests.

Floating-Point Status Register:

Condition Codes: Not affected.

Quotient Byte: Not affected.

Exception Byte: BSUN Set if the NAN condition code is set and the
condition selected is an IEEE nonaware test.

SNAN Not Affected.
OPERR Not Affected.
OVFL Not Affected.
UNFL Not Affected.
DZ Not Affected.
INEX2 Not Affected.
INEX1 Not Affected.

Accrued Exception Byte: The IOP bit is set if the BSUN bit is set in the exception
byte. No other bit is affected.

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-111

FScc Set According to Floating-Point Condition FScc
(MC6888X, MC68040)

Instruction Format:

Instruction Fields:

Effective Address field—Specifies the addressing mode for the byte integer operand.
Only data alterable addressing modes can be used as listed in the following table:

Conditional Predicate field—Specifies one of 32 conditional tests as defined in 3.6.2
Conditional Testing.

NOTE

When a BSUN exception occurs, a preinstruction exception is
taken. If the exception handler returns without modifying the im-
age of the program counter on the stack frame (to point to the
instruction following the FScc), then it must clear the cause of
the exception (by clearing the NAN bit or disabling the BSUN
trap) or the exception occurs again immediately upon return to
the routine that caused the exception.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 1

EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 0 0 0 0 0 0 0 CONDITIONAL PREDICATE

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

Floating Point Instructions

5-112 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FSGLDIV Single-Precision Divide FSGLDIV
(MC6888X, MC68040)

Operation: FPn ÷ Source → FPn

Assembler FSGLDIV. < fmt > < ea > ,FPn
Syntax: FSGLDIV.X FPm,FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and divides
that number into the number in the destination floating-point data register. Stores the
result in the destination floating-point data register, rounded to single precision (despite
the current rounding precision). This function is undefined for 0 ÷ 0 and infinity ÷ infinity.

Both the source and destination operands are assumed to be representable in the sin-
gle-precision format. If either operand requires more than 24 bits of mantissa to be
accurately represented, the extraneous mantissa bits are trancated prior to the divi-
sion, hence the accuracy of the result is not guaranteed. Furthermore, the result expo-
nent may exceed the range of single precision, regardless of the rounding precision
selected in the floating-point control register mode control byte. Refer to 3.6.1 Under-
flow, Round, Overflow for more information.

The accuracy of the result is not affected by the number of mantissa bits required to
represent each input operand since the input operands just change to extended preci-
sion. The result mantissa is rounded to single precision, and the result exponent is
rounded to extended precision, despite the rounding precision selected in the floating-
point control register.

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the DZ bit in the floating-point status register exception byte.
3. Sets the OPERR bit in the floating-point status register exception byte.

DESTINATION
SOURCE3,1

+ In Range – + Zero – + Infinity –

In Range +
–

Divide
(Single Precision)

+ inf2 – inf2
– inf2 + inf2

+ 0.0 – 0.0
– 0.0 + 0.0

Zero +
–

+ 0.0 – 0.0
– 0.0 + 0.0 NAN3 + 0.0 – 0.0

– 0.0 + 0.0

Infinity +
–

+ inf – inf
– inf + inf

+ inf – inf
– inf + inf NAN3

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-113

FSGLDIV Single-Precision Divide FSGLDIV
(MC6888X, MC68040)

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set for 0 ÷ 0 or infinity ÷ infinity.
OVFL Refer to overflow in the appropriate user’s

manual.
UNFL Refer to underflow in the appropriate user’s

manual.
DZ Set if the source is zero and the destination is

in range; cleared otherwise.
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to the appropriate

user’s manual for inexact result on decimal
input; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 1 0 0 1 0 0

Floating Point Instructions

5-114 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FSGLDIV Single-Precision Divide FSGLDIV
(MC6888X, MC68040)

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-115

FSGLMUL Single-Precision Multiply FSGLMUL
(MC6888X, MC68040)

Operation: Source x FPn → FPn

Assembler FSGLMUL. < fmt > < ea > ,FPn
Syntax: FSGLMUL.X FPm,FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
multiplies that number by the number in the destination floating-point data register.
Stores the result in the destination floating-point data register, rounded to single
precision (regardless of the current rounding precision).

Both the source and destination operands are assumed to be representable in the sin-
gle-precision format. If either operand requires more than 24 bits of mantissa to be
accurately represented, the extraneous mantissa bits are truncated prior to the multi-
pliction; hence, the accuracy of the result is not guaranteed. Furthermore, the result
exponent may exceed the range of single precision, regardless of the rounding preci-
sion selected in the floating-point control register mode control byte. Refer to 3.6.1
Underflow, Round, Overflow for more information.

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the OPERR bit in the floating-point status register exception byte.

NOTE

The input operand mantissas truncate to single precision before
the multiply operation. The result mantissa rounds to single pre-
cision despite the rounding precision selected in the floating-
point control register.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

In Range +
–

Multiply
(Single Precision)

+ 0.0 – 0.0
– 0.0 + 0.0

+ inf – inf
– inf + inf

Zero +
–

+ 0.0 – 0.0
– 0.0 + 0.0

+ 0.0 – 0.0
– 0.0 + 0.0 NAN2

Infinity +
–

+ inf – inf
– inf + inf NAN + inf – inf

– inf + inf

Floating Point Instructions

5-116 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FSGLMUL Single-Precision Multiply FSGLMUL
(MC6888X, MC68040)

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared

SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if one operand is zero and the other is

infinity; cleared otherwise.
OVFL Refer to overflow in the appropriate user’s

manual.
UNFL Refer to underflow in the appropriate user’s

manual.
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 1 0 0 1 1 1

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-117

FSGLMUL Single-Precision Multiply FSGLMUL
(MC6888X, MC68040)

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

5-118 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FSIN Sine FSIN
(MC6888X, M68040FPSP)

Operation: Sine of Source → FPn

Assembler FSIN. < fmt > < ea > ,FPn
Syntax: FSIN.X FPm,FPn

FSIN.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates the sine of that number. Stores the result in the destination floating-point
data register. This function is not defined for source operands of ± infinity. If the source
operand is not in the range of [– 2π... + 2π], the argument is reduced to within that
range before the sine is calculated. However, large arguments may lose accuracy
during reduction, and very large arguments (greater than approximately 1020) lose all
accuracy. The result is in the range of [– 1... + 1].

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the OPERR bit in the floating-point status register exception byte.

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

Result Sine + 0.0 – 0.0 NAN2

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-119

FSIN Sine FSIN
(MC6888X, M68040FPSP)

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the source is ± infinity; cleared

otherwise.
OVFL Cleared
UNFL Refer to underflow in the appropriate user’s

manual.
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 1 1 1 0

Floating Point Instructions

5-120 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FSIN Sine FSIN
(MC6888X, M68040FPSP)

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, then the input operand is
taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Motorola assemblers set
the source and destination fields to the same value.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-121

FSINCOS Simultaneous Sine and Cosine FSINCOS
(MC6888X, M68040FPSP)

Operation: Sine of Source → FPs
Cosine of Source → FPc

Assembler FSINCOS. < fmt > < ea > ,FPc,FPs
Syntax: FSINCOS.X FPm,FPc,FPs

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates both the sine and the cosine of that number. Calculates both functions
simultaneously; thus, this instruction is significantly faster than performing separate
FSIN and FCOS instructions. Loads the sine and cosine results into the destination
floating-point data register. Sets the condition code bits according to the sine result. If
FPs and FPc are specified to be the same register, the cosine result is first loaded into
the register and then is overwritten with the sine result. This function is not defined for
source operands of ± infinity.

If the source operand is not in the range of [– 2π... + 2π], the argument is reduced to
within that range before the sine and cosine are calculated. However, large arguments
may lose accuracy during reduction, and very large arguments (greater than approxi-
mately 1020) lose all accuracy. The results are in the range of [– 1... + 1].

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the OPERR bit in the floating-point status register exception byte.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

FPs Sine + 0.0 – 0.0 NAN2

FPc Cosine + 1.0 NAN2

Floating Point Instructions

5-122 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FSINCOS Simultaneous Sine and Cosine FSINCOS
(MC6888X, M68040FPSP)

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing (for the
sine result).

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the source is ± infinity; cleared

otherwise.
OVFL Cleared
UNFL Set if a sine underflow occurs, in which case

the cosine result is 1. Cosine cannot
underflow. Refer to underflow in the
appropriate user’s manual.

DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER, FPs
0 1 1 0

DESTINATION
REGISTER FPc

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-123

FSINCOS Simultaneous Sine and Cosine FSINCOS
(MC6888X, M68040FPSP)

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register, FPc field—Specifies the destination floating- point data register,
FPc. The cosine result is stored in this register.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

5-124 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FSINCOS Simultaneous Sine and Cosine FSINCOS
(MC6888X, M68040FPSP)

Destination Register, FPs field—Specifies the destination floating- point data register, FPs.
The sine result is stored in this register. If FPc and FPs specify the same floating-point
data register, the sine result is stored in the register, and the cosine result is discarded.

If R/M = 0 and the source register field is equal to either of the destination register
fields, the input operand is taken from the specified floating-point data register, and the
appropriate result is written into the same register.

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-125

FSINH Hyperbolic Sine FSINH
(MC6888X, M68040FPSP)

Operation: Hyperbolic Sine of Source → FPn

Assembler FSINH. < fmt > < ea > ,FPn
Syntax: FSINH.X FPm,FPn

FSINH.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates the hyperbolic sine of that number. Stores the result in the destination
floating-point data register.

Operation Table:

NOTE: If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Cleared
OVFL Refer to overflow in the appropriate user’s

manual.
UNFL Refer to underflow in the appropriate user’s

manual.
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

DESTINATION
SOURCE

+ In Range – + Zero – + Infinity –

Result Hyperbolic Sine + 0.0 – 0.0 + inf – inf

Floating Point Instructions

5-126 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FSINH Hyperbolic Sine FSINH
(MC6888X, M68040FPSP)

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 0 0 1 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-127

FSINH Hyperbolic Sine FSINH
(MC6888X, M68040FPSP)

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, the input operand is taken
from the specified floating-point data register, and the result is written into the
same register. If the single register syntax is used, Motorola assemblers set the
source and destination fields to the same value.

Floating Point Instructions

5-128 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FSQRT Floating-Point Square Root FSQRT
(MC6888X, MC68040)

Operation: Square Root of Source → FPn

Assembler FSQRT. < fmt > < ea > ,FPn
Syntax: FSQRT.X FPm,FPn

FSQRT.X FPn
*FrSQRT. < fmt > < ea > ,FPn
*FrSQRT FPm,FPn
*FrSQRT FPn
where r is rounding precision, S or D

 *Supported by MC68040 only

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates the square root of that number. Stores the result in the destination floating-
point data register. This function is not defined for negative operands.

FSQRT will round the result to the precision selected in the floating-point control reg-
ister. FSFSQRT and FDFSQRT will round the result to single or double precision,
respectively, regardless of the rounding precision selected in the floating-point control
register.Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the OPERR bit in the floating-point status register exception byte.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

Result NAN2 + 0.0 – 0.0 + inf NAN2 x

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-129

FSQRT Floating-Point Square Root FSQRT
(MC6888X, MC68040)

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the source operand is not zero and is

negative; cleared otherwise.
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to exception processing in the

appropriate user’s manual.
INEX1 If < fmt > is packed, refer to exception

processing in the appropriate user’s manual;
cleared otherwise.

Accrued Exception Byte: Affected as described in exception processing in the appro-
priate user’s manual.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
OPMODE

Floating Point Instructions

5-130 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FSQRT Floating-Point Square Root FSQRT
(MC6888X, MC68040)

Instruction Fields:

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, specifies the location of the source operand. Only data addressing modes

can be used as listed in the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)*
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)
*This encoding will cause an unimplemented data type exception in the

MC68040 to allow emulation in software.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-131

FSQRT Floating-Point Square Root FSQRT
(MC6888X, MC68040)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, the input operand is taken
from the specified floating-point data register, and the result is written into the
same register. If the single register syntax is used, Motorola assemblers set the
source and destination fields to the same value.

Opmode field—Specifies the instruction and rounding precision.

0000100 FSQRT Rounding precision specified by the floating-point
control register.

1000001 FSSQRT Single-precision rounding specified.
1000101 FDSQRT Double-precision rounding specified.

Floating Point Instructions

5-132 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FSUB Floating-Point Subtract FSUB
(MC6888X, MC68040)

Operation: FPn – Source → FPn

Assembler
Syntax: FSUB. < fmt > < ea > ,FPn

FSUB.X FPm,FPn
*FrSUB. < fmt > < ea > ,FPn
*FrSUB.X FPm,FPn
where r is rounding precision, S or D

 *Supported by MC68040 only

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
subtracts that number from the number in the destination floating-point data register.
Stores the result in the destination floating-point data register.

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Returns + 0.0 in rounding modes RN, RZ, and RP; returns – 0.0 in RM.
3. Sets the OPERR bit in the floating-point status register exception byte.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

In Range +
–

Subtract Subtract – inf + inf

Zero +
–

Subtract + 0.02 + 0.0
+ 0.0 + 0.02 – inf + inf

Infinity +
–

+ inf
– inf

+ inf
– inf

NAN2 – inf
– inf NAN2

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-133

FSUB Floating-Point Subtract FSUB
(MC6888X, MC68040)

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if both the source and destination are

like-signed infinities; cleared otherwise.
OVFL Refer to exception processing in the

appropriate user’s manual.
UNFL Refer to exception processing in the

appropriate user’s manual.
DZ Cleared
INEX2 Refer to exception processing in the

appropriate user’s manual.
INEX1 If < fmt > is packed, refer to exception

processing in the appropriate user’s manual;
cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
OPMODE

Floating Point Instructions

5-134 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FSUB Floating-Point Subtract FSUB
(MC6888X, MC68040)

Instruction Fields:

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, specifies the location of the source operand. Only data addressing modes

can be used as listed in the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)*
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)
*This encoding will cause an unimplemented data type exception in the

MC68040 to allow emulation in software.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-135

FSUB Floating-Point Subtract FSUB
(MC6888X, MC68040)

Destination Register field—Specifies the destination floating- point data register.

Opmode field—Specifies the instruction and rounding precision.

0101000 FSUB Rounding precision specified by the floating- point
control register.

1101000 FSSUB Single-precision rounding specified.
1101100 FDSUB Double-precision rounding specified.

Floating Point Instructions

5-136 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FTAN Tangent FTAN
(MC6888X/004SW)

Operation: Tangent of Source → FPn

Assembler FTAN. < fmt > < ea > ,FPn
Syntax: FTAN.X FPm,FPn

FTAN.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates the tangent of that number. Stores the result in the destination floating-point
data register. This function is not defined for source operands of ± infinity. If the source
operand is not in the range of [– π/2... + π/2], the argument is reduced to within that
range before the tangent is calculated. However, large arguments may lose accuracy
during reduction, and very large arguments (greater than approximately 1020) lose all
accuracy.

Operation Table:

NOTES:
1. If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.
2. Sets the OPERR bit in the floating-point status register exception byte.

DESTINATION
SOURCE1

+ In Range – + Zero – + Infinity –

Result Tangent + 0.0 – 0.0 NAN2

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-137

FTAN Tangent FTAN
(MC6888X/004SW)

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Set if the source is ± infinity; cleared

otherwise.
OVFL Refer to overflow in the appropriate user’s

manual.
UNFL Refer to underflow in the appropriate user’s

manual.
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 1 1 1 1

Floating Point Instructions

5-138 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FTAN Tangent FTAN
(MC6888X/004SW)

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, the input operand is taken
from the specified floating-point data register, and the result is written into the
same register. If the single register syntax is used, Motorola assemblers set the
source and destination fields to the same value.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-139

FTANH Hyperbolic Tangent FTANH
(MC6888X, M68040FPSP)

Operation: Hyperbolic Tangent of Source → FPn

Assembler FTANH. < fmt > < ea > ,FPn
Syntax: FTANH.X FPm,FPn

FTANH.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates the hyperbolic tangent of that number. Stores the result in the destination
floating-point data register.

Operation Table:

NOTE: If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Cleared
OVFL Cleared
UNFL Refer to underflow in the appropriate user’s

manual.
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

DESTINATION SOURCE
+ In Range – + Zero – + Infinity –

Result Hyperbolic Tangent + 0.0 – 0.0 + 1.0 – 1.0

Floating Point Instructions

5-140 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FTANH Hyperbolic Tangent FTANH
(MC6888X, M68040FPSP)

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 1 0 0 1

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-141

FTANH Hyperbolic Tangent FTANH
(MC6888X, M68040FPSP)

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, the input operand is taken
from the specified floating-point data register, and the result is written into the
same register. If the single register syntax is used, Motorola assemblers set the
source and destination fields to the same value.

Floating Point Instructions

5-142 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FTENTOX 10x FTENTOX
(MC6888X, M68040FPSP)

Operation: 10Source → FPn

Assembler FTENTOX. < fmt > < ea > ,FPn
Syntax: FTENTOX.X FPm,FPn

FTENTOX.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates 10 to the power of that number. Stores the result in the destination floating-
point data register.

Operation Table:

NOTE: If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Cleared
OVFL Refer to overflow in the appropriate user’s

manual.
UNFL Refer to underflow in the appropriate user’s

manual.
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to the appropriate

user’s manual inexact result on decimal
input; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

DESTINATION SOURCE
+ In Range – + Zero – + Infinity –

Result 10x + 1.0 + inf + 0.0

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-143

FTENTOX 10x FTENTOX
(MC6888X, M68040FPSP)

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in

the following table:

*Only if < fmt > is byte, word, long, or single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 0 0 1 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

5-144 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FTENTOX 10x FTENTOX
(MC6888X, M68040FPSP)

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, the input operand is taken
from the specified floating-point data register, and the result is written into the
same register. If the single register syntax is used, Motorola assemblers set the
source and destination fields to the same value.

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-145

FTRAPcc Trap on Floating-Point Condition FTRAPcc
(MC6888X, MC68040)

Operation: If Condition True
Then TRAP

Assembler FTRAPcc
Syntax: FTRAPcc.W # < data >

FTRAPcc.L # < data >

Attributes: Size = (Word, Long)

Description: If the selected condition is true, the processor initiates exception processing.
A vector number is generated to reference the TRAPcc exception vector. The stacked
program counter points to the next instruction. If the selected condition is not true, there
is no operation performed and execution continues with the next instruction in
sequence. The immediate data operand is placed in the word(s) following the
conditional predicate word and is available for user definition for use within the trap
handler.

The conditional specifier cc selects one of the 32 conditional tests defined in 3.6.2
Conditional Testing.

Floating-Point Status Register:

Condition Codes: Not affected.

Quotient Byte: Not affected.

Exception Byte: BSUN Set if the NAN condition code is set and the
condition selected is an IEEE nonaware test.

SNAN Not Affected.
OPERR Not Affected.
OVFL Not Affected.
UNFL Not Affected.
DZ Not Affected.
INEX2 Not Affected.
INEX1 Not Affected.

Accrued Exception Byte: The IOP bit is set if the BSUN bit is set in the exception
byte; no other bit is affected.

Floating Point Instructions

5-146 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FTRAPcc Trap on Floating-Point Condition FTRAPcc
(MC6888X, MC68040)

Instruction Format:

Instruction Fields:

Mode field—Specifies the form of the instruction.
010 — The instruction is followed by a word operand.
011 — The instruction is followed by a long-word operand.
100 — The instruction has no operand.

Conditional Predicate field—Specifies one of 32 conditional tests as described in 3.6.2
Conditional Testing.

Operand field—Contains an optional word or long-word operand that is user defined.

NOTE

When a BSUN exception occurs, a preinstruction exception is
taken by the main processor. If the exception handler returns
without modifying the image of the program counter on the stack
frame (to point to the instruction following the FTRAPcc), it must
clear the cause of the exception (by clearing the NAN bit or dis-
abling the BSUN trap), or the exception occurs again immediate-
ly upon return to the routine that caused the exception.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 1 1 1 1 MODE

0 0 0 0 0 0 0 0 0 0 CONDITIONAL PREDICATE

16-BIT OPERAND OR MOST SIGNIFICANT WORD OF 32-BIT OPERAND (IFNEEDED)

LEAST SIGNIFICANT WORD OR 32-BIT OPERAND (IF NEEDED)

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-147

FTST Test Floating-Point Operand FTST
(MC6888X, MC68040)

Operation: Condition Codes for Operand → FPCC

Assembler FTST. < fmt > < ea >
Syntax: FTST.X FPm

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and sets the
condition code bits according to the data type of the result.

Operation Table: The contents of this table differfromtheother operation tables. A letter in
an entry of this table indicates that the designated condition code bit is always set by
the FTST operation. All unspecified condition code bits are cleared during the
operation.

NOTE: If the source operand is a NAN, set the NAN condition code bit. If the source
operand is an SNAN, set the SNAN bit in the floating-point status register
exception byte

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Cleared
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Cleared
INEX1 If < fmt > is packed, refer to exception

processing in the appropriate user’s manual;
cleared otherwise.

Accrued Exception Byte: Affected as described in exception processing in the appro-
priate user’s manual.

DESTINATION
SOURCE

+ In Range – + Zero – + Infinity –

Result none N Z NZ I NI

Floating Point Instructions

5-148 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FTST Test Floating-Point Operand FTST
(MC6888X, MC68040)

Instruction Format:

Instruction Fields:

Effective Address field—Determines the addressing mode for external operands.
If R/M = 0, this field is unused and should be all zeros.
If R/M = 1, specifies the location of the source operand. Only data addressing modes

can be used as listed in the following table:

*Only if < fmt > is byte, word, long, or single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 1 1 1 0 1 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-149

FTST Test Floating-Point Operand FTST
(MC6888X, MC68040)

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)*
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)
*This encoding will cause an unimplemented data type exception in the

MC68040 to allow emulation in software.

Destination Register field—Since the floating-point unit uses a common command
word format for all of the arithmetic instructions (including FTST), this field is
treated in the same manner for FTST as for the other arithmetic instructions, even
though the destination register is not modified. This field should be set to zero to
maintain compatibility with future devices; however, the floating-point unit does
not signal an illegal instruction trap if it is not zero.

Floating Point Instructions

5-150 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FTWOTOX 2x FTWOTOX
(MC6888X, M68040FPSP)

Operation: 2Source → FPn

Assembler FTWOTOX. < fmt > < ea > ,FPn
Syntax: FTWOTOX.X FPm,FPn

FTWOTOX.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and
calculates two to the power of that number. Stores the result in the destination floating-
point data register.

Operation Table:

NOTE: If the source operand is a NAN, refer to 1.6.5 Not-A-Numbers for more information.

Floating-Point Status Register:

Condition Codes: Affected as described in 3.6.2 Conditional Testing.

Quotient Byte: Not affected.

Exception Byte: BSUN Cleared
SNAN Refer to 1.6.5 Not-A-Numbers.
OPERR Cleared
OVFL Refer to overflow in the appropriate user’s

manual.
UNFL Refer to underflow in the appropriate user’s

manual.
DZ Cleared
INEX2 Refer to inexact result in the appropriate

user’s manual.
INEX1 If < fmt > is packed, refer to inexact result on

decimal input in the appropriate user’s
manual; cleared otherwise.

Accrued Exception Byte: Affected as described in IEEE exception and trap compati-
bility in the appropriate user’s manual.

DESTINATION
SOURCE

+ In Range – + Zero – + Infinity –

Result 2x + 1.0 + inf + 0.0

Floating Point Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 5-151

FTWOTOX 2x FTWOTOX
(MC6888X, M68040FPSP)

Instruction Format:

Instruction Fields:

Coprocessor ID field—Specifies which coprocessor in the system is to execute this
instruction. Motorola assemblers default to ID = 1 for the floating-point
coprocessor.

Effective Address field—Determines the addressing mode for external operands.

If R/M = 0, this field is unused and should be all zeros.

If R/M = 1, this field is encoded with an M68000 family addressing mode as listed in
the following table:

*Only if < fmt > is byte, word, long, or single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 0 0 0 1

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Floating Point Instructions

5-152 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FTWOTOX 2x FTWOTOX
(MC6888X, M68040FPSP)

R/M field—Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is < ea > to register.

Source Specifier field—Specifies the source register or data format.
If R/M = 0, specifies the source floating-point data register.
If R/M = 1, specifies the source data format:

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Destination Register field—Specifies the destination floating- point data register. If R/
M = 0 and the source and destination fields are equal, the input operand is taken
from the specified floating-point data register, and the result is written into the
same register. If the single register syntax is used, Motorola assemblers set the
source and destination fields to the same value.

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

6-1

SECTION 6
SUPERVISOR (PRIVILEGED) INSTRUCTIONS

This section contains information about the supervisor privileged instructions for the
M68000 family. Each instruction is described in detail, and the instruction descriptions are
arranged in alphabetical order by instruction mnemonic.

Any differences within the M68000 family of instructions are identified in the instruction. If an
instruction only applies to a certain processor or processors, the processor(s) that the
instruction pertains to is identified under the title of the instruction. For example:

Invalidate Cache Lines

(MC68040)

All references to the MC68000, MC68020, and MC68030 include references to the
corresponding embedded controllers, MC68EC000, MC68EC020, and MC68EC030. All
references to the MC68040 include the MC68LC040 and MC68EC040. This applies
throughout this section unless otherwise specified.

If the instruction applies to all the M68000 family but a processor or processors may use a
different instruction field, instruction format, etc., the differences will be identified within the
paragraph. For example:

*Can be used with CPU32 processo

The following instructions are listed separately for each processor due to the many
differences involved within the instruction:

Appendix A Processor Instruction Summary

 provides a listing of all processors and the
instructions that apply to them for quick reference.

MC68020, MC68030 and MC68040 only

(bd,An,Xn)* 110 reg. number: An (bd,PC,Xn)* — —

PFLUSH Flush ATC Entries
PMOVE Move PMMU Register
PTEST Test Logical Address

Supervisor (Privileged) Instructions

6-2

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

ANDI ANDI
to SR

AND Immediate to the Status Register

to SR

(M68000 Family)

Operation:

If Supervisor State
Then Source L SR

→

SR
ELSE TRAP

Assembler
Syntax:

ANDI # < data > ,SR

Attributes:

size = (word)

Description:

Performs an AND operation of the immediate operand with the contents of the
status register and stores the result in the status register. All implemented bits of the
status register are affected.

Condition Codes:

X—Cleared if bit 4 of immediate operand is zero; unchanged otherwise.

N—Cleared if bit 3 of immediate operand is zero; unchanged otherwise.

Z—Cleared if bit 2 of immediate operand is zero; unchanged otherwise.

V—Cleared if bit 1 of immediate operand is zero; unchanged otherwise.

C—Cleared if bit 0 of immediate operand is zero; unchanged otherwise.

Instruction Format:

X N Z V C

∗ ∗ ∗ ∗ ∗

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0

16-BIT WORD DATA

Supervisor (Privileged) Instructions

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

6-3

CINV

Invalidate Cache Lines

CINV

(MC68040, MC68LC040)

Operation:

If Supervisor State
Then Invalidate Selected Cache Lines

ELSE TRAP

Assembler
Syntax:

CINVL < caches > ,(An)
CINVP < caches > ,(An)
CINVA < caches >

Where < caches > specifies the instruction cache,
data cache, both caches, or neither cache.

Attributes:

Unsized

Description:

Invalidates selected cache lines. The data cache, instruction cache, both
caches, or neither cache can be specified. Any dirty data in data cache lines that
invalidate are lost; the CPUSH instruction must be used when dirty data may be
contained in the data cache.

Specific cache lines can be selected in three ways:

1. CINVL invalidates the cache line (if any) matching the physical address in the
specified address register.

2. CINVP invalidates the cache lines (if any) matching the physical memory page
in the specified address register. For example, if 4K-byte page sizes are select-
ed and An contains $12345000, all cache lines matching page $12345000 in-
validate.

3. CINVA invalidates all cache entries.

Condition Codes:

Not affected.

Supervisor (Privileged) Instructions

6-4

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

CINV

Invalidate Cache Lines

CINV

(MC68040, MC68LC040)

Instruction Format:

Instruction Fields:

Cache field—Specifies the Cache.
00—No Operation
01—Data Cache
10—Instruction Cache
11—Data and Instruction Caches

Scope field—Specifies the Scope of the Operation.
00—Illegal (causes illegal instruction trap)
01—Line
10—Page
11—All

Register field—Specifies the address register for line and page operations. For line
operations, the low-order bits 3–0 of the address are don‘t cares. Bits 11–0 or 12–
0 of the address are don‘t care for 4K-byte or 8K-byte page operations,
respectively.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 CACHE 0 SCOPE REGISTER

Supervisor (Privileged) Instructions

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

6-5

cpRESTORE

Coprocessor

cpRESTORE

Restore Functions

(MC68020, MC68030)

Operation:

If Supervisor State
Then Restore Internal State of Coprocessor

ELSE TRAP

Assembler
Syntax:

cpRESTORE < ea >

Attributes:

Unsized

Description:

Restores the internal state of a coprocessor usually after it has been saved by
a preceding cpSAVE instruction.

Condition Codes:

Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

1 0 1
EFFECTIVE ADDRESS

ID MODE REGISTER

Supervisor (Privileged) Instructions

6-6

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

cpRESTORE

Coprocessor

cpRESTORE

Restore Functions

(MC68020, MC68030)

Instruction Fields:

Coprocessor ID field—Identifies the coprocessor that is to be restored. Coprocessor ID
of 000 results in an F-line exception for the MC68030.

Effective Address field—Specifies the location where the internal state of the
coprocessor is located. Only postincrement or control addressing modes can be
used as listed in the following table:

NOTE

If the format word returned by the coprocessor indicates “come
again”, pending interrupts are not serviced.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

— (An) — —

(d

16

,An) 101 reg. number:An (d

16

,PC) 111 010

(d

8

,An,Xn) 110 reg. number:An (d

8

,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn], od) 110 reg. number:An ([bd,PC,Xn], od) 111 011

([bd,An],Xn,od) 110 reg.number:An ([bd,PC],Xn, od 111 011

Supervisor (Privileged) Instructions

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

6-7

cpSAVE

Coprocessor Save Function

cpSAVE

(MC68020, MC68030)

Operation:

If Supervisor State
Then Save Internal State of Coprocessor

ELSE TRAP

Assembler
Syntax:

cpSAVE < ea >

Attributes:

Unsized

Description:

Saves the internal state of a coprocessor in a format that can be restored by
a cpRESTORE instruction.

Condition Codes:

Not affected.

Instruction Format:

Instruction Fields:

Coprocessor ID field—Identifies the coprocessor for this operation. Coprocessor ID of
000 results in an F-line exception for the MC68030.

Effective Address field—Specifies the location where the internal state of the
coprocessor is to be saved. Only predecrement or control alterable addressing
modes can be used as listed in the following table:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

1 0 0
EFFECTIVE ADDRESS

ID MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + — —

— (An) 100 reg. number:An

(d

16

,An) 101 reg. number:An (d

16

,PC) — —

(d

8

,An,Xn) 110 reg. number:An (d

8

,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn], od) 110 reg. number:An ([bd,PC,Xn],od) — —

([bd,An],Xn, od) 110 reg. number:An ([bd,PC],Xn, od) — —

Supervisor (Privileged) Instructions

6-8

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

CPUSH

Push and Invalidate Cache Lines

CPUSH

(MC68040, MC68LC040)

Operation:

If Supervisor State
Then If Data Cache

Then Push Selected Dirty Data Cache Lines
Invalidate Selected Cache Lines

ELSE TRAP

Assembler

CPUSHL < caches > ,(An)

Syntax:

CPUSHP < caches > ,(An)
CPUSHA < caches >

Where < caches > specifies the instruction cache, data cache,
both caches, or neither cache.

Attributes:

Unsized

Description:

Pushes and then invalidates selected cache lines. The DATA cache,
instruction cache, both caches, or neither cache can be specified. When the data cache
is specified, the selected data cache lines are first pushed to memory (if they contain
dirty DATA) and then invalidated. Selected instruction cache lines are invalidated.

Specific cache lines can be selected in three ways:
1. CPUSHL pushes and invalidates the cache line (if any) matching the physical

address in the specified address register.

2. CPUSHP pushes and invalidates the cache lines (if any) matching the physical
memory page in the specified address register. For example, if 4K-byte page
sizes are selected and An contains $12345000, all cache lines matching page
$12345000 are selected.

3. CPUSHA pushes and invalidates all cache entries.

Condition Codes:

Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 CACHE 1 SCOPE REGISTER

Supervisor (Privileged) Instructions

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

6-9

CPUSH

Push and Invalidate Cache Lines

CPUSH

(MC68040, MC68LC040)

Instruction Fields:

Cache field—Specifies the Cache.
00—No Operation
01—Data Cache
10—Instruction Cache
11—Data and Instruction Caches

Scope field—Specifies the Scope of the Operation.
00—Illegal (causes illegal instruction trap)
01—Line
10—Page
11—All

Register field—Specifies the address register for line and page operations. For line
operations, the low-order bits 3–0 of the address are don‘t care. Bits 11–0 or 12–
0 of the address are don‘t care for 4K-byte or 8K-byte page operations,
respectively.

Supervisor (Privileged) Instructions

6-10

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

EORI EORI
to SR Exclusive-OR Immediate to the Status Register to SR

(M68000 Family)

Operation: If Supervisor State
Then Source ⊕ SR → SR

ELSE TRAP

Assembler
Syntax: EORI # < data > ,SR

Attributes: Size = (Word)

Description: Performs an exclusive-OR operation on the contents of the status register
using the immediate operand and stores the result in the status register. All
implemented bits of the status register are affected.

Condition Codes:

X—Changed if bit 4 of immediate operand is one; unchanged otherwise.

N—Changed if bit 3 of immediate operand is one; unchanged otherwise.

Z—Changed if bit 2 of immediate operand is one; unchanged otherwise.

V—Changed if bit 1 of immediate operand is one; unchanged otherwise.

C—Changed if bit 0 of immediate operand is one; unchanged otherwise.

Instruction Format:

X N Z V C
∗ ∗ ∗ ∗ ∗

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0

16-BIT WORD DATA

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-11

FRESTORE Restore Internal FRESTORE
Floating-Point State

(MC68881, MC68882, MC68040 only)

Operation: If in Supervisor State
Then FPU State Frame → Internal State

ELSE TRAP

Assembler
Syntax: FRESTORE < ea >

Attributes: Unsized

Description: Aborts the execution of any floating-point operation in progress and loads a
new floating-point unit internal state from the state frame located at the effective
address. The first word at the specified address is the format word of the state frame.
It specifies the size of the frame and the revision number of the floating-point unit that
created it. A format word is invalid if it does not recognize the size of the frame or the
revision number does not match the revision of the floating-point unit. If the format word
is invalid, FRESTORE aborts, and a format exception is generated. If the format word
is valid, the appropriate state frame is loaded, starting at the specified location and
proceeding through higher addresses.

The FRESTORE instruction does not normally affect the programmer’s model registers
of the floating-point coprocessor, except for the NULL state size, as described below.
It is only for restoring the user invisible portion of the machine. The FRESTORE
instruction is used with the FMOVEM instruction to perform a full context restoration of
the floating-point unit, including the floating- point data registers and system control
registers. To accomplish a complete restoration, the FMOVEM instructions are first
executed to load the programmer’s model, followed by the FRESTORE instruction to
load the internal state and continue any previously suspended operation.

Supervisor (Privileged) Instructions

6-12 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FRESTORE Restore Internal FRESTORE
Floating-Point State

(MC68881, MC68882, MC68040 only)

The current implementation supports the following four state frames:
NULL: This state frame is 4 bytes long, with a format word of $0000. An FRE-

STORE operation with this size state frame is equivalent to a hardware reset
of the floating-point unit. The programmer’s model is set to the reset state,
with nonsignaling NANs in the floating-point data registers and zeros in the
floating-point control register, floating-point status register, and floating-
point instruction address register. (Thus, it is unnecessary to load the pro-
grammer’s model before this operation.)

IDLE: This state frame is 4 bytes long in the MC68040, 28 ($1C) bytes long in the
MC68881, and 60 ($3C) bytes long in the MC68882. An FRESTORE oper-
ation with this state frame causes the floating-point unit to be restored to the
idle state, waiting for the initiation of the next instruction, with no exceptions
pending. The programmer’s model is not affected by loading this type of
state frame.

UNIMP: This state frame is generated only by the MC68040. It is 48 ($30) bytes long.
An FSAVE that generates this size frame indicates either an unimplemented
floating-point instruction or only an E1 exception is pending. This frame is
never generated when an unsupported data type exception is pending or an
E3 exception is pending. If both E1 and E3 exceptions are pending, a BUSY
frame is generated.

BUSY: This state frame is 96 ($60) bytes long in the MC68040, 184 ($B8) bytes long
in the MC68881, and 216 ($D8) bytes long in the MC68882. An FRESTORE
operation with this size state frame causes the floating-point unit to be
restored to the busy state, executing the instructions that were suspended
by a previous FSAVE operation. The programmer’s model is not affected by
loading this type of state frame; however, the completion of the suspended
instructions after the restore is executed may modify the programmer’s
model.

Floating-Point Status Register: Cleared if the state size is NULL; otherwise, not affected.

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-13

FRESTORE Restore Internal FRESTORE
Floating-Point State

(MC68881, MC68882, MC68040 only)

Instruction Format:

Instruction Field:

Effective Address field—Determines the addressing mode for the state frame. Only
postincrement or control addressing modes can be used as listed in the following
table:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

1 0 1
EFFECTIVE ADDRESS

ID MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + 011 reg. number:An

—(An) — —

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn], od) 110 reg. number:An ([bd,PC,Xn], od) 111 011

([bd,An],Xn, od) 110 reg. number:An ([bd,PC],Xn, od) 111 011

Supervisor (Privileged) Instructions

6-14 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FSAVE Save Internal Floating-Point State FSAVE
(MC68881, MC68882, MC68040 only)

Operation: If in Supervisor State
Then FPU Internal State → State Frame

ELSE TRAP

Assembler
Syntax: FSAVE < ea >

Attributes: Unsized

Description: FSAVE allows the completion of any floating-point operation in progress for
the MC68040. It saves the internal state of the floating-point unit in a state frame
located at the effective address. After the save operation, the floating-point unit is in the
idle state, waiting for the execution of the next instruction. The first word written to the
state frame is the format word specifying the size of the frame and the revision number
of the floating-point unit.

Any floating-point operations in progress when an FSAVE instruction is encountered
can be completed before the FSAVE executes, saving an IDLE state frame. Execution
of instructions already in the floating-point unit pipeline continues until completion of all
instructions in the pipeline or generation of an exception by one of the instructions. An
IDLE state frame is created by the FSAVE if no exceptions occurred; otherwise, a
BUSY or an UNIMP stack frame is created.

FSAVE suspends the execution of any operation in progress and saves the internal
state in a state frame located at the effective address for the MC68881/MC68882. After
the save operation, the floating-point coprocessor is in the idle state, waiting for the
execution of the next instruction. The first word written to the state frame is the format
word, specifying the size of the frame and the revision number of the floating-point
coprocessor. The microprocessor unit initiates the FSAVE instruction by reading the
floating-point coprocessor save CIR. The floating-point coprocessor save CIR is
encoded with a format word that indicates the appropriate action to be taken by the
main processor. The current implementation of the floating-point coprocessor always
returns one of five responses in the save CIR:

NOTE: XX is the floating-point coprocessor version
number.

Value Definition

$0018 Save NULL state frame

$0118 Not ready, come again

$0218 Illegal, take format exception

$XX18 Save IDLE state frame

$XXB4 Save BUSY state frame

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-15

FSAVE Save Internal Floating-Point State FSAVE
(MC68881, MC68882, MC68040 only)

The not ready format word indicates that the floating-point coprocessor is not prepared
to perform a state save and that the microprocessor unit should process interrupts, if
necessary, and re-read the save CIR. The floating-point coprocessor uses this format
word to cause the main processor to wait while an internal operation completes, if pos-
sible, to allow an IDLE frame rather than a BUSY frame to be saved. The illegal format
word aborts an FSAVE instruction that is attempted while the floating-point coproces-
sor executes a previous FSAVE instruction. All other format words cause the micropro-
cessor unit to save the indicated state frame at the specified address. For state frame
details see state frames in the appropriate user’s manual.

The following state frames apply to both the MC68040 and the MC68881/MC68882.

NULL: This state frame is 4 bytes long. An FSAVE instruction that generates this
state frame indicates that the floating-point unit state has not been modified
since the last hardware reset or FRESTORE instruction with a NULL state
frame. This indicates that the programmer’s model is in the reset state, with
nonsignaling NANs in the floating-point data registers and zeros in the float-
ing- point control register, floating-point status register, and floating-point
instruction address register. (Thus, it is not necessary to save the program-
mer’s model.)

IDLE: This state frame is 4 bytes long in the MC68040, 28 ($1C) bytes long in the
MC68881, and 60 ($3C) bytes long in the MC68882. An FSAVE instruction
that generates this state frame indicates that the floating-point unit finished
in an idle condition and is without any pending exceptions waiting for the ini-
tiation of the next instruction.

UNIMP: This state frame is generated only by the MC68040. It is 48 ($30) bytes long.
An FSAVE that generates this size frame indicates either an unimplemented
floating-point instruction or that only an E1 exception is pending. This frame
is never generated when an unsupported data type exception or an E3
exception is pending. If both E1 and E3 exceptions are pending, a BUSY
frame is generated.

BUSY: This state frame is 96 ($60) bytes long in the MC68040, 184 ($B8) bytes long
in the MC68881, and 216 ($D8) bytes long in the MC68882. An FSAVE
instruction that generates this size state frame indicates that the floating-
point unit encountered an exception while attempting to complete the execu-
tion of the previous floating-point instructions.

Supervisor (Privileged) Instructions

6-16 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FSAVE Save Internal Floating-Point State FSAVE
(MC68881, MC68882, MC68040 only)

The FSAVE does not save the programmer’s model registers of the floating-point unit;
it saves only the user invisible portion of the machine. The FSAVE instruction may be
used with the FMOVEM instruction to perform a full context save of the floating-point
unit that includes the floating-point data registers and system control registers. To
accomplish a complete context save, first execute an FSAVE instruction to suspend
the current operation and save the internal state, then execute the appropriate
FMOVEM instructions to store the programmer’s model.

Floating-Point Status Register: Not affected.

Instruction Format:

Instruction Field:

Effective Address field—Determines the addressing mode for the state frame. Only
predecrement or control alterable addressing modes can be used as listed in the
following table:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

1 0 0
EFFECTIVE ADDRESS

ID MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + — —

—(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) — —

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) — —

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-17

MOVE MOVE
from SR Move from the Status Register from SR

(MC68EC000, MC68010, MC68020,
MC68030, MC68040, CPU32)

Operation: If Supervisor State
Then SR → Destination

Else TRAP

Assembler
Syntax: MOVE SR, < ea >

Attributes: Size = (Word)

Description: Moves the data in the status register to the destination location. The
destination is word length. Unimplemented bits are read as zeros.

Condition Codes:

Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

Supervisor (Privileged) Instructions

6-18 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOVE MOVE
from SR Move from the Status Register from SR

(MC68EC000, MC68010, MC68020,
MC68030, MC68040, CPU32)

Instruction Field:

Effective Address field—Specifies the destination location. Only data alterable
addressing modes can be used as listed in the following tables:

*Available for the CPU32.

NOTE

Use the MOVE from CCR instruction to access only the
condition codes.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + 011 reg. number:An

—(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

MC68020, MC68030, and MC68040 only

(bd,An,Xn)* 110 reg. number:An (bd,PC,Xn)* — —

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) — —

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) — —

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-19

MOVE MOVE
to SR Move to the Status Register to SR

(M68000 Family)

Operation: If Supervisor State
Then Source → SR

Else TRAP

Assembler
Syntax: MOVE < ea > ,SR

Attributes: Size = (Word)

Description: Moves the data in the source operand to the status register. The source
operand is a word, and all implemented bits of the status register are affected.

Condition Codes:

Set according to the source operand.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

Supervisor (Privileged) Instructions

6-20 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOVE MOVE
to SR Move to the Status Register to SR

(M68000 Family)

Instruction Field:

Effective Address field—Specifies the location of the source operand. Only data
addressing modes can be used as listed in the following tables:

*Available for the CPU32.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

—(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

MC68020, MC68030, and MC68040 only

(bd,An,Xn)* 110 reg. number:An (bd,PC,Xn)* 111 011

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) 111 011

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) 111 011

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-21

MOVE MOVE
USP Move User Stack Pointer USP

(M68000 Family)

Operation: If Supervisor State
Then USP → An or An → USP

Else TRAP

Assembler MOVE USP,An
Syntax: MOVE An,USP

Attributes: Size = (Long)

Description: Moves the contents of the user stack pointer to or from the specified address
register.

Condition Codes:

Not affected.

Instruction Format:

Instruction Fields:

dr field—Specifies the direction of transfer.
0—Transfer the address register to the user stack pointer.
1—Transfer the user stack pointer to the address register.

Register field—Specifies the address register for the operation.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 0 dr REGISTER

Supervisor (Privileged) Instructions

6-22 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOVEC Move Control Register MOVEC
(MC68010, MC68020, MC68030, MC68040, CPU32)

Operation: If Supervisor State
Then Rc → Rn or Rn → Rc

Else TRAP

Assembler MOVEC Rc,Rn
Syntax: MOVEC Rn,Rc

Attributes: Size = (Long)

Description: Moves the contents of the specified control register (Rc) to the specified
general register (Rn) or copies the contents of the specified general register to the
specified control register. This is always a 32-bit transfer, even though the control
register may be implemented with fewer bits. Unimplemented bits are read as zeros.

Condition Codes:

Not affected.

Instruction Format:

Instruction Fields:

dr field—Specifies the direction of the transfer.
0—Control register to general register.
1—General register to control register.

A/D field—Specifies the type of general register.
0—Data Register
1—Address Rregister

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 dr

A/D REGISTER CONTROL REGISTER

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-23

MOVEC Move Control Register MOVEC
(MC68010, MC68020, MC68030, MC68040, CPU32)

Register field—Specifies the register number.

Control Register field—Specifies the control register.

NOTES:
1. Any other code causes an illegal instruction exception
2. For the MC68020 and MC68030 only.

Hex1 Control Register

MC68010/MC68020/MC68030/MC68040/CPU32

000 Source Function Code (SFC)

001 Destination Function Code (DFC)

800 User Stack Pointer (USP)

801 Vector Base Register (VBR)

MC68020/MC68030/MC68040

002 Cache Control Register (CACR)

802 Cache Address Register (CAAR)2

803 Master Stack Pointer (MSP)

804 Interrupt Stack Pointer (ISP)

MC68040/MC68LC040

003 MMU Translation Control Register (TC)

004 Instruction Transparent Translation Register 0 (ITT0)

005 Instruction Transparent Translation Register 1 (ITT1)

006 Data Transparent Translation Register 0 (DTT0)

007 Data Transparent Translation Register 1 (DTT1)

805 MMU Status Register (MMUSR)

806 User Root Pointer (URP)

807 Supervisor Root Pointer (SRP)

MC68EC040 only

004 Instruction Access Control Register 0 (IACR0)

005 Instruction Access Control Register 1 (IACR1)

006 Data Access Control Register 0 (DACR1)

007 Data Access Control Register 1 (DACR1)

Supervisor (Privileged) Instructions

6-24 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOVES Move Address Space MOVES
(MC68010, MC68020, MC68030, MC68040, CPU32)

Operation: If Supervisor State
Then Rn → Destination [DFC] or Source [SFC] → Rn

Else TRAP

Assembler MOVES Rn, < ea >
Syntax: MOVES < ea > ,Rn

Attributes: Size = (Byte, Word, Long)

Description: This instruction moves the byte, word, or long operand from the specified
general register to a location within the address space specified by the destination
function code (DFC) register, or it moves the byte, word, or long operand from a
location within the address space specified by the source function code (SFC) register
to the specified general register. If the destination is a data register, the source operand
replaces the corresponding low-order bits of that data register, depending on the size
of the operation. If the destination is an address register, the source operand is sign-
extended to 32 bits and then loaded into that address register.

Condition Codes:

Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

A/D REGISTER dr 0 0 0 0 0 0 0 0 0 0 0

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-25

MOVES Move Address Space MOVES
(MC68010, MC68020, MC68030, MC68040, CPU32)

Instruction Fields:

Size field—Specifies the size of the operation.
00—Byte Operation
01—Word Operation
10—Long Operation

Effective Address field—Specifies the source or destination location within the alternate
address space. Only memory alterable addressing modes can be used as listed in
the following tables:

*Available for the CPU32.

A/D field—Specifies the type of general register.
0—Data Register
1—Address Register

Register field—Specifies the register number.

dr field—Specifies the direction of the transfer.
0—From < ea > to general register.
1—From general register to < ea > .

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + 011 reg. number:An

—(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

MC68020, MC68030, and MC68040 only

(bd,An,Xn)* 110 reg. number:An (bd,PC,Xn)* — —

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) — —

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) — —

Supervisor (Privileged) Instructions

6-26 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOVES Move Address Space MOVES
(MC68010, MC68020, MC68030, MC68040, CPU32)

NOTE

The value stored is undefined for either of the two following
examples with the same address register as both source and
destination.

MOVES.x An,(An) +
MOVES.x An,D(An)

The current implementations of the MC68010, MC68020,
MC68030, and MC68040 store the incremented or decremented
value of An. Check the following code sequence to determine
what value is stored for each case.

MOVEA.L #$1000,A0
MOVES.L A0,(A0) +
MOVES.L A0,D(A0)

Because the MC68040 implements a merged instruction and
data space, the MC68040’s integer unit into data references
(SFC/DFC = 5 or 1) translates MOVES accesses to the
OinstructionO address spaces (SFC/DFC = 6 or 2). The data
memory unit handles these translated accesses as normal data
accesses. If the access fails due to an ATC fault or a physical
bus error, the resulting access error stack frame contains the
converted function code in the TM field for the faulted access. To
maintain cache coherency, MOVES accesses to write the
OinstructionO address space must be preceded by invalidation
of the instruction cache line containing the referenced location.

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-27

ORI ORI
to SR Inclusive-OR Immediate to the Status Register to SR

(M68000 Family)

Operation: If Supervisor State
Then Source V SR → SR

Else TRAP

Assembler
Syntax: ORI # < data > ,SR

Attributes: Size = (Word)

Description: Performs an inclusive-OR operation of the immediate operand and the status
register’s contents and stores the result in the status register. All implemented bits of
the status register are affected.

Condition Codes:

X—Set if bit 4 of immediate operand is one; unchanged otherwise.

N—Set if bit 3 of immediate operand is one; unchanged otherwise.

Z—Set if bit 2 of immediate operand is one; unchanged otherwise.

V—Set if bit 1 of immediate operand is one; unchanged otherwise.

C—Set if bit 0 of immediate operand is one; unchanged otherwise.

Instruction Format:

X N Z V C
∗ ∗ ∗ ∗ ∗

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0

16—BIT WORD DATA

Supervisor (Privileged) Instructions

6-28 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PBcc Branch on PMMU Condition PBcc
(MC68851)

Operation: If Supervisor State
Then If cc True

Then (PC) + dn → PC
Else TRAP

Assembler
Syntax: PBcc. < size > < label >

Attributes: Size = (Word, Long)

Description: If the specified paged memory management unit condition is met, execution
continues at location (PC) + displacement. The displacement is a twos complement
integer that counts the relative distance in bytes. The value in the program counter is
the address of the displacement word(s). The displacement may be either 16 or 32 bits.

The condition specifier cc indicates the following conditions:

PMMU Status Register: Not affected.

Instruction Format:

Specifier Description Condition Field Specifier Description Condition Field

BS B set 000000 BC B clear 000001

LS L set 000010 LC L clear 000011

SS S set 000100 SC S clear 000101

AS A set 000110 AC A clear 000111

WS W set 001000 WC W clear 001001

IS I set 001010 IC I clear 001011

GS G set 001100 GC G clear 001101

CS C set 001110 CC C clear 001111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 1 SIZE MC68851 CONDITION

16-BIT DISPLACEMENT OR MOST SIGNIFICANT WORD OF 32-BITDISPLACEMENT

LEAST SIGNIFICANT WORD OF 32-BIT DISPLACEMENT (IF NEEDED)

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-29

PBcc Branch on PMMU Condition PBcc
(MC68851)

Instruction Fields:

Size field—Specifies the size of the displacement.
0—Displacement is 16 bits.
1—Displacement is 32 bits.

MC68851 Condition field—Specifies the coprocessor condition to be tested. This field
is passed to the MC68851, which provides directives to the main processor for
processing this instruction.

Word Displacement field—The shortest displacement form for MC68851 branches is
16 bits.

Long-Word Displacement field—Allows a displacement larger than 16 bits.

Supervisor (Privileged) Instructions

6-30 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PDBcc Test, Decrement, and Branch PDBcc
(MC68851)

Operation: If Supervisor State
Then If cc False

Then (DnD1 → Dn; If Dn < > D1 then (PC) + d 3 PC)
Else No Operation

Else TRAP

Assembler
Syntax: PDBcc Dn, < label >

Attributes: Size = (Word)

Description: This instruction is a looping primitive of three parameters: an MC68851
condition, a counter (an MC68020 data register), and a 16-bit displacement. The
instruction first tests the condition to determine if the termination condition for the loop
has been met. If so, the main processor executes the next instruction in the instruction
stream. If the termination condition is not true, the low-order 16 bits of the counter
register are decremented by one. If the result is not D1, execution continues at the
location specified by the current value of the program counter plus the sign-extended
16-bit displacement. The value of the program counter used in the branch address
calculation is the address of the PDBcc instruction plus two.

The condition specifier cc indicates the following conditions:

Specifier Description Condition Field Specifier Description Condition Field

BS B set 000000 BC B clear 000001

LS L set 000010 LC L clear 000011

SS S set 000100 SC S clear 000101

AS A set 000110 AC A clear 000111

WS W set 001000 WC W clear 001001

IS I set 001010 IC I clear 001011

GS G set 001100 GC G clear 001101

CS C set 001110 CC C clear 001111

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-31

PDBcc Test, Decrement, and Branch PDBcc
(MC68851)

PMMU Status Register:Not affected.

Instruction Format:

Instruction Fields:

Register field—Specifies the data register in the main processor to be used as the
counter.

MC68851 Condition field—Specifies the MC68851 condition to be tested. This field is
passed to the MC68851, which provides directives to the main processor for
processing this instruction.

Displacement field—Specifies the distance of the branch in bytes.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 1 0 0 1 COUNT REGISTER

0 0 0 0 0 0 0 0 0 0 MC68851 CONDITION

16-BIT DISPLACEMENT

Supervisor (Privileged) Instructions

6-32 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PFLUSH Flush Entry in the ATC PFLUSH
(MC68030 only)

Operation: If Supervisor State
Then Invalidate ATC Entries for Destination Addresses

Else TRAP

Assembler PFLUSHA
Syntax: PFLUSH FC,MASK

PFLUSH FC,MASK, < ea >

Attributes: Unsized

Description: PFLUSH invalidates address translation cache entries. The instruction has
three forms. The PFLUSHA instruction invalidates all entries. When the instruction
specifies a function code and mask, the instruction invalidates all entries for a selected
function code(s). When the instruction also specifies an < ea > , the instruction
invalidates the page descriptor for that effective address entry in each selected function
code.

The mask operand contains three bits that correspond to the three function code bits.
Each bit in the mask that is set to one indicates that the corresponding bit of the FC
operand applies to the operation. Each bit in the mask that is zero indicates a bit of FC
and of the ignored function code. For example, a mask operand of 100 causes the
instruction to consider only the most significant bit of the FC operand. If the FC operand
is 001, function codes 000, 001, 010, and 011 are selected.

The FC operand is specified in one of the following ways:

1. Immediate—Three bits in the command word.

2. Data Register—The three least significant bits of the data register specified in
the instruction.

3. Source Function Code (SFC) Register

4. Destination Function Code (DFC) Register

Condition Codes:

Not affected.

MMU Status Register:

Not affected.

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-33

PFLUSH Flush Entry in the ATC PFLUSH
(MC68030 only)

Instruction Format:

Instruction Fields:

Effective Address field—Specifies a control alterable address. The address translation
cache entry for this address is invalidated. Valid addressing modes are in the
following table:

NOTE

The address field must provide the memory management unit
with the effective address to be flushed from the address
translation cache, not the effective address describing where the
PFLUSH operand is located. For example, to flush the address
translation cache entry corresponding to a logical address that
is temporarily stored on top of the system stack, the instruction
PFLUSH [(SP)] must be used since PFLUSH (SP) would
invalidate the address translation cache entry mapping the
system stack (i.e., the effective address passed to the memory
management unit is the effective address of the system stack,
not the effective address formed by the operand located on the
top of the stack).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 0 1 MODE 0 0 MASK FC

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + — —

—(An) — —

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) — —

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) — —

Supervisor (Privileged) Instructions

6-34 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PFLUSH Flush Entry in the ATC PFLUSH
(MC68030 only)

Mode field—Specifies the type of flush operation.
001—Flush all entries.
100—Flush by function code only.
110—Flush by function code and effective address.

Mask field—Mask for selecting function codes. Ones in the mask correspond to
applicable bits; zeros are bits to be ignored. When mode is 001, mask must be
000.

FC field—Function code of entries to be flushed. If the mode field is 001, FC field must
be 00000; otherwise:

10XXX — Function code is specified as bits XXX.
01DDD — Function code is specified as bits 2–0 of data register DDD.
00000 — Function code is specified as SFC register.
00001 — Function code is specified as DFC register.

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-35

PFLUSH Flush ATC Entries PFLUSH
(MC68040, MC68LC040)

Operation: If Supervisor State
Then Invalidate Instruction and Data ATC Entries for Destination
Address

Else TRAP

Assembler PFLUSH (An)
Syntax: PFLUSHN (An)
Syntax: PFLUSHA
Syntax: PFLUSHAN

Attributes: Unsized

Description: Invalidates address translation cache entries in both the instruction and data
address translation caches. The instruction has two forms. The PFLUSHA instruction
invalidates all entries. The PFLUSH (An) instruction invalidates the entry in each
address translation cache which matches the logical address in An and the specified
function code.

The function code for PFLUSH is specified in the destination function code register.
Destination function code values of 1 or 2 will result in flushing of user address trans-
lation cache entries in both address translation caches; whereas, values of 5 or 6 will
result in flushing of supervisor address translation cache entries. PFLUSH is undefined
for destination function code values of 0, 3, 4, and 7 and may cause flushing of an
unexpected entry.

The PFLUSHN and PFLUSHAN instructions have a global option specified and invali-
date only nonglobal entries. For example, if only page descriptors for operating system
code have the global bit set, these two PFLUSH variants can be used to flush only user
address translation cache entries during task swaps.

Condition Codes:

Not affected.

Supervisor (Privileged) Instructions

6-36 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PFLUSH Flush ATC Entries PFLUSH
(MC68040, MC68LC040)

Instruction Format:

Postincrement Source and Destination

Instruction Fields:

Opmode field—Specifies the flush operation.

Register field—Specifies the address register containing the effective address to be
flushed when flushing a page entry.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 0 0 OPMODE REGISTER

Opcode Operation Assembler Syntax

00 Flush page entry if not global PFLUSHN (An)

01 Flush page entry PFLUSH (An)

10 Flush all except global entries PFLUSHAN

11 Flush all entries PFLUSHA

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-37

PFLUSH Flush ATC Entries PFLUSH
(MC68EC040)

Operation: If Supervisor State
Then No Operation

Else TRAP

Assembler PFLUSH (An)
Syntax: PFLUSHN (An)

Attributes: Unsized

Description: This instruction should not be executed when using an MC68EC040. The
PFLUSH encoding suspends operation of the MC68EC040 for an indefinite period of
time and subsequently continues with no adverse effects.

Condition Codes:

Not affected.

Instruction Format:

Postincrement Source and Destination

Instruction Fields:

Opmode field—Specifies the flush operation.

Register field—Specifies the address register containing the effective address to be
flushed when flushing a page entry.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 0 0 OPMODE REGISTER

Opcode Operation Assembler Syntax

00 Flush page entry if not global PFLUSHN (An)

01 Flush page entry PFLUSH (An)

10 Flush all except global entries PFLUSHAN

11 Flush all entries PFLUSHA

Supervisor (Privileged) Instructions

6-38 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PFLUSH PFLUSH
PFLUSHA PFLUSHA
PFLUSHS Invalidate Entries in the ATC PFLUSHS

(MC68851)

Operation: If Supervisor State
Then Address Translation Cache Entries For Destination Address
Are Invalidated

Else TRAP

Assembler PFLUSHA
Syntax: PFLUSH FC,MASK

PFLUSHS FC,MASK
PFLUSH FC,MASK, < ea >
PFLUSHS FC,MASK, < ea >

Attributes: Unsigned

Description: PFLUSHA invalidates all entries in the address translation cache.

PFLUSH invalidates a set of address translation cache entries whose function code
bits satisfy the relation: (address translation cache function code bits and mask) = (FC
and MASK) for all entries whose task alias matches the task alias currently active when
the instruction is executed. With an additional effective address argument, PFLUSH
invalidates a set of address translation cache entries whose function code satisfies the
relation above and whose effective address field matches the corresponding bits of the
evaluated effective address argument. In both of these cases, address translation
cache entries whose SG bit is set will not be invalidated unless the PFLUSHS is spec-
ified.

The function code for this operation may be specified as follows:

1. Immediate—The function code is four bits in the command word.

2. Data Register—The function code is in the lower four bits of the MC68020 data
register specified in the instruction.

3. Source Function Code (SFC) Register—The function code is in the CPU SFC
register. Since the SFC of the MC68020 has only three implemented bits, only
function codes $0D$7 can be specified in this manner.

4. Destination Function Code (DFC) Register—The function code is in the CPU
DFC register. Since the DFC of the MC68020 has only three implemented bits,
only function codes $0D$7 can be specified in this manner.

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-39

PFLUSH PFLUSH
PFLUSHA PFLUSHA
PFLUSHS Invalidate Entries in the ATC PFLUSHS

(MC68851)

PMMU Status Register: Not affected.

Instruction Format:

Instruction Fields:

Effective Address field—Specifies an address whose page descriptor is to be flushed
from (invalidated) the address translation cache. Only control alterable addressing
modes can be used as listed in the following table:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 0 1 MODE 0 MASK FC

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + — —

—(An) — —

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) — —

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) — —

Supervisor (Privileged) Instructions

6-40 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PFLUSH PFLUSH
PFLUSHA PFLUSHA
PFLUSHS Invalidate Entries in the ATC PFLUSHS

(MC68851)

NOTE

The effective address field must provide the MC68851 with the
effective address of the entry to be flushed from the address
translation cache, not the effective address describing where the
PFLUSH operand is located. For example, in order to flush the
address translation cache entry corresponding to a logical
address that is temporarily stored on the top of the system stack,
the instruction PFLUSH [(SP)] must be used since PFLUSH
(SP) would invalidate the address translation cache entry
mapping the system stack (i.e., the effective address passed to
the MC68851 is the effective address of the system stack, not
the effective address formed by the operand located on the top
of the stack).

Mode field—Specifies how the address translation cache is to be flushed.
001—Flush all entries.
100—Flush by function code only.
101—Flush by function code including shared entries.
110—Flush by function code and effective address.
111—Flush by function code and effective address including shared entries.

Mask field—Indicates which bits are significant in the function code compare. A zero
indicates that the bit position is not significant; a one indicates that the bit position
is significant. If mode = 001 (flush all entries), mask must be 0000.

FC field—Function code of address to be flushed. If the mode field is 001 (flush all
entries), function code must be 00000; otherwise:
1DDDD — Function code is specified as four bits DDDD.
01RRR — Function code is contained in CPU data register RRR.
00000 — Function code is contained in CPU SFC register.
00001 — Function code is contained in CPU DFC register.

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-41

PFLUSHR Invalidate ATC and RPT Entries PFLUSHR
(MC68851)

Operation: If Supervisor State
Then RPT Entry (If Any) Matching Root Pointer Specified by < ea >
Corresponding Address Translation Cache Entries Are Invalidated

Else TRAP

Assembler
Syntax: PFLUSHR < ea >

Attributes: Unsized

Description: The quad word pointed to by < ea > is regarded as a previously used value of
the CPU root pointer register. The root pointer table entry matching this CPU root
pointer register (if any) is flushed, and all address translation cache entries loaded with
this value of CPU root pointer register (except for those that are globally shared) are
invalidated. If no entry in the root pointer table matches the operand of this instruction,
no action is taken.

If the supervisor root pointer is not in use, the operating system should not issue the
PFLUSHR command to destroy a task identified by the current CPU root pointer reg-
ister. It should wait until the CPU root pointer register has been loaded with the root
pointer identifying the next task until using the PFLUSHR instruction. At any time, exe-
cution of the PFLUSHR instruction for the current CPU root pointer register causes the
current task alias to be corrupted.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Supervisor (Privileged) Instructions

6-42 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PFLUSHR Invalidate ATC and RPT Entries PFLUSHR
(MC68851)

Instruction Field:

Effective Address field—Specifies the address of a previous value of the CPU root
pointer register register. Only memory addressing modes can be used as listed in
the following table:

NOTE

The effective address usage of this instruction is different than
that of other PFLUSH variants.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

—(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) 111 011

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) 111 011

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-43

PLOAD Load an Entry into the ATC PLOAD
(MC68030 only, MC68851)

Operation: If Supervisor State
Then Search Translation Table and Make Address Translation
Cache Entry for Effective Address

Else TRAP

Assembler PLOADR FC, < ea >
Syntax: PLOADW FC, < ea >

Attributes: Unsized

Description: For the MC68851, PLOAD searches the translation table for a translation of
the specified effective address. If one is found, it is flushed from the address translation
cache, and an entry is made as if a bus master had run a bus cycle. Used and modified
bits in the table are updated as part of the table search. The MC68851 ignores the
logical bus arbitration signals during the flush and load phases at the end of this
instruction. This prevents the possibility of an entry temporarily disappearing from the
address translation cache and causing a false table search.

This instruction will cause a paged memory management unit illegal operation excep-
tion (vector $39) if the E-bit of the translation control register is clear.

The function code for this operation may be specified to be:

1. Immediate—The function code is specified as four bits in the command word.

2. Data Register—The function code is contained in the lower four bits in the
MC68020 data register specified in the instruction.

3. Source Function Code (SFC) Register—The function code is in the CPU SFC
register. Since the SFC of the MC68020 has only three implemented bits, only
function codes $0D$7 can be specified in this manner.

4. Destination Function Code (DFC) Register—The function code is in the CPU
DFC register. Since the DFC of the MC68020 has only three implemented bits,
only function codes $0D$7 can be specified in this manner.

Supervisor (Privileged) Instructions

6-44 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PLOAD Load an Entry into the ATC PLOAD
(MC68030 only, MC68851)

For the MC68030, PLOAD searches the address translation cache for the specified
effective address. It also searches the translation table for the descriptor corresponding
to the specified effective address. It creates a new entry as if the MC68030 had
attempted to access that address. Sets the used and modified bits appropriately as part
of the search. The instruction executes despite the value of the E-bit in the translation
control register or the state of the MMUDIS signal.

The < function code > operand is specified in one of the following ways:

1. Immediate—Three bits in the command word.

2. Data Register—The three least significant bits of the data register specified in
the instruction.

3. Source Function Code (SFC) Register

4. Destination Function Code (DFC) Register

The effective address field specifies the logical address whose translation is to be
loaded.

PLOADR causes U bits in the translation tables to be updated as if a read access had
occurred. PLOADW causes U and M bits in the translation tables to be updated as if a
write access had occurred.

PMMU Status Register: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 0 1 0 0 0 R/ W 0 0 0 0 FC

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-45

PLOAD Load an Entry into the ATC PLOAD
(MC68030 only, MC68851)

Instruction Fields:

Effective Address field—Specifies the logical address whose translation is to be loaded
into the address translation cache. Only control alterable addressing modes are
allowed as listed in the following table:

NOTE

The effective address field must provide the MC68851 with the
effective address of the entry to be loaded into the address
translation cache, not the effective address describing where the
PLOAD operand is located. For example, to load an address
translation cache entry to map a logical address that is
temporarily stored on the system stack, the instruction PLOAD
[(SP)] must be used since PLOAD (SP) would load an address
translation cache entry mapping the system stack (i.e., the
effective address passed to the MC68851 is the effective
address of the system stack, not the effective address formed by
the operand located on the top of the stack).

R/W field—Specifies whether the tables should be updated for a read or a write.
1—Read
0—Write

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + — —

—(An) — —

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) — —

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) — —

Supervisor (Privileged) Instructions

6-46 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PLOAD Load an Entry into the ATC PLOAD
(MC68030 only, MC68851)

FC field (MC68851)—Function code of address to load.
1DDDD — Function code is specified as four bits DDDD.
01RRR — Function code is contained in CPU data register RRR.
00000 — Function code is contained in CPU SFC register.
00001 — Function code is contained in CPU DFC register.

FC field (MC68030)—Function code of address corresponding to entry to be loaded.
10XXX — Function code is specified as bits XXX.
01DDD — Function code is specified as bits 2–0 of data register DDD.
00000 — Function code is specified as SFC register.
00001 — Function code is specified as DFC register.

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-47

PMOVE Move to/from MMU Registers PMOVE
(MC68030 only)

Operation: If Supervisor State
Then (Source) → MRn or MRn → (Destination)

Assembler PMOVE MRn, < ea >
Syntax: PMOVE < ea > ,MRn

PMOVEFD < ea > ,MRn

Attributes: Size = (Word, Long, Quad)

Description: Moves the contents of the source effective address to the specified memory
management unit register or moves the contents of the memory management unit
register to the destination effective address.

The instruction is a quad-word (8 byte) operation for the CPU root pointer and the
supervisor root pointer. It is a long-word operation for the translation control register
and the transparent translation registers (TT0 and TT1). It is a word operation for the
MMU status register.

The PMOVEFD form of this instruction sets the FD-bit to disable flushing the address
translation cache when a new value loads into the supervisor root pointer, CPU root
pointer, TT0, TT1 or translation control register (but not the MMU status register).

Writing to the following registers has the indicated side effects:

CPU Root Pointer—When the FD-bit is zero, it flushes the address translation cache.
If the operand value is invalid for a root pointer descriptor, the instruction takes an
memory management unit configuration error exception after moving the operand to
the CPU root pointer.

Supervisor Root Pointer—When the FD-bit is zero, it flushes the address translation
cache. If the operand value is invalid as a root pointer descriptor, the instruction takes
an memory management unit configuration error exception after moving the operand
to the supervisor root pointer.

Translation Control Register—When the FD-bit is zero, it flushes the address transla-
tion cache. If the E-bit = 1, consistency checks are performed on the PS and TIx fields.
If the checks fail, the instruction takes an memory management unit configuration
exception after moving the operand to the translation control register. If the checks
pass, the translation control register is loaded with the operand and the E-bit is cleared.

TT0, TT1—When the FD-bit is zero, it flushes the address translation cache. It enables
or disables the transparent translation register according to the E-bit written. If the E-
bit = 1, the transparent translation register is enabled. If the E- bit = 0, the register is
disabled.

Supervisor (Privileged) Instructions

6-48 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PMOVE Move to/from MMU Registers PMOVE
(MC68030 only)

Condition Codes:

Not affected.

MMU Status Register:

Not affected (unless the MMU status register is specified as the destination operand).

Instruction Format:

SRP, CRP, and TC Registers

Instruction Fields:

Effective Address field—Specifies the memory location for the transfer. Only control
alterable addressing modes can be used as in the following table:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 1 0 P-REGISTER R/ W FD 0 0 0 0 0 0 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + — —

—(An) — —

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) — —

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) — —

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-49

PMOVE Move to/from MMU Registers PMOVE
(MC68030 only)

P-Register field—Specifies the memory management unit register.
000—Translation Control Register
010—Supervisor Root Pointer
011—CPU Root Pointer

R/W field—Specifies the direction of transfer.
0—Memory to memeory management unit register.
1—Memeory management unit register to memory.

FD field—Disables flushing of the address translation cache on writes to memeory
management unit registers.

0—Address translation cache is flushed.
1—Address translation cache is not flushed.

Instruction Format:

MMU Status Register

Instruction Fields:

Effective Address field—Specifies the memory location for the transfer. Control
alterable addressing modes shown for supervisor root pointer register apply.

R/W field—Specifies the direction of transfer.
0—Memory to MMU status register.
1—MMU status register to memory.

NOTE

The syntax of assemblers for the MC68851 use the symbol
PMMU status register for the MMU status register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 1 1 0 0 0 R/ W 0 0 0 0 0 0 0 0 0

Supervisor (Privileged) Instructions

6-50 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PMOVE Move to/from MMU Registers PMOVE
(MC68030 only)

Instruction Format:

TT Registers

Instruction Fields:

Effective Address field—Specifies the memory location for the transfer. Control
alterable addressing modes shown for supervisor root pointer register apply.

P-Register field—Specifies the transparent translation register.
010—Transparent Translation Register 0
011—Transparent Translation Register 1

R/W field—Specifies the direction of transfer.
0—Memory to MMU status register.
1—MMU status register to memory.

FD field—Disables flushing of the address translation cache.
0—Address translation cache is flushed.
1—Address translation cache does not flush.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 P-REGISTER R/ W FD 0 0 0 0 0 0 0 0

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-51

PMOVE Move to/from MMU Registers PMOVE
(MC68EC030)

Operation: If Supervisor State
Then (Source) → MRn or MRn → (Destination)

Assembler PMOVE MRn, < ea >
Syntax: PMOVE < ea > ,MRn

Attributes: Size = (Word, Long, Quad)

Description: Moves the contents of the source effective address to an access control
register or moves the contents of an access control register to the destination effective
address.

The instruction is a long-word operation for the access control registers (AC0 and
AC1). It is a word operation for the access control unit status register (ACUSR).

Writing to the ACx registers enables or disables the access control register according
to the E-bit written. If the E-bit = 1, the access control register is enabled. If the E-bit =
0, the register is disabled

Condition Codes:

Not affected.

ACUSR:

Not affected unless the ACUSR is specified as the destination operand.

Instruction Format:

ACUSR

Instruction Fields:

Effective Address field—Specifies the memory location for the transfer.

R/W field—Specifies the direction of transfer.
0—Memory to ACUSR
1—ACUSR to memory

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 1 1 0 0 0 R/W 0 0 0 0 0 0 0 0 0

Supervisor (Privileged) Instructions

6-52 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PMOVE Move to/from MMU Registers PMOVE
(MC68EC030)

NOTE

Assembler syntax for the MC68851 uses the symbol PMMU
status register for the ACUSR; and for the MC68030, the
symbols TT0 and TT1 for AC0 and AC1.

Instruction Format:

ACx Registers

Instruction Fields:

Effective Address field—Specifies the memory location for the transfer.

P-Register field—Specifies the ACx register.
001—Access Control Register 0
011—Access Control Register 1

R/W field—Specifies the direction of transfer.
0—Memory to ACUSR
1—ACUSR to memory

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 P-REGISTER R/W 0 0 0 0 0 0 0 0 0

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-53

PMOVE Move PMMU Register PMOVE
(MC68851)

Operation: If Supervisor State
Then MC68851 Register →Destination
Or Source → MC68851 Register

Else TRAP

Assembler PMOVE < PMMU Register > , < ea >
Syntax: PMOVE < ea > , < PMMU Register >

Attributes: Size = (Byte, Word, Long, Double Long)

Description: The contents of the MC68851 register copies to the address specified by < ea
> , or the data at < ea > copies into the MC68851 register.

The instruction is a quad-word operation for CPU root pointer, supervisor root pointer,
and DMA root pointer registers. It is a long-word operation for the translation control
register and a word operation for the breakpoint acknowledge control, breakpoint
acknowledge data, access control, PMMU status, and PMMU cache status registers.
PMOVE is a byte operation for the current access level, valid access level, and stack
change control registers.

The following side effects occur when data is read into certain registers:

CPU Root Pointer—Causes the internal root pointer table to be searched for the
new value. If there is no matching value, an entry in the root pointer table is selected
for replacement, and all address translation cache entries associated with the
replaced entry are invalidated.

Supervisor Root Pointer—Causes all entries in the address translation cache that
were formed with the supervisor root pointer (even globally shared entries) to be
invalidated.

DMA Root Pointer—Causes all entries in the address translation cache that were
formed with the DMA root pointer (even globally shared entries) to be invalidated.

Translation Control Register—If data written to the translation control register
attempts to set the E-bit and the E-bit is currently clear, a consistency check is per-
formed on the IS, TIA, TIB, TIC, TID, and PS fields.

Supervisor (Privileged) Instructions

6-54 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PMOVE Move PMMU Register PMOVE
(MC68851)

PMMU Status Register: Not affected unless the PMMU status register is written to by the
instruction.

Instruction Format 1:

PMOVE to/from TC, CRP, DRP, SRP, CAL, VAL, SCC, AC

Instruction Fields:

Effective Address field—for memory-to-register transfers, any addressing mode is
allowed as listed in the following table:

*PMOVE to CRP, SRP, and DMA root pointer not allowed with these modes

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 1 0 P-REGISTER R/ W 0 0 0 0 0 0 0 0 0

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An # < data > 111 100

(An) + 011 reg. number:An

—(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) 111 011

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) 111 011

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-55

PMOVE Move PMMU Register PMOVE
(MC68851)

For register-to-memory transfers, only alterable addressing modes can be used as
listed in the following table:

*PMOVE to CRP, SRP, and DMA root pointer not allowed with these modes

Register field—Specifies the MC68851 register.
000—Translation Control Register
001—DMA Root Pointer
010—Supervisor Root Pointer
011—CPU Root Pointer
100—Current Access Level
101—Valid Access Level
110—Stack Change Control Register
111—Access Control Register

R/W field—Specifies the direction of transfer.
0—Transfer < ea > to MC68851 register.
1—Transfer MC68851 register to < ea > .

Instruction Format 2:

PMOVE to/from BADx, BACx

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).W 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + 011 reg. number:An

—(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) — —

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) — —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 1 1 P-REGISTER R/ W 0 0 0 0 NUM 0 0

Supervisor (Privileged) Instructions

6-56 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PMOVE Move PMMU Register PMOVE
(MC68851)

Instruction Fields:

Effective Address field—Same as format 1.

P-Register field—Specifies the type of MC68851 register.
100—Breakpoint Acknowledge Data
101—Breakpoint Acknowledge Control

R/W field—Specifies the direction of transfer.
0—Transfer < ea > to MC68851 register
1—Transfer MC68851 register to < ea >

Num field—Specifies the number of the BACx or BADx register to be used.

Instruction Format 3:

PMOVE to/from PSR, from PCSR

Instruction Fields:

Effective Address field—Same as format 1.

P Register field—Specifies the MC68851 register.
000 — PMMU Status Register
001 — PMMU Cache Status Register

R/W field—Specifies direction of transfer.
0—Transfer < ea > to MC68851 register.
1—Transfer MC68851 register to < ea > (must be one to access PMMU cache

status register using this format).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 1 1 P-REGISTER R/ W 0 0 0 0 0 0 0 0 0

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-57

PRESTORE PMMU Restore Function PRESTORE
(MC68851)

Operation: If Supervisor State
Then MC68851 State Frame → Internal State, Programmer
Registers

Else TRAP

Assembler
Syntax: PRESTORE < ea >

Attributes: Unsized, Privileged

Description: The MC68851 aborts execution of any operation in progress. New
programmer registers and internal states are loaded from the state frame located at the
effective address. The first word at the specified address is the format word of the state
frame, specifying the size of the frame and the revision number of the MC68851 that
created it. The MC68020 writes the first word to the MC68851 restore coprocessor
interface register, initiating the restore operation. Then it reads the response
coprocessor interface register to verify that the MC68851 recognizes the format as
valid. The format is invalid if the MC68851 does not recognize the frame size or the
revision number does not match. If the format is invalid, the MC68020 takes a format
exception, and the MC68851 returns to the idle state with its user visible registers
unchanged. However, if the format is valid, then the appropriate state frame loads,
starting at the specified location and proceeding up through the higher addresses.

The PRESTORE instruction restores the nonuser visible state of the MC68851 as well
as the PMMU status register, CPU root pointer, supervisor root pointer, current access
level, valid access level, and stack change control registers of the user programming
model. In addition, if any breakpoints are enabled, all breakpoint acknowledge control
and breakpoint acknowledge data registers are restored. This instruction is the inverse
of the PSAVE instruction.

The current implementation of the MC68851 supports four state frame sizes:

NULL: This state frame is 4 bytes long, with a format word of $0. A PRESTORE with
this size state frame places the MC68851 in the idle state with no coproces-
sor or module operations in progress.

IDLE: This state frame is 36 ($24) bytes long. A PRESTORE with this size state
frame causes the MC68851 to place itself in an idle state with no coproces-
sor operations in progress and no breakpoints enabled. A module operation
may or may not be in progress. This state frame restores the minimal set of
MC68851 registers.

Supervisor (Privileged) Instructions

6-58 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PRESTORE PMMU Restore Function PRESTORE
(MC68851)

MID-COPROCESSOR: This state frame is 44 ($2C) bytes long. A PRESTORE with
this size frame restores the MC68851 to a state with a coprocessor operation
in progress and no breakpoints enabled.

BREAKPOINTS ENABLED: This state frame is 76 ($4C) bytes long. A PRESTORE
with this size state frame restores all breakpoint registers, along with other
states. A coprocessor operation may or may not be in progress.

PMMU Status Register: Set according to restored data.

Instruction Format:

Instruction Fields:

Effective Address field—Specifies the source location. Only control or post-increment
addressing modes can be used as listed in the following table:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 1 0 1
EFFECTIVE ADDRESS

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + 011 reg. number:An

—(An) — —

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) 111 011

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) 111 011

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-59

PSAVE PMMU Save Function PSAVE
(MC68851)

Operation: If Supervisor State
Then MC68851 Internal State, Programmer
Registers → State Frame

Else TRAP

Assembler
Syntax: PSAVE < ea >

Attributes: Unsized, Privileged

Description: The MC68851 suspends execution of any operation that it is performing and
saves its internal state and some programmer registers in a state frame located at the
effective address. The following registers are copied: PMMU status, control root
pointer, supervisor root pointer, current access level, valid access level, and stack
change control. If any breakpoint is enabled, all breakpoint acknowledge control and
breakpoint acknowledge data registers are copied. After the save operation, the
MC68851 is in an idle state waiting for another operation to be requested. Programmer
registers are not changed.

The state frame format saved by the MC68851 depends on its state at the time of the
PSAVE operation. In the current implementation, three state frames are possible:

IDLE: This state frame is 36 ($24) bytes long. A PSAVE of this size state frame indi-
cates that the MC68851 was in an idle state with no coprocessor operations
in progress and no breakpoints enabled. A module call operation may or may
not have been in progress when this state frame was saved.

MID-COPROCESSOR:This state frame is 44 ($2C) bytes long. A PSAVE of this size
frame indicates that the MC68851 was in a state with a coprocessor or mod-
ule call operation in progress and no breakpoints enabled.

BREAKPOINTS ENABLED:This state frame is 76 ($4C) bytes long. A PSAVE of this
size state frame indicates that one or more breakpoints were enabled. A
coprocessor or module call operation may or may not have been in progress.

PMMU Status Register: Not affected

Supervisor (Privileged) Instructions

6-60 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PSAVE PMMU Save Function PSAVE
(MC68851)

Instruction Format:

Instruction Fields:

Effective Address field—Specifies the destination location. Only control or
predecrement addressing modes can be used as listed in the following table:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 1 0 0
EFFECTIVE ADDRESS

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + — —

—(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) — —

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) — —

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-61

PScc Set on PMMU unit Condition PScc
(MC68851)

Operation: If Supervisor State
Then If cc True

Then 1s → Destination
Else 0s → Destination

Else TRAP

Assembler
Syntax: PScc < ea >

Attributes: Size = (Byte)

Description: The specified MC68851 condition code is tested. If the condition is true, the
byte specified by the effective address is set to TRUE (all ones); otherwise, that byte is
set to FALSE (all zeros).

The condition code specifier cc may specify the following conditions:

PMMU Status Register: Not affected

Specifier Description Condition Field Specifier Description Condition Field

BS B set 000000 BC B clear 000001

LS L set 000010 LC L clear 000011

SS S set 000100 SC S clear 000101

AS A set 000110 AC A clear 000111

WS W set 001000 WC W clear 001001

IS I set 001010 IC I clear 001011

GS G set 001100 GC G clear 001101

CS C set 001110 CC C clear 001111

Supervisor (Privileged) Instructions

6-62 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PScc Set on PMMU Condition PScc
(MC68851)

Instruction Format:

Instruction Fields:

Effective Address field—Specifies the destination location. Only data alterable
addressing modes can be used as listed in the following table:

MC68851 Condition field—Specifies the coprocessor condition to be tested. This field
is passed to the MC68851, which provides directives to the main processor for
processing this instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 1
EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 0 0 0 0 0 0 0 MC68851 CONDITION

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + 011 reg. number:An

—(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) — —

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) — —

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-63

PTEST Test a Logical Address PTEST
(MC68030 only)

Operation: If Supervisor State
Then Logical Address Status → MMUSR

Else TRAP

Assembler PTESTR FC, < ea > ,# < level >
Syntax: PTESTR FC, < ea > ,# < level > ,An

PTESTW FC, < ea > ,# < level >
PTESTW FC, < ea > ,# < level > ,An

Attributes: Unsized

Description: This instruction searches the address translation cache or the translation
tables to a specified level. Searching for the translation descriptor corresponding to the
< ea > field, it sets the bits of the MMU status register according to the status of the
descriptor. Optionally, PTEST stores the physical address of the last table entry
accessed during the search in the specified address register. The PTEST instruction
searches the address translation cache or the translation tables to obtain status
information, but alters neither the used or modified bits of the translation tables nor the
address translation cache. When the level operand is zero, only the transparent
translation of either read or write accesses causes the operations of the PTESTR and
PTESTW to return different results.

The < function code > operand is specified as one of the following:
1. Immediate—Three bits in the command word.

2. Data Register—The three least significant bits of the data register specified in
the instruction.

3. Source Function Code (SFC) Register

4. Destination Function Code (DFC) Register

The effective address is the address to test. The < level > operand specifies the level
of the search. Level 0 specifies searching the addrass translation cache only. Levels
1–7 specify searching the translation tables only. The search ends at the specified
level. A level 0 test does not return the same MMU status register values as a test at a
nonzero level number.

Execution of the instruction continues to the requested level or until detecting one of
the following conditions:

• Invalid Descriptor

• Limit Violation

• Bus Error Assertion (Physical Bus Error)

Supervisor (Privileged) Instructions

6-64 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PTEST Test a Logical Address PTEST
(MC68030 only)

The instruction accumulates status as it accesses successive table entries. When the
instruction specifies an address translation cache search with an address register
operand, the MC68030 takes an F-line unimplemented instruction exception.

If there is a parameter specification for a translation table search, the physical address
of the last descriptor successfully fetched loads into the address register. A success-
fully fetched descriptor occurs only if all portions of the descriptor can be read by the
MC68030 without abnormal termination of the bus cycle. If the root pointer’s DT field
indicates page descriptor, the returned address is $0. For a long descriptor, the
address of the first long word is returned. The size of the descriptor (short or long) is
not returned and must be determined from a knowledge of the translation table.

Condition Codes:

Not affected.

MMUSR:

B L S W I M T N

∗ ∗ ∗ 0 ∗ ∗ ∗ 0 0 0 0 0 0 ∗

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-65

PTEST Test a Logical Address PTEST
(MC68030 only)

The MMU status register contains the results of the search. The values in the fields of
the MMU status register for an address translation cache search are given in the fol-
lowing table:

MMUSR Bit PTEST, Level 0 PTEST, Levels 1–7

Bus Error (B) This bit is set if the bus error bit is set in the
ATC entry for the specified logical address.

This bit is set if a bus error is encountered
during the table search for the PTEST in-
struction.

Limit (L) This bit is cleared. This bit is set if an index exceeds a limit
during the table search.

Supervis or
Violatio n (S)

This bit is cleared. This bit is set if the S-bit of a long (S) format
table descriptor or long format page de-
scriptor encountered during the search is
set and if the FC2-bit of the function code
specified by the PTEST instruction is not
equal to one. The S-bit is undefined if the I-
bit is set.

Write
Protecte d (W)

The bit is set if the WP-bit of the ATC entry
is set. It is undefined if the I-bit is set.

This bit is set if a descriptor or page de-
scriptor is encountered with the WP-bit set
during the table search. The W-bit is unde-
fined if the I-bit is set.

Invalid (I) This bit indicates an invalid translation. The
I- bit is set if the translation for the specified
logical address is not resident in the ATC
or if the B-bit of the corresponding ATC en-
try is set.

This bit indicates an invalid translation. The
I-bit is set if the DT field of a table or a page
descriptor encountered during the search
is set to invalid or if either the B or L bits of
the MMUSR are set during the table
search.

Modified (M) This bit is set if the ATC entry correspond-
ing to the specified address has the modi-
fied bit set. It is undefined if the I-bit is set.

This bit is set if the page descriptor for the
specified address has the modified bit set.
It is undefined if I-bit is set.

Transparent (T) This bit is set if a match occurred in either
(or both) of the transparent translation reg-
isters (TT0 or TT1).

This bit is set to zero.

Number of
Levels (N)

This 3-bit field is set to zero. This 3-bit field contains the actual number
of tables accessed during the search.

Supervisor (Privileged) Instructions

6-66 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PTEST Test a Logical Address PTEST
(MC68030 only)

Instruction Format:

Instruction Fields:

Effective Address field—Specifies the logical address to be tested. Only control
alterable addressing modes can be used as listed in the following table:

Level field—Specifies the highest numbered level to be searched in the table. When
this field contains 0, the A field and the register field must also be 0. The
instruction takes an F-line exception when the level field is 0 and the A field is not
0.

R/W field—Specifies simulating a read or write bus cycle (no difference for MC68030
MMU).

0—Write
1—Read

A field—Specifies the address register option.
0—No address register.
1—Return the address of the last descriptor searched in the address register spec-

ified in the register field.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

1 0 0 LEVEL R/ W A REGISTER FC

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + — —

—(An) — —

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) — —

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) — —

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-67

PTEST Test a Logical Address PTEST
(MC68030 only)

Register field—Specifies an address register for the instruction. When the A field
contains 0, this field must contain 0.

FC field—Function code of address to be tested.
10XXX — Function code is specified as bits XXX.
01DDD — Function code is specified as bits 2–0 of data register DDD.
00000 — Function code is specified as source function code register.
00001 — Function code is specified as destination function code register.

Supervisor (Privileged) Instructions

6-68 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PTEST Test a Logical Address PTEST
(MC68EC030)

Operation: If Supervisor State
Then Logical Address Status → ACUSR

Else TRAP

Assembler PTESTR FC, < ea >
Syntax: PTESTW FC, < ea >

Attributes: Unsized

Description: This instruction searches the access control registers for the address
descriptor corresponding to the < ea > field and sets the bit of the access control unit
status register (ACUSR) according to the status of the descriptor.

The < function code > operand is specified in one of the following ways:

1. Immediate—Three bits in the command word.

2. Data Register—The three least significant bits of the data register specified in
the instruction.

3. Source Function Code (SFC) Register

4. Destination Function Code (DFC) Register

The effective address is the address to test.

Condition Codes:

Not affected.

ACUSR:

x = May be 0 or 1.

The AC-bit is set if a match occurs in either (or both) of the access control registers.

Instruction Format:

x x x 0 x x x 0 0 AC 0 0 0 x x x

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

1 0 0 0 0 0 R/ W 0 REGISTER FC

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-69

PTEST Test a Logical Address PTEST
(MC68EC030)

Instruction Fields:

Effective Address field—Specifies the logical address to be tested. Only control
alterable addressing modes can be used as listed in the following table:

R/W field—Specifies simulating a read or write bus cycle.
0—Write
1—Read

Register field—Specifies an address register for the instruction. When the A field
contains 0, this field must contain 0.

FC field—Function code of address to be tested.
10XXX — Function code is specified as bits XXX.
01DDD — Function code is specified as bits 2–0 of data register DDD.
00000 — Function code is specified as source function code register.
00001 — Function code is specified as destination function code register.

NOTE

Assembler syntax for the MC68030 is PTESTR FC, < ea > ,#0
and PTESTW FC, < ea > ,#0.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + — —

—(An) — —

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) — —

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) — —

Supervisor (Privileged) Instructions

6-70 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PTEST Test a Logical Address PTEST
(MC68040, MC68LC040)

Operation: If Supervisor State
Then Logical Address Status → MMUSR; Entry → ATC

Else TRAP

Assembler PTESTR (An)
Syntax: PTESTW (An)

Attributes: Unsized

Description: This instruction searches the translation tables for the page descriptor
corresponding to the test address in An and sets the bits of the MMU status register
according to the status of the descriptors. The upper address bits of the translated
physical address are also stored in the MMU status register. The PTESTR instruction
simulates a read access and sets the U-bit in each descriptor during table searches;
PTESTW simulates a write access and also sets the M-bit in the descriptors, the
address translation cache entry, and the MMU status register.

A matching entry in the address translation cache (data or instruction) specified by the
function code will be flushed by PTEST. Completion of PTEST results in the creation
of a new address translation cache entry. The specification of the function code for the
test address is in the destination function code (DFC) register. A PTEST instruction
with a DFC value of 0, 3, 4, or 7 is undefined and will return an unknown value in the
MMUSR.

Execution of the instruction continues until one of the following conditions occurs:

• Match with one of the two transparent translation registers.

• Transfer Error Assertion (physical transfer error)

• Invalid Descriptor

• Valid Page Descriptor

Condition Codes:

Not affected.

MMU Status Register:

PHYSICAL ADDRESS B G U1 U0 S CM M W T R

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-71

PTEST Test a Logical Address PTEST
(MC68040, MC68LC040)

The MMUSR contains the results of the search. The values in the fields of the MMUSR
for a search are:

Physical Address—This 20-bit field contains the upper bits of the translated physical
address. Merging these bits with the lower bits of the logical address forms the
actual physical address.

Bus Error (B)—Set if a transfer error is encountered during the table search for the
PTEST instruction. If this bit is set, all other bits are zero.

Globally Shared (G)—Set if the G-bit is set in the page descriptor.

User Page Attributes (U1, U0)—Set if corresponding bits in the page descriptor are set.

Supervisor Protection (S)—Set if the S-bit in the page descriptor is set. This bit does
not indicate that a violation has occurred.

Cache Mode (CM)—This 2-bit field is copied from the CM-bit in the page descriptor.

Modified (M)—Set if the M-bit is set in the page descriptor associated with the address.

Write Protect (W)—Set if the W-bit is set in any of the descriptors encountered during
the table search. Setting of this bit does not indicate that a violation occurred.

Transparent Translation Register Hit (T)—Set if the PTEST address matches an
instruction or data transparent translation register and the R-bit is set; all other bits
are zero.

Resident (R)—Set if the PTEST address matches a transparent translation register or
if the table search completes by obtaining a valid page descriptor.

Instruction Format:

Instruction Fields:

R/W field—Specifies simulating a read or write bus transfer.
0—Write
1—Read

Register field—Specifies the address register containing the effective address for the
instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 1 R/ W 0 1 REGISTER

Supervisor (Privileged) Instructions

6-72 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PTEST Test a Logical Address PTEST
(MC68EC040)

Operation: If Supervisor State
Then No Operation, Possibly Run Extraneous Bus Cycles

Else TRAP

Assembler PTESTR (An)
Syntax: PTESTW (An)

Attributes: Unsized

Description: This instruction must not be executed on an MC68EC040. This instruction
may cause extraneous bus cycles to occur and may result in unexpected exception
types.

Instruction Format:

Instruction Fields:

R/W field—Specifies simulating a read or write bus transfer.
0—Write
1—Read

Register field—Specifies the address register containing the effective address for the
instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 1 R/ W 0 1 REGISTER

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-73

PTEST Get Information About Logical Address PTEST
(MC68851)

Operation: If Supervisor State
Then Information About Logical Address → PSTATUS

Else TRAP

Assembler PTESTR FC, < ea > ,# < level > ,(An)
Syntax: PTESTW FC, < ea > ,# < level > ,(An)

Attributes: Unsized

Description: If the E-bit of the translation control register is set, information about the logical
address specified by FC and < ea > is placed in the PMMU status register. If the E-bit
of the translation control register is clear, this instruction will cause a paged memory
management unit illegal operation exception (vector $39).

The function code for this operation may be specified as follows:

1. Immediate—The function code is four bits in the command word.

2. Data Register—The function code is in the lower four bits in the MC68020 data
register specified in the instruction.

3. Source Function Code (SFC) Register—The function code is in the SFC register
in the CPU. Since the SFC of the MC68020 has only three implemented bits,
only function codes $0D$7 can be specified in this manner.

4. Destination Function Code (DFC) Register—The function code is in the DFC
register in the CPU. Since the DFC of the MC68020 has only three implemented
bits, only function codes $0D$7 can be specified in this manner.

The effective address field specifies the logical address to be tested.

The # < level > parameter specifies the depth to which the translation table is to be
searched. A value of zero specifies a search of the address translation cache only. Val-
ues 1–7 cause the address translation cache to be ignored and specify the maximum
number of descriptors to fetch.

NOTE

Finding an address translation cache entry with < level > set to
zero may result in a different value in the PMMU status register
than forcing a table search. Only the I, W, G, M, and C bits of the
PMMU status register are always the same in both cases.

Supervisor (Privileged) Instructions

6-74 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PTEST Get Information About Logical Address PTEST
(MC68851)

Either PTESTR or PTESTW must be specified. These two instructions differ in the set-
ting of the A-bit of the PMMU status register. For systems where access levels are not
in use, either PTESTR or PTESTW may be used. U and M bits in the translation table
are not modified by this instruction.

If there is a specified address register parameter, the physical address of the last suc-
cessfully fetched descriptor is loaded into the address register. A descriptor is success-
fully fetched if all portions of the descriptor can be read by the MC68851 without
abnormal termination of the bus cycle. If the DT field of the root pointer used indicates
page descriptor, the returned address is $0.

The PTEST instruction continues searching the translation tables until reaching the
requested level or until a condition occurs that makes further searching impossible (i.e.,
a DT field set to invalid, a limit violation, or a bus error from memory). The information
in the PMMU status register reflects the accumulated values.

PMMU Status Register:

Bus Error (B)—Set if a bus error was received during a descriptor fetch, or if < level >
= 0 and an entry was found in the address translation cache with its BERR bit set;
cleared otherwise.

Limit (L)—Set if the limit field of a long descriptor was exceeded; cleared otherwise.

Supervisor Violation (S)—Set if a long descriptor indicated supervisor-only access and
the < fc > parameter did not have bit 2 set; cleared otherwise.

Access Level Violation (A)—If PTESTR was specified, set if the RAL field of a long
descriptor would deny access. If PTESTW was specified, set if a WAL or RAL field
of a long descriptor would deny access; cleared otherwise.

Write Protection (W)—Set if the WP-bit of a descriptor was set or if a WAL field of a
long descriptor would deny access; cleared otherwise.

Invalid (I)—Set if a valid translation was not available; cleared otherwise.

Modified (M)—If the tested address is found in the address translation cache, set to the
value of the M-bit in the address translation cache. If the tested address is found
in the translation table, set if the M-bit of the page descriptor is set; cleared
otherwise.

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-75

PTEST Get Information About Logical Address PTEST
(MC68851)

Gate (G)—If the tested address is found in the address translation cache, set to the
value of the G-bit in the address translation cache. If the tested address is found in
the translation table, set if the G-bit of the page descriptor is set; cleared otherwise.

Globally Shared (C)—Set if the address is globally shared; cleared otherwise.

Level Number (N)—Set to the number of levels searched. A value of zero indicates an
early termination of the table search in the root pointer (DT = page descriptor) if
the level specification was not zero. If the level specification was zero, N is always
set to zero.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

1 0 0 LEVEL R/ W A-REGISTER FC

Supervisor (Privileged) Instructions

6-76 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PTEST Get Information About Logical Address PTEST
(MC68851)

Instruction Fields:

Effective Address field—Specifies the logical address about which information is
requested. Only control alterable addressing modes can be used as listed in the
following table:

NOTE

The effective address field must provide the MC68851 with the
effective address of the logical address to be tested, not the
effective address describing where the PTEST operand is
located. For example, to test a logical address that is temporarily
stored on the system stack, the instruction PTEST [(SP)] must
be used since PTEST (SP) would test the mapping of the system
stack (i.e., the effective address passed to the MC68851 is the
effective address of the system stack, not the effective address
formed by the operand located on the top of the stack).

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + — —

—(An) — —

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) — —

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) — —

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-77

PTEST Get Information About Logical Address PTEST
(MC68851)

Level field—Specifies the depth to which the translation table should be searched.

R/W field—Specifies whether the A-bit should be updated for a read or a write.
1—Read
0—Write

A-Register field—Specifies the address register in which to load the last descriptor
address.

0xxx — Do not return the last descriptor address to an address register.
1RRR — Return the last descriptor address to address register RRR.

NOTE

When the PTEST instruction specifies a level of zero, the A-
register field must be 0000. Otherwise, an F-line exception is
generated.

FC field—Function code of address to test.
1DDDD — Function code is specified as four bits DDDD.
01RRR — Function code is contained in CPU data register RRR.
00000 — Function code is contained in CPU source function code register.
00001 — Function code is contained in CPU destination function code

register.

Supervisor (Privileged) Instructions

6-78 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PTRAPcc TRAP on PMMU Condition PTRAPcc
(M68851)

Operation: If Supervisor State
Then If cc True

Then TRAP
Else TRAP

Assembler PTRAPcc
Syntax: PTRAPcc.W # < data > PTRAPcc.L # < data >

Attributes: Unsized or Size = (Word, Long)

Description: If the selected MC68851 condition is true, the processor initiates exception
processing. The vector number is generated referencing the cpTRAPcc exception
vector; the stacked program counter is the address of the next instruction. If the
selected condition is not true, no operation is performed, and execution continues with
the next instruction. The immediate data operand is placed in the next word(s) following
the MC68851 condition and is available for user definition to be used within the trap
handler. Following the condition word, there may be a user-defined data operand,
specified as immediate data, to be used by the trap handler.

The condition specifier cc may specify the following conditions:

PMMU Status Register: Not affected

Specifier Description Condition Field Specifier Description Condition Field

BS B set 000000 BC B clear 000001

LS L set 000010 LC L clear 000011

SS S set 000100 SC S clear 000101

AS A set 000110 AC A clear 000111

WS W set 001000 WC W clear 001001

IS I set 001010 IC I clear 001011

GS G set 001100 GC G clear 001101

CS C set 001110 CC C clear 001111

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-79

PTRAPcc TRAP on PMMU Condition PTRAPcc
(M68851)

Instruction Format:

Instruction Fields:

Opmode field—Selects the instruction form.
010 — Instruction is followed by one operand word.
011 — Instruction is followed by two operand words.
100 — Instruction has no following operand words.

MC68851 Condition field—Specifies the coprocessor condition to be tested. This field
is passed to the MC68851, which provides directives to the main processor for
processing this instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 1 1 1 1 OPMODE

0 0 0 0 0 0 0 0 0 0 MC68851 CONDITION

16-BIT OPERAND OR MOST SIGNIFICANT WORD OF 32-BIT OPERAND (IFNEEDED)

LEAST SIGNIFICANT WORD OF 32-BIT OPERAND (IF NEEDED)

Supervisor (Privileged) Instructions

6-80 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PVALID Validate a Pointer PVALID
(MC68851)

Operation: If (Source AL Bits) → (Destination AL Bits)
Then TRAP

Assembler PVALID VAL, < ea >
Syntax: PVALID An, < ea >

Attributes: Size = (Long)

Description: The upper bits of the source, VAL or An, compare with the upper bits of the
destination, < ea > . The ALC field of the access control register defines the number of
bits compared. If the upper bits of the source are numerically greater than (less
privileged than) the destination, they cause a memory management access level
exception. Otherwise, execution continues with the next instruction. If the MC field of
the access control register = 0, then this instruction always causes a paged memory
management unit access level exception.

PMMU Status Register: Not affected.

Instruction Format 1:

VAL Contains Access Level to Test Against

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-81

PVALID Validate a Pointer PVALID
(MC68851)

Instruction Field:

Effective Address field—Specifies the logical address to be evaluated and compared
against the valid access level register. Only control alterable addressing modes can
be used as listed in the following table:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + — —

—(An) — —

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) — —

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) — —

Supervisor (Privileged) Instructions

6-82 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PVALID Validate a Pointer PVALID
(MC68851)

Instruction Format 2:

Main Processor Register Contains Access Level to Test Against

Instruction Fields:

Effective Address field—Specifies the logical address to be evaluated and compared
against specified main processor address register. Only control alterable addressing
modes can be used as listed in the following table:

NOTE

The effective address field must provide the MC68851 with the
effective address of the logical address to be validated, not the
effective address describing where the PVALID operand is
located. For example, to validate a logical address that is
temporarily stored on the system stack, the instruction PVALID
VAL,[(SP)] must be used since PVALID VAL,(SP) would validate
the mapping on the system stack (i.e., the effective address
passed to the MC68851 is the effective address of the system
stack, not the effective address formed by the operand located
on the top of the stack).

Register field—Specifies the main processor address register to be used in the
compare.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 0 1 0 1 0 0 0 0 0 0 0 0 REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + — —

—(An) — —

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn] ,od) 110 reg. number:An ([bd,PC,Xn] ,od) — —

([bd,An],Xn ,od) 110 reg. number:An ([bd,PC],Xn ,od) — —

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-83

RESET Reset External Devices RESET
(M68000 Family)

Operation: If Supervisor State
Then Assert RESET (RSTO, MC68040 Only) Line

Else TRAP

Assembler
Syntax: RESET

Attributes: Unsized

Description: Asserts the RSTO signal for 512 (124 for MC68000, MC68EC000,
MC68HC000, MC68HC001, MC68008, MC68010, and MC68302) clock periods,
resetting all external devices. The processor state, other than the program counter, is
unaffected, and execution continues with the next instruction.

Condition Codes:

Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0

Supervisor (Privileged) Instructions

6-84 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

RTE Return from Exception RTE
(M68000 Family)

Operation: If Supervisor State
Then (SP) → SR; SP + 2 → SP; (SP) → PC; SP + 4 → SP; Restore
State and Deallocate Stack According to (SP)

Else TRAP

Assembler
Syntax: RTE

Attributes: Unsized

Description: Loads the processor state information stored in the exception stack frame
located at the top of the stack into the processor. The instruction examines the stack
format field in the format/offset word to determine how much information must be
restored.

Condition Codes:

Set according to the condition code bits in the status register value restored from the
stack.

Instruction Format:

Format/Offset Word (in Stack Frame):

MC68010, MC68020, MC68030, MC68040, CPU32

Format Field of Format/Offset Word:

Contains the format code, which implies the stack frame size (including the format/
offset word). For further information, refer to Appendix B Exception Processing
Reference.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FORMAT 0 0 VECTOR OFFSET

Supervisor (Privileged) Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 6-85

STOP Load Status Register and Stop STOP
(M68000 Family)

Operation: If Supervisor State
Then Immediate Data → SR; STOP

Else TRAP

Assembler
Syntax: STOP # < data >

Attributes: Unsized

Description: Moves the immediate operand into the status register (both user and
supervisor portions), advances the program counter to point to the next instruction, and
stops the fetching and executing of instructions. A trace, interrupt, or reset exception
causes the processor to resume instruction execution. A trace exception occurs if
instruction tracing is enabled (T0 = 1, T1 = 0) when the STOP instruction begins
execution. If an interrupt request is asserted with a priority higher than the priority level
set by the new status register value, an interrupt exception occurs; otherwise, the
interrupt request is ignored. External reset always initiates reset exception processing.

Condition Codes:

Set according to the immediate operand.

Instruction Format:

Instruction Fields:

Immediate field—Specifies the data to be loaded into the status register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0

IMMEDIATE DATA

Supervisor (Privileged) Instructions

6-86 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

7-1

SECTION 7
CPU32 INSTRUCTIONS

This section describes the instructions provided for the CPU32. The CPU32 can execute
object code from an MC68000 and MC68010 and many of the instructions of the MC68020.

There are three new instructions provided for the CPU32: enter background mode (BGND),
low-power stop (LPSTOP), and table lookup and interpolate (TBLS, TBLSN, TBLU, and
TBLUN). Table 7-1 lists the MC68020 instructions not supported by the CPU32.

Table 7-1. MC68020 Instructions Not Supported

Mnemonic

Description

BFCHG Test Bit Field and Change

BFCLR Test Bit Field and Clear

BFEXTS Signed Bit Field Extract

BFEXTU Unsigned Bit Field Extract

BFFFO Bit Field Find First One

BFINS Bit Field Insert

BFSET Test Bit Field and Set

BFTST Test Bit Field

CALLM CALL Module

CAS Compare and Swap Operands

CAS2 Compare and Swap Dual Operands

cpBcc Branch on Coprocessor Condition

cpDBcc Test Coprocessor Condition Decrement and Branch

cpGEN Coprocessor General Function

cpRESTORE Coprocessor Restore Function

cpSAVE Coprocessor Save Function

cpScc Set on Coprocessor Condition

cpTRAPcc Trap on Coprocessor Condition

RTM Return from Module

PACK Pack BCD

UNPK Unpack BCD

CPU32 Instructions

7-2

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Addressing in the CPU32 is register oriented. Most instructions allow the results of the
specified operation to be placed either in a register or directly in memory. This flexibility
eliminates the need for extra instructions to store register contents in memory. Table 7- 2 lists
the M68000 family addressing modes with cross-references to the MC68000, MC68010,
CPU32, and MC68020. When referring to instructions in the previous sections, refer to Table
7-2 to identify the addressing modes available to the CPU32. Table 7-3 lists the instructions
for the CPU32.

NOTE: Xn,SIZE*SCALE—Denotes index register n (data or address), the index size (W for word, L for long
word and scale factor (1, 2, 4, or 8 for no-word, long-word, or 8 for quad- word scaling, respectively).
X—Supported

Table 7-2. M68000 Family Addressing Modes

Addressing Mode

Syntax
MC68000
MC68010 CPU32 MC68020

Register Indirect Rn X X X

Address Register Indirect (An) X X X

Address Register Indirect with Postincrement (An) + X X X

Address Register Indirect with Postdecrement – (An) X X X

Address Register Indirect with Displacement (d

16

,An) X X X

Address Register Indirect with Index
(8-Bit Displacement)

(d

8

,An,Xn) X X X

Address Register Indirect with Index
(Base Displacement)

(d

8

,An,Xn

∗

SCALE) X X

Memory Indirect with Postincrement ([bd,An],Xn, od) X

Memory Indirect with Preincrement ([bd,An],Xn, od) X

Absolute Short (xxx).W X X X

Absolute Long (xxx).L X X X

Program Counter Indirect with Displacement (d

16

,PC) X X X

Program Counter Indirect with Index
(8-Bit Displacement)

(d

8

,PC,Xn) X X X

Program Counter Indirect with Index
(Base Displacement)

(d

8

,PC,Xn*SC ALE) X X

Immediate # < data > X X X

PC Memory Indirect with Postincrement ([bd,PC],Xn, od) X

PC Memory Indirect with Predecrement ([bd,PC],Xn, od) X

CPU32 Instructions

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

7-3

Table 7-3. CPU32 Instruction Set

Mnemonic Description Mnemonic Description

ABCD
ADD
ADDA
ADDI
ADDQ
ADDX
AND
ANDI
ANDI to CCR

ANDI to SR
ASL, ASR

Add Decimal with Extend
Add
Add Address
Add Immediate
Add Quick
Add with Extend
Logical AND
Logical AND Immediate
AND Immediate to Condition Code
Register
AND Immediate to Status Register
Arithmetic Shift Left and Right

MOVE
MOVEA
MOVE from
CCR
Move from SR
MOVE to SR
MOVE USP
MOVEC
MOVEM
MOVEP
MOVEQ
MOVES
MULS
MULU

Move
Move Address
Move Condition Code Register
Move from Status Register
Move to Status Register
Move User Stack Pointer
Move Control Register
Move Multiple Registers
Move Peripheral
Move Quick
Move Alternate Address Space
Signed Multiply
Unsigned MultiplyBcc

BCHG
BCLR
BGND
BKPT
BRA
BSET
BSR
BTST

Branch Conditionally
Test Bit and Change
Test Bit and Clear
Enter Background Mode
Breakpoint
Branch
Test Bit and Set
Branch to Subroutine
Test Bit

NBCD
NEG
NEGX
NOP
NOT

Negate Decimal with Extend
Negate
Negate with Extend
No Operation
Logical Complement

PEA Push Effective Address

RESET
ROL, ROR
ROXL, ROXR
RTD
RTE
RTR
RTS

Reset External Devices
Rotate Left and Right
Rotate with Extend Left and Right
Return and Deallocate
Return from Exception
Return and Restore Codes
Return from Subroutine

CHK
CHK2

CLR
CMP
CMPA
CMPI
CMPM
CMP2

Check Register Against Bound
Check Register Against Upper and

Lower Bound
Clear
Compare
Compare Address
Compare Immediate
Compare Memory to Memory
Compare Register Against Upper and

Lower Bounds
SBCD
Scc
STOP
SUB
SUBA
SUBI
SUBQ
SUBX
SWAP

Subtract Decimal with Extend
Set Conditionally
Stop
Subtract
Subtract Address
Subtract Immediate
Subtract Quick
Subtract with Extend
Swap Register Words

DBcc

DIVS, DIVSL
DIVU, DIVUL

Test Condition, Decrement, and
Branch

Signed Divide
Unsigned Divide

EOR
EORI
EORI to CCR

EORI to SR

EXG
EXT, LSR

Logical Exclusive-OR
Logical Exclusive-OR Immediate
Exclusive-OR Immediate to

Condition Code Register
Exclusive-OR Immediate to

Status Register
Exchange Registers
Sign-Extend

TAS
TBLS, TBLSN

TBLU, TBLUN

TRAP
TRAPcc
TRAPV
TST

Test Operand and Set
Signed/Unsigned Table Lookup and

Interpolate
Signed/Unsigned Table Lookup and

Interpolate
Trap
Trap Conditionally
Trap an Overflow
Test Operand

ILLEGAL Take Illegal Instruction Trap UNLK Unlink
JMP
JSR

Jump
Jump to Subroutine

LEA
LINK
LPSTOP
LSL, LSR

Load Effective Address
Link and Allocate
Low Power Stop
Logical Shift Left and Right

CPU32 Instructions

7-4

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

BGND

Enter Background Mode

BGND

(CPU32)

Operation:

If Background Mode Enabled
Then Enter Background Mode

Else Format/Vector Offset

→

 – (SSP);
PC

→

 – (SSP)
SR

→

 – (SSP)
(Vector)

→

 PC

Assembler
Syntax:

BGND

Attributes:

Size = (Unsized)

Description:

The processor suspends instruction execution and enters background mode
if background mode is enabled. The freeze output is asserted to acknowledge entrance
into background mode. Upon exiting background mode, instruction execution
continues with the instruction pointed to by the current program counter. If background
mode is not enabled, the processor initiates illegal instruction exception processing.
The vector number is generated to reference the illegal instruction exception vector.
Refer to the appropriate user’s manual for detailed information on background mode.

Condition Codes:

X — Not affected.
N — Not affected.
Z — Not affected.
V — Not affected.
C — Not affected.

Instruction Format:

X N Z V C
— — — — —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 1 1 1 1 1 0 1 0

CPU32 Instructions

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

7-5

LPSTOP

Low-Power Stop

LPSTOP

(CPU32)

Operation:

If Supervisor State
Immediate Data

→

 SR
Interrupt Mask

→

 External Bus Interface (EBI)
STOP

Else TRAP

Assembler
Syntax:

LPSTOP # < data >

Attributes:

Size = (Word) Privileged

Description:

The immediate operand moves into the entire status register, the program
counter advances to point to the next instruction, and the processor stops fetching and
executing instructions. A CPU LPSTOP broadcast cycle is executed to CPU space $3
to copy the updated interrupt mask to the external bus interface (EBI). The internal
clocks are stopped.

Instruction execution resumes when a trace, interrupt, or reset exception occurs. A
trace exception will occur if the trace state is on when the LPSTOP instruction is
executed. If an interrupt request is asserted with a higher priority that the current
priority level set by the new status register value, an interrupt exception occurs;
otherwise, the interrupt request is ignored. If the bit of the immediate data
corresponding to the S-bit is off, execution of the instruction will cause a privilege
violation. An external reset always initiates reset exception processing.

Condition Codes:

Set according to the immediate operand.

Instruction Format:

Instruction Fields:

Immediate field—Specifies the data to be loaded into the status register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

IMMEDIATE DATA

CPU32 Instructions

7-6

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

TBLS TBLS
TBLSN

Table Lookup and Interpolate (Signed)

TBLSN

(CPU32)

Operation:

Rounded:
ENTRY(n) + {(ENTRY(n + 1) – ENTRY(n)) x Dx 7 – 0}

÷

 256

→

 Dx
Unrounded:

ENTRY(n) x 256 + {(ENTRY(n + 1) – ENTRY(n)) x Dx 7 – 0}

→

 Dx

Where ENTRY(n) and ENTRY(n + 1) are either:

1. Consecutive entries in the table pointed to by the < ea > and
indexed by Dx 15 – 8

π

 SIZE or;

2. The registers Dym, Dyn respectively.

Assembler

TBLS. < size > < ea > ,Dx Result rounded

Syntax:

TBLSN. < size > < ea > ,Dx Result not rounded
TBLS. < size > Dym:Dyn, Dx Result rounded
TBLSN. < size > Dym:Dyn, Dx Result not rounded

Attributes:

Size = (Byte, Word, Long)

Description:

The TBLS and TBLSN instructions allow the efficient use of piecewise linear
compressed data tables to model complex functions. The TBLS instruction has two
modes of operation: table lookup and interpolate mode and data register interpolate
mode.

For table lookup and interpolate mode, data register Dx 15 – 0 contains the
independent variable X. The effective address points to the start of a signed byte, word,
or long-word table containing a linearized representation of the dependent variable, Y,
as a function of X. In general, the independent variable, located in the low-order word
of Dx, consists of an 8-bit integer part and an 8-bit fractional part. An assumed radix
point is located between bits 7 and 8. The integer part, Dx 15 – 8, is scaled by the
operand size and is used as an offset into the table. The selected entry in the table is
subtracted from the next consecutive entry. A fractional portion of this difference is
taken by multiplying by the interpolation fraction, Dx 7 – 0 .The adjusted difference is
then added to the selected table entry. The result is returned in the destination data
register, Dx.

CPU32 Instructions

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

7-7

TBLS TBLS
TBLSN

Table Lookup and Interpolate (Signed)

TBLSN

(CPU32)

For register interpolate mode, the interpolation occurs using the Dym and Dyn registers
in place of the two table entries. For this mode, only the fractional portion, Dx 7 – 0, is
used in the interpolation, and the integer portion, Dx 15 – 8, is ignored. The register
interpolation mode may be used with several table lookup and interpolations to model
multidimensional functions.

Signed table entries range from – 2

n – 1

 to 2

n – 1

 – 1; whereas, unsigned table entries
range from 0 to 2

n – 1

 where n is 8, 16, or 32 for byte, word, and long-word tables,
respectively.

Rounding of the result is optionally selected via the "R" instruction field. If R = 0
(TABLE), the fractional portion is rounded according to the round-to-nearest algorithm.
The following table summerizes the rounding procedure:

The adjusted difference is then added to the selected table entry. The rounded result
is returned in the destination data register, Dx. Only the portion of the register
corresponding to the selected size is affected.

Adjusted Difference
Fraction

Rounding
Adjustment

≤

 – 1/2 – 1

> – 1/2 and < 1/2 + 0

≥

 1/2 + 1

31 24 23 16 15 8 7 0
BYTE UNAFFECTED UNAFFECTED UNAFFECTED RESULT
WORD UNAFFECTED UNAFFECTED RESULT RESULT
LONG RESULT RESULT RESULT RESULT

CPU32 Instructions

7-8

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

TBLS TBLS
TBLSN

Table Lookup and Interpolate (Signed)

TBLSN

(CPU32)

If R = 1 (TABLENR), the result is returned in register Dx without rounding. If the size is
byte, the integer portion of the result is returned in Dx 15 – 8; the integer portion of a
word result is stored in Dx 23 – 8; the least significant 24 bits of a long result are stored
in Dx 31 – 8. Byte and word results are sign-extended to fill the entire 32-bit register.

NOTE

The long-word result contains only the least significant 24 bits of
integer precision.

For all sizes, the 8-bit fractional portion of the result is returned to the low byte of the
data register, Dx 7 – 0. User software can make use of the fractional data to reduce
cumulative errors in lengthy calculations or implement rounding algorithms different
from that provided by other forms of TBLS. The previously described assumed radix
point places two restrictions on the programmer:

1. Tables are limited to 257 entries in length.

2. Interpolation resolution is limited to 1/256, the distance between consecutive ta-
ble entries. The assumed radix point should not, however, be construed by the
programmer as a requirement that the independent variable be calculated as a
fractional number in the range 0 <

π

 < 255. On the contrary, X should be consid-
ered an integer in the range 0 <

π

 < 65535, realizing that the table is actually a
compressed representation of a linearized function in which only every 256th
value is actually stored in memory.

31 24 23 16 15 8 7 0
BYTE SIGN-EXTENDED SIGN-EXTENDED RESULT FRACTION
WORD SIGN-EXTENDED RESULT RESULT FRACTION
LONG RESULT RESULT RESULT FRACTION

CPU32 Instructions

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

7-9

TBLS TBLS
TBLSN

Table Lookup and Interpolate (Signed)

TBLSN

(CPU32)

Condition Codes:

X — Not affected.
N — Set if the most significant bit of the result is set; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if the integer portion of an unrounded long result is not in the range, – (2

23

)

≤

 Result

≤

 (2

23

) – 1; cleared otherwise.
C — Always cleared.

Instruction Format:

TABLE LOOKUP AND INTERPOLATE

DATA REGISTER INTERPOLATE

X N Z V C
—

∗ ∗ ∗

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 REGISTER Dx 1 R 0 1 SIZE 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 REGISTER Dym

0 REGISTER Dx 1 R 0 1 SIZE 0 0 0 REGISTER Dyn

CPU32 Instructions

7-10

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

TBLS TBLS
TBLSN Table Lookup and Interpolate (Signed) TBLSN

(CPU32)

Instruction Fields:

Effective address field (table lookup and interpolate mode only)—Specifies the
destination location. Only control alterable addressing modes are allowed as listed
in the following table:

Size Field—Specifies the size of operation.
00 — Byte Operation
01 — Word Operation
10 — Long Operation

Register field—Specifies the destination data register, Dx. On entry, the register
contains the interpolation fraction and entry number.

Dym, Dyn field—If the effective address mode field is nonzero, this operand register is
unused and should be zero. If the effective address mode field is zero, the surface
interpolation variant of this instruction is implied, and Dyn specifies one of the two
source operands.

Rounding mode field—The R-bit controls the rounding of the final result. When R = 0,
the result is rounded according to the round-to-nearest algorithm. When R = 1, the
result is returned unrounded.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) — — # < data > — —

(An) + — —

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

CPU32 Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 7-11

TBLU TBLU
TBLUN Table Lookup and Interpolation (Unsigned) TBLUN

(CPU32)

Operation: Rounded:
ENTRY(n) + {(ENTRY(n + 1) – ENTRY(n)) x Dx 7 – 0} ÷ 256 → Dx

Unrounded:
ENTRY(n) x 256 + {(ENTRY(n + 1) – ENTRY(n)) x Dx 7 – 0} → Dx

Where ENTRY(n) and ENTRY(n + 1) are either:

1. Consecutive entries in the table pointed to by the < ea > and
indexed by Dx 15 – 8 π SIZE or;

2. The registers Dym, Dyn respectively

Assembler TBLU. < size > < ea > ,Dx Result rounded
Syntax: TBLUN. < size > < ea > ,Dx Result not rounded

TBLU. < size > Dym:Dyn, Dx Result rounded
TBLUN. < size > Dym:Dyn, Dx Result not rounded

Attributes: Size = (Byte, Word, Long)

Description: The TBLU and TBLUN instructions allow the efficient use of piecewise linear,
compressed data tables to model complex functions. The TBLU instruction has two
modes of operation: table lookup and interpolate mode and data register interpolate
mode.

For table lookup and interpolate mode, data register Dx 15 – 0 contains the
independent variable X. The effective address points to the start of a unsigned byte,
word, or long-word table containing a linearized representation of the dependent
variable, Y, as a function of X. In general, the independent variable, located in the low-
order word of Dx, consists of an 8-bit integer part and an 8-bit fractional part. An
assumed radix point is located between bits 7 and 8. The integer part, Dx 15 – 8, is
scaled by the operand size and is used as an offset into the table. The selected entry
in the table is subtracted from the next consecutive entry. A fractional portion of this
difference is taken by multiplying by the interpolation fraction, Dx 7 – 0. The adjusted
difference is then added to the selected table entry. The result is returned in the
destination data register, Dx.

CPU32 Instructions

7-12 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

TBLU TBLU
TBLUN Table Lookup and Interpolation (Unsigned) TBLUN

(CPU32)

For register interpolate mode, the interpolation occurs using the Dym and Dyn registers
in place of the two table entries. For this mode, only the fractional portion, Dx 7 – 0, is
used in the interpolation and the integer portion, Dx 15 – 8, is ignored. The register
interpolation mode may be used with several table lookup and interpolations to model
multidimensional functions.

Signed table entries range from – 2n – 1 to 2n – 1 – 1; whereas, unsigned table entries
range from 0 to 2n – 1 where n is 8, 16, or 32 for byte, word, and long-word tables,
respectively. The unsigned and unrounded table results will be zero-extended instead
of sign-extended.

Rounding of the result is optionally selected via the "R" instruction field. If R = 0
(TABLE), the fractional portion is rounded according to the round-to-nearest algorithm.
The rounding procedure can be summarized by the following table:

The adjusted difference is then added to the selected table entry. The rounded result
is returned in the destination data register, Dx. Only the portion of the register
corresponding to the selected size is affected.

If R = 1 (TBLUN), the result is returned in register Dx without rounding. If the size is
byte, the integer portion of the result is returned in Dx 15 – 8; the integer portion of a
word result is stored in Dx 23 – 8; the least significant 24 bits of a long result are stored
in Dx 31 – 8. Byte and word results are sign-extended to fill the entire 32-bit register.

Adjusted Difference
Fraction

Rounding
Adjustme

nt

≥ 1/2 + 1

< 1/2 + 0

31 24 23 16 15 8 7 0
BYTE UNAFFECTED UNAFFECTED UNAFFECTED RESULT
WORD UNAFFECTED UNAFFECTED RESULT RESULT
LONG RESULT RESULT RESULT RESULT

CPU32 Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 7-13

TBLU TBLU
TBLUN Table Lookup and Interpolation (Unsigned) TBLUN

(CPU32)

NOTE

The long-word result contains only the least significant 24 bits of
integer precision.

For all sizes, the 8-bit fractional portion of the result is returned in the low byte of the
data register, Dx 7 – 0. User software can make use of the fractional data to reduce
cumulative errors in lengthy calculations or implement rounding algorithms different
from that provided by other forms of TBLU. The previously described assumed radix
point places two restrictions on the programmer:

1. Tables are limited to 257 entries in length.

2. Interpolation resolution is limited to 1/256, the distance between consecutive ta-
ble entries. The assumed radix point should not, however, be construed by the
programmer as a requirement that the independent variable be calculated as a
fractional number in the range 0 ≤ X ≤ 255. On the contrary, X should be consid-
ered to be an integer in the range 0 ≤ X ≤ 65535, realizing that the table is actu-
ally a compressed representation of a linearized function in which only every
256th value is actually stored in memory.

Condition Codes:

X — Not affected.
N — Set if the most significant bit of the result is set; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if the integer portion of an unrounded long result is not in the range, – (223)

≤ Result ≤ (223) – 1; cleared otherwise.
C — Always cleared.

31 24 23 16 15 8 7 0
BYTE SIGN-EXTENDED SIGN-EXTENDED RESULT FRACTION
WORD SIGN-EXTENDED RESULT RESULT FRACTION
LONG RESULT RESULT RESULT FRACTION

X N Z V C
— ∗ ∗ ∗ 0

CPU32 Instructions

7-14 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

TBLU TBLU
TBLUN Table Lookup and Interpolation (Unsigned) TBLUN

(CPU32)

Instruction Format:

TABLE LOOKUP AND INTERPOLATE

DATA REGISTER INTERPOLATE

Instruction Fields:

Effective address field (table lookup and interpolate mode only)—Specifies the
destination location. Only control alterable addressing modes are allowed as listed
in the following table:

Size field—Specifies the size of operation.
00 — Byte Operation
01 — Word Operation
10 — Long Operation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 REGISTER Dx 0 R 0 1 SIZE 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 REGISTER Dym

0 REGISTER Dx 0 R 0 0 SIZE 0 0 0 REGISTER Dyn

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An # < data > — —

(An) + — —

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

CPU32 Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 7-15

TBLU TBLU
TBLUN Table Lookup and Interpolation (Unsigned) TBLUN

(CPU32)

Register field—Specifies the destination data register, Dx. On entry, the register
contains the interpolation fraction and entry number.

Dym, Dyn field—If the effective address mode field is nonzero, this operand register is
unused and should be zero. If the effective address mode field is zero, the surface
interpolation variant of this instruction is implied, and Dyn specifies one of the two
source operands.

Rounding mode field—The R-bit controls the rounding of the final result. When R = 0,
the result is rounded according to the round-to-nearest algorithm. When R = 1,
the result is returned unrounded.

CPU32 Instructions

7-16 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

8-1

SECTION 8
INSTRUCTION FORMAT SUMMARY

This section contains a listing of the M68000 family instructions in binary format. It is listed
in opcode order for the M68000 family instruction set.

8.1 INSTRUCTION FORMAT

The following paragraphs present a summary of the binary encoding fields.

8.1.1 Coprocessor ID Field

This field specifies which coprocessor in a system is to perform the operation. When using
directly supported floating-point instructions for the MC68040, this field must be set to one.

8.1.2 Effective Address Field

This field specifies which addressing mode is to be used. For some operations, there are
hardware-enforced restrictions on the available addressing modes allowed.

8.1.3 Register/Memory Field

This field is common to all arithmetic instructions. A zero in this field indicates a register-to-
register operation, and a one indicates an < ea > -to-register operation.

8.1.4 Source Specifier Field

This field is common to all artihmetic instructions. The value of the register/memory (R/M)
field affects this field,s definition. If R/M = 0, specifies the source floating-point data register
(FPDR). If R/M = 1, specifies the source operand data format.

000 — Long-Word Integer (L)
001 — Single-Precision Real (S)
010 — Extended-Precision Real (X)
011 — Packed-Decimal Real (P)
100 — Word Integer (W)
101 — Double-Precision Real (D)
110 — Byte Integer (B)

Instruction Format Summary

8-2

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

8.1.5 Destination Register Field

This field is common to all arithmetic instructions. It specifies the FPDR that that will be the
destination. The results are always stored in this register.

8.1.6 Conditional Predicate Field

This field is common to all conditional instructions and specifies the conditional test that is
to be evaluated. Table 8-1 shows the binary encodings for the conditional tests.

8.1.7 Shift and Rotate Instructions

The following paragraphs define the fields used with the shift and rotate instructions.

8.1.7.1 Count Register Field.

If i/r = 0, this field contains the rotate (shift) count of 1 – 8 (a
zero specifies 8). If i/r = 1, this field specifies a data register that contains the rotate (shift)
count. The following shift and rotate fields are encoded as follows:

dr field
0 — Rotate (shift) Right
1 — Rotate (shift) Left

i/r field
0 — Immediate Rotate (shift) Count
1 — Register Rotate (shift) Count

8.1.7.2 Register Field.

This field specifies a data register to be rotated (shifted).

Instruction Format Summary

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

8-3

Table 8-1. Conditional Predicate Field Encoding

Conditional
Predicate Mnemonic Definition

000000 F False

000001 EQ Equal

000010 OGT Ordered Greater Than

000011 OGE Ordered Greater Than or Equal

000100 OLT Ordered Less Than

000101 OLE Ordered Less Than or Equal

000110 OGL Ordered Greater Than or Less Than

000111 OR Ordered

001000 UN Unordered

001001 UEQ Unordered or Equal

001010 UGT Unordered or Greater Than

001011 UGE Unordered or Greater Than or Equal

001100 ULT Unordered or Less Than

001101 ULE Unordered or Less Than or Equal

001110 NE Not Equal

001111 T True

010000 SF Signaling False

010001 SEQ Signaling Equal

010010 GT Greater Than

010011 GE Greater Than or Equal

010100 LT Less Than

010101 LE Less Than or Equal

010110 GL Greater Than or Less Than

010111 GLE Greater Than or Less Than or Equal

011000 NGLE Not (Greater Than or Less Than or Equal)

011001 NGL Not (Greater Than or Less Than)

011010 NLE Not (Less Than or Equal)

011011 NLT Not (Less Than)

011100 NGE Not (Greater Than or Equal)

011101 NGT Not (Greater Than)

011110 SNE Signaling Not Equal

011111 ST Signaling True

Instruction Format Summary

8-4

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

8.1.8 Size Field

This field specifies the size of the operation. The encoding is as follows:

00 — Byte Operation
01 — Word Operation
10 — Long Operation

8.1.9 Opmode Field

Refer to the applicable instruction descriptions for the encoding of this field in

Section 4
Integer Instructions

,

Section 5 Floating Point Instructions

,

Section 6 Supervisor
(Privaleged) Instructions

, and

Section 7 CPU32 Instructions

.

8.1.10 Address/Data Field

This field specifies the type of general register. The encoding is:

0 — Data Register
1 — Address Register

8.2 OPERATION CODE MAP

Table 8-2 lists the encoding for bits 15 – 12 and the operation performed.

Table 8-2. Operation Code Map

Bits 15 – 12 Operation

0000 Bit Manipulation/MOVEP/Immed iate

0001 Move Byte

0010 Move Long

0011 Move Word

0100 Miscellaneous

0101 ADDQ/SUBQ/Scc/DBcc/TRAPc c

0110 Bcc/BSR/BRA

0111 MOVEQ

1000 OR/DIV/SBCD

1001 SUB/SUBX

1010 (Unassigned, Reserved)

1011 CMP/EOR

1100 AND/MUL/ABCD/EXG

1101 ADD/ADDX

1110 Shift/Rotate/Bit Field

1111
Coprocessor Interface/MC68040 and
CPU32 Extensions

Instruction Format Summary

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

8-5

ORI to CCR

ORI to SR

ORI

ANDI to CCR

ANDI to SR

ANDI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 8-BIT BYTE DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0

16-BIT WORD DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

16-BIT WORD DATA 8-BIT BYTE DATA

32-BIT LONG DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 8-BIT BYTE DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0

16-BIT WORD DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

16-BIT WORD DATA 8-BIT BYTE DATA

32-BIT LONG DATA

Instruction Format Summary

8-6

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

SUBI

RTM

CALLM

ADDI

CMP2

CHK2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

16-BIT WORD DATA 8-BIT BYTE DATA

32-BIT LONG DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0 1 1 0 0 D/A REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 0 0 0 0 0 ARGUMENT COUNT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

16-BIT WORD DATA 8-BIT BYTE DATA

32-BIT LONG DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 SIZE 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

D/A REGISTER 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 SIZE 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

D/A REGISTER 1 0 0 0 0 0 0 0 0 0 0 0

Instruction Format Summary

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

8-7

EORI to CCR

EORI to SR

EORI

CMPI

BTST

BIT NUMBER STATIC, SPECIFIED AS IMMEDIATE DATA

BCHG

BIT NUMBER STATIC, SPECIFIED AS IMMEDIATE DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 BYTE DATA (8 BITS)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0

16-BIT WORD DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

16-BIT WORD DATA 16-BIT BYTE DATA

32-BIT LONG DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

16-BIT WORD DATA 8-BIT BYTE DATA

32-BIT LONG DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 0 0 0 0 0 BIT NUMBER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 0 1
EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 0 0 0 0 0 BIT NUMBER

Instruction Format Summary

8-8

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

BCLR

BIT NUMBER STATIC, SPECIFIED AS IMMEDIATE DATA

BSET

BIT NUMBER STATIC, SPECIFIED AS IMMEDIATE DATA

MOVES

CAS2

CAS

BTST

BIT NUMBER DYNAMIC, SPECIFIED IN A REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 1 0
EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 0 0 0 0 0 BIT NUMBER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 0 0 0 0 BIT NUMBER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

A/D REGISTER dr 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 SIZE 0 1 1 1 1 1 1 0 0

D/A1 Rn1 0 0 0 Du1 0 0 0 Dc1

D/A2 Rn2 0 0 0 Du2 0 0 0 Dc2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 SIZE 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 0 0 0 0 Du 0 0 0 Dc

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 REGISTER 1 0 0
EFFECTIVE ADDRESS

MODE REGISTER

Instruction Format Summary

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

8-9

BCHG

BIT NUMBER DYNAMIC, SPECIFIED IN A REGISTER

BCLR

BIT NUMBER DYNAMIC, SPECIFIED IN A REGISTER

BSET

BIT NUMBER DYNAMIC, SPECIFIED IN A REGISTER

MOVEP

MOVEA

MOVE

MOVE from SR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 REGISTER 1 0 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 REGISTER 1 1 0
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 REGISTER 1 1 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 DATA REGISTER OPMODE 0 0 1
ADDRESS
REGISTER

16-BIT DISPLACEMENT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 SIZE
DESTINATION

REGISTER
0 0 1

SOURCE

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 SIZE
DESTINATION SOURCE

REGISTER MODE MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 1
SOURCE

MODE REGISTER

Instruction Format Summary

8-10

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

MOVE from CCR

NEGX

CLR

MOVE to CCR

NEG

NOT

MOVE to SR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 SIZE1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

Instruction Format Summary

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

8-11

EXT, EXTB

LINK

LONG

NBCD

SWAP

BKPT

PEA

BGND

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 OPMODE 0 0 0 REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 0 0 0 1 REGISTER

HIGH-ORDER DISPLACEMENT

LOW-ORDER DISPLACEMENT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 1 0 0 0 REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 1 0 0 1 VECTOR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 1 1 1 1 1 0 1 0

Instruction Format Summary

8-12

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

ILLEGAL

TAS

TST

MULU

LONG

MULS

LONG

DIVU, DIVUL

LONG

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 REGISTER DI 0 SIZE 0 0 0 0 0 0 0 REGISTER Dh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 REGISTER DI 1 SIZE 0 0 0 0 0 0 0 REGISTER Dh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 REGISTER Dq 0 SIZE 0 0 0 0 0 0 0 REGISTER Dr

Instruction Format Summary

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

8-13

DIVS, DIVSL

LONG

TRAP

LINK

WORD

UNLK

MOVE USP

RESET

NOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 1
EFFECTIVE ADDRESS

MODE REGISTER

0 REGISTER Dq 1 SIZE 0 0 0 0 0 0 0 REGISTER Dr

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 0 0 VECTOR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 0 1 0 REGISTER

WORD DISPLACEMENT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 0 1 1 REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 0 dr REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1

Instruction Format Summary

8-14

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

STOP

RTE

RTD

RTS

TRAPV

RTR

MOVEC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0

IMMEDIATE DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0

16-BIT DISPLACEMENT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 dr

A/D REGISTER CONTROL REGISTER

Instruction Format Summary

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

8-15

JSR

JMP

MOVEM

LEA

CHK

ADDQ

SUBQ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 1 0
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 dr 0 0 1 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

REGISTER LIST MASK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 REGISTER 1 1 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 REGISTER SIZE 0
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 DATA 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 DATA 1 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

Instruction Format Summary

8-16

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

DBcc

TRAPcc

Scc

BRA

BSR

Bcc

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 CONDITION 1 1 0 0 1 REGISTER

16-BIT DISPLACEMENT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 CONDITION 1 1 1 1 1 OPMODE

OPTIONAL WORD

OR LONG WORD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 CONDITION 1 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 1 8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 CONDITION 8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF

Instruction Format Summary

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

8-17

MOVEQ

DIVU, DIVUL

WORD

SBCD

PACK

UNPK

DIVS, DIVSL

WORD

OR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 REGISTER 0 DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 REGISTER 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 REGISTER Dy/Ay 1 0 0 0 0 R/M REGISTER Dx/Ax

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 REGISTER Dy/Ay 1 0 1 0 0 R/M REGISTER Dx/Ax

16-BIT EXTENSION: ADJUSTMENT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 REGISTER Dy/Ay 1 1 0 0 0 R/M REGISTER Dx/Ax

16-BIT EXTENSION: ADJUSTMENT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 REGISTER 1 1 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

Instruction Format Summary

8-18

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

SUBX

SUB

SUBA

CMPM

CMP

CMPA

EOR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 REGISTER Dy/Ay 1 SIZE 0 0 R/M REGISTER Dx/Ax

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 REGISTER Ax 1 SIZE 0 0 1 REGISTER Ay

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

Instruction Format Summary

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

8-19

MULU

WORD

ABCD

MULS

WORD

EXG

AND

ADDX

ADDA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 REGISTER 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 REGISTER Rx 1 0 0 0 0 R/M REGISTER Ry

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 REGISTER 1 1 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 REGISTER Rx 1 OPMODE REGISTER Ry

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 REGISTER Rx 1 SIZE 0 0 R/M REGISTER Ry

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

Instruction Format Summary

8-20

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

ADD

ASL, ASR

MEMORY SHIFT

LSL, LSR

MEMORY SHIFT

ROXL, ROXR

MEMORY ROTATE

ROL, ROR

MEMORY ROTATE

BFTST

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 0 0 dr 1 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 0 1 dr 1 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 1 0 dr 1 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 1 1 dr 1 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 0 Do OFFSET Dw WIDTH

Instruction Format Summary

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 8-21

BFEXTU

BFCHG

BFEXTS

BFCLR

BFFFO

BFSET

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 1 1
EFFECTIVE ADDRESS

MODE REGISTER

0 REGISTER Do OFFSET Dw WIDTH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 0 Do OFFSET Dw WIDTH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 1
EFFECTIVE ADDRESS

MODE REGISTER

0 REGISTER Do OFFSET Dw WIDTH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 0 Do OFFSET Dw WIDTH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 1 1
EFFECTIVE ADDRESS

MODE REGISTER

0 REGISTER Do OFFSET Dw WIDTH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 1
EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 0 Do OFFSET Dw WIDTH

Instruction Format Summary

8-22 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

BFINS

ASL, ASR

REGISTER SHIFT

LSL, LSR

REGISTER SHIFT

ROXL, ROXR

REGISTER ROTATE

ROL, ROR

REGISTER ROTATE

PMOVE

MC68EC030, ACX REGISTERS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 1
EFFECTIVE ADDRESS

MODE REGISTER

0 REGISTER Do OFFSET Dw WIDTH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0
COUNT/

REGISTER
dr SIZE i/r 0 0 REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0
COUNT/

REGISTER
dr SIZE i/r 0 1 REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0
COUNT/

REGISTER
dr SIZE i/r 1 0 REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0
COUNT/

REGISTER
dr SIZE i/r 1 1 REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 P REGISTER R/W 0 0 0 0 0 0 0 0 0

Instruction Format Summary

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 8-23

PMOVE

MC68030 ONLY, TT REGISTERS

PLOAD

PVALID

VAL CONTAINS ACCESS LEVEL TO TEST AGAINST

PVALID

MAIN PROCESSOR REGISTER CONTAINS ACCESS LEVEL TO TEST AGAINST

PFLUSH

MC68030 ONLY

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 P REGISTER R/W FD 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 0 1 0 0 0 R/W 0 0 0 0 FC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 0 1 0 1 0 0 0 0 0 0 0 0 REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 0 1 MODE 0 0 MASK FC

Instruction Format Summary

8-24 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PFLUSH
PFLUSHA
PFLUSHS

MC68851

PMOVE

MC68851, TO/FROM TC, CRP, DRP, SRP, CAL, VAL, SCC, AND AC REGISTERS

PMOVE

MC68030 ONLY, SRP, CRP, AND TC REGISTERS

PMOVE

MC68030 ONLY, MMUSR

PMOVE

MC68EC030, ACUSR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 0 1 MODE 0 MASK FC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 1 0 P REGISTER R/W 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 1 0 P REGISTER R/W FD 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 1 1 0 0 0 R/W 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 1 1 0 0 0 R/W 0 0 0 0 0 0 0 0 0

Instruction Format Summary

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 8-25

PMOVE

MC68851, TO/FROM PSR AND PCSR REGISTERS

PMOVE

MC68851, TO/FROM BADX AND BACX REGISTERS

PTEST

MC68EC030

PTEST

MC68030 ONLY

PTEST

MC68851

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 1 1 P REGISTER R/W 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 1 1 P REGISTER R/W 0 0 0 0 NUM 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

1 0 0 0 0 0 R/W 0 REGISTER FC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

1 0 0 LEVEL R/W A REGISTER FC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

1 0 0 LEVEL R/W A REGISTER FC

Instruction Format Summary

8-26 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

PFLUSHR

PScc

PDBcc

PTRAPcc

PBcc

PSAVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 1
EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 0 0 0 0 0 0 0 MC68851 CONDITION

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 1 0 0 1 COUNT REGISTER

0 0 0 0 0 0 0 0 0 0 MC68851 CONDITION

16-BIT DISPLACEMENT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 1 1 1 1 OPMODE

0 0 0 0 0 0 0 0 0 0 MC68851 CONDITION

16-BIT OPERAND OR MOST SIGNIFICANT WORD OF 32-BIT OPERAND (IF NEEDED)

LEAST SIGNIFICANT WORD OF 32-BIT OPERAND (IF NEEDED)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 1 SIZE MC68851 CONDITION

16-BIT DISPLACEMENT OR MOST SIGNIFICANT WORD OF 32-BIT DISPLACEMENT

LEAST SIGNIFICANT WORD OF 32-BIT DISPLACEMENT (IF NEEDED)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 1 0 0
EFFECTIVE ADDRESS

MODE REGISTER

Instruction Format Summary

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 8-27

PRESTORE

PFLUSH

MC68EC040, POSTINCREMENT SOURCE AND DESTINATION

PFLUSH

MC68040/MC68LC040

PTEST

MC68040/MC68LC040

PTEST

MC68EC040

CINV

CPUSH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 1 0 1
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 0 0 OPMODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 0 0 OPMODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 1 R/W 0 1 REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 1 R/W 0 1 REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 CACHE 0 SCOPE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 CACHE 1 SCOPE REGISTER

Instruction Format Summary

8-28 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOVE16

ABSOLUTE LONG ADDRESS SOURCE OR DESTINATION

MOVE16

POSTINCREMENT SOURCE AND DESTINATION

TBLU, TBLUN

TABLE LOOKUP AND INTERPOLATE

TBLS, TBLSN

TABLE LOOKUP AND INTERPOLATE

TBLU, TBLUN

DATA REGISTER INTERPOLATE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 0 0 0 0 OPMODE REGISTER Ay

HIGH-ORDER ADDRESS

LOW-ORDER ADDRESS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 0 0 0 1 0 0 REGISTER Ax

1 REGISTER Ay 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 REGISTER Dx 0 R 0 1 SIZE 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 REGISTER Dx 1 R 0 1 SIZE 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 REGISTER Dym

0 REGISTER Dx 0 R 0 0 SIZE 0 0 0 REGISTER Dyn

Instruction Format Summary

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 8-29

TBLS, TBLSN

DATA REGISTER INTERPOLATE

LPSTOP

FMOVECR

FINT

FSINH

FINTRZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 REGISTER Dym

0 REGISTER Dx 1 R 0 0 SIZE 0 0 0 REGISTER Dyn

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

IMMEDIATE DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0 0 0 0 0 0 0

0 1 0 1 1 1
DESTINATION

REGISTER
ROM

OFFSET

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 0 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 0 0 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 0 0 1 1

Instruction Format Summary

8-30 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FLOGNP1

FETOXM1

FTANH

FATAN

FASIN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 0 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 1 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 1 0 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 1 1 0 0

Instruction Format Summary

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 8-31

FATANH

FSIN

FTAN

FETOX

FTWOTOX

FTENTOX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 1 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 1 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 0 1 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 0 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 0 0 1 0

Instruction Format Summary

8-32 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FLOGN

FLOG10

FLOG2

FCOSH

FACOS

FCOS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 0 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 0 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 1 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 1 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 1 1 0 1

Instruction Format Summary

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 8-33

FGETEXP

FGETMAN

FMOD

FSGLDIV

FREM

FSCALE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 1 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 0 1 1 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 1 0 0 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 1 0 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 1 0 0 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 1 0 0 1 1 0

Instruction Format Summary

8-34 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FSGLMUL

FSINCOS

FCMP

FTST

FABS

FADD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 1 0 0 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 1 1 0

DESTINATION
REGISTER, FPc

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 1 1 1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
0 1 1 1 0 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
OPMODE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
OPMODE

Instruction Format Summary

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 8-35

FDIV

FMOVE

DATA REGISTER, EFFECTIVE ADDRESS TO REGISTER

FMUL

FNEG

FSQRT

FSUB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
OPMODE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
OPMODE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
OPMODE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
OPMODE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
OPMODE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

0 R/M 0
SOURCE

SPECIFIER
DESTINATION

REGISTER
OPMODE

Instruction Format Summary

8-36 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

FMOVE

DATA REGISTER, REGISTER TO MEMORY

FMOVE

SYSTEM CONTROL REGISTER

FMOVEM

CONTROL REGISTERS

FMOVEM

DATA REGISTERS

cpGEN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 0
EFFECTIVE ADDRESS

MODE REGISTER

0 1 1
SOURCE

SPECIFIER
DESTINATION

REGISTER
K-FACTOR

(IF REQUIRED)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

1 0 dr
REGISTER

SELECT
0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

1 0 dr
REGISTER

SELECT
0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

1 1 dr MODE 0 0 0 REGISTER LIST

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 0

EFFECTIVE ADDRESS

MODE REGISTER

COPROCESSOR ID-DEPENDENT COMMAND WORD

OPTIONAL EFFECTIVE ADDRESS OR COPROCESSOR ID-DEFINED EXTENSION WORDS

Instruction Format Summary

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 8-37

FScc

cpScc

FBcc

cpBcc

cpSAVE

FSAVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 1

EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 0 0 0 0 0 0 0 CONDITIONAL PREDICATE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 1

EFFECTIVE ADDRESS

MODE REGISTER

0 0 0 0 0 0 0 0 0 0 COPROCESSOR ID CONDITION

OPTIONAL EFFECTIVE ADDRESS OR COPROCESSOR ID-DEFINED EXTENSION WORDS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 1 SIZE CONDITIONAL PREDICATE

16-BIT DISPLACEMENT OR MOST SIGNIFICANT WORD OF 32-BIT DISPLACEMENT

LEAST SIGNIFICANT WORD OF 32-BIT DISPLACEMENT (IF NEEDED)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 1 SIZE COPROCESSOR ID CONDITION

OPTIONAL COPROCESSOR ID-DEFINED EXTENSION WORDS

WORD OR

LONG-WORD DISPLACEMENT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
1 0 0

EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
1 0 0

EFFECTIVE ADDRESS

MODE REGISTER

Instruction Format Summary

8-38 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

cpRESTORE

FRESTORE

FDBcc

cpDBcc

FTRAPcc

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
1 0 1

EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
1 0 1

EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 1 0 0 1

COUNT
REGISTER

0 0 0 0 0 0 0 0 0 0 CONDITIONAL PREDICATE

16-BIT DISPLACEMENT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 1 0 0 1 REGISTER

0 0 0 0 0 0 0 0 0 0 COPROCESSOR ID CONDITION

OPTIONAL COPROCESSOR ID-DEFINED EXTENSION WORDS

16-BIT DISPLACEMENT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 1 1 1 1 MODE

0 0 0 0 0 0 0 0 0 0 CONDITIONAL PREDICATE

16-BIT OPERAND OR MOST SIGNIFICANT WORD OF 32-BIT OPERAND (IF NEEDED)

LEAST SIGNIFICANT WORD OR 32-BIT OPERAND (IF NEEDED)

Instruction Format Summary

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 8-39

cpTRAPcc

FNOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 0 1 1 1 1 OPMODE

0 0 0 0 0 0 0 0 0 0 COPROCESSOR ID CONDITION

OPTIONAL COPROCESSOR ID-DEFINED EXTENSION WORDS

OPTIONAL WORD

OR LONG-WORD OPERAND

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1
COPROCESSOR

ID
0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Instruction Format Summary

8-40 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOTOROLA

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

A-1

APPENDIX A
PROCESSOR INSTRUCTION SUMMARY

This appendix provides a quick reference of the M68000 family instructions. The organiza-
tion of this section is by processors and their addressing modes. All references to the
MC68000, MC68020, and MC68030 include references to the corresponding embedded
controllers, MC68EC000, MC68EC020, and MC68EC030. All references to the MC68040
include the MC68LC040 and MC68EC040. This referencing applies throughout this section
unless otherwise specified. Table A-1 lists the M68000 family instructions by mnemonic and
indicates which processors they apply to.

Table A-1. M68000 Family Instruction Set And
Processor Cross-Reference

Mnemonic 68000 68008 68010 68020 68030 68040
68881/
68882 68851 CPU32

ABCD X X X X X X X
ADD X X X X X X X
ADDA X X X X X X X
ADDI X X X X X X X
ADDQ X X X X X X X
ADDX X X X X X X X
AND X X X X X X X
ANDI X X X X X X X
ANDI to CCR X X X X X X X

ANDI to SR

1

X X X X X X X

ASL, ASR X X X X X X X
Bcc X X X X X X X
BCHG X X X X X X X
BCLR X X X X X X X
BFCHG X X X
BFCLR X X X
BFEXTS X X X
BFEXTU X X X
BFFFO X X X

Processor Instruction Summary

A-2

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Table A-1. M68000 Family Instruction Set And
Processor Cross-Reference (Continued)

Mnemonic 68000 68008 68010 68020 68030 68040
68881/
68882 68851 CPU32

BFINS X X X
BFSET X X X
BFTST X X X
BGND X
BKPT X X X X X
BRA X X X X X X X
BSET X X X X X X X
BSR X X X X X X X
BTST X X X X X X X
CALLM X
CAS, CAS2 X X X
CHK X X X X X X X
CHK2 X X X X

CINV

1

X

CLR X X X X X X X
CMP X X X X X X X
CMPA X X X X X X X
CMPI X X X X X X X
CMPM X X X X X X X
CMP2 X X X X
cpBcc X X
cpDBcc X X
cpGEN X X

cpRESTORE

1

X X

cpSAVE

1

X X

cpScc X X
cpTRAPcc X X

CPUSH

1

X

DBcc X X X X X X X
DIVS X X X X X X X
DIVSL X X X X
DIVU X X X X X X X
DIVUL X X X X

Processor Instruction Summary

MOTOROLA

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

A-3

Table A-1. M68000 Family Instruction Set And
Processor Cross-Reference (Continued)

Mnemonic 68000 68008 68010 68020 68030 68040
68881/
68882 68851 CPU32

EOR X X X X X X X
EORI X X X X X X X
EORI to CCR X X X X X X X

EORI to SR

1

X X X X X X X

EXG X X X X X X X
EXT X X X X X X X
EXTB X X X X
FABS X

2

X

FSABS,

FDABS
X

2

FACOS

2,3

X
FADD X

2

X

FSADD,

FDADD
X

2

FASIN

2,3

X
FATAN

2,3

X
FATANH

2,3

X
FBcc X

2

X

FCMP X

2

X

FCOS

2,3

X
FCOSH

2,3

X
FDBcc X

2

X

FDIV X

2

X

FSDIV, FDDIV X

2

FETOX

2,3

X
FETOXM1

2,3

X
FGETEXP

2,3

X
FGETMAN

2,3

X
FINT

2,3

X
FINTRZ

2,3

X
FLOG10

2,3

X
FLOG2

2,3

X
FLOGN

2,3

X

Processor Instruction Summary

A-4

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Table A-1. M68000 Family Instruction Set And
Processor Cross-Reference (Continued)

Mnemonic 68000 68008 68010 68020 68030 68040
68881/
68882 68851 CPU32

FLOGNP1

2,3

FMOD

2,3

X
FMOVE X

2

X

FSMOVE,

FDMOVE
X

2

FMOVECR

2,3

X
FMOVEM X

2

X

FMUL X

2

X

FSMUL,

FDMUL
X

2

FNEG X

2

X

FSNEG,

FDNEG
X

2

FNOP X

2

X

FREM

2,3

X

FRESTORE

1

X

2

X

FSAVE* X

2

X

FSCALE

2,3

X
FScc X

2

X

FSGLDIV

2,3

X
FSGLMUL

2,3

X
FSIN

2,3

X
FSINCOS

2,3

X
FSINH

2,3

X
FSQRT X

2

X

FSSQRT,

FDSQRT
X

2

FSUB X

2

X

FSSUB,

FDSUB
X

2

FTAN

2,3

X
FTANH

2,3

X
FTENTOX

2,3

X
FTRAPcc X

2

X

FTST X

2

X

Processor Instruction Summary

MOTOROLA

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

A-5

Table A-1. M68000 Family Instruction Set And
Processor Cross-Reference (Continued)

Mnemonic 68000 68008 68010 68020 68030 68040
68881/
68882 68851 CPU32

FTWOTOX

2,3

X
ILLEGAL X X X X X X X
JMP X X X X X X X
JSR X X X X X X X
LEA X X X X X X X
LINK X X X X X X X
LPSTOP X
LSL,LSR X X X X X X X
MOVE X X X X X X X
MOVEA X X X X X X X
MOVE from CCR X X X X X
MOVE to CCR X X X X X X X
MOVE
from SR

1

4 4

X X X X X

MOVE
to SR

1

X X X X X X X

MOVE USP

1

X X X X X X X

MOVE16 X

MOVEC

1

X X X X X

MOVEM X X X X X X X
MOVEP X X X X X X X
MOVEQ X X X X X X X

MOVES

1

X X X X X

MULS X X X X X X X
MULU X X X X X X X
NBCD X X X X X X X
NEG X X X X X X X
NEGX X X X X X X X
NOP X X X X X X X
NOT X X X X X X X
OR X X X X X X X

Processor Instruction Summary

A-6

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Table A-1. M68000 Family Instruction Set And
Processor Cross-Reference (Continued)

Mnemonic 68000 68008 68010 68020 68030 68040
68881/
68882 68851 CPU32

ORI X X X X X X X
ORI to CCR X X X X X X X

ORI to SR

1

X X X X X X X

PACK X X X

PBcc

1

X

PDBcc

1

X

PEA X X X X X X X

PFLUSH

1

X

5

X X

PFLUSHA

1

X

5

X

PFLUSHR

1

X

PFLUSHS

1

X

PLOAD

1

X

5

X

PMOVE

1

X X

PRESTORE

1

X

PSAVE

1

X

PScc

1

X

PTEST

1

X X X

PTRAPcc

1

X

PVALID X

RESET

1

X X X X X X X

ROL,ROR X X X X X X X
ROXL,

ROXR
X X X X X X X

RTD X X X X X

RTE

1

X X X X X X X

RTM X
RTR X X X X X X X
RTS X X X X X X X
SBCD X X X X X X X
Scc X X X X X X X

STOP

1

X X X X X X X

SUB X X X X X X X
SUBA X X X X X X X
SUBI X X X X X X X
SUBQ X X X X X X X
SUBX X X X X X X X

Processor Instruction Summary

MOTOROLA

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

A-7

NOTES:
1. Privileged (Supervisor) Instruction.
2. Not applicable to MC68EC040 and MC68LC040
3. These instructions are software supported on the MC68040.
4. This instruction is not privileged for the MC68000 and MC68008.
5. Not applicable to MC68EC030.

Table A-1. M68000 Family Instruction Set And
Processor Cross-Reference (Concluded)

Mnemonic 68000 68008 68010 68020 68030 68040
68881/
68882 68851 CPU32

SWAP X X X X X X X
TAS X X X X X X X
TBLS,

TBLSN
X

TBLU,

TBLUN
X

TRAP X X X X X X X
TRAPcc X X X X
TRAPV X X X X X X X
TST X X X X X X X
UNLK X X X X X X X
UNPK X X X

Processor Instruction Summary

A-8

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Table A-2 lists the M68000 family instructions by mnemonics, followed by the descriptive
name.

Table A-2. M68000 Family Instruction Set

Mnemonic Description

ABCD Add Decimal with Extend
ADD Add
ADDA Address
ADDI Add Immediate
ADDQ Add Quick
ADDX Add with Extend
AND Logical AND
ANDI Logical AND Immediate
ANDI to CCR AND Immediate to Condition Code Register
ANDI to SR AND Immediate to Status Register
ASL, ASR Arithmetic Shift Left and Right
Bcc Branch Conditionally
BCHG Test Bit and Change
BCLR Test Bit and Clear
BFCHG Test Bit Field and Change
BFCLR Test Bit Field and Clear
BFEXTS Signed Bit Field Extract
BFEXTU Unsigned Bit Field Extract
BFFFO Bit Field Find First One
BFINS Bit Field Insert
BFSET Test Bit Field and Set
BFTST Test Bit Field
BGND Enter Background Mode
BKPT Breakpoint
BRA Branch
BSET Test Bit and Set
BSR Branch to Subroutine
BTST Test Bit
CALLM CALL Module
CAS Compare and Swap Operands
CAS2 Compare and Swap Dual Operands
CHK Check Register Against Bound
CHK2 Check Register Against Upper and Lower Bounds
CINV Invalidate Cache Entries
CLR Clear
CMP Compare
CMPA Compare Address
CMPI Compare Immediate
CMPM Compare Memory to Memory
CMP2 Compare Register Against Upper and Lower Bounds
cpBcc Branch on Coprocessor Condition
cpDBcc Test Coprocessor Condition Decrement and Branch
cpGEN Coprocessor General Function
cpRESTORE Coprocessor Restore Function

Processor Instruction Summary

MOTOROLA

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

A-9

Table A-2. M68000 Family Instruction Set (Continued)

Mnemonic Description

cpSAVE Coprocessor Save Function
cpScc Set on Coprocessor Condition
cpTRAPcc Trap on Coprocessor Condition
CPUSH Push then Invalidate Cache Entries
DBcc Test Condition, Decrement and Branch
DIVS, DIVSL Signed Divide
DIVU, DIVUL Unsigned Divide
EOR Logical Exclusive-OR
EORI Logical Exclusive-OR Immediate
EORI to CCR Exclusive-OR Immediate to Condition Code Register
EORI to SR Exclusive-OR Immediate to Status Register
EXG Exchange Registers
EXT, EXTB Sign Extend
FABS Floating-Point Absolute Value
FSFABS, FDFABS Floating-Point Absolute Value (Single/Double Precision)
FACOS Floating-Point Arc Cosine
FADD Floating-Point Add
FSADD, FDADD Floating-Point Add (Single/Double Precision)
FASIN Floating-Point Arc Sine
FATAN Floating-Point Arc Tangent
FATANH Floating-Point Hyperbolic Arc Tangent
FBcc Floating-Point Branch
FCMP Floating-Point Compare
FCOS Floating-Point Cosine
FCOSH Floating-Point Hyperbolic Cosine
FDBcc Floating-Point Decrement and Branch
FDIV Floating-Point Divide
FSDIV, FDDIV Floating-Point Divide (Single/Double Precision)
FETOX Floating-Point ex
FETOXM1 Floating-Point ex - 1
FGETEXP Floating-Point Get Exponent
FGETMAN Floating-Point Get Mantissa
FINT Floating-Point Integer Part
FINTRZ Floating-Point Integer Part, Round-to-Zero
FLOG10 Floating-Point Log10
FLOG2 Floating-Point Log2
FLOGN Floating-Point Loge
FLOGNP1 Floating-Point Loge (x + 1)
FMOD Floating-Point Modulo Remainder
FMOVE Move Floating-Point Register
FSMOVE,FDMOVE Move Floating-Point Register (Single/Double Precision)
FMOVECR Move Constant ROM
FMOVEM Move Multiple Floating-Point Registers
FMUL Floating-Point Multiply
FSMUL,FDMUL Floating-Point Multiply (Single/Double Precision)
FNEG Floating-Point Negate
FSNEG,FDNEG Floating-Point Negate (Single/Double Precision)
FNOP Floating-Point No Operation

Processor Instruction Summary

A-10

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Table A-2. M68000 Family Instruction Set (Continued)

Mnemonic Description

FREM IEEE Remainder
FRESTORE Restore Floating-Point Internal State
FSAVE Save Floating-Point Internal State
FSCALE Floating-Point Scale Exponent
FScc Floating-Point Set According to Condition
FSGLDIV Single-Precision Divide
FSGLMUL Single-Precision Multiply
FSIN Sine
FSINCOS Simultaneous Sine and Cosine
FSINH Hyperbolic Sine
FSQRT Floating-Point Square Root
FSSQRT,FDSQRT Floating-Point Square Root (Single/Double Precision)
FSUB Floating-Point Subtract
FSSUB,FDSUB Floating-Point Subtract (Single/Double Precision)
FTAN Tangent
FTANH Hyperbolic Tangent
FTENTOX Floating-Point 10x
FTRAPcc Floating-Point Trap On Condition
FTST Floating-Point Test
FTWOTOX Floating-Point 2x
ILLEGAL Take Illegal Instruction Trap
JMP Jump
JSR Jump to Subroutine
LEA Load Effective Address
LINK Link and Allocate
LPSTOP Low-Power Stop
LSL, LSR Logical Shift Left and Right
MOVE Move
MOVEA Move Address
MOVE from CCR Move from Condition Code Register
MOVE from SR Move from Status Register
MOVE to CCR Move to Condition Code Register
MOVE to SR Move to Status Register
MOVE USP Move User Stack Pointer
MOVE16 16-Byte Block Move
MOVEC Move Control Register
MOVEM Move Multiple Registers
MOVEP Move Peripheral
MOVEQ Move Quick
MOVES Move Alternate Address Space
MULS Signed Multiply
MULU Unsigned Multiply
NBCD Negate Decimal with Extend
NEG Negate
NEGX Negate with Extend
NOP No Operation
NOT Logical Complement

Processor Instruction Summary

MOTOROLA

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

A-11

Table A-2. M68000 Family Instruction Set (Concluded)

Mnemonic Description
OR Logical Inclusive-OR
ORI Logical Inclusive-OR Immediate
ORI to CCR Inclusive-OR Immediate to Condition Code Register
ORI to SR Inclusive-OR Immediate to Status Register
PACK Pack BCD
PBcc Branch on PMMU Condition
PDBcc Test, Decrement, and Branch on PMMU Condition
PEA Push Effective Address
PFLUSH Flush Entry(ies) in the ATCs
PFLUSHA Flush Entry(ies) in the ATCs
PFLUSHR Flush Entry(ies) in the ATCs and RPT Entries
PFLUSHS Flush Entry(ies) in the ATCs
PLOAD Load an Entry into the ATC
PMOVE Move PMMU Register
PRESTORE PMMU Restore Function
PSAVE PMMU Save Function
PScc Set on PMMU Condition
PTEST Test a Logical Address
PTRAPcc Trap on PMMU Condition
PVALID Validate a Pointer
RESET Reset External Devices
ROL, ROR Rotate Left and Right
ROXL, ROXR Rotate with Extend Left and Right
RTD Return and Deallocate
RTE Return from Exception
RTM Return from Module
RTR Return and Restore
RTS Return from Subroutine
SBCD Subtract Decimal with Extend
Scc Set Conditionally
STOP Stop
SUB Subtract
SUBA Subtract Address
SUBI Subtract Immediate
SUBQ Subtract Quick
SUBX Subtract with Extend
SWAP Swap Register Words
TAS Test Operand and Set
TBLS, TBLSN Signed Table Lookup with Interpolate
TBLU, TBLUN Unsigned Table Lookup with Interpolate
TRAP Trap
TRAPcc Trap Conditionally
TRAPV Trap on Overflow
TST Test Operand
UNLK Unlink
UNPK Unpack BCD

Processor Instruction Summary

A-12 MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

A.1 MC68000, MC68008, MC68010 PROCESSORS
The following paragraphs provide information on the MC68000, MC68008, and MC68010
instruction set and addressing modes.

A.1.1 M68000, MC68008, and MC68010 Instruction Set
Table A-3 lists the instructions used with the MC68000 and MC68008 processors, and Table
A-4 lists the instructions used with MC68010.

Table A-3. MC68000 and MC68008 Instruction Set

Mnemonic Description
ABCD Add Decimal with Extend
ADD Add
ADDA Add Address
ADDI Add Immediate
ADDQ Add Quick
ADDX Add with Extend
AND Logical AND
ANDI Logical AND Immediate
ANDI to CCR AND Immediate to Condition Code Register
ANDI to SR AND Immediate to Status Register
ASL, ASR Arithmetic Shift Left and Right
Bcc Branch Conditionally
BCHG Test Bit and Change
BCLR Test Bit and Clear
BRA Branch
BSET Test Bit and Set
BSR Branch to Subroutine
BTST Test Bit
CHK Check Register Against Bound
CLR Clear
CMP Compare
CMPA Compare Address
CMPI Compare Immediate
CMPM Compare Memory to Memory
DBcc Test Condition, Decrement, and Branch
DIVS Signed Divide
DIVU Unsigned Divide
EOR Logical Exclusive-OR
EORI Logical Exclusive-OR Immediate
EORI to CCR Exclusive-OR Immediate to Condition Code Register
EORI to SR Exclusive-OR Immediate to Status Register
EXG Exchange Registers
EXT Sign Extend
ILLEGAL Take Illegal Instruction Trap
JMP Jump
JSR Jump to Subroutine

Processor Instruction Summary

MOTOROLA MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL A-13

Table A-3. MC68000 and MC68008 Instruction Set
(Continued)

Mnemonic Description
LEA Load Effective Address
LINK Link and Allocate
LSL, LSR Logical Shift Left and Right
MOVE Move
MOVEA Move Address
MOVE to CCR Move to Condition Code Register
MOVE from SR Move from Status Register
MOVE to SR Move to Status Register
MOVE USP Move User Stack Pointer
MOVEM Move Multiple Registers
MOVEP Move Peripheral
MOVEQ Move Quick
MULS Signed Multiply
MULU Unsigned Multiply
NBCD Negate Decimal with Extend
NEG Negate
NEGX Negate with Extend
NOP No Operation
NOT Logical Complement
OR Logical Inclusive-OR
ORI Logical Inclusive-OR Immediate
ORI to CCR Inclusive-OR Immediate to Condition Code Register
ORI to SR Inclusive-OR Immediate to Status Register
PEA Push Effective Address
RESET Reset External Devices
ROL, ROR Rotate Left and Right
ROXL, ROXR Rotate with Extend Left and Right
RTE Return from Exception
RTR Return and Restore
RTS Return from Subroutine
SBCD Subtract Decimal with Extend
Scc Set Conditionally
STOP Stop
SUB Subtract
SUBA Subtract Address
SUBI Subtract Immediate
SUBQ Subtract Quick
SUBX Subtract with Extend
SWAP Swap Register Words
TAS Test Operand and Set
TRAP Trap
TRAPV Trap on Overflow
TST Test Operand
UNLK Unlink

Processor Instruction Summary

A-14 MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Table A-4. MC68010 Instruction Set

Mnemonic Description
ABCD Add Decimal with Extend
ADD Add
ADDA Add Address
ADDI Add Immediate
ADDQ Add Quick
ADDX Add with Extend
AND Logical AND
ANDI Logical AND Immediate
ANDI to CCR AND Immediate to Condition Code Register
ANDI to SR AND Immediate to Status Register
ASL, ASR Arithmetic Shift Left and Right
Bcc Branch Conditionally
BCHG Test Bit and Change
BCLR Test Bit and Clear
BKPT Breakpoint
BRA Branch
BSET Test Bit and Set
BSR Branch to Subroutine
BTST Test Bit
CHK Check Register Against Bound
CLR Clear
CMP Compare
CMPA Compare Address
CMPI Compare Immediate
CMPM Compare Memory to Memory
DBcc Test Condition, Decrement and Branch
DIVS Signed Divide
DIVU Unsigned Divide
EOR Logical Exclusive-OR
EORI Logical Exclusive-OR Immediate
EORI to CCR Exclusive-OR Immediate to Condition Code Register
EORI to SR Exclusive-OR Immediate to Status Register
EXG Exchange Registers
EXT Sign Extend
ILLEGAL Take Illegal Instruction Trap
JMP Jump
JSR Jump to Subroutine

Processor Instruction Summary

MOTOROLA MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL A-15

Table A-4. MC68010 Instruction Set (Continued)

Mnemonic Description
LEA Load Effective Address
LINK Link and Allocate
LSL, LSR Logical Shift Left and Right
MOVE Move
MOVEA Move Address
MOVE from CCR Move from Condition Code Register
MOVE from SR Move from Status Register
MOVE to CCR Move to Condition Code Register
MOVE to SR Move to Status Register
MOVE USP Move User Stack Pointer
MOVEC Move Control Register
MOVEM Move Multiple Registers
MOVEP Move Peripheral
MOVEQ Move Quick
MOVES Move Address Space
MULS Signed Multiply
MULU Unsigned Multiply
NBCD Negate Decimal with Extend
NEG Negate
NEGX Negate with Extend
NOP No Operation
NOT Logical Complement
OR Logical Inclusive-OR
ORI Logical Inclusive-OR Immediate
ORI to CCR Inclusive-OR Immediate to Condition Code Register
ORI to SR Inclusive-OR Immediate to Status Register
PEA Push Effective Address
RESET Reset External Devices
ROL, ROR Rotate Left and Right
ROXL, ROXR Rotate with Extend Left and Right
RTD Return and Deallocate
RTE Return from Exception
RTR Return and Restore
RTS Return from Subroutine
SBCD Subtract Decimal with Extend
Scc Set Conditionally
STOP Stop
SUB Subtract
SUBA Subtract Address
SUBI Subtract Immediate
SUBQ Subtract Quick
SUBX Subtract with Extend
SWAP Swap Register Words
TAS Test Operand and Set
TRAP Trap
TRAPV Trap on Overflow
TST Test Operand
UNLK Unlink

Processor Instruction Summary

A-16 MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

A.1.2 MC68000, MC68008, and MC68010 Addressing Modes
The MC68000, MC68008, and MC68010 support 14 addressing modes as shown in Table
A-5.

N = 1 for byte, 2 for word, and 4 for long word. If An is the stack pointer and
the operand size is byte, N = 2 to keep the stack pointer on a word
boundary.

Table A-5. MC68000, MC68008, and MC68010
Data Addressing Modes

Mode Generation
Register Direct Addressing

Data Register Direct
Address Register Direct

<ea> = Dn
<ea> = An

Absolute Data Addressing
Absolute Short
Absolute Long

<ea> = (Next Word)
<ea> = (Next Two Words)

Program Counter Relative Addressing
Relative with Offset
 Relative with Index and Offset

<ea> = (PC) + d16
<ea> = (PC) + d8

Register Indirect Addressing
 Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Offset
Indexed Register Indirect with Offset

<ea> = (An)
<ea> = (An), An ¯ An + N
An ¯ An–N, <ea> = (An)
<ea> = (An) + d16
<ea> = (An) + (Xn) + d8

Immediate Data Addressing
 Immediate
Quick Immediate

DATA = Next Word(s)
Inherent Data

Implied Addressing
Implied Register

<ea> = SR, USP, SSP, PC, VBR,
SFC, DFC

Processor Instruction Summary

MOTOROLA MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL A-17

A.2 MC68020 PROCESSORS
The following paragraphs provide information on the MC68020 instruction set and address-
ing modes.

A.2.1 MC68020 Instruction Set
Table A-6 lists the instructions used with the MC68020 processors.

Table A-6. MC68020 Instruction Set Summary

Mnemonic Description
ABCD Add Decimal with Extend
ADD Add
ADDA Add Address
ADDI Add Immediate
ADDQ Add Quick
ADDX Add with Extend
AND Logical AND
ANDI Logical AND Immediate
ANDI to CCR AND Immediate to Condition Code Register
ANDI to SR AND Immediate to Status Register
ASL, ASR Arithmetic Shift Left and Right
Bcc Branch Conditionally
BCHG Test Bit and Change
BCLR Test Bit and Clear
BFCHG Test Bit Field and Change
BFCLR Test Bit Field and Clear
BFEXTS Signed Bit Field Extract
BFEXTU Unsigned Bit Field Extract
BFFFO Bit Field Find First One
BFINS Bit Field Insert
BFSET Test Bit Field and Set
BFTST Test Bit Field
BKPT Breakpoint
BRA Branch
BSET Test Bit and Set
BSR Branch to Subroutine
BTST Test Bit
CALLM CALL Module
CAS Compare and Swap Operands
CAS2 Compare and Swap Dual Operands
CHK Check Register Against Bound
CHK2 Check Register Against Upper and Lower Bounds
CLR Clear
CMP Compare
CMP2 Compare Register Against Upper and Lower Bounds
CMPA Compare Address
CMPI Compare Immediate

Processor Instruction Summary

A-18 MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Table A-6. MC68020 Instruction Set Summary
(Continued)

Mnemonic Description
CMPM Compare Memory to Memory
cpBcc Branch to Coprocessor Condition
cpDBcc Test Coprocessor Condition, Decrement and Branch
cpGEN Coprocessor General Function
cpRESTORE Coprocessor Restore Function
cpSAVE Coprocessor Save Function
cpScc Set on Coprocessor Condition
cpTRACPcc Trap on Coprocessor Condition
DBcc Test Condition, Decrement, and Branch
DIVS, DIVSL Signed Divide
DIVU, DIVUL Unsigned Divide
EOR Logical Exclusive-OR
EORI Logical Exclusive-OR Immediate
EORI to CCR Exclusive-OR Immediate to Condition Code Register
EORI to SR Exclusive-OR Immediate to Status Register
EXG Exchange Registers
EXT, EXTB Sign Extend
ILLEGAL Take Illegal Instruction Trap
JMP Jump
JSR Jump to Subroutine
LEA Load Effective Address
LINK Link and Allocate
LSL, LSR Logical Shift Left and Right
MOVE Move
MOVEA Move Address
MOVE from CCR Move from Condition Code Register
MOVE from SR Move from Status Register
MOVE to CCR Move to Condition Code Register
MOVE to SR Move to Status Register
MOVE USP Move User Stack Pointer
MOVEC Move Control Register
MOVEM Move Multiple Registers
MOVEP Move Peripheral
MOVEQ Move Quick
MOVES Move Alternate Address Space
MULS Signed Multiply
MULU Unsigned Multiply
NBCD Negate Decimal with Extend
NEG Negate
NEGX Negate with Extend
NOP No Operation
NOT Logical Complement

Processor Instruction Summary

MOTOROLA MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL A-19

Table A-6. MC68020 Instruction Set Summary
(Concluded)

Mnemonic Description
OR Logical Inclusive-OR
ORI Logical Inclusive-OR Immediate
ORI to CCR Inclusive-OR Immediate to Condition Code Register
ORI to SR Inclusive-OR Immediate to Status Register
PACK Pack BCD
PEA Push Effective Address
RESET Reset External Devices
ROL, ROR Rotate Left and Right
ROXL, ROXR Rotate with Extend Left and Right
RTD Return and Deallocate
RTE Return from Exception
RTM Return from Module
RTR Return and Restore
RTS Return from Subroutine
SBCD Subtract Decimal with Extend
Scc Set Conditionally
STOP Stop
SUB Subtract
SUBA Subtract Address
SUBI Subtract Immediate
SUBQ Subtract Quick
SUBX Subtract with Extend
SWAP Swap Register Words
TAS Test Operand and Set
TRAP Trap
TRAPcc Trap Conditionally
TRAPV Trap on Overflow
TST Test Operand
UNLK Unlink
UNPK Unpack BCD

Processor Instruction Summary

A-20 MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

A.2.2 MC68020 Addressing Modes
The MC68020 supports 18 addressing modes as shown in Table A-7.

Table A-7. MC68020 Data Addressing Modes

Addressing Modes Syntax
Register Direct

Address Register Direct
Address Register Direct

Dn
An

Register Indirect
Address Register Indirect
Address Register Indirect with Postincrement
Address Register Indirect with Predecrement
Address Register Indirect with Displacement

(An)
(An)+
–(An)
(d16,An)

Register Indirect with Index
Address Register Indirect with Index (8-Bit Displacement)
Address Register Indirect with Index (Base Displacement)

(d8,An,Xn)
(bd,An,Xn)

Memory Indirect
Memory Indirect Postindexed
Memory Indirect Preindexed

([bd,An],Xn,od)
([bd,An,Xn],od)

Program Counter Indirect with Displacement (d16,PC)

Program Counter Indirect with Index
 PC Indirect with Index (8-Bit Displacement)
PC Indirect with Index (Base Displacement)

(d8,PC,Xn)
(bd,PC,Xn)

Program Counter Memory Indirect
PC Memory Indirect Postindexed
PC Memory Indirect Preindexed

([bd,PC],Xn,od)
([bd,PC,Xn],od)

Absolute
Absolute Short
Absolute Long

(xxx).W
(xxx).L

Immediate #<data>

Processor Instruction Summary

MOTOROLA MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL A-21

A.3 MC68030 PROCESSORS
The following paragraphs provide information on the MC68030 instruction set and address-
ing modes.

A.3.1 MC68030 Instruction Set
Table A-8 lists the instructions used with the MC68030 processors.

Table A-8. MC68030 Instruction Set Summary

Mnemonic Description
ABCD Add Decimal with Extend
ADD Add
ADDA Add Address
ADDI Add Immediate
ADDQ Add Quick
ADDX Add with Extend
AND Logical AND
ANDI Logical AND Immediate
ANDI to CCR AND Immediate to Condition Code Register
ANDI to SR AND Immediate to Status Register
ASL, ASR Arithmetic Shift Left and Right
Bcc Branch Conditionally
BCHG Test Bit and Change
BCLR Test Bit and Clear
BFCHG Test Bit Field and Change
BFCLR Test Bit Field and Clear
BFEXTS Signed Bit Field Extract
BFEXTU Unsigned Bit Field Extract
BFFFO Bit Field Find First One
BFINS Bit Field Insert
BFSET Test Bit Field and Set
BFTST Test Bit Field
BKPT Breakpoint
BRA Branch
BSET Test Bit and Set
BSR Branch to Subroutine
BTST Test Bit
CAS Compare and Swap Operands
CAS2 Compare and Swap Dual Operands
CHK Check Register Against Bound
CHK2 Check Register Against Upper and Lower Bounds
CLR Clear
CMP Compare
CMPA Compare Address
CMPI Compare Immediate
CMPM Compare Memory to Memory

Processor Instruction Summary

A-22 MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Table A-8. MC68030 Instruction Set Summary
(Continued)

Mnemonic Description
CMP2 Compare Register Against Upper and Lower Bounds
cpBcc Branch on Coprocessor Condition
cpDBcc Test Coprocessor Condition, Decrement and Branch
cpGEN Coprocessor General Function
cpRESTORE Coprocessor Restore Function
cpSAVE Coprocessor Save Function
cpScc Set on Coprocessor Condition
cpTRAPcc Trap on Coprocessor Condition
DBcc Test Condition, Decrement and Branch
DIVS, DIVSL Signed Divide
DIVU, DIVUL Unsigned Divide
EOR Logical Exclusive-OR
EORI Logical Exclusive-OR Immediate
EORI to CCR Exclusive-OR Immediate to Condition Code Register
EORI to SR Exclusive-OR Immediate to Status Register
EXG Exchange Registers
EXT, EXTB Sign Extend
ILLEGAL Take Illegal Instruction Trap
JMP Jump
JSR Jump to Subroutine
LEA Load Effective Address
LINK Link and Allocate
LSL, LSR Logical Shift Left and Right
MOVE Move
MOVEA Move Address
MOVE from CCR Move from Condition Code Register
MOVE to CCR Move to Condition Code Register
MOVE from SR Move from Status Register
MOVE to SR Move to Status Register
MOVE USP Move User Stack Pointer
MOVEC Move Control Register
MOVEM Move Multiple Registers
MOVEP Move Peripheral
MOVEQ Move Quick
MOVES Move Alternate Address Space
MULS Signed Multiply
MULU Unsigned Multiply
NBCD Negate Decimal with Extend
NEG Negate
NEGX Negate with Extend
NOP No Operation
NOT Logical Complement

Processor Instruction Summary

MOTOROLA MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL A-23

*Not applicable to the MC68EC030

Table A-8. MC68030 Instruction Set Summary
(Concluded)

Mnemonic Description
NBCD Negate Decimal with Extend
NEG Negate
NEGX Negate with Extend
NOP No Operation
NOT Logical Complement
OR Logical Inclusive-OR
ORI Logical Inclusive-OR Immediate
ORI to CCR Inclusive-OR Immediate to Condition Code Register
ORI to SR Inclusive-OR Immediate to Status Register
PACK Pack BCD
PEA Push Effective Address
PFLUSH* Invalidate Entries in the ATC
PFLUSHA* Invalidate all Entries in the ATC
PLOAD* Load an Entry into the ATC
PMOVE Move PMMU Register
PTEST Get Information about Logical Address
RESET Reset External Devices
ROL, ROR Rotate Left and Right
ROXL, ROXR Rotate with Extend Left and Right
RTD Return and Deallocate
RTE Return from Exception
RTR Return and Restore
RTS Return from Subroutine
SBCD Subtract Decimal with Extend
Scc Set Conditionally
STOP Stop
SUB Subtract
SUBA Subtract Address
SUBI Subtract Immediate
SUBQ Subtract Quick
SUBX Subtract with Extend
SWAP Swap Register Words
TAS Test Operand and Set
TRAP Trap
TRAPcc Trap Conditionally
TRAPV Trap on Overflow
TST Test Operand
UNLK Unlink
UNPK Unpack BCD

Processor Instruction Summary

A-24 MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

A.3.2 MC68030 Addressing Modes
The MC68030 supports 18 addressing modes as shown in Table A-9.

Table A-9. MC68030 Data Addressing Modes

Addressing Modes Syntax
Register Direct

Data Register Direct
 Address Register Direct

Dn
An

Register Indirect
Address Register Indirect
Address Register Indirect with Postincrement
Address Register Indirect with Predecrement
Address Register Indirect with Displacement

(An)
(An)+
–(An)
(d16,An)

Register Indirect with Index
Address Register Indirect with Index (8-Bit Displacement)
Address Register Indirect with Index (Base Displacement)

(d8,An,Xn)
(bd,An,Xn)

Memory Indirect
Memory Indirect Postindexed
Memory Indirect Preindexed

([bd,An],Xn,od)
([bd,An,Xn],od)

Program Counter Indirect with Displacement (d16,PC)

Program Counter Indirect with Index
 PC Indirect with Index (8-Bit Displacement)
PC Indirect with Index (Base Displacement)

(d8,PC,Xn)
(bd,PC,Xn)

Program Counter Memory Indirect
PC Memory Indirect Postindexed
PC Memory Indirect Preindexed

([bd,PC],Xn,od)
([bd,PC,Xn],od)

Absolute
Absolute Short
Absolute Long

(xxx).W
(xxx).L

Immediate #<data>

Processor Instruction Summary

MOTOROLA MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL A-25

A.4 MC68040 PROCESSORS
The following paragraphs provide information on the MC68040 instruction set and address-
ing modes.

A.4.1 MC68040 Instruction Set
Table A-10 lists the instructions used with the MC68040 processor.

Table A-10. MC68040 Instruction Set

Mnemonic Description
ABCD Add Decimal with Extend
ADD Add
ADDA Add Address
ADDI Add Immediate
ADDQ Add Quick
ADDX Add with Extend
AND Logical AND
ANDI Logical AND Immediate
ANDI to CCR AND Immediate to Condition Code Register
ANDI to SR AND Immediate to Status Register
ASL, ASR Arithmetic Shift Left and Right
Bcc Branch Conditionally
BCHG Test Bit and Change
BCLR Test Bit and Clear
BFCHG Test Bit Field and Change
BFCLR Test Bit Field and Clear
BFEXTS Signed Bit Field Extract
BFEXTU Unsigned Bit Field Extract
BFFFO Bit Field Find First One
BFINS Bit Field Insert
BFSET Test Bit Field and Set
BFTST Test Bit Field
BKPT Breakpoint
BRA Branch
BSET Test Bit and Set
BSR Branch to Subroutine
BTST Test Bit
CAS Compare and Swap Operands
CAS2 Compare and Swap Dual Operands
CHK Check Register Against Bound
CHK2 Check Register Against Upper and Lower Bounds
CINV Invalidate Cache Entries
CLR Clear
CMP Compare
CMPA Compare Address

Processor Instruction Summary

A-26 MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Table A-10. MC68040 Instruction Set (Continued)

Mnemonic Description
CMPI Compare Immediate
CMPM Compare Memory to Memory
CMP2 Compare Register Against Upper and Lower Bounds
CPUSH Push then Invalidate Cache Entries
DBcc Test Condition, Decrement and Branch
DIVS, DIVSL Signed Divide
DIVU, DIVUL Unsigned Divide
EOR Logical Exclusive-OR
EORI Logical Exclusive-OR Immediate
EORI to CCR Exclusive-OR Immediate to Condition Code Register
EORI to SR Exclusive-OR Immediate to Status Register
EXG Exchange Registers
EXT, EXTB Sign Extend

FABS1 Floating-Point Absolute Value

FSABS, FDABS1 Floating-Point Absolute Value (Single/Double Precision)

FACOS1,2 Floating-Point Arc Cosine

FADD1 Floating-Point Add

FSADD, FDADD1 Floating-Point Add (Single/Double Precision)

FASIN1,2 Floating-Point Arc Sine

FATAN1,2 Floating-Point Arc Tangent

FATANH1,2 Floating-Point Hyperbolic Arc Tangent

FBcc1 Floating-Point Branch

FCMP1 Floating-Point Compare

FCOS1,2 Floating-Point Cosine

FCOSH1,2 Floating-Point Hyperbolic Cosine

FDBcc1 Floating-Point Decrement and Branch

FDIV1 Floating-Point Divide

FSDIV, FDDIV1 Floating-Point Divide (Single/Double Precision)

FETOX1,2 Floating-Point ex

FETOXM11,2 Floating-Point ex - 1

FGETEXP1,2 Floating-Point Get Exponent

FGETMAN1,2 Floating-Point Get Mantissa

FINT1,2 Floating-Point Integer Part

FINTRZ1,2 Floating-Point Integer Part, Round-to-Zero

FLOG101,2 Floating-Point Log10

FLOG21,2 Floating-Point Log2

FLOGN1,2 Floating-Point Loge

FLOGNP11,2 Floating-Point Loge (x + 1)

FMOD1,2 Floating-Point Modulo Remainder

FMOVE1 Move Floating-Point Register

FSMOVE, FDMOVE1 Move Floating-Point Register (Single/Double Precision)

FMOVECR1 Move Constant ROM

FMOVEM1 Move Multiple Floating-Point Registers

FMUL1 Floating-Point Multiply

FSMUL, FDMUL1 Floating-Point Multiply (Single/Double Precision)

Processor Instruction Summary

MOTOROLA MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL A-27

Table A-10. MC68040 Instruction Set (Continued)

Mnemonic Description
FNEG1 Floating-Point Negate

FSNEG, FDNEG1 Floating-Point Negate (Single/Double Precision)

FNOP1 Floating-Point No Operation

FREM1,2 IEEE Remainder

FRESTORE1 Restore Floating-Point Internal State

FSAVE1 Save Floating-Point Internal State

FSCALE1,2 Floating-Point Scale Exponent

FScc1 Floating-Point Set According to Condition

FSGLDIV1,2 Single-Precision Divide

FSGLMUL1,2 Single-Precision Multiply

FSIN1,2 Sine

FSINCOS1,2 Simultaneous Sine and Cosine

FSINH1,2 Hyperbolic Sine

FSQRT1 Floating-Point Square Root

FSSQRT, FDSQRT1 Floating-Point Square Root (Single/Double Precision)

FSUB1 Floating-Point Subtract

FSSUB, FDSUB1 Floating-Point Subtract (Single/Double Precision)

FTAN1,2 Tangent

FTANH1,2 Hyperbolic Tangent

FTENTOX1,2 Floating-Point 10x

FTRAPcc1,2 Floating-Point Trap On Condition

FTST1 Floating-Point Test

FTWOTOX1,2 Floating-Point 2x
ILLEGAL Take Illegal Instruction Trap
JMP Jump
JSR Jump to Subroutine
LEA Load Effective Address
LINK Link and Allocate
LSL, LSR Logical Shift Left and Right
MOVE Move
MOVEA Move Address
MOVE from CCR Move from Condition Code Register
MOVE to CCR Move to Condition Code Register
MOVE from SR Move from Status Register
MOVE to SR Move to Status Register
MOVE USP Move User Stack Pointer
MOVEC Move Control Register
MOVEM Move Multiple Registers
MOVEP Move Peripheral
MOVEQ Move Quick
MOVES Move Alternate Address Space
MOVE16 16-Byte Block Move
MULS Signed Multiply
MULU Unsigned Multiply

Processor Instruction Summary

A-28 MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

NOTES:
1. Not applicable to the MC68EC040 and MC68LC040.
2. These instructions are software supported.

Table A-10. MC68040 Instruction Set (Concluded)

Mnemonic Description
NBCD Negate Decimal with Extend
NEG Negate
NEGX Negate with Extend
NOP No Operation
NOT Logical Complement
OR Logical Inclusive-OR
ORI Logical Inclusive-OR Immediate
ORI to CCR Inclusive-OR Immediate to Condition Code Register
ORI to SR Inclusive-OR Immediate to Status Register
PACK Pack BCD
PEA Push Effective Address
PFLUSH Flush Entry(ies) in the ATCs
PFLUSHA Flush all Entry(ies) in the ATCs
PTEST Test a Logical Address
RESET Reset External Devices
ROL, ROR Rotate Left and Right
ROXL, ROXR Rotate with Extend Left and Right
RTD Return and Deallocate
RTE Return from Exception
RTR Return and Restore
RTS Return from Subroutine
SBCD Subtract Decimal with Extend
Scc Set Conditionally
STOP Stop
SUB Subtract
SUBA Subtract Address
SUBI Subtract Immediate
SUBQ Subtract Quick
SUBX Subtract with Extend
SWAP Swap Register Words
TAS Test Operand and Set
TRAP Trap
TRAPcc Trap Conditionally
TRAPV Trap on Overflow
TST Test Operand
UNLK Unlink
UNPK Unpack BCD

Processor Instruction Summary

MOTOROLA MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL A-29

A.4.2 MC68040 Addressing Modes
The MC68040 supports 18 addressing modes as shown in Table A-11.

Table A-11. MC68040 Data Addressing Modes

Addressing Modes Syntax
Register Direct

Data Register Direct
Address Register Direct

Dn
An

Register Indirect
Address Register Indirect
Address Register Indirect with Postincrement
Address Register Indirect with Predecrement
Address Register Indirect with Displacement

(An)
(An) +
–(An)
(d16,An)

Register Indirect with Index
Address Register Indirect with Index (8-Bit Displacement)

Address Register Indirect with Index (Base Displacement)

(d8,An,Xn)

(bd,An,Xn)
Memory Indirect

Memory Indirect Postindexed
Memory Indirect Preindexed

([bd,An],Xn,od)
([bd,An,Xn],od)

Program Counter Indirect with Displacement (d16,PC)

Program Counter Indirect with Index
PC Indirect with Index (8-Bit Displacement)
PC Indirect with Index (Base Displacement)

(d8,PC,Xn)

(bd,PC,Xn)
Program Counter Memory Indirect

PC Memory Indirect Postindexed
PC Memory Indirect Preindexed

([bd,PC],Xn,od)
([bd,PC,Xn],od)

Absolute
Absolute Short
Absolute Long

xxx.W
xxx.L

Immediate # < data >

Processor Instruction Summary

A-30 MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

A.5 MC68881/MC68882 COPROCESSORS
The following paragraphs provide information on the MC68881/MC68882 instruction set and
addressing modes.

A.5.1 MC68881/MC68882 Instruction Set
Table A-12 lists the instructions used with the MC68881/MC68882 coprocessors.

Table A-12. MC68881/MC68882 Instruction Set

Mnemonic Description
FABS Floating-Point Absolute Value
FACOS Floating-Point Arc Cosine
FADD Floating-Point Add
FASIN Floating-Point Arc Sine
FATAN Floating-Point Arc Tangent
FATANH Floating-Point Hyperbolic Arc Tangent
FBcc Floating-Point Branch
FCMP Floating-Point Compare
FCOS Floating-Point Cosine
FCOSH Floating-Point Hyperbolic Cosine
FDBcc Floating-Point Decrement and Branch
FDIV Floating-Point Divide
FETOX Floating-Point ex
FETOXM1 Floating-Point ex - 1
FGETEXP Floating-Point Get Exponent
FGETMAN Floating-Point Get Mantissa
FINT Floating-Point Integer Part
FINTRZ Floating-Point Integer Part, Round-to-Zero
FLOG10 Floating-Point Log10
FLOG2 Floating-Point Log2
FLOGN Floating-Point Loge
FLOGNP1 Floating-Point Loge (x + 1)
FMOD Floating-Point Modulo Remainder
FMOVE Move Floating-Point Register
FMOVECR Move Constant ROM
FMOVEM Move Multiple Floating-Point Registers
FMUL Floating-Point Multiply
FNEG Floating-Point Negate
FNOP Floating-Point No Operation
FREM IEEE Remainder
FRESTORE Restore Floating-Point Internal State
FSAVE Save Floating-Point Internal State
FSCALE Floating-Point Scale Exponent
FScc Floating-Point Set According to Condition
FSGLDIV Single-Precision Divide
FSGLMUL Single-Precision Multiply
FSIN Sine
FSINCOS Simultaneous Sine and Cosine
FSINH Hyperbolic Sine

Processor Instruction Summary

MOTOROLA MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL A-31

A.5.2 MC68881/MC68882 Addressing Modes
The MC68881/MC68882 does not perform address calculations. When the floating-point
coprocessor instructs the processor to transfer an operand via the coprocessor interface,
the processor performs the addressing mode calculation requested in the instruction.

A.6 MC68851 COPROCESSORS
The following paragraphs provide information on the MC68851 instruction set and address-
ing modes.

A.6.1 MC68851 Instruction Set
Table A-13 lists the instructions used with the MC68851 coprocessor.

A.6.2 MC68851 Addressing Modes
The MC68851 supports the same addressing modes as the MC68020 (see Table A-7).

Table A-12. MC68881/MC68882 Instruction Set

Mnemonic Description
FSQRT Floating-Point Square Root
FSUB Floating-Point Subtract
FTAN Tangent
FTANH Hyperbolic Tangent
FTENTOX Floating-Point 10x
FTRAPcc Floating-Point Trap On Condition
FTST Floating-Point Test
FTWOTOX Floating-Point 2x

Table A-13. MC68851 Instruction Set

Mnemonic Description
PBcc Branch on PMMU Condition
PDBcc Test, Decrement, and Branch on PMMU Condition
PFLUSH Flush Entry(ies) in the ATCs
PFLUSHA Flush Entry(ies) in the ATCs
PFLUSHR Flush Entry(ies) in the ATCs and RPT Entries
PFLUSHS Flush Entry(ies) in the ATCs
PLOAD Load an Entry into the ATC
PMOVE Move PMMU Register
PRESTORE PMMU Restore Function
PSAVE PMMU Save Function
PScc Set on PMMU Condition
PTEST Test a Logical Address
PTRAPcc Trap on PMMU Condition
PVALID Validate a Pointer

Processor Instruction Summary

A-32 MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOTOROLA

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

B-1

APPENDIX B
EXCEPTION PROCESSING REFERENCE

This appendix provides a quick reference for system programmers who are already familiar
with the stack frames. For more detail, please refer to the appropriate userOs manual.

B.1 EXCEPTION VECTOR ASSIGNMENTS FOR THE M68000 FAMILY

Table B-1 lists all vector assignments up to and including the MC68040 and its derivatives.
Many of these vector assignments are processor specific. For instance, vector 13, the
coprocessor protocol violation vector, only applies to the MC68020, MC68EC020,
MC68030, and MC68EC030. Refer to the appropriate user’s manual to determine which
exception type is applicable to a specific processor.

Exception Processing Reference

B-2

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Table B-1. Exception Vector Assignments for the M68000 Family

Vector
Number(s)

Vector
Offset (Hex) Assignment

0 000 Reset Initial Interrupt Stack Pointer

1 004 Reset Initial Program Counter

2 008 Access Fault

3 00C Address Error

4 010 Illegal Instruction

5 014 Integer Divide by Zero

6 018 CHK, CHK2 Instruction

7 01C FTRAPcc, TRAPcc, TRAPV Instructions

8 020 Privilege Violation

9 024 Trace

10 028 Line 1010 Emulator (Unimplemented A- Line Opcode)

11 02C Line 1111 Emulator (Unimplemented F-Line Opcode)

12 030 (Unassigned, Reserved)

13 034 Coprocessor Protocol Violation

14 038 Format Error

15 03C Uninitialized Interrupt

16–23 040–05C (Unassigned, Reserved)

24 060 Spurious Interrupt

25 064 Level 1 Interrupt Autovector

26 068 Level 2 Interrupt Autovector

27 06C Level 3 Interrupt Autovector

28 070 Level 4 Interrupt Autovector

29 074 Level 5 Interrupt Autovector

30 078 Level 6 Interrupt Autovector

31 07C Level 7 Interrupt Autovector

32–47 080–0BC TRAP #0 D 15 Instruction Vectors

48 0C0 FP Branch or Set on Unordered Condition

49 0C4 FP Inexact Result

50 0C8 FP Divide by Zero

51 0CC FP Underflow

52 0D0 FP Operand Error

53 0D4 FP Overflow

54 0D8 FP Signaling NAN

55 0DC FP Unimplemented Data Type (Defined for MC68040)

56 0E0 MMU Configuration Error

57 0E4 MMU Illegal Operation Error

58 0E8 MMU Access Level Violation Error

59–63 0ECD0FC (Unassigned, Reserved)

64–255 100D3FC User Defined Vectors (192)

Exception Processing Reference

MOTOROLA

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

B-3

B.2 EXCEPTION STACK FRAMES

Figures B-1 through B-15 illustrate all exception stack frames for the M68000 family..

Figure B-1. MC68000 Group 1 and 2 Exception Stack Frame

Figure B-2. MC68000 Bus or Address Error Exception Stack Frame

Figure B-3. Four-Word Stack Frame, Format $0

Figure B-4. Throwaway Four-Word Stack Frame, Format $1

STATUS REGISTER
SP

15
 0

PROGRAM COUNTER HIGH

7
 0

PROGRAM COUNTER LOW

7
0

ODD BYTE
 EVEN BYTE

HIGHER

ADDRESS

LOWER

ADDRESS

015

I/N FUNCTION CODE

HIGH

LOW

2345

R/W

STATUS REGISTER
INSTRUCTION REGISTER

LOW
HIGH

ACCESS ADDRESS

PROGRAM COUNTER

R/W (READ/WRITE): WRITE = 0, READ = 1. I/N

(INSTRUCTION/NOT): INSTRUCTION = 0, NOT = 1.

STATUS REGISTER

PROGRAM COUNTER

0 0 0 0 VECTOR OFFSET

015
SP

+$02

+$06

STATUS REGISTER

PROGRAM COUNTER

0 0 0 1 VECTOR OFFSET

015
SP

+$02

+$06

Exception Processing Reference

B-4

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Figure B-5. Six-Word Stack Frame, Format $2

Figure B-6. MC68040 Floating-Point Post-Instruction Stack Frame, Format $3

STATUS REGISTER

PROGRAM COUNTER

0 0 1 0 VECTOR OFFSET

015
SP

+$02

+$06

ADDRESS
+$08

STATUS REGISTER

PROGRAM COUNTER

0 0 1 0 VECTOR OFFSET

015
SP

+$02

+$06

EFFECTIVE ADDRESS
+$08

Exception Processing Reference

MOTOROLA

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

B-5

Figure B-7. MC68EC040 and MC68LC040 Floating-Point Unimplemented Stack
Frame, Format $4

Figure B-8. MC68040 Access Error Stack Frame, Format $7

STATUS REGISTER

PROGRAM COUNTER

0 1 0 0 VECTOR OFFSET

015
SP

+$02

+$06

EFFECTIVE ADDRESS (EA)
+$08

PC OF FAULTED

INSTRUCTION

+$0C

SPECIAL STATUS WORD

$00 WRITEBACK 1 STATUS (WB1S)

015
SP

+$02

+$12

FAULT ADDRESS (FA)
+$14

WRITEBACK 3 ADDRESS (WB3A)

WRITEBACK 3 DATA (WB3D)

WRITEBACK 1 DATA/PUSH DATA LW0 (WB1D/PD0)

PUSH DATA LW 1 (PD1)

WRITEBACK 2 ADDRESS (WB2A)

WRITEBACK 2 DATA (WB2D)

WRITEBACK 1 ADDRESS (WB1A)

PUSH DATA LW 2 (PD2)

PUSH DATA LW 3 (PD3)

+$18

+$1C

+$20

+$24

+$28

+$2C

+$30

+$34

+$38

STATUS REGISTER

PROGRAM COUNTER

0 1 1 1 VECTOR OFFSET

EFFECTIVE ADDRESS (EA)

$00 WRITEBACK 2 STATUS (WB2S)
$00 WRITEBACK 3 STATUS (WB3S)

+$10

+$0C
+$0E

+$08
+$0A

+$06

Exception Processing Reference

B-6

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Figure B-9. MC68010 Bus and Address Error Stack Frame, Format $8

Figure B-10. MC68020 Bus and MC68030 Coprocessor Mid-Instruction Stack Frame,
Format $9

STATUS REGISTER

VECTOR OFFSET
1 0 0 0

SP

+$02

+$06

15
 0

+$08

+$0C

FAULT ADDRESS HIGH

+$10

+$14

+$16

PROGRAM COUNTER HIGH

DATA OUTPUT BUFFER

PROGRAM COUNTER LOW

FAULT ADDRESS LOW

SPECIAL STATUS WORD

UNUSED, RESERVED

UNUSED, RESERVED

DATA INPUT BUFFER

UNUSED, RESERVED

+$18

$1A

+$50

INSTRUCTION OUTPUT BUFFER

INTERNAL INFORMATION, 16 WORDS

|VERSION|

|NUMBER|

NOTE:
The stack pointer decrements by 29 words,
although only 26 words of information actually
write to memory. Motorola reserves the three
additional words for future use.

STATUS REGISTER

VECTOR OFFSET1 0 0 1

SP
+$02

+$06

15 0

+$08

INTERNAL REGISTERS

4 WORDS

+$0C

+$12

PROGRAM COUNTER

INSTRUCTION ADDRESS

Exception Processing Reference

MOTOROLA

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

B-7

Figure B-11. MC68020 and MC68030 Short Bus Cycle Stack Frame, Format $A

STATUS REGISTER

VECTOR OFFSET1 0 1 0

SP
+$02

+$06

15 0

+$08

+$0C

+$12

INTERNAL REGISTER
SPECIAL STATUS REGISTER
INSTRUCTION PIPE STAGE C
INSTRUCTION PIPE STATE B

INTERNAL REGISTER
INTERNAL REGISTER

INTERNAL REGISTER
INTERNAL REGISTER

+$0A

+$0E
+$10

+$14
+$16
+$18
+$1A
+$1C
+$1E

PROGRAM COUNTER

DATA CYCLE FAULT ADDRESS

DATA OUTPUT BUFFER

Exception Processing Reference

B-8

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Figure B-12. MC68020 and MC68030 Long Bus Cycle Stack Frame, Format $B

Figure B-13. CPU32 Bus Error for Prefetches and Operands Stack Frame, Format $C

+$02

+$06
+$08

+$0C

+$12

+$0A

+$0E
+$10

+$14
+$16
+$18
+$1A
+$1C
+$1E

STATUS REGISTER

VECTOR OFFSET1 0 1 1

SP

15 0

INTERNAL REGISTER
SPECIAL STATUS REGISTER
INSTRUCTION PIPE STAGE C
INSTRUCTION PIPE STAGE B

INTERNAL REGISTER
INTERNAL REGISTER

INTERNAL REGISTERS, 2 WORDS

INTERNAL REGISTERS, 4 WORDS

INTERNAL REGISTERS, 3 WORDS

VERSION # INTERNAL INFORMATION

INTERNAL REGISTERS 18 WORDS

+$5A

+$38

+$36

+$30

+$2C
+$2A
+$28

+$24

+$22

PROGRAM COUNTER

DATA CYCLE FAULT ADDRESS

DATA OUTPUT BUFFER

STAGE B ADDRESS

DATA INPUT BUFFER

STATUS REGISTER

VECTOR OFFSET1 1 0 0

SP
+$02

+$06

15 0

+$08

+$0C

FAULTED ADDRESS HIGH

DBUF HIGH

INTERNAL TRANSFER COUNT REGISTER
SPECIAL STATUS WORD

+$10

+$14
+$16

RETURN PROGRAM COUNTER HIGH

CURRENT INSTRUCTION PROG. COUNTER HIGH

RETURN PROGRAM COUNTER LOW

FAULTED ADDRESS LOW

DBUF LOW

CURRENT INSTRUCTION PROG. COUNTER LOW

0 0

Exception Processing Reference

MOTOROLA

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

B-9

Figure B-14. CPU32 Bus Error on MOVEM Operand Stack Frame, Format $C

Figure B-15. CPU32 Four- and Six-Word Bus Error Stack Frame, Format $C

STATUS REGISTER

VECTOR OFFSET1 1 0 0

SP
+$02

+$06

15 0

+$08

+$0C

FAULTED ADDRESS HIGH

DBUF HIGH

INTERNAL TRANSFER COUNT REGISTER
SPECIAL STATUS WORD

+$10

+$14
+$16

RETURN PROGRAM COUNTER HIGH

CURRENT INSTRUCTION PROG. COUNTER HIGH

RETURN PROGRAM COUNTER LOW

FAULTED ADDRESS LOW

DBUF LOW

CURRENT INSTRUCTION PROG. COUNTER LOW

0 1

STATUS REGISTER

VECTOR OFFSET1 1 0 0

SP
+$02

+$06

15 0

+$08

+$0C

FAULTED ADDRESS HIGH

DBUF HIGH

INTERNAL TRANSFER COUNT REGISTER
SPECIAL STATUS WORD

+$10

+$14
+$16

RETURN PROGRAM COUNTER HIGH

CURRENT INSTRUCTION PROG. COUNTER HIGH

RETURN PROGRAM COUNTER LOW

FAULTED ADDRESS LOW

DBUF LOW

CURRENT INSTRUCTION PROG. COUNTER LOW

1 0

Exception Processing Reference

B-10

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

B.3 FLOATING-POINT STACK FRAMES

Figures B-16 through B-23 illustrate floating-point stack frames for the MC68881/MC68882
and the MC68040.

Figure B-16. MC68881/MC68882 and MC68040 Null Stack Frame

Figure B-17. MC68881 Idle Stack Frame

31
 0
15
23
 7

$00
 (UNDEFINED)
 (RESERVED)
+$00

VERSION NUMBER
+$00

+$04

+$08

+$0C

+$10

+$14

31
 0
15
23
 7

+$18

+$18

COMMAND/CONDITION REGISTER

EXCEPTIONAL OPERAND

(12 BYTES)

OPERAND REGISTER

BIU FLAGS

(RESERVED)

(RESERVED)

Exception Processing Reference

B-11

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Figure B-18. MC68881 Busy Stack Frame

Figure B-19. MC68882 Idle Stack Frame

Figure B-20. MC68882 Busy Stack Frame

VERSION NUMBER
+$00

+$04

+$08

+$0C

+$AC

+$B0

31
 0
15
23
 7

+$B4

+$B4

INTERNAL REGISTERS

(180 BYTES)

(RESERVED)

VERSION NUMBER
+$00

+$04

+$08

+$34

+$38

31
 0
15
23
 7

+$38

COMMAND/CONDITION REGISTER

INTERNAL REGISTERS

(32 BYTES)

OPERAND REGISTER

BIU FLAGS

+$24

+$28

+$2C

+$30

EXCEPTIONAL OPERAND

(12 BYTES)

(RESERVED)

(RESERVED)

VERSION NUMBER

31
 0
15
23
 7

+$D4

INTERNAL REGISTERS

(212 BYTES)

+$00

+$04

+$08

+$0C

+$CC

+$D0

+$D4

(RESERVED)

Exception Processing Reference

B-12

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

$0
0

$0
0

15

0

31

24

23

16

VE
R

SI
O

N
 $

41

F
ig

u
re

 B
-2

1.
 M

C
68

04
0

Id
le

 S
ta

ck
 F

ra
m

e

(R
ES

ER
VE

D)

VE
R

SI
O

N
 =

 $
41

$3

0

ST
AG

C
M

D
R

EG
1B

D
TA

G

FP
TE

FP
TM

 6
3–

32

E1

E3

T

SB
IT

C
M

D
R

EG
3B

FP
TM

 3
1–

00

ET
E

ET
S

ET
M

 6
3–

32

ET
M

 3
1–

00

F
ig

u
re

 B
-2

2.
 M

C
68

04
0

U
n

im
p

lim
en

te
d

 In
st

ru
ct

io
n

 S
ta

ck
 F

ra
m

e

FP
TS

R
es

er
ve

d

E1
5

M
66

M

1

M

0

W
BT

W
BT

W

BT

W
BT

$0
4

$0
8

$1
8

$2
0

$2
4

$2
8

$1
C

$2
C

$3
0

$0
C

$1
0

$1
4

$0
0

15

0

31

24

23

16

Exception Processing Reference

B-13

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

VE
R

SI
O

N
 =

 $
41

$6

0

ST
AG

C
M

D
R

EG
1B

D
TA

G

FP
TE

FP
TM

 6
3–

32

E1

E3

T

SB
IT

W
BT

M
 6

5–
34

W
BT

S

W

BT
E

14
–0

0

C
M

D
R

EG
3B

W
BT

M
 3

3–
02

FP
IA

R
C

U

FP
TM

 3
1–

00

ET
E

ET
S

ET
M

 6
3–

32

ET
M

 3
1–

00

$0
0

$0
4

$0
8

$1
8

$2
0

$2
4

$2
8

$1
C

$2
C

$3
0

$3
4

$3
8

$3
C

$4
0

$4
4

$4
8

$4
C

$5
0

$5
4

$5
8

$5
C

$6
0

$0
C

$1
0

$1
4

15

0

31

24

2
3

16

F
ig

u
re

 B
-2

3.
 M

C
68

04
0

B
u

sy
 S

ta
ck

 F
ra

m
e

FP
TS

C
U

_S
AV

EP
C

R
es

er
ve

d

E1
5

M
66

M

1

M

0

W
BT

W
BT

W

BT

W
BT

Exception Processing Reference

B-14

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

MOTOROLA

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

C-1

APPENDIX C
S-RECORD OUTPUT FORMAT

The S-record format for output modules is for encoding programs or data files in a printable
format for transportation between computer systems. The transportation process can be
visually monitored, and the S-records can be easily edited.

C.1 S-RECORD CONTENT

Visually, S-records are essentially character strings made of several fields that identify the
record type, record length, memory address, code/data, and checksum. Each byte of binary
data encodes as a two- character hexadecimal number: the first character represents the
high- order four bits, and the second character represents the low-order four bits of the byte.
Figure C-1 illustrates the five fields that comprise an S-record. Table C-1 lists the composi-
tion of each S- record field.

Figure C-1. Five Fields of an S-Record

TYPE RECORD LENGTH ADDRESS CODE/DATA CHECKSUM

Table C-1. Field Composition of an S-Record

Field Printable
Characters

Contents

Type 2 S-record type—S0, S1, etc.

Record Length 2 The count of the character pairs in the record, excluding the type
and record length.

Address 4, 6, or 8 The 2-, 3-, or 4-byte address at which the data field is to be loaded
into memory.

Code/Data

0–2n

From 0 to n bytes of executable code, memory loadable data, or
descriptive information. For compatibility with teletypewriters,
some programs may limit the number of bytes to as few as 28 (56
printable characters in the S-record).

Checksum
2

The least significant byte of the one’s complement of the sum of
the values represented by the pairs of characters making up the
record length, address, and the code/data fields.

S-Record Output Format

C-2

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

When downloading S-records, each must be terminated with a CR. Additionally, an S-record
may have an initial field that fits other data such as line numbers generated by some time-
sharing systems. The record length (byte count) and checksum fields ensure transmission
accuracy.

C.2 S-RECORD TYPES

There are eight types of S-records to accommodate the encoding, transportation, and
decoding functions. The various Motorola record transportation control programs (e.g.
upload, download, etc.), cross assemblers, linkers, and other file creating or debugging pro-
grams, only utilize S-records serving the programOs purpose. For more information on sup-
port of specific S-records, refer to the userOs manual for that program.

An S-record format module may contain S-records of the following types:

S0 — The header record for each block of S-records. The code/data field may con-
tain any descriptive information identifying the following block of S-records.
Under VERSAdos, the resident linkerOs IDENT command can be used to des-
ignate module name, version number, revision number, and description infor-
mation that will make up the header record. The address field is normally zeros.

S1 — A record containing code/data and the 2-byte address at which the code/data
is to reside.

S2 — A record containing code/data and the 3-byte address at which the code/data
is to reside.

S3 — A record containing code/data and the 4-byte address at which the code/data
is to reside.

S5 — A record containing the number of S1, S2, and S3 records transmitted in a par-
ticular block. This count appears in the address field. There is no code/data
field.

S7 — A termination record for a block of S3 records. The address field may optionally
contain the 4-byte address of the instruction to which control is to be passed.
There is no code/data field.

S8 — A termination record for a block of S2 records. The address field may optionally
contain the 3-byte address of the instruction to which control is to be passed.
There is no code/data field.

S9 — A termination record for a block of S1 records. The address field may optionally
contain the 2-byte address of the instruction to which control is to be passed.
Under VERSAdos, the resident linkerOs ENTRY command can be used to
specify this address. If this address is not specified, the first entry point speci-
fication encountered in the object module input will be used. There is no code/
data field.

Each block of S-records uses only one termination record. S7 and S8 records are only active
when control is to be passed to a 3- or 4- byte address; otherwise, an S9 is used for termi-
nation. Normally, there is only one header record, although it is possible for multiple header
records to occur.

S-Record Output Format

MOTOROLA

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

C-3

C.3 S-RECORD CREATION

Dump utilities, debuggers, a VERSAdos resident linkage editor, or cross assemblers and
linkers produce S-record format programs. On VERSAdos systems, the build load module
(MBLM) utility allows an executable load module to be built from S-records. It has a coun-
terpart utility in BUILDS that allows an S-record file to be created from a load module.

Programs are available for downloading or uploading a file in S- record format from a host
system to an 8- or 16-bit microprocessor- based system. A typical S-record-format module
is printed or displayed as follows:

S00600004844521B
S1130000285F245F2212226A000424290008237C2A
S11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952
S107003000144ED492
S9030000FC

The module has an S0 record, four S1 records, and an S9 record. The following character
pairs comprise the S-record-format module.

S0 Record:

S0 — S-record type S0, indicating that it is a header record.
06 — Hexadecimal 06 (decimal 6), indicating that six character pairs (or ASCII bytes)

follow.
0000—A 4-character, 2-byte address field; zeros in this example.
48 — ASCII H
44 — ASCII D
52 — ASCII R
1B — The checksum.

First S1 Record:

S1 — S-record type S1, indicating that it is a code/data record to be loaded/verified at
a 2-byte address.

13 — Hexadecimal 13 (decimal 19), indicating that 19 character pairs, representing
19 bytes of binary data, follow.

0000—A 4-character, 2-byte address field (hexadecimal address 0000) indicating
where the data that follows is to be loaded.

S-Record Output Format

C-4

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

The next 16 character pairs of the first S1 record are the ASCII bytes of the actual program
code/data. In this assembly language example, the programOs hexadecimal opcodes are
sequentially written in the code/data fields of the S1 records.

The rest of this code continues in the remaining S1 recordOs code/data fields and stores in
memory location 0010, etc.

2A — The checksum of the first S1 record.

The second and third S1 records also contain hexadecimal 13 (decimal 19) character pairs
and end with checksums 13 and 52, respectively. The fourth S1 record contains 07 charac-
ter pairs and has a checksum of 92.

S9 Record:

S9 — S-record type S9, indicating that it is a termination record.
03 — Hexadecimal 03, indicating that three character pairs (3 bytes) follow.
0000—The address field, zeros.
FC — The checksum of the S9 record.

Each printable character in an S-record encodes in hexadecimal (ASCII in this example)
representation of the binary bits that transmit. Figure C-2 illustrates the sending of the first
S1 record. Table C-2 lists the ASCII code for S-records.

.

Opcode Instruction

285F MOVE.L (A7) +, A4

245F MOVE.L (A7) +, A2

2212 MOVE.L (A2), D1

226A0004 MOVE.L 4(A2), A1

24290008 MOVE.L FUNCTION(A1), D2

237C MOVE.L #FORCEFUNC, FUNCTION(A1)

Figure C-2. Transmission of an S1 Record

0101
0011
0011
0001
0011
0001
0011
0011
0011
0000
0011
0000
0011
0000
0011
0000
0011
0010
0011
1000
0011
0101
0100
0110

 0011
0010
0100
0001

5
 3
 3
 1
 3
 1
 3
 3
 3
 0
 3
 0
 3
 0
 3
 0
 3
 2
 3
 8
 3
 5
 4
 6

 3
 2
 4
 1

S
 1
 1
 3
 0
 0
 0
 0
 2
 8
 5
 F

 2
 A

RECORD LENGTH
 ADDRESS
 CODE/DATA
 CHECKSUM
TYPE

S-Record Output Format

MOTOROLA

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

C-5

Table C-2. ASCII Code

Least
Significant

Digit

Most Significant Digit

0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ‘ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 “ 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ’ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS – = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

S-Record Output Format

C-6

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

