N

MICROCHIP

dsPI C30F Programmer’s

Reference M anual

High Performance
Digital Signal Controllers

© 2005 Microchip Technology Inc. DS70030F

Note the following details of the code protection feature on Microchip devices:
. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

J Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical
components in life support systems is not authorized except
with express written approval by Microchip. No licenses are
conveyed, implicitly or otherwise, under any intellectual

property rights.

DNV MSC
The Netherlands
Accredited by the RvA

DNV Certification, Inc.

ANSI-RAB

ams
*

ailiqaiyddy

1SO 9001 / QS-9000
REGISTERED FIRM

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microlD, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK,
MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail,
PowerCal, Powerlnfo, PowerMate, PowerTool, rfLAB,
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total
Endurance and WiperLock are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2005, Microchip Technology Incorporated, Printed in the
U.S.A,, All Rights Reserved.

fé Printed on recycled paper.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

DS70030F-page ii

© 2005 Microchip Technology Inc.

N

MICROCHIP
Table of Contents

PAGE
SECTION 1. INTRODUCTION 1-1
[0 (geTo [0 ez (1] o IR PP UP PRSPPI 1-2
T TU @ o =T 11 ST PP TS OUPRPRPI 1-2
DAY=t o o) gy =T a1 ST o] oo APPSO UPPTOPPPPTP 1-2
Style and SYmMDOI CONVENTIONSiiiiiiitiiiiieite ettt ettt b e e et e b e e st e e sbe e sa bt e ebeeeareenbeeenneeneeans 1-3
INSEIUCHION St SYMDOIS ...ttt st e e et e e e a e e e sae e e e smte e e sseeeesaeeenteeeanneeesnneeean 1-4
Related DOCUMENTSeiiiiii e e e e s s e e s b e e e s e s en e e e sne e as 1-5
SECTION 2. PROGRAMMER’S MODEL 2-1
ASPICBOF OVEIVIEW ...ttt ettt b et h ettt esh bt e sh e e eae e e b e e e at e e b e e sab e e be e eabeebeeemseebeesabeeneenanean 2-2
Programmer’s MOGEcooiiiiiiee ettt et e e b e e e e s e e e e n e e e s e e e nne e e e e e nnn e nne s 2-3
SECTION 3. INSTRUCTION SET OVERVIEW 3-1
11 o0 [Tox 1T) o TP 3-2
INSTFUCHION SOt OVEIVIEW ...ttt e bt e it st e e st e e e sne e e e anae e e anbe e e aaneeesaneeean 3-2
Instruction Set SUMMArY TADIESoo it e e e sne e sneee s 3-3
SECTION 4. INSTRUCTION SET DETAILS 4-1
D=1 = WY [o | =TT g Lo Voo 1= S PR 4-2
Program AdAreSSiNG IMOGEScoiiiiiiiii ittt e e e st e e e e aba e e e e e sasnr e e e e e e anrneeeeeaannns 4-11
INSIFUCHON STAIIS ...ttt b e et e e s e e e r e e senesne e sreeeneenneneas 4-12
123 (O L= = (1] o TSP PP PP PRUPPPOPRRN 4-13
WOrd MOVE OPEIAtIONSeeeiiiiie ittt ettt ettt e et e e bt e s b e e e sa b e e e et et e sne e e e snr e e e anre e e sanneesneeens 4-16
Using 10-bit LIiteral OPErandScoieiiiueiiiieieeiee ettt ettt ettt b e st sae e sae e e rbe e saeeebe e saeeebeesaeeenneenaeeens 4-19
Software Stack Pointer and Frame POINTErc..iiiiiiiiiiii et e 4-20
Conditional BranCh INSIIUCHIONSoiouiiiiiiiieiiiie ettt e st e e s et e e snee e e snbeeeenteeesneeeenneeean 4-25
Z STAUS Bt ..ottt a e bt r e e h e e e e ne e e ne e nhaeene e e aa 4-26
Assigned Working RegiSter USAGEuuiiiiiiiiiiieeieiieee et e e e e e e e e e e e eereeeeeean 4-27
DSP Data FOIMMALS ...eeiiiiieiiiiieiiee ittt e ettt e e be e e e st e e eas e e e st e e e e nb e e s nne e e snbe e e enneenanees 4-30
ACCUMUIALOT USBAGE ..ttt ettt ettt et e e e s et e e et et e e st e e e e ae e e e e st e e e aane e e s me e e e an b e e e annneenannes 4-32
ACCUMUIAEOT ACCESSnetiiiieiee it ee et et e et et e e s e e e st e s e e e sane e e e s e e e e se e e e e mn e e e aar et e ann e e s nneeeanreeeannneenannes 4-33
DTV Y @ [T (Do 1T o SR 4-33
(DI T Yool U o 101 = Lo T g T3 (Lo (] o SR 4-37
Scaling Data with the FBCL INSTIUCHIONoiiiiiiiiiee e et s nee s 4-37
Normalizing the Accumulator with the FBCL INSErUCHONc.cociiiiiiiiiii e 4-39
SECTION 5. INSTRUCTION DESCRIPTIONS 5-1
INSTFUCHION SYMDOISeeieiiitie ettt bttt a e e bt e she e eas e e s be e eane e abe e sabeenneenaneeneeeeaneenres 5-2
Instruction Encoding Field Descriptors INtrodUCHIONcooiiiiiiiii e 5-2
Instruction DesCriPtioN EXAMPIEcoiiiiiiiiii ettt e e e e e e e e ae e e e e e e e e e e e e e e anreeeas 5-6
LTSy g0 o o] o T L=< Tod] o] 110 1= PP PPPPRRR 5-7
SECTION 6. REFERENCE 6-1
(D=1 ez Y (=10 L] oV Y =T o PSP PP SRR 6-2
Core Special FUNCON REGISTEr IMAPcoiuiiiiiiiii ettt bttt b e n e be e s ab e e neenane s 6-3
Program MemMOIY IMAPDcoiiiiiiiee ettt ettt e e r e e e e e e e e n e et e s n e e e e e e e e nreee s 6-6
LTSy 0 To (o) T =1 B 1Y F= T o R PPPPRRR 6-7
Instruction Set SUMMATY TaDIEoiiiiii et b e e en e s saneeesbeee s 6-9

© 2005 Microchip Technology Inc. DS70030F-page iii

dsPIC30F Programmer’s Reference Manual

NOTES:

DS70030F - page iv © 2005 Microchip Technology Inc.

=1
=
MICROCHIP 3
o
Q
Section 1. Introduction 2
o
=
HIGHLIGHTS
This section of the manual contains the following topics:
S B [01 (o T [e (o] o I RPN 1-2
1.2 ManUal ODJECHIVEeeieiiiiii et s 1-2
1.3 Development SUPPOITcoiviiiiiiie ittt e e ne e 1-2
1.4 Style and Symbol CONVENTIONScccocuuiiiiiiciiiiie e e e e aaee e 1-3
1.5 INStruction Set SYMDOISooiiiii e s 1-4
1.6 Related DOCUMENTSeiiiiiiiieie e s et e e e e e e e 1-5

© 2005 Microchip Technology Inc. DS70030F-page 1-1

dsPIC30F Programmer’s Reference Manual

1.1 Introduction

Microchip Technology’s focus is on products that meet the needs of the embedded control
market. We are a leading supplier of:

* 8-bit general purpose microcontrollers (PICmicro® MCUs)
dsPIC30F 16-bit microcontrollers

Speciality and standard non-volatile memory devices
Security devices (KEELOQ®)

Application specific standard products

Please request a Microchip Product Line Card for a listing of all the interesting products that we
have to offer. This literature can be obtained from your local sales office, or downloaded from the
Microchip web site (www.microchip.com).

1.2 Manual Objective

PICmicro and dsPIC30F devices are grouped by the size of their Instruction Word and Data Path.
The current device families are:

1. Base-Line: 12-bit Instruction Word length, 8-bit Data Path
2. Mid-Range: 14-bit Instruction Word length, 8-bit Data Path
3. High-End: 16-bit Instruction Word length, 8-bit Data Path
4. Enhanced: 16-bit Instruction Word length, 8-bit Data Path
5. dsPIC30F: 24-bit Instruction Word length, 16-bit Data Path

This manual is a software developer’s reference for the dsPIC30F 16-bit MCU family of devices.
This manual describes the Instruction Set in detail and also provides general information to assist
the user in developing software for the dsPIC30F MCU family.

This manual does not include detailed information about the core, peripherals, system integration
or device-specific information. The user should refer to the dsPIC30F Family Reference Manual
for information about the core, peripherals and system integration. For device specific informa-
tion, the user should refer to the data sheet. The information that can be found in the data sheet
includes:

¢ Device memory map

¢ Device pinout and packaging details

* Device electrical specifications

* List of peripherals included on the device.

Code examples are given throughout this manual. These examples are valid for any device in
the dsPIC30F MCU family.

1.3 Development Support

Microchip offers a wide range of development tools that allow users to efficiently develop and
debug application code. Microchip’s development tools can be broken down into four categories:
1. Code generation

2. Hardware/Software debug

3. Device programmer

4. Product evaluation boards

Information about the latest tools, product briefs and user guides can be obtained from the
Microchip web site (www.microchip.com) or from your local Microchip Sales Office.

Microchip offers other reference tools to speed the development cycle. These include:
* Application Notes

* Reference Designs

¢ Microchip web site

* Local Sales Offices with Field Application Support

» Corporate Support Line

The Microchip web site lists other sites that may be useful references.

DS70030F-page 1-2

© 2005 Microchip Technology Inc.

http://www.microchip.com

Section 1. Introduction

1.4 Style and Symbol Conventions

Throughout this document, certain style and font format conventions are used. Most format
conventions imply a distinction should be made for the emphasized text. The MCU industry has
many symbols and non-conventional word definitions/abbreviations. Table 1-1 provides a
description for many of the conventions contained in this document.

Table 1-1: Document Conventions

=1
=
*
o
Q
c
(2]
=
o
=

Symbol or Term Description

set To force a bit/register to a value of logic ‘1’.
clear To force a bit/register to a value of logic ‘0’.

RESET 1) To force a register/bit to its default state.

2) A condition in which the device places itself after a device RESET
occurs. Some bits will be forced to ‘0’ (such as interrupt enable bits),
while others will be forced to ‘1’ (such as the I/0O data direction bits).

0xnnnn Designates the number ‘nnnn’ in the hexadecimal number system.
These conventions are used in the code examples. For example,
0x013F or 0xA800.

: (colon) Used to specify a range or the concatenation of registers/bits/pins.

One example is ACCAU:ACCAH:ACCAL, which is the concatenation of
three registers to form the 40-bit accumulator.

Concatenation order (left-right) usually specifies a positional relationship
(MSb to LSb, higher to lower).

<> Specifies bit(s) locations in a particular register.

One example is SR<IPL2:IPLO> (or IPL<2:0>), which specifies the
register and associated bits or bit positions.

MSb, MSbit, LSb, |Indicates the Least Significant or Most Significant bit in a field.

LShit
MSByte, MSWord, |Indicates the Least/Most Significant Byte or Word in a field of bits.
LSByte, LSWord

Courier Font Used for code examples, binary numbers and for Instruction Mnemonics
in the text.

Times Font Used for equations and variables.

Times, Bold Font, | Used in explanatory text for items called out from a

Iltalics graphic/equation/example.

Note: A Note presents information that we wish to re-emphasize, either to help

you avoid a common pitfall, or make you aware of operating differences
between some device family members. In most instances, a Note is used
in a shaded box (as illustrated below), however when referenced to a
table, a Note will stand-alone and immediately follow the associated table
(as illustrated below Table 1-2).

Note: This is a Note in a shaded note box.

© 2005 Microchip Technology Inc. DS70030F-page 1-3

dsPIC30F Programmer’s Reference Manual

1.5 Instruction Set Symbols

The Summary Tables in Section 3-2 and Section 6.5, and the instruction descriptions in
Section 5.4 utilize the symbols shown in Table 1-2.

Table 1-2:Symbols Used in Instruction Summary Tables and Descriptions

Symbol Description
{} Optional field or operation
[text] The location addressed by text
(text) The contents of text
#text The literal defined by text
ae [b,c,d] |“a” mustbe inthe set of [b, c, d]
<n:m> Register bit field
{label:} Optional label name
Acc Accumulator A or Accumulator B
AWB Accumulator Write Back
bit4 4-bit wide bit position (0:7 in Byte mode, 0:15 in Word mode)
Expr Absolute address, label or expression (resolved by the linker)
f File register address
lit1 1-bit literal (0:1)
lit4 4-bit literal (0:15)
lits 5-bit literal (0:31)
it8 8-bit literal (0:255)
lit10 10-bit literal (0:255 in Byte mode, 0:1023 in Word mode)
lit14 14-bit literal (0:16383)
lit16 16-bit literal (0:65535)
lit23 23-bit literal (0:8388607)
Slit4 Signed 4-bit literal (-8:7)
Slit6 Signed 6-bit literal (-32:31) (range is limited to -16:16)
Slit10 Signed 10-bit literal (-512:511)
Slit16 Signed 16-bit literal (-32768:32767)
TOS Top-of-Stack
Wb Base working register
Wd Destination working register (direct and indirect addressing)
Wm, Wn Working register divide pair (dividend, divisor)
Wm*Wm Working register multiplier pair (same source register)
Wm*Wn Working register multiplier pair (different source registers)
Wn Both source and destination working register (direct addressing)
Wnd Destination working register (direct addressing)
Wns Source working register (direct addressing)
WREG Default working register (assigned to WO0)
Ws Source working register (direct and indirect addressing)
Wx Source Addressing mode and working register for X data bus pre-fetch
Wxd Destination working register for X data bus pre-fetch
Wy Source Addressing mode and working register for Y data bus pre-fetch
Wyd Destination working register for Y data bus pre-fetch

Note: The range of each symbol is instruction dependent. Refer to Section 5. “Instruction
Descriptions™ for the specific instruction range.

DS70030F-page 1-4

© 2005 Microchip Technology Inc.

Section 1. Introduction

1.6 Related Documents

Microchip, as well as other sources, offer additional documentation which can aid in your devel-
opment with dsPIC30F MCUs. These lists contain the most common documentation, but other
documents may also be available. Please check the Microchip web site (www.microchip.com) for
the latest published technical documentation.

1.6.1 Microchip Documentation

The following dsPIC30F documentation is available from Microchip at the time of this writing.
Many of these documents provide application specific information that gives actual examples of
using, programming and designing with dsPIC30F MCUs.

1.

dsPIC30F Family Reference Manual (DS70046)

The dsPIC30F Family Reference Manual provides information about the dsPIC30F
architecture, peripherals and system integration features. The details of device operation
are provided in this document, along with numerous code examples.

dsPIC30F Family Overview (DS70043)

This document provides a summary of the available dsPIC30F family variants, including
device pinouts, memory sizes and available peripherals.

dsPIC30F Data Sheets

The data sheets contain device specific information, such as pinout and packaging details,
electrical specifications, and memory maps. Please check the Microchip web site
(www.microchip.com) for a list of available device data sheets.

1.6.2 Third Party Documentation

There are several documents available from third party sources around the world. Microchip
does not review these documents for technical accuracy. However, they may be a helpful source
for understanding the operation of Microchip dsPIC30F devices. Please refer to the Microchip
web site (www.microchip.com) for third party documentation related to the dsPIC30F.

© 2005 Microchip Technology Inc. DS70030F-page 1-5

=1
=
*
o
Q
c
(2]
=
o
=

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

dsPIC30F Programmer’s Reference Manual

NOTES:

DS70030F-page 1-6 © 2005 Microchip Technology Inc.

MICROCHIP
Section 2. Programmer’s M odel

HIGHLIGHTS
This section of the manual contains overview information about the dsPIC30F devices. It n
contains the following major topics:

2.1 ASPIC30F OVEIVIEW ...ttt ettt sr e sr e nneenane s
2.2 Programmer’s MOGEL........cooo ittt

=
o
o
Q

s, Jowweiboid

© 2005 Microchip Technology Inc. DS70030F-page 2-1

dsPIC30F Programmer’s Reference Manual

2.1 dsPIC30F Overview

The dsPIC30F core is a 16-bit (data) modified Harvard architecture with an enhanced instruction
set, including support for DSP. The core has a 24-bit instruction word, with a variable length
opcode field. The program counter (PC) is 23-bits wide and addresses up to 4M x 24 bits of user
program memory space. A single cycle instruction pre-fetch mechanism is used to help maintain
throughput and provides predictable execution. The majority of instructions execute in a single
cycle, and overhead free program loop constructs are supported using the DO and REPEAT
instructions, both of which are interruptible.

The dsPIC30F has sixteen, 16-bit working registers. Each of the working registers can act as a
data, address or offset register. The 16th working register (W15) operates as a software stack
pointer for interrupts and calls.

The dsPIC30F instruction set has two classes of instructions: the MCU class of instructions and
the DSP class of instructions. These two instruction classes are seamlessly integrated into the
architecture and execute from a single execution unit. The instruction set includes many
Addressing modes and was designed for optimum C compiler efficiency.

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred
to as X and Y data memory. Each memory block has its own independent Address Generation
Unit (AGU). The MCU class of instructions operate solely through the X memory AGU, which
accesses the entire memory map as one linear data space. The DSP dual source class of instruc-
tions operates through the X and Y AGUs, which splits the data address space into two parts.
The X and Y data space boundary is arbitrary and device specific.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program
space at any 16K program word boundary, defined by the 8-bit Program Space Visibility Page
(PSVPAG) register. The program to data space mapping feature lets any instruction access
program space as if it were data space, which is useful for storing data coefficients.

Overhead free circular buffers (modulo addressing) are supported in both X and Y address
spaces. The modulo addressing removes the software boundary checking overhead for DSP
algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class
of instructions. The X AGU also supports bit-reverse addressing, to greatly simplify input or
output data reordering for radix-2 FFT algorithms.

The core supports Inherent (no operand), Relative, Literal, Memory Direct, Register Direct,
Register Indirect and Register Offset Addressing modes. Each instruction is associated with a
predefined Addressing mode group, depending upon its functional requirements. As many as 7
Addressing modes are supported for each instruction.

For most instructions, the dsPIC30F is capable of executing a data (or program data) memory
read, a working register (data) read, a data memory write and a program (instruction) memory
read per instruction cycle. As a result, 3-operand instructions can be supported, allowing A+B=C
operations to be executed in a single cycle.

The DSP engine features a high speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit
saturating accumulators and a 40-bit bi-directional barrel shifter. The barrel shifter is capable of
shifting a 40-bit value, up to 16-bits right, or up to 16-bits left, in a single cycle. The DSP
instructions operate seamlessly with all other instructions and have been designed for optimal
real-time performance. The MAC instruction and other associated instructions can concurrently
fetch two data operands from memory while multiplying two working registers. This requires that
the data space be split for these instructions and linear for all others. This is achieved in a
transparent and flexible manner through dedicating certain working registers to each address
space.

The dsPIC30F has a vectored exception scheme with up to 8 sources of non-maskable traps and
54 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

DS70030F-page 2-2

© 2005 Microchip Technology Inc.

Section 2. Programmer’s Model

2.2

Programmer’s Model

The programmer’s model diagram for the dsPIC30F is shown in Figure 2-1.

All registers in the programmer’s model are memory mapped and can be manipulated directly by
the instruction set. A description of each register is provided in Table 2-1.

Table 2-1: Programmer’s Model Register Descriptions
Register Description

ACCA, ACCB 40-bit DSP Accumulators

CORCON CPU Core Configuration register

DCOUNT DO Loop Count register

DOEND DO Loop End Address register

DOSTART DO Loop Start Address register v
PC 23-bit Program Counter é
PSVPAG Program Space Visibility Page Address register § o
RCOUNT Repeat Loop Count register % 3
SPLIM Stack Pointer Limit Value register -0
SR ALU and DSP Engine Status register ;~
TBLPAG Table Memory Page Address register

WO - W15 Working register array

2.21 Working Register Array

The 16 working (W) registers can function as data, address or offset registers. The function of a
W register is determined by the instruction that accesses it.

Byte instructions, which target the working register array, only affect the Least Significant Byte of
the target register. Since the working registers are memory mapped, the Least and Most
Significant Bytes can be manipulated through byte wide data memory space accesses.

222 Default Working Register (WREG)

The dsPIC30F instruction set can be divided into two instruction types: working register
instructions and file register instructions. The working register instructions use the working
register array as data values, or as addresses that point to a memory location. In contrast, file
register instructions operate on a specific memory address contained in the instruction opcode.

File register instructions that also utilize a working register do not specify the working register that
is to be used for the instruction. Instead, a default working register (WREG) is used for these file
register instructions. Working register WO is assigned to be the WREG. The WREG assignment
is not programmable.

2.2.3 Software Stack Frame Pointer

A frame is a user defined section of memory in the stack, used by a function to allocate memory
for local variables. W14 has been assigned for use as a stack frame pointer with the link (LNK)
and unlink (ULNK) instructions. However, if a stack frame pointer and the LNK and ULNK
instructions are not used, W14 can be used by any instruction in the same manner as all other
W registers. See Section 4.7.3 “Software Stack Frame Pointer” for detailed information about
the Frame Pointer.

© 2005 Microchip Technology Inc. DS70030F-page 2-3

dsPIC30F Programmer’s Reference Manual

Figure 2-1: Programmer’s Model Diagram
15 0
8 / WREG A e . |
W0 /WRE | - PUSH.S Shadow
DIV and MUL Wi
Result Regist 3
esult Registers W2 | I:l DO Shadow |
L - - - — -
_ w3 Legend
—
w4
MAC Operand W5
Regist 3
egisters W6
w7
> Working Registers
e > g Reg
w9
MAC Address =
Registers W10
W11
N~—
W12/MAC Offset
W13/MAC Write Back
W14/Frame Pointer
W15*/Stack Point
ack romter _/ *W15 & SPLIM not shadowed
SPLIM* \ Stack Pointer Limit Register
39 31 15 0
DSP ACCA
Accumulators ACCB
22 0
| Program Counter
7 0
| TBLPAG | Data Table Page Address
7 0
| PSVPAG | Program Space Visibility Page Address
15 0
| RCOUNT | REPEAT Loop Counter
15 0
| DCOUNT n DO Loop Counter
22 0
| DOSTART n DO Loop Start Address
22 0
| DOEND H DO Loop End Address
[
15 0
| CORCON | CPU Core Control Register
| oA | 0B | s | sB |oaB|saB| DA | DC FIPLZ‘ IPL1[IPLo| RA| N [ov] Z | © Status Register
- SRH »> < SRL >

DS70030F-page 2-4 © 2005 Microchip Technology Inc.

Section 2. Programmer’s Model

2.2.4 Software Stack Pointer

W15 serves as a dedicated software stack pointer, and will be automatically modified by function
calls, exception processing and returns. However, W15 can be referenced by any instruction in
the same manner as all other W registers. This simplifies reading, writing and manipulating the
stack pointer. Refer to Section 4.7.1 “Software Stack Pointer” for detailed information about
the stack pointer.

225 Stack Pointer Limit Register (SPLIM)

The SPLIM is a 16-bit register associated with the stack pointer. It is used to prevent the stack
pointer from overflowing and accessing memory beyond the user allocated region of stack
memory. Refer to Section 4.7.5 “Stack Pointer Overflow” for detailed information about the
SPLIM.

2.2.6 Accumulator A, Accumulator B

Accumulator A (ACCA) and Accumulator B (ACCB) are 40-bit wide registers, utilized by DSP
instructions to perform mathematical and shifting operations. Each accumulator is composed of
3 memory mapped registers:

* AccxU (bits 39 - 32)

* AccxH (bits 31 - 16)

* AccxL (bits 15 - 0)

Refer to Section 4.12 “Accumulator Usage” for details on using ACCA and ACCB.

o
-
S
==
o9
Q 3
@3
1)
*\.
(/]

2.2.7 Program Counter

The Program Counter (PC) is 23-bits wide. Instructions are addressed in the 4M x 24-bit user
program memory space by PC<22:1>, where PC<0> is always set to ‘0’ to maintain instruction
word alignment and provide compatibility with data space addressing. This means that during
normal instruction execution, the PC increments by 2.

Program memory located at 0x80000000 and above is utilized for device configuration data,
Unit ID and Device ID. This region is not available for user code execution and the PC can not
access this area. However, one may access this region of memory using Table instructions. Refer
to the dsPIC30F Family Reference Manual for details on accessing the configuration data, Unit
ID and Device ID.

2.2.8 TBLPAG Register

The TBLPAG register is used to hold the upper 8 bits of a program memory address during table
read and write operations. Table instructions are used to transfer data between program memory
space and data memory space. Refer to the dsPIC30F Family Reference Manual for details on
accessing program memory with the Table instructions.

229 PSVPAG Register

Program space visibility allows the user to map a 32 Kbyte section of the program memory space
into the upper 32 Kbytes of data address space. This feature allows transparent access of
constant data through dsPIC30F instructions that operate on data memory. The PSVPAG
register selects the 32 Kbyte region of program memory space that is mapped to the data
address space. Refer to the dsPIC30F Family Reference Manual for details on program space
visibility.

© 2005 Microchip Technology Inc. DS70030F-page 2-5

dsPIC30F Programmer’s Reference Manual

2.2.10 RCOUNT Register

The 14-bit RCOUNT register contains the loop counter for the REPEAT instruction. When a
REPEAT instruction is executed, RCOUNT is loaded with the repeat count of the instruction,
either “lit14” for the "REPEAT #1it14"instruction, or the contents of Wn for the "REPEAT Wn”
instruction. The REPEAT loop will be executed RCOUNT+1 times.

Note 1: If a REPEAT loop is executing and gets interrupted, RCOUNT may be cleared by
the Interrupt Service Routine to break out of the REPEAT loop when the foreground
code is re-entered.

2: Refer to the dsPIC30F Family Reference Manual for complete details about
REPEAT loops.

2.2.11 DCOUNT Register

The 14-bit DCOUNT register contains the loop counter for hardware DO loops. When a DO
instruction is executed, DCOUNT is loaded with the loop count of the instruction, either “lit14” for
the “DO #1it14,Expr” instruction, or the 14 Least Significant bits of Ws for the “DO Ws, Expr”
instruction. The DO loop will be executed DCOUNT+1 times.

Note 1: DCOUNT contains a shadow register. See Section 2.2.16 “Shadow Registers”
for information on shadowing.

2: Refer to the dsPIC30F Family Reference Manual for complete details about DO
loops.

2.2.12 DOSTART Register

The DOSTART register contains the starting address for a hardware DO loop. When a DO
instruction is executed, DOSTART is loaded with the address of the instruction following the DO
instruction. This location in memory is the start of the DO loop. When looping is activated,
program execution continues with the instruction stored at the DOSTART address after the last
instruction in the DO loop is executed. This mechanism allows for zero overhead looping.

Note 1: DOSTART has a shadow register. See Section 2.2.16 “Shadow Registers” for
information on shadowing.

2: Refer to the dsPIC30F Family Reference Manual for complete details about DO
loops.

2.2.13 DOEND Register

The DOEND register contains the ending address for a hardware DO loop. When a DO
instruction is executed, DOEND is loaded with the address specified by the expression in the DO
instruction. This location in memory specifies the last instruction in the DO loop. When looping is
activated and the instruction stored at the DOEND address is executed, program execution will
continue from the DO loop start address (stored in the DOSTART register).

Note 1: DOEND has a shadow register. See Section 2.2.16 “Shadow Registers” for
information on shadowing.

2: Refer to the dsPIC30F Family Reference Manual for complete details about DO
loops.

DS70030F-page 2-6 © 2005 Microchip Technology Inc.

Section 2. Programmer’s Model

2.2.14 Status Register

The 16-bit Status register, shown in Register 2-1, maintains status information for instructions
which have most recently been executed. Operation status bits exist for MCU operations, loop
operations and DSP operations. Additionally, the Status register contains the CPU Interrupt
Priority Level bits, IPL<2:0>, which are used for interrupt processing.

2.2.141 MCU ALU Status Bits

The MCU operation status bits are either affected or used by the majority of instructions in the
instruction set. Most of the Logic, Math, Rotate/Shift and Bit instructions modify the MCU status
bits after execution, and the conditional Branch instructions use the state of individual status bits
to determine the flow of program execution. All conditional Branch instructions are listed in
Section 4.8 “Conditional Branch Instructions”.

The Carry, Zero, Overflow, Negative and Digit Carry (C, Z, OV, N and DC) bits are used to show
the immediate status of the MCU ALU. They indicate when an operation has resulted in a carry,
zero, overflow, negative result and digit carry, respectively. When a subtract operation is
performed, the C flag is used as a Borrow flag.

The Z status bit is a special zero status bit that is useful for extended precision arithmetic. The Z
bit functions like a normal Z flag for all instructions except those that use a carry or borrow input
(aDDC, CPB, SUBB and SUBBR). See Section 4.9 “Z Status Bit” for usage of the Z status bit.

o
-
S
==
o9
Q 3
@3
1)
*\.
(/]

Note 1: AllMCU bits are shadowed during execution of the PUSH. S instruction and they are
restored on execution of the POP. s instruction.

2: All MCU bits, except the DC flag (which is not in the SRL), are stacked during
exception processing (see Section 4.7.1 “Software Stack Pointer”).

2.2.14.2 Loop Status Bits

The DO Active and REPEAT Active (DA, RA) bits are used to indicate when looping is active.
The DO instructions affect the DA flag, which indicates that a DO loop is active. The DA flag is
set to ‘1’ when the first instruction of the DO loop is executed, and it is cleared when the last
instruction of the loop completes final execution. Likewise, the RA flag indicates that a REPEAT
instruction is being executed, and it is only affected by the REPEAT instructions. The RA flag is
set to ‘1’ when the instruction being repeated begins execution, and it is cleared when the
instruction being repeated completes execution for the last time.

The DA flag is read only. This means that looping may not be initiated by writing a ‘1’ to DA, nor
may looping be terminated by writing a ‘0’ to DA. If a DO loop must be terminated prematurely,
the EDT bit, CORCON<11>, should be used.

Since the RA flag is also read only, it may not be directly cleared. However, if a REPEAT or its
target instruction is interrupted, the Interrupt Service Routine may clear the RA flag of the SRL,
which resides on the stack. This action will disable looping once program execution returns from
the Interrupt Service Routine, because the restored RA will be ‘0’.

© 2005 Microchip Technology Inc. DS70030F-page 2-7

dsPIC30F Programmer’s Reference Manual

2.2.14.3 DSP ALU Status Bits

The high byte of the Status Register (SRH) is used by the DSP class of instructions, and it is
modified when data passes through one of the adders. The SRH provides status information
about overflow and saturation for both accumulators. The Saturate A, Saturate B, Overflow A and
Overflow B (SA, SB, OA, OB) bits provide individual accumulator status, while the Saturate AB
and Overflow AB (SAB, OAB) bits provide combined accumulator status. The SAB and OAB bits
provide the software developer efficiency in checking the register for saturation or overflow.

The OA and OB bits are used to indicate when an operation has generated an overflow into the
guard bits (bits 32 through 39) of the respective accumulator. This condition can only occur when
the processor is in Super Saturation mode, or if saturation is disabled. It indicates that the
operation has generated a number which cannot be represented with the lower 31 bits of the
accumulator.

The SA and SB bits are used to indicate when an operation has generated an overflow out of the
Most Significant bit of the respective accumulator. The SA and SB bits are active, regardless of
the Saturation mode (Disabled, Normal or Super) and may be considered “sticky”. Namely, once
the SA or SB is set to ‘1’, it can only be cleared manually by software, regardless of subsequent
DSP operations. When required, it is recommended that the bits be cleared with the BCLR
instruction.

For convenience, the OA and OB bits are logically ORed together to form the OAB flag, and the
SA and SB bits are logically ORed to form the SAB flag. These cumulative status bits provide
efficient overflow and saturation checking when an algorithm is implemented, which utilizes both
accumulators. Instead of interrogating the OA and the OB bits independently for arithmetic
overflows, a single check of OAB may be performed. Likewise, when checking for saturation,
SAB may be examined instead of checking both the SA and SB bits. Note that clearing the SAB
flag will clear both the SA and SB bits.

2.2.14.4 Interrupt Priority Level Status Bits

The three IPL bits of the SRL, SR<7:5>, and the IPL3 bit, CORCON<3>, set the CPU’s Interrupt
Priority Level (IPL) which is used for exception processing. Exceptions consist of interrupts and
hardware traps. Interrupts have a user defined priority level between 0 and 7, while traps have a
fixed priority level between 8 and 15. The fourth Interrupt Priority Level bit, IPL3, is a special IPL
bit that may only be read or cleared by the user. This bit is only set when a hardware trap is
activated and it is cleared after the trap is serviced.

The CPU’s IPL identifies the lowest level exception which may interrupt the processor. The
interrupt level of a pending exception must always be greater than the CPU’s IPL for the CPU to
process the exception. This means that if the IPL is ‘0’, all exceptions at priority Level 1 and
above may interrupt the processor. If the IPL is ‘7’, only hardware traps may interrupt the
processor.

When an exception is serviced, the IPL is automatically set to the priority level of the exception
being serviced, which will disable all exceptions of equal and lower priority. However, since the
IPL field is read/write, one may modify the lower three bits of the IPL in an Interrupt
ServiceRoutine to control which exceptions may preempt the exception processing. Since the
SRL is stacked during exception processing, the original IPL is always restored after the
exception is serviced. If required, one may also prevent exceptions from nesting by setting the
NSTDIS bit, INTCON1<15>.

Note: Refer to the dsPIC30F Family Reference Manual for complete details on exception

processing.

DS70030F-page 2-8

© 2005 Microchip Technology Inc.

Section 2. Programmer’s Model

2.2.15 Core Control Register

The 16-bit CPU Core Control Register (CORCON), shown in Register 2-2, is used to set the
configuration of the dsPIC30F CPU. This register provides the ability to:

* map program space into data space

¢ set the ACCA and ACCB saturation enable

* set the Data Space Write Saturation mode

¢ set the Accumulator Saturation and Rounding modes

 set the Multiplier mode for DSP operations

¢ terminate DO loops prematurely

On device RESET, the CORCON is set to 0x0020, which sets the following mode:

* Program Space not Mapped to Data Space (PSV = 0)

¢ ACCA and ACCB Saturation Disabled (SATA = 0, SATB = 0)

* Data Space Write Saturation Enabled (SATDW = 1)

* Accumulator Saturation mode set to normal (ACCSAT = 0)

e Accumulator Rounding mode set to unbiased (RND = 0)

DSP Multiplier mode set to signed fractional (US = o, IF = 0)

In addition to setting CPU modes, the CORCON contains status information about the DO loop
nesting level (DL<2:0>) and the IPL<3> status bit, which indicates if a trap exception is being
processed.

o
-
S
==
o9
Q 3
@3
1)
*\.
(/]

2.2.16 Shadow Registers

A shadow register is used as a temporary holding register and can transfer its contents to or from
the associated host register upon some event. Some of the registers in the programmer’s model
have a shadow register, which is utilized during the execution of a DO, POP.S or PUSH.S
instruction. Shadow register usage is shown in Table 2-2.

Table 2-2: Automatic Shadow Register Usage
Location DO POP.S/PUSH.S

DCOUNT Yes —
DOSTART Yes —
DOEND Yes —
Status Register - — Yes
DC, N, QV, Z and C bits

WO - W3 — Yes

Since the DCOUNT, DOSTART and DOEND registers are shadowed, the ability to nest DO loops
without additional overhead is provided. Since all shadow registers are one register deep, up to
one level of DO loop nesting is possible. Further nesting of DO loops is possible in software, with
support provided by the DO Loop Nesting Level Status bits in the CORCON, CORCON<10:8>.

Note: All shadow registers are one register deep and are not directly accessible.
Additional shadowing may be performed in software using the software stack.

© 2005 Microchip Technology Inc. DS70030F-page 2-9

dsPIC30F Programmer’s Reference Manual

Register 2-1: SR, Status Register

High Byte (SRH):

R-0 R-0 R/C-0 R/C-0 R-0 R/C-0 R-0 R/W-0

oA | oB | sA | sB OAB SAB DA DC

bit 15 bit 8
Low Byte (SRL):
R/W-0 R/W-0 R/W-0 R-0 RW-0 RW-0 RW-O RMW-0

IPL<2:0> RA N ov Z c

bit 7 bit 0

bit 15 OA: Accumulator A Overflow bit
1 = Accumulator A overflowed
0 = Accumulator A has not overflowed
bit 14 OB: Accumulator B Overflow bit
1 = Accumulator B overflowed
0 = Accumulator B has not overflowed
bit 13 SA: Accumulator A Saturation bit
1 = Accumulator A is saturated or has been saturated at some time
0 = Accumulator A is not saturated

Note 1: This bit may be read or cleared, but not set.
2: Once this bit is set, it must be cleared manually by software.
bit 12 SB: Accumulator B Saturation bit
1 = Accumulator B is saturated or has been saturated at some time
0 = Accumulator B is not saturated

Note 1: This bit may be read or cleared, but not set.
2: Once this bit is set, it must be cleared manually by software.

bit 11 OAB: OA || OB Combined Accumulator Overflow bit
1 = Accumulators A or B have overflowed
0 = Neither Accumulators A or B have overflowed

bit 10 SAB: SA || SB Combined Accumulator bit
1 = Accumulators A or B are saturated or have been saturated at some time in the past
0 = Neither Accumulators A or B are saturated

Note 1: This bit may be read or cleared, but not set.
2: Once this bit is set, it must be cleared manually by software.
3: Clearing this bit will clear SA and SB.

bit 9 DA: DO Loop Active bit
1 = DO loop in progress
0 = DO loop not in progress
Note: This bit is read only.

bit 8 DC: MCU ALU Half Carry bit
1 = A carry-out from the Most Significant bit of the lower nibble occurred
0 = No carry-out from the Most Significant bit of the lower nibble occurred

bit 7-5 IPL<2:0>: Interrupt Priority Level bits

111 = CPU Interrupt Priority Level is 7 (15). User interrupts disabled.
110 = CPU Interrupt Priority Level is 6 (14)

101 = CPU Interrupt Priority Level is 5 (13)

100 = CPU Interrupt Priority Level is 4 (12)

011 = CPU Interrupt Priority Level is 3 (11)

010 = CPU Interrupt Priority Level is 2 (10)

001 = CPU Interrupt Priority Level is 1 (9)

000 = CPU Interrupt Priority Level is 0 (8)

Note: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU
Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1.

DS70030F-page 2-10 © 2005 Microchip Technology Inc.

Section 2. Programmer’s Model

Register 2-1: SR, Status Register (Continued)

bit 4 RA: REPEAT Loop Active bit
1 = REPEAT loop in progress
0 = REPEAT loop not in progress
bit 3 N: MCU ALU Negative bit
1 = The result of the operation was negative
0 = The result of the operation was not negative

bit 2 OV: MCU ALU Overflow bit
1 = Overflow occurred
0 = No overflow occurred

bit 1 Z: MCU ALU Zero bit
1 = The result of the operation was zero
0 = The result of the operation was not zero

o
Note: Refer to Section 4.9 “Z Status Bit” for operation with ADDC, CPB, SUBB and SUBBR 3
instructions. Q
S— =2
bit 0 C: MCU ALU Carry/Borrow bit 8_ g
1 = A carry-out from the Most Significant bit occurred (1) 3
0 = No carry-out from the Most Significant bit occurred)
=
o
Legend:
R = Readable bit W = Writable bit C = Clearable bit
-n = Value at POR 1 = bit is set 0 = bit is cleared

© 2005 Microchip Technology Inc. DS70030F-page 2-11

dsPIC30F Programmer’s Reference Manual

Register 2-2: CORCON, Core Control Register
High Byte:
U U U R/W-0 R(0)/W-0 R-0 R-0 R/W-0
— — — us | EbT | DL<2:0>
bit 15 bit 8
Low Byte:
R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R/W-0 R/W-0 R/W-0
SATA SATB SATDW ACCSAT IPL3 PSV RND IF
bit 7 bit 0

bit 15-13 Unused

bit 12

bit 11

bit 10-8

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

Register 2-2:

US: Unsigned or Signed Multiplier Mode Select bit
1 = Unsigned mode enabled for DSP multiply operations
0 = Signed mode enabled for DSP multiply operations

EDT: Early DO Loop Termination Control bit
1 = Terminate executing DO loop at end of current iteration
0 = No effect

Note: This bit will always read ‘0’.

DL<2:0>: DO Loop Nesting Level Status bits

111 = DO looping is nested at 7 levels

110 = DO looping is nested at 6 levels

110 = DO looping is nested at 5 levels

110 = DO looping is nested at 4 levels

011 = DO looping is nested at 3 levels

010 = DO looping is nested at 2 levels

001 = DO looping is active, but not nested (just 1 level)
000 = DO looping is not active

Note 1: DL<2:1> are read only.
2: The first two levels of DO loop nesting are handled by hardware.

SATA: ACCA Saturation Enable bit
1 = Accumulator A saturation enabled
0 = Accumulator A saturation disabled
SATB: ACCB Saturation Enable bit
1 = Accumulator B saturation enabled
0 = Accumulator B saturation disabled
SATDW: Data Space Write from DSP Engine Saturation Enable bit
1 = Data space write saturation enabled
0 = Data space write saturation disabled
ACCSAT: Accumulator Saturation Mode Select bit
1 = 9.31 saturation (Super Saturation)
0 = 1.31 saturation (Normal Saturation)
IPL3: Interrupt Priority Level 3 Status bit
1 = CPU Interrupt Priority Level is 8 or greater (trap exception activated)
0 = CPU Interrupt Priority Level is 7 or less (no trap exception activated)

Note 1: This bit may be read or cleared, but not set.

2: This bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

PSV: Program Space Visibility in Data Space Enable bit
1 = Program space visible in data space
0 = Program space not visible in data space

CORCON, Core Control Register (Continued)

DS70030F-page 2-12

© 2005 Microchip Technology Inc.

Section 2. Programmer’s Model

bit 1 RND: Rounding Mode Select bit
1 = Biased (conventional) rounding enabled
0 = Unbiased (convergent) rounding enabled

bit 0 IF: Integer or Fractional Multiplier Mode Select bit
1 = Integer mode enabled for DSP multiply operations
0 = Fractional mode enabled for DSP multiply operations

Legend:

R = Readable bit W = Writable bit C = Clearable bit X = bit is unknown

-n = Value at POR 1 = bit is set 0 = bit is cleared U = Unimplemented bit,
read as ‘0’

o
-
S

==

o9

Q 3

@3
1)
*\.
(/]

© 2005 Microchip Technology Inc. DS70030F-page 2-13

dsPIC30F Programmer’s Reference Manual

NOTES:

DS70030F-page 2-14 © 2005 Microchip Technology Inc.

MICROCHIP
Section 3. Instruction Set Overview

HIGHLIGHTS

This section of the manual contains the following major topics:

1 70 B] To [F o1 1o o [H RSO 3-2
3.2 INSrUCION St OVEIVIEWcceeeiieiiee e e et e et seee e seee e e snte e e sneeesnneeenn 3-2
3.3 Instruction Set SUMMary TabIEScc.eoiiiiiiiie e 3-3

2
oz
< Cc
D0
= -
<—.
= 0
g:

wn
o
-

© 2005 Microchip Technology Inc. DS70030F-page 3-1

dsPIC30F Programmer’s Reference Manual

3.1

3.2

3.21

Introduction

The dsPIC30F instruction set provides a broad suite of instructions, which supports traditional
microcontroller applications and a class of instructions, which supports math intensive
applications. Since almost all of the functionality of the PICmicro® MCU instruction set has been
maintained, this hybrid instruction set allows a friendly DSP migration path for users already
familiar with the PICmicro microcontroller.

Instruction Set Overview

The dsPIC30F instruction set contains 84 instructions, which can be grouped into the ten
functional categories shown in Table 3-1. Table 1-2 defines the symbols used in the instruction
summary tables, Table 3-2 through Table 3-11. These tables define the syntax, description,
storage and execution requirements for each instruction. Storage requirements are represented
in 24-bit instruction words and execution requirements are represented in instruction cycles.

Table 3-1: dsPIC30F Instruction Groups
Functional Group Summary Table Page #

Move Instructions Table 3-2 3-3
Math Instructions Table 3-3 3-4
Logic Instructions Table 3-4 3-5
Rotate/Shift Instructions Table 3-5 3-6
Bit Instructions Table 3-6 3-7
Compare/Skip Instructions Table 3-7 3-8
Program Flow Instructions Table 3-8 3-9
Shadow/Stack Instructions Table 3-9 3-10
Control Instructions Table 3-10 3-10
DSP Instructions Table 3-11 3-10

Most instructions have several different Addressing modes and execution flows, which require
different instruction variants. For instance, there are six unique ADD instructions and each
instruction variant has its own instruction encoding. Instruction format descriptions and specific
instruction operation are provided in Section 3. “Instruction Set Overview”. Additionally, a
composite alphabetized instruction set table is provided in Section 6. “Reference”.

Multi-Cycle Instructions

As the instruction summary tables show, most instructions execute in a single cycle, with the
following exceptions:

* Instructions DO, MOV.D, POP.D, PUSH.D, TBLRDH, TBLRDL, TBLWTH and
TBLWTL require 2 cycles to execute.

¢ Instructions DIV.S, DIV.U and DIVF are single cycle instructions, which should be
executed 18 consecutive times as the target of a REPEAT instruction.

* Instructions that change the program counter also require 2 cycles to execute, with the
extra cycle executed as a NOP. SKIP instructions, which skip over a 2-word instruction,
require 3 instruction cycles to execute, with 2 cycles executed as a NOP.

e The RETFIE, RETLW and RETURN are a special case of an instruction that changes the

program counter. These execute in 3 cycles, unless an exception is pending and then they
execute in 2 cycles.

Note: Instructions which access program memory as data, using Program Space Visibility,
will incur a one or two cycle delay. However, when the target instruction of a
REPEAT loop accesses program memory as data, only the first execution of the
target instruction is subject to the delay. See the dsPIC30F Family Reference
Manual for details.

DS70030F-page 3-2

© 2005 Microchip Technology Inc.

Section 3. Instruction Set Overview

3.2.2 Multi-Word Instructions

As defined by Subsection Table 3-2: “Move Instructions” , almost all instructions consume
one instruction word (24-bits), with the exception of the CALL, DO and GOTO instructions, which
are Program Flow Instructions, listed in Table 3-8. These instructions require two words of mem-
ory because their opcodes embed large literal operands.

Note: When the optional {,WREG} operand is specified, the destination of the instruction is
WREG. When {,WREG} is not specified, the destination of the instruction is the file
register f.

3.3 Instruction Set Summary Tables

Table 3-2: Move Instructions

Assembly Syntax Description Words | Cycles | Page #

EXCH Wns,Wnd Swap Wns and Wnd 1 1 5-115

MOV f {, WREG})(see Note) | njoye f to destination 1 1 5-145

MOV WREG;f Move WREG to f 1 1 5-146

MOV f,Wnd Move f to Wnd 1 1 5-147

MOV Whns,f Move Wns to f 1 1 5-148

MOV.B #1it8,Wnd Move 8-bit literal to Wnd 1 1 5-149

MOV #1it16,Wnd Move 16-bit literal to Wnd 1 1 5-150

MOV [Ws+Slit10],Wnd Move [Ws + signed 10-bit offset] to Wnd 1 1 5-151

MOV Whns,[Wd+Slit10] Move Wns to [Wd + signed 10-bit offset] 1 1 5-152

MOV Ws,Wd Move Ws to Wd 1 1 5-153

MOV.D Ws,Wnd Move double Ws to Wnd:Wnd+1 1 2 5-155

MOV.D Whns,Wd Move double Wns:Wns+1 to Wd 1 2 5-157

SWAP Wn Whn = byte or nibble swap Wn 1 1 5-249

TBLRDH Ws,Wd Read high program word to Wd 1 2 5-250

TBLRDL Ws,Wd Read low program word to Wd 1 2 5-252 o

TBLWTH Ws,Wd Write Ws to high program word 1 2 5-254 g

TBLWTL Ws,Wd Write Ws to low program word 1 2 5-256 2
(1}
g

S5
(2]
—
-
C
(2]
=
(®]
=)
)
(1]
—

© 2005 Microchip Technology Inc. DS70030F-page 3-3

dsPIC30F Programmer’s Reference Manual

Table 3-3: Math Instructions
Assembly Syntax Description Words | Cycles | Page #
ADD f {(WREG}"Y |Destination = f + WREG 1 1 5-7
ADD #lit10,Wn Wn = lit10 + Wn 1 1 5-8
ADD Wb, #lit5, Wd Wd = Wb + lits 1 1 5-9
ADD Wb,Ws,Wd Wd = Wb + Ws 1 1 5-10
ADDC f{WREG)") |Destination = f + WREG + (C) 1 1 5-14
ADDC #lit10,Wn Wn = [it10 + Wn + (C) 1 1 5-15
ADDC Wb, #lit5,Wd Wd = Wb + lit5 + (C) 1 1 5-16
ADDC Wb,Ws,Wd Wd = Wb + Ws + (C) 1 1 5-17
DAW.B Wn Whn = decimal adjust Wn 1 1 5-95
DEC f {WREG}" |Destination=f — 1 1 1 5-96
DEC Ws,Wd Wd = Ws — 1 1 1 5-97
DEC2 f{WREG}" |Destination=f-2 1 1 5-98
DEC2 Ws,Wd Wd=Ws -2 1 1 5-99
DIV.S Wm, Wn Signed 16/16-bit integer divide 1 18@ | 5-101
DIV.SD Wm, Wn Signed 32/16-bit integer divide 1 18 | 5-101
DIV.U Wm, Wn Unsigned 16/16-bit integer divide 1 18 | 5-103
DIVUD Wm, Wn Unsigned 32/16-bit integer divide 1 18 | 5-103
DIVF Wm, Wn Signed 16/16-bit fractional divide 1 18@) | 5-105
INC f {(WREG}"Y |Destination = f + 1 1 1 5-124
INC Ws,Wd Wd =Ws + 1 1 1 5-125
INC2 f {WREG}"Y |Destination =f + 2 1 1 5-126
INC2 Ws,Wd Wd =Ws + 2 1 1 5-127
MUL f W3:W2 = f * WREG 1 1 5-169
MUL.SS Wb,Ws,Wnd {Wnd+1,Wnd} = sign(Wb) * sign(Ws) 1 1 5-170
MUL.SU Wb #iit5Wnd |{Wnd+1,Wnd} = sign(Wb) * unsign(lit5) 1 1 5-172
MUL.SU Wb,Ws,Wnd {Wnd+1,Wnd} = sign(Wb) * unsign(Ws) 1 1 5-174
MUL.US Wb,Ws,Wnd {Wnd+1,Wnd} = unsign(Wb) * sign(Ws) 1 1 5-176
MUL.UU Whb,#lit5,Wnd {Wnd+1,Wnd} = unsign(Wb) * unsign(lit5) 1 1 5-178
MUL.UU Wb,Ws,Wnd {Wnd+1,Wnd} = unsign(Wb) * unsign(Ws) 1 1 5-179
SE Ws,Wnd Wnd = sign-extended Ws 1 1 5-220
SUB f {(WREG}" |Destination = f - WREG 1 1 5-230
SUB #lit10,Wn Wn = Wn — lit10 1 1 5-231
SUB Wh, #1it5,Wd Wd = Wb — it5 1 1 5-232
SUB Wb,Ws,Wd Wd = Wb — Ws 1 1 5-233
SUBB f{WREG}" |Destination = f - WREG — (C) 1 1 5-236
SUBB #lit10,Wn Wn = Wn —it10 — (C) 1 1 5-237
SUBB Wb, #lit5,Wd Wd = Wb — lit5 — (C) 1 1 5-238
SUBB Wb,Ws,Wd Wd = Wb — Ws — (C) 1 1 5-239
SUBBR f{WREG}" |Destination = WREG —f — (C) 1 1 5-241
SUBBR Wb, #lit5,Wd Wd = lit5 — Wb — (C) 1 1 5-242
SUBBR Wb,Ws,Wd Wd = Ws — Wb — (C) 1 1 5-243
SUBR f{WREG}" |Destination = WREG - f 1 1 5-245
SUBR Wb, #lit5,Wd Wd = Iit5 — Wb 1 1 5-246
SUBR Wb,Ws,Wd Wd = Ws — Wb 1 1 5-247
ZE Ws,Wnd Wnd = zero-extended Ws 1 1 5-264
Note 1: When the optional {,WREG} operand is specified, the destination of the instruction is
WREG. When {,WREG} is not specified, the destination of the instruction is the file
register f.
2: The divide instructions must be preceded with a "REPEAT #17" instruction, such that

they are executed 18 consecutive times.

DS70030F-page 3-4

© 2005 Microchip Technology Inc.

Section 3. Instruction Set Overview

Table 3-4: Logic Instructions

Assembly Syntax Description Words | Cycles | Page #
AND f{WREG}(seeNote) | pastination = f .AND. WREG 1 1 5-19
AND #lit10,Wn Wn = lit10 .AND. Wn 1 1 5-20
AND Wb, #lit5,Wd Wd = Wb .AND. lit5 1 1 5-21
AND Wb,Ws,Wd Wd = Wb .AND. Ws 1 1 5-22
CLR f f=0%x0000 1 1 5-75
CLR WREG WREG = 0x0000 1 1 5-75
CLR Wd Wd = 0x0000 1 1 5-76
COM f{,WREG}seeNote) |hastination = f 1 1 5-80
COM Ws,Wd Wd = Ws 1 1 5-81
IOR f { WREG}(see Note) | pastination = f .IOR. WREG 1 1 5-128
IOR #1it10,Wn Wn = lit10 .IOR. Wn 1 1 5-129
IOR Wh, #1it5,Wd Wd = Wb .IOR. lit5 1 1 5-130
IOR Whb,Ws,Wd Wd = Wb .IOR. Ws 1 1 5-131
NEG f{,WREG}seeNote) |npagtination =1+ 1 1 1 5-181
NEG Ws,Wd Wd=Ws +1 1 1 5-182
SETM f f = OXFFFF 1 1 5-221
SETM WREG WREG = 0xFFFF 1 1 5-221
SETM Wd Wd = 0XFFFF 1 1 5-222
XOR f{,WREG}seeNote) |phagtination = f XOR. WREG 1 1 5-259
XOR #lit10,Wn Wn = it10 .XOR. Wn 1 1 5-260
XOR Wh,#lit5,Wd Wd = Wb .XOR. lit5 1 1 5-261
XOR Wb,Ws,Wd Wd = Wb .XOR. Ws 1 1 5-262

Note: When the optional {, WREG} operand is specified, the destination of the instruction is

WREG. When {,WREG} is not specified, the destination of the instruction is the file

register f.

© 2005 Microchip Technology Inc.

DS70030F-page 3-5

2
oz
< Cc
D0
= -
<—.
= 0
g:s

wn
o
-

dsPIC30F Programmer’s Reference Manual

Table 3-5: Rotate/Shift Instructions

Assembly Syntax Description Words | Cycles | Page #
ASR f{WREG}(see Note) |pegtination = arithmetic right shift f 1 1 5-24
ASR Ws,Wd Wd = arithmetic right shift Ws 1 1 5-25
ASR Wb, #lit4, Wnd Wnd = arithmetic right shift Wb by lit4 1 1 5-27
ASR Wb,Wns,Wnd Wnd = arithmetic right shift Wb by Wns 1 1 5-28
LSR f{,WREG})seeNote) |pestination = logical right shift f 1 1 5-136
LSR Ws,Wd Wd = logical right shift Ws 1 1 5-137
LSR Wb, #lit4, Wnd Wnd = logical right shift Wb by lit4 1 1 5-139
LSR Wb,Wns,Wnd Wnd = logical right shift Wb by Wns 1 1 5-140
RLC f { WREG}(®ee Note) | Destination = rotate left through Carry f 1 1 5-204
RLC Ws,Wd Wd = rotate left through Carry Ws 1 1 5-205
RLNC f{WREG})seeNote) |pagtination = rotate left (no Carry) f 1 1 5-207
RLNC Ws,Wd Wd = rotate left (no Carry) Ws 1 1 5-208
RRC f{WREG}SseeNote) |pegtination = rotate right through Carry f 1 1 5-210
RRC Ws,Wd Wd = rotate right through Carry Ws 1 1 5-211
RRNC f{WREG}seeNote) |pastination = rotate right (no Carry) f 1 1 5-213
RRNC Ws,Wd Wd = rotate right (no Carry) Ws 1 1 5-214
SL f {, WREG}(see Note) | pegtination = left shift f 1 1 5-225
SL Ws,Wd Wd = left shift Ws 1 1 5-226
SL Wb, #lit4,Wnd Wnd = left shift Wb by lit4 1 1 5-228
SL Wb,Wns,Wnd Wnd = left shift Wb by Wns 1 1 5-229

Note: = When the optional {,WREG} operand is specified, the destination of the instruction is

WREG. When {,WREG} is not specified, the destination of the instruction is the file

register f.

DS70030F-page 3-6

© 2005 Microchip Technology Inc.

Section 3. Instruction Set Overview

Table 3-6: Bit Instructions

Assembly Syntax Description Words | Cycles | Page #
BCLR f,#bit4 Bit clear f 1 1 5-29
BCLR Ws, #bit4 Bit clear Ws 1 1 5-30
BSET f,#bit4 Bit set f 1 1 5-54
BSET Ws, #bit4 Bit set Ws 1 1 5-55
BSW.C Ws,Wb Write C bit to Ws<Wb> 1 1 5-56
BSW.Z Ws,Wb Write Z bit to Ws<Wb> 1 1 5-56
BTG f,#bit4 Bit toggle f 1 1 5-58
BTG Ws, #bit4 Bit toggle Ws 1 1 5-59
BTST f #bit4 Bit test f 1 1 5-67
BTST.C Ws, #bitd Bit test Ws to C 1 1 5-68
BTST.Z Ws, #bit4 Bit test Ws to Z 1 1 5-68
BTST.C Ws,Wb Bit test Ws<Wb> to C 1 1 5-69
BTST.Z Ws,Wb Bit test Ws<Wb> to Z 1 1 5-69
BTSTS f,#bit4 Bit test f then set f 1 1 5-71
BTSTS.C Ws,#bit4 Bit test Ws to C then set Ws 1 1 5-72
BTSTS.Z Ws,#bit4 Bit test Ws to Z then set Ws 1 1 5-72
FBCL Ws,Wnd Find bit change from left (MSb) side 1 1 5-116
FF1L Ws,Wnd Find first one from left (MSb) side 1 1 5-118
FF1R Ws,Wnd Find first one from right (LSb) side 1 1 5-120

2
oz
< Cc
D0
= -
<—.
= 0
g:s

wn
o
-

© 2005 Microchip Technology Inc. DS70030F-page 3-7

dsPIC30F Programmer’s Reference Manual

Table 3-7: Compare/Skip Instructions

Assembly Syntax |Description Words | Cycles(see Note) | page #
BTSC f,#bit4 Bit test f, skip if clear 1 1(2o0r3) 5-60
BTSC Ws,#bit4 |Bit test Ws, skip if clear 1 1(20r3) 5-62
BTSS f,#bit4 Bit test f, skip if set 1 1(2or3) 5-64
BTSS Ws,#bit4 |Bit test Ws, skip if set 1 1(20r3) 5-65
CP f Compare (f — WREG) 1 1 5-82
CP Whb,#lit5 |Compare (Wb — lit5) 1 1 5-83
CP Wb,Ws Compare (Wb — Ws) 1 1 5-84
CPO f Compare (f — 0x0000) 1 1 5-85
CPO Ws Compare (Ws — 0x0000) 1 1 5-86
CPB f Compare with Borrow (f - WREG — 6) 1 1 5-87
CPB Wb, #lit5 |Compare with Borrow (Wb — lit5 — 6) 1 1 5-88
CPB Wb,Ws Compare with Borrow (Wb — Ws — 6) 1 1 5-89
CPSEQ Wb, Wn |Compare (Wb —Wn), skip if = 1 1(20r3) 5-91
CPSGT Wb, Wn |Compare (Wb — Wn), skip if > 1 1(20r3) 5-92
CPSLT Wb, Wn |Compare (Wb —Wn), skip if < 1 1(20r3) 5-93
CPSNE Wb, Wn |Compare (Wb — Wn), skip if # 1 1(2o0r3) 5-94

Note: Conditional skip instructions execute in 1 cycle if the skip is not taken, 2 cycles if the skip
is taken over a one-word instruction and 3 cycles if the skip is taken over a two-word
instruction.

DS70030F-page 3-8 © 2005 Microchip Technology Inc.

Section 3. Instruction Set Overview

Table 3-8: Program Flow Instructions

Assembly Syntax Description Words | Cycles |Page #

BRA Expr Branch unconditionally 1 2 5-31

BRA Wn Computed branch 1 2 5-32

BRA C,Expr Branch if Carry (no Borrow) 1 1 (2)(1) 5-33

BRA GE,Expr Branch if greater than or equal 1 1M | 535

BRA GEU,Expr Branch if unsigned greater than or equal 1 1M | 533

BRA GT,Expr Branch if greater than 1 1 (2)(1) 5-37

BRA GTU,Expr Branch if unsigned greater than 1 12" | 5-38

BRA LE,Expr Branch if less than or equal 1 1M | 539

BRA LEU,Expr Branch if unsigned less than or equal 1 1M | 540

BRA LT,Expr Branch if less than 1 12 | 541

BRA LTU,Expr Branch if unsigned less than 1 1M | 544

BRA N,Expr Branch if Negative 1 1M | 543

BRA NC,Expr Branch if not Carry (Borrow) 1 1 (2)(1) 5-44

BRA NN,Expr Branch if not Negative 1 1 (2)(1) 5-45

BRA NOV,Expr Branch if not Overflow 1 1M | 546

BRA NZ,Expr Branch if not Zero 1 12" | 547

BRA OA,Expr Branch if Accumulator A Overflow 1 1 (2)(1) 5-48

BRA OB,Expr Branch if Accumulator B Overflow 1 1 (2)(1) 5-49

BRA OV,Expr Branch if Overflow 1 1M | 550

BRA SA,Expr Branch if Accumulator A Saturate 1 1M | 5-51

BRA SB,Expr Branch if Accumulator B Saturate 1 1 (2)(1) 5-52 5
BRA Z,Expr Branch if Zero 1 [1@M] 553 o2
CALL Expr Call subroutine 2 2 | 573 35
CALL Wn Call indirect subroutine 1 2 5-74 g 'g
DO #lit14,Expr Do code through PC+Expr, (lit14+1) times 2 2 5-107 g =)
DO Wn,Expr Do code through PC+Expr, (Wn+1) times 2 2 5-109 g
GOTO Expr Go to address 2 2 5-122 -~
GOTO Wn Go to address indirectly 1 2 5-123

RCALL Expr Relative call 1 2 5-196

RCALL Wn Computed call 1 2 5-196

REPEAT #lit14 Repeat next instruction (lit14+1) times 1 1 5-197

REPEAT Wn Repeat next instruction (Wn+1) times 1 1 5-198

RETFIE Return from interrupt enable 1 3 (2)(2) 5-201

RETLW #1it10,Wn Return with lit10 in Wn 1 3(2)@ | 5-202

RETURN Return from subroutine 1 3 (2)(2) 5-203

Note 1: Conditional branch instructions execute in 1 cycle if the branch is not taken, or 2 cycles
if the branch is taken.
2: RETURN instructions execute in 3 cycles, but if an exception is pending, they execute in
2 cycles.

© 2005 Microchip Technology Inc. DS70030F-page 3-9

dsPIC30F Programmer’s Reference Manual

Table 3-9: Shadow/Stack Instructions
Assembly Syntax Description Words | Cycles | Page #
LNK #lit14 Link frame pointer 1 1 5-135
POP f Pop TOS to f 1 1 5-186
POP Wd Pop TOS to Wd 1 1 5-187
POP.D Wnd Double pop from TOS to Wnd:Wnd+1 1 2 5-188
POP.S Pop shadow registers 1 1 5-189
PUSH f Push f to TOS 1 1 5-190
PUSH Ws Push Ws to TOS 1 1 5-191
PUSH.D Wns Push double Wns:Wns+1 to TOS 1 2 5-192
PUSH.S Push shadow registers 1 1 5-193
ULNK Unlink frame pointer 1 1 5-258
Table 3-10: Control Instructions
Assembly Syntax Description Words | Cycles | Page #
CLRWDT Clear Watchdog Timer 1 1 5-79
DISI #lit14 Disable interrupts for (lit14+1) instruction cycles 1 1 5-100
NOP No operation 1 1 5-184
NOPR No operation 1 1 5-185
PWRSAV #lit1 Enter Power Saving mode lit1 1 1 5-194
RESET Software device RESET 1 1 5-200
Table 3-11: DSP Instructions
Assembly Syntax Description Words |Cycles|Page #
ADD Acc Add accumulators 1 1 5-11
ADD Ws,#Slit4,Acc 16-bit signed add to Acc 1 1 5-12
CLR Acc,Wx,Wxd,Wy,Wyd,AWB Clear Acc 1 1 5-77
ED Wm*Wm,Acc,Wx,Wy,Wxd Euclidean distance 1 1 5-111
(no accumulate)
EDAC Wm*Wm,Acc,Wx,Wy,Wxd Euclidean distance 1 1 5-113
LAC Ws, #Slit4,Acc Load Acc 1 1 5-133
MAC Wm*Wn,Acc,Wx,Wxd, Wy, Multiply and accumulate 1 1 5-141
Wyd,AWB
MAC Wm*Wm,Acc,Wx,Wxd,Wy,Wyd | Square and accumulate 1 1 5-143
MOVSAC Acc,Wx,Wxd,Wy,Wyd,AWB Move Wx to Wxd and Wy to Wyd 1 1 5-159
MPY Wm*Wn,Acc,Wx,Wxd,Wy,Wyd |Multiply Wn by Wm to Acc 1 1 5-161
MPY Wm*Wm,Acc,Wx,Wxd,Wy,Wyd | Square to Acc 1 1 5-163
MPY.N Wm*Wn,Acc,Wx,Wxd,Wy,Wyd |-(Multiply Wn by Wm) to Acc 1 1 5-165
MSC Wm*Wn,Acc,Wx,Wxd,Wy, Multiply and subtract from Acc 1 1 5-167
Wyd,AWB
NEG Acc Negate Acc 1 1 5-183
SAC Acc,#Slit4,Wd Store Acc 1 1 5-216
SAC.R Acc,#Slit4,Wd Store rounded Acc 1 1 5-218
SFTAC Acc,#Slit6 Arithmetic shift Acc by Slit6 1 1 5-223
SFTAC Acc,Wn Arithmetic shift Acc by (Wn) 1 1 5-224
SUB Acc Subtract accumulators 1 1 5-235

DS70030F-page 3-10

© 2005 Microchip Technology Inc.

MICROCHIP
Section 4. Instruction Set Details

HIGHLIGHTS

This section of the manual contains the following major topics:

4.1 Data Addressing MOUES.couueiiiii ettt e e e aeae e e e

4.2 Program AddresSing MOGEScceiiiiiiiiniie e

4.3 INSIrUCHON SHAIIS.....cce e e a e e e e e e e e

4.4 Byte OPEratioNScooiiiiiiiiiiieiiee ettt

4.5 WOrd Move OPerationSccuuiieeiiiiiiieeeeecite e e e e et e e e et e e e e e sare e e e e e ssasreeeesaenaeneeeean

4.6 Using 10-bit Literal Operands

4.7 Software Stack Pointer and Frame PoOiNter...........cccveiiiiiiiie i 4-20
4.8 Conditional Branch INStrUCHONSuiiiiiiiiiiie e 4-25
e A - | (V1= = 1] S PP PR PR 4-26
4.10 Assigned Working Register USAgeccooiiuiiiiiiiiiiiiiie et 4-27
4,11 DSP Data FOMMALS.......cuviiiiiiiiiiee ettt e e e e et e e e e et e e e e e e snaeeeeeean 4-30
412 ACCUMUIATON USAQE.oiiiiiieiieie ettt 4-32
4.13 ACCUMUIATON ACCESS .. .eeeeiieeieiiiiie ettt ettt e e e e ettt e e e e ettt e e e e nnee e e e e e e annbeeeeeeaanneneaaean 4-33
4.14 DSP MAC INSITUCHIONS ...ttt r e e e e e e e e eaeeeeeeeeeannan 4-33
4.15 DSP Accumulator INSIrUCIONSoiiiiiiiiiiie et 4-37
4.16 Scaling Data with the FBCL INStrUCLIONccociiiiiiiiiiiie e 4-37
4.17 Normalizing the Accumulator with the FBCL InStruction............cccoeviieeiieiiieiieneee 4-39

S5
7]
—
-
c
(2]
=
(®)
=)
Y
(1]
—

© 2005 Microchip Technology Inc. DS70030F-page 4-1

dsPIC30F Programmer’s Reference Manual

41

411

Data Addressing Modes

The dsPIC30F supports three native Addressing modes for accessing data memory, along with
several forms of immediate addressing. Data accesses may be performed using file register,
register direct or register indirect addressing, and immediate addressing allows a fixed value to
be used by the instruction.

File register addressing provides the ability to operate on data stored in the lower 8K of data
memory (Near RAM), and also move data between the working registers and the entire 64K data
space. Register direct addressing is used to access the 16 memory mapped working registers,
WO0:W15. Register indirect addressing is used to efficiently operate on data stored in the entire
64K data space, using the contents of the working registers as an effective address. Immediate
addressing does not access data memory, but provides the ability to use a constant value as an
instruction operand. The address range of each mode is summarized in Table 4-1.

Table 4-1: dsPIC30F Addressing Modes
Addressing Mode Address Range
File Register 0x0000 - ox1FFF(see Note)
Register Direct 0x0000 - 0x001F (working register array W0:W15)
Register Indirect 0x0000 - OXFFFF
Immediate N/A (constant value)

Note: The address range for the File Register MOV is 0x0000 - OxFFFE.

File Register Addressing

File register addressing is used by instructions which use a predetermined data address as an
operand for the instruction. The majority of instructions that support file register addressing
provide access to the lower 8 Kbytes of data memory, which is called the Near RAM. However,
the MOV instruction provides access to all 64 Kbytes of memory using file register addressing.
This allows one to load data from any location in data memory to any working register, and store
the contents of any working register to any location in data memory. It should be noted that file
register addressing supports both byte and word accesses of data memory, with the exception
of the MOV instruction, which accesses all 64K of memory as words. Examples of file register
addressing are shown in Example 4-1.

Most instructions, which support file register addressing, perform an operation on the specified file
register and the default working register WREG (see Section 2.2.2 “Default Working Register
(WREG)”). If only one operand is supplied in the instruction, WREG is an implied operand and the
operation results are stored back to the file register. In these cases, the instruction is effectively a
read-modify-write instruction. However, when both the file register and WREG are specified in the
instruction, the operation results are stored in WREG and the contents of the file register are
unchanged. Sample instructions which show the interaction between the file register and WREG
are shown in Example 4-2.

Note: Instructions which support file register addressing use f as an operand in the
instruction summary tables of Section 3. “Instruction Set Overview”.

DS70030F-page 4-2

© 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-1:

File Register Addressing

DEC 0x1000

Before Instruction:
Data Memory 0x1000

After Instruction:
Data Memory 0x1000

MOV 0x27FE, WO

Before Instruction:
WO = 0x5555
Data Memory O0x27FE

After Instruction:
WO = 0x1234
Data Memory O0x27FE

; decrement data stored at 0x1000

0x5555

0x5554

; move data stored at 0x27FE to WO

0x1234

0x1234

Example 4-2:

File Register Addressing and WREG

AND 0x1000

Before Instruction:
WO (WREG) = 0x332C
Data Memory 0x1000

After Instruction:
WO (WREG) = 0x332C
Data Memory 0x1000

AND 0x1000, WREG

Before Instruction:
WO (WREG) = 0x332C
Data Memory 0x1000

After Instruction:
WO (WREG) = 0x1104
Data Memory 0x1000

; AND 0x1000 with WREG, store to 0x1000

0x5555

0x1104

; AND 0x1000 with WREG, store to WREG

0x5555

0x5555

© 2005 Microchip Technology Inc.

DS70030F-page 4-3

S5
72]
—
-
c
(2]
=
(®)
=)
2]
(1]
—

dsPIC30F Programmer’s Reference Manual

41.2

Register Direct Addressing

Register direct addressing is used to access the contents of the 16 working registers (W0:W15).
The Register Direct Addressing mode is fully orthogonal, which allows any working register to be
specified for any instruction which uses register direct addressing, and it supports both byte and
word accesses. Instructions which employ register direct addressing use the contents of the
specified working register as data to execute the instruction, so this Addressing mode is useful
only when data already resides in the working register core. Sample instructions which utilize
register direct addressing are shown in Example 4-3.

Another feature of register direct addressing is that it provides the ability for dynamic flow control.
Since variants of the DO and REPEAT instruction support register direct addressing, one may
generate flexible looping constructs using these instructions.

Note: Instructions which must use register direct addressing, use the symbols Wb, Wn,
Wns and Wnd in the summary tables of Section 3. “Instruction Set Overview”.
Commonly, register direct addressing may also be used when register indirect
addressing may be used. Instructions which use register indirect addressing, use
the symbols Wd and Ws in the summary tables of Section 3. “Instruction Set
Overview”.

Example 4-3: Register Direct Addressing
EXCH w2, W3 ; Exchange W2 and W3
Before Instruction:
W2 = 0x3499
W3 = 0x003D
After Instruction:
W2 = 0x003D
W3 = 0x3499
IOR #0x44, WO ; Inclusive-OR 0x44 and WO
Before Instruction:
WO = 0x9C2E

After Instruction:

WO = 0X9C6E
SL W6, W7, W8 ; Shift left Wé by W7, and store to W8
Before Instruction:

W6 = 0x000C

W7 = 0x0008

W8 = 0x1234
After Instruction:

W6 = 0x000C

W7 = 0x0008

W8 = 0x0C00

DS70030F-page 4-4

© 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

413 Register Indirect Addressing

Register indirect addressing is used to access any location in data memory by treating the
contents of a working register as an effective address (EA) to data memory. Essentially, the
contents of the working register become a pointer to the location in data memory which is to be
accessed by the instruction.

This Addressing mode is powerful, because it also allows one to modify the contents of the
working register, either before or after the data access is made, by incrementing or decrementing
the EA. By modifying the EA in the same cycle that an operation is being performed, register
indirect addressing allows for the efficient processing of data that is stored sequentially in
memory. The modes of indirect addressing supported by the dsPIC30F are shown in Table 4-2.

Table 4-2: Indirect Addressing Modes
Function Function
Indirect Mode | Syntax (Byte (Word Description
Instruction) Instruction)

No Modification [Wn] EA =[Wn] EA = [Wn] The contents of Wn forms the
EA.

Pre-Increment [++Wn] EA = [Wn+=1] EA = [Wn+=2] |[Wn is pre-incremented to form
the EA.

Pre-Decrement [--Wn] EA = [Wn-=1] EA =[Wn-=2] |Wnis pre-decremented to form
the EA.

Post-Increment [Wn++] EA =[Wn]+= 1 EA =[Wn]+=2 | The contents of Wn forms

he EA, then Wn is
post-incremented.
Post-Decrement [Wn--] EA = [Wn]-=1 EA =[Wn]-=2 | The contents of Wn forms

the EA, then Wn is
post-decremented.

Register Offset | [Wn+Wb] | EA =[Wn+Wb] EA = [Wn+Wb] | The sum of Wn and Wb forms
the EA. Wn and Wb are not
modified.

Table 4-2 shows that four Addressing modes modify the EA used in the instruction, and this
allows the following updates to be made to the working register: post-increment, post-decrement,
pre-increment and pre-decrement. Since all EAs must be given as byte addresses, support is
provided for Word mode instructions by scaling the EA update by 2. Namely, in Word mode,
pre/post-decrements subtract 2 from the EA stored in the working register, and
pre/post-increments add 2 to the EA. This feature ensures that after an EA modification is made,
that the EA will point to the next adjacent word in memory. Example 4-4 shows how indirect
addressing may be used to update the EA.

Table 4-2 also shows that the Register Offset mode addresses data which is offset from a base
EA stored in a working register. This mode uses the contents of a second working register to form
the EA by adding the two specified working registers. This mode does not scale for Word mode
instructions, but offers the complete offset range of 64 Kbytes. Note that neither of the working
registers used to form the EA are modified. Example 4-5 shows how register offset indirect
addressing may be used to access data memory.

S5
72]
—
-
c
(2]
=
(®)
=)
2]
(1]
—

Note: The MOV with offset instructions (pages page 151 and page 152) provides a literal
addressing offset ability to be used with indirect addressing. In these instructions,
the EA is formed by adding the contents of a working register to a signed 10-bit
literal. Example 4-6 shows how these instructions may be used to move data to and
from the working register array.

© 2005 Microchip Technology Inc. DS70030F-page 4-5

dsPIC30F Programmer’s Reference Manual

Example 4-4: Indirect Addressing with Effective Address Update
MOV.B [WO++], [W13--] ; byte move [WO] to [W13]
; post-inc W0, post-dec W13

Before Instruction:

WO = 0x2300

W13 = 0x2708

Data Memory 0x2300 = 0x7783

Data Memory 0x2708 = 0x904E
After Instruction:

WO = 0x2301

W13 = 0x2707

Data Memory 0x2300 = 0x7783

Data Memory 0x2708 = 0x9083
ADD Wl, [--W5], [++W8] ; pre-dec W5, pre-inc W8

; add W1 to [W5], store in [W8]

Before Instruction:

W1l = 0x0800

W5 = 0x2200

W8 = 0x2400

Data Memory 0x21FE = 0x7783

Data Memory 0x2402 = OxAACC
After Instruction:

W1l = 0x0800

W5 = 0x21FE

W8 = 0x2402

Data Memory O0x21FE = 0x7783

Data Memory 0x2402 = 0x7F83

DS70030F-page 4-6

© 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-5: Indirect Addressing with Register Offset

MOV.B [WO+W1], [W7++] ; byte move [WO+Wl] to W7, post-inc W7

Before Instruction:
WO = 0x2300
Wl = O0x01FE
W7 = 0x1000
Data Memory 0x24FE = 0x7783
Data Memory 0x1000 = 0x11DC

After Instruction:
WO = 0x2300
Wl = OxO1lFE
W7 = 0x1001
Data Memory 0x24FE = 0x7783
Data Memory 0x1000 = 0x1183

LAC [WO+W8], A ; load ACCA with [WO0+W8]
; (sign-extend and zero-backfill)

Before Instruction:
WO = 0x2344
W8 = 0x0008
ACCA = 0x00 7877 9321
Data Memory 0x234C = 0xE290

After Instruction:
WO = 0x2344
W8 = 0x0008
ACCA = OxFF E290 0000
Data Memory 0x234C = O0xE290

Example 4-6: Move with Literal Offset Instructions

MOV [WO+0x20], W1 ; move [W0+0x20] to W1

Before Instruction:
WO = 0x1200
Wl = OxO01FE
Data Memory 0x1220 = OXFD27

After Instruction:
WO 0x1200
Wl = OxFD27
Data Memory 0x1220 = O0xFD27

MOV W4, [W8-0x300] ; move W4 to [W8-0x300]

Before Instruction:
W4 = 0x3411
W8 0x2944
Data Memory 0x2644 = 0xCB98

S5
72]
—
-
c
(2]
=
(®)
=)
2]
(1]
—

After Instruction:
W4 = 0x3411
W8 = 0x2944
Data Memory 0x2644 = 0x3411

© 2005 Microchip Technology Inc. DS70030F-page 4-7

dsPIC30F Programmer’s Reference Manual

4.1.3.1

4.1.3.2

4.1.3.3

Register Indirect Addressing and the Instruction Set

The Addressing modes presented in Table 4-2 demonstrate the Indirect Addressing mode
capability of the dsPIC30F. Due to operation encoding and functional considerations, not every
instruction which supports indirect addressing supports all modes shown in Table 4-2. The major-
ity of instructions which use indirect addressing support the No Modify, Pre-Increment,
Pre-Decrement, Post-Increment and Post-Decrement Addressing modes. The MOV instructions,
and several accumulator based DSP instructions, are also capable of using the Register Offset
Addressing mode.

Note: Instructions which use register indirect addressing use the operand symbols Wd

and Ws in the summary tables of Section 3. “Instruction Set Overview”.

DSP MAC Indirect Addressing Modes

A special class of Indirect Addressing modes is utilized by the DSP MAC instructions. As is
described later in Section 4.14 “DSP MAC Instructions”, the DSP MAC class of instructions are
capable of performing two fetches from memory using effective addressing. Since DSP
algorithms frequently demand a broader range of address updates, the Addressing modes
offered by the DSP MAC instructions provide greater range in the size of the effective address
update which may be made. Table 4-3 shows that both X and Y pre-fetches support Post-
Increment and Post-Decrement Addressing modes, with updates of 2, 4 and 6 bytes. Since DSP
instructions only execute in Word mode, no provisions are made for odd sized EA updates.

Table 4-3: DSP MAC Indirect Addressing Modes

Addressing Mode X Memory Y Memory
Indirect with no modification EA = [WX] EA = [Wy]
Indirect with Post-Increment by 2 EA = [Wx]+=2 EA = [Wyl+=2
Indirect with Post-Increment by 4 EA = [Wx]+=4 EA = [Wyl+=4
Indirect with Post-Increment by 6 EA = [Wx]+=6 EA = [Wyl+=6
Indirect with Post-Decrement by 2 EA = [Wx]-=2 EA = [Wy]-=2
Indirect with Post-Decrement by 4 EA =[Wx]-=4 EA = [Wy]-=4
Indirect with Post-Decrement by 6 EA =[Wx]-=6 EA = [Wy]-=6
Indirect with Register Offset EA =[W9 + W12] EA = [W11 + W12]

Note: As described in Section 4.14 “DSP MAC Instructions”, only W8 and W9 may be
used to access X Memory, and only W10 and W11 may be used to access Y

Memory.

Modulo and Bit-Reversed Addressing Modes

The dsPIC30F provides support for two special Register Indirect Addressing modes, which are
commonly used to implement DSP algorithms. Modulo (or circular) addressing provides an
automated means to support circular data buffers in X and/or Y memory. Modulo buffers remove
the need for software to perform address boundary checks, which can improve the performance
of certain algorithms. Similarly, Bit-Reversed addressing allows one to access the elements of a
buffer in a non-linear fashion. This Addressing mode simplifies data re-ordering for radix-2 FFT
algorithms and provides a significant reduction in FFT processing time.

Both of these Addressing modes are powerful features of the dsPIC30F architecture, which can
be exploited by any instruction that uses indirect addressing. Refer to the dsPIC30F Family
Reference Manual for details on using Modulo and Bit-Reversed addressing.

DS70030F-page 4-8

© 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

414 Immediate Addressing

In immediate addressing, the instruction encoding contains a predefined constant operand,
which is used by the instruction. This Addressing mode may be used independently, but it is more
frequently combined with the File Register, Direct and Indirect Addressing modes. The size of
the immediate operand which may be used varies with the instruction type. Constants of size
1-bit (#lit1), 4-bit (#bit4, #lit4 and #Slit4), 5-bit (#it5), 6-bit (#Slit6), 8-bit (#lit8), 10-bit (#lit10 and
#Slit10), 14-bit (#lit14) and 16-bit (#lit16) may be used. Constants may be signed or unsigned
and the symbols #Slit4, #Slit6 and #SIit10 designate a signed constant. All other immediate
constants are unsigned. Table 4-4 shows the usage of each immediate operand in the instruction

set.
Table 4-4: Immediate Operands in the Instruction Set
Operand Instruction Usage

#lit1 PWRSAV

#bit4 BCLR, BSET, BTG, BTSC, BTSS, BTST, BTST.C, BTST. Z, BTSTS, BTSTS.C,
BTSTS.Z

#lit4 ASR, LSR, SL

#Slit4 ADD, LAC, SAC, SAC.R

#lits ADD, ADDC, AND, CP, CPB, IOR, MUL. SU, MUL. UU, SUB, SUBB, SUBBR, SUBR,
XOR

#Slit6 SFTAC

#1it8 MOV.B

#lit10 ADD, ADDC, AND, CP, CPB, IOR, RETLW, SUB, SUBB, XOR

#Slit10 MOV

#lit14 DISI, DO, LNK, REPEAT

#lit16 MOV

S5
72]
—
-
c
(2]
=
(®)
=)
2]
(1]
—

© 2005 Microchip Technology Inc. DS70030F-page 4-9

dsPIC30F Programmer’s Reference Manual

The syntax for immediate addressing requires that the number sign (#) must immediately
precede the constant operand value. The "#" symbol indicates to the assembler that the quantity
is a constant. If an out-of-range constant is used with an instruction, the assembler will generate
an error. Several examples of immediate addressing are shown in Example 4-7.

Example 4-7: Immediate Addressing
PWRSAV #1 ; Enter IDLE mode
ADD.B #0x10, WO ; Add 0x10 to WO (byte mode)

Before Instruction:
WO = 0x12A9

After Instruction:

WO = 0x12B9
XOR WO, #1, [Wl++] ; Exclusive-OR WO and
; Store the result to
; Post-increment W1
Before Instruction:
WO = OxFFFF
Wl = 0x0890
Data Memory 0x0890 = 0x0032
After Instruction:
WO = OxFFFF
Wl = 0x0892
Data Memory 0x0890 = OXFFFE

0x1
[Wi]

41.5 Data Addressing Mode Tree

The Data Addressing modes of the dsPIC30F are summarized in Figure 4-1.

Figure 4-1: Data Addressing Mode Tree
Immediate
File Register No Modification
Basic) Pre-Increment
Direct
Pre-Decrement
Indirect Post-Increment
Post-Decrement
Data Addressing Modes Literal Offset
Register Offset
Direct
DSP MAC No Modification
Post-Increment (2, 4 and 6)
Indirect Post-Decrement (2, 4 and 6)

Register Offset

DS70030F-page 4-10

© 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.2 Program Addressing Modes

The dsPIC30F has a 23-bit Program Counter (PC). The PC addresses the 24-bit wide program
memory to fetch instructions for execution, and it may be loaded in several ways. For byte
compatibility with the Table Read and Table Write instructions, each instruction word consumes
two locations in program memory. This means that during serial execution, the PC is loaded with
PC+2.

Several methods may be used to modify the PC in a non-sequential manner, and both absolute
and relative changes may be made to the PC. The change to the PC may be from an immediate
value encoded in the instruction, or a dynamic value contained in a working register. When DO
looping is active, the PC is loaded with the address stored in the DOSTART register, after the
instruction at the DOEND address is executed. For exception handling, the PC is loaded with the
address of the exception handler, which is stored in the interrupt vector table. When required, the
software stack is used to return scope to the foreground process from where the change in
program flow occurred.

Table 4-5 summarizes the instructions which modify the PC of the dsPIC30F. When performing
function calls, it is recommended that RCALL be used instead of CALL, since RCALL only
consumes 1 word of program memory.

Table 4-5: Methods of Modifying Program Flow

Condition/Instruction PC Modification Software Stack Usage

(Branch Conditionally)

PC = PC + 2*Slit16 (condition true)

Sequential Execution PC=PC+2 None
BRA Expr(" PC = PC + 2*Slit16 None
(Branch Unconditionally)

BRA Condition, Expr{! PC = PC + 2 (condition false) None

cALL Expr("
(Call Subroutine)

PC = lit23

PC+4 is pushed on the
stack(®

(Unconditional Indirect Jump)

CALL Wn PC =Wn PC+2 is pushed on the
(Call Subroutine Indirect) stack®

coTto Expr{! PC = lit23 None

(Unconditional Jump)

GOTO Wn PC =Wn None

RCALL Expr("
(Relative Call)

PC = PC + 2*Slit16

PC+2 is pushed on the
stack(®

RCALL Wn
(Computed Relative Call)

PC =PC + 2*Wn

PC+2 is pushed on the
stack(®

Exception Handling

(read from vector table)

PC = address of the exception handler

PC+2 is pushed on the
stack(®

(DO Looping)

PC = Target REPEAT instruction |PC not modified (if REPEAT active) None
(REPEAT Looping)
PC = DOEND address PC = DOSTART (if DO active) None

S5
72]
—
-
c
(2]
=
(®)
=)
2]
(1]
—

Note 1: For BRa, CALL and GOTO, the Expr may be a label, absolute address, or expression,
which is resolved by the linker to a 16-bit or 23-bit value (Slit16 or lit23). See Section
5. “Instruction Descriptions” for details.
2: After CALL or RCALL is executed, RETURN or RETLW will pop the top-of-stack back into
the PC.
3: After an exception is processed, RETFIE will pop the top-of-stack back into the PC.

© 2005 Microchip Technology Inc. DS70030F-page 4-11

dsPIC30F Programmer’s Reference Manual

4.3 Instruction Stalls

4.3.1

In order to maximize the data space EA calculation and operand fetch time, the X data space
read and write accesses are partially pipelined. A consequence of this pipelining is that address
register data dependencies may arise between successive read and write operations using
common registers.

’Read After Write’ (RAW) dependencies occur across instruction boundaries and are detected by
the hardware. An example of a RAW dependency would be a write operation that modifies W5,
followed by a read operation that uses W5 as an address pointer. The contents of W5 will not be
valid for the read operation until the earlier write completes. This problem is resolved by stalling
the instruction execution for one instruction cycle, which allows the write to complete before the
next read is started.

RAW Dependency Detection

During the instruction pre-decode, the core determines if any address register dependency is
imminent across an instruction boundary. The stall detection logic compares the W register (if
any) used for the destination EA of the instruction currently being executed with the W register
to be used by the source EA (if any) of the pre-fetched instruction. When a match between the
destination and source registers is identified, a set of rules are applied to decide whether or not
to stall the instruction by one cycle. Table 4-6 lists various RAW conditions which cause an
instruction execution stall.

Table 4-6: Raw Dependency Rules (Detection By Hardware)
R Stall
Destination Source Address Mode Required Examples
Address Mode Using Wn Using Wn q,, (Wn =W2)
Direct Direct No Stall |[ADD.W W0, W1, W2
MOV.W W2, W3
Indirect Direct No Stall (ADD.w w0, W1, [W2]
MOV.W W2, W3
Indirect Indirect No Stall (ADD.w w0, W1, [W2]
MOV.W [W2], W3
Indirect Indirect with No Stall (ADD.w w0, W1, [W2]
pre/post-modification MOV.W [W2++], W3
Indirect with Direct No Stall [ADD.W WO, W1, [W2++]
pre/post-modification MOV.W W2, W3
Direct Indirect Stalll |app.w wo, Wi, w2
MOV.W [W2], W3
Direct Indirect with Stal® |apD.w wWo, wi, w2
pre/post-modification MOV.W [W2++], W3
Indirect Indirect stall® |app.w wo, wi, [w2]®@
Mov.w [w2], w3®@
Indirect Indirect with stall™ |app.w wo, wi, [w2]®
pre/post-modification MOV.W [W2++], w3®
Indirect with Indirect Stall |app.w wWo, W1, [W2++]
pre/post-modification MOV.W [W2], W3
Indirect with Indirect with Stal® |apD.w wWo, Wi, [W2++]
pre/post-modification pre/post-modification MOV.W [W2++], W3

Note 1: When stalls are detected, one cycle is added to the instruction execution time.
2: For these examples, the contents of W2 = the mapped address of W2 (0x0004).

DS70030F-page 4-12

© 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.3.2 Instruction Stalls and Exceptions

In order to maintain deterministic operation, instruction stalls are allowed to happen, even if they
occur immediately prior to exception processing.

4.3.3 Instruction Stalls and Instructions that Change Program Flow
CALL and RCALL write to the stack using W15 and may, therefore, be subject to an instruction
stall if the source read of the subsequent instruction uses W15.
GOTO, RETFIE and RETURN instructions are never subject to an instruction stall because they
do not perform write operations to the working registers.

434 Instruction Stalls and DO/REPEAT Loops

Instructions operating in a DO or REPEAT loop are subject to instruction stalls, just like any other
instruction. Stalls may occur on loop entry, loop exit and also during loop processing.

4.3.5 Instruction Stalls and PSV

Instructions operating in PSV address space are subject to instruction stalls, just like any other
instruction. Should a data dependency be detected in the instruction immediately following the
PSV data access, the second cycle of the instruction will initiate a stall. Should a data
dependency be detected in the instruction immediately before the PSV data access, the last
cycle of the previous instruction will initiate a stall.

Note: Refer to the dsPIC30F Family Reference Manual for more detailed information
about RAW instruction stalls.

4.4 Byte Operations

Since the dsPIC30F data memory is byte addressable, most of the base instructions may operate
in either Byte mode or Word mode. When these instructions operate in Byte mode, the following
rules apply:

* all direct working register references use the Least Significant Byte of the 16-bit working
register and leave the Most Significant Byte unchanged

« all indirect working register references use the data byte specified by the 16-bit address
stored in the working register

« all file register references use the data byte specified by the byte address

* the Status Register is updated to reflect the result of the byte operation

It should be noted that data addresses are always represented as byte addresses. Additionally,

the native data format is little-endian, which means that words are stored with the Least =)
Significant Byte at the lower address, and the Most Significant Byte at the adjacent, higher g’;
address (as shown in Figure 4-2). Example 4-8 shows sample byte move operations and c
Example 4-9 shows sample byte math operations. 2-
S
Note: Instructions which operate in Byte mode must use the “.b” or “.B” instruction wn
extension to specify a byte instruction. For example, the following two instructions o
are valid forms of a byte clear operation:
CLR.b WO
CLR.B WO

© 2005 Microchip Technology Inc. DS70030F-page 4-13

dsPIC30F Programmer’s Reference Manual

Example 4-8: Sample Byte Move Operations

MOV.B #0x30, WO ; move the literal byte 0x30 to WO

Before Instruction:
W0 = 0x5555

After Instruction:
WO = 0x5530

MOV.B 0x1000, WO ; move the byte at 0x1000 to WO

Before Instruction:
WO = 0x5555
Data Memory 0x1000 = 0x1234

After Instruction:
WO = 0x5534
Data Memory 0x1000 = 0x1234

MOV.B W0, 0x1001 ; byte move WO to address 0x1001

Before Instruction:
WO = 0x1234
Data Memory 0x1000 = 0x5555

After Instruction:
WO = 0x1234
Data Memory 0x1000 = 0x3455

MOV.B WO, [W1l++] ; byte move WO to [W1l], then post-inc W1

Before Instruction:
WO = 0x1234
Wl = 0x1001
Data Memory 0x1000 = 0x5555

After Instruction:
WO = 0x1234
W1l = 0x1002
Data Memory 0x1000 = 0x3455

DS70030F-page 4-14

© 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-9: Sample Byte

Math Operations

CLR.B [We--1

Before Instruction:
W6 = 0x1001
Data Memory 0x1000

After Instruction:
W6 = 0x1000
Data Memory 0x1000

SUB.B WO, #0x10, W1

Before Instruction:
WO = 0x1234
Wl = OXFFFF

After Instruction:
WO = 0x1234
Wl = OxFF24

ADD.B WO, W1, [W2++]

Before Instruction:
WO = 0x1234
Wl = 0x5678
W2 = 0x1000
Data Memory 0x1000

After Instruction:
WO = 0x1234
Wl = 0x5678
W2 = 0x1001
Data Memory 0x1000

byte clear [W6], then post-dec W6

7

= 0x5555

= 0x0055

; byte subtract literal 0x10 from WO
; and store to W1

; byte add WO and W1, store to [W2]

; and post-inc W2

= 0x5555

= 0x55AC

© 2005 Microchip Technology Inc.

DS70030F-page 4-15

S5
72]
—
-
c
(2]
=
(®)
=)
2]
(1]
—

dsPIC30F Programmer’s Reference Manual

4.5 Word Move Operations

Even though the dsPIC30F data space is byte addressable, all move operations made in Word
mode must be word aligned. This means that for all source and destination operands, the Least
Significant address bit must be ‘0’. If a word move is made to or from an odd address, an address
error exception is generated. Likewise, all double-words must be word aligned. Figure 4-2 shows
how bytes and words may be aligned in data memory. Example 4-10 contains several legal word
move operations.

When an exception is generated due to a misaligned access, the exception is taken after the
instruction executes. If the illegal access occurs from a data read, the operation will be allowed
to complete, but the Least Significant bit of the source address will be cleared to force word align-
ment. If the illegal access occurs during a data write, the write will be inhibited. Example 4-11
contains several illegal word move operations.

Figure 4-2: Data Alignment in Memory

0x1001 b0 0x1000

0x1003 b1 0x1002

0x1007 b5 b4 0x1006

0x1009 b7 b6 0x1008

0x100B b8 0x100A
Legend:

b0 - byte stored at 0x1000

b1 - byte stored at 0x1003

b3:b2 - word stored at 0x1005:1004 (b2 is LSB)

b7:b4 - double-word stored at 0x1009:0x1006 (b4 is LSB)
b8 - byte stored at 0x100A

Note: Instructions which operate in Word mode are not required to use an instruction
extension. However, they may be specified with an optional “. w” or “. W’ extension,
if desired. For example, the following instructions are valid forms of a word clear
operation:

CLR WO

CLR.w WO
CLR.W WO

DS70030F-page 4-16

© 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-10:

Legal Word Move Operations

MOV #0x30, WO

Before Instruction:
WO = 0x5555

After Instruction:
WO = 0x0030

MOV 0x1000, WO

Before Instruction:
WO = 0x5555

After Instruction:
WO = 0x1234

MoV [(wol, [Wl++]

Before Instruction:
WO = 0x1234
W1l = 0x1000
Data Memory 0x1000
Data Memory 0x1234

After Instruction:
WO = 0x1234
Wl = 0x1002
Data Memory 0x1000
Data Memory 0x1234

Data Memory 0x1000

Data Memory 0x1000

; move the literal word 0x30 to WO

; move the word at 0x1000 to WO

= 0x1234

= 0x1234

; word move [WO] to [W1],
; then post-inc W1

= 0x5555
= OxXAAAA

= OxXAAAA
= OxXAAAA

© 2005 Microchip Technology Inc.

DS70030F-page 4-17

S5
72]
—
-
c
(2]
=
(®)
=)
2]
(1]
—

dsPIC30F Programmer’s Reference Manual

Example 4-11: lllegal Word Move Operations

MOV 0x1001, WO ; move the word at 0x1001 to WO

Before Instruction:
W0 = 0x5555
Data Memory 0x1000 = 0x1234
Data Memory 0x1002 = 0x5678

After Instruction:
WO = 0x1234
Data Memory 0x1000 = 0x1234
Data Memory 0x1002 = 0x5678

ADDRESS ERROR TRAP GENERATED
(source address is misaligned, so MOV is performed)

MOV WO, 0x1001 ; move WO to the word at 0x1001

Before Instruction:
WO = 0x1234
Data Memory 0x1000 = 0x5555
Data Memory 0x1002 = 0x6666

After Instruction:
WO = 0x1234
Data Memory 0x1000 = 0x5555
Data Memory 0x1002 = 0x6666

ADDRESS ERROR TRAP GENERATED
(destination address is misaligned, so MOV is not performed)

MOV [WO]l, [W1l++] ; word move [WO0] to [W1],
; then post-inc W1

Before Instruction:
WO = 0x1235
W1l = 0x1000
Data Memory 0x1000 = 0x1234
Data Memory 0x1234 = OxAAAA
Data Memory 0x1236 = OxBBBB

After Instruction:
WO = 0x1235
W1l = 0x1002
Data Memory 0x1000 = OxAAAA
Data Memory 0x1234 = OxXAAAA
Data Memory 0x1236 = OxBBBB

ADDRESS ERROR TRAP GENERATED

(source address is misaligned, so MOV is performed)

DS70030F-page 4-18 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.6 Using 10-bit Literal Operands

Several instructions which support Byte and Word mode have 10-bit operands. For byte
instructions, a 10-bit literal is too large to use. So when 10-bit literals are used in Byte mode, the
range of the operand must be reduced to 8-bits or the assembler will generate an error. Table 4-7
shows that the range of a 10-bit literal is 0:1023 in Word mode and 0:255 in Byte mode.

Instructions which employ 10-bit literals in Byte and Word mode are: ADD, ADDC, AND, IOR,
RETLW, SUB, SUBB and XOR. Example 4-12 shows how positive and negative literals are used
in Byte mode for the ADD instruction.

Table 4-7: 10-bit Literal Coding

Literal Value Word Mode Byte Mode
kk kkkk kkkk kkkk kkkk
0 00 0000 0000 0000 0000
1 00 0000 0001 0000 0001
2 00 0000 0010 0000 0010
127 00 0111 1111 0111 1111
128 00 1000 0000 1000 0000
255 00 1111 1111 1111 1111
256 01 0000 0000 N/A
512 10 0000 0000 N/A
1023 11 1111 1111 N/A

Example 4-12: Using 10-bit Literals For Byte Operands

ADD.B #0x80, WO ; add 128 (or -128) to WO

ADD.B #0x380, WO ; ERROR... Illegal syntax for byte mode
ADD.B #O0XFF, WO ; add 255 (or -1) to WO

ADD.B #0x3FF, WO ; ERROR... Illegal syntax for byte mode
ADD.B #0xF, WO ; add 15 to WO

ADD.B #0x7F, WO ; add 127 to WO

ADD.B #0x100, WO ; ERROR... Illegal syntax for byte mode

Note: Using a literal value greater than 127 in Byte mode is functionally identical to using
the equivalent negative two’s complement value, since the Most Significant bit of the
byte is set. When operating in Byte mode, the Assembler will accept either a positive
or negative literal value (i.e., #-10).

S5
72]
—
-
c
(2]
=
(®)
=)
2]
(1]
—

© 2005 Microchip Technology Inc. DS70030F-page 4-19

dsPIC30F Programmer’s Reference Manual

4.7 Software Stack Pointer and Frame Pointer

4.71 Software Stack Pointer

The dsPIC30F features a software stack which facilitates function calls and exception handling.
W15 is the default Stack Pointer (SP) and after any RESET, it is initialized to 0x0800. This
ensures that the SP will point to valid RAM in all dsPIC30F devices and permits stack availability
for exceptions, which may occur before the SP is set by the user software. The user may
reprogram the SP during initialization to any location within data space.

The SP always points to the first available free word (top-of-stack) and fills the software stack,
working from lower addresses towards higher addresses. It pre-decrements for a stack pop
(read) and post-increments for a stack push (write).

The software stack is manipulated using the PUSH and POP instructions. The PUSH and POP
instructions are the equivalent of a MOV instruction, with W15 used as the destination pointer. For
example, the contents of WO can be pushed onto the top-of-stack (TOS) by

PUSH WO
This syntax is equivalent to

MOV WO, [W15++]
The contents of the TOS can be returned to WO by

POP WO
This syntax is equivalent to

MOV [--W15],W0
During any CALL instruction, the PC is pushed onto the stack, such that when the subroutine
completes execution, program flow may resume from the correct location. When the PC is
pushed onto the stack, PC<15:0> is pushed onto the first available stack word, then PC<22:16>
is pushed. When PC<22:16> is pushed, the Most Significant 7 bits of the PC are zero-extended
before the push is made, as shown in Figure 4-3. During exception processing, the Most
Significant 7 bits of the PC are concatenated with the lower byte of the Status Register (SRL) and

IPL<3>, CORCON<3>. This allows the primary Status Register contents and CPU Interrupt
Priority Level to be automatically preserved during interrupts.

Note: In order to protect against misaligned stack accesses, W15<0> is always clear. ‘

Figure 4-3: Stack Operation for CALL Instruction
0x0000
15 0
(2]
B
5]
2
cl
09
5 3 PC<15:0> < W15 (before CALL)
S5 00 PC<22:16>
Ny
§ % Top-of-Stack <«—— W15 (after cALL)
\/
OXFFFE
Note: For exceptions, the upper nine bits of the second pushed word contains
the SRL and IPL<3>.

DS70030F-page 4-20

© 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.7.2 Stack Pointer Example

Figure 4-4 through Figure 4-7 show how the software stack is modified for the code snippet
shown in Example 4-13. Figure 4-4 shows the software stack before the first PUSH has executed.
Note that the SP has the initialized value of 0x0800. Furthermore, the example loads 0x5A5A
and 0x3636 to WO and W1, respectively. The stack is pushed for the first time in Figure 4-5 and
the value contained in WO is copied to TOS. W15 is automatically updated to point to the next
available stack location, and the new TOS is 0x0802. In Figure 4-6, the contents of W1 are
pushed onto the stack, and the new TOS becomes 0x0804. In Figure 4-7, the stack is popped,
which copies the last pushed value (W1) to W3. The SP is decremented during the poP
operation, and at the end of the example, the final TOS is 0x0802.

Stack Pointer Usage

xX5A5A, WO i
x3636, W1 ;

Load WO with Ox5A5A
Load W1 with 0x3636
Push WO to TOS (see Figure 4-5)
Push Wl to TOS (see Figure 4-6)
Pop TOS to W3 (see Figure 4-7)

Example 4-13:
MOV #0
MOV #0
PUSH WO
PUSH Wl
POP W3

Figure 4-4:

Stack Pointer Before The First PUSH

0x0000

0x0800

OxXFFFE

<TOS> ~<—— W15 (SP)

W0 = 0x5A5A
W1 =0x3636
W15 = 0x0800

Figure 4-5:

Stack Pointer After "PUSH W0" Instruction

0x0000

0x0800
0x0802

OxXFFFE

5A5A
<TOS> <«—— W15 (SP)

WO = 0x5A5A
WA+ 0x3636
W15 = 0x0802

© 2005 Microchip Technology Inc.

DS70030F-page 4-21

S5
72]
—
-
c
(2]
=
(®)
=)
2]
(1]
—

dsPIC30F Programmer’s Reference Manual

Figure 4-6: Stack Pointer After "PUSH W1" Instruction
0x0000
0x0800 5A5A
0x0802 3636
0x0804 <TOS> <«—— W15 (SP)
0XFFFE

WO = 0x5A5A
W1 =0x3636
W15 = 0x0804

Figure 4-7: Stack Pointer After "POP W3" Instruction
0x0000
0x0800 5A5A
0x0802 <TOS> <«—— W15 (SP)
0x0804
OxXFFFE

W0 = 0x5A5A
W1 =0x3636
W3 =0x3636
W15 = 0x0802

Note: The contents of 0x802, the new TOS, remain unchanged (0x3636).

4.7.3 Software Stack Frame Pointer

A stack frame is a user defined section of memory residing in the software stack. It is used to
allocate memory for temporary variables which a function uses and one stack frame may be
created for each function. W14 is the default Stack Frame Pointer (FP) and it is initialized to
0x0000 on any RESET. If the stack frame pointer is not used, W14 may be used like any other
working register.

The link (LNK) and unlink (ULNK) instructions provide stack frame functionality. The LNK
instruction is used to create a stack frame. It is used during a call sequence to adjust the SP, such
that the stack may be used to store temporary variables utilized by the called function. After the
function completes execution, the ULNK instruction is used to remove the stack frame created by
the LNK instruction. The LNK and ULNK instructions must always be used together to avoid stack
overflow.

DS70030F-page 4-22

© 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

474 Stack Frame Pointer Example

Figure 4-8 through Figure 4-10 show how a stack frame is created and removed for the code
snippet shown in Example 4-14. This example demonstrates how a stack frame operates and is
not indicative of the code generated by the dsPIC30F compiler. Figure 4-8 shows the stack con-
dition at the beginning of the example, before any registers are pushed to the stack. Here, W15
points to the first free stack location (TOS) and W14 points to a portion of stack memory allocated
for the routine that is currently executing.

Before calling the function "coOMPUTE", the parameters of the function (W0, W1 and W2) are
pushed on the stack. After the "CALL COMPUTE" instruction is executed, the PC changes to the
address of "COMPUTE" and the return address of the function "TASKA" is placed on the stack
(Figure 4-9). Function "COMPUTE" then uses the "LNK #4" instruction to push the calling
routine’s frame pointer value onto the stack and the new frame pointer will be set to point to the
current stack pointer. Then, the literal 4 is added to the stack pointer address in W15, which
reserves memory for two words of temporary data (Figure 4-10).

Inside the function "cOMPUTE", the FP is used to access the function parameters and temporary
(local) variables. [W14+n] will access the temporary variables used by the routine and [W14-n]
is used to access the parameters. At the end of the function, the ULNK instruction is used to copy
the frame pointer address to the stack pointer and then pop the calling subroutine’s frame pointer
back to the W14 register. The ULNK instruction returns the stack back to the state shown in
Figure 4-9.

A RETURN instruction will return to the code that called the subroutine. The calling code is
responsible for removing the parameters from the stack. The RETURN and POP instructions
restore the stack to the state shown in Figure 4-8.

Example 4-14: Frame Pointer Usage

TASKA:
PUSH WO ; Push parameter 1
PUSH W1 ; Push parameter 2
PUSH W2 ; Push parameter 3
CALL COMPUTE ; Call COMPUTE function
POP W2 ; Pop parameter 3
POP W1l ; Pop parameter 2
POP WO ; Pop parameter 1
COMPUTE :
LNK #4 ; Stack FP, allocate 4 bytes for local variables
. o 5
ULNK ; Free allocated memory, restore original FP 7]
RETURN ; Return to TASKA =
[
(2]
=
Figure 4-8: Stack at the Beginning of Example 4-14 g
0x0000 %
-
0x0800
Frame ~<—— W14 (FP)
TASKA
<TOS> <«—— W15 (SP)
OxXFFFE

© 2005 Microchip Technology Inc. DS70030F-page 4-23

dsPIC30F Programmer’s Reference Manual

Figure 4-9: Stack After "CALL COMPUTE" Executes
0x0000
0x0800
Fri’f“e ~<—— W14 (FP)

TASKA

Parameter 1
Parameter 2
Parameter 3
PC<15:0>
0:PC<22:16>
<TOS> <«—— W15 (SP)

OXFFFE

Figure 4-10: Stack After "LNK #4" Executes

0x0000

0x0800

Frame
of
TASKA

Parameter 1
Parameter 2
Parameter 3
PC<15:0>

0:PC<22:16>
FP of TASKA
Temp Word 1 <«—— W14 (FP)
Temp Word 2

<TOS> <«—— W15 (SP)

OxXFFFE

4.7.5 Stack Pointer Overflow

There is a stack limit register (SPLIM) associated with the stack pointer that is reset to 0x0000.
SPLIM is a 16-bit register, but SPLIM<0> is fixed to ‘0’, because all stack operations must be
word aligned.

The stack overflow check will not be enabled until a word write to SPLIM occurs, after which time
it can only be disabled by a device RESET. All effective addresses generated using W15 as a
source or destination are compared against the value in SPLIM. Should the effective address be
greater than the contents of SPLIM, then a stack error trap is generated.

If stack overflow checking has been enabled, a stack error trap will also occur if the W15 effective
address calculation wraps over the end of data space (0xFFFF).

Refer to the dsPIC30F Family Reference Manual for more information on the stack error trap.
4.7.6 Stack Pointer Underflow

The stack is initialized to 0x0800 during RESET. A stack error trap will be initiated should the
stack pointer address ever be less than 0x0800.

Note: Locations in data space between 0x0000 and 0x07FF are, in general, reserved for
core and peripheral special function registers.

DS70030F-page 4-24 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.8 Conditional Branch Instructions

Conditional branch instructions are used to direct program flow, based on the contents of the
Status Register. These instructions are generally used in conjunction with a Compare class
instruction, but they may be employed effectively after any operation that modifies the Status
Register.

The compare instructions Cp, CPO and CPB, perform a subtract operation (minuend -
subtrahend), but do not actually store the result of the subtraction. Instead, compare instructions
just update the flags in the Status Register, such that an ensuing conditional branch instruction
may change program flow by testing the contents of the updated Status Register. If the result of
the Status Register test is true, the branch is taken. If the result of the Status Register test is false,
the branch is not taken.

The conditional branch instructions supported by the dsPIC30F devices are shown in Table 4-8.
This table identifies the condition in the Status Register which must be true for the branch to be
taken. In some cases, just a single bit is tested (as in BRA), while in other cases, a complex
logic operation is performed (as in BRA GT). It is worth noting that both signed and unsigned
conditional tests are supported, and that support is provided for DSP algorithms with the OA, OB,
SA and SB condition mnemonics.

Table 4-8: Conditional Branch Instructions
Mi:rr‘ndc:tr:?c?‘) Description Status Test
C Carry (not Borrow) C
GE Signed greater than or equal (N&&OV) || (N&&OV)
GEU®@) Unsigned greater than or equal C
GT Signed greater than (Z&&N&&OV) || (Z&&N&&OV)
GTU Unsigned greater than C&&Z
LE Signed less than or equal Z || (N&&OV) || (N&&OV)
LEU Unsigned less than or equal cllz
LT Signed less than (N&&OV) || (N&&OV)
LTU®) Unsigned less than C
N Negative N
NC Not Carry (Borrow) C
NN Not Negative N
NOV Not Overflow oV
NZ Not Zero z ‘Z’S_,
OA Accumulator A overflow OA =
OB Accumulator B overflow OB S_
ov Overflow oV o
SA Accumulator A saturate SA 3,
SB Accumulator B saturate SB @
z Zero 4

Note 1: Instructions are of the form: BRA mnemonic, Expr.
2: GEU is identical to C and will reverse assemble to BRA ¢C, Expr.
3: LTU is identical to NC and will reverse assemble to BRA NC, Expr.

modify the Status Register.

Note: The “Compare and Skip” instructions (CPSEQ, CPSGT, CPSLT, CPSNE) do not

© 2005 Microchip Technology Inc.

DS70030F-page 4-25

dsPIC30F Programmer’s Reference Manual

4.9 Z Status Bit

The Z status bit is a special zero status bit that is useful for extended precision arithmetic. The Z
bit functions like a normal Z flag for all instructions, except those that use the carry/borrow input
(aDDC, CPB, SUBB and SUBBR). For the ADDC, CPB, SUBB and SUBBR instructions, the Z bit
can only be cleared and never set. If the result of one of these instructions is non-zero, the Z bit
will be cleared and will remain cleared, regardless of the result of subsequent ADDC, CPB, SUBB
or SUBBR operations. This allows the Z bit to be used for performing a simple zero check on the
result of a series of extended precision operations.

A sequence of instructions working on multi-precision data (starting with an instruction with no
carry/borrow input) will automatically logically AND the successive results of the zero test. All
results must be zero for the Z flag to remain set at the end of the sequence of operations. If the
result of the ADDC, CPB, SUBB or SUBBR instruction is non-zero, the Z bit will be cleared and
remain cleared for all subsequent ADDC, CPB, SUBB or SUBBR instructions. Example 4-15
shows how the Z bit operates for a 32-bit addition. It shows how the Z bit is affected for a 32-bit
addition implemented with an ADD/ADDC instruction sequence. The first example generates a
zero result for only the MSWord, and the second example generates a zero result for both the
LSWord and MSWord.

Example 4-15: ’Z’ Status bit Operation for 32-bit Addition

; Add two doubles (WO:W1l and W2:W3)

; Store the result in W5:W4

ADD WO, W2, W4 ; Add LSWord and store to W4
ADDC Wl, W3, W5 ; Add MSWord and store to W5

Before 32-bit Addition (zero result for MSWord):
WO = 0x2342

Wl = OxXFFFO
W2 = O0x39AA
W3 = 0x0010
W4 = 0x0000
W5 = 0x0000

SR = 0x0000

After 32-bit Addition:
WO = 0x2342
Wl = OXFFFO
W2 = O0x39AA

W3 = 0x0010
W4 = Ox5CEC
W5 = 0x0000

SR = 0x0201 (DC,C=1)

Before 32-bit Addition (zero result for LSWord and MSWord):
WO = O0xB76E
Wl = OxFB7B

W2 = 0x4892
W3 = 0x0484
W4 = 0x0000
W5 = 0x0000

SR = 0x0000

After 32-bit Addition:
WO = OxB76E
W1l = OxFB7B

W2 = 0x4892
W3 = 0x0485
W4 = 0x0000
W5 = 0x0000

SR = 0x0103 (DC,Zz,C=1)

DS70030F-page 4-26

© 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

410 Assigned Working Register Usage

The 16 working registers of the dsPIC30F provide a large register set for efficient code generation
and algorithm implementation. In an effort to maintain an instruction set that provides advanced
capability, a stable run-time environment and backwards compatibility with earlier Microchip
processor cores, some working registers have a pre-assigned usage. Table 4-9 summarizes these
working register assignments, with details provided in subsections Section 4.10.1 “Implied DSP
Operands” through Section 4.10.3 “PICmicro® Microcontroller Compatibility”.

Table 4-9: Special Working Register Assignments

Register Special Assignment
WO Default WREG, Divide Quotient
Wi1 Divide Remainder
W2 “MUL " Product Least Significant Word
W3 “MUL f” Product Most Significant Word
W4 MAC Operand
W5 MAC Operand
W6 MAC Operand
W7 MAC Operand
w8 MAC Pre-fetch Address (X Memory)
W9 MAC Pre-fetch Address (X Memory)
W10 MAC Pre-fetch Address (Y Memory)
W11 MAC Pre-fetch Address (Y Memory)
W12 MAC Pre-fetch Offset
W13 MAC Write Back Destination
W14 Frame Pointer
W15 Stack Pointer

4.10.1 Implied DSP Operands

To assist instruction encoding and maintain uniformity among the DSP class of instructions,
some working registers have pre-assigned functionality. For all DSP instructions which have
pre-fetch ability, the following 10 register assignments must be adhered to:

* W4-W7 are used for arithmetic operands

* W8-W11 are used for pre-fetch addresses (pointers)

* W12 is used for the pre-fetch register offset index

* W13 is used for the accumulator write back destination

These restrictions only apply to the DSP MAC class of instructions, which utilize working regis-

ters and have pre-fetch ability (described in Section 4.15 “DSP Accumulator Instructions”).
The affected instructions are CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC.

The DSP Accumulator class of instructions (described in Section 4.15 “DSP Accumulator
Instructions”) are not required to follow the working register assignments in Table 4-9 and may
freely use any working register when required.

S5
72]
—
-
c
(2]
=
(®)
=)
2]
(1]
—

410.2 Implied Frame and Stack Pointer

To accommodate software stack usage, W14 is the implied frame pointer (used by the LNK and
ULNK instructions) and W15 is the implied stack pointer (used by the CALL,, LNK, POP, PUSH,
RCALL, RETFIE, RETLW, RETURN, TRAP and ULNK instructions). Even though W14 and
W15 have this implied usage, they may still be used as generic operands in any instruction, with
the exceptions outlined in Section 4.10.1 “Implied DSP Operands”. If W14 and W15 must be
used for other purposes (it is strongly advised that they remain reserved for the Frame and Stack
pointer), extreme care must be taken such that the run-time environment is not corrupted.

© 2005 Microchip Technology Inc. DS70030F-page 4-27

dsPIC30F Programmer’s Reference Manual

4.10.3 PICmicro® Microcontroller Compatibility

4.10.3.1 Default Working Register WREG

To ease the migration path for users of the Microchip PICmicro families, the dsPIC30F has
matched the functionality of the PICmicro instruction sets as closely as possible. One major
difference between the dsPIC30F and the PICmicro processors is the number of working
registers provided. The PICmicro families only provide one 8-bit working register, while the
dsPIC30F provides sixteen, 16-bit working registers. To accommodate for the one working
register of the PICmicro MCU, the dsPIC30F instruction set has designated one working register
to be the default working register for all legacy file register instructions. The default working
register is set to WO, and it is used by all instructions which use file register addressing.

Additionally, the syntax used by the dsPIC30F assembler to specify the default working register
is similar to that used by the PICmicro assembler. As shown in the detailed instruction
descriptions in Section 5. “Instruction Descriptions”, “WREG” must be used to specify the
default working register. Example 4-16 shows several instructions which use WREG.

Example 4-16: Using the Default Working Register WREG

ADD RAM100 ; add RAM100 and WREG, store in RAM100
ASR RAM100, WREG ; shift RAM100 right, store in WREG
CLR.B WREG ; clear the WREG LS Byte

DEC RAM100, WREG ; decrement RAM100, store in WREG

MOV WREG, RAM100 ; move WREG to RAM100

SETM WREG ; set all bits in the WREG

XOR RAM100 ; XOR RAM100 and WREG, store in RAM100

4.10.3.2 PRODH:PRODL Register Pair

Another significant difference between the Microchip PICmicro and dsPIC30F architectures is
the multiplier. Some PICmicro families support an 8-bit x 8-bit multiplier, which places the multiply
product in the PRODH:PRODL register pair. The dsPIC30F has a 17-bit x 17-bit multiplier, which
may place the result into any two successive working registers (starting with an even register),
or an accumulator.

Despite this architectural difference, the dsPIC30F still supports the legacy file register multiply
instruction (MULWF) with the “MUL{ . B} £” instruction (described on page 5-169). Supporting the
legacy MULWF instruction has been accomplished by mapping the PRODH:PRODL registers to
the working register pair W3:W2. This means that when “MUL{ . B} £” is executed in Word mode,
the multiply generates a 32-bit product which is stored in W3:W2, where W3 has the Most
Significant Word of the product and W2 has the Least Significant Word of the product. When
“MUL{ .B} £”is executed in Byte mode, the 16-bit product is stored in W2, and W3 is unaffected.
Examples of this instruction are shown in Example 4-17.

DS70030F-page 4-28

© 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-17: Unsigned f and WREG Multiply (Legacy MULWF Instruction)

MUL.B 0x100 ; (0x100) *WREG (byte mode), store to W2

Before Instruction:
WO (WREG) = 0x7705
W2 = 0x1235
W3 = 0x1000
Data Memory 0x0100 = 0x1255

After Instruction:
W0 (WREG) = 0x7705
W2 = 0x01A9
W3 = 0x1000
Data Memory 0x0100 = 0x1255

MUL 0x100 ; (0x100) *WREG (word mode), store to W3:W2

Before Instruction:
WO (WREG) = 0x7705
W2 = 0x1235
W3 = 0x1000
Data Memory 0x0100 = 0x1255

After Instruction:
WO (WREG) = 0x7705
W2 = OxXDEA9
W3 = 0x0885
Data Memory 0x0100 = 0x1255

4.10.3.3 Moving Data with WREG

The “Mov{.B} £ {,WREG}” instruction (described on page 5-145) and “MOV{ .B} WREG, £~
instruction (described on page 5-146) allow for byte or word data to be moved between file
register memory and the WREG (working register W0). These instructions provide equivalent
functionality to the legacy Microchip PICmicro MOVF and MOVWF instructions.

The “Mov{.B} £ {,WREG}”and“MOV{.B} WREG, £f”instructions are the only MOV instructions
which support moves of byte data to and from file register memory. Example 4-18 shows several
MOV instruction examples using the WREG.

Note: When moving word data between file register memory and the working register “
array, the “MOV Wns, f” and “MOV f, Wnd” instructions allow any working register
(WO0:W15) to be used as the source or destination register, not just WREG.

=)

[(72)

=

Example 4-18: Moving Data with WREG c
2

MOV.B 0x1001, WREG ; move the byte stored at location 0x1001 to WO g

MOV 0x1000, WREG ; move the word stored at location 0x1000 to WO o
MOV.B WREG, TBLPAG ; move the byte stored at WO to the TBLPAG register)

MOV WREG, 0x804 ; move the word stored at WO to location 0x804 ~

© 2005 Microchip Technology Inc. DS70030F-page 4-29

dsPIC30F Programmer’s Reference Manual

4.11
41141

DSP Data Formats

Integer and Fractional Data

The dsPIC30F devices support both integer and fractional data types. Integer data is inherently
represented as a signed two’s complement value, where the Most Significant bit is defined as a
sign bit. Generally speaking, the range of an N-bit two’s complement integer is -2N-1 to 2N — 1.
For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF), including 0. For a
32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0Ox7FFF
FFFF).

Fractional data is represented as a two’s complement number, where the Most Significant bit is
defined as a sign bit, and the radix point is implied to lie just after the sign bit. This format is
commonly referred to as 1.15 (or Q15) format, where 1 is the number of bits used to represent
the integer portion of the number, and 15 is the number of bits used to represent the fractional
portion. The range of an N-bit two’s complement fraction with this implied radix point is -1.0 to
(1 —2"N). For a 16-bit fraction, the 1.15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF),
including 0.0 and it has a precision of 3.05176x10°°. In Normal Saturation mode, the 32-bit
accumulators use a 1.31 format, which enhances the precision to 4.6566x1071°.

Super Saturation mode expands the dynamic range of the accumulators by using the 8 bits of
the Upper Accumulator register (ACCxU) as guard bits. Guard bits are used if the value stored
in the accumulator overflows beyond the 32"d bit, and they are useful for implementing DSP
algorithms. This mode is enabled when the ACCSAT bit (CORCON<4>), is set to ‘1’ and it
expands the accumulators to 40-bits. The accumulators then support an integer range of
-5.498x10"" (0x80 0000 0000) to 5.498x10"" (0x7F FFFF FFFF). In Fractional mode, the
guard bits of the accumulator do not modify the location of the radix point and the 40-bit
accumulators use a 9.31 fractional format. Note that all fractional operation results are stored in
the 40-bit accumulator, justified with a 1.31 radix point. As in Integer mode, the guard bits merely
increase the dynamic range of the accumulator. 9.31 fractions have a range of -256.0 (0x80
0000 0000)to (256.0 — 4.65661x1071%) (0x7F FFFF FFFF). Table 4-10 identifies the range and
precision of integers and fractions on the dsPIC30F devices for 16-bit, 32-bit and 40-bit registers.

It should be noted that, with the exception of DSP multiplies, the dsPIC30F ALU operates
identically on integer and fractional data. Namely, an addition of two integers will yield the same
result (binary number) as the addition of two fractional numbers. The only difference is how the
result is interpreted by the user. However, multiplies performed by DSP operations are different.
In these instructions, data format selection is made by the IF bit, CORCON<0>, and it must be
set accordingly (* 0’ for Fractional mode, ‘1’ for Integer mode). This is required because of the
implied radix point used by dsPIC30F fractions. In Integer mode, multiplying two 16-bit integers
produces a 32-bit integer result. However, multiplying two 1.15 values generates a 2.30 resullt.
Since the dsPIC30F devices use 1.31 format for the accumulators, a DSP multiply in Fractional
mode also includes a left shift of one bit to keep the radix point properly aligned. This feature
reduces the resolution of the DSP multiplier to 2'30, but has no other effect on the computation
(e.g., 0.5x0.5=0.25).

Table 4-10: dsPIC30F Data Ranges
Register Size Integer Range Fraction Range Fraction Resolution

16-bit -32768 to -1.0to (1.0—-2719) 3.052 x 10°®
32767

32-bit -2,147,483,648 to -1.0to (1.0 - 2781) 4.657 x 10710
2,147,483,647

40-bit -549,755,813,888t0 |-256.0 to (256.0 — 231) | 4.657 x 10710
549,755,813,887

DS70030F-page 4-30

© 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.11.2 Integer and Fractional Data Representation

Having a working knowledge of how integer and fractional data are represented on the dsPIC30F
is fundamental to working with the device. Both integer and fractional data treat the Most
Significant bit as a sign bit, and the binary exponent decreases by one as the bit position
advances towards the Least Significant bit. The binary exponent for an N-bit integer starts at
(N-1) for the Most Significant bit, and ends at 0 for the Least Significant bit. For an N-bit fraction,
the binary exponent starts at 0 for the Most Significant bit, and ends at (1-N) for the Least
Significant bit. This is shown in Figure 4-11 for a positive value and in Figure 4-12 for a negative
value.

Converting between integer and fractional representations can be performed using simple
division and multiplication. To go from an N-bit integer to a fraction, divide the integer value by
2N-1_ Likewise, to convert an N-bit fraction to an integer, multiply the fractional value by 2N-1.

Figure 4-11: Different Representations of 0x4001

Integer:

215 o144 o138 ot2 20

0x4001 =24+ 20- 16384 + 1 = 16385

1.15 Fractional:

20 o1 o2 o3 215

Implied Radix Point

0x4001 =21+ 2715 = 0.5 + .000030518 = 0.500030518

Figure 4-12: Different Representations of 0xC002

Integer:

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

215 o14 o183 o12 20

0xC002 = -215 + 214 4 21- .32768 + 16384 + 2 = -16382

S5
72]
—
-
c
(2]
=
(®)
=)
2]
(1]
—

1.15 Fractional:

20 o1 o2 28 515

Implied Radix Point

0xC002 =20+ 271 + 2714 = 1.0 + 0.5 + 0.000061035 = -0.499938965

© 2005 Microchip Technology Inc. DS70030F-page 4-31

dsPIC30F Programmer’s Reference Manual

412 Accumulator Usage

Accumulators A and B are utilized by DSP instructions to perform mathematical and shifting
operations. Since the accumulators are 40-bits wide and the X and Y data paths are only 16-bits,
the method to load and store the accumulators must be understood.

Item A in Figure 4-13 shows that each 40-bit accumulator (ACCA and ACCB) consists of an 8-bit
Upper register (ACCxU), a 16-bit High register (ACCxH) and a 16-bit Low register (ACCxL). To
address the bus alignment requirement and provide the ability for 1.31 math, ACCxH is used as
a destination register for loading the accumulator (with the LAC instruction), and also as a source
register for storing the accumulator (with the SAC . R instruction). This is represented by ltem B,
Figure 4-13, where the upper and lower portions of the accumulator are shaded. In reality, during
accumulator loads, ACCxL is zero backfilled and ACCxU is sign-extended to represent the sign
of the value loaded in ACCxH.

When Normal (31-bit) Saturation is enabled, DSP operations (such as 2ADD, MAC, MSC, etc.)
utilize solely ACCxH:ACCxL (ltem C in Figure 4-13) and ACCxU is only used to maintain the sign
of the value stored in ACCxH:ACCxL. For instance, when a MPY instruction is executed, the
result is stored in ACCxH:ACCxL, and the sign of the result is extended through ACCxU.

When Super Saturation is enabled, all registers of the accumulator may be used (Item D in
Figure 4-13) and the results of DSP operations are stored in ACCxU:ACCxH:ACCxL. The benefit
of ACCxU is that it increases the dynamic range of the accumulator, as described in
Section 4.11.1 “Integer and Fractional Data”. Refer to Table 4-10 to see the range of values
which may be stored in the accumulator when in Normal and Super Saturation modes.

Figure 4-13: Accumulator Alignment and Usage

A) ACCxU ACCxH ACCxL
39 32]31.30 16| 15 0

"
L

D)

\ Implied Radix Point (between bits 31 and 30)

A) 40-bit Accumulator consists of ACCxU:ACCxH:ACCxL
B) Load and Store operations

C) Operations in Normal Saturation mode

D) Operations in Super Saturation mode

DS70030F-page 4-32

© 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

413 Accumulator Access

The six registers of Accumulator A and Accumulator B are memory mapped like any other special
function register. This feature allows them to be accessed with file register or indirect addressing,
using any instruction which supports such addressing. However, it is recommended that the DSP
instructions LAC, SAC and SAC.R be used to load and store the accumulators, since they
provide sign-extension, shifting and rounding capabilities. LAC, SAC and SAC.R instruction
details are provided in Section 5. “Instruction Descriptions”.

Note: For convenience, ACCAU and ACCBU are sign-extended to 16-bits. This provides
the flexibility to access these registers using either Byte or Word mode (when file
register or indirect addressing is used).

414 DSP MAC Instructions

The DSP Multiply and Accumulate (MAC) operations are a special suite of instructions which
provide the most efficient use of the dsPIC30F architecture. The DSP MAC instructions, shown in
Table 4.14, utilize both the X and Y data paths of the CPU core, which enables these instructions
to perform the following operations all in one cycle:

* two reads from data memory using pre-fetch working registers (MAC Pre-fetches)

* two updates to pre-fetch working registers (MAC Pre-fetch Register Updates)

¢ one mathematical operation with an accumulator (MAC Operations)

In addition, four of the ten DSP MAC instructions are also capable of performing an operation with
one accumulator, while storing out the rounded contents of the alternate accumulator. This
feature is called Accumulator Write Back (WB) and it provides flexibility for the software

developer. For instance, the Accumulator WB may be used to run two algorithms concurrently,
or efficiently process complex numbers, among other things.

Table 4-11: DSP MAC Instructions
Instruction Description Accumulator WB?

CLR Clear accumulator Yes
ED Euclidean distance (no accumulate) No
EDAC Euclidean distance No
MAC Multiply and accumulate Yes
MAC Square and accumulate No
MOVSAC Move from X and Y bus Yes
MPY Multiply to accumulator No
MPY Square to accumulator No
MPY.N Negative multiply to accumulator No
MSC Multiply and subtract Yes

4141 MAC Pre-Fetches

Pre-Fetches (or data reads) are made using the effective address stored in the working register.
The two pre-fetches from data memory must be specified using the working registers assign-
ments shown in Table 4-9. One read must occur from the X data bus using W8 or W9, and one
read must occur from the Y data bus using W10 or W11. Allowable destination registers for both
pre-fetches are W4-W7.

As shown in Table 4-3, one special Addressing mode exists for the MAC class of instructions. This
mode is the Register Offset Addressing mode and utilizes W12. In this mode, the pre-fetch is
made using the effective address of the specified working register, plus the 16-bit signed value
stored in W12. Register Offset Addressing may only be used in the X space with W9, and in the
Y-space with W11.

S5
72]
—
-
c
(2]
=
(®)
=)
2]
(1]
—

© 2005 Microchip Technology Inc. DS70030F-page 4-33

dsPIC30F Programmer’s Reference Manual

4.14.2 mMAcC Pre-Fetch Register Updates

After the MAC pre-fetches are made, the effective address stored in each pre-fetch working
register may be modified. This feature enables efficient single cycle processing for data stored
sequentially in X and Y memory. Since all DSP instructions execute in Word mode, only even
numbered updates may be made to the effective address stored in the working register.
Allowable address modifications to each pre-fetch register are -6, -4, -2, 0 (no update), +2, +4
and +6. This means that effective address updates may be made up to 3 words in either direction.

When the Register Offset Addressing mode is used, no update is made to the base pre-fetch
register (W9 or W11), or the offset register (W12).

4143 MAC Operations

The mathematical operations performed by the MAC class of DSP instructions center around
multiplying the contents of two working registers and either adding or storing the result to either
Accumulator A or Accumulator B. This is the operation of the MAC, MPY, MPY.N and MSC instruc-
tions. Table 4-9 shows that W4-W7 must be used for data source operands in the MAC class of
instructions. W4-W7 may be combined in any fashion, and when the same working register is
specified for both operands, a square or square and accumulate operation is performed.

For the ED and EDAC instructions, the same multiplicand operand must be specified by the
instruction, because this is the definition of the Euclidean Distance operation. Another unique
feature about this instruction is that the values pre-fetched from X and Y memory are not actually
stored in W4-W?7. Instead, only the difference of the pre-fetched data words is stored in W4-W?7.

The two remaining MAC class instructions, CLR and MOVSAC, are useful for initiating or completing
a series of MAC or EDAC instructions and do not use the multiplier. CLR has the ability to clear
Accumulator A or B, pre-fetch two values from data memory and store the contents of the other
accumulator. Similarly, MOVSAC has the ability to pre-fetch two values from data memory and
store the contents of either accumulator.

4144 MAC Write Back

The write back ability of the MAC class of DSP instructions facilitates efficient processing of
algorithms. This feature allows one mathematical operation to be performed with one
accumulator, and the rounded contents of the other accumulator to be stored in the same cycle.
As indicated in Table 4-9, register W13 is assigned for performing the write back, and two
Addressing modes are supported: Direct and Indirect with Post-increment.

The CLR, MOVSAC and MSC instructions support accumulator write back, while the ED, EDAC,
MPY and MPY . N instructions do not support accumulator write back. The MAC instruction, which
multiplies two working registers which are not the same, also supports accumulator write back.
However, the square and accumulate MAC instruction does not support accumulator write back
(see Table 4.14).

4145 MAC Syntax

The syntax of the MAC class of instructions can have several formats, which depend on the
instruction type and the operation it is performing, with respect to pre-fetches and accumulator
write back. With the exception of the CLR and MOVSAC instructions, all MAC class instructions
must specify a target accumulator along with two multiplicands, as shown in Example 4-19.

DS70030F-page 4-34

© 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

Example 4-19: Base MAC Syntax

; MAC with no prefetch
MAC W4*W5, A

p Multiply W4*W5, Accumulate to ACCA

; MAC with no prefetch
MAC W7*W7, B

P Multiply W7*W7, Accumulate to ACCB

If a pre-fetch is used in the instruction, the assembler is capable of discriminating the X or Y data
pre-fetch based on the register used for the effective address. [W8] or [W9] specifies the X
pre-fetch and [W10] or [W11] specifies the Y pre-fetch. Brackets around the working register are
required in the syntax, and they designate that indirect addressing is used to perform the
pre-fetch. When address modification is used, it must be specified using a minus-equals or
plus-equals “C”- like syntax (i.e., “[W8]-=2" or “[W8]+=6"). When Register Offset Addressing is
used for the pre-fetch, W12 is placed inside the brackets ((W9+W12] for X pre-fetches and
[W11+W12] for Y pre-fetches). Each pre-fetch operation must also specify a pre-fetch destination
register (W4-W?7). In the instruction syntax, the destination register appears before the pre-fetch
register. Legal forms of pre-fetch are shown in Example 4-20.

Example 4-20: MAC Pre-Fetch Syntax

; MAC with X only prefetch

MAC W5*W6, A, [W8]+=2, W5

yp» ACCA=ACCA+W5*W6

P X ([W8]+=2)— W5

; MAC with Y only prefetch

MAC W5*W5, B, [W11l+W1l2], W5

» ACCB=ACCB+W5*W5

» Y ([W11l+W1l2])—> W5

; MAC with X/Y prefetch
MAC W6*W7, B, [Wol, Wé, [W10] +=4, W7

S5
72]
—
-
c
(2]
=
(®)
=)
2]
(1]
—

P ACCB=ACCB+W6*W7

» X ([W9])— W6

» Y ([W10]+=4) > W7

© 2005 Microchip Technology Inc. DS70030F-page 4-35

dsPIC30F Programmer’s Reference Manual

If an accumulator write back is used in the instruction, it is specified last. The write back must use
the W13 register, and allowable forms for the write back are “W13” for direct addressing and
“IW13]+=2" for indirect addressing with post-increment. By definition, the accumulator not used
in the mathematical operation is stored, so the write back accumulator is not specified in the
instruction. Legal forms of accumulator write back (WB) are shown in Example 4-21.

Example 4-21: MAC Accumulator WB Syntax

; CLR with direct WB of ACCB

CLR A, W13

» 0 — ACCA

P ACCB — W13

; MAC with indirect WB of ACCB

MAC W4*W5, A [W13]+=2

- ACCA=ACCA+W4*W5

P ACCB — [W13]+=2

; MAC with Y prefetch, direct WB of ACCA

MAC W4*W5, B, [W10]+=2, W4, W13

P ACCB=ACCB+W4*W5

P Y ([W10] +=2) > W4

» ACCA — W13

Putting it all together, an Msc instruction which performs two pre-fetches and a write back is
shown in Example 4-22.

Example 4-22: Msc Instruction with Two Pre-Fetches and Accumulator Write Back

; MSC with X/Y prefetch, indirect WB of ACCA

MSC W6*W7, B, [W8]+=2, W6, [W1l0]-=6, W7 [W13]+=2

P ACCB=ACCB-W6*W7
P X ([W8] +=2) W6
Y ([W10] -=6) >W7

— - ACCA— [W13] +=2

DS70030F-page 4-36 © 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

4.15 DSP Accumulator Instructions

The DSP Accumulator instructions do not have pre-fetch or accumulator WB ability, but they do
provide the ability to add, negate, shift, load and store the contents of either 40-bit accumulator.
In addition, the ADD and SUB instructions allow the two accumulators to be added or subtracted
from each other. DSP Accumulator instructions are shown in Table 4-12 and instruction details
are provided in Section 5. “Instruction Descriptions”.

Table 4-12: DSP Accumulator Instructions
Instruction Description Accumulator WB?
ADD Add accumulators No
ADD 16-bit signed accumulator add No
LAC Load accumulator No
NEG Negate accumulator No
SAC Store accumulator No
SAC.R Store rounded accumulator No
SFTAC Arithmetic shift accumulator by Literal No
SFTAC Arithmetic shift accumulator by (Wn) No
SUB Subtract accumulators No
4.16 Scaling Data with the FBCL Instruction

To minimize quantization errors that are associated with data processing using DSP instructions,
it is important to utilize the complete numerical result of the operations. This may require scaling
data up to avoid underflow (i.e., when processing data from a 12-bit ADC), or scaling data down
to avoid overflow (i.e., when sending data to a 10-bit DAC). The scaling, which must be
performed to minimize quantization error, depends on the dynamic range of the input data which
is operated on, and the required dynamic range of the output data. At times, these conditions
may be known beforehand and fixed scaling may be employed. In other cases, scaling conditions
may not be fixed or known, and then dynamic scaling must be used to process data.

The FBCL instruction (Find First Bit Change Left) can efficiently be used to perform dynamic
scaling, because it determines the exponent of a value. A fixed point or integer value’s exponent
represents the amount which the value may be shifted before overflowing. This information is
valuable, because it may be used to bring the data value to “full scale”, meaning that it's numeric
representation utilizes all the bits of the register it is stored in.

The FBCL instruction determines the exponent of a word by detecting the first bit change starting
from the value’s sign bit and working towards the LSB. Since the dsPIC™ device’s barrel shifter
uses negative values to specify a left shift, the FBCL instruction returns the negated exponent of
a value. If the value is being scaled up, this allows the ensuing shift to be performed immediately
with the value returned by FBCL. Additionally, since the FBCL instruction only operates on signed
quantities, FBCL produces results in the range of -15:0. When the FBCL instruction returns ‘0’, it
indicates that the value is already at full scale. When the instruction returns -15, it indicates that
the value cannot be scaled (as is the case with 0x0 and 0xFFFF). Table 4-13 shows word data
with various dynamic ranges, their exponents, and the value after scaling each data to maximize
the dynamic range. Example 4-23 shows how the FBCL instruction may be used for block
processing.

S5
72]
—
-
c
(2]
=
(®)
=)
2]
(1]
—

© 2005 Microchip Technology Inc. DS70030F-page 4-37

dsPIC30F Programmer’s Reference Manual

Table 4-13: Scaling Examples

Full Scale Value
Word Value Exponent (Word Value << Exponent)
0x0001 14 0x4000
0x0002 13 0x4000
0x0004 12 0x4000
0x0100 6 0x4000
0x01FF 6 0x7FCO
0x0806 3 0x4030
0x2007 1 0x400E
0x4800 0 0x4800
0x7000 0 0x7000
0x8000 0 0x8000
0x900A 0 0x900A
0xE001 2 0x8004
O0XFFO07 7 0x8380

Note: For the word values 0x0000 and 0xFFFF, the FBCL instruction returns -15.

As a practical example, assume that block processing is performed on a sequence of data with
very low dynamic range stored in 1.15 fractional format. To minimize quantization errors, the data
may be scaled up to prevent any quantization loss which may occur as it is processed. The FBCL
instruction can be executed on the sample with the largest magnitude to determine the optimal
scaling value for processing the data. Note that scaling the data up is performed by left shifting

the data. This is demonstrated with the code snippet below.

Example 4-23: Scaling with FBCL

; assume WO contains the largest absolute value of the data block
; assume W4 points to the beginning of the data block
; assume the block of data contains BLOCK_SIZE words

; determine the exponent to use for scaling
FBCL WO, W2 ; store exponent in W2

; scale the entire data block before processing

DO # (BLOCK_SIZE-1), SCALE
LAC [Wwal, A ; move the next data sample to ACCA
SFTAC A, W2 ; shift ACCA by W2 bits
SCALE:
SAC A, [Wa++] ; store scaled input (overwrite original)

; now process the data
; (processing block goes here)

DS70030F-page 4-38

© 2005 Microchip Technology Inc.

Section 4. Instruction Set Details

417 Normalizing the Accumulator with the FBCL Instruction

The process of scaling a quantized value for its maximum dynamic range is known as
normalization (the data in the third column in Table 4-13 contains normalized data). Accumulator
normalization is a technique used to ensure that the accumulator is properly aligned before
storing data from the accumulator, and the FBCL instruction facilitates this function.

The two 40-bit accumulators each have 8 guard bits from the AccU register, which expands the
dynamic range of the accumulators from 1.31 to 9.31, when operating in Super Saturation mode
(see Section 4.11.1 “Integer and Fractional Data”). However, even in Super Saturation mode,
the Store Rounded Accumulator (SAC. R) instruction only stores 16-bit data (in 1.15 format) from
AccH, as described in Section 4.12 “Accumulator Usage”. Under certain conditions, this may
pose a problem.

Proper data alignment for storing the contents of the accumulator may be achieved by scaling
the accumulator down if AccU is in use, or scaling the accumulator up if all of the AccH bits are
not being used. To perform such scaling, the FBCL instruction must operate on the AccU byte
and it must operate on the AccH word. If a shift is required, the ALU’s 40-bit shifter is employed,
using the SFTAC instruction to perform the scaling. Example 4-24 contains a code snippet for
accumulator normalization.

Example 4-24: Normalizing with FBCL

; assume an operation in ACCA has just completed (SR intact)
; assume the processor is in super saturation mode
; assume ACCAH is defined to be the address of ACCAH (0x24)

MOV #ACCAH, W5 ; W5 points to ACCAH

BRA OA, FBCL_GUARD ; 1f overflow we right shift
FBCL_HI:

FBCL [W5], WO ; extract exponent for left shift

BRA SHIFT ACC ; branch to the shift
FBCL_GUARD:

FBCL [++W5], WO ; extract exponent for right shift

ADD.B WO, #15, WO ; adjust the sign for right shift
SHIFT ACC:

SFTAC A, WO ; shift ACCA to normalize

S5
72]
—
-
c
(2]
=
(®)
=)
2]
(1]
—

© 2005 Microchip Technology Inc. DS70030F-page 4-39

dsPIC30F Programmer’s Reference Manual

NOTES:

DS70030F-page 4-40 © 2005 Microchip Technology Inc.

MICROCHIP

Section 5. Instruction Descriptions

HIGHLIGHTS

This section of the manual contains the following major topics:

5.1 INStrUCtioN SYMDOIS......cuuiiiiiiiie et 5-2
5.2 Instruction Encoding Field Descriptors Introduction.............ccecviiniieeiiiec e 5-2
5.3 Instruction Description EXamPIeooiiiiiiiiiiiii e 5-6
5.4 INStruCtion DESCrIPHIONS.....uuuiiiiiiiiiiiiiiie e e e e e e e e e s e s s nanreaees 5-7

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-1

dsPIC30F Programmer’s Reference Manual

5.1 Instruction Symbols
All symbols used in Section 5.4 “Instruction Descriptions” are shown in Table 1-2.
5.2 Instruction Encoding Field Descriptors Introduction

All instruction encoding field descriptors used in Section 5.4 “Instruction Descriptions™ are
shown in Table 5.2 through Table 5-12.

Table 5-1: Instruction Encoding Field Descriptors

Field Description

A | Accumulator selection bit: 0=ACCA; 1=ACCB
aa | Accumulator Write Back mode (see Table 5-12)
B Byte mode selection bit: 0=word operation; 1=byte operation
bbbb | 4-bit bit position select: 0000=LSB; 1111=MSB

D Destination address bit: o=result stored in WREG;
1=result stored in file register

dddd | Wd destination register select: 0000=W0; 1111=W15
f £fff fE£ff ffff 13-bit register file address (0x0000 to 0x1FFF)

fff £fff ffff fEfff 15-bit register file word address (implied 0 LSB)
(0x0000 to OXFFFE)

ffff £fff £fff ££f£ff | 16-bit register file byte address (0x0000 to 0OXFFFF)

ggg | Register Offset Addressing mode for Ws source register
(see Table 5-4)

hhh | Register Offset Addressing mode for Wd destination register
(see Table 5-5)

iiii | Pre-Fetch X Operation (see Table 5-6)
3337 Pre-Fetch Y Operation (see Table 5-8)
k 1-bit literal field, constant data or expression
kkkk |[4-bit literal field, constant data or expression
kk kkkk 6-bit literal field, constant data or expression
kkkk kkkk |8-bit literal field, constant data or expression
kk kkkk kkkk 10-bit literal field, constant data or expression
kk kkkk kkkk kkkk 14-bit literal field, constant data or expression
kkkk kkkk kkkk kkkk 16-bit literal field, constant data or expression
mm | Multiplier source select with same working registers
(see Table 5-10)
mmm | Multiplier source select with different working registers
(see Table 5-11)

nnnn nnnn nnnn nnn0 | 23-bit program address for CALL and GOTO instructions
nnn nnnn

nnnn nnnn nnnn nnnn | 16-bit program offset field for relative branch/call instructions
ppp | Addressing mode for Ws source register (see Table 5-2)
aqgqg |Addressing mode for Wd destination register (see Table 5-3)
rrrr |Barrel shift count
ssss | Ws source register select: 0000=W0; 1111=W15
tttt |Dividend select, Most Significant Word
Natalars Dividend select, Least Significant Word

W Double-Word mode selection bit: 0=word operation;
1=double-word operation

wwww | Wb base register select: 0000=W0; 1111=W15
xx | Pre-Fetch X Destination (see Table 5-7)
XXXX xXxXX xxxx xxxx | 16-bit unused field (don’t care)
yy | Pre-Fetch Y Destination (see Table 5-9)
z | Bit test destination: 0=C flag bit; 1=Z flag bit

DS70030F-page 5-2 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Table 5-2: Addressing Modes for Ws Source Register
PPP Addressing Mode Source Operand
000 Register Direct Ws
001 Indirect [Ws]
010 Indirect with Post-Decrement [Ws--]
011 Indirect with Post-Increment [Ws++]
100 Indirect with Pre-Decrement [--Ws]
101 Indirect with Pre-Increment [++Ws]
11x Unused
Table 5-3: Addressing Modes for Wd Destination Register
qaqg Addressing Mode Destination Operand
000 Register Direct Wd
001 Indirect [Wd]
010 Indirect with Post-Decrement [Wd--]
011 Indirect with Post-Increment [Wd++]
100 Indirect with Pre-Decrement [--Wd]
101 Indirect with Pre-Increment [++Wd]
11x Unused (an attempt to use this Addressing mode will force a RESET instruction)
Table 5-4: Offset Addressing Modes for Ws Source Register (with Register Offset)
ggg Addressing Mode Source Operand
000 Register Direct Ws
001 Indirect [Ws]
010 Indirect with Post-Decrement [Ws--]
011 Indirect with Post-Increment [Ws++]
100 Indirect with Pre-Decrement [--Ws]
101 Indirect with Pre-Increment [++Ws]
11x Indirect with Register Offset [Ws+Whb]
Table 5-5: Offset Addressing Modes for Wd Destination Register
(with Register Offset)
hhh Addressing Mode Source Operand
000 Register Direct Wd
001 Indirect [Wd]
010 Indirect with Post-Decrement [Wd--]
011 Indirect with Post-Increment [Wd++]
100 Indirect with Pre-Decrement [--Wd]
101 Indirect with Pre-Increment [++Wd]
11x Indirect with Register Offset [Wd+Wb]

© 2005 Microchip Technology Inc.

DS70030F-page 5-3

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

Table 5-6: X Data Space Pre-Fetch Operation
iiii Operation
0000 Wxd=[W8]
0001 Wxd=[W8], W8 = W8 + 2
0010 Wxd=[W8], W8 = W8 + 4
0011 Wxd=[W8], W8 = W8 + 6
0100 No Pre-fetch for X Data Space
0101 Wxd=[W8], W8 = W8 — 6
0110 Wxd=[W8], W8 = W8 — 4
0111 Wxd=[W8], W8 = W8 — 2
1000 Wxd=[W9]
1001 Wxd=[W9], W9 = W9 + 2
1010 Wxd=[W9], W9 = W9 + 4
1011 Wxd=[W9], W9 =W9 + 6
1100 Wxd=[W9+W12]
1101 Wxd=[W9], W9 = W9 — 6
1110 Wxd=[W9], W9 = W9 — 4
1111 Wxd=[W9], W9 =W9 -2
Table 5-7: X Data Space Pre-Fetch Destination
XX Wxd
00 W4
01 W5
10 W6
11 w7
Table 5-8: Y Data Space Pre-Fetch Operation
3333 Operation
0000 Wyd=[W10]
0001 Wyd=[W10], W10 = W10 + 2
0010 Wyd=[W10], W10 = W10 + 4
0011 Wyd=[W10], W10 = W10 + 6
0100 No Pre-fetch for Y Data Space
0101 Wyd=[W10], W10 = W10 -6
0110 Wyd=[W10], W10 =W10-4
0111 Wyd=[W10], W10 = W10 -2
1000 Wyd=[W11]
1001 Wyd=[W11], W11 = W11 + 2
1010 Wyd=[W11], W11 = W11 + 4
1011 Wyd=[W11], W11 = W11 + 6
1100 Wyd=[W11+W12]
1101 Wyd=[W11], W11 = W11 -6
1110 Wyd=[W11], W11 = W11 -4
1111 Wyd=[W11], W11 = W11 -2

DS70030F-page 5-4

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Table 5-9: Y Data Space Pre-Fetch Destination
Yy Wyd
00 w4
01 W5
10 W6
11 w7

Table 5-10: MAC or MPY Source Operands (Same Working Register)

mm Multiplicands
00 W4 * W4
01 W5 * W5
10 W6 * W6
11 W7 * W7
Table 5-11: MAC or MPY Source Operands (Different Working Register)
mmm Multiplicands
000 W4 * W5
001 W4 * W6
010 W4 * W7
011 Invalid
100 W5 * W6
101 W5 * W7
110 W6 * W7
111 Invalid
Table 5-12: MAC Accumulator Write Back Selection
aa Write Back Selection
00 W13 = Other Accumulator (Direct Addressing)
01 [W13]+=2 = Other Accumulator (Indirect Addressing with Post-Increment)
10 No Write Back
11 Invalid

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-5

dsPIC30F Programmer’s Reference Manual

5.3 Instruction Description Example

The example description below is for the fictitious instruction F00. The following example
instruction was created to demonstrate how the table fields (syntax, operands, operation, etc.)
are used to describe the instructions presented in Section 5.4 “Instruction Descriptions™.

FOO

The Header field summarizes what the instruction does

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

Examples:

The Syntax field consists of an optional label, the instruction mnemonic, any
optional extensions which exist for the instruction, and the operands for the
instruction. Most instructions support more than one operand variant to
support the various dsPIC30F Addressing modes. In these circumstances,
all possible instruction operands are listed beneath each other (as in the
case of op2a, op2b and op2c above). Optional operands are enclosed in
braces.

The Operands field describes the set of values which each of the operands
may take. Operands may be accumulator registers, file registers, literal
constants (signed or unsigned), or working registers.

The Operation field summarizes the operation performed by the instruction.

The Status Affected field describes which bits of the Status Register are
affected by the instruction. Status bits are listed by bit position in
descending order.

The Encoding field shows how the instruction is bit encoded. Individual bit
fields are explained in the Description field, and complete encoding details
are provided in Table 5.2.

The Description field describes in detail the operation performed by the
instruction. A key for the encoding bits is also provided.

The Words field contains the number of program words that are used to
store the instruction in memory.

The Cycles field contains the number of instruction cycles that are required
to execute the instruction.

The Examples field contains examples which demonstrate how the
instruction operates. “Before” and “After” register snapshots are provided,
which allow the user to clearly understand what operation the instruction
performs.

DS70030F-page 5-6

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

54 Instruction Descriptions

ADD Add f to WREG

Syntax: {label:} ADD({.B} f {,WREG}

Operands: fe[0..8191]

Operation: (f) + (WREG) — destination designated by D

Status Affected: DC,N, 0V, Z,C

Encoding: | 1011 | o100 | oBDf EFEE FEEf | fEEE |

Description: Add the contents of the default working register WREG to the contents of
the file register and place the result in the destination register. The
optional WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the
result is stored in the file register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .wW extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1
Cycles: 1
Example 1 ADD.B RAM100 ; Add WREG to RAM100 (Byte mode)
Before After
Instruction Instruction
WREG| ccso WREG| ccso
RAM100| FFCO RAM100| FF40
SR| 0000 SR| 0005 |(QV, C=1)
Example 2 ADD RAM200, WREG ; Add RAM200 to WREG (Word mode)
Before After
Instruction Instruction
WREG| cCcC80 WREG| cc4o0
RAM200| FFCO RAM200| FFCO
SR| 0000 SR| 0001|(C=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-7

dsPIC30F Programmer’s Reference Manual

A D D Add Literal to Wn

Syntax: {label:} ADD{.B} #lit10, Wn

Operands: lit10 € [0 ... 255] for byte operation
lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: lit10 + (Wn) - Wn

Status Affected: DC, N, QV, Z, C

Encoding: | 1011 | oooo | omkk | kkkk | kkkk | dddd
Description: Add the 10-bit unsigned literal operand to the contents of the working

register Wn and place the result back into the working register Wn.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an unsigned
value [0:255]. See Section 4.6 “Using 10-bit Literal Operands”
for information on using 10-bit literal operands in Byte mode.

Words: 1
Cycles: 1
Example 1 ADD.B #OXFF, W7 ; Add -1 to W7 (Byte mode)
Before After
Instruction Instruction
W7 | 12cCo0 W7 | 12BF
SR| 0000 SR| 0009|(N,C=1)
Example 2 ADD #0xFF, Wl ; Add 255 to W1l (Word mode)
Before After
Instruction Instruction
W1 12C0 W1 | 13BF
SR| 0000 SR| 0000

DS70030F-page 5-8 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

ADD Add Wb to Short Literal

Syntax: {label:} ADD{.B} Whb, #lit5, Wd
[(wd]
[Wd++]
(Wd--]
[++Wd]
[--Wd]
Operands: Wb e [WO ... W15]
lit e [0 ... 31]
Wd e [WO ... W15]
Operation: (Wb) + lit5 —» Wd
Status Affected: DC,N,0QV, zZ, C
Encoding: | 0100 | owww wBaq qddd dllk kkkk
Description: Add the contents of the base register Wb to the 5-bit unsigned short literal

operand and place the result in the destination register Wd. Register
direct addressing must be used for Wb. Either register direct or indirect
addressing may be used for Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 ADD.B WO, #Ox1F, W7 ; Add WO and 31 (Byte mode)
; Store the result in W7
Before After
Instruction Instruction
WO0| 2290 WO | 2290
W7| 12cCo0 W7 | 12AF
SR| o000 SR| o0008|(N=1)
Example 2 ADD W3, #0x6, [--W4] ; Add W3 and 6 (Word mode)
; Store the result in [--W4]
Before After
Instruction Instruction
W3| 6006 W3| 6006
W4| 1000 W4 | OFFE w
Data OFFE| DDEE Data OFFE | s00C 8 a
Data 1000| DDEE Data 1000 | DDEE Q é"
SR| 0000 SR| 0000 'g '3)
o=~
o o0
=2
Fre =

© 2005 Microchip Technology Inc. DS70030F-page 5-9

dsPIC30F Programmer’s Reference Manual

ADD

Add Wb to Ws
Syntax: {label:} ADD{.B} Wb, Ws, Wd
[Ws], (Wd]
[Ws++], [Wd++]
[Ws--], (Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]
Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Wd e [WO ... W15]
Operation: (Wb) + (Ws) —» Wd
Status Affected: DC,N,0V,Z,C
Encoding: | 0100 ‘ owww wBgqg gddd dppp ssss
Description: Add the contents of the source register Ws and the contents of the base
register Wb and place the result in the destination register Wd. Register
direct addressing must be used for Wb. Either register direct or indirect
addressing may be used for Ws and Wd.
The ‘W’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘g’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 ADD.B W5, W6, W7 ; Add W5 to W6, store result in W7
; (Byte mode)
Before After
Instruction Instruction
W5| ABOO W5| ABO0O
W6| 0030 W6| 0030
W7| FFFF W7| FF30
SR| 0000 SR| 0000
Example 2 ADD W5, W6, W7 ; Add W5 to W6, store result in W7
; (Word mode)
Before After
Instruction Instruction
W5 | ABOO W5 | ABOO
W6 | 0030 W6 | 0030
W7 | FFFF W7 | AB30
SR| 0000 SR| 0008 |(N=1)

DS70030F-page 5-10

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Add Accumulators

ADD

Syntax: {label:} ADD Acc
Operands: Acc € [A,B]
Operation: If (Acc = A):
(ACCA) + (ACCB) — ACCA
Else:
(ACCA) + (ACCB) — ACCB
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: ‘ 1100 ‘ 1011 ‘ A000 0000 0000 0000
Description: Add the contents of Accumulator A to the contents of Accumulator B and
place the result in the selected accumulator. This instruction performs a
40-bit addition.
The ‘A’ bit specifies the destination accumulator.
Words: 1
Cycles: 1
Example 1 ADD A ; Add ACCB to ACCA
Before After
Instruction Instruction
ACCA| 00 0022 3300 ACCA| 00 1855 7858
ACCB| 00 1833 4558 ACCB| 00 1833 4558
SR 0000 SR 0000
Example 2 ADD B ; Add ACCA to ACCB
; Assume Super Saturation mode enabled
; (ACCSAT=1, SATA=1, SATB=1)
Before After
Instruction Instruction
ACCA| 00 E111 2222 ACCA| 00 E111 2222
ACCB| 00 7654 3210 ACCB| 01 5765 5432
SR 0000 SR 4800((0OB, OAB=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-11

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

ADD 16-Bit Signed Add to Accumulator
Syntax: {label:} ADD Ws, {#Slit4,} Acc
[Ws],
[Ws++],
[Ws-],
[--Ws],
[++Ws],
[Ws+Wb],
Operands: Ws € [WO ... W15]
Wb e [WO ... W15]
Slit4 € [-8 ... +7]
Acc € [A,B]
Operation: Shiftg)iia(Extend(Ws)) + (Acc) — Acc
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: ‘ 1100 ‘ 1001 ‘ Awww ‘ Wrrr rggg ssss
Description: Add a 16-bit value specified by the source working register to the Most

Significant word of the selected accumulator. The source operand may
specify the direct contents of a working register or an effective address. The
value specified is added to the Most Significant Word of the accumulator, by
sign-extending and zero backfilling the source operand prior to the operation.
The value added to the accumulator may also be shifted by a 4-bit signed
literal before the addition is made.

The ‘A’ bit specifies the destination accumulator.
The ‘W’ bits specify the offset register Wb.

The ‘r’ bits encode the optional shift.

The ‘g’ bits select the source Address mode.
The ‘s’ bits specify the source register Ws.

Note: Positive values of operand Slit4 represent an arithmetic shift right
and negative values of operand Slit4 represent an arithmetic shift
left. The contents of the source register are not affected by Slit4.

Words: 1
Cycles: 1
Example 1 ADD WO, #2, A ; Add WO right-shifted by 2 to ACCA
Before After
Instruction Instruction
Wo0 8000 Wo0 8000
ACCA| 00 7000 0000 ACCA| 00 5000 0000
SR 0000 SR 0000

DS70030F-page 5-12 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2 ADD
W5

ACCA

Data 2000

SR

[W5++], A

Before
Instruction

2000

00 0067 2345

5000

0000

7

7

Add the effective value of W5 to ACCA
Post-increment W5

After
Instruction
W5 2002
ACCA| 00 5067 2345
Data 2000 5000
SR 0000

© 2005 Microchip Technology Inc.

DS70030F-page 5-13

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

ADDC Add f to WREG with Carry

Syntax: {label:} ADDC{.B} f {WREG}

Operands: fe[0...8191]

Operation: (f) + (WREG) + (C) — destination designated by D

Status Affected: DC,N,QV, Z,C

Encoding: | 1011 | o100 [1mDf FEEE FEEF FEEE
Description: Add the contents of the default working register WREG, the contents of

the file register and the Carry bit and place the result in the destination
register. The optional WREG operand determines the destination
register. If WREG is specified, the result is stored in WREG. If WREG is
not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
3: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words: 1
Cycles: 1
Example 1 ADDC.B RAM100 ; Add WREG and C bit to RAM100
; (Byte mode)
Before After
Instruction Instruction
WREG| cce60 WREG| ccC60
RAM100| 8006 RAM100| 8067
SR| 0001 |(C=1) SR| 0000
Example 2 ADDC RAM200, WREG ; Add RAM200 and C bit to the WREG
; (Word mode)
Before After
Instruction Instruction
WREG| 5600 WREG| 8ao01
RAM200| 3400 RAM200| 3400
SR| 0001|(C=1) SR| o000C|(N, OV=1)

DS70030F-page 5-14

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

ADDC

Add Literal to Wn with Carry

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

Example 2

{label} ~ ADDC{.B} #lit10, Wn

lit10 € [0 ... 255] for byte operation
lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

lit10 + (Wn) + (C) — Wn
DC,N,0V,Z C
‘ 1011 ‘ 0000 ‘ 1Bkk ‘ Kkkkk ‘ Kkkk ‘ dddd ‘

Add the 10-bit unsigned literal operand, the contents of the working
register Wn and the Carry bit and place the result back into the working
register Wn.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 2.7 “Using 10-bit Literal
Operands” for information on using 10-bit literal operands in
Byte mode.

3: The Zflagis “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.

ADDC.B #OXFF, W7 ; Add -1 and C bit to W7 (Byte mode)
Before After
Instruction Instruction
W7| 12co0 W7| 12BF
SR| 0000 |(C=0) SR| 0009 (N,C=1)
ADDC #OXFF, W1 ; Add 255 and C bit to W1 (Word mode)
Before After
Instruction Instruction
W1 12C0 W1 13C0
SR| 0001 |(C=1) SR| 0000

© 2005 Microchip Technology Inc.

DS70030F-page 5-15

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

ADDC

Add Wb to Short Literal with Carry

Syntax: {label:} ADDC{.B} Wb, #lit5, wd
(wd]
[Wd++]
(Wd--]
[++Wd]
[--Wd]
Operands: Wb e [WO ... W15]
lit5 € [0 ... 31]
Wd e [WO ... W15]
Operation: (Wb) +lit5 + (C) — Wd
Status Affected: DC,N,0QV, Z,C
Encoding: | 0100 | 1www | wBaq qddd d11lk kkkk
Description: Add the contents of the base register Wb, the 5-bit unsigned short literal
operand and the Carry bit and place the result in the destination register
Wd. Register direct addressing must be used for Wb. Register direct or
indirect addressing may be used for Wd.
The ‘W’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘K’ bits provide the literal operand, a five-bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These

instructions can only clear Z.

Words: 1
Cycles: 1
Example 1 ADDC.B WO, #O0x1F, [W7] ; Add WO, 31 and C bit (Byte mode)
; Store the result in [W7]
Before After

Instruction Instruction

WO| ccso WO| ccso

W7 | 12co0 W7| 12co0

Data 12C0| B00O Data 12C0| BO9F

SR 0000| (C=0) SR| 0008|(N=1)
Example 2 ADDC W3, #0x6, [--W4] ; Add W3, 6 and C bit (Word mode)
; Store the result in [--W4]
Before After

Instruction Instruction

W3| 6006 W3 6006

W4 | 1000 W4 OFFE

Data OFFE| DDEE Data OFFE 600D

Data 1000| DDEE Data 1000 DDEE

SR| o0001](C=1) SR| o000

DS70030F-page 5-16

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

ADDC Add Wb to Ws with Carry

Syntax: {label:} ADDC{.B} Wb, Ws, Wd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]
Operands: Wb e [WO ... W15]

Ws e [WO ... W15]
Wd e [WO ... W15]

Operation: (Wb) + (Ws) + (C) > Wd

Status Affected: DC,N,0V,Z,C

Encoding: ‘ 0100 ‘ lwww ‘ wBgqg gddd dppp ‘ ssss ‘
Description: Add the contents of the source register Ws, the contents of the base

register Wb and the Carry bit and place the result in the destination
register Wd. Register direct addressing must be used for Wb. Either
register direct or indirect addressing may be used for Ws and Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Z flag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words: 1
Cycles: 1
Example 1 ADDC.B WO, [Wl++], [W2++] ; Add W0, [W1l] and C bit (Byte mode)
; Store the result in [W2]
; Post-increment W1, W2
Before After
Instruction Instruction
WO| ccz20 WO0| cc20
W1| 0800 Wi 0801
W2| 1000 W2| 1001
Data 0800 | aB25 Data 0800 | AB25
Data 1000| FFFF Data 1000| FF46
SR| 0001 [(C=1) SR| 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-17

dsPIC30F Programmer’s Reference Manual

Example 2 ADDC W3, [W2++], [Wl++] ; Add W3, [W2] and C bit (Word mode)
; Store the result in [W1]
; Post-increment W1, W2
Before After
Instruction Instruction
W1| 1000 W1 1002
W2| 2000 W2| 2002
W3 0180 W3 0180
Data 1000| 8000 Data 1000| 2681
Data 2000 2500 Data 2000| 2500
SR| o0001|(C=1) SR| 0000

DS70030F-page 5-18 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

AND AND f and WREG

Syntax: {label:} AND{.B} f {,WREG}

Operands: fe[0...8191]

Operation: (f).AND.(WREG) — destination designated by D

Status Affected: N, Z

Encoding: | 1011 | o110 | oBDf FEEE feef | feef |
Description: Compute the logical AND operation of the contents of the default working

register WREG and the contents of the file register and place the result in
the destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG.
If WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words: 1
Cycles: 1
Example 1 AND.B RAM100 ; AND WREG to RAM100 (Byte mode)
Before After
Instruction Instruction
WREG| ccso WREG | ccso
RAM100| FFcCoO RAM100| FF80
SR| 0000 SR| 0008 |(N=1)
Example 2 AND RAM200, WREG ; AND RAM200 to WREG (Word mode)
Before After
Instruction Instruction
WREG| cc8o WREG| 0080
RAM200| 12co0 RAM200| 12cCo0
SR| 0000 SR| 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-19

dsPIC30F Programmer’s Reference Manual

AN D AND Literal and Wd

Syntax: {label:} AND{.B} #lit10, Wn

Operands: lit10 € [0 ... 255] for byte operation
lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: lit10.AND.(Wn) — Wn

Status Affected: N, Z

Encoding: | 1011 | ooio | omkk | kkkk | kkkk | dddd |
Description: Compute the logical AND operation of the 10-bit literal operand and the

contents of the working register Wn and place the result back into the
working register Wn. Register direct addressing must be used for Wn.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Literal
Operands” for information on using 10-bit literal operands in

Byte mode.
Words: 1
Cycles: 1
Example 1 AND.B #0x83, W7 ; AND 0x83 to W7 (Byte mode)
Before After
Instruction Instruction
W7| 12cC0 W7| 1280
SR| 0000 SR| 0008 |(N=1)
Example 2 AND #0x333, Wl ; AND 0x333 to W1 (Word mode)
Before After
Instruction Instruction
W1 12D0 W1 0210
SR| 0000 SR| 0000

DS70030F-page 5-20 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

AND

AND Wb and Short Literal

Syntax: {label:} AND{.B} Whb, #lit5, wd
(Wd]
[Wd++]
(Wd--]
[++Wd]
[--Wd]
Operands: Wb e [WO ... W15]
lits € [0 ... 31]
Wd e [WO ... W15]
Operation: (Wb).AND.lit5 — Wd
Status Affected: N, Z
Encoding: | o110 | owww wBaq qddd a1k | Kk |
Description: Compute the logical AND operation of the contents of the base register
Wb and the 5-bit literal and place the result in the destination register Wd.
Register direct addressing must be used for Wb. Either register direct or
indirect addressing may be used for Wd.
The ‘W’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 AND.B WO, #0x3, [Wl++] ; AND WO and 0x3 (Byte mode)
; Store to [W1]
; Post-increment W1
Before After
Instruction Instruction
WO| 23a5 WO| 23a5
W1| 2211 W1 | 2212
Data 2210| 9999 Data 2210| 0199
SR| o000 SR| o000
Example 2 AND WO, #0x1F, W1 ; AND W0 and 0x1F (Word mode)
; Store to W1
Before After
Instruction Instruction
WO | 6723 WO| 6723
W1 | 7878 W1| 0003
SR| 0000 SR| o000

© 2005 Microchip Technology Inc.

DS70030F-page 5-21

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

AND

And Wb and Ws

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

{label:} AND{.B} Whb, Ws, wd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws-], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]

Wb e [WO ... W15]
Ws e [WO ... W15]
Wd € [WO ... W15]

(Wb).AND.(Ws) — Wd
N, Z

‘ 0110 ‘ owww ‘ wBgqg qgddd dppp ’ ssss ‘

Compute the logical AND operation of the contents of the source register
Ws and the contents of the base register Wb and place the result in the

destination register Wd. Register direct addressing must be used for Wb.
Either register direct or indirect addressing may be used for Ws and Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

AND.B WO, W1 [W2++] ; AND WO and W1, and
; store to [W2] (Byte mode)
; Post-increment W2

Before After
Instruction Instruction
WO0| Aaass WO0| »aass
W1 2211 W1 2211
W2| 1001 W2| 1002
Data 1000| FFFF Data 1000| 11FF
SR| 0000 SR| 0000

DS70030F-page 5-22

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2 AND WO, [Wl++], W2 ; AND WO and [W1], and
; store to W2 (Word mode)
Post-increment Wl

7

Before After
Instruction Instruction
WO0| Aaass WO0| Aaass
W1 1000 W1 1002
W2| s552A W2| 2214
Data 1000| 2634 Data 1000| 2634
SR| 0000 SR| 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-23

dsPIC30F Programmer’s Reference Manual

ASR

Arithmetic Shift Right f

Syntax: {label:}

ASR{.B} f

Operands: fe [0..8191]
Operation: For byte operation:

(f<7>) — Dest<7>
(f<7>) — Dest<6>
(f<6:1>) — Dest<5:0>
(f<0>) - C

For word operation:

(f<15>) — Dest<15>
(f<15>) — Dest<14>
(f<14:1>) — Dest<13:0>
(f<0>) - C

o

Status Affected: N,Z, C

{ WREG}

Encoding: ‘ 1101 ‘ 0101 ‘

1BDE

FEFE FEFE ‘ FEFE ‘

Description: Shift the contents of the file register one bit to the right and place the
result in the destination register. The Least Significant bit of the file
register is shifted into the Carry bit of the Status Register. After the shift is
performed, the result is sign-extended. The optional WREG operand
determines the destination register. If WREG is specified, the result is
stored in WREG. If WREG is not specified, the result is stored in the file
register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The f bits select the address of the file register.

Note 1:

The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

The WREG is set to working register WO.

; ASR RAM400 and store to WREG

; (Byte

After

Instruction

0611

0823

2:
Words: 1
Cycles: 1
Example 1 ASR.B RAM400, WREG
Before
Instruction
WREG| 0600 WREG
RAM400| 0823 RAM400
SR| 0000 SR
Example 2 ASR RAM200
Before
Instruction
RAM200| 8009 RAM200
SR| 0000 SR

mode)

0001 | (C=1)

; ASR RAM200 (Word mode)

After
Instruction

coo4
0009

(N, C=1)

DS70030F-page 5-24

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

ASR Arithmetic Shift Right Ws

Syntax: {label:} ASR{.B} Ws, Wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]

Operands: Ws e [WO ... W15]

Wd € [WO ... W15]
Operation: For byte operation:

(Ws<7>) - Wd<7>
(Ws<7>) - Wd<6>
(Ws<6:1>) —» Wd<5:0>
(Ws<0>) - C

For word operation:
(Ws<15>) — Wd<15>
(Ws<15>) — Wd<14>
(Ws<14:1>) - Wd<13:0>
(Ws<0>) - C

o

Status Affected: N,Z C
Encoding: ‘ 1101 ‘ 0001 | 1Bag gddd dppp ssss

Description: Shift the contents of the source register Ws one bit to the right and place
the result in the destination register Wd. The Least Significant bit of Ws is
shifted into the Carry bit of the Status Register. After the shift is performed,
the result is sign-extended. Either register direct or indirect addressing may
be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-25

dsPIC30F Programmer’s Reference Manual

Example 1 ASR.B [WO++], [Wl++] ; ASR [WO] and store to [W1l] (Byte mode)
; Post-increment WO and W1

Before After
Instruction Instruction
WO| 0600 WO| 0601
Wi1 0801 Wi1 0802
Data 600| 2366 Data 600| 2366
Data 800| FFCO Data 800| 33cCo0
SR| 0000 SR| 0000
Example 2 ASR W12, W13 ; ASR W12 and store to W13 (Word mode)
Before After
Instruction Instruction
W12| ABO1 W12| ABO1
W13| 0322 W13| D580
SR| 0000 SR| 0009] (N, C=1)

DS70030F-page 5-26 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

ASR

Arithmetic Shift Right by Short Literal

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

Example 2

Example 3

{label:} ASR

Wb e [WO ... W15]
lit4 [0...15]
Wnd e [WO ... W15]

lit4<3:0> — Shift_Val

Whb,

Wb<15> — Wnd<15:15-Shift_Val+1>
Wb<15:Shift_Val> — Wnd<15-Shift_Val:0>

N, Z

#lit4,

Wnd

1101 1110

1www

wddd

d100 | Kkkkk ‘

Arithmetic shift right the contents of the source register Wb by the 4-bit

unsigned literal and store the result in the destination register Wnd. After
the shift is performed, the result is sign-extended. Direct addressing must
be used for Wb and Wnd.

The ‘W’ bits select the address of the base register.

The ‘d’ bits select the address of the destination register.
The ‘K’ bits provide the literal operand.

Note:
1
1
ASR WO, #0x4, W1l
Before
Instruction
WO0| 060F
W1 1234
SR| 0000
ASR WO, #0x6, W1
Before
Instruction
WO0| 8OFF
W1 0060
SR| 0000
ASR WO, #O0xF, W1
Before
Instruction
WO| 70FF
W1 CcC26
SR| 0000

This instruction operates in Word mode only.

; ASR WO by 4 and store to W1

; ASR WO by 6 and store to W1

(N=1)

; ASR WO by 15 and store to W1

After
Instruction
WO0| 060F
W1 | 0060
SR| 0000
After
Instruction
W0| 8OFF
W1| FEO03
SR| o008
After
Instruction
WO0| 70FF
Wi 0000
SR| 0002

(2=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-27

O
®
(74
0
=
T
=
o
=]
(7

5
7]
-
=
c
(2]
=
(®)
=)

dsPIC30F Programmer’s Reference Manual

ASR

Arithmetic Shift Right by Wns

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

Example 2

Example 3

{label:}

Wb e [WO ..
Whns € [WO .

Wnd e [WO

ASR

. Wi15]
.W15]
... W15]

Wns<3:0> — Shift_Val
Wb<15> — Wnd<15:15-Shift_Val+1>
Wb<15:Shift_Val> — Wnd<15-Shift_Val:0>

N, Z

Wb,

Whns, Wnd

1101

1110 ‘

lwww | wddd ‘ dooo ssss

Arithmetic shift right the contents of the source register Wb by the 4 Least
Significant bits of Wns (up to 15 positions) and store the result in the
destination register Wnd. After the shift is performed, the result is
sign-extended. Direct addressing must be used for Wb, Wns and Wnd.

The ‘W’ bits select the address of the base register.
The ‘d’ bits select the address of the destination register.
The ‘s’ bits select the address of the source register.

Note 1: This instruction operates in Word mode only.
2: If Wns is greater than 15, Wnd = 0x0 if Wb is positive, and
Wnd = oxFFFF if Wb is negative.

ASR WO, W5,
Before
Instruction
WO0| 8OFF
W5| 0004
W6| 2633
SR| 0000
ASR WO, W5,
Before
Instruction
WO| 6688
W5| o000A
W6 | FFO0O0
SR| 0000
ASR W11, W12,
Before
Instruction
W11 8765
W12| 88E4
W13| A5AS
SR| 0000

W6

; ASR WO by W5 and store to W6

After

Instruction

WO
W5
W6
SR

W6

WO
W5
W6
SR

W13

80FF

0004

F8O0F

0000

; ASR WO by W5 and store to W6

After

Instruction

6688

000A

0019

0000

; ASR W1l by W12 and store to W13

After

Instruction

W11
W12
W13

SR

8765

88E4

F876

0008 | (N=1)

DS70030F-page 5-28

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BCLR Bit Clear f

Syntax: {label:} BCLR{.B} f, #bit4

Operands: fe [0 ... 8191] for byte operation
fe [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for byte operation

Operation: 0 — f<bit4>

Status Affected: None

Encoding: | 1010 | 1001 | bbbt | fref | ffef | fffb |
Description: Clear the bit in the file register f specified by ‘bit4’. Bit numbering begins

with the Least Significant bit (bit 0) and advances to the Most Significant
bit (bit 7 for byte operations, bit 15 for word operations).

The ‘b’ bits select value bit4 of the bit position to be cleared.
The f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1
Cycles: 1
Example 1 BCLR.B 0x800, #0x7 ; Clear bit 7 in 0x800
Before After
Instruction Instruction
Data 0800 | 66EF Data 0800 | 666F
SR| 0000 SR| 0000
Example 2 BCLR 0x400, #0x9 ; Clear bit 9 in 0x400
Before After
Instruction Instruction
Data 0400| aAss Data 0400| 2855
SR| 0000 SR| 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-29

dsPIC30F Programmer’s Reference Manual

BCLR

Bit Clear in Ws
Syntax: {label:} BCLR{.B} = Ws, #bit4
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation
Operation: 0 — Ws<bit4>
Status Affected: None
Encoding: ‘ 1010 0001 | bbbb ‘ 0B0O ‘ Oppp ‘ ssss ‘
Description: Clear the bit in register Ws specified by ‘bit4’. Bit numbering begins with
the Least Significant bit (bit 0) and advances to the Most Significant bit
(bit 7 for byte operations, bit 15 for word operations). Register direct or
indirect addressing may be used for Ws.
The ‘b’ bits select value bit4 of the bit position to be cleared.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘s’ bits select the address of the source/destination register.
The ‘p’ bits select the source Address mode.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the source
register address must be word aligned.
3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.
Words: 1
Cycles: 1
Example 1 BCLR.B W2, #0x2 ; Clear bit 3 in W2
Before After
Instruction Instruction
W2| F234 W2| F230
SR| o000 SR| o000
Example 2 BCLR [WO++], #0x0 ; Clear bit 0 in [WO0]
; Post-increment WO
Before After
Instruction Instruction
WO| 2300 WO| 2302
Data 2300| 5607 Data 2300| 5606
SR| 0000 SR| 0000

DS70030F-page 5-30

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA Branch Unconditionally

Syntax: {label:} BRA Expr
Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where Slit16 € [-32768 ... +32767].
Operation: (PC+2) + 2*Slit16 — PC

NOP — Instruction Register
Status Affected: None

Encoding: ‘ 0011 ‘ 0111 nnnn nnnn nnnn nnnn

Description: The program will branch unconditionally, relative to the next PC. The offset
of the branch is the 2’s complement number ‘2*Slit16’, which supports
branches up to 32K instructions forward or backward. The Slit16 value is
resolved by the linker from the supplied label, absolute address or
expression. After the branch is taken, the new address will be (PC+2) +
2*Slit16, since the PC will have incremented to fetch the next instruction.

The ‘n’ bits are a signed literal that specifies the number of program words
offset from (PC+2).

Words: 1
Cycles: 2

Example 1 002000 HERE: BRA THERE ; Branch to THERE
002002
002004
002006
002008
00200A THERE:
00200C

Before After
Instruction Instruction

PC 00 2000 PC| 00 200a
SR 0000 SR 0000

Examp|e2 002000 HERE: BRA THERE+0x2 ; Branch to THERE+0x2
002002
002004
002006
002008
00200A THERE:
00200C

Before After
Instruction Instruction

PC 00 2000 PC 00 200C

SR 0000 SR 0000 “

Example 3 002000 HERE: BRA 0x1366 ; Branch to 0x1366
002002
002004

Before After
Instruction Instruction

PC 00 2000 PC 00 1366
SR 0000 SR 0000

5
7]
-
=
c
(2]
=
(®)
=)

O
®
(74
0
=
T
=
o
=]
(7

© 2005 Microchip Technology Inc. DS70030F-page 5-31

dsPIC30F Programmer’s Reference Manual

BRA

Computed Branch

Syntax:

Operands:
Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

{label:}

BRA

Wn e [WO ... W15]

(PC+2) + (2*Wn) — PC
NOP — Instruction Register

None

‘ 0000 ‘

0001

0110

‘ 0000 ‘ 0000 ‘ ssss ‘

The program will branch unconditionally, relative to the next PC. The
offset of the branch is the sign-extended 17-bit value (2*Wn), which
supports branches up to 32K instructions forward or backward. After this
instruction executes, the new PC will be (PC+2)+2*Wn, since the PC will
have incremented to fetch the next instruction.

The ‘s’ bits select the address of the source register.

1
2

002000 HERE:
002002

002108

00210A TABLE7:

00210C

Before
Instruction

PC 00 2000

W7 0084

SR 0000

BRA W7

PC
W7
SR

; Branch forward

(242*W7)

After
Instruction

00 2108

0084

0000

DS70030F-page 5-32

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA C Branch if Carry

Syntax: {label:} BRA C, Expr
Operands: Expr may be a label, absolute address or expression.

Expr is resolved by the linker to a Slit16, where Slit16 € [-32768 ... +32767].
Operation: Condition =C

If (Condition)
(PC+2) + 2*Slit16 — PC
NOP — Instruction Register

Status Affected: None
Encoding: ‘ 0011 ‘ 0001 nnnn nnnn nnnn nnnn

Description: If the Carry flag bit is ‘1’, then the program will branch relative to the next PC.
The offset of the branch is the 2’'s complement number ‘2*Slit16’, which
supports branches up to 32K instructions forward or backward. The Slit16
value is resolved by the linker from the supplied label, absolute address or
expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction then
becomes a two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC+2) in
instruction words.

Words: 1
Cycles: 1 (2 if branch taken)
Example1 002000 HERE: BRA C, CARRY ; If C is set, branch to CARRY
002002 NO_C: ... ; Otherwise... continue
002004 ..
002006 GOTO THERE
002008 CARRY:
00200A
00200C THERE:
00200E
Before After
Instruction Instruction
PC 00 2000 PC 00 2008
SR 0001 |(C=1) SR 0001 |(C=1)
Example2 002000 HERE: BRA C, CARRY ; If C is set, branch to CARRY
002002 NO_C: I ; Otherwise... continue
002004 -
002006 GOTO THERE
002008 CARRY:
00200A
00200C THERE:
00200E
O
8 >
Before After o 2
. . - =
Instruction Instruction = c
(2]
PC 00 2000 PC 00 2002 (=]
SR 0000 SR 0000 8 g
(/]

© 2005 Microchip Technology Inc. DS70030F-page 5-33

dsPIC30F Programmer’s Reference Manual

Example 3 006230 HERE: BRA C, CARRY ; If C is set, branch to CARRY
006232 NO_C: ; Otherwise... continue
006234 o
006236 GOTO THERE
006238 CARRY:
00623A
00623C THERE:
00623E

Before After
Instruction Instruction
PC 00 6230 PC 00 6238
SR 0001 |(C=1) SR 0001 |(C=1)
Example 4 006230 START:
006232
006234 CARRY:
006236
006238
00623A L.
00623C HERE: BRA C, CARRY ; If C is set, branch to CARRY
00623E ; Otherwise... continue
Before After
Instruction Instruction
PC| 00 623C PC| 00 6234
SR 0001 |(C=1) SR 0001 [(C=1)

DS70030F-page 5-34 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA GE

Branch if Signed Greater Than or Equal

Syntax: {label:} BRA GE, Expr
Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].
Operation: Condition = (N&&OV)||(IN&&!OV)
If (Condition)
(PC+2) + 2*Slit16 — PC
NOP — Instruction Register
Status Affected: None
Encoding: ‘ 0011 | 1101 | nnnn | nnnn ‘ nnnn | nnnn I
Description: If the logical expression (N&&OV)||(IN&&!OV) is true, then the program
will branch relative to the next PC. The offset of the branch is the 2’s
complement number 2*Slit16’, which supports branches up to 32K
instructions forward or backward. The Slit16 value is resolved by the
linker from the supplied label, absolute address or expression.
If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.
The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC+2) in
instruction words.
Note: The assembler will convert the specified label into the offset to
be used.
Words: 1
Cycles: 1 (2 if branch taken)
Example 1 007600 LOOP:
007602
007604
007606 L.
007608 HERE: BRA GE, LOOP ; If GE, branch to LOOP
00760A NO _GE: .. ; Otherwise... continue
Before After
Instruction Instruction
PC 00 7608 PC| 00 7600
SR 0000 SR 0000
Example 2 007600 LOOP:
007602
007604
007606 ..
007608 HERE: BRA GE, LOOP ; If GE, branch to LOOP
00760A NO _GE: .. ; Otherwise... continue
Before After
Instruction Instruction
PC| 00 7608 PC| 00 760A
SR 0008 |(N=1) SR 0008 [(N=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-35

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

BRA GEU

Branch if Unsigned Greater Than or Equal

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

{label:} BRA GEU, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16 offset that supports an offset
range of [-32768 ... +32767] program words.
Condition = C
If (Condition)
(PC+2) + 2*Slit16 — PC
NOP — Instruction Register

None

| 0011 ‘ 0001 | nnnn nnnn nnnn ‘ nnnn ‘

If the Carry flag is ‘1’, then the program will branch relative to the next
PC. The offset of the branch is the 2’'s complement number 2*Slit16’,
which supports branches up to 32K instructions forward or backward.
The Slit16 value is resolved by the linker from the supplied label,
absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The
instruction then becomes a two-cycle instruction, with a NOP executed
in the second cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC+2)
in instruction words.

Note: This instruction is identical to the BRA C, Expr (Branch if
Carry) instruction and has the same encoding. It will reverse
assemble as BRA ¢, Slit16.

1
1 (2 if branch taken)

002000 HERE: BRA GEU, BYPASS ; If C is set, branch
002002 NO_GEU: L. ; to BYPASS
002004 ... ; Otherwise... continue
002006
002008 ...
00200A GOTO THERE
00200C BYPASS:
00200E
Before After

Instruction Instruction
PC 00 2000 PC 00 200C
SR 0001 [(C=1) SR 0001 |(C=1)

DS70030F-page 5-36

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA GT

Branch if Signed Greater Than

Syntax:

Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1

{label:} BRA GT, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].

Condition = (1Z&&N&&OV)||(IZ&&!N&&!OV)
If (Condition)

(PC+2) + 2*Slit16 — PC

NOP — Instruction Register

None

‘ 0011 ‘ 1100 | nnnn | nnnn | nnnn ‘ nnnn

If the logical expression (!Z&&N&&OV)||(IZ&&!N&&!OV) is true, then the
program will branch relative to the next PC. The offset of the branch is the
2’s complement number 2*Slit16’, which supports branches up to 32K
instructions forward or backward. The Slit16 value is resolved by the
linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a 16-bit signed literal that specify the offset from (PC+2) in
instruction words.

1
1 (2 if branch taken)

002000 HERE: BRA GT, BYPASS ; If GT, branch to BYPASS
002002 NO_GT: L. ; Otherwise... continue
002004

002006

002008 ...

00200A GOTO THERE

00200C BYPASS:

00200E

PC
SR

Before After
Instruction Instruction

00 2000 PC 00 200C
0001 |(C=1) SR 0001 |(C=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-37

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

BRA GTU

Branch if Unsigned Greater Than

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

{label:}

BRA

GTU,

Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].

Condition = (C&&!Z)
If (Condition)
(PC+2) + 2*Slit16 — PC
NOP — Instruction Register

N

one

| 0011 ‘

1110

’ nnnn ‘ nnnn nnnn nnnn

If the logical expression (C&&!Z) is true, then the program will branch
relative to the next PC. The offset of the branch is the 2’s complement
number 2*Slit16’, which supports branches up to 32K instructions forward
or backward. The Slit16 value is resolved by the linker from the supplied
label, absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since

the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

1

1 (2 if branch taken)

002000

002002 NO_GTU:

002004
002006
002008
00200A
00200C
00200E

In

HERE:

BYPASS:

Before
struction

PC

00 2000

SR

0001

BRA GTU, BYPASS ; If GTU, branch to BYPASS
; Otherwise... continue
GOTO THERE
After
Instruction
PC 00 200C
(C=1) SR 0001 |(C=1)

DS70030F-page 5-38

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

B RA LE Branch if Signed Less Than or Equal
Syntax: {label:} BRA LE, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].

Operation: Condition = Z||(N&&!OV)||(IN&&OV)
If (Condition)
(PC+2) + 2*Slit16 — PC
NOP — Instruction Register

Status Affected: None
Encoding: ‘ 0011 I 0100 ‘ nnnn ‘ nnnn ‘ nnnn I nnnn

Description: If the logical expression (Z||(N&&!OV)||(IN&&OV)) is true, then the
program will branch relative to the next PC. The offset of the branch is the
2’s complement number 2*Slit16’, which supports branches up to 32K
instructions forward or backward. The Slit16 value is resolved by the linker
from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction then
becomes a two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Words: 1
Cycles: 1 (2 if branch taken)
Example 1 002000 HERE: BRA LE, BYPASS ; If LE, branch to
002002 NO_LE: .. BYPASS
002004 ... ; Otherwise... continue
002006
002008 ...
00200A GOTO THERE
00200C BYPASS:
00200E
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
SR 0001 |(C=1) SR 0001 |(C=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-39

dsPIC30F Programmer’s Reference Manual

BRA LEU

Branch if Unsigned Less Than or Equal

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1

{label:} BRA LEU, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].
Condition = IC||Z
If (Condition)

(PC+2) + 2*Slit16 — PC

NOP — Instruction Register

None

‘ 0011 ‘ 0110 ‘ nnnn ‘ nnnn nnnn nnnn

If the logical expression (!C||Z) is true, then the program will branch
relative to the next PC. The offset of the branch is the 2’s complement
number ‘2*Slit16’, which supports branches up to 32K instructions forward
or backward. The Slit16 value is resolved by the linker from the supplied
label, absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

1
1 (2 if branch taken)

002000 HERE: BRA LEU, BYPASS ; If LEU, branch to BYPASS
002002 NO_LEU: L. ; Otherwise... continue
002004

002006

002008 .o

00200A GOTO THERE

00200C BYPASS:

00200E

PC
SR

Before After
Instruction Instruction

00 2000 PC 00 200C

0001 |(C=1) SR 0001 |(C=1)

DS70030F-page 5-40

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA LT

Branch if Signed Less Than

Syntax:

Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1

{label:} BRA LT, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].

Condition = (N&&!OV)||(IN&&OV)
If (Condition)

(PC+2) + 2*Slit16 — PC

NOP — Instruction Register

None

‘ 0011 ‘ 0101 | nnnn ‘ nnnn ‘ nnnn nnnn

If the logical expression ((N&&!OV)||(!N&&QV)) is true, then the program
will branch relative to the next PC. The offset of the branch is the 2’s
complement number ‘2*Slit16’, which supports branches up to 32K
instructions forward or backward. The Slit16 value is resolved by the
linker from the supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

1
1 (2 if branch taken)

002000 HERE: BRA LT, BYPASS ; If LT, branch to BYPASS
002002 NO_LT: L. ; Otherwise... continue
002004

002006

002008 ...

00200A GOTO THERE

00200C BYPASS:

00200E

PC
SR

Before After
Instruction Instruction

00 2000 PC 00 2002
0001 |(C=1) SR 0001 [(C=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-41

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

BRA LTU

Branch if Unsigned Less Than

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

002000 HERE:
002002 NO_LTU: .. H

{label:} BRA LTU, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].

Condition = IC

If (Condition)
(PC+2) + 2*Slit16 — PC
NOP — Instruction Register

None
| 0011

If the Carry flag is ‘0’, then the program will branch relative to the next PC.
The offset of the branch is the 2’s complement number 2*Slit16’, which
supports branches up to 32K instructions forward or backward. The Slit16
value is resolved by the linker from the supplied label, absolute address
or expression.

1001 nnnn nnnn nnnn

‘ nnnn ‘

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Note: This instruction is identical to the BRA NC, Expr (Branch if Not
Carry) instruction and has the same encoding. It will reverse

assemble as BRA NC, Slit16.
1
1 (2 if branch taken)

BRA LTU, BYPASS ; If LTU, branch to BYPASS

Otherwise... continue

002004
002006
002008

00200A
00200C

GOTO THERE
BYPASS:

00200E

PC
SR

After
Instruction

Before
Instruction

00 2000 PC 00 2002

0001 |(C=1) 0001 |(C=1)

DS70030F-page 5-42

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRAN

Branch if Negative

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

{label:} BRA N, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].

Condition = N

If (Condition)
(PC+2) + 2*Slit16 — PC
NOP — Instruction Register.

None

‘ 0011 ‘ 0011 nnnn nnnn nnnn nnnn

If the Negative flag is ‘1’, then the program will branch relative to the next
PC. The offset of the branch is the 2’'s complement number 2*Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction then
becomes a two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

1
1 (2 if branch taken)

002000 HERE: BRA N, BYPASS ; If N, branch to BYPASS
002002 NO_N: .. ; Otherwise... continue
002004

002006

002008 ...

00200A GOTO THERE

00200C BYPASS:

00200E

PC
SR

Before After
Instruction Instruction

00 2000 PC 00 200C
0008 |(N=1) SR 0008 |(N=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-43

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

BRA NC

Branch if Not Carry

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1

{label:}

BRA

NC,

Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].

Condition =!C
If (Condition)

(PC+2) + 2*Slit16 — PC
NOP — Instruction Register

None

‘ 0011 ‘

1001

nnnn

nnnn nnnn nnnn

If the Carry flag is ‘0’, then the program will branch relative to the next PC.
The offset of the branch is the 2’s complement number ‘2*Slit16’, which

supports branches up to 32K instructions forward or backward. The Slit16
value is resolved by the linker from the supplied label, absolute address or

expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction then
becomes a two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

1

1 (2 if branch taken)

002000 HERE:
002002 NO_NC:
002004
002006
002008
00200A
00200C
00200E

Before
Instruction

BYPASS:

PC 00 2000

SR 0001

(C=1)

BRA NC, BYPASS

GOTO THERE

PC
SR

; If NC, branch to BYPASS
; Otherwise... continue

After
Instruction

00 2002

0001 |(C=1)

DS70030F-page 5-44

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA NN

Branch if Not Negative

Syntax:

Operands:

Operation:

{label:} BRA NN, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].
Condition = IN
If (Condition)

(PC+2) + 2*Slit16 — PC

NOP — Instruction Register

Status Affected: None
Encoding: ‘ 0011 ‘ 1011 nnnn nnnn nnnn nnnn
Description: If the Negative flag is ‘0’, then the program will branch relative to the next
PC. The offset of the branch is the 2’s complement number 2*Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.
If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.
The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).
Words: 1
Cycles: 1 (2 if branch taken)
Example 1 002000 HERE: BRA NN, BYPASS ; If NN, branch to BYPASS
002002 NO_NN: R ; Otherwise... continue
002004
002006
002008 .o
00200A GOTO THERE
00200C BYPASS:
00200E
Before After
Instruction Instruction
PC 00 2000 PC 00 200C
SR 0000 SR 0000

© 2005 Microchip Technology Inc.

DS70030F-page 5-45

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

BRA NOV

Branch if Not Overflow

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

002000 HERE:
002002 NO_NOV: .. H

{label:} BRA NOV, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].

Condition = 10V

If (Condition)
(PC+2) + 2*Slit16 — PC
NOP — Instruction Register

None

‘ 0011 ‘ 1000 nnnn nnnn nnnn nnnn

If the Overflow flag is ‘0’, then the program will branch relative to the next
PC. The offset of the branch is the 2’'s complement number ‘2*Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction then
becomes a two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

1
1 (2 if branch taken)

If NOV, branch to BYPASS
Otherwise... continue

BRA NOV, BYPASS H

002004
002006
002008

00200A
00200C

GOTO THERE
BYPASS:

00200E

PC
SR

After
Instruction

Before
Instruction

00 2000 PC 00 200C

0008 |[(N=1) SR 0008 |(N=1)

DS70030F-page 5-46

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA NZ Branch if Not Zero

Syntax: {label:} BRA NZ, Expr

Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].
Operation: Condition = 1Z
If (Condition)
(PC+2) + 2*Slit16 — PC
NOP — Instruction Register

Status Affected: None
Encoding: ‘ 0011 ‘ 1010 nnnn nnnn nnnn nnnn
Description: If the Z flag is ‘0’, then the program will branch relative to the next PC. The

offset of the branch is the 2’s complement number 2*Slit16’, which sup-
ports branches up to 32K instructions forward or backward. The Slit16
value is resolved by the linker from the supplied label, absolute address or
expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Words: 1
Cycles: 1 (2 if branch taken)
Example 1 002000 HERE: BRA NZ, BYPASS ; If NZ, branch to BYPASS
002002 NO_NZ: .o ; Otherwise... continue
002004
002006
002008 ..
00200A GOTO THERE
00200C BYPASS:
00200E
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
SR 0002 [(Z=1) SR 0002 |(Z=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-47

dsPIC30F Programmer’s Reference Manual

BRA OA

Branch if Overflow Accumulator A

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

{label:}

BRA

OA,

Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].

Condition = OA
If (Condition)

(PC+2) + 2*Slit16 — PC

NOP — Instruction Register
None
‘ 0000 | 1100 nnnn nnnn nnnn nnnn

If the Overflow Accumulator A flag is ‘1’, then the program will branch
relative to the next PC. The offset of the branch is the 2’s complement
number ‘2*Slit16’, which supports branches up to 32K instructions
forward or backward. The Slit16 value is resolved by the linker from the
supplied label, absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second

cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

Note:

be used.

1

1 (2 if branch taken)

002000 HERE:
002002 NO_OA:
002004
002006
002008
00200A

00200C

BYPASS:

00200E

PC
SR

Before
Instruction

00 2000

8800

(OA, OAB=1)

BRA OA, BYPASS

GOTO THERE

PC
SR

The assembler will convert the specified label into the offset to

; If OA, branch to BYPASS
; Otherwise... continue

After
Instruction

00 200C

8800 |(OA, OAB=1)

DS70030F-page 5-48

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA OB

Branch if Overflow Accumulator B

Syntax: {label:} BRA OB, Expr
Operands: Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].
Operation: Condition = OB
If (Condition)
(PC+2) + 2*Slit16 — PC
NOP — Instruction Register
Status Affected: None
Encoding: ‘ 0000 ‘ 1101 nnnn nnnn nnnn nnnn
Description: If the Overflow Accumulator B flag is ‘1’, then the program will branch rel-
ative to the next PC. The offset of the branch is the 2’s complement num-
ber 2*Slit16’, which supports branches up to 32K instructions forward or
backward. The Slit16 value is resolved by the linker from the supplied
label, absolute address or expression.
If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.
The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).
Words: 1
Cycles: 1 (2 if branch taken)
Example 1 002000 HERE: BRA OB, BYPASS ; If OB, branch to BYPASS
002002 NO_OB: ... ; Otherwise... continue
002004
002006
002008 R
00200A GOTO THERE
00200C BYPASS:
00200E
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
SR 8800 [(OA, OAB=1) SR 8800 |(OA, OAB=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-49

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

BRA OV

Branch if Overflow

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

{label:}

BRA

ov,

Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].

Condition = OV
If (Condition)

(PC+2) + 2*Slit16 — PC
NOP — Instruction Register

None

‘ 0011 ‘

0000

nnnn

nnnn nnnn

‘ nnnn |

If the Overflow flag is ‘1’, then the program will branch relative to the next
PC. The offset of the branch is the 2’s complement number 2*Slit16’,
which supports branches up to 32K instructions forward or backward. The
Slit16 value is resolved by the linker from the supplied label, absolute
address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction then
becomes a two-cycle instruction, with a NOP executed in the second cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

1

1 (2 if branch taken)

002000 HERE:
002002 NO_OV
002004
002006
002008
00200A

00200C

BYPASS:

00200E

PC
SR

Before
Instruction

00 2000

0002

(2=1)

BRA OV, BYPASS

GOTO THERE

PC
SR

; If OV, branch to BYPASS
; Otherwise... continue

After
Instruction

00 2002

0002

DS70030F-page 5-50

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA SA

Branch if Saturation Accumulator A

Syntax:

Operands:

Operation:

{label:} BRA SA, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].

Condition = SA

If (Condition)
(PC+2) + 2*Slit16 — PC
NOP — Instruction Register

Status Affected: None
Encoding: | oooo | 1110 nnnn nnnn nnnn nnnn
Description: If the Saturation Accumulator A flag is ‘1, then the program will branch
relative to the next PC. The offset of the branch is the 2’s complement
number ‘2*Slit16’, which supports branches up to 32K instructions forward
or backward. The Slit16 value is resolved by the linker from the supplied
label, absolute address or expression.
If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.
The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).
Words: 1
Cycles: 1 (2 if branch taken)
Example 1 002000 HERE: BRA SA, BYPASS ; If SA, branch to BYPASS
002002 NO_SA: R ; Otherwise... continue
002004
002006
002008 ..
00200A GOTO THERE
00200C BYPASS:
00200E
Before After
Instruction Instruction
PC| 00 2000 PC| 00 200cC
SR 2400 |(SA, SAB=1) SR 2400 |(SA, SAB=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-51

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

BRA SB

Branch if Saturation Accumulator B

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1

{label:} BRA SB, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].
Condition = SB
if (Condition)

(PC+2) + 2*Slit16— PC

NOP — Instruction Register

None

‘ 0000 ‘ 1111 nnnn nnnn nnnn nnnn

If the Saturation Accumulator B flag is ‘1, then the program will branch
relative to the next PC. The offset of the branch is the 2’s complement
number ‘2*Slit16’, which supports branches up to 32K instructions forward
or backward. The Slit16 value is resolved by the linker from the supplied
label, absolute address or expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since
the PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

1
1 (2 if branch taken)

002000 HERE: BRA SB, BYPASS ; If SB, branch to BYPASS
002002 NO_SB: ... ; Otherwise... continue
002004
002006
002008 ..
00200A GOTO THERE
00200C BYPASS:
00200E
Before After

Instruction Instruction
PC 00 2000 PC 00 2002
SR 0000 SR 0000

DS70030F-page 5-52

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BRA Z

Branch if Zero

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

{label:} BRA Z, Expr

Expr may be a label, absolute address or expression.
Expr is resolved by the linker to a Slit16, where
Slit16 € [-32768 ... +32767].
Condition=Z
if (Condition)

(PC+2) + 2*Slit16 — PC

NOP — Instruction Register
None

0011 | 0010 nnnn nnnn nnnn nnnn

002
002
002
002
002
002
002
002

PC
SR

If the Zero flag is ‘1’, then the program will branch relative to the next PC.
The offset of the branch is the 2’s complement number ‘2*Slit16’, which
supports branches up to 32K instructions forward or backward. The Slit16
value is resolved by the linker from the supplied label, absolute address or
expression.

If the branch is taken, the new address will be (PC+2) + 2*Slit16, since the
PC will have incremented to fetch the next instruction. The instruction
then becomes a two-cycle instruction, with a NOP executed in the second
cycle.

The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+2).

1
1 (2 if branch taken)

If z,
Otherwise. ..

branch to BYPASS
continue

000 HERE: BRA Z, BYPASS ;
002 NO_Z: R ;
004
006
008
00A
00C
00E

GOTO THERE
BYPASS:

After
Instruction

00 200C
0002

Before
Instruction

00 2000
0002

PC
SR

(Z=1) (Z=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-53

- R
oS
0w »n
(T
55
=9
=)
=

Fre -

dsPIC30F Programmer’s Reference Manual

BSET

Bit Set f
Syntax: {label:} BSET{.B} f, #bit4
Operands: fe [0 ... 8191] for byte operation
fe [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation
Operation: 1 — f<bit4>
Status Affected: None
Encoding: | 1010 | 1000 | bbbf | ffff | £fEE | £ffb
Description: Set the bit in the file register f specified by ‘bit4’. Bit numbering begins
with the Least Significant bit (bit 0) and advances to the Most Significant
bit (bit 7 for byte operations, bit 15 for word operations).
The ‘b’ bits select value bit4 of the bit position to be set.
The f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word aligned.
3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.
Words: 1
Cycles: 1
Example 1 BSET.B 0x601, #0x3 ; Set bit 3 in 0x601
Before After
Instruction Instruction
Data 0600 | F234 Data 0600 | FA34
SR| o000 SR| 0000
Example 2 BSET 0x444, #OxF ; Set bit 15 in 0x444
Before After
Instruction Instruction
Data 0444 | 5604 Data 0444 | D604
SR| 0000 SR| 0000

DS70030F-page 5-54

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BSET

Bit Set in Ws

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1

Example 2

BSET{.B} Ws, #bit4
[Ws],

[Ws+4],

[Ws-],

[++Ws],

[--Ws],

{label:}

Ws e [WO ... W15]
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation

1 — Ws<bit4>

None

1010 | o000 | bbbb | oBoo | oppp | ssss |

BSET.B W3,

W3
SR

BSET

w4

Data 6700

SR

Set the bit in register Ws specified by ‘bit4’. Bit numbering begins with the
Least Significant bit (bit 0) and advances to the Most Significant bit (bit 7

for byte operations, bit 15 for word operations). Register direct or indirect
addressing may be used for Ws.

The ‘b’ bits select value bit4 of the bit position to be cleared.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source/destination register.

Note 1: The extension .B in the instruction denotes a byte operation

rather than a word operation. You may use a .W extension to

denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the source
register address must be word aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be

between 0 and 7.

#0x7 ; Set bit 7 in W3

After
Instruction

W3| ooas
SR| 0000

Before
Instruction

0026
0000

[Wa++]1, #0x0 ; Set bit 0 in [W4]

; Post-increment W4

After
Instruction

W4 | 6702
Data 6700 1735
SR| 0000

Before
Instruction

6700
1734
0000

© 2005 Microchip Technology Inc.

DS70030F-page 5-55

O
®
(74
0
=
T
=
o
=]
(7

5.
7]
-
=
c
(2]
=
(®)
=)

dsPIC30F Programmer’s Reference Manual

BSW Bit Write in Ws

Syntax: {label:} BSW.C Ws, Wb
BSW.Z [Ws],
[Ws++],
[Ws--],
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
Wb e [WO ... W15]
Operation: For “.C” operation:

C — Ws<(Wb)>
For “.Z” operation (default):

Z — Ws<(Wb)>
Status Affected: None
Encoding: | 1010 ‘ 1101 | Zwww | w000 | 0ppp ‘ ssss ‘
Description: The (Wb) bit in register Ws is written with the value of the C or Z flag from

the Status register. Bit numbering begins with the Least Significant bit (bit
0) and advances to the Most Significant bit (bit 15) of the working register.
Only the four Least Significant bits of Wb are used to determine the desti-
nation bit number. Register direct addressing must be used for Wb, and
either register direct, or indirect addressing may be used for Ws.

The ‘Z’ bit selects the C or Z flag as source.

The ‘W’ bits select the address of the bit select register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: This instruction only operates in Word mode. If no extension is
provided, the “. z” operation is assumed.

Words: 1
Cycles: 1
Example 1 BSW.C W2, W3 ; Set bit W3 in W2 to the value
; of the C bit
Before After
Instruction Instruction
W2| F234 W2 | 7234
W3| 111F W3| 111F

SR| 0002 (Z=1, C=0) SR| 0002 | (Z=1, C=0)

Exanmﬂez BSW.Z W2, W3 ; Set bit W3 in W2 to the complement
; of the 7 bit

Before After
Instruction Instruction
W2| E235 W2| E234
W3| 0550 W3| 0550

SR| 0002|(z=1,C=0) SR| o0002](z=1, C=0)

DS70030F-page 5-56 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 3 BSW.C [++WO0], We ; Set bit W6 in [WO++] to the value
; of the C bit

Before After
Instruction Instruction
WO| 1000 WO| 1002
W6 | 34A3 W6 | 34A3
Data 1002 | 2380 Data 1002 | 2388
SR| 0001 |(Z=0, C=1) SR| 0001 |(Z=0, C=1)

Example 4 BSW [Wi--1, W5 ; Set bit W5 in [W1l] to the
; complement of the Z bit
; Post-decrement W1

Before After
Instruction Instruction
Wi1 1000 W1 | OFFE
W5 888B W5 888B
Data 1000| c4DD Data 1000| ccDD
SR| 0001]|(C=1) SR| 0001]|(C=1)

- R
oS
0w o
(T
55
=9
=)
=

prd -

© 2005 Microchip Technology Inc. DS70030F-page 5-57

dsPIC30F Programmer’s Reference Manual

BTG

Bit Toggle f

| ££fb ‘

Syntax: {label:} BTG{.B} f, #bit4

Operands: fe [0 ... 8191] for byte operation
fe [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation

Operation: (f)<bitd> — (f)<bitd>

Status Affected: None

Encoding: | 1010 | 1010 | bbbf | fref | ffff

Description: Bit ‘bit4’ in file register f is toggled (complemented). For the bit4 operand,
bit numbering begins with the Least Significant bit (bit 0) and advances to
the Most Significant bit (bit 7 for byte operation, bit 15 for word operation)
of the byte.
The ‘b’ bits select value bit4, the bit position to toggle.
The f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word aligned.
3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.
Words: 1
Cycles: 1
Example 1 BTG.B 0x1001, #0x4 ; Toggle bit 4 in 0x1001
Before After
Instruction Instruction
Data 1000| F234 Data 1000 | E234
SR| o000 SR| o000
Example 2 BTG 0x1660, #0x8 ; Toggle bit 8 in RAM660
Before After
Instruction Instruction
Data 1660| 5606 Data 1660| 5706
SR| 0000 SR| 0000

DS70030F-page 5-58

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTG

Bit Toggle in Ws

Syntax: {label:} BTG{.B} Ws, #bit4
[Ws],
[Ws+4+],
[Ws--],
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation
Operation: (Ws)<bit4> — Ws<bitd>
Status Affected: None
Encoding: ‘ 1010 ‘ 0010 ‘ bbbb ‘ 0B0O ‘ Oppp ‘ ssss
Description: Bit ‘bit4’ in register Ws is toggled (complemented). For the bit4 operand,
bit numbering begins with the Least Significant bit (bit 0) and advances to
the Most Significant bit (bit 7 for byte operations, bit 15 for word
operations). Register direct or indirect addressing may be used for Ws.
The ‘b’ bits select value bit4, the bit position to test.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘s’ bits select the address of the source/destination register.
The ‘p’ bits select the source Address mode.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .wW extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the source
register address must be word aligned.
3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.
Words: 1
Cycles: 1
Example 1 BTG W2, #0x0 ; Toggle bit 0 in W2
Before After
Instruction Instruction
W2| F234 W2| F235
SR| 0000 SR| 0000
Example 2 BTG [WO++], #0x0 ; Toggle bit 0 in [WO]
; Post-increment WO
Before After
Instruction Instruction
WO | 2300 WO | 2302
Data 2300| 5606 Data 2300| 5607
SR| 0000 SR| o000

© 2005 Microchip Technology Inc.

DS70030F-page 5-59

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

BTSC

Bit Test f, Skip if Clear

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

Data 1200

{label:}

BTSC{.B} f, #bit4

fe [0 ... 8191] for byte operation
fe [0 ... 8190] (even only) for word operation

bitd e [0 ...
bitd e [O ...

7] for byte operation
15] for word operation

Test (f)<bit4>, skip if clear

None

| 1010

‘ 1111 bbbf FEFE ‘ FEEE ‘fffb

Bit ‘bit4’ in the file register is tested. If the tested bit is ‘0’, the next
instruction (fetched during the current instruction execution) is discarded

and on the

next cycle, a NOP is executed instead. If the tested bit is ‘1’,

the next instruction is executed as normal. In either case, the contents of
the file register are not changed. For the bit4 operand, bit numbering
begins with the Least Significant bit (bit 0) and advances to the Most
Significant bit (bit 7 for byte operations, bit 15 for word operations).

The ‘b’ bits

select value bit4, the bit position to test.

The ‘f bits select the address of the file register.

Note 1:

2:

3:

1
1(2o0r3)

002000 HERE:
002002
002004
002006

The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

When this instruction operates in Word mode, the file register
address must be word aligned.

When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

BTSC.B
GOTO

0x1201, #2 ;
BYPASS ;

If bit 2 of 0x1201 is O,
skip the GOTO

002008 BYPASS:

00200A

Before
Instruction

After
Instruction

PC 00 2000

PC 00 2002

264F

Data 1200 264F

SR 0000

SR 0000

DS70030F-page 5-60

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example

2 002000 HERE:
002002
002004
002006

002008 BYPASS:

00200A

Before
Instruction

PC 00 2000

Data 0804 2647

SR 0000

BTSC 0x804, #14 ; If bit 14 of 0x804 is O,
GOTO BYPASS ; skip the GOTO
After
Instruction
PC| 00 2004
Data 0804 2647
SR 0000

© 2005 Microchip Technology Inc.

DS70030F-page 5-61

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

BTSC

Bit Test Ws, Skip if Clear

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

{label:} BTSC Ws, #bit4
[Ws],
[Ws++],
[Ws--],
[++Ws],
[--Ws],
Ws e [WO ... W15]
bit4 € [0 ... 15]
Test (Ws)<bit4>, skip if clear
None
| 1010 ‘ 0111 bbbb ‘ 0000 | Oppp ‘ Ssss ‘

Bit ‘bit4d’ in Ws is tested. If the tested bit is ‘0’, the next instruction (fetched
during the current instruction execution) is discarded and on the next
cycle, a NOP is executed instead. If the tested bit is ‘1’, the next instruction
is executed as normal. In either case, the contents of Ws are not
changed. For the bit4 operand, bit numbering begins with the Least
Significant bit (bit 0) and advances to the Most Significant bit (bit 15) of
the word. Either register direct or indirect addressing may be used for Ws.

The ‘b’ bits select value bit4, the bit position to test.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note:
1
1 (2 or 3 if the next instruction is skipped)

This instruction operates in Word mode only.

002000 HERE: BTSC WO, #0x0 ; If bit 0 of WO is O,
002002 GOTO BYPASS ; skip the GOTO
002004
002006
002008 BYPASS:
00200A
Before After

Instruction Instruction
PC| 00 2000 PC| 00 2002
WO 264F WO0 264F
SR 0000 SR 0000

DS70030F-page 5-62

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2 002000 HERE:

002002
002004
002006
002008 BYPASS:
00200A

Before
Instruction

PC 00 2000

W6 264F

SR 0000

Example 3 003400 HERE:

003402
003404
003406
003408 BYPASS:
00340A
Before
Instruction
PC 00 3400
wWe 1800
Data 1800 1000
SR 0000

BTSC
GOTO

BTSC
GOTO

W6, #OXF ; If bit 15 of wWe is 0,
BYPASS ; skip the GOTO
After
Instruction
PC 00 2004
W6 264F
SR 0000
[(We++], #0xC ; If bit 12 of [We6] is O,
BYPASS ; skip the GOTO
; Post-increment W6
After
Instruction
PC 00 3402
W6 1802
Data 1800 1000
SR 0000

© 2005 Microchip Technology Inc.

DS70030F-page 5-63

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

BTSS

Bit Test f, Skip if Set

Syntax: {label:} BTSS{.B} f, #bit4

Operands: fe [0 ... 8191] for byte operation
fe [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation
bit4 € [0 ... 15] for word operation

Operation: Test (f)<bit4>, skip if set

Status Affected: None

Encoding: ‘ 1010 ‘ 1110 bbbf FEEF | FEFE ‘ FEED

Description: Bit ‘bit4’ in the file register f is tested. If the tested bit is ‘1’, the next
instruction (fetched during the current instruction execution) is discarded
and on the next cycle, a NOP is executed instead. If the tested bit is ‘0’, the
next instruction is executed as normal. In either case, the contents of the
file register are not changed. For the bit4 operand, bit numbering begins
with the Least Significant bit (bit 0) and advances to the Most Significant
bit (bit 7 for byte operation, bit 15 for word operation).
The b’ bits select value bit4, the bit position to test.
The f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word aligned.
3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

Words: 1
Cycles: 1 (2 or 3 if the next instruction is skipped)
Example 1 007100 HERE: BTSS.B 0x1401, #0x1; If bit 1 of 0x1401 is 1,

007102 CLR WREG ; don’t clear WREG

007104

Before After
Instruction Instruction
PC 00 7100 PC 00 7104
Data 1400 0280 Data 1400 0280

SR 0000 SR 0000
Example 2 007100 HERE: BTSS 0x890, #0x9 ; If bit 9 of 0x890 is 1,

007102 GOTO BYPASS ; skip the GOTO

007104

007106 BYPASS:

Before After
Instruction Instruction
PC| 00 7100 PC| 00 7102
Data 0890 00FE Data 0890 00FE
SR 0000 SR 0000

DS70030F-page 5-64

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTSS

Bit Test Ws, Skip if Set

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

{label:} BTSS Ws, #bit4
[Ws],
[Ws++],
[Ws--],
[++Ws],
[--Ws],
Ws e [WO ... W15]
bit4 € [0 ... 15]
Test (Ws)<bit4>, skip if set.
None
‘ 1010 | 0110 bbbb ‘ 0000 | Oppp | Ssss ‘

Bit ‘bit4d’ in Ws is tested. If the tested bit is ‘1, the next instruction (fetched
during the current instruction execution) is discarded and on the next
cycle, a NOP is executed instead. If the tested bit is ‘0’, the next instruction
is executed as normal. In either case, the contents of Ws are not
changed. For the bit4 operand, bit numbering begins with the Least
Significant bit (bit 0) and advances to the Most Significant bit (bit 15) of
the word. Either register direct or indirect addressing may be used for Ws.

The ‘b’ bits select the value bit4, the bit position to test.
The ‘s’ bits select the address of the source register.
The ‘p’ bits select the source Address mode.

Note: This instruction operates in Word mode only.
1

1 (2 or 3 if the next instruction is skipped)

002000 HERE: BTSS WO, #0x0 ; If bit 0 of WO is 1,
002002 GOTO BYPASS ; skip the GOTO
002004
002006
002008 BYPASS:
00200A
Before After

Instruction Instruction
PC| 00 2000 PC| 00 2004
WO0 264F Wo0 264F
SR 0000 SR 0000

© 2005 Microchip Technology Inc.

DS70030F-page 5-65

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

Example 2 002000 HERE:
002002
002004
002006

002008 BYPASS:

00200A

Before
Instruction

PC 00 2000

W6 264F

SR 0000

Example 3 003400 HERE:

003402

003404

003406

003408 BYPASS:

00340A

Before
Instruction

PC 00 3400

W6 1800
Data 1800 1000

SR 0000

BTSS
GOTO

BTSS
GOTO

W6, #OXF ; If bit 15 of Wé is 1,

BYPASS

; skip the GOTO

After
Instruction
PC 00 2002
W6 264F
SR 0000
[We++], O0xC ; If bit 12 of [W6] is 1,
BYPASS ; skip the GOTO
; Post-increment Wé
After
Instruction
PC 00 3404
W6 1802
Data 1800 1000
SR 0000

DS70030F-page 5-66

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTST

Bit Test f

Syntax:

Operands:

Operation:
Status Affected:

{label:} ~ BTST{.B} f, #bitd

fe [0 ... 8191] for byte operation

fe [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation

bit4 € [0 ... 15] for word operation

(f)<bitd> —» Z
z

Encoding: |

1010 ‘ 1011 | bbbf FEEE FEEE ‘ FEfb ‘

Description:

Words:
Cycles:

Example 1

|
Data 1200
SR

Example 2

Data 1302
SR

BTST.B

BTST

Bit ‘bit4’ in file register f is tested and the complement of the tested bit is
stored to the Z flag in the Status Register. The contents of the file register
are not changed. For the bit4 operand, bit numbering begins with the
Least Significant bit (bit 0) and advances to the Most Significant bit (bit 7
for byte operation, bit 15 for word operation).

The ‘b’ bits select value bit4, the bit position to be tested.
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .wW extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

#0x3 ; Set Z = complement of
; bit 3 in 0x1201

0x1201,

Before After
nstruction Instruction
F7FF Data 1200| F7FF

0000 SR| 0002

(2=1)

#0x7 ; Set Z = complement of
; bit 7 in 0x1302

0x1302,

After
Instruction

Data 1302 | F7FF
(Z=1) SR| 0000

Before
Instruction

F7FF
0002

© 2005 Microchip Technology Inc.

DS70030F-page 5-67

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

BTST

Bit Test in Ws

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1

{label:} BTST.C Ws, #bit4
BTST.Z [Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],

Ws e [WO ... W15]
bit4 € [0 ... 15]

For “.C” operation:
(Ws)<bit4d> —» C
For “.Z” operation (default):

(Ws)<bitd> —» Z
ZorC

| 1010 | oo11 bbbb Z000 Oppp ssss

Bit ‘bit4’ in register Ws is tested. If the “. z” option of the instruction is
specified, the complement of the tested bit is stored to the Zero flag in the
Status register. If the “. ¢” option of the instruction is specified, the value of
the tested bit is stored to the Carry flag in the Status register. In either
case, the contents of Ws are not changed.

For the bit4 operand, bit numbering begins with the Least Significant bit
(bit 0) and advances to the Most Significant bit (bit 15) of the word. Either
register direct or indirect addressing may be used for Ws.

The ‘b’ bits select value bit4, the bit position to test.

The ‘Z' bit selects the C or Z flag as destination.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: This instruction only operates in Word mode. If no extension is
provided, the “. z” operation is assumed.

BTST.C [WO++], #0x3 ; Set C = bit 3 in [WO]

; Post-increment WO

Before After

Instruction Instruction

WO

Data 1200

Example 2

SR

1200 WO0| 1202
FFF7 Data 1200| FFF7
0001 |(C=1) SR| 0000

BTST.Z WO, #0x7 ; Set Z = complement of bit 7 in WO

WO
SR

Before After
Instruction Instruction

F234 WO| F234
0000 SR| 0002 (Z=1)

DS70030F-page 5-68

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTST Bit Test in Ws

Syntax: {label:} BTST.C Ws, Wb
BTST.Z [Ws],
[Ws++],
[Ws--],
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
Wb e [WO ... W15]
Operation: For “.C” operation:

(Ws)<(Wb)> —» C
For “.Z” operation (default):
(Ws)<(Wb)> — Z
Status Affected: ZorC

Encoding: ‘ 1010 ‘ 0101 ZWWW w000 Oppp ssss

Description: The (Wb) bit in register Ws is tested. If the “. C” option of the instruction is
specified, the value of the tested bit is stored to the Carry flag in the Status
register. If the “. 2” option of the instruction is specified, the complement of
the tested bit is stored to the Zero flag in the Status register. In either case,
the contents of Ws are not changed.

Only the four Least Significant bits of Wb are used to determine the bit
number. Bit numbering begins with the Least Significant bit (bit 0) and
advances to the Most Significant bit (bit 15) of the working register.
Register direct or indirect addressing may be used for Ws.

The ‘Z' bit selects the C or Z flag as destination.

The ‘W’ bits select the address of the bit select register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: This instruction only operates in Word mode. If no extension is
provided, the “. z” operation is assumed.

Words: 1
Cycles: 1
Example 1 BTST.C W2, W3 ; Set C = bit W3 of W2
Before After
Instruction Instruction
W2| F234 W2| F234
W3| 2368 W3| 2368
SR| 0001](C=1) SR| 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-69

dsPIC30F Programmer’s Reference Manual

Example 2 BTST.Z [WO++],
Before
Instruction
WO| 1200
Wi CCCo
Data 1200| 6243
SR| 0002 (Z=1)

complement of

bit W1 in [WO0],
Post-increment WO

Wl ; Set 2z
After

Instruction
WO | 1202
W1 | ccco
Data 1200 | 6243
SR| 0000

DS70030F-page 5-70

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

BTSTS

Bit Test/Set f

Syntax:

Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1

|
Data 1200
SR

Example 2

RAM300
SR

BTSTS.B

{label:} BTSTS{.B} f, #bitd

fe [0 ... 8191] for byte operation

fe [0 ... 8190] (even only) for word operation
bit4 € [0 ... 7] for byte operation

bit4 € [0 ... 15] for word operation

(f)<bitd> — Z
1 - (f)<bitd>

Z
‘ 1010 ‘ 1100 ‘ bbb f | ‘ ££fb ‘

Bit ‘bit4’ in file register f is tested and the complement of the tested bit is
stored to the Zero flag in the Status register. The tested bit is then set to
“1”in the file register. For the bit4 operand, bit numbering begins with the
Least Significant bit (bit 0) and advances to the Most Significant bit (bit 7
for byte operations, bit 15 for word operations).

ffff ffff

The ‘b’ bits select value bit4, the bit position to test/set.
The ‘f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

2: When this instruction operates in Word mode, the file register
address must be word aligned.

3: When this instruction operates in Byte mode, ‘bit4’ must be
between 0 and 7.

#0x3 ; Set Z = complement of bit 3 in 0x1201,
; then set bit 3 of 0x1201 = 1

0x1201,

After
Instruction

Before
nstruction

F7FF Data 1200| FFFF

0000 SR| 0002|(Z=1)

BTSTS

#15 ; Set Z = complement of bit 15 in 0x808,
; then set bit 15 of 0x808 =1

0x808,

After
Instruction

8050
0000

Before
Instruction

8050
0002

RAM300
(z=1) SR

© 2005 Microchip Technology Inc.

DS70030F-page 5-71

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

BTSTS

Bit Test/Set in Ws

Syntax: {label:} BTSTS.C Ws, #bit4
BTSTS.Z [Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
bit4 € [0 ... 15]
Operation: For “.C” operation:
(Ws)<bit4d> — C
1 — Ws<bit4>
For “.Z” operation (default):
(Ws)<bitd> — Z
1 — Ws<bit4>
Status Affected: ZorC
Encoding: | 1010 | o100 bbbb 7000 Oppp ssss
Description: Bit ‘bit4’ in register Ws is tested. If the “. z” option of the instruction is
specified, the complement of the tested bit is stored to the Zero flag in the
Status register. If the “. C” option of the instruction is specified, the value of
the tested bit is stored to the Carry flag in the Status register. In both
cases, the tested bit in Ws is set to “1”.
The ‘b’ bits select the value bit4, the bit position to test/set.
The ‘Z’ bit selects the C or Z flag as destination.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.
Note: This instruction only operates in Word mode. If no extension is
provided, the “. z” operation is assumed.
Words: 1
Cycles: 1
Example 1 BTSTS.C [WO++], #0x3 ; Set C = bit 3 in [WO]
; Set bit 3 in [WO] = 1
; Post-increment WO
Before After
Instruction Instruction
WO0| 1200 WO0| 1202
Data 1200| FFF7 Data 1200| FFFF
SR| 0001 |(C=1) SR| 0000
Example 2 BTSTS.Z WO, #0x7 ; Set Z = complement of bit 7
; in WO, and set bit 7 in WO = 1
Before After
Instruction Instruction
WO | F234 WO | F2BC
SR| 0000 SR| o0002](Z=1)

DS70030F-page 5-72

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CALL Call Subroutine

Syntax: {label:} CALL Expr
Operands: Expr may be a label or expression (but not a literal).

Expr is resolved by the linker to a lit23, where 1it23 € [0 ... 8388606].
Operation: (PC)+4 — PC

(PC<15:0>) — (TOS)
(W15)+2 - W15
(PC<23:16>) — (TOS)
(W15)+2 - W15

lit23 — PC
NOP — Instruction Register
Status Affected: None
Encoding:
1st word 0000 0010 nnnn nnnn nnnn nnnoO
2nd word 0000 0000 0000 0000 Onnn nnnn
Description: Direct subroutine call over the entire 4 Mbyte instruction program
memory range. Before the call is made, the 24-bit return address
(PC+4) is pushed onto the stack. After the return address is stacked,
the 23-bit value ‘it23’ is loaded into the PC.
The ‘n’ bits form the target address.
Note: The linker will resolve the specified expression into the it23 to
be used.
Words: 2
Cycles: 2
Example 1 026000 CALL _FIR ; Call _FIR subroutine
026004 MOV Wo, Wi
026é44 _FIR: MOV #0x400, W2 ; _FIR subroutine start
026846 -
Before After
Instruction Instruction
PC 02 6000 PC| 02 6844
W15 A268 W15 A26C
Data A268 FFFF Data A268 6004
Data A26A FFFF Data A26A 0002
SR 0000 SR 0000
Example 2 072000 CALL _Gé66 ; call routine _G66
072004 MOV WO, Wi
O77A28 _G66: INC W6, [W7++] ; routine start
077A2A -
077A2C
Before After
Instruction Instruction
PC| 07 2000 PC| 07 7A28 w
W15 9004 W15 9008 I
Data 9004 FFFF Data 9004 2004 (T
Data 9006 FFFF Data 9006 0007 5§
SR 0000 SR 0000 oo
a >

© 2005 Microchip Technology Inc. DS70030F-page 5-73

dsPIC30F Programmer’s Reference Manual

CALL

Call Indirect Subroutine

Syntax: {label:} CALL Wn
Operands: Wn e [WO ... W15]
Operation: (PC)+2 —» PC
(PC<15:0>) - TOS
(W15)+2 - W15
(PC<23:16>) —» TOS
(W15)+2 - W15
0 —» PC<22:16>
(Wn<15:1>) - PC<15:1>
NOP — Instruction Register
Status Affected: None
Encoding: ‘ 0000 ‘ 0001 0000 0000 ‘ 0000 ‘ ssss
Description: Indirect subroutine call over the first 32K instructions of program memory.
Before the call is made, the 24-bit return address (PC+2) is pushed onto
the stack. After the return address is stacked, Wn<15:1> is loaded into
PC<15:1> and PC<22:16> is cleared. Since PC<0> is always ‘0’, Wn<0>
is ignored.
The ‘s’ bits select the address of the source register.
Words: 1
Cycles: 2
Example 1 001002 CALL WO ; Call BOOT subroutine indirectly
001004 ; using WO
OOléOO _BOOT: MOV #0x400, W2 ; _BOOT starts here
001602 MOV #0x300, W6
Before After
Instruction Instruction
PC 00 1002 PC 00 1600
WO 1600 WO 1600
W15 6F00 W15 6F04
Data 6F00 FFFF Data 6F00 1004
Data 6F02 FFFF Data 6F02 0000
SR 0000 SR 0000
Example 2 004200 CALL W7 ; Call TEST subroutine indirectly
004202 c. ; using W7
0055.500 _TEST: INC W1l, W2 ; _TEST starts here
005502 DEC W1, W3 ;
Before After
Instruction Instruction
PC 00 4200 PC 00 5500
W7 5500 W7 5500
W15 6F00 W15 6F04
Data 6F00 FFFF Data 6F00 4202
Data 6F02 FFFF Data 6F02 0000
SR 0000 SR 0000

DS70030F-page 5-74

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CLR Clear f or WREG

Syntax: {label:} CLR{.B} f
WREG
Operands: fe[0..8191]
Operation: 0 — destination designated by D
Status Affected: None
Encoding: 1110 1111 oepf | fref | feff | geef |
Description: Clear the contents of a file register or the default working register WREG.

If WREG is specified, the WREG is cleared. Otherwise, the specified file
register f is cleared.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words: 1
Cycles: 1
Example 1 CLR.B RAM200 ; Clear RAM200 (Byte mode)
Before After
Instruction Instruction
RAM200| 8009 RAM200| 8000
SR| 0000 SR| 0000
Example 2 CLR WREG ; Clear WREG (Word mode)
Before After
Instruction Instruction
WREG| 0600 WREG| 0000
SR| 0000 SR| 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-75

dsPIC30F Programmer’s Reference Manual

C L R Clear Wd

Syntax: {label:} CLR{.B} Wd
(Wd]
[Wd++]
(Wd--]
[++Wd]
[--Wd]
Operands: Wd e [WO ... W15]
Operation: 0—->WwWd
Status Affected: None
Encoding: | 1110 ‘ 1011 ‘ 0Baq ‘ qgddd ‘ dooo ‘ 0000 ‘
Description: Clear the contents of register Wd. Either register direct or indirect

addressing may be used for Wd.

The ‘B’ bits selects byte or word operation (0 for word, 1 for byte).
The ‘g’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 CLR.B W2 ; Clear W2 (Byte mode)
Before After
Instruction Instruction
W2| 3333 W2| 3300
SR| 0000 SR| 0000
Example 2 CLR [WO++] ; Clear [WO]
; Post-increment WO
Before After
Instruction Instruction
WO | 2300 WO | 2302
Data 2300| 5607 Data 2300 0000
SR| 0000 SR| 0000

DS70030F-page 5-76 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CLR Clear Accumulator, Pre-Fetch Operands

Syntax: {label:} CLR Acc {,[Wx],Wxd} {,[Wy],Wyd} {,AWB}
{,[Wx]+=kx,Wxd} {,[Wyl+=ky,Wyd}
{,IWx]-=kx,Wxd} {,[Wy]-=ky,Wyd}
{,]IW9+W12],Wxd} {,[W11+W12],Wyd}

Operands: Acc € [AB]
Wx e [W8, W9]; kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
AWB e [W13, [W13]+=2]

Operation: 0 — Acc(A or B)
([Wx])— Wxd; (Wx)+/-kx—Wx
(WyD)— Wyd; (Wy)+/-ky—>Wy
(Acc(B or A)) rounded - AWB

Status Affected: OA, OB, SA, SB
Encoding: 1100 ‘ 0011 ‘ AOXX yyii iijj | jjaa ‘
Description: Clear all 40 bits of the specified accumulator, optionally pre-fetch

operands in preparation for a MAC type instruction and optionally store
the non-specified accumulator results. This instruction clears the
respective overflow and saturate flags (either OA, SA or OB, SB).

Operands Wx, Wxd, Wy and Wyd specify optional pre-fetch operations
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Pre-Fetches”. Operand AWB specifies the
optional register direct or indirect store of the convergently rounded
contents of the “other” accumulator, as described in Section 4.14.4
“MAC Write Back”.

The ‘A’ bit selects the other accumulator used for write back.
The X’ bits select the pre-fetch Wxd destination.

The 'y’ bits select the pre-fetch Wyd destination.

The ‘I’ bits select the Wx pre-fetch operation.

The 7’ bits select the Wy pre-fetch operation.

The ‘@’ bits select the accumulator write back destination.

Words: 1
Cycles: 1
Example 1 CLR A, [W8]+=2, W4, W13 ; Clear ACCA
; Load W4 with [W8], post-inc W8
; Store ACCB to W13
Before After
Instruction Instruction
w4 F001 w4 1221
w8 2000 w8 2002
W13 C623 W13 5420
ACCA|00 0067 2345 ACCA|00 0000 0000
ACCB|00 5420 3BDD ACCB|00 5420 3BDD
Data 2000 1221 Data 2000 1221
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-77

dsPIC30F Programmer’s Reference Manual

Example 2 CLR

W6

w7

w8

W10

W13
ACCA
ACCB
Data 2000
Data 3000
Data 4000
SR

B, [wW8]+=2,

Before
Instruction

[Wl0]+=2,

FOO1

C783

2000

3000

4000

00 0067

2345

00 5420

ABDD

1221

FF80

FFC3

0000

W6

w7

w8

W10

W13
ACCA
ACCB
Data 2000
Data 3000
Data 4000
SR

W7, [W13]+=2 ;

Clear ACCB

; Load W6 with [W8]

; Load W7 with [W10]
; Save ACCA to [W13]
; Post-inc W8,W10,W13

After
Instruction

1221

FF80

2002

3002

4002

00 0067 2345

00 0000 0O0OO

1221

FF80

0067

0000

DS70030F-page 5-78

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CLRWDT Clear Watchdog Timer

Syntax: {label:} CLRWDT
Operands: None
Operation: 0 — WDT count register

0 — WDT prescaler A count
0 — WDT prescaler B count

Status Affected: None
Encoding: 1111 1110 0110 0000 0000 ‘ 0000 ‘
Description: Clear the contents of the Watchdog Timer count register and the

prescaler count registers. The Watchdog Prescaler A and Prescaler B
settings, set by configuration fuses in the FWDT, are not changed.

Words: 1
Cycles: 1
Example 1 CLRWDT ; Clear Watchdog Timer
Before After
Instruction Instruction

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-79

dsPIC30F Programmer’s Reference Manual

COM Complement f

Syntax: {label:} com{.B} f {,WREG}

Operands: fe[0..8191]

Operation: (fy — destination designated by D

Status Affected: N, Z

Encoding: | 1110 | 1110 1BDf FEEE FEFE FEFE
Description: Compute the 1’s complement of the contents of the file register and place

the result in the destination register. The optional WREG operand
determines the destination register. If WREG is specified, the result is
stored in WREG. If WREG is not specified, the result is stored in the file
register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).

The ‘D’ bit selects the destination (0 for WREG, 1 for file register).

The ‘f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words: 1
Cycles: 1
Example 1 COM.b RAM200 ; COM RAM200 (Byte mode)
Before After
Instruction Instruction
RAM200| 8OFF RAM200| 8000
SR| o000 SR| 0002](2)
Example 2 COM RAM400, WREG ; COM RAM400 and store to WREG
; (Word mode)
Before After
Instruction Instruction
WREG| 1211 WREG| F7DC
RAM400| 0823 RAM400| 0823
SR| 0000 SR| 0008 |(N=1)

DS70030F-page 5-80 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

COM Complement Ws

Syntax: {label:} COM{.B} Ws, Wd
[Ws], [wWd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]
Operands: Ws e [WO ... W15]
Wd e [WO ... W15]
Operation: (Ws) — Wd
Status Affected: N, Z
Encoding: ‘ 1110 ‘ 1010 1Bgq ‘ gddd | dppp ‘ ssss ‘
Description: Compute the 1’s complement of the contents of the source register Ws

and place the result in the destination register Wd. Either register direct or
indirect addressing may be used for both Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example1 COM.B [WO++], [Wl++] ; COM [WO] and store to [W1l] (Byte mode)
; Post-increment WO, W1
Before After
Instruction Instruction
WO 2301 WO 2302
W1 2400 W1 2401
Data 2300 5607 Data 2300 5607
Data 2400 ABCD Data 2400 ABA9
SR 0000 SR 0008 | (N=1)
Example2 coM WO, [Wl++] ; COM WO and store to [W1l] (Word mode)
; Post-increment W1
Before After
Instruction Instruction
WO0| D004 WO| D004 o
Wi1 1000 WA1 1002 8 a
Data 1000| ABA9 Data 1000| 2FFB (T
SR| 0000 SR| 0000 tol g
=
o o0
=2
Fre =

© 2005 Microchip Technology Inc. DS70030F-page 5-81

dsPIC30F Programmer’s Reference Manual

C P Compare f with WREG, Set Status Flags

Syntax: {label:} CP{.B} f

Operands: fe [0..8191]

Operation: (f) — (WREG)

Status Affected: DC,N, 0V, Z,C

Encoding: | 1110 | o011 | omof | ereef | feef | £fff |

Description: Compute (f) — (WREG) and update the Status register. This instruction is
equivalent to the SUBWF instruction, but the result of the subtraction is not
stored.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words: 1
Cycles: 1
Example 1 CP.B RAM400 ; Compare RAM400 with WREG (Byte mode)
Before After
Instruction Instruction
WREG| 8823 WREG| 8823
RAM400| 0823 RAM400| 0823
SR| o000 SR| o0002](Z=1)
Example 2 CP 0x1200 ; Compare (0x1200) with WREG (Word mode)
Before After
Instruction Instruction
WREG| 2377 WREG| 2377
Data 1200 2277 Data 1200 2277
SR| 0000 SR| o0008|(N=1)

DS70030F-page 5-82 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CP

Compare Wb with lit5, Set Status Flags

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

Example 2

{label:} CP{.B} Wb, #lit5
Wb e [WO ... W15]

lit5 € [0 ... 31]

(Wb) — Iit5

DC, N, OV, Z,C

‘ 1110 | 0001 ‘ Owww wBO0O 011k ‘ kkkk ‘

Compute (Wb) — lit5, and update the Status register. This instruction is
equivalent to the SUB instruction, but the result of the subtraction is not
stored. Register direct addressing must be used for Wb.

The ‘W’ bits select the address of the Wb base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

CP.B W4, #0x12

Before
Instruction
W4| 7711
SR| 0000
CcP W4, #0x12
Before
Instruction
w4 7713
SR| 0000

; Compare W4 with 0x12 (Byte mode)

After
Instruction
W4 | 7711
SR| 0008 (N=1)

; Compare W4 with 0x12 (Word mode)

W4
SR

After
Instruction

7713
0000

© 2005 Microchip Technology Inc.

DS70030F-page 5-83

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

CP

Compare Wb with Ws, Set Status Flags

Syntax: {label:} CP{.B} Wb, Ws
[Ws]
[Ws++]
[Ws-]
[++Ws]
[--Ws]
Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Operation: (Wb) — (Ws)
Status Affected: DC,N,QV, zZ,C
Encoding: ‘ 1110 ‘ 0001 ‘ owww wB0O0 Oppp ssss
Description: Compute (Wb) — (Ws), and update the Status register. This instruction is
equivalent to the SUB instruction, but the result of the subtraction is not
stored. Register direct addressing must be used for Wb. Register direct or
indirect addressing may be used for Ws.
The ‘W’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 CP.B WO, [Wl++] ; Compare [W1l] with WO (Byte mode)
; Post-increment W1
Before After
Instruction Instruction
WO0| ABA9 WO| AaBA9
WA1 2000 W1 2001
Data 2000| D004 Data 2000| D004

SR 0000 SR 0008| (N=1)
Example 2 CcP W5, We ; Compare W6 with W5 (Word mode)

Before After

Instruction Instruction
W5| 2334 W5| 2334
W6 | 8001 W6 | 8001
SR| 0000 SR| o0o0o0cC|(N,0V=1)

DS70030F-page 5-84

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPO Compare f with 0x0, Set Status Flags

Syntax: {label:} CPO{.B} f

Operands: fe[0..8191]

Operation: (f)—0x0

Status Affected: DC,N, 0V, Z,C

Encoding: | 1110 | ooto | omof | ffef | ffef | feer |
Description: Compute (f) — 0x0 and update the Status register. The result of the

subtraction is not stored.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The f’ bits select the address of the file register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 CP0.B RAM100 ; Compare RAM100 with 0x0 (Byte mode)
Before After
Instruction Instruction
RAM100| 44cC3 RAM100| 44cC3
SR| 0000 SR| 0008 (N=1)
Example 2 CPO OX1FFE ; Compare (0x1FFE) with 0x0 (Word mode)
Before After
Instruction Instruction
Data 1FFE 0001 Data 1FFE 0001
SR| 0000 SR| 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-85

dsPIC30F Programmer’s Reference Manual

C PO Compare Ws with 0x0, Set Status Flags
Syntax: {label:} CP0{.B} Ws
[Ws]
[Ws++]
(Ws-]
[++Ws]
[--Ws]
Operands: Ws € [WO ... W15]
Operation: (Ws) — 0x0000
Status Affected: DC,N,0V,Z,C
Encoding: | 1110 | o000 | o000 | oBoo | oppp | ssss |
Description: Compute (Ws) — 0x0000 and update the Status register. The result of the
subtraction is not stored. Register direct or indirect addressing may be
used for Ws.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 CP0.B [W4--] ; Compare [W4] with 0 (Byte mode)
; Post-decrement W4
Before After
Instruction Instruction
W4 | 1001 W4 | 1000
Data 1000| 0034 Data 1000| 0034
SR| 0000 SR| 0002](Z=1)
Example 2 CPO [--W5] ; Compare [--W5] with 0 (Word mode)
Before After
Instruction Instruction
W5| 2400 W5| 23FE
Data 23FE 9000 Data 23FE 9000
SR| 0000 SR| o0008|(N=1)

DS70030F-page 5-86 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPB

Compare f with WREG using Borrow, Set Status Flags

Syntax: {label:} CPB{.B} f

Operands: fe [0..8191]

Operation: (f) - (WREG) — (C)

Status Affected: DC,N,0V,Z C

Encoding: | 1110 | o011 | amor | frrf FEEE FEEE

Description: Compute (f) - (WREG) — (6), and update the Status register. This
instruction is equivalent to the SUBB instruction, but the result of the
subtraction is not stored.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
3: The Zflagis “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.
Words: 1
Cycles: 1
Example 1 CPB.B RAM400 ; Compare RAM400 with WREG using C (Byte mode)
Before After
Instruction Instruction
WREG| 8823 WREG| 8823
RAM400| 0823 RAM400(0823
SR| o000 SR| o0008|(N=1)
Example 2 CPB 0x1200 ; Compare (0x1200) with WREG using C (Word mode)
Before After
Instruction Instruction
WREG| 2377 WREG| 2377
Data 1200| 2377 Data 1200| 2377
SR| 0001 |(C=1) SR| 0001 |(C=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-87

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

CPB

Compare Wb with lit5 using Borrow, Set Status Flags

Syntax: {label:} CPB{.B} Wb, #1it5
Operands: Wb e [WO ... W15]
it € [0 ... 31]
Operation: (Wb) — lit5 — (C)
Status Affected: DC,N, 0V, Z, C
Encoding: ‘ 1110 | 0001 ‘ lwww wB00 0lik kkkk
Description: Compute (Wb) — lit5 — (6), and update the Status register. This instruction
is equivalent to the SUBB instruction, but the result of the subtraction is not
stored. Register direct addressing must be used for Wb.
The ‘W’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘K’ bits provide the literal operand, a five bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.
Words: 1
Cycles: 1
Example 1 CPB.B W4, #0x12 ; Compare W4 with 0x12 using C (Byte mode)
Before After
Instruction Instruction
W4| 7711 W4| 7711
SR| 0001 |(C=1) SR| o0008]|(N=1)
Example 2 CPB.B W4, #0x12 ; Compare W4 with 0x12 using C (Byte mode)
Before After
Instruction Instruction
W4| 7711 W4| 7711
SR| 0000 SR| o0008|(N=1)
Example 3 CPB W12, #Ox1F ; Compare W12 with 0x1F using C (Word mode)
Before After
Instruction Instruction
W12| 0020 W12| 0020
SR| 0002|(Z=1) SR| 0003 |(Z, C=1)
Example 4 CPB W12, #O0x1F ; Compare W12 with O0x1F using C (Word mode)
Before After
Instruction Instruction
W12| 0020 W12| 0020
SR| 0003 |(Z, C=1) SR| 0001]|(C=1)

DS70030F-page 5-88

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPB

Compare Ws with Wb using Borrow, Set Status Flags

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1

CPB.B WO,

{label:} CPB{.B} Wb, Ws
[Ws]
[Ws++]
[Ws--]
[++Ws]

[--Ws]

Wb € [WO ... W15]
Ws e [WO ... W15]

(Wb) — (Ws) - (C)
DC,N,QV, Z,C
‘ 1110 ‘

0001 ‘ lwww ‘ wBO0O Oppp ssss

Compute (Wb) — (Ws) — (6), and update the Status register. This instruction
is equivalent to the SUBB instruction, but the result of the subtraction is not
stored. Register direct addressing must be used for Wb. Register direct or
indirect addressing may be used for Ws.

The ‘W’ bits select the address of the Wb source register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the Ws source register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR. These
instructions can only clear Z.

[Wl++] ; Compare [W1l] with WO using C (Byte mode)
; Post-increment W1

After
Instruction

Before
Instruction

WO
Wi1
Data 1000
SR

Example 2

ABAY

WO

1000

WA+

DOAS

Data 1000

0002

(Z=1) SR

CPB.B WO,

[Wi++] ;

ABAY

1001

DOAS

0008

Compare

[W1]

(N=1)

with WO using C (Byte mode)

; Post-increment W1

Before
Instruction

After
Instruction

WO
WA1
Data 1000
SR

ABAY

1000

DOAS

0001

WO

WA+

Data 1000

(C=1) SR

ABAY

1001

DOAS

0001

© 2005 Microchip Technology Inc.

DS70030F-page 5-89

- R
oS
0w »n
(T
55
=9
=)
-

Fre -

dsPIC30F Programmer’s Reference Manual

Example 3 CPB W4, W5 ; Compare W5 with W4 using C (Word mode)
Before After
Instruction Instruction
W4 | 4000 W4 | 4000
W5| 3000 W5| 3000
SR| 0001|(C=1) SR| o0001]|(C=1)

DS70030F-page 5-90 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPSEQ Compare Wb with Wn, Skip if Equal (Wb = Wn)
Syntax: {label:} CPSEQ{.B} Whb, Wn
Operands: Wb e [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)

Skip if (Wb) = (Wn)
Status Affected: None
Encoding: ‘ 1110 ‘ 0111 ‘ lwww wB00 | 0000 | ssss ‘

Description: Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the
next instruction (fetched during the current instruction execution) is
discarded and on the next cycle, a NOP is executed instead. If (Wb) =
(Wn), the next instruction is executed as normal.

The ‘W’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1 (2 or 3 if skip taken)
Example 1 002000 HERE: CPSEQ.B W0, W1 ; If WO = W1 (Byte mode),
002002 GOTO BYPASS ; skip the GOTO
002004
002006 ..
002008 BYPASS:.
00200A
Before After
Instruction Instruction
PC 00 2000 PC 00 2002
WO 1001 WO 1001
W1 1000 W1 1000
SR 0000 SR 0000
Example 2 018000 HERE: CPSEQ W4, W8 ; If W4 = W8 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006
018008
Before After
Instruction Instruction
PC 01 8000 PC 01 8006
w4 3344 w4 3344
ws 3344 ws 3344
SR 0002 |(Z=1) SR 0002 |(Z=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-91

dsPIC30F Programmer’s Reference Manual

CPSGT signed Compare Wb with Wn, Skip if Greater Than (Wb > Wn)

Syntax: {label:} CPSGT{.B} Wb, Wn
Operands: Wb e [WO ... W15]
Wn e [WO ... W15]
Operation: (Wb) — (Wn)
Skip if (Wb) > (Wn)
Status Affected: None
Encoding: ‘ 1110 | 0110 | Owww wB00 | 0000 | ssss
Description: Compare the contents of Wb with the contents of Wn by performing the

subtraction (Wb) — (Wn), but do not store the result. If (Wb) > (Wn), the
next instruction (fetched during the current instruction execution) is
discarded and on the next cycle, a NOP is executed instead. Otherwise,
the next instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘s’ bits select the address of the Ws source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1 (2 or 3 if skip taken)
Example 1 002000 HERE: CPSGT.B W0, Wl1; If WO > W1 (Byte mode),

002002 GOTO BYPASS; skip the GOTO

002006

002008 .

00200A BYPASS .

00200C

Before After
Instruction Instruction

PC 00 2000 PC 00 2006

WO 00FF WO 00FF

W1 26FE W1 26FE

SR 0009 |(N, C=1) SR 0009 |(N, C=1)
Example 2 018000 HERE: CPSGT W4, W5 ; If W4 > W5 (Word mode),

018002 CALL _FIR ; skip the subroutine call

018006

018008

Before After
Instruction Instruction

PC 01 8000 PC 01 8002

w4 2600 w4 2600

W5 2600 W5 2600

SR 0004 |(OV=1) SR 0004 [(OV=1)

DS70030F-page 5-92 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

CPSLT

Signed Compare Wb with Wn, Skip if Less Than (Wb < Wn)

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1

Example 2

{label} CPSLT{B} Wb, Wn
Wb e [WO ... W15]

Wn e [WO ... W15]

(Wb) — (Wn)

Skip if (Wb) < (Wn)

None

‘ 1110 | 0110 ‘ Twww WwB00 | 0000 ‘ ssss ‘

Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) — (Wn), but do not store the result. If (Wb) < (Wn), the
next instruction (fetched during the current instruction execution) is
discarded and on the next cycle, a NOP is executed instead. Otherwise, the
next instruction is executed as normal.

The ‘W’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘s’ bits select the address of the Ws source register.

The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .wW extension to
denote a word operation, but it is not required.

Note:

1
1 (2 or 3 if skip taken)

002000 HERE: CPSLT.B W8, W9 ; If W8 < W9 (Byte mode),
002002 GOTO BYPASS ; skip the GOTO
002006
002008
00200A BYPASS:
00200C
Before After
Instruction Instruction

PC 00 2000 PC 00 2002
w8 00FF w8 00FF
W9 26FE W9 26FE

SR 0008 [(N=1) SR 0008 |(N=1)

018000 HERE: CPSLT W3, We ; If W3 < W6 (Word mode),
018002 CALL _FIR ; skip the subroutine call
018006

018008

Before After
Instruction Instruction

PC 01 8000 PC 01 8006

W3 2600 W3 2600

W6 3000 W6 3000

SR 0000 SR 0000

© 2005 Microchip Technology Inc.

DS70030F-page 5-93

O
®
(74
0
=
T
=
o
=]
(7

5
7]
-
=
c
(2]
=
(®)
=)

dsPIC30F Programmer’s Reference Manual

CPSNE

Signed Compare Wb with Wn, Skip if Not Equal (Wb = Wn)

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

Example 2

{label} CPSNE{B} Wb, Wn

Wb € [WO ... W15]

Wn e [WO ... W15]

(Wb) — (Wn)

Skip if (Wb) = (Wn)

None

‘ 1110 ‘ 0111 ‘ OwWww wB00 ‘ 0000 | ssss

Compare the contents of Wb with the contents of Wn by performing the
subtraction (Wb) — (Wn), but do not store the result. If (Wb) = (Wn), the next
instruction (fetched during the current instruction execution) is discarded
and on the next cycle, a NOP is executed instead. Otherwise, the next
instruction is executed as normal.

The ‘w’ bits select the address of the Wb source register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘s’ bits select the address of the Ws source register.

Note:

The extension .B in the instruction denotes a byte operation

rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

1
1 (2 or 3 if skip taken)

002000 HERE: CPSNE.B W2, W3
002002 GOTO BYPASS
002006
002008
00200A BYPASS:
00200C
Before

Instruction
PC 00 2000 PC
w2 00FF w2
W3 26FE W3
SR 0001 |(C=1) SR
018000 HERE: CPSNE WO, W8
018002 CALL _FIR
018006
018008

Before

Instruction
PC 01 8000 PC
WO 3000 WO
ws 3000 w8
SR 0000 SR

7

7

7

If W2 != W3 (Byte mode),
skip the GOTO

After
Instruction

00 2006

OOFF

26FE

0001 |(C=1)

If WO W8 (Word mode),
skip the subroutine call

After
Instruction

01 8002

3000

3000

0000

DS70030F-page 5-94

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

DAW.B

Decimal Adjust Wn

Syntax:

Operands:
Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1

Example 2

{label:} DAW.B Wn

Wn e [WO ... W15]
If (Wn<3:0>>9) or (DC =1)
(Wn<3:0>) + 6 > Wn<3:0>

Else
(Wn<3:0>) - Wn<3:0>

If (Wn<7:4>>9)or(C=1)
(Wn<7:4>) + 6 > Wn<7:4>

Else
(Wn<7:4>) - Wn<7:4>
C
‘ 1111 | 1101 0100 0000 0000 ssss

Adjust the Least Significant Byte in Wn to produce a binary coded decimal
(BCD) result. The Most Significant Byte of Wn is not changed, and the
Carry flag is used to indicate any decimal rollover. Register direct
addressing must be used for Wn.

The ‘s’ bits select the address of the source/destination register.

Note 1: This instruction is used to correct the data format after two
packed BCD bytes have been added.
2: This instruction operates in Byte mode only and the .B
extension must be included with the opcode.

DAW.B WO ; Decimal adjust WO
Before After
Instruction Instruction

WO0| 771A WO0| 7720

SR| 0002 |(DC=1) SR| 0002 |(DC=1)

DAW.B W3 ; Decimal adjust W3
Before After
Instruction Instruction
W3| 77aA W3| 7710
SR| 0000 SR| 0001 |(C=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-95

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

D E C Decrement f

Syntax: {label:} DEC{.B} f {,\WREG}

Operands: fe[0..8191]

Operation: (f) — 1 — destination designated by D

Status Affected: DC,N,0V,Z,C

Encoding: | 1110 | 1101 OBDE FEEE FFEE FEEE
Description: Subtract one from the contents of the file register and place the result in the

destination register. The optional WREG operand determines the destina-
tion register. If WREG is specified, the result is stored in WREG. If WREG
is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words: 1
Cycles: 1
Example 1 DEC.B 0x200 ; Decrement (0x200) (Byte mode)
Before After
Instruction Instruction
Data200| 8OFF Data200| 8OFE
SR| 0000 SR| 0009 (N,C=1)
Example 2 DEC RAM400, WREG ; Decrement RAM400 and store to WREG
; (Word mode)
Before After
Instruction Instruction
WREG| 1211 WREG| 0822
RAM400| 0823 RAM400| 0823
SR| 0000 SR| 0000

DS70030F-page 5-96

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

DEC

Decrement Ws

Syntax:

Operands:

Operation:
Status Affected:

{label:}

Ws e [WO ... W15]
Wd e [WO ... W15]

(Ws)—1 — Wd
DC, N, OV, Z,C

DEC{.B}

Ws,
[Ws],
[Ws+4],
[Ws--],
[++Ws],
[--Ws],

Wd
(wd]
[Wd++]
[(Wd--]
[++Wd]
[--Wd]

| 1110 | 1001 I I ssss

0Bgqg | gddd | dppp
Subtract one from the contents of the source register Ws and place the
result in the destination register Wd. Either register direct or indirect
addressing may be used by Ws and Wd.

Encoding:

Description:

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to

denote a word operation, but it is not required.
Words: 1
Cycles: 1

DEC.B [W7++], [W8++] ; DEC [W7] and store to [W8]

; Post-increment W7, W8

Example 1 (Byte mode)

After
Instruction

2302
2401
5607
AB55
0000

Before
Instruction

2301
2400
5607
ABCD
0000

w7
w8
Data 2300
Data 2400
SR

w7
w8
Data 2300
Data 2400
SR

DEC [W6++] ; Decrement W5 and store to [W6] (Word mode)

; Post-increment W6

Example 2 W5,

After
Instruction

D004
2002
D003
0009

Before
Instruction

D004
2000
ABA9
0000

W5
W6
Data 2000
SR

W5
W6
Data 2000
SR

(N, C=1)

- R
oS
0w »n
(T
55
=9
=)
-

Fre -

© 2005 Microchip Technology Inc. DS70030F-page 5-97

dsPIC30F Programmer’s Reference Manual

DEC2

Decrement f by 2

Syntax: {label:} DEC2{.B} f {,WREG}

Operands: fe[0..8191]

Operation: (f) — 2 — destination designated by D

Status Affected: DC,N,0V, Z C

Encoding: | 1110 | 1101 | 1BDf FEEF FEEF FEEF

Description: Subtract two from the contents of the file register and place the result in the
destination register. The optional WREG operand determines the destina-
tion register. If WREG is specified, the result is stored in WREG. If WREG
is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).

The ‘D’ bit selects the destination (0 for WREG, 1 for file register).

The ‘f bits select the address of the file register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 DEC2.B 0x200 ; Decrement (0x200) by 2 (Byte mode)
Before After
Instruction Instruction
Data200| 80FF Data200| 80FD
SR| 0000 SR| 0009|(N, C=1)
Example 2 DEC2 RAM400, WREG ; Decrement RAM400 by 2 and
; store to WREG (Word mode)
Before After
Instruction Instruction
WREG| 1211 WREG| 0821
RAM400| 0823 RAM400| 0823
SR| o000 SR| 0000

DS70030F-page 5-98

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

DECZ Decrement Ws by 2

Syntax: {label:} DEC2{.B} Ws, wd
[Ws], [wd]
[Ws+4], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]
Operands: Ws e [WO ... W15]
Wd e [WO ... W15]
Operation: (Ws)-2 ->Wd
Status Affected: DC,N,0V,Z, C
Encoding: ‘ 1110 ‘ 1001 1Bag ‘ gddd ‘ dppp ‘ ssss ‘
Description: Subtract two from the contents of the source register Ws and place the

result in the destination register Wd. Either register direct or indirect
addressing may be used by Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 DEC2.B [W7--]1, [W8--]; DEC [W7] by 2, store to [W8] (Byte mode)
; Post-decrement W7, W8
Before After
Instruction Instruction
W7| 2301 W7| 2300
W8| 2400 W8 | 23FF
Data 2300| 0107 Data 2300| 0107
Data 2400| ABCD Data 2400| ABFF
SR| 0000 SR| 0008 |(N=1)
Example 2 DEC2 W5, [W6++] ; DEC W5 by 2, store to [W6] (Word mode)
; Post-increment W6
Before After
Instruction Instruction
W5| Doo04 W5| Doo4
W6 | 1000 W6| 1002
Data 1000| ABA9 Data 1000| D002
SR| 0000 SR| 0009 (N, C=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-99

dsPIC30F Programmer’s Reference Manual

DISI

Disable Interrupts Temporarily

Syntax: {label:} DISI #lit14

Operands: lit14 € [0 ... 16383]

Operation: lit14 — DISICNT
1 — DISI
Disable interrupts for (lit14+1) cycles

Status Affected: None

Encoding: 12210 | 1100 | ookk | kkkk | kkkk | ik |

Description: Disable interrupts of priority O through priority 6 for (lit14+1) instruction
cycles. Priority 0 through priority 6 interrupts are disabled starting in the
cycle that DISI executes, and remain disabled for the next (lit 14) cycles.
The lit14 value is written to the DISICNT register, and the DISI flag
(INTCON2<14>) is set to ‘1’. This instruction can be used before
executing time critical code, to limit the effects of interrupts.

Note: This instruction does not prevent priority 7 interrupts and traps
from running. See the dsPIC30F Family Reference Manual for
details.

Words: 1
Cycles: 1
Example 1 002000 HERE: DISI #100 ; Disable interrupts for 101 cycles
002002 ; next 100 cycles protected by DISI
002004
Before After
Instruction Instruction
PC| 00 2000 PC| 00 2002
DISICNT 0000 DISICNT 0100
INTCON2 0000 INTCON2 4000 | (DISI=1)
SR 0000 SR 0000

DS70030F-page 5-100

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

DIV.S

Signed Integer Divide

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

{label} DIV.S{W} Wm, Wn
DIV.SD Wm, Wn

Wm e [WO ... W15] for word operation
Wm e [W0, W2, W4 ... W14] for double operation
Wn e [W2 ... W15]

For word operation (default):
Wm — WO
If (Wm<i15>=1):
OxFFFF — W1
Else:
0x0 — W1
W1:W0/Wn — W0
Remainder — W1

For double operation (DIV.SD):
Wm+1:Wm — W1:W0
W1:W0/Wn — WO
Remainder — W1

N,OV,Z,C

1101 | 1000 ’ ottt ‘ tvvv vWO0O ‘ ssss ‘

lterative, signed integer divide, where the dividend is stored in Wm (for a
16-bit by 16-bit divide) or Wm+1:Wm (for a 32-bit by 16-bit divide) and the
divisor is stored in Wn. In the default word operation, Wm is first copied to
WO and sign-extended through W1 to perform the operation. In the double
operation, Wm+1:Wm is first copied to W1:WO0. The 16-bit quotient of the
divide operation is stored in WO, and the 16-bit remainder is stored in W1.

This instruction must be executed 18 times using the REPEAT instruction
(with an iteration count of 17) to generate the correct quotient and
remainder. The N flag will be set if the remainder is negative and cleared
otherwise. The OV flag will be set if the divide operation resulted in an
overflow and cleared otherwise. The Z flag will be set if the remainder is 0
and cleared otherwise. The C flag is used to implement the divide
algorithm and its final value should not be used.

The ‘t’ bits select the Most Significant Word of the dividend for the double
operation. These bits are clear for the word operation.

The ‘v’ bits select the Least Significant Word of the dividend.

The ‘W’ bit selects the dividend size (0 for 16-bit, 1 for 32-bit).

The ‘s’ bits select the divisor register.

Note 1: The extension .D in the instruction denotes a double-word
(32-bit) dividend rather than a word dividend. You may usea .w
extension to denote a word operation, but it is not required.

2: Unexpected results will occur if the quotient can not be repre-
sented in 16 bits. When this occurs for the double operation
(DIV.sD), the OV status bit will be set and the quotient and
remainder should not be used. For the word operation
(D1v.Ss), only one type of overflow may occur (0x8000 /
OxFFFF = +32768 or 0x00008000), which allows the OV status
bit to interpret the result.

3: Dividing by zero will initiate an arithmetic error trap during the
first cycle of execution.

4: This instruction is interruptible on each instruction cycle
boundary.

© 2005 Microchip Technology Inc.

DS70030F-page 5-101

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

DIV.S

Signed Integer Divide

Words:
Cycles:

Example 1

Example 2

1

18 (plus 1 for REPEAT execution)

REPEAT #17
DIV.S W3, W4

Before
Instruction
W0| 5555
Wi1 1234
W3| 3000
W4 | 0027
SR| 0000

REPEAT #17
DIV.SD WO, W12

Before
Instruction

WO0| 2500

W1 FF42

W12 2200

SR| 0000

; Execute DIV.S 18 times
; Divide W3 by W4

7

WO
Wi
W3
W4
SR

After
Instruction

013B

0003

3000

0027

0000

Store quotient to W0, remainder to W1

; Execute DIV.SD 18 times

; Divide W1:W0 by W12

; Store quotient to WO, remainder to W1

WO
Wi1
W12
SR

After
Instruction

FA6B

EF00

2200

0008

(N=1)

DS70030F-page 5-102

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

DIV. U Unsigned Integer Divide

Syntax: {label:} DIV.U{W} Wm, Wn
DIV.UD Wm, Wn

Operands: Wm e [WO ... W15] for word operation
Wm e [W0, W2, W4 ... W14] for double operation
Wn e [W2 ... W15]

Operation: For word operation (default):
Wm — W0
0x0 — W1
W1:W0/Wn — WO
Remainder — W1

For double operation (DIV.UD):
Wm+1:Wm — W1:WO0
W1:W0/Wns - WO
Remainder — W1

Status Affected: N, QV, Z,C
Encoding: 1101 1000 ’ 1ttt ‘ tvvv ‘ vIWO0O0 ‘ ssss ‘

Description: lterative, unsigned integer divide, where the dividend is stored in Wm (for
a 16-bit by 16-bit divide), or Wm+1:Wm (for a 32-bit by 16-bit divide) and
the divisor is stored in Wn. In the word operation, Wm is first copied to WO
and W1 is cleared to perform the divide. In the double operation,
Wm+1:Wm is first copied to W1:WO0. The 16-bit quotient of the divide
operation is stored in WO, and the 16-bit remainder is stored in W1.

This instruction must be executed 18 times using the REPEAT instruction
(with an iteration count of 17) to generate the correct quotient and
remainder. The N flag will always be cleared. The OV flag will be set if the
divide operation resulted in an overflow and cleared otherwise. The Z flag
will be set if the remainder is 0 and cleared otherwise. The C flag is used
to implement the divide algorithm and its final value should not be used.

The ‘t’ bits select the Most Significant Word of the dividend for the double
operation. These bits are clear for the word operation.

The ‘v’ bits select the Least Significant Word of the dividend.

The ‘W’ bit selects the dividend size (0 for 16-bit, 1 for 32-bit).

The ‘s’ bits select the divisor register.

Note 1: The extension .D in the instruction denotes a double-word
(32-bit) dividend rather than a word dividend. Youmay usea .w
extension to denote a word operation, but it is not required.

2: Unexpected results will occur if the quotient can not be
represented in 16 bits. This may only occur for the double
operation (DIV.UD). When an overflow occurs, the OV status
bit will be set and the quotient and remainder should not be
used.

3: Dividing by zero will initiate an arithmetic error trap during the
first cycle of execution.

4: This instruction is interruptible on each instruction cycle
boundary.

Words: 1
Cycles: 18 (plus 1 for REPEAT execution)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-103

dsPIC30F Programmer’s Reference Manual

Example 1 REPEAT #17
DIV.U W2,

Before
Instruction

WO0| 5555
W1| 1234
W2| 8000
W4| 0200
SR| 0000

Example 2 REPEAT #17
DIV.UD W10,

Before
Instruction

WO0| 5555
W1 1234
W10| 2500
W11 0042
W12| 2200
SR| 0000

W4

Wiz

; Execute DIV.U 18 times
; Divide W2 by W4
; Store quotient to W0, remainder to W1

WO
Wi1
w2
W4
SR

After
Instruction

0040

0000

8000

0200

0002

(2=1)

; Execute DIV.UD 18 times
; Divide W11l:W10 by W12
; Store quotient to W0, remainder to W1

WO

After
Instruction

01F2

W1

0100

W10

2500

W11

0042

W12

2200

SR

0000

DS70030F-page 5-104

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

DIVF Fractional Divide

Syntax: {label:} DIVF Wm, Wn
Operands: Wm e [WO ... W15]

Wn e [W2 ... W15]
Operation: 0x0 - WO

Wm — W1

W1:W0/Wn — WO
Remainder — W1

Status Affected: N, QV, Z,C
Encoding: 1101 1001 ottt £000 0000 ‘ ssss ‘

Description: lterative, signed fractional 16-bit by 16-bit divide, where the dividend is
stored in Wm and the divisor is stored in Wn. To perform the operation,
WO is first cleared and Wm is copied to W1. The 16-bit quotient of the
divide operation is stored in WO, and the 16-bit remainder is stored in W1.
The sign of the remainder will be the same as the sign of the dividend.

This instruction must be executed 18 times using the REPEAT instruction
(with an iteration count of 17) to generate the correct quotient and
remainder. The N flag will be set if the remainder is negative and cleared
otherwise. The OV flag will be set if the divide operation resulted in an
overflow and cleared otherwise. The Z flag will be set if the remainder is 0
and cleared otherwise. The C flag is used to implement the divide
algorithm and its final value should not be used.

The 1’ bits select the dividend register.
The ‘s’ bits select the divisor register.

Note 1: For the fractional divide to be effective, Wm must be less than
or equal to Wn. If Wm is greater than Wn, unexpected results
will occur because the fractional result will be greater than 1.0.
When this occurs, the OV status bit will be set and the quotient
and remainder should not be used.
2: Dividing by zero will initiate an arithmetic error trap during the
first cycle of execution.
3: This instruction is interruptible on each instruction cycle

boundary.

Words: 1
Cycles: 18 (plus 1 for REPEAT execution)
Example 1 REPEAT #17 ; Execute DIVF 18 times

DIVF W8, W9 ; Divide W8 by W9

; Store quotient to W0, remainder to W1
Before After
Instruction Instruction

WO0| 8000 WO0| 2000

W1| 1234 Wi 0000

W8| 1000 W8| 1000

W9 | 4000 W9 | 4000

SR| 0000 SR| 0002|(Z=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-105

dsPIC30F Programmer’s Reference Manual

Example 2

Example 3

REPEAT #17
DIVF W8, W9

Before
Instruction
WO0| 8000
W1| 1234
W8| 1000
W9| 8000
SR| 0000
REPEAT #17

DIVF WO, Wl

Before
Instruction

WO | 8002
W1 | 8001
SR| 0000

7
7

7

7
i

7

Execute DIVF 18 times
Divide W8 by W9
Store quotient to W0, remainder to W1

WO
Wi
w8
W9
SR

After

Instruction

FO00O0

0000

1000

8000

0002

(2=1)

Execute DIVF 18 times
Divide WO by W1
Store quotient to W0, remainder to W1

WO
Wi1
SR

After

Instruction

7FFE

8002

0008

(N=1)

DS70030F-page 5-106

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

DO Initialize Hardware Loop Literal
Syntax: {label:} DO #lit14, Expr
Operands: lit14 € [0 ... 16383]

Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 € [-32768 ... +32767].

Operation: Push DO shadows (DCOUNT, DOEND, DOSTART)
(lit14) — DCOUNT
(PC)+4 — PC
(PC) —» DOSTART
(PC) + (2*Slit16) —» DOEND
Increment DL<2:0> (CORCON<10:8>)

Status Affected: DA

Encoding: 0000 1000 00kk kkkk kkkk kkkk
0000 0000 nnnn nnnn nnnn nnnn
Description: Initiate a no overhead hardware DO loop, which is executed (lit14+1) times.

The DO loop begins at the address following the Do instruction, and ends at
the address 2*Slit16 instruction words away. The 14-bit count value (lit14)
supports a maximum loop count value of 16384, and the 16-bit offset value
(Slit16) supports offsets of 32K instruction words in both directions.

When this instruction executes, DCOUNT, DOSTART and DOEND are first
pushed into their respective shadow registers, and then updated with the
new DO loop parameters specified by the instruction. The DO level count,
DL<2:0> (CORCON<8:10>), is then incremented. After the DO loop
completes execution, the pushed DCOUNT, DOSTART and DOEND
registers are restored, and DL<2:0> is decremented.

The ‘K’ bits specify the loop count.
The ‘n’ bits are a signed literal that specifies the number of instructions
offset from the PC to the last instruction executed in the loop.

Special Features, Restrictions:
The following features and restrictions apply to the DO instruction.

1. Using aloop count of 0 will result in the loop being executed one time.

2. Using a loop size of -2, -1 or 0 is invalid. Unexpected results may
occur if these offsets are used.

3. The very last two instructions of the DO loop can NOT be:
¢ an instruction which changes program control flow
* a DO or REPEAT instruction

Unexpected results may occur if any of these instructions are used.

Note 1: The DO instruction is interruptible and supports 1 level of
hardware nesting. Nesting up to an additional 5 levels may be
provided in software by the user. See the dsPIC30F Family
Reference Manual for details.

2: The linker will convert the specified expression into the offset to
be used.

Words:
Cycles:

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-107

dsPIC30F Programmer’s Reference Manual

Example 1 002000 LOOP6: DO #5, END6 ; Initiate DO loop (5 reps)
002004 ADD Wl, W2, W3 ; First instruction in loop
002006
002008 ..
00200A END6: SUB W2, W3, W4 ; Last instruction in loop
00200C

Before After

Instruction Instruction

PC 00 2000 PC 00 2004

DCOUNT 0000 DCOUNT 0005

DOSTART FF FFFF DOSTART 00 2004

DOEND FF FFFF DOEND 00 200A

CORCON 0000 CORCON 0100 |(DL=1)

SR 0001 |(C=1) SR 0201 (DA, C=1)

Example 2 01C000 LOOP12: DO #0x160, END12 ; Init DO loop (352 reps)
01C004 DEC W1, W2 ; First instruction in loop
01C006
01C008
01CO00A
o1coocC
01COOE L.
01C010 CALL _FIR88 ; Call the FIR88 subroutine
01C014 END12: NOP ; Last instruction in loop

; (Required NOP filler)
Before After
Instruction Instruction
PC 01 C000 PC 01 C004
DCOUNT 0000 DCOUNT 0160
DOSTART FF FFFF DOSTART 01 C004
DOEND FF FFFF DOEND 01 C014
CORCON 0000 CORCON 0100 |(DL=1)
SR 0008 |(N=1) SR 0208 |(DA, N=1)

DS70030F-page 5-108

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

DO Initialize Hardware Loop Wn
Syntax: {label:} DO Whn, Expr
Operands: Wn e [WO ... W15]

Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 € [-32768 ... +32767].

Operation: Push Shadows (DCOUNT, DOEND, DOSTART)
(Wn) - DCOUNT
(PC)+4 —» PC
(PC) — DOSTART
(PC) + (2*Slit16) — DOEND
Increment DL<2:0> (CORCON<10:8>)

Status Affected: DA

0000 1000 1000 0000 0000 ssss
Encoding: 0000 0000 nnnn nnnn nnnn nnnn
Description: Initiate a no overhead hardware DO loop, which is executed (Wn+1) times.

The DO loop begins at the address following the Do instruction, and ends at
the address 2*Slit16 instruction words away. The lower 14 bits of Wn
support a maximum count value of 16384, and the 16-bit offset value
(Slit16) supports offsets of 32K instruction words in both directions.

When this instruction executes, DCOUNT, DOSTART and DOEND are first
pushed into their respective shadow registers, and then updated with the
new DO loop parameters specified by the instruction. The DO level count,
DL<2:0> (CORCON<8:10>), is then incremented. After the DO loop
completes execution, the pushed DCOUNT, DOSTART and DOEND
registers are restored, and DL<2:0> is decremented.

The ‘s’ bits specify the register Wn that contains the loop count.
The ‘n’ bits are a signed literal that specifies the number of instructions
offset from (PC+4), which is the last instruction executed in the loop.

Special Features, Restrictions:
The following features and restrictions apply to the DO instruction.

1. Using a loop count of O will result in the loop being executed one time.
2. Using an offset of -2, -1 or 0 is invalid. Unexpected results may occur
if these offsets are used.
3. The very last two instructions of the DO loop can NOT be:
e an instruction which changes program control flow
* a DO or REPEAT instruction
Unexpected results may occur if these last instructions are used.

Note 1: The DO instruction is interruptible and supports 1 level of nesting.

Nesting up to an additional 5 levels may be provided in software
by the user. See the dsPIC30F Family Reference Manual for

details.
2: The linker will convert the specified expression into the offset to
be used.
Words:
Cycles:

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-109

dsPIC30F Programmer’s Reference Manual

Example 1

002000 LOOPG6:
002004

002006

002008
00200A
00200C
00200E

002010 ENDG6:

Before

PC

WO
DCOUNT
DOSTART
DOEND
CORCON
SR

Example 2

Instruction

00 2000

0012

0000

FF FFFF

FF FFFF

0000

0000

002000 LOOPA:

002004
002006
002008
00200A
002010 ENDA:

Before
Instruction

PC

W7
DCOUNT
DOSTART
DOEND
CORCON
SR

00 2000

EOOF

0000

FF FFFF

FF FFFF

0000

0000

DO
ADD

REPEAT
SUB
NOP

DO
SWAP

MOV

; Initiate DO loop

(WO reps)

; First instruction in loop

; Last instruction in loop
; (Required NOP filler)

; Initiate DO loop

(DL=1)
(DA=1)

(W7 reps)

; First instruction in loop

; Last instruction in loop

WO, END6
W1, W2, W3
#6
W2, W3, W4
After
Instruction
PC 00 2004
WO 0012
DCOUNT 0012
DOSTART 00 2004
DOEND 00 2010
CORCON 0100
SR 0080
W7, ENDA
WO
W1, [W2++]
After
Instruction
PC 00 2004
w7 EOOF
DCOUNT 200F
DOSTART 00 2004
DOEND 00 2010
CORCON 0100
SR 0080

(DL=1)
(DA=1)

DS70030F-page 5-110

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

ED

Euclidean Distance (No Accumulate)

Syntax: {label:} ED Wm*Wm, Acc, [Wx], [Wy], Wxd

Operands:

Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

[Wx]J+=kx, [Wyl+=ky,
[Wx]-=kx, [Wy]-=ky,
[W9+W12], [W11+W12],

Acc € [A,B]

Wm*Wm e [W4*W4, W5*W5, W6*W6, W7*W7]
Wx e [W8, W9); kx € [-6, -4, -2, 2, 4, 6]

Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]

Wxd e [W4 ... W7]

(Wm)*(Wm) — Acc(A or B)

([Wx]-[Wy])— Wxd

(Wx)+kx—Wx

(Wy)+ky—Wy

OA, OB, OAB, SA, SB, SAB

1111 00mm Alxx 00ii iigj ‘ jjil ‘

Compute the square of Wm, and optionally compute the difference of the
pre-fetch values specified by [Wx] and [Wy]. The results of Wm*Wm are
sign-extended to 40-bits and stored in the specified accumulator. The
results of [Wx] — [Wy] are stored in Wxd, which may be the same as Wm.

Operands Wx, Wxd and Wyd specify the pre-fetch operations which
support indirect and register offset addressing as described in
Section 4.14.1 “MAC Pre-Fetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.

The X’ bits select the pre-fetch difference Wxd destination.
The " bits select the Wx pre-fetch operation.

The j bits select the Wy pre-fetch operation.

1
1

Example 1 ED W4*W4, A, [W8]+=2, [W1l0]-=2, W4; Square W4 to ACCA

W4

w8

W10
ACCA
Data 1100
Data 2300
SR

; [wW8]l-[W10] to W4
; Post-increment W8
; Post-decrement W10

Before After
Instruction Instruction

009A W4 0057

1100 w8 1102

2300 W10 22FE

00 3DOA 0000 ACCA | 00 0000 5CA4

007F Data 1100 007F

0028 Data 2300 0028

0000 SR 0000

© 2005 Microchip Technology Inc.

DS70030F-page 5-111

O
®
(74
0
=
T
=
o
=]
(7

5
7]
-
=
c
(2]
=
(®)
=)

dsPIC30F Programmer’s Reference Manual

[Wol+=2,

Example 2 ED WS5*W5, B,
Before
Instruction

W5 43C2
w9 1200
Wi1A 2500
W12 0008
ACCB | 00 28E3 F14C
Data 1200 6A7C
Data 2508 2B3D
SR 0000

[W11l+W12], W5 ; Square W5 to ACCB
; [W9l-[W1l+W12] to W5
; Post-increment W9
After
Instruction
W5 3F3F
W9 1202
W11 2500
w12 0008
ACCB | 00 11EF 1F04
Data 1200 6A7C
Data 2508 2B3D
SR 0000

DS70030F-page 5-112

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

E DAC Euclidean Distance

Syntax: {label:} EDAC Wm*Wm, Acc, [Wx], [Wy], Wxd
[Wx]+=kx, [Wyl+=ky,
[Wx]-=kx, [Wy]-=ky,
[W9+W12], [W11+W12],

Operands: Acc € [A,B]
Wm*Wm e [W4*W4, W5*W5, W6*W6, W7*W7]
Wx e [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]
Wxd e [W4 ... W7]

Operation: (Acc(A or B)) + (Wm)*(Wm) — Acc(A or B)
([Wx]-[Wy])— Wxd
(Wx)+kx—Wx
(Wy)+ky—Wy
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1111 00mm | Alxx ‘ 00ii iijj ’ jj10 |
Description: Compute the square of Wm, and also the difference of the pre-fetch

values specified by [Wx] and [Wy]. The results of Wm*Wm are
sign-extended to 40-bits and added to the specified accumulator. The
results of [Wx] — [Wy] are stored in Wxd, which may be the same as Wm.

Operands Wx, Wxd and Wyd specify the pre-fetch operations which
support indirect and register offset addressing as described in
Section 4.14.1 “MAC Pre-Fetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.

The X’ bits select the pre-fetch difference Wxd destination.
The ‘" bits select the Wx pre-fetch operation.

The ‘j bits select the Wy pre-fetch operation.

Words: 1
Cycles: 1
Example 1 EDAC W4*W4, A, [W8]+=2, [wl0]-=2, W4 ; Square W4 and
; add to ACCA
; [W8]-[W10] to W4
; Post-increment W8
; Post-decrement W10
Before After
Instruction Instruction
w4 009A w4 0057
w8 1100 w8 1102
W10 2300 W10 22FE
ACCA | 00 3D0OA 3D0OA ACCA | 00 3D0OA 99AE
Data 1100 007F Data 1100 007F
Data 2300 0028 Data 2300 0028
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

Fre -

© 2005 Microchip Technology Inc. DS70030F-page 5-113

dsPIC30F Programmer’s Reference Manual

Example 2 EDAC W5*W5, B, [w9]+=2, [W11l+W12], W5 ; Square W5 and
; add to ACCB
; [W9l-[W11l+W12] to W5
; Post-increment W9

Before After
Instruction Instruction

W5 43C2 W5 3F3F

W9 1200 W9 1202

W11 2500 W11 2500
W12 0008 W12 0008
ACCB | 00 28E3 F14C ACCB | 00 3AD3 1050
Data 1200 6A7C Data 1200 6A7C
Data 2508 2B3D Data 2508 2B3D
SR 0000 SR 0000

DS70030F-page 5-114 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

EXC H Exchange Wns and Wnd

Syntax: {label:} EXCH Wns, Wnd
Operands: Whns € [WO ... W15]
Wnd € [WO ... W15]
Operation: (Wns) < (Wnd)
Status Affected: None
Encoding: 1111 1101 0000 0ddd dooo | ssss ‘
Description: Exchange the word contents of two working registers. Register direct

addressing must be used for Wns and Wnd.

The ‘d’ bits select the address of the first register.
The ‘s’ bits select the address of the second register.

Note: This instruction only executes in Word mode.

Words: 1
Cycles: 1
Example 1 EXCH W1, W9 ; Exchange the contents of W1 and W9
Before After
Instruction Instruction
W1 55FF W1 A3A3
W9 A3A3 W9 55FF
SR 0000 SR 0000
Example 2 EXCH W4, W5 ; Exchange the contents of W4 and W5
Before After
Instruction Instruction
W4 ABCD w4 4321
W5 4321 W5 ABCD
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-115

dsPIC30F Programmer’s Reference Manual

FBCL

Find First Bit Change from Left

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1

{label:} FBCL Ws, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],

Ws e [WO ... W15]
Wnd e [WO ... W15]

Max_Shift = 15

Sign = (Ws) & 0x8000

Temp = (Ws) << 1

Shift=0

While ((Shift < Max_Shift) && ((Temp & 0x8000) == Sign))
Temp = Temp << 1
Shift = Shift + 1

-Shift — (Wnd)

C

1101 1111 0000 0ddd dppp ssss

Find the first occurrence of a one (for a positive value), or zero (for a
negative value), starting from the Most Significant bit after the sign bit of
Ws and working towards the Least Significant bit of the word operand. The
bit number result is sign-extended to 16-bits and placed in Wnd.

The next Most Significant bit after the sign bit is allocated bit number 0 and
the Least Significant bit is allocated bit number -14. This bit ordering
allows for the immediate use of Wd with the SFTAC instruction for scaling
values up. If a bit change is not found, a result of -15 is returned and the C
flag is set. When a bit change is found, the C flag is cleared.

The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: This instruction operates in Word mode only.

FBCL W1, W9 ; Find 1st bit change from left in Wl

Wi1
W9
SR

; and store result to W9

Before After
Instruction Instruction
55FF W1 55FF
FFFF W9 | 0000
0000 SR | 0000

DS70030F-page 5-116

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2 FBCL W1, W9 ; Find 1st bit change from left in W1
; and store result to W9

Before After
Instruction Instruction
WA FFFF W1| FFFF
W9| BBEBB W9| FFrF1
SR| 0000 SR| 0001((C=1)
Example 3 FBCL [Wl++], W9 ; Find 1st bit change from left in [W1]

; and store result to W9
; Post-increment W1

Before After
Instruction Instruction
Wi 2000 W1| 2002
W9 BBBB W9| FFF9
Data 2000 FFOA Data 2000| FFoA
SR 0000 SR| 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-117

dsPIC30F Programmer’s Reference Manual

FF1L

Find First One from Left

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1

{label:} FF1L Ws, Wnd
[Ws],

Ws e [WO ... W15]
Wnd € [WO ... W15]

Max_Shift =17
Temp = (Ws)
Shift =1

While ((Shift < Max_Shift) && !(Temp & 0x8000))
Temp = Temp << 1
Shift = Shift + 1
If (Shift == Max_Shift)
0 — (Wnd)
Else
Shift — (Wnd)

C

1100 1111 1000 0ddad

dppp ‘ ssss ‘

Finds the first occurrence of a ‘1’ starting from the Most Significant bit of
Ws and working towards the Least Significant bit of the word operand.
The bit number result is zero-extended to 16-bits and placed in Wnd.

Bit numbering begins with the Most Significant bit (allocated number 1)
and advances to the Least Significant bit (allocated number 16). A result
of zero indicates a ‘1’ was not found, and the C flag will be set. If a ‘1’ is

found, the C flag is cleared.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: This instruction operates in Word mode only.

FF1L W2, W5 ; Find the 1st one from the left in W2

w2
W5
SR

; and store result to W5

Before After
Instruction Instruction
000A w2 000A
BBBB W5 000D
0000 SR| 0000

DS70030F-page 5-118

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2 FF1L [W2++], W5 ; Find the 1lst one from the left in [W2]
; and store the result to W5
; Post-increment W2

Before After
Instruction Instruction
W2 | 2000 W2 | 2002
W5 | BBBB W5 | 0000
Data 2000 | 0000 Data 2000 | 0000
SR| 0000 SR| 0001 |(C=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-119

dsPIC30F Programmer’s Reference Manual

FF1R

Find First One from Right

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1

{label:} FF1R Ws, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],

Ws e [WO ... W15]
Wnd € [WO ... W15]

Max_Shift = 17
Temp = (Ws)
Shift =1

While ((Shift < Max_Shift) && {(Temp & 0x1))
Temp = Temp >> 1
Shift = Shift + 1
If (Shift == Max_Shift)
0 — (Wnd)
Else
Shift — (Wnd)

C
1100 1111 0000 0ddd dppp ‘ ssss ‘

Finds the first occurrence of a ‘1’ starting from the Least Significant bit of
Ws and working towards the Most Significant bit of the word operand. The
bit number result is zero-extended to 16-bits and placed in Wnd.

Bit numbering begins with the Least Significant bit (allocated number 1)
and advances to the Most Significant bit (allocated number 16). A result of
zero indicates a ‘1’ was not found, and the C flag will be set. Ifa ‘1’ is
found, the C flag is cleared.

The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: This instruction operates in Word mode only.

FFIR W1, W9 ; Find the 1st one from the right in W1
; and store the result to W9

Before After
Instruction Instruction
Wi1 0002 Wi1 000A
W9 | BBBB w9 0002
SR 0000 SR 0000

DS70030F-page 5-120

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2 FFIR [Wl++], W9 ; Find the 1lst one from the right in [W1]
; and store the result to W9
Post-increment Wl

7

Before After
Instruction Instruction
W1 2000 Wi 2002
W9 | BBBB W9 | o010
Data 2000 | 8000 Data 2000 | 8000
SR | 0000 SR| 0000

- R
oS
0w »n
(T
55
=9
=)
=

prd -

© 2005 Microchip Technology Inc. DS70030F-page 5-121

dsPIC30F Programmer’s Reference Manual

GOTO

Unconditional Jump

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
1st word
2nd word

Description:

Words:
Cycles:

Example 1

Example 2

{label:} GOTO Expr

Expr may be label or expression (but not a literal).
Expr is resolved by the linker to a lit23, where 1it23 € [0 ... 8388606].

lit23 —» PC
NOP — Instruction Register

None
0000 0100 nnnn nnnn nnnn nnno
0000 0000 0000 0000 Oonnn nnnn

Unconditional jump to anywhere within the 4M instruction word program
memory range. The PC is loaded with the 23-bit literal specified in the
instruction. Since the PC must always reside on an even address boundary,
lit23<0> is ignored.

The ‘n’ bits form the target address.

Note: The linker will resolve the specified expression into the it23 to be
used.
026000 GOTO _THERE ; Jump to _THERE
026004 MOV WO, W1
027844 _THERE: MOV #0x400, W2 ; Code execution
027846 . ; resumes here
Before After
Instruction Instruction
PC 02 6000 PC 02 7844
SR 0000 SR 0000
000100 _code: ; start of code
026000 GOTO _code+2 ; Jump to _code+2
026004
Before After
Instruction Instruction
PC 02 6000 PC 00 0102
SR 0000 SR 0000

DS70030F-page 5-122

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

GOTO Unconditional Indirect Jump

Syntax: {label:} GOTO Wn
Operands: Wn € [WO ... W15]
Operation: 0 — PC<22:16>
(Wn<15:1>) —» PC<15:1>
0 — PC<0>

NOP — Instruction Register
Status Affected: None
Encoding: ‘ 0000 | 0001 0100 0000 0000 | ssss ‘

Description: Unconditional indirect jump within the first 32K words of program memory.
Zero is loaded into PC<22:16> and the value specified in (Wn) is loaded
into PC<15:1>. Since the PC must always reside on an even address
boundary, Wn<0> is ignored.

The ‘s’ bits select the address of the source register.

Words: 1
Cycles: 2
Example 1 006000 GOTO W4 ; Jump unconditionally
006002 MOV WO, Wl ; to 16-bit value in W4
007844 _THERE: MOV #0x400, W2 ; Code execution
007846 .. ; resumes here
Before After
Instruction Instruction
W4 7844 W4 7844
PC 00 6000 PC 00 7844
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-123

dsPIC30F Programmer’s Reference Manual

INC Increment f

Syntax: {label:} INC{.B} f {,WREG}

Operands: fe[0...8191]

Operation: (f) + 1 — destination designated by D

Status Affected: DC,N,0V,Z,C

Encoding: ‘ 1110 ‘ 1100 0BDf ffff ffff ‘ ffff ‘

Description: Add one to the contents of the file register and place the result in the
destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG. If
WREG is not specified, the result is stored in the file register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
Words: 1
Cycles: 1
Example 1 INC.B 0x1000 ; Increment 0x1000 (Byte mode)
Before After
Instruction Instruction
Data 1000 | 8FFF Data 1000 | 8F00
SR 0000 SR| o101 |(DC, C=1)
Example 2 INC 0x1000, WREG ; Increment 0x1000 and store to WREG
; (Word mode)
Before After
Instruction Instruction
WREG | ABCD WREG | 9000
Data 1000 | 8FFF Data 1000 | 8FFF
SR| o000 SR| o108 | (DC, N=1)

DS70030F-page 5-124

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

INC

Increment Ws

Syntax: {label:} INC{.B} Ws, Wd
[Ws], (wd]
[Ws++], [Wd++]
[Ws-], [(Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]
Operands: Ws e [WO ... W15]
Wd e [WO ... W15]
Operation: (Ws) + 1 —> Wd
Status Affected: DC,N,QV, Z,C
Encoding: 1110 1000 0Bqqg gddd dppp ’ ssss ‘
Description: Add one to the contents of the source register Ws and place the result in
the destination register Wd. Register direct or indirect addressing may be
used for Ws and Wd.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘g’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 INC.B W1, [++W2] ; Pre-increment W2
; Increment W1l and store to W2
; (Byte mode)
Before After
Instruction Instruction
Wi1 FF7F Wi1 FF7F
W2 | 2000 W2 | 2001
Data 2000 | ABCD Data 2000 80CD
SR| o000 SR| o1oc|(DC, N, OV=1)
Example 2 INC W1, W2 ; Increment W1l and store to W2
; (Word mode)
Before After
Instruction Instruction
Wi1 FF7F Wi1 FF7F
W2 | 2000 W2 | FF80
SR 0000 SR| 0108 |(DC, N=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-125

O
®
(74
0
=
T
=
o
=]
(7

5
7]
-
=
c
(2]
=
(®)
=)

dsPIC30F Programmer’s Reference Manual

I N C2 Increment f by 2

Syntax: {label:} INC2{.B} f {,WREG}

Operands: fe[0..8191]

Operation: (f) + 2 — destination designated by D

Status Affected: DC,N, 0V, Z,C

Encoding: 1110 1100 1BDf fEff fEEf ‘ fEff ‘
Description: Add two to the contents of the file register and place the result in the

destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG. If
WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘¥’ bits select the address of the file register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 INC2.B 0x1000 ; Increment 0x1000 by 2
; (Byte mode)
Before After
Instruction Instruction
Data 1000 8FFF Data 1000 8F01
SR 0000 SR| o101 | (DC, C=1)
Example2 INC2 0x1000, WREG ; Increment 0x1000 by 2 and store to WREG
; (Word mode)
Before After
Instruction Instruction
WREG | ABCD WREG 9001
Data 1000 8FFF Data 1000 8FFF
SR| 0000 SR| o108 | (DC, N=1)

DS70030F-page 5-126 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

IN CZ Increment Ws by 2

Syntax: {label:} INC2{.B} Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]
Operands: Ws e [WO ... W15]
Wd e [WO ... W15]
Operation: (Ws) +2 - Wd
Status Affected: DC,N,QV, Z,C
Encoding: 1110 1000 1Bqq gddd dppp ‘ ssss ‘
Description: Add two to the contents of the source register Ws and place the result in the

destination register Wd. Register direct or indirect addressing may be used
for Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .wW extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 INC2.B W1, [++W2] ; Pre-increment W2
; Increment by 2 and store to W1
; (Byte mode)
Before After
Instruction Instruction
W1 FF7F W1 FF7F
w2 2000 w2 2001
Data 2000 ABCD Data 2000 81CD
SR| o000 SR| o1oc|(DC, N, OV=1)
Example2 INC2 W1, W2 ; Increment W1l by 2 and store to W2
; (word mode)
Before After
Instruction Instruction
W1 FF7F W1 FF7F
w2 2000 w2 FF81
SR| 0000 SR| o108 | (DC, N=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-127

dsPIC30F Programmer’s Reference Manual

IOR Inclusive OR f and WREG
{label:} IOR{.B} f {,WREG}
Operands: fe[0...8191]
Operation: (f).IOR.(WREG) — destination designated by D
Status Affected: N, Z
Encoding: ‘ 1011 l 0111 0BDf ffff ffff ‘ ffEf l
Description: Compute the logical inclusive OR operation of the contents of the working

register WREG and the contents of the file register and place the result in
the destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG. If
WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words: 1
Cycles: 1
Example 1 IOR.B 0x1000 ; IOR WREG to (0x1000) (Byte mode)
; (Byte mode)
Before After
Instruction Instruction
WREG 1234 WREG 1234
Data 1000 FF00 Data 1000 FF34
SR 0000 SR 0000
Example 2 IOR 0x1000, WREG ; IOR (0x1000) to WREG
; (Word mode)
Before After
Instruction Instruction
WREG 1234 WREG 1FBF
Data 1000 OFAB Data 1000 0FAB
SR| 0008 |(N=1) SR| 0000

DS70030F-page 5-128 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

IO R Inclusive OR Literal and Wn
Syntax: {label:} IOR{.B} #lit10, Wn
Operands: lit10 € [0 ... 255] for byte operation

lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: lit10.I0R.(Wn) — Wn

Status Affected: N, Z

Encoding: 1011 0011 0Bkk kkkk kkkk ‘ dddd ‘
Description: Compute the logical inclusive OR operation of the 10-bit literal operand

and the contents of the working register Wn and place the result back into
the working register Wn.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .wW extension to
denote a word operation, but it is not required.

2: Forbyte operations, the literal must be specified as an unsigned
value [0:255]. See Section 4.6 “Using 10-bit Literal Oper-
ands” for information on using 10-bit literal operands in Byte

mode.
Words: 1
Cycles: 1
Example 1 IOR.B #O0xAA, W9 ; IOR OxAA to W9
; (Byte mode)
Before After
Instruction Instruction
W9 1234 W9 12BE
SR| o000 SR| 0008 | (N=1)
Example 2 IOR #0x2AA, W4 ; IOR O0x2AA to W4
; (Word mode)
Before After
Instruction Instruction
W4 | A34D W4 A3EF
SR 0000 SR 0008 | (N=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-129

dsPIC30F Programmer’s Reference Manual

IOR

Inclusive OR Wb and Short Literal

Syntax: {label:} IOR{.B} Wb, #lit5, Wd
(wd]
[Wd++]
(Wd--]
[++Wd]
[--Wd]
Operands: Wb e [WO ... W15]
it € [0 ... 31]
Wd e [WO ... W15]
Operation: (Wb).IOR.Iit5 —» Wd
Status Affected: N, Z
Encoding: 0111 owww wBaq gddd diik ‘ kkkk ‘
Description: Compute the logical inclusive OR operation of the contents of the base
register Wb and the 5-bit literal operand and place the result in the
destination register Wd. Register direct addressing must be used for Wb.
Either register direct or indirect addressing may be used for Wd.
The ‘W’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘g’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

Words: 1

Cycles: 1

Exanmﬂe1 IOR.B W1, #0x5, [W9++] ; IOR W1 and 0x5 (Byte mode)
; Store to [W9]
; Post-increment W9

Before After

Instruction Instruction
W1 | AAAA W1 | AAAA
W9 | 2000 W9 | 2001
Data 2000 | 0000 Data 2000 | 00AF
SR| o000 SR | 0008 | (N=1)
Example 2 IOR W1, #0x0, W9 ; IOR Wl with 0x0 (Word mode)
; Store to WO
Before After
Instruction Instruction
Wi1 0000 Wi1 0000
W9 | A34D W9 | o000
SR 0000 SR | 0002 |(Z=1)

DS70030F-page 5-130

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

IOR Inclusive OR Wb and Ws

Syntax: {label:} IOR{.B} Wb, Ws, wd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]

Operands: Wb e [WO ... W15]

Ws e [WO ... W15]
Wd € [WO ... W15]

Operation: (Wb).IOR.(Ws) — Wd
Status Affected: N, Z

Encoding: 0111 Owww wBqq gddd dppp ssss

Description: Compute the logical inclusive OR operation of the contents of the source
register Ws and the contents of the base register Wb and place the result in
the destination register Wd. Register direct addressing must be used for Wb.
Either register direct or indirect addressing may be used for Ws and Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .wW extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 IOR.B W1, [W5++], [W9++] ; IOR W1l and [W5] (Byte mode)
; Store result to [W9]
; Post-increment W5 and W9
Before After
Instruction Instruction
W1 AAAA W1 AAAA
W5 | 2000 W5 | 2001
W9 | 2400 W9 | 2401
Data 2000 1155 Data 2000 1155
Data 2400 0000 Data 2400 00FF
SR| o000 SR | 0008 | (N=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-131

dsPIC30F Programmer’s Reference Manual

Example 2

IOR W1, W5,
Before
Instruction
W1 AAAA
W5 | 5555
W9 | A34D
SR | 0000

7

7

After

Instruction

Wi1
W5
W9
SR

AAAA

5555

FFFF

0008

IOR W1l and W5 (Word mode)
Store the result to W9

(N=1)

DS70030F-page 5-132

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

LAC

Load Accumulator

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1

{label:} LAC Ws, Acc
[Ws],

[Ws++],

[Ws--]

[--Ws],

[++Ws],

[Ws+Wb],

(#Slit4,}

Ws e [WO ... W15]
Wb e [WO ... W15]
Slit4 € [-8 ... +7]
Acc € [A,B]

Shiftg)iis(Extend(Ws)) — Acc(A or B)
OA, OB, OAB, SA, SB, SAB
1010

1100 Awww wWrrr

rggg

Read the contents of the source register, optionally perform a signed 4-bit
shift and store the result in the specified accumulator. The shift range is -8:7,
where a negative operand indicates an arithmetic left shift and a positive
operand indicates an arithmetic right shift. The data stored in the source
register is assumed to be 1.15 fractional data and is automatically
sign-extended (through bit 39) and zero-backfilled (bits [15:0]), prior to
shifting.

‘ SSSS ‘

The ‘A’ bit specifies the destination accumulator.
The ‘W’ bits specify the offset register Wb.

The ‘r’ bits encode the accumulator pre-shift.
The ‘g’ bits select the source Address mode.
The ‘s’ bits specify the source register Ws.

If the operation moves more than sign-extension data into the
upper Accumulator register (AccxU), or causes a saturation, the
appropriate overflow and saturation bits will be set.

Note:

[W4] << 3
do not change

Load ACCB with
Contents of [W4]
Post increment W4

Assume saturation disabled
(SATB = 0)

LAC [W4++], #-3, B

w4

ACCB
Data 2000
SR

Before
Instruction

2000

00 5125 ABCD

1221

0000

W4

ACCB
Data 2000
SR

After
Instruction

2002

FF 9108 0000

1221

4800

(OB, OAB=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-133

O
®
(74
0
=
T
=
o
=]
(7

5
7]
-
=
C
(2]
=
(®)
=

dsPIC30F Programmer’s Reference Manual

Example 2 LAC [--W2], #7, A ; Pre-decrement W2

Load ACCA with [W2] >> 7
Contents of [W2] do not change
Assume saturation disabled

(SATA = 0)
Before After
Instruction Instruction

w2 4002 W2 4000

ACCA | 00 5125 ABCD ACCA | FF FF22 1000
Data 4000 9108 Data 4000 9108
Data 4002 1221 Data 4002 1221
SR 0000 SR 0000

DS70030F-page 5-134 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

LN K Allocate Stack Frame

Syntax: {label:} LNK #lit14
Operands: lit14 € [0 ... 16382]
Operation: (W14) — (TOS)
(W15) + 2 > W15
(W15) —» W14
(W15) + lit14 - W15
Status Affected: None
Encoding: 1111 1010 00kk kkkk kkkk ‘ kkkO0 ‘
Description: This instruction allocates a stack frame of size lit14 bytes for a subroutine

calling sequence. The stack frame is allocated by pushing the contents of
the frame pointer (W14) onto the stack, storing the updated stack pointer
(W15) to the frame pointer and then incrementing the stack pointer by the
unsigned 14-bit literal operand. This instruction supports a maximum
stack frame of 16382 bytes.

The ‘K’ bits specify the size of the stack frame.

Note: Since the stack pointer can only reside on a word boundary,
lit14 must be even.

Words: 1
Cycles: 1
Example 1 LNK #0xA0 ; Allocate a stack frame of 160 bytes
Before After
Instruction Instruction

W14 2000 W14 2002

W15 2000 W15 20A2

Data 2000 0000 Data 2000 2000

SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-135

dsPIC30F Programmer’s Reference Manual

LS R Logical Shift Right f

Syntax: {label:} LSR{.B} f {,WREG}
Operands: fe [0..8191]
Operation: For byte operation:

0 — Dest<7>
(f<7:1>) — Dest<6:0>
(f<0>) - C

For word operation:
0 — Dest<15>
(f<15:1>) — Dest<14:0>
(f<0>) - C

o>__ @

Status Affected: N, Z,C
Encoding: ‘ 1101 | 0101 | 0BDf fEEff ffff ‘ ffff ‘

Description: Shift the contents of the file register one bit to the right and place the result
in the destination register. The Least Significant bit of the file register is
shifted into the Carry bit of the Status register. Zero is shifted into the Most
Significant bit of the destination register.

The optional WREG operand determines the destination register. If WREG
is specified, the result is stored in WREG. If WREG is not specified, the
result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words: 1
Cycles: 1
Example 1 LSR.B 0x600 ; Logically shift right (0x600) by one
; (Byte mode)
Before After
Instruction Instruction
Data 600 55FF Data 600 557F
SR| o000 SR| 0001 | (C=1)
Example 2 LSR 0x600, WREG ; Logically shift right (0x600) by one
; Store to WREG
; (Word mode)
Before After
Instruction Instruction
Data 600 55FF Data 600 55FF
WREG 0000 WREG 2AFF
SR| 0000 SR| 0001 | (C=1)

DS70030F-page 5-136 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

LS R Logical Shift Right Ws
Syntax: {label:} LSR{.B} Ws, Wd
[Ws], [wd]

[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]

Operands: Ws e [WO ... W15]
Wd e [WO ... W15]

Operation: For byte operation:
0 — Wd<7>
(Ws<7:1>) »> Wd<6:0>
(Ws<0>) — C

For word operation:

0 — Wd<15>
(Ws<15:1>) - Wd<14:0>
(Ws<0>) » C

o> |
Status Affected: N, Z C
Encoding: ‘ 1101 ‘ 0001 ‘ 0Bgq gddd dppp | ssss ‘

Description: Shift the contents of the source register Ws one bit to the right and place
the result in the destination register Wd. The Least Significant bit of Ws is
shifted into the Carry bit of the Status register. Zero is shifted into the
Most Significant bit of Wd. Either register direct or indirect addressing
may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 LSR.B WO, Wil ; LSR WO (Byte mode)
; Store result to W1l
Before After
Instruction Instruction
WO FF03 WO FF03
W1 2378 W1 2301
SR 0000 SR| 0001 | (C=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-137

dsPIC30F Programmer’s Reference Manual

Example 2

LSR WO, W1

Before
Instruction

WO

8000

Wi1

2378

SR

0000

; LSR WO

(Word mode)
; Store the result to Wl

After
Instruction

WO

8000

WA1

4000

SR

0000

DS70030F-page 5-138

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

LSR Logical Shift Right by Short Literal
Syntax: {label:} LSR Whb, #lit4, Wnd
Operands: Wb e [WO ... W15]

lit4 € [0 ... 15]

Wnd e [WO ... W15]
Operation: lit4<3:0> — Shift_Val

0 — Wnd<15:15-Shift_Val+1>
Wb<15:Shift_Val> — Wnd<15-Shift_Val:0>

Status Affected: N, Z
Encoding: ‘ 1101 ‘ 1110 owww wddd dioo ‘ kkkk |
Description: Logical shift right the contents of the source register Wb by the 4-bit

unsigned literal and store the result in the destination register Wnd.
Direct addressing must be used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the destination register.
The ‘K’ bits provide the literal operand.

Note: This instruction operates in Word mode only.

Words: 1
Cycles: 1
Example 1 LSR W4, #14, W5 ; LSR W4 by 14
; Store result to W5
Before After
Instruction Instruction
W4 C800 w4 C800
W5 1200 W5 0003
SR 0000 SR 0000
Examp|e2 LSR W4, #1, W5 ; LSR W4 by 1
; Store result to W5
Before After
Instruction Instruction
w4 0505 w4 0505
W5 F000 W5 0282
SR 0000 SR | 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-139

dsPIC30F Programmer’s Reference Manual

LSR Logical Shift Right by Wns
Syntax: {label:} LSR Whb, Whns, Wnd
Operands: Wb € [WO ... W15]

Wns e [WO ...W15]
Wnd € [WO ... W15]

Operation: Wns<4:0> — Shift_Val
0 — Wnd<15:15-Shift_Val+1>
Wb<15:Shift_Val> — Wnd<15-Shift_Val:0>

Status Affected: N, Z
Encoding: 1101 1110 Owww wddd dooo ‘ ssss ‘
Description: Logical shift right the contents of the source register Wb by the 5 Least

Significant bits of Wns (only up to 15 positions) and store the result in the
destination register Wnd. Direct addressing must be used for Wb and
Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the destination register.
The ‘s’ bits select the address of the source register.

Note 1: This instruction operates in Word mode only.
2: If Wns is greater than 15, Wnd will be loaded with 0x0.

Words: 1
Cycles: 1
Example 1 LSR WO, W1, W2 ; LSR WO by W1
; Store result to W2
Before After
Instruction Instruction
WO | coocC WO | cooc
Wi1 0001 Wi 0001
W2 | 2390 w2 6006
SR| 0000 SR| 0000
Example 2 LSR W5, W4, W3 ; LSR W5 by W4
; Store result to W3
Before After
Instruction Instruction
W3 | DD43 W3 0000
w4 ooocC w4 000C
W5 0800 W5 0800
SR 0000 SR | 0002 |(Z=1)

DS70030F-page 5-140 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

MAC Multiply and Accumulate

Syntax: {label:} MAC ~ Wm*Wn, Acc {,[Wx], Wxd} {,[Wy], Wyd} {,AWB}
{,[Wx]+=kx, Wxd} {,[Wy]+=ky, Wyd}
{,]IWx]-=kx, Wxd} {,[Wy]-=ky, Wyd}
{,]IW9+W12], Wxd} {,[W11+W12], Wyd}

Operands: Wm*Wn e [W4*W5, W4*W6, WA*W7, W5*W6, W5*W7, W6*W7]
Acc € [A,B]
Wx e [W8, WOJ; kx e [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy € [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
AWB € [W13, [W13]+=2]

Operation: (Acc(A or B)) + (Wm)*(Wn) — Acc(A or B)
([Wx])— Wxd; (Wx)+kx—Wx
(Wy])— Wyd; (Wy)+ky—Wy
(Acc(B or A)) rounded — AWB

Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: ‘ 1100 ‘ Ommm A0XX yyii iijj ‘ jjaa ‘
Description: Multiply the contents of two working registers, optionally pre-fetch

operands in preparation for another MAC type instruction and optionally
store the unspecified accumulator results. The 32-bit result of the signed
multiply is sign-extended to 40-bits and added to the specified
accumulator.

Operands Wx, Wxd, Wy and Wyd specify optional pre-fetch operations,
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Pre-Fetches”. Operand AWB specifies the
optional store of the “other” accumulator, as described in

Section 4.14.4 “MAC Write Back”.

The ‘m’ bits select the operand registers Wm and Wn for the multiply.
The ‘A’ bit selects the accumulator for the result.

The X’ bits select the pre-fetch Wxd destination.

The ‘y’ bits select the pre-fetch Wyd destination.

The i’ bits select the Wx pre-fetch operation.

The ‘j bits select the Wy pre-fetch operation.

The ‘@’ bits select the accumulator write back destination.

Note: The IF bit, CORCON<0>, determines if the multiply is
fractional or an integer.

Words: 1
Cycles: 1

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-141

dsPIC30F Programmer’s Reference Manual

Example 1 MAC W4*W5, A, [W8]+=6, W4, [W10]+=2, W5
; Multiply W4*W5 and add to ACCA
; Fetch [W8] to W4, Post-increment W8 by 6
; Fetch [W10] to W5, Post-increment W10 by 2
; CORCON = 0x00CO (fractional multiply, normal saturation)
Before After
Instruction Instruction
W4 A022 w4 2567
W5 B900 W5 909C
w8 0A00 w8 0A06
W10 1800 W10 1802
ACCA | 00 1200 0000 ACCA | 00 472D 2400
Data 0A00 2567 Data 0A00 2567
Data 1800 909C Data 1800 909C
CORCON 00CO CORCON 00CO
SR 0000 SR 0000
Example 2 MAC W4*W5, A, [W8]-=2, W4, [W10]+=2, W5, W13
; Multiply W4*W5 and add to ACCA
; Fetch [W8] to W4, Post-decrement W8 by 2
; Fetch [W10] to W5, Post-increment W10 by 2
; Write Back ACCB to W13
; CORCON = 0x00D0 (fractional multiply, super saturation)
Before After
Instruction Instruction
w4 1000 w4 S5BBE
W5 3000 W5 C967
w8 0A00 w8 09FE
W10 1800 W10 1802
W13 2000 W13 0001
ACCA | 23 5000 2000 ACCA | 23 5600 2000
ACCB | 00 0000 8F4C ACCB | 00 0000 1F4C
Data 0A00 5BBE Data 0A00 S5BBE
Data 1800 C967 Data 1800 C967
CORCON 00DO0 CORCON 00DO
SR 0000 SR 8800 |(OA, OAB=1)

DS70030F-page 5-142

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

MAC

Square and Accumulate

Syntax: {label:} MAC ~ Wm*Wm, Acc {,[Wx], Wxd} {,[Wy], Wyd}

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

{,[Wx]+=kx, Wxd} {,[Wyl+=ky, Wyd}
{,IWx]-=kx, Wxd} {,[Wy]-=ky, Wyd}
{,IW9+W12], Wxd} {,[W11+W12], Wyd}

Wm*Wm e [W4*W4, W5*W5, W6*W6, W7*W7]

Acc e [A,B]

Wx e [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
(Acc(A or B)) + (Wm)*(Wm) — Acc(A or B)

([Wx])— Wxd; (Wx)+kx—Wx

(WyD)— Wyd; (Wy)+ky—Wy

OA, OB, OAB, SA, SB, SAB

| 11211 | oomm ROxx yyii 1133 | 3300 |

Square the contents of a working register, optionally pre-fetch operands in
preparation for another MAC type instruction and optionally store the
unspecified accumulator results. The 32-bit result of the signed multiply is
sign-extended to 40-bits and added to the specified accumulator.

Operands Wx, Wxd, Wy and Wyd specify optional pre-fetch operations,
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Pre-Fetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.

The ‘X’ bits select the pre-fetch Wxd destination.

The ‘y’ bits select the pre-fetch Wyd destination.

The " bits select the Wx pre-fetch operation.

The J bits select the Wy pre-fetch operation.

Note: The IF bit, CORCON<0>, determines if the multiply is fractional
or an integer.

© 2005 Microchip Technology Inc.

DS70030F-page 5-143

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

Example 1 MAC W4*W4, B, [W9+W12], W4, [W10]-=2, W5
; Square W4 and add to ACCB
; Fetch [W9+4W12] to W4
; Fetch [W10] to W5, Post-decrement W10 by 2
; CORCON = 0x00CO (fractional multiply, normal saturation)

Before After
Instruction Instruction

W4 A022 W4 A230

W5 B200 W5 650B

w9 0C00 W9 0C00

W10 1900 W10 18FE
W12 0020 w12 0020
ACCB | 00 2000 0000 ACCB | 00 67CD 0908
Data 0C20 A230 Data 0C20 A230
Data 1900 650B Data 1900 650B
CORCON 00CO CORCON 00CO
SR 0000 SR 0000

Example 2 MAC W7*W7, A, [W1l]l-=2, W7

; Square W7 and add to ACCA
; Fetch [W1l] to W7, Post-decrement W1l by 2
; CORCON = 0x00DO0 (fractional multiply, super saturation)

Before After
Instruction Instruction

w7 76AE w7 23FF

W11 2000 W11 1FFE

ACCA | FE 9834 4500 ACCA | FF 063E 0188

Data 2000 23FF Data 2000 23FF

CORCON 00DO CORCON 00DO
SR 0000 SR 8800 |(OA, OAB=1)

DS70030F-page 5-144 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOV

Move f to Destination

Syntax:
Operands:
Operation:
Status Affected:
Encoding:
Description:
Words:
Cycles:
Example 1 MOV
I
WREG (WO0)
TMRO
SR
Example 2 MOV
I
Data 0800
SR

{label:} MOV{.B} f {, WREG}

fe[0...8191]

(f) — destination designated by D

N, Z

‘ 1011 | 1111 1BDf ffff ffff | ffff |

Move the contents of the specified file register to the destination register.
The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored back to the file register and the only effect is
to modify the status register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

3: When moving word data from file register memory, the “Mov £
to Wnd” (page 5-147) instruction allows any working register
(WO0:W15) to be the destination register.

.B TMRO, WREG ; move (TMRO) to WREG (Byte mode)
Before After
nstruction Instruction

9080 WREG (WO0)| 9055

2355 TMRO| 2355

0000 SR 0000

0x800 ; update SR based on (0x800) (Word mode)
Before After
nstruction Instruction

B29F Data 0800| B29F

0000 SR| 0008]|(N=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-145

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

MOV Move WREG to f

Syntax: {label:} MOV{.B} WREG, f

Operands: fe[0...8191]

Operation: (WREG) — f

Status Affected: None

Encoding: | 1011 | o11x | imaf | eeee | feer | gref |
Description: Move the contents of the default working register WREG into the

specified file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The f’ bits select the address of the file register.

Note 1: The extension . B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.

2: The WREG is set to working register WO.

3: When moving word data from the working register array to file
register memory, the “MOV Wns to f” (page 5-148) instruc-
tion allows any working register (W0:W15) to be the source

register.
Words: 1
Cycles: 1
Example 1 MOV.B WREG, 0x801 ; move WREG to 0x801 (Byte mode)
Before After
Instruction Instruction
WREG (WO0) | 98F3 WREG (WO0) | 98F3
Data 0800 4509 Data 0800 F309
SR| 0000 SR| 0008 | (N=1)
Example 2 MOV WREG, DISICNT ; move WREG to DISICNT
Before After
Instruction Instruction
WREG (W0) | 0020 WREG (W0) | 0020
DISICNT 0000 DISICNT 00A0
SR 0000 SR 0000

DS70030F-page 5-146 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOV Move f to Wnd
Syntax: {label:} MOV f, Wnd
Operands: fe [0...65534]
Wnd € [WO ... W15]
Operation: (fy > Wnd
Status Affected: None
Encoding: ‘ 1000 | Offf ffff ffff ffff | dddd ‘
Description: Move the word contents of the specified file register to Wnd. The file
register may reside anywhere in the 32K words of data memory, but must
be word aligned. Register direct addressing must be used for Wnd.
The ‘f bits select the address of the file register.
The ‘d’ bits select the address of the destination register.
Note 1: This instruction only operates on word operands.
2: Since the file register address must be word aligned, only the
upper 15 bits of the file register address are encoded (bit 0 is
assumed to be ‘0’).
3: To move a byte of data from file register memory, the “Mov £
to Destination” instruction (page 5-145) may be used.
Words: 1
Cycles: 1
Example 1 MOV ~ CORCON, W12 ; move CORCON to W12
Before After
Instruction Instruction
W12 | 78Fa W12 | o00F0
CORCON | o00F0 CORCON | oo0F0
SR| o000 SR| 0000
Example 2 MOV 0x27FE, W3 ; move (0x27FE) to W3
Before After
Instruction Instruction
W3 | 0035 W3 | ABCD
Data 27FE | ABCD Data 27FE | ABCD
SR| o000 SR| 0000

© 2005 Microchip Technology Inc.

DS70030F-page 5-147

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

MOV

Move Wns to f

Syntax: {label:} MOV Wns, f
Operands: fe [0...65534]
Wns e [WO ... W15]
Operation: (Wns) — f
Status Affected: None
Encoding: | 1000 | 1ffe | frer FEEE FEEF ssss
Description: Move the word contents of the working register Wns to the specified file
register. The file register may reside anywhere in the 32K words of data
memory, but must be word aligned. Register direct addressing must be
used for Wn.
The f’ bits select the address of the file register.
The ‘s’ bits select the address of the source register.
Note 1: This instruction only operates on word operands.
2: Since the file register address must be word aligned, only the
upper 15 bits of the file register address are encoded (bit 0 is
assumed to be ‘0’).
3: To move a byte of data to file register memory, the “MOV WREG
to £”instruction (page 5-146) may be used.
Words: 1
Cycles: 1
Example 1 MOV W4, XMDOSRT ; move W4 to XMODSRT
Before After
Instruction Instruction
W4 | 1200 W4 | 1200
XMODSRT | 1340 XMODSRT | 1200
SR | 0000 SR| 0000
Example 2 MOV W8, 0x1222 ; move W8 to data address 0x1222
Before After
Instruction Instruction
W8 | F200 W8 | F200
Data 1222 | FD8s8 Data 1222 | F200
SR| 0000 SR| 0000

DS70030F-page 5-148

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOV. B Move 8-bit Literal to Wnd

Syntax: {label:} MOV.B #it8, Wnd

Operands: lit8 € [0 ... 255]
Wnd € [WO ... W15]

Operation: lit8 - Wnd

Status Affected: None

Encoding: 1011 0011 1100 kkkk kkkk ‘ dddd ‘

Description: The unsigned 8-bit literal 'k’ is loaded into the lower byte of Wnd. The
upper byte of Wnd is not changed. Register direct addressing must be
used for Wnd.

The ‘K’ bits specify the value of the literal.
The ‘d’ bits select the address of the working register.

Note: This instruction operates in Byte mode and the .B extension
must be provided.

Words: 1
Cycles: 1
Example 1 MOV.B #0x17, W5 ; load W5 with #0x17 (Byte mode)
Before After
Instruction Instruction
W5 7899 W5 7817
SR 0000 SR 0000
Example 2 MOV.B #OXFE, W9 ; load W9 with #0xXFE (Byte mode)
Before After
Instruction Instruction
W9 AB23 w9 ABFE
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-149

dsPIC30F Programmer’s Reference Manual

MOV

Move 16-bit Literal to Wnd

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1

Example 2

Example 3

{label:} MOV #lit16, Wnd
lit16 € [-32768 ... 65535]
Wnd e [WO ... W15]
lit16 - Wnd
None
0010 kkkk kkkk kkkk kkkk | dddd ‘

The 16-bit literal ‘K’ is loaded into Wnd. Register direct addressing must
be used for Wnd.

The ‘K’ bits specify the value of the literal.
The ‘d’ bits select the address of the working register.

Note 1: This instruction operates only in Word mode.
2: The literal may be specified as a signed value [-32768:32767],

or unsigned value [0:65535].

MOV #0x4231,

W13
SR

MOV #0x4, W2

w2
SR

Before
Instruction

091B
0000

Before
Instruction

B004
0000

MOV #-1000,

W8
SR

Before
Instruction

23FF
0000

W13

W8

7

W13
SR

7

w2
SR

7

W8
SR

load W13 with #0x4231

After
Instruction

4231
0000

load W2 with #0x4

After
Instruction

0004
0000

load W8 with #-1000

After
Instruction

FC18
0000

DS70030F-page 5-150

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOV Move [Ws with offset] to Wnd
Syntax: {label:} MOV{.B} [Ws+SIit10], Wnd
Operands: Ws e [WO ... W15]

Slit10 € [-512 ... 511] for byte operation
Slit10 € [-1024 ... 1022] (even only) for word operation
Wnd e [WO ... W15]

Operation: [Ws+Slit10] - Wnd

Status Affected: None

Encoding: 1001 0kkk kBkk kddd | dkkk l ssss l
Description: The contents of [Ws+Slit10] are loaded into Wnd. In Word mode, the

range of Slit10 is increased to [-1024 ... 1022] and Slit10 must be even to
maintain word address alignment. Register indirect addressing must be
used for the source, and direct addressing must be used for Wnd.

The ‘K’ bits specify the value of the literal.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘d’ bits select the address of the destination register.

The ‘s’ bits select the address of the source register.

Note 1: The extension .B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.

2: In Byte mode, the range of Slit10 is not reduced as specified in
Section 4.6 “Using 10-bit Literal Operands”, since the literal
represents an address offset from Ws.

Words: 1
Cycles: 1
Example 1 MOV .B [W8+0x13], W10 ; load W10 with [W8+0x13]
; (Byte mode)
Before After
Instruction Instruction
w8 1008 w8 1008
W10 | 4009 W10 | 4033
Data 101A | 3312 Data 101A | 3312
SR 0000 SR 0000
Example 2 MOV [W4+0x3E8], W2 ; load W2 with [W4+0x3E8]
; (Word mode)
Before After
Instruction Instruction
w2 9088 w2 5634
w4 0800 w4 0800
Data OBES8 5634 Data OBES8 5634
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-151

dsPIC30F Programmer’s Reference Manual

MOV

Move Wns to [Wd with offset]

Syntax: {label:} MOV{.B} Wns, [Wd+SIit10]
Operands: Wns € [WO ... W15]
Slit10 € [-512 ... 511] in Byte mode
Slit10 € [-1024 ... 1022] (even only) in Word mode
Wd e [WO ... W15]
Operation: (Wns) — [Wd+Slit10]
Status Affected: None
Encoding: 1001 1kkk kBkk kddd dkkk ssss
Description: The contents of Wns are stored to [Wd+Slit10]. In Word mode, the range
of Slit10 is increased to [-1024 ... 1022] and Slit10 must be even to
maintain word address alignment. Register direct addressing must be
used for Wns, and indirect addressing must be used for the destination.
The ‘K’ bits specify the value of the literal.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘d’ bits select the address of the destination register.
The ‘s’ bits select the address of the destination register.
Note 1: The extension .B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.
2: In Byte mode, the range of Slit10 is not reduced as specified in
Section 4.6 “Using 10-bit Literal Operands”, since the literal
represents an address offset from Wd.
Words: 1
Cycles: 1
Example 1 MOV.B WO, [W1+0x7] ; store WO to [W1+0x7]
; (Byte mode)
Before After
Instruction Instruction
WO | 9015 W0 | 9015
WA1 1800 WA 1800
Data 1806 | 2345 Data 1806 | 1545
SR | 0000 SR| 0000
Example 2 MOV W1l, [W1-0x400] ; store W1l to [W1-0x400]
; (Word mode)
Before After
Instruction Instruction
Wi+ 1000 Wi 1000
W11 8813 W11 8813
Data 0C00 | FFEA Data 0CO0 | 8813
SR | 0000 SR| 0000

DS70030F-page 5-152

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOV Move Ws to Wd

Syntax: {label:} MOV{.B} Ws, Wd
[Ws], (wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[--Ws], [--Wd]
[++Ws], [++Wd]

[Ws+Wb], [Wd+Wb]

Operands: Ws e [WO ... W15]
Wb e [WO ... W15]
Wd e [WO ... W15]

Operation: (Ws) - Wd

Status Affected: None

Encoding: | 0111 ‘ lwww wBhh hddd dggg ‘ ssss ‘
Description: Move the contents of the source register into the destination register.

Either register direct or indirect addressing may be used for Ws and Wd.

The ‘w’ bits define the offset register Wb.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘h’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘g’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note 1: The extension . B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.

2: When Register Offset Addressing mode is used for both the
source and destination, the offset must be the same because
the ‘w’ encoding bits are shared by Ws and Wd.

3: The instruction “PUSH Ws” translates to MOV Ws, [W15++].

4: The instruction “POP Wd” translates to MOV [--W15], Wd.
Words: 1
Cycles: 1
Example 1 MOV.B [WO--], W4 ; Move [W0] to W4 (Byte mode)
; Post-decrement WO
Before After
Instruction Instruction

WO 0A01 WO 0A00

W4 | 2976 W4 | 2989

Data 0AQ0 8988 Data 0A00 8988

SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-153

dsPIC30F Programmer’s Reference Manual

Example 2 MOV

w2
W3
W6
Data 0840
Data 1228
SR

[We++1,

Before
Instruction

0800

0040

1228

9870

0690

0000

[W2+W3] H

7

w2
W3
W6
Data 0840
Data 1228
SR

Move
Post-increment W6

After
Instruction

[wel

0800

0040

122A

0690

0690

0000

[W2+W3] (Word mode)

DS70030F-page 5-154

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOV. D Double-Word Move from Source to Wnd

Syntax: {label:} MOV.D Whns, Wnd
[Ws],
[Ws++],
[Ws--],
[++Ws],
[--Ws],

Operands: Wns € [WO, W2, W4 ... W14]
Ws e [WO ... W15]
Wnd e [WO0, W2, W4 ... W14]

Operation: For direct addressing of source:
Wns — Wnd
Wns+1 — Wnd+1
For indirect addressing of source:
See Description

Status Affected: None
Encoding: 1011 1110 0000 0oddd 0ppp ‘ ssss ‘

Description: Move the double-word specified by the source to a destination working
register pair (Wnd:Wnd+1). If register direct addressing is used for the
source, the contents of two successive working registers (Wns:Wns+1) are
moved to Wnd:Wnd+1. If indirect addressing is used for the source, Ws
specifies the effective address for the Least Significant Word of the
double-word. Any pre/post-increment or pre/post-decrement will adjust Ws
by 4 bytes to accommodate for the double-word.

The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the first source register.

Note 1: This instruction only operates on double-words. See Figure 4-2
for information on how double-words are aligned in memory.
2: Wnd must be an even working register.
3: The instruction “POP.D Wnd” translates to MOV.D [--W15],

wWnd.

Words:

Cycles: 2

Example 1 MOV.D W2, We ; Move W2 to W6 (Double mode)

Before After
Instruction Instruction

w2 12FB w2 12FB
W3 9877 w3 9877
W6 9833 W6 12FB
W7 | Fcce w7 9877
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-155

dsPIC30F Programmer’s Reference Manual

W7--1,

Example 2 MOV.D
Before
Instruction

W4 | Bo12

W5 FD89

w7 0900

Data 0900 | A319

Data 0902 9927

SR| 0000

w4 ; Move

[W71]

to W4

(Double mode)

; Post-decrement W7

w4
W5
w7
Data 0900
Data 0902
SR

After
Instruction

A319

9927

08FC

A319

9927

0000

DS70030F-page 5-156

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOV. D Double-Word Move from Wns to Destination

Syntax: {label:} MOV.D Wns, Wnd
(wd]
[Wd++]
[(Wd--]
[++Wd]
[--Wd]

Operands: Whns € [WO0, W2, W4 ... W14]
Wnd e [W0, W2, W4 ... W14]
Wd e [WO ... W15]

Operation: For direct addressing of destination:
Wns — Wnd
Wns+1 — Wnd+1
For indirect addressing of destination:
See Description

Status Affected: None
Encoding: 1011 ‘ 1110 | 10qg ‘ qddd 4000 | sss0 ‘
Description: Move a double-word (Wns:Wns+1) to the specified destination. If register

direct addressing is used for the destination, the contents of Wns:Wns+1
are stored to Wnd:Wnd-+1. If indirect addressing is used for the
destination, Wd specifies the effective address for the Least Significant
Word of the double-word. Any pre/post-increment or pre/post-decrement
will adjust Wd by 4 bytes to accommodate for the double-word.

The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘s’ bits select the address of the source register pair.

Note 1: This instruction only operates on double-words. See
Figure 4-2 for information on how double-words are aligned in
memory.

2: Wnd must be an even working register.
3: The instruction PUSH.D Ws translates to MOV.D Wns,

[W15++].
Words:
Cycles: 2
Example 1 MOV.D W10, WO ; Move W10 to WO (Double mode)
Before After
Instruction Instruction
WO 9000 WO | CCFB
Wi1 4322 Wi1 0091
W10 CCFB W10 CCFB
W11 0091 W11 0091
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-157

dsPIC30F Programmer’s Reference Manual

Example 2 MOV.D W4,
Before
Instruction
W4 | 1002
W5 | CFi12
W6 0804
Data 0800 | A319
Data 0802 9927
SR 0000

[--W6] ; Pre-decrement W6

; Move W4 to

w4
W5
W6
Data 0800
Data 0802
SR

After
Instruction

100A

CF12

0800

100A

CF12

0000

(Double mode)

DS70030F-page 5-158

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

MOVSAC Pre-Fetch Operands and Store Accumulator

Syntax: {label:} MOVSAC Acc {,[Wx], Wxd} {,[Wy], Wyd} {,AWB}
{[WxJ+=kx, Wxd} {,[Wyl+=ky, Wyd}
{,[Wx]-=kx, Wxd} {,[Wy]-=ky, Wyd}
{[W9+W12], Wxd} {[W11+W12], Wyd}

Operands: Acc e [A,B]
Wx e [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
AWB e [W13, [W13]+=2]

Operation: ([Wx])— Wxd; (Wx)+kx—Wx
([Wy)— Wyd; (Wy)+ky—Wy
(Acc(B or A)) rounded - AWB

Status Affected: None
Encoding: | 1100 | o111 | moxx yyii 1135 | jjaa |
Description: Optionally pre-fetch operands in preparation for another MAC type

instruction and optionally store the unspecified accumulator results.
Even though an accumulator operation is not performed in this
instruction, an accumulator must be specified to designate which
accumulator to write back.

Operands Wx, Wxd, Wy and Wyd specify optional pre-fetch operations
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Pre-Fetches”. Operand AWB specifies the
optional store of the “other” accumulator, as described in

Section 4.14.4 “MAC Write Back™.

The ‘A’ bit selects the other accumulator used for write back.
The ‘X’ bits select the pre-fetch Wxd destination.

The ‘y’ bits select the pre-fetch Wyd destination.

The ‘I’ bits select the Wx pre-fetch operation.

The j bits select the Wy pre-fetch operation.

The ‘a’ bits select the accumulator write back destination.

Words: 1
Cycles: 1
Example 1 MOVSAC B, [W9], W6, [Wll]l+=4, W7, W13

; Fetch [W9] to We
; Fetch [W1l] to W7, Post-increment W1l by 4
; Store ACCA to W13

Before After
Instruction Instruction
W6 A022 W6 7811
w7 B200 W7 B2AF
W9 0800 W9 0800
W11 1900 W11 1904
W13 0020 W13 3290 o
ACCA | 00 3290 5968 ACCA | 00 3290 5968 8 a
Data 0800 7811 Data 0800 7811 (T
Data 1900 B2AF Data 1900 B2AF 35
[
SR 0000 SR 0000 o 3
5 3
7}

© 2005 Microchip Technology Inc. DS70030F-page 5-159

dsPIC30F Programmer’s Reference Manual

Example 2 MOVSAC A, [W9]l-=2,

; Fetch [W9] to W4,
; Fetch [W11+W12]

; Store ACCB to [W13],
Before
Instruction

w4 76AE
W6 2000
W9 1200
W11 2000
W12 0024
W13 2300
ACCB | 00 9834 4500
Data 1200 BBOO
Data 2024 52CE
Data 2300 23FF
SR 0000

[W11l+W12], W6,
Post-decrement W9 by 2

[W13]+=2

Post-increment W13 by 2

w4

W6

W9

W11

W12

W13
ACCB
Data 1200
Data 2024
Data 2300
SR

After
Instruction

BBOO

52CE

11FE

2000

0024

2302

00 9834 4500

BBOO

52CE

9834

0000

DS70030F-page 5-160

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

M PY Multiply Wm by Wn to Accumulator

Syntax: {label:} MPY Wm*Wn, Acc {,[Wx], Wxd} {,[Wy], Wyd}
{,[Wx]+=kx, Wxd} {,[Wyl+=ky, Wyd}
{,[Wx]-=kx, Wxd} {,[Wy]-=ky, Wyd}
{,IW9+W12], Wxd} {,[W11+W12], Wyd}

Operands: Wm*Wn e [W4*W5, W4*W6, W4*W7, W5*W6, W5*W7, W6*W7]
Acc e [A,B]
Wx e [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
AWB e [W13], [W13]+=2

Operation: (Wm)*(Wn) — Acc(A or B)
([Wx])— Wxd; (Wx)+kx—Wx
(Wy)— Wyd; (Wy)+ky—Wy

Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: | 1100 | Ommm ‘ AOxXX yyii iijj ‘ jj11 ‘
Description: Multiply the contents of two working registers, optionally pre-fetch

operands in preparation for another MAC type instruction and optionally
store the unspecified accumulator results. The 32-bit result of the signed
multiply is sign-extended to 40-bits and stored to the specified
accumulator.

Operands Wx, Wxd, Wy and Wyd specify optional pre-fetch operations
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Pre-Fetches”.

The ‘m’ bits select the operand registers Wm and Wn for the multiply:
The ‘A bit selects the accumulator for the result.

The ‘X’ bits select the pre-fetch Wxd destination.

The ‘y’ bits select the pre-fetch Wyd destination.

The " bits select the Wx pre-fetch operation.

The J bits select the Wy pre-fetch operation.

Note: The IF bit, CORCON<0>, determines if the multiply is
fractional or an integer.

Words: 1
Cycles: 1

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-161

dsPIC30F Programmer’s Reference Manual

Example 1 MPY W4*W5, A, [W8]+=2, W6, [W1l0]-=2, W7
; Multiply W4*W5 and store to ACCA
; Fetch [W8] to W6, Post-increment W8 by 2
; Fetch [W10] to W7, Post-decrement W10 by 2
; CORCON = 0x0000 (fractional multiply, no saturation)
Before After
Instruction Instruction
w4 C000 W4 C000
W5 9000 W5 9000
W6 0800 Weé 671F
W7 B200 W7 E3DC
w8 1780 W8 1782
W10 2400 W10 23FE
ACCA | FF F780 2087 ACCA | 00 3800 0000
Data 1780 671F Data 1780 671F
Data 2400 E3DC Data 2400 E3DC
CORCON 0000 CORCON 0000
SR 0000 SR 0000
Example 2 MPY We6*W7, B, [W8]l+=2, W4, [W10]-=2, W5
; Multiply W6*W7 and store to ACCB
; Fetch [W8] to W4, Post-increment W8 by 2
; Fetch [W10] to W5, Post-decrement W10 by 2
; CORCON = 0x0000 (fractional multiply, no saturation)
Before After
Instruction Instruction
w4 C000 w4 8FDC
W5 9000 W5 0078
W6 671F W6 671F
w7 E3DC w7 E3DC
w8 1782 w8 1784
W10 23FE W10 23FC
ACCB | 00 9834 4500 ACCB | FF E954 3748
Data 1782 8FDC Data 1782 8FDC
Data 23FE 0078 Data 23FE 0078
CORCON 0000 CORCON 0000
SR 0000 SR 0000

DS70030F-page 5-162

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

M PY Square to Accumulator

Syntax: {label:} MPY Wm*Wm, Acc {,[Wx], Wxd} {,[Wy], Wyd}
{,[Wx]+=kx, Wxd} {,[Wy]+=ky, Wyd}
{,IWx]-=kx, Wxd} {,[Wy]-=ky, Wyd}
{,[W9+W12], Wxd} {,[W11+W12], Wyd}

Operands: Wm*Wm e [W4*W4, W5*W5, W6*W6, W7*W7]
Acc e [A,B]
Wx e [W8, W9]; kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
Operation: (Wm)*(Wm) — Acc(A or B)
([Wx])— Wxd; (Wx)+kx—Wx
([Wy])— Wyd; (Wy)+ky—Wy

Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1111 00mm AOxXX yyii iijj | jjo1 ‘
Description: Square the contents of a working register, optionally pre-fetch operands

in preparation for another MAC type instruction and optionally store the
unspecified accumulator results. The 32-bit result of the signed multiply is
sign-extended to 40-bits and stored in the specified accumulator.

Operands Wx, Wxd, Wy and Wyd specify optional pre-fetch operations
which support indirect and register offset addressing, as described in
Section 4.14.1 “MAC Pre-Fetches”.

The ‘m’ bits select the operand register Wm for the square.
The ‘A’ bit selects the accumulator for the result.

The ‘X’ bits select the pre-fetch Wxd destination.

The ‘y’ bits select the pre-fetch Wyd destination.

The 7 bits select the Wx pre-fetch operation.

The j bits select the Wy pre-fetch operation.

Note: The IF bit, CORCON<0>, determines if the multiply is
fractional or an integer.

Words: 1
Cycles: 1
Example 1 MPY W6*We6, A, [W9]l+=2, Wé6

; Square W6 and store to ACCA
; Fetch [W9] to W6, Post-increment W9 by 2
; CORCON = 0x0000 (fractional multiply, no saturation)

Before After
Instruction Instruction

W6 6500 W6 B865

W9 0900 W9 0902
ACCA | 00 7C80 0908 ACCA | 00 4FB2 0000
Data 0900 B865 Data 0900 B865
CORCON 0000 CORCON 0000
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-163

dsPIC30F Programmer’s Reference Manual

Example 2 MPY W4*W4, B, [W9+W1l2], W4, [W1l0]+=2, W5
; Square W4 and store to ACCB

; Fetch [W9+W12]

; Fetch [W10] to W5,
; CORCON = 0x0000

Before
Instruction

W4 E228

W5 9000

W9 1700

W10 1B0O
w12 FF00
ACCB | 00 9834 4500
Data 1600 8911
Data 1B00 F678
CORCON 0000
SR 0000

w4

W5

W9

W10

W12
ACCB
Data 1600
Data 1B00
CORCON
SR

Post-increment W10 by 2
(fractional multiply, no saturation)

After
Instruction

8911

Fe678

1700

1B02

FFO0O

00 06F5 4C80

8911

Fe78

0000

0000

DS70030F-page 5-164

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

M PY. N Multiply -Wm by Wn to Accumulator

Syntax: {label:} MPY.N Wm*Wn, Acc {,[Wx], Wxd} {,[Wy], Wyd}
{,[Wx]J+=kx, Wxd} {,[Wy]+=ky, Wyd}
{.IWx]-=kx, Wxd} {,[Wy]-=ky, Wyd}
{,IW9+W12], Wxd} {,[W11+W12], Wyd}

Operands: Wm*Wn e [W4*W5; W4*W6; W4*W7; W5*W6; W5*W7; W6*W7]
Acc e [A,B]
Wx e [W8, WOJ; kx e [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]

Operation: -(Wm)*(Wn) — Acc(A or B)
([Wx])— Wxd; (Wx)+kx—Wx
(Wy])— Wyd; (Wy)+ky—Wy

Status Affected: OA, OB, OAB
Encoding: 1100 ‘ Ommm | Alxx yyii iijj ‘ jj11 |

Description: Multiply the contents of a working register by the negative of the contents
of another working register, optionally pre-fetch operands in preparation
for another MAC type instruction and optionally store the unspecified
accumulator results. The 32-bit result of the signed multiply is
sign-extended to 40-bits and stored to the specified accumulator.

The ‘m’ bits select the operand registers Wm and Wn for the multiply.
The ‘A’ bit selects the accumulator for the result.

The X’ bits select the pre-fetch Wxd destination.

The ‘y’ bits select the pre-fetch Wyd destination.

The ‘I’ bits select the Wx pre-fetch operation.

The j bits select the Wy pre-fetch operation.

Note: The IF bit, CORCON<0>, determines if the multiply is fractional
or an integer.

Words: 1
Cycles: 1
Example 1 MPY.N W4*W5, A, [W8]+=2, W4, [W1l0]+=2, W5

; Multiply W4*W5, negate the result and store to ACCA
; Fetch [W8] to W4, Post-increment W8 by 2

; Fetch [W10] to W5, Post-increment W10 by 2

; CORCON = 0x0001 (integer multiply, no saturation)

Before After

Instruction Instruction
w4 3023 w4 0054
W5 1290 W5 660A
w8 0B0O W8 0B02
W10 2000 W10 2002
ACCA | 00 0000 2387 ACCA | FF FC82 7650
Data 0B0O 0054 Data 0B00O 0054
Data 2000 660A Data 2000 660A
CORCON 0001 CORCON 0001
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-165

dsPIC30F Programmer’s Reference Manual

Example 2

MPY.N W4*W5, A, [W8]+=2, W4, [W1l0]+=2, W5
; Multiply W4*W5, negate the result and store to ACCA
; Fetch [W8] to W4, Post-increment W8 by 2

; CORCON = 0x0000

W4

W5

w8

W10
ACCA
Data 0B0OO
Data 2000
CORCON
SR

Before
Instruction

3023

1290

0BOO

2000

00 0000

2387

0054

660A

0000

0000

W4

W5

W8

W10
ACCA
Data 0BOO
Data 2000
CORCON
SR

; Fetch [W10] to W5, Post-increment W10 by 2
(fractional multiply, no saturation)

After
Instruction

0054

660A

0BO2

2002

FF F904 ECAOQ

0054

660A

0000

0000

DS70030F-page 5-166

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

MSC Multiply and Subtract from Accumulator

Syntax: {label:} MSC Wm*Wn, Acc {,[Wx], Wxd} {,[Wy], Wyd} {,AWB}
{,[Wx]+=kx, Wxd} {,[Wyl+=ky, Wyd}
{,[Wx]-=kx, Wxd} {,[Wy]-=ky, Wyd}
{,[W9+W12], Wxd} {,[W11+W12], Wyd}

Operands: Wm*Wn e [W4*W5, W4*W6, W4*W7, W5*W6, W5*W7, W6*W7]
Acc € [A,B]
Wx e [W8, W9J; kx € [-6, -4, -2, 2, 4, 6]; Wxd € [W4 ... W7]
Wy e [W10, W11]; ky € [-6, -4, -2, 2, 4, 6]; Wyd € [W4 ... W7]
AWB € [W13, [W13]+=2]

Operation: (Acc(A or B)) — (Wm)*(Wn) — Acc(A or B)
(Wx])— Wxd; (Wx)+kx—Wx
([Wy])— Wyd; (Wy)+ky—Wy
(Acc(B or A)) rounded — AWB

Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: | 1200 | ommm Alxx yyii 1133 | jjaa |
Description: Multiply the contents of two working registers, optionally pre-fetch

operands in preparation for another MAC type instruction and optionally
store the unspecified accumulator results. The 32-bit result of the signed
multiply is sign-extended to 40-bits and subtracted from the specified
accumulator.

Operands Wx, Wxd, Wy and Wyd specify optional pre-fetch operations
which support indirect and register offset addressing as described in
Section 4.14.1 “MAC Pre-Fetches”. Operand AWB specifies the
optional store of the “other” accumulator as described in

Section 4.14.4 “MAC Write Back”.

The ‘m’ bits select the operand registers Wm and Wn for the multiply.
The ‘A’ bit selects the accumulator for the result.

The ‘X’ bits select the pre-fetch Wxd destination.

The ‘y’ bits select the pre-fetch Wyd destination.

The " bits select the Wx pre-fetch operation.

The j bits select the Wy pre-fetch operation.

The ‘a’ bits select the accumulator write back destination.

Note: The IF bit, CORCON<0>, determines if the multiply is
fractional or an integer.

Words: 1
Cycles: 1

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-167

dsPIC30F Programmer’s Reference Manual

Example 1 MSC W6*W7, A, [W8]-=4, W6, [W10]-=4, W7
; Multiply Wé6*W7 and subtract the result from ACCA
; Fetch [W8] to W6, Post-decrement W8 by 4
; Fetch [W10] to W7, Post-decrement W10 by 4
; CORCON = 0x0001 (integer multiply, no saturation)

Before After
Instruction Instruction

W6 9051 Weé D309

W7 7230 w7 100B

w8 0C00 W8 0BFC

W10 1C00 W10 1BFC
ACCA | 00 0567 8000 ACCA | 00 3738 5EDO
Data 0C00 D309 Data 0C00 D309
Data 1C00 100B Data 1C00 100B
CORCON 0001 CORCON 0001
SR 0000 SR 0000

Example 2 MSC W4*W5, B, [W1l+W12], W5, W13

; Multiply W4*W5 and subtract the result from ACCB

; Fetch [W11l+W1l2] to W5

; Write Back ACCA to W13

; CORCON = 0x0000 (fractional multiply, no saturation)

Before After
Instruction Instruction

w4 0500 W4 0500

W5 2000 W5 3579

W11 1800 W11 1800
W12 0800 w12 0800
W13 6233 W13 3738
ACCA | 00 3738 S5EDO ACCA | 00 3738 5EDO
ACCB | 00 1000 0000 ACCB | 00 0ECO 0000
Data 2000 3579 Data 2000 3579
CORCON 0000 CORCON 0000
SR 0000 SR 0000

DS70030F-page 5-168 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

M U L Integer Unsigned Multiply f and WREG
Syntax: {label:} MUL{.B} f

Operands: fe[0..8191]

Operation: For byte operation:

(WREG)<7:0> * (f)<7:0> — W2
For word operation:
(WREG) * (f) > W2:W3

Status Affected: None
Encoding: ‘ 1011 ‘ 1100 0BOf fEEE fEEE | fEEE |
Description: Multiply the default working register WREG with the specified file

register and place the result in the W2:W3 register pair. Both operands
and the result are interpreted as unsigned integers. If this instruction is
executed in Byte mode, the 16-bit result is stored in W2. In Word mode,
the Most Significant Word of the 32-bit result is stored in W3, and the
Least Significant Word of the 32-bit result is stored in W2.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ¥’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
3: The IF bit, CORCON<0>, has no effect on this operation.
4: This is the only instruction which provides for an 8-bit
multiply.
Words: 1
Cycles: 1
Example 1 MUL.B 0x800 ; Multiply (0x800)*WREG (Byte mode)
Before After
Instruction Instruction
WREG (W0) 9823 WREG (WO0) 9823
W2 | FFFF W2 | 13B0O
W3 | FFFF W3 | FFFF
Data 0800 | 2690 Data 0800 | 2690
SR 0000 SR| 0000
Example 2 MUL TMR1 ; Multiply (TMR1)*WREG (Word mode)
Before After
Instruction Instruction
WREG (W0) | Foo01 WREG (W0) | Foo01
w2 0000 W2 | c287
W3 0000 W3 | 2FSE
TMR1 3287 TMR1 3287
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-169

dsPIC30F Programmer’s Reference Manual

M U L.SS Integer 16x16-bit Signed Multiply

Syntax: {label:} MUL.SS Whb, Ws, Wnd
[Ws],

Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Wnd e [W0, W2, W4 ... W12]

Operation: signed (Wb) * signed (Ws) —» Wnd:Wnd+1

Status Affected: None

Encoding: ‘ 1011 ‘ 1001 lwww wddd dppp ‘ ssss |
Description: Multiply the contents of Wb with the contents of Ws, and store the 32-bit

result in two successive working registers. The Least Significant Word
of the result is stored in Wnd (which must be an even numbered working
register), and the Most Significant Word of the result is stored in Wnd+1.
Both source operands and the result Wnd are interpreted as two’s
complement signed integers. Register direct addressing must be used
for Wb and Wnd. Register direct or register indirect addressing may be
used for Ws.

The ‘w’ bits select the address of the base register.

The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32-bits, Wnd must be
an even working register. See Figure 4-2 for information on
how double-words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit, CORCON<0>, has no effect on this operation.

Words: 1
Cycles: 1
Example 1 MUL.SS WO, W1, Wi12 ; Multiply WO*W1
; Store the result to W12:W13
Before After
Instruction Instruction
WO 9823 WO 9823
W1 67DC Wi1 67DC
W12 FFFF W12 | D314
W13 FFFF W13 | D5DC
SR 0000 SR 0000

DS70030F-page 5-170 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2 MUL.SS W2, [--W4], WO ; Pre-decrement W4
; Multiply W2* [W4]
; Store the result to WO:Wl

Before After
Instruction Instruction
WO | FFFF WO | 28Fs
Wi1 FFFF Wi1 0000
w2 0045 W2 | 0045
W4 27FE w4 27FC
Data 27FC 0098 Data 27FC | 0098
SR 0000 SR | 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-171

dsPIC30F Programmer’s Reference Manual

MUL.SU

Integer 16x16-bit Signed-Unsigned Short Literal Multiply

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1

3:
4:
1
1
MUL.SU WO,
Before
Instruction
WO | coo0
w2 1234
W3 C9BA
SR 0000

{label:}

MUL.SU Wb,

Wb e [WO ... W15]
lit5 € [0 ... 31]
Wnd e [WO, W2, W4 ... W12]

signed (Wb) * unsigned lit5 —» Wnd:Wnd+1

None

#lit5, Wnd

‘ 1011 | 1001

owww

wddd dllk ‘ kkkk ‘

Multiply the contents of Wb with the 5-bit literal, and store the 32-bit
result in two successive working registers. The Least Significant Word of
the result is stored in Wnd (which must be an even numbered working
register), and the Most Significant Word of the result is stored in Wnd+1.
The Wb operand and the result Wnd are interpreted as a two’s
complement signed integer. The literal is interpreted as an unsigned
integer. Register direct addressing must be used for Wb and Wnd.

The ‘W’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘K’ bits define a 5-bit unsigned integer literal.

Note 1:
2:

This instruction operates in Word mode only.

Since the product of the multiplication is 32-bits, Wnd must be
an even working register. See Figure 4-2 for information on
how double-words are aligned in memory.

Wnd may not be W14, since W15<0> is fixed to zero.

The IF bit, CORCON<0>, has no effect on this operation.

#Ox1F, W2 ;

7

WO
W2
W3
SR

After

Instruction

cooo

4000

FFF8

0000

Multiply WO by literal Ox1F
Store the result to W2:W3

DS70030F-page 5-172

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2 MUL.SU W2, #0x10, WO ; Multiply W2 by literal 0x10
; Store the result to WO:Wl
Before After
Instruction Instruction
WO | ABCD WO 2400
Wi1 89B3 Wi1 000F
w2 F240 w2 F240
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-173

dsPIC30F Programmer’s Reference Manual

MUL.SU

Integer 16x16-bit Signed-Unsigned Multiply

Syntax: {label:} MUL.SU Wb, Ws, Wnd
[Ws],
[Ws+4],
[WS--]l
[++Ws],
[--Ws],
Operands: Wb € [WO ... W15]
Ws e [WO ... W15]
Wnd e [WO, W2, W4 ... W12]
Operation: signed (Wb) * unsigned (Ws) — Wnd:Wnd+1
Status Affected: None
Encoding: ‘ 1011 ’ 1001 Oowww wddd dppp ‘ ssss ‘
Description: Multiply the contents of Wb with the contents of Ws, and store the 32-bit
result in two successive working registers. The Least Significant Word of
the result is stored in Wnd (which must be an even numbered working
register), and the Most Significant Word of the result is stored in Wnd+1.
The Wb operand and the result Wnd are interpreted as a two’s
complement signed integer. The Ws operand is interpreted as an
unsigned integer. Register direct addressing must be used for Wb and
Wnd. Register direct or register indirect addressing may be used for Ws.
The ‘W’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.
Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32-bits, Wnd must be
an even working register. See Figure 4-2 for information on
how double-words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit, CORCON<0>, has no effect on this operation.

Words: 1
Cycles: 1
Example 1 MUL.SU W8, [W9], WO ; Multiply W8* [W9]
; Store the result to WO:W1l
Before After
Instruction Instruction
WO | 68DC WO | o000
W1 | Aaa40 W1 F100
W8 | Fo000 W8 | Fo000
W9 | 178C W9 | 178c
Data 178C | Fo000 Data 178C | Fo000
SR| o000 SR| 0000

DS70030F-page 5-174

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Examp|e2 MUL.SU W2, [++W3], W4 ; Pre-Increment W3
; Multiply W2* [W3]
; Store the result to W4:W5

Before After
Instruction Instruction
w2 0040 w2 0040
W3 0280 W3 0282
W4 | 1819 w4 1A00
W5 | 2021 W5 0000
Data 0282 0068 Data 0282 0068
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-175

dsPIC30F Programmer’s Reference Manual

M U L. U S Integer 16x16-bit Unsigned-Signed Multiply

Syntax: {label:} MUL.US Wb, Ws, Wnd
[Ws],
[Ws++],
(Ws-],
[++Ws],
[--Ws],

Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Wnd e [W0, W2, W4 ... W12]

Operation: unsigned (Wb) * signed (Ws) — Wnd:Wnd+1

Status Affected: None

Encoding: ‘ 1011 | 1000 1www wddd dppp I ssSS ‘
Description: Multiply the contents of Wb with the contents of Ws, and store the 32-bit

result in two successive working registers. The Least Significant Word of
the result is stored in Wnd (which must be an even numbered working
register), and the Most Significant Word of the result is stored in Wnd+1.
The Wb operand is interpreted as an unsigned integer. The Ws operand
and the result Wnd are interpreted as a two’s complement signed
integer. Register direct addressing must be used for Wb and Wnd.
Register direct or register indirect addressing may be used for Ws.

The ‘W’ bits select the address of the base register.

The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32-bits, Wnd must be
an even working register. See Figure 4-2 for information on
how double-words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit, CORCON<0>, has no effect on this operation.

Words: 1
Cycles: 1
Example 1 MUL.US WO, [W1l], W2 ; Multiply WO* [W1l] (unsigned-signed)
; Store the result to W2:W3
Before After
Instruction Instruction

WO | coo0 WO | coo0

WA1 2300 Wi 2300

w2 00DA w2 0000

W3 | cc25 W3 | F400

Data 2300 | F000 Data 2300 | F000

SR 0000 SR 0000

DS70030F-page 5-176 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example2 MUL.US W6, [W5++], W10 ; Mult. We* [W5] (unsigned-signed)
; Store the result to W10:W11l
; Post-Increment W5

Before After
Instruction Instruction

W5 0C00 W5 0C02

W6 | FFFF W6 | FFFF

W10 0908 W10 8001

W11 6EEB W11 7FFE

Data 0C00 7FFF Data 0C00 7FFF
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-177

dsPIC30F Programmer’s Reference Manual

MUL.UU Integer 16x16-bit Unsigned Short Literal Multiply
Syntax: {label:} MUL.UU Wb, #lit5, Wnd
Operands: Wb e [WO ... W15]
lit5 € [0 ... 31]
Wnd e [WO, W2, W4 ... W12]
Operation: unsigned (Wb) * unsigned lits - Wnd:Wnd+1
Status Affected: None
Encoding: ‘ 1011 | 1000 owww wddd diik ‘ kkkk ‘
Description: Multiply the contents of Wb with the 5-bit literal, and store the 32-bit

result in two successive working registers. The Least Significant Word of
the result is stored in Wnd (which must be an even numbered working
register), and the Most Significant Word of the result is stored in Wnd+1.
Both operands and the result are interpreted as unsigned integers.
Register direct addressing must be used for Wb and Wnd.

The ‘W’ bits select the address of the base register.
The ‘d’ bits select the address of the lower destination register.
The ‘K’ bits define a 5-bit unsigned integer literal.

Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32-bits, Wnd must be
an even working register. See Figure 4-2 for information on
how double-words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit, CORCON<0>, has no effect on this operation.

Words: 1
Cycles: 1
Example 1 MUL.UU W0, #0xF, W12 ; Multiply WO by literal OxF
; Store the result to W12:W13
Before After
Instruction Instruction
WO | 2323 WO | 2323
W12 | 4512 W12 | O0FO0D
W13 7821 W13 0002
SR 0000 SR| 0000
Example 2 MUL.UU W7, #0x1F, WO ; Multiply W7 by literal O0x1F
; Store the result to WO:W1l
Before After
Instruction Instruction
WO | 780B WO | 55C0
Wi1 3805 Wi 001D
W7 F240 W7 F240
SR| 0000 SR| 0000

DS70030F-page 5-178 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

MUL.UU

Integer 16x16-bit Unsigned Multiply

Syntax:

Operands:

Operation:
Status Affected:
Encoding:

Description:

Words:
Cycles:

Example 1

WO
w2
W3
W4
SR

{label:} MUL.UU Wb, Ws, Wnd
[Ws],
[Ws++],
[Ws-],
[++Ws],
[--Ws],
Wb e [WO ... W15]
Ws e [WO ... W15]
Wnd € [W0, W2, W4 ... W12]
unsigned (Wb) * unsigned (Ws) — Wnd:Wnd+1
None
‘ 1011 ‘ 1000 Owww wddd dppp ‘ sSsss |

Multiply the contents of Wb with the contents of Ws, and store the 32-bit
result in two successive working registers. The least Significant Word of
the result is stored in Wnd (which must be an even numbered working
register), and the most Significant Word of the result is stored in Wnd+1.
Both source operands and the result are interpreted as unsigned
integers. Register direct addressing must be used for Wb and Wnd.
Register direct or indirect addressing may be used for Ws.

The ‘W’ bits select the address of the base register.

The ‘d’ bits select the address of the lower destination register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note 1: This instruction operates in Word mode only.

2: Since the product of the multiplication is 32-bits, Wnd must be
an even working register. See Figure 4-2 for information on
how double-words are aligned in memory.

3: Wnd may not be W14, since W15<0> is fixed to zero.

4: The IF bit, CORCON<0>, has no effect on this operation.

MUL.UU W4, WO, W2 ; Multiply W4*WO0 (unsigned-unsigned)

; Store the result to W2:W3

Before After
Instruction Instruction
FFFF WO FFFF
2300 w2 0001
00DA W3 | FFFE
FFFF W4 | FFFF
0000 SR| 0000

© 2005 Microchip Technology Inc.

DS70030F-page 5-179

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

Example 2 MUL.UU WO,
Before
Instruction
WO | 1024
Wi1 2300
W4 | 9654
W5 BDBC
Data 2300 | D625
SR 0000

[Wl++], W4 ;
; Store the result to W4:W5

7

7

wWo
Wi
W4
W5
Data 2300
SR

Mult. WO* [W1] (unsigned-unsigned)

; Post-Increment W1

After
Instruction

1024
2302
6D34
0D80
D625
0000

DS70030F-page 5-180

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

N EG Negate f

Syntax: {label:} NEG{.B} f {,WREG}

Operands: fe[0..8191]

Operation: m + 1 — destination designated by D

Status Affected: DC,N,QV,Z,C

Encoding: | 1110 | 1110 OBDE FEEE FEEE | £EEE |
Description: Compute the 2’s complement of the contents of the file register and

place the result in the destination register. The optional WREG operand
determines the destination register. If WREG is specified, the result is
stored in WREG. If WREG is not specified, the result is stored in the file
register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . w extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words: 1
Cycles: 1
Example 1 NEG.B 0x880, WREG ; Negate (0x880) (Byte mode)
; Store result to WREG
Before After
Instruction Instruction
WREG (W0)| 9080 WREG (WO0)| 902AB
Data 0880 2355 Data 0880| 2355
SR| 0000 SR| 0008/|(N=1)
Example 2 NEG 0x1200 ; Negate (0x1200) (Word mode)
Before After
Instruction Instruction
Data 1200 8923 Data 1200 76DD
SR| 0000 SR| 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-181

dsPIC30F Programmer’s Reference Manual

N EG Negate Ws
Syntax: {label:} NEG{.B} Ws, Wwd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]
Operands: Ws e [WO ... W15]
Wd e [WO ... W15]
Operation: (Ws) +1 - Wd
Status Affected: DC,N, 0V, Z,C
Encoding: ‘ 1110 l 1010 I 0Bgg ’ gddd ’ dppp I ssss ‘
Description: Compute the 2’s complement of the contents of the source register Ws
and place the result in the destination register Wd. Either register direct
or indirect addressing may be used for both Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).

The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 NEG.B W3, [W4++] ; Negate W3 and store to [W4] (Byte mode)
; Post-increment W4
Before After
Instruction Instruction
W3| 7839 W3| 7839
W4| 1005 W4| 1006
Data 1004| 2355 Data 1004| c755
SR| 0000 SR| 0008]|(N=1)
Example 2 NEG [W2++], [--W4] ; Pre-decrement W4 (Word mode)
; Negate [W2] and store to [W4]
; Post-increment W2
Before After
Instruction Instruction
W2| 0900 W2| 0902
W4| 1002 W4| 1000
Data 0900| 870F Data 0900| 870F
Data 1000| 5105 Data 1000| 78F1
SR| 0000 SR| 0000

DS70030F-page 5-182

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

N EG Negate Accumulator

Syntax: {label:} NEG Acc
Operands: Acc € [A,B]
Operation: If (Acc = A):

-ACCA — ACCA

Else:

-ACCB — ACCB
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1100 1011 A001 0000 0000 ’ 0000 ‘
Description: Compute the 2’s complement of the contents of the specified

accumulator. Regardless of the Saturation mode, this instruction
operates on all 40-bits of the accumulator.

The ‘A’ bit specifies the selected accumulator.

Words: 1
Cycles: 1
Example 1 NEG A ; Negate ACCA
; Store result to ACCA
; CORCON = 0x0000 (no saturation)
Before After
Instruction Instruction
ACCA | 00 3290 59C8 ACCA | FF CD6F RA638
CORCON 0000 CORCON 0000
SR 0000 SR 0000
Example 2 NEG B ; Negate ACCB
; Store result to ACCB
; CORCON = 0x00CO (normal saturation)
Before After
Instruction Instruction
ACCB | FF F230 10DC ACCB | 00 ODCF EF24
CORCON 00CO CORCON 00CO
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-183

dsPIC30F Programmer’s Reference Manual

NOP No Operation

Syntax: {label:} NOP

Operands: None

Operation: No Operation

Status Affected: None

Encoding: 0000 0000 XXXX XXXX XXXX I XXXX ‘
Description: No Operation is performed.

The X’ bits can take any value.

Words: 1
Cycles: 1
Example 1 NOP ; execute no operation
Before After
Instruction Instruction
PC 00 1092 PC 00 1094
SR 0000 SR 0000
Example 2 NOP ; execute no operation
Before After
Instruction Instruction
PC 00 O08AE PC 00 08BO
SR 0000 SR 0000

DS70030F-page 5-184 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

NOPR No Operation

Syntax: {label:} NOPR

Operands: None

Operation: No Operation

Status Affected: None

Encoding: 1111 1111 XXXX XXXX XXXX ‘ XXXX ‘
Description: No Operation is performed.

The ‘x’ bits can take any value.

Words: 1
Cycles: 1
Example 1 NOPR ; execute no operation
Before After
Instruction Instruction
PC 00 2430 PC 00 2432
SR 0000 SR 0000
Example 2 NOPR ; execute no operation
Before After
Instruction Instruction
PC 00 1466 PC 00 1468
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-185

dsPIC30F Programmer’s Reference Manual

POP Pop TOS to f
Syntax: {label:} POP f
Operands: fe [0...65534]
Operation: (W15)-2 - W15
(TOS) > f
Status Affected: None
Encoding: | 1111 | 1001 | fff FFEF FEEE | £EF0 |
Description: The stack pointer (W15) is pre-decremented by 2 and the Top-of-Stack

(TOS) word is written to the specified file register, which may reside

anywhe

re in the lower 32K words of data memory.

The ‘f’ bits select the address of the file register.

Note
Words: 1
Cycles: 1
Example 1 POP 0x1230
Before
Instruction
W15| 1006

Data 1004| Rn401
Data 1230 2355
SR| 0000

Example 2 POP 0x880

Before
Instruction

W15 2000

Data 0880| E3E1
Data 1FFE| 2090
SR| 0000

1: This instruction operates in Word mode only.
2: The file register address must be word aligned.

; Pop TOS to 0x1230

After
Instruction

W15| 1004
Data 1004| An401
Data 1230| a401

SR| 0000

; Pop TOS to 0x880

After
Instruction

W15 1FFE

Data 0880 A090
Data 1{FFE| A090
SR| 0000

DS70030F-page 5-186

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

POP Pop TOS to Wd

Syntax: {label:} POP wd
(wd]
[Wd++]
(Wd--]
[--Wd]
[++Wd]
[Wd+Whb]
Operands: Wd e [WO ... W15]
Wb e [WO ... W15]
Operation: (W15)-2 - W15
(TOS) —» Wd
Status Affected: None
Encoding: | o111 | 1www | wonn hddd atoo | 1111 |
Description: The stack pointer (W15) is pre-decremented by 2 and the Top-of-Stack

(TOS) word is written to Wd. Either register direct or indirect addressing
may be used for Wd.

The ‘w’ bits define the offset register Wb.
The ‘h’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.

Note 1: This instruction operates in Word mode only.
2: This instruction is a specific version of the “Mov ws, wd”
instruction (MOvV [--W15], Wwd). It reverse assembles as

MOV.
Words: 1
Cycles: 1
Example 1 POP W4 ; Pop TOS to W4
Before After
Instruction Instruction
W4| EDAS W4| c4s5n
W15 1008 W15| 1006
Data 1006| 452 Data 1006| c45A
SR| 0000 SR| 0000
Example 2 POP [++W10] ; Pre-increment W10
; Pop TOS to [W10]
Before After
Instruction Instruction
W10| 0E02 W10 0E04
W15| 1766 W15 1764
Data OEO4| E3E1 Data OEO4| c7B5 c? 5
Data 1764 c785 Data 1764 c785 o 2
SR| 0000 SR| 0000 % g
=
O o0
a =

© 2005 Microchip Technology Inc. DS70030F-page 5-187

dsPIC30F Programmer’s Reference Manual

POP.D

Double Pop TOS to Wnd:Wnd+1

Syntax: {label:} POP.D Wnd
Operands: Wnd e [WO0, W2, W4, ... W14]
Operation: (W15)-2 - W15
(TOS) —» Wnd+1
(W15)-2 > W15
(TOS) » Wnd
Status Affected: None
Encoding: | 1011 | 1110 0000 0ddd 0100 | 1111 ‘
Description: A double-word is popped from the Top-of-Stack (TOS) and stored to
Wnd:Wnd+1. The Most Significant Word is stored to Wnd+1, and the
Least Significant Word is stored to Wnd. Since a double-word is popped,
the stack pointer (W15) gets decremented by 4.
The ‘d’ bits select the address of the destination register pair.
Note 1: This instruction operates on double-words. See Figure 4-2 for
information on how double-words are aligned in memory.
2: Wnd must be an even working register.
3: This instruction is a specific version of the “MOV.D wWs, wWnd”
instruction (MOV.D [--W15], Wnd). ltreverse assembles as
MOV .D.
Words: 1
Cycles: 2
Example 1 POP.D W6 ; Double pop TOS to W6
Before After
Instruction Instruction
W6| 07BB W6| 3210
W7| 89AE W7| 7654
W15 0850 W15| o0s84cC
Data 084C| 3210 Data 084C| 3210
Data 084E| 7654 Data 084E| 7654
SR| 0000 SR| 0000
Example 2 POP.D WO ; Double pop TOS to WO
Before After
Instruction Instruction
WO| 673E Wo| 791cC
Wi1 DD23 W1 D400
W15 0BBC W15| o0BBS8
Data 0BB8| 791cC Data 0BB8| 791cC
Data OBBA| D400 Data OBBA| D400
SR| 0000 SR| 0000

DS70030F-page 5-188

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

PO P.S Pop Shadow Registers

Syntax: {label:} POP.S

Operands: None

Operation: Pop shadow registers

Status Affected: DC,N,QV, zZ,C

Encoding: ‘ 1111 ‘ 1110 1000 0000 0000 ‘ 0000 |
Description: The values in the shadow registers are copied into their respective

primary registers. The following registers are affected: W0-W3, and the
C, Z, 0V, N and DC Status register flags.

Note 1: The shadow registers are not directly accessible. They may
only be accessed with PUSH. S and POP. S.
2: The shadow registers are only one-level deep.

Words: 1
Cycles: 1
Example 1 POP.S ; Pop the shadow registers
; (See PUSH.S Example 1 for contents of shadows)
Before After
Instruction Instruction

WO0| 07BB WO0| 0000

Wi1 03FD Wi1 1000

W2| 9610 W2| 2000

W3| 7249 W3| 3000

SR| 00E0|(IPL=7) SR| 00E1|(IPL=7, C=1)

Note: After instruction execution, contents of shadow registers are NOT modified.

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-189

dsPIC30F Programmer’s Reference Manual

PUSH Push f to TOS

Syntax: {label:} PUSH f
Operands: fe [0...65534]
Operation: () —» (TOS)
(W15)+2 - W15
Status Affected: None
Encoding: | 1111 | 1000 £E£f | EEEE | fEff | £ff0 |
Description: The contents of the specified file register are written to the Top-of-Stack

(TOS) location and then the stack pointer (W15) is incremented by 2.
The file register may reside anywhere in the lower 32K words of data
memory.

The ‘f bits select the address of the file register.

Note 1: This instruction operates in Word mode only.
2: The file register address must be word aligned.

Words: 1
Cycles: 1
Example 1 PUSH 0x2004 ; Push (0x2004) to TOS
Before After
Instruction Instruction
W15 0BO0O W15 0B02
Data 0B0O 791C Data 0BOO| D400
Data 2004| D400 Data 2004| D400
SR| 0000 SR| 0000
Example 2 PUSH O0xCOE ; Push (0xCOE) to TOS
Before After
Instruction Instruction
W15 0920 W15 0922
Data 0920 0000 Data 0920 67AA
Data OCOE| 67AA Data 2004| 67AA
SR| 0000 SR 0000

DS70030F-page 5-190 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

PUSH Push Ws to TOS

Syntax: {label:} PUSH Ws
[Ws]
[Ws++]
[Ws--]
[--Ws]
[++Ws]
[Ws+Wb]
Operands: Ws e [WO ... W15]
Wb € [WO ... W15]
Operation: (Ws) — (TOS)
(W15)+2 - W15
Status Affected: None
Encoding: ’ 0111 ’ lwww ‘ w001 ‘ 1111 ‘ 1gg9g ‘ ssss
Description: The contents of Ws are written to the Top-of-Stack (TOS) location and

then the stack pointer (W15) is incremented by 2.

The ‘w’ bits define the offset register Wb.
The ‘g’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note 1: This instruction operates in Word mode only.
2: This instruction is a specific version of the “Mov ws, wWd”
instruction (MOV Ws, [W15++]). It reverse assembles as

MOV.
Words: 1
Cycles: 1
Example 1 PUSH W2 ; Push W2 to TOS
Before After
Instruction Instruction
W2| 6889 W2| 6889
W15| 1566 W15| 1568
Data 1566| 0000 Data 1566| 6889
SR| 0000 SR| 0000
Example 2 PUSH [W5+W10] ; Push [W5+W10] to TOS
Before After
Instruction Instruction
W5 1200 W5| 1200
W10| 0044 W10 0044
W15| 0806 W15| 0808
Data 0806| 216F Data 0806| B20A
Data 1244| B202 Data 1244| B20A
SR| 0000 SR| 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-191

dsPIC30F Programmer’s Reference Manual

PUSH.D

Double Push Wns:Wns+1 to TOS

Syntax: {label:} PUSH.D Wns
Operands: Whns € [W0, W2, W4 ... W14]
Operation: (Wns) — (TOS)
(W15)+2 - W15
(Wns+1) — (TOS)
(W15)+2 - W15
Status Affected: None
Encoding: ‘ 1011 ‘ 1110 1001 1111 1000 ‘ sss0 |
Description: A double-word (Wns:Wns+1) is pushed to the Top-of-Stack (TOS). The
Least Significant word (Wns) is pushed to the TOS first, and the Most
Significant word (Wns+1) is pushed to the TOS last. Since a
double-word is pushed, the stack pointer (W15) gets incremented by 4.
The ‘s’ bits select the address of the source register pair.
Note 1: This instruction operates on double-words. See Figure 4-2
for information on how double-words are aligned in memory.
2: Wns must be an even working register.
3: This instruction is a specific version of the “MOV.D wns, wd”
instruction (MOV.D Wns, [W15++]). It reverse assembles
as MOV .D.
Words:
Cycles: 2
Example 1 PUSH.D W6 ; Push W6:W7 to TOS
Before After
Instruction Instruction
W6| c451 W6| c451
W7| 3380 W7| 3380
W15| 1240 W15| 1244
Data 1240 B004 Data 1240| c451
Data 1242| 0891 Data 1242| 3380
SR| 0000 SR| 0000
Example 2 PUSH.D W10 ; Push W10:W1l to TOS
Before After
Instruction Instruction
W10| 80D3 W10| 80D3
W11| 4550 W11| 4550
W15 ocos W15| ococ
Data 0C08| 79B5 Data 0C08| s8o0D3
Data OCOA| 008E Data OCOA| 4550
SR| 0000 SR| 0000

DS70030F-page 5-192

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

P U S H .S Push Shadow Registers

Syntax: {label:} PUSH.S

Operands: None

Operation: Push shadow registers

Status Affected: None

Encoding: ‘ 1111 ‘ 1110 1010 0000 0000 ‘ 0000 ‘
Description: The contents of the primary registers are copied into their respective

shadow registers. The following registers are shadowed: W0-W3, and
the C, Z, OV, N and DC Status register flags.

Note 1: The shadow registers are not directly accessible. They may
only be accessed with PUSH. S and POP. S.
2: The shadow registers are only one-level deep.

Words: 1
Cycles: 1
Example 1 PUSH.S ; Push primary registers into shadow registers
Before After
Instruction Instruction
WO0| 0000 WO0| 0000
Wi+ 1000 Wi1 1000
W2| 2000 W2| 2000
W3| 3000 W3| 3000
SR| 0001|(C=1) SR 0001((C=1)

Note: After an instruction execution, contents of the shadow registers are updated.

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-193

dsPIC30F Programmer’s Reference Manual

PWRSAV

Enter Power Saving Mode

Syntax:

Operands:
Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1

Example 2

{label} PWRSAV #lit1

lit1 e [0,1]

0 — WDT count register
0 — WDT prescaler A count
0 — WDT prescaler B count
0 - WDTO (RCON<4>)
0 — SLEEP (RCON<3>)
0 — IDLE (RCON<2>)
If (lit1 = 0):
Enter SLEEP mode
Else:
Enter IDLE mode

None

1111 1110 0100

0000

0000 ‘ 000k ‘

Place the processor into the specified Power Saving mode. If lit1 = 0,

SLEEP mode is entered. In SLEEP mode

, the clock to the CPU and

peripherals are shutdown. If an on-chip oscillator is being used, it is also

shutdown. If lit1 = 1, IDLE mode is entere

d. In IDLE mode, the clock to

the CPU shuts down, but the clock source remains active and the

peripherals continue to operate.

This instruction resets the Watchdog Timer Count register and the
Prescaler Count registers. In addition, the WDTO, SLEEP and IDLE
flags of the Reset System and Control (RCON) register are reset.

Note 1: The processor will exit from

IDLE or SLEEP through an

interrupt, processor RESET or Watchdog Time-out. See the
dsPIC30F Data Sheet for details.

IDLE (RCON<2>) is set to ‘1’

Time-out, WDTO (RCON<4>)

2: If awakened from IDLE mode,
and the clock source is applied to the CPU.
3: If awakened from SLEEP mode, SLEEP (RCON<3>) is set to
‘1’ and the clock source is started.
4: If awakened from a Watchdog
is setto ‘1’.
1
1
PWRSAV #0 ; Enter SLEEP mode
Before After
Instruction Instruction
SR[0040](IPL=2) SR[0040]|(IPL=2)
PWRSAV #1 ; Enter IDLE mode
Before After
Instruction Instruction

SR[0020](IPL=1) SR[0020](IPL=1)

DS70030F-page 5-194

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

RCALL Relative Call
Syntax: {label:} RCALL Expr
Operands: Expr may be an absolute address, label or expression.
Expr is resolved by the linker to a Slit16, where Slit16 € [-32768 ... 32767].
Operation: (PC)+2 > PC
(PC<15:0>) — (TOS)
(W15) + 2 > W15
(PC<22:16>) — (TOS)
(W15) + 2 > W15
(PC) + (2 * Slit16) —» PC
NOP — Instruction Register
Status Affected: None
Encoding: ‘ 0000 ‘ 0111 ‘ nnnn | nnnn nnnn | nnnn ‘
Description: Relative subroutine call with a range of 32K program words forward or back
from the current PC. Before the call is made, the return address (PC+2) is
pushed onto the stack. After the return address is stacked, the
sign-extended 17-bit value (2 * Slit16) is added to the contents of the PC
and the result is stored in the PC.
The ‘n’ bits are a signed literal that specifies the size of the relative call (in
program words) from (PC+2).
Note: When possible, this instruction should be used instead of CALL,
since it only consumes one word of program memory.
Words:
Cycles: 2
Example 1 012004 RCALL _Taskl ; Call Taskl
012006 ADD WO, W1, W2
012458 _Taskl: SUB WO, W2, W3 ; _Taskl subroutine
012452 -
Before After
Instruction Instruction
PC 01 2004 PC 01 2458
W15 0810 W15 0814
Data 0810 FFFF Data 0810 2006
Data 0812 FFFF Data 0812 0001
SR 0000 SR 0000
Example 2 00620E RCALL _Init ; Call Imit
006210 MOV WO, [Wa++]
007000 _Init: CLR W2 ; _Init subroutine
007002 -
Before After
Instruction Instruction
PC 00 620E PC 00 7000
W15 0C50 W15 0C54
Data 0C50 FFFF Data 0C50 6210
Data 0C52 FFFF Data 0C52 0000
SR 0000 SR 0000

© 2005 Microchip Technology Inc.

DS70030F-page 5-195

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

RCALL

Computed Relative Call

Syntax: {label:} RCALL Wn
Operands: Wn e [WO ... W15]
Operation: (PC)+2 - PC
(PC<15:0>) — (TOS)
(W15) + 2 > W15
(PC<22:16>) — (TOS)
(W15) + 2 > W15
(PC) + (2 * (Wn)) -» PC
NOP — Instruction Register
Status Affected: None
Encoding: | oooo | o001 | o010 | o000 | o000 | ssss |
Description: Computed, relative subroutine call specified by the working register Wn.
The range of the call is 32K program words forward or back from the current
PC. Before the call is made, the return address (PC+2) is pushed onto the
stack. After the return address is stacked, the sign-extended 17-bit value
(2 * (Wn)) is added to the contents of the PC and the result is stored in the
PC. Register direct addressing must be used for Wn.
The ‘s’ bits select the address of the source register.
Words: 1
Cycles: 2
Example 1 O0FF8C EX1: INC W2, W3 ; Destination of RCALL
00FF8E
010008
01000A RCALL W6 ; RCALL with We
01000C MOVE W4, [W10]
Before After
Instruction Instruction
PC 01 000A PC| 00 FFsC
) FFCO W6 FFCO
W15 1004 W15 1008
Data 1004 98FF Data 1004 ooocC
Data 1006 2310 Data 1006 0001
SR 0000 SR 0000
Example 2 000302 RCALL W2 ; RCALL with W2
000304 FF1L Wo, Wi
0004.150 EX2: CLR W2 ; Destination of RCALL
000452
Before After
Instruction Instruction
PC 00 0302 PC| 00 0450
W2 0026 w2 00A6
W15 1004 W15 1008
Data 1004 32BB Data 1004 0304
Data 1006 901A Data 1006 0000
SR 0000 SR 0000

DS70030F-page 5-196

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

R E P EAT Repeat Next Instruction ‘lit14+1’ Times

Syntax: {label:} REPEAT #lit14
Operands: lit14 € [0 ... 16383]
Operation: (lit14) > RCOUNT
(PC)+2 - PC
Enable Code Looping
Status Affected: RA
Encoding: | o000 | 1001 ookk | kkkk | kkkk | kkkk |
Description: Repeat the instruction immediately following the REPEAT instruction

(lit14 + 1) times. The repeated instruction (or target instruction) is held in
the instruction register for all iterations and is only fetched once.

When this instruction executes, the RCOUNT register is loaded with the
repeat count value specified in the instruction. RCOUNT is decremented
with each execution of the target instruction. When RCOUNT equals
zero, the target instruction is executed one more time, and then normal
instruction execution continues with the instruction following the target
instruction.

The ‘K’ bits are an unsigned literal that specifies the loop count.

Special Features, Restrictions:
1. When the repeat literal is ‘0’, REPEAT has the effect of a NOP and
the RA bit is not set.
2. The target REPEAT instruction can NOT be:
* an instruction that changes program flow
* aDO, DISI, LNK, MOV.D, PWRSAV, REPEAT Or UNLK
instruction
* a 2-word instruction

Unexpected results may occur if these target instructions are used.

Note: The REPEAT and target instruction are interruptible.

Words: 1
Cycles: 1
Example 1 000452 REPEAT #9 ; Execute ADD 10 times
000454 ADD [WO++1, W1, [W2++] ; Vector update
Before After
Instruction Instruction
PC 00 0452 PC 00 0454
RCOUNT 0000 RCOUNT 0009
SR 0000 SR 0010 [(RA=1)
ExampleQ 00089E REPEAT #O0x3FF ; Execute CLR 1024 times
0008A0 CLR [We++1] ; Clear the scratch space
Before After
Instruction Instruction
PC 00 089E PC 00 08A0
RCOUNT 0000 RCOUNT 03FF
SR 0000 SR 0010 |(RA=1)

© 2005 Microchip Technology Inc. DS70030F-page 5-197

O
®
(74
0
=
T
=
o
=]
(7

5
7]
-
=
c
(2]
=
(®)
=)

dsPIC30F Programmer’s Reference Manual

R E P E AT Repeat Next Instruction Wn+1 Times

Syntax: {label:} REPEAT Wn
Operands: Wn e [WO ... W15]
Operation: (Wn<13:0>) - RCOUNT
(PC)+2 —» PC
Enable Code Looping
Status Affected: RA
Encoding: | o000 | 1001 1000 0000 | 0000 | ssss |
Description: Repeat the instruction immediately following the REPEAT instruction

(Wn<13:0>) times. The instruction to be repeated (or target instruction)
is held in the instruction register for all iterations and is only fetched
once.

When this instruction executes, the RCOUNT register is loaded with the
lower 14-bits of Wn. RCOUNT is decremented with each execution of
the target instruction. When RCOUNT equals zero, the target instruction
is executed one more time, and then normal instruction execution
continues with the instruction following the target instruction.

The ‘s’ bits specify the Wn register that contains the repeat count.

Special Features, Restrictions:

1. When (Wn) = 0, REPEAT has the effect of a NOP and the RA bit is
not set.

2. The target REPEAT instruction can NOT be:
¢ an instruction that changes program flow

e aDO, DISI, LNK, MOV.D, PWRSAV, REPEAT or ULNK
instruction

¢ a 2-word instruction
Unexpected results may occur if these target instructions are used.

Note: The REPEAT and target instruction are interruptible.

Words: 1
Cycles: 1
Example 1 000A26 REPEAT W4 ; Execute COM (W4+1) times
000A28 COM [WO++]1, [W2++] ; Vector complement
Before After
Instruction Instruction
PC 00 0A26 PC 00 OA28
W4 0023 w4 0023
RCOUNT 0000 RCOUNT 0023
SR 0000 SR 0010 [(RA=1)

DS70030F-page 5-198 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2 00089E REPEAT W10 ; Execute TBLRD (W10+1) times
0008A0 TBLRDL [W2++], [W3++] ; Decrement (0x840)
Before After
Instruction Instruction
PC 00 089E PC| 00 08A0
W10 00FF W10 00FF
RCOUNT 0000 RCOUNT O00FF
SR 0000 SR 0010 [(RA=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-199

dsPIC30F Programmer’s Reference Manual

R ES ET Reset
Syntax: {label:} RESET
Operands: None
Operation: Force all registers that are affected by a MCLR Reset to their RESET
condition.
1 - SWR (RCON<6>)
00— PC
Status Affected: OA, OB, OAB, SA, SB, SAB, DA, DC, IPL<2:0>, RA,N, 0V, Z,C
Encoding: 1111 | 1110 ‘ 0000 0000 0000 ’ 0000
Description: This instruction provides a way to execute a software RESET. All core
and peripheral registers will take their power-on value. The PC will be
set to ‘0’, the location of the RESET GOTO instruction. The SWR bit,
RCON<6>, will be set to ‘1’ to indicate that the RESET instruction was
executed.
Note: Refer to the dsPIC30F Family Reference Manual for the
power-on value of all registers.
Words: 1
Cycles: 1
Examp|e 1 00202A RESET ; Execute software RESET
Before After
Instruction Instruction
PC 00 2022 PC 00 0000
WO 8901 WO 0000
Wi 08BB Wi1 0000
W2 B87A w2 0000
W3 872F w3 0000
W4 Cco8A w4 0000
W5 AAD4 W5 0000
W6 981E W6 0000
W7 1809 W7 0000
W8 C341 w8 0000
W9 90F4 w9 0000
W10 F409 W10 0000
W11 1700 W11 0000
W12 1008 W12 0000
W13 6556 W13 0000
W14 231D w14 0000
W15 1704 W15 0800
SPLIM 1800 SPLIM 0000
TBLPAG 007F TBLPAG 0000
PSVPAG 0001 PSVPAG 0000
CORCON 00FO0 CORCON 0020 |(SATDW=1)
RCON 0000 RCON 0040 [(SWR=1)
SR 0021 |(IPL, C=1) SR 0000

DS70030F-page 5-200

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

RETFIE

Return from Interrupt

Syntax:

Operands:
Operation:

Status Affected:

{label:} RETFIE

None

(W15)-2 - W15

(TOS<15:8>) — (SR<7:0>)
(TOS<7>) — (IPL3, CORCON<3>)
(TOS<6:0>) — (PC<22:16>)
(W15)-2 - W15

(TOS<15:0>) — (PC<15:0>)

NOP — Instruction Register

IPL<3:0>, RA, N, 0V, Z,C

Encoding: ‘ 0000 ‘ 0110 ‘ 0100 ‘ 0000 ‘ 0000 ‘ 0000 ‘

Description: Return from Interrupt Service Routine. The stack is popped, which loads
the low byte of the Status register, IPL<3> (CORCON<3>) and the Most
Significant Byte of the PC. The stack is popped again, which loads the
lower 16 bits of the PC.

Note 1: Restoring IPL<3> and the low byte of the Status register
restores the Interrupt Priority Level to the level before the
execution was processed.

2: Before RETFIE is executed, the appropriate interrupt flag
must be cleared in software to avoid recursive interrupts.
Words: 1
Cycles: 3 (2 if exception pending)
Examp|e 1 000A26 RETFIE ; Return from ISR
Before After
Instruction Instruction
PC 00 0A26 PC| 01 0230
W15 0834 W15 0830
Data 0830 0230 Data 0830 0230
Data 0832 8101 Data 0832 8101
CORCON 0001 CORCON 0001
SR 0000 SR 0081 |(IPL=4, C=1)
Example 2 008050 RETFIE ; Return from ISR
Before After
Instruction Instruction
PC 00 8050 PC 00 7008
W15 0926 W15 0922
Data 0922 7008 Data 0922 7008
Data 0924 0300 Data 0924 0300
CORCON 0000 CORCON 0000
SR 0000 SR 0003 |(Z, C=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-201

O
®
(74
0
=
T
=
o
=]
(7

5
7]
-
=
c
(2]
=
(®)
=)

dsPIC30F Programmer’s Reference Manual

RETLW

Return with Literal in Wn

Syntax:

Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1

PC

WO

W15

Data 1984
Data 1986
SR

Example 2

PC

W2

W15

Data 11FC
Data 11FE
SR

{label:}

lit10 € [0 ...
lit10 € [0 ...

RETLW{.B} #Iit10, Wn

255] for byte operation
1023] for word operation

000440

Wn e [WO ... W15]

(W15)-2 > W15
(TOS) — (PC<22:16>)
(W15)-2 - W15
(TOS) — (PC<15:0>)
lit10 — Wn

None
‘ 0000 ‘ ‘ 0Bkk kkkk kkkk ‘ ddad ‘

Return from subroutine with the specified, unsigned 10-bit literal stored
in Wn. The software stack is popped twice to restore the PC and the
signed literal is stored in Wn. Since two pops are made, the stack
pointer (W15) is decremented by 4.

0101

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘K’ bits specify the value of the literal.
The ‘d’ bits select the address of the destination register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: Forbyte operations, the literal must be specified as an unsigned
value [0:255]. See Section 4.6 “Using 10-bit Literal Oper-
ands” for information on using 10-bit literal operands in Byte
mode.

1

3 (2 if exception pending)
RETLW.B #0xA, WO ; Return with O0xA in WO

After
Instruction

Before
Instruction

00 0440 PC 00 7006

9846 WO 980A

1988 W15 1984

7006 Data 1984 7006

0000 Data 1986 0000

0000 SR 0000

00050A

RETLW #0x230, W2 ; Return with 0x230 in W2
After

Instruction

Before
Instruction

00 050A PC 01 7008

0993 w2 0230

1200 W15 11FC

7008 Data 11FC 7008

0001 Data 11FE 0001

0000 SR 0000

DS70030F-page 5-202

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

RETURN Return

Syntax: {label:} RETURN
Operands: None
Operation: (W15)-2 - W15

(TOS) — (PC<22:16>)
(W15)-2 - W15

(TOS) - (PC<15:0>)

NOP — Instruction Register

Status Affected: None
Encoding: ‘ 0000 | 0110 | 0000 0000 | 0000 | 0000 ‘
Description: Return from subroutine. The software stack is popped twice to restore

the PC. Since two pops are made, the stack pointer (W15) is
decremented by 4.

Words: 1
Cycles: 3 (2 if exception pending)
Example 1 001A06 RETURN ; Return from subroutine
Before After
Instruction Instruction
PC 00 1A06 PC 01 0004
W15 1248 W15 1244
Data 1244 0004 Data 1244 0004
Data 1246 0001 Data 1246 0001
SR 0000 SR 0000
Examp|e2 005404 RETURN ; Return from subroutine
Before After
Instruction Instruction
PC 00 5404 PC 00 0966
W15 090A W15 0906
Data 0906 0966 Data 0906 0966
Data 0908 0000 Data 0908 0000
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-203

dsPIC30F Programmer’s Reference Manual

RLC

Rotate Left f through Carry

Syntax:

Operands:
Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1

Instruction

Data 1232
SR

Example 2 RLC

Instruction

WREG (WO0)
Data 0820
SR

RLC.B

{label:} RLC{.B} f {, WREG}

fe[0..8191]

For byte operation:
(C) — Dest<0>
(f<6:0>) — Dest<7:1>
(f<7>) - C

For word operation:
(C) — Dest<0>
(f<14:0>) — Dest<15:1>
(f<155) - C

e

N,z C

| 1101 | | feer |
Rotate the contents of the file register f one bit to the left through the
Carry flag and place the result in the destination register. The Carry flag

of the Status Register is shifted into the Least Significant bit of the
destination, and it is then overwritten with the Most Significant bit of Ws.

0110 | 1BDf FEEF FEEE

The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for f, 1 for WREG).
The f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

0x1233 ; Rotate Left w/ C (0x1233) (Byte mode)

After
Instruction

Before

E807 Data 1232 D007

0000 SR 0009

(N, C=1)

WREG ; Rotate Left w/ C (0x820) (Word mode)

; Store result in WREG

0x820,

After
Instruction

Before

5601 WREG (WO0)| 42DD

216E Data 0820 216E

0001 |(C=1) SR 0000 [(C=0)

DS70030F-page 5-204

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

RLC

Rotate Left Ws through Carry

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example 1

RLC

WO
W3
SR

{label:} RLC{.B} Ws, Wd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws--], [Wd--]

[++Ws], [++Wd]
[--Ws], [--Wd]

Ws e [WO ... W15]
Wd € [WO ... W15]

For byte operation:
(C) » Wd<0>

(Ws<6:0>) —» Wd<7:1>
(Ws<7>) - C

For word operation:
(C) » Wd<0>
(Ws<14:0>) —» Wd<15:1>
(Ws<15>) - C

o<

N,Z, C
‘ 1101 | 0010 ‘ 1Bgqa gddd dppp ‘ Ssss ‘

Rotate the contents of the source register Ws one bit to the left through
the Carry flag and place the result in the destination register Wd. The
Carry flag of the Status register is shifted into the Least Significant bit of
Wd, and it is then overwritten with the Most Significant bit of Ws. Either
register direct or indirect addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

.B WO, W3 ; Rotate Left w/ C (W0) (Byte mode)
; Store the result in W3
Before After
Instruction Instruction
9976 WO 9976
5879 W3 58ED
0001((C=1) SR 0009 |(N=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-205

O
®
(74
0
=
T
=
o
=]
(7

5
7]
-
=
c
(2]
=
(®)
=)

dsPIC30F Programmer’s Reference Manual

Example 2 RLC
w2
w8

Data 094E
Data 2008
SR

[W2++1,

Before
Instruction

2008

094E

3689

co41

0001

(C=1)

[wW8] ; Rotate Left w/ C [W2] (Word mode)

; Post-increment W2
; Store result in [W8]

w2
w8
Data 094E
Data 2008
SR

After
Instruction

200A

094E

8082

Cco41

0009

(N, C

1)

DS70030F-page 5-206

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

R LN C Rotate Left f without Carry

Syntax: {label:} RLNC{.B} f {,\WREG}
Operands: fe[0...8191]
Operation: For byte operation:

(f<6:0>) — Dest<7:1>
(f<7>) — Dest<0>

For word operation:
(f<14:0>) — Dest<15:1>
(f<15>) — Dest<0>

—

Status Affected: N, Z
Encoding: | 1101 | o110 | oBof FFEE FEFE | FEEE |
Description: Rotate the contents of the file register f one bit to the left and place the

result in the destination register. The Most Significant bit of f is stored in
the Least Significant bit of the destination, and the Carry flag is not
affected.

The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words: 1
Cycles: 1
Example 1 RLNC.B 0x1233 ; Rotate Left (0x1233) (Byte mode)
Before After
Instruction Instruction
Data 1232| E807 Data 1233| D107
SR| 0000 SR| 0008]|(N=1)
Example 2 RLNC 0x820, WREG ; Rotate Left (0x820) (Word mode)
; Store result in WREG
Before After
Instruction Instruction
WREG (W0)| 5601 WREG (WO0)| 42DC
Data 0820| 216E Data 0820 216E
SR| o0001|(C=1) SR 0000 |(C=0)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-207

dsPIC30F Programmer’s Reference Manual

R LN C Rotate Left Ws without Carry

Syntax: {label:} RLNC{.B} Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]

Operands: Ws e [WO ... W15]

Wd € [WO ... W15]
Operation: For byte operation:

(Ws<6:0>) > Wd<7:1>
(Ws<7>) — Wd<0>
For word operation:

(Ws<14:0>) —» Wd<15:1>
(Ws<15>) — Wd<0>

S —

Status Affected: N, Z
Encoding: ‘ 1101 ‘ 0010 ‘ 0Bgq gddd dppp ‘ ssss ‘
Description: Rotate the contents of the source register Ws one bit to the left and

place the result in the destination register Wd. The Most Significant bit of
Ws is stored in the Least Significant bit of Wd, and the Carry flag is not
affected. Either register direct or indirect addressing may be used for

Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for byte, 1 for word).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 RLNC.B WO, W3
Before
Instruction
WO| 9976
W3| 5879

SR| 0001|(C=1)

; Rotate Left

(WO) (Byte mode)

; Store the result in W3

WO
W3
SR

After

Instruction

9976

58EC

0009

(N, C=1)

DS70030F-page 5-208

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2 RLNC [W2++], [W8] ; Rotate Left [W2] (Word mode)
; Post-increment W2
; Store result in [W8]

Before After
Instruction Instruction
W2| 2008 W2| 200a
W8| 094E W8| 094E
Data 094E| 3689 Data 094E| 8083
Data 2008| co41 Data 2008| co041
SR| 0001|(C=1) SR 0009|(N, C=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-209

dsPIC30F Programmer’s Reference Manual

RRC

Rotate Right f through Carry

Syntax:

Operands:
Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1

Data 1232
SR

Example 2

WREG (W0)
Data 0820
SR

RRC.B

RRC

{label} RRC{.B} f {, WREG}

fel0..8191]

For byte operation:
(C) — Dest<7>
(f<7:1>) — Dest<6:0>
(f<0>) - C

For word operation:
(C) — Dest<15>
(f<15:1>) — Dest<14:0>
(f<0>) - C

S

N,z C

| 1101 | FEEF FEFE | FEEE |
Rotate the contents of the file register f one bit to the right through the
Carry flag and place the result in the destination register. The Carry flag

of the Status Register is shifted into the Most Significant bit of the
destination, and it is then overwritten with the Least Significant bit of Ws.

0111 ‘ 1BDf

The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for byte, 1 for word).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

The WREG is set to working register WO.

0x1233 ; Rotate Right w/ C (0x1233) (Byte mode)
After

Instruction

7407

0000

Before
Instruction

E807
0000

Data 1232
SR

0x820, WREG ; Rotate Right w/ C (0x820) (Word mode)

Store result in WREG

i

After
Instruction

90B7
216E
0008

Before
Instruction

5601
216E
0001

WREG (WO0)
Data 0820
SR

(C=1) (N=1)

DS70030F-page 5-210

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

R RC Rotate Right Ws through Carry
Syntax: {label:} RRC{.B} = Ws, Wd
[Ws], (Wd]

[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]

Operands: Ws e [WO ... W15]
Wd e [WO ... W15]

Operation: For byte operation:
(C) - Wd<7>
(Ws<7:1>) - Wd<6:0>
(Ws<0>) - C
For word operation:
(C) > Wd<15>
(Ws<15:1>) —» Wd<14:0>

(Ws<0>) - C
o
Status Affected: N, Z C
Encoding: ‘ 1101 | 0011 ‘ 1Bgg gddd dppp ‘ ssss ‘
Description: Rotate the contents of the source register Ws one bit to the right through

the Carry flag and place the result in the destination register Wd. The
Carry flag of the Status Register is shifted into the Most Significant bit of
Wd, and it is then overwritten with the Least Significant bit of Ws. Either
register direct or indirect addressing may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 RRC.B WO, W3 ; Rotate Right w/ C (W0) (Byte mode)
; Store the result in W3
Before After
Instruction Instruction

WO| 9976 WO| 9976

W3| 5879 W3| ©58BB

SR| 0001|(C=1) SR 0008 [(N=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-211

dsPIC30F Programmer’s Reference Manual

Example 2 RRC
w2
w8

Data 094E
Data 2008
SR

[W2++1,

Before
Instruction

2008

094E

3689

Co41

0001

(C=1)

[w8] ; Rotate Right w/ C [W2] (Word mode)

; Post-increment W2
; Store result in [W8]

w2
W8
Data 094E
Data 2008
SR

After
Instruction

200A

094E

E020

C041

0009

(N, C=1)

DS70030F-page 5-212

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

R R N C Rotate Right f without Carry

Syntax: {label:} RRNC{.B} f {,\WREG}
Operands: fe[0..8191]
Operation: For byte operation:

(f<7:1>) — Dest<6:0>
(f<0>) — Dest<7>

For word operation:
(f<15:1>) — Dest<14:0>
(f<0>) — Dest<15>

SR

Status Affected: N, Z
Encoding: | 1101 | o111 | oBof FEEE FEEE | FEEF |
Description: Rotate the contents of the file register f one bit to the right and place the

result in the destination register. The Least Significant bit of f is stored in
the Most Significant bit of the destination, and the Carry flag is not
affected.

The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words: 1
Cycles: 1
Example 1 RRNC.B 0x1233 ; Rotate Right (0x1233) (Byte mode)
Before After
Instruction Instruction
Data 1232| E807 Data 1232 7407
SR| 0000 SR| 0000
Example 2 RRNC 0x820, WREG ; Rotate Right (0x820) (Word mode)
; Store result in WREG
Before After
Instruction Instruction
WREG (W0)| 5601 WREG (WO0)| 10B7
Data 0820| 216E Data 0820| 216E
SR| 0001|(C=1) SR 0001 ((C=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-213

dsPIC30F Programmer’s Reference Manual

RRNC

Rotate Right Ws without Carry

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:
Cycles:

Example 1

{label:} RRNC{.B} Ws, Wd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]

Ws e [WO ... W15]
Wd e [WO ... W15]

For byte operation:
(Ws<7:1>) —» Wd<6:0>
(Ws<0>) —» Wd<7>

For word operation:
(Ws<15:1>) —» Wd<14:0>
(Ws<0>) - Wd<15>

S

N, Z
‘ 1101 | 0011 ‘ 0Bag gddd dppp ‘ ssss ‘

Rotate the contents of the source register Ws one bit to the right and
place the result in the destination register Wd. The Least Significant bit
of Ws is stored in the Most Significant bit of Wd, and the Carry flag is not
affected. Either register direct or indirect addressing may be used for Ws
and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

RRNC.B WO, W3 ; Rotate Right (W0) (Byte mode)

WO
W3
SR

; Store the result in W3

Before After
Instruction Instruction
9976 WO0| 9976
5879 W3| 583B
0001 |(C=1) SR 0001 |(C=1)

DS70030F-page 5-214

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example2 RRNC [W2++], [W8] ; Rotate Right [W2] (Word mode)
; Post-increment W2
; Store result in [W8]

Before After
Instruction Instruction
W2| 2008 W2| 200a
W8| 094E W8| 094E
Data 094E| 3689 Data 094E| E020
Data 2008| co41 Data 2008| co41
SR| 0000 SR 0008 |(N=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-215

dsPIC30F Programmer’s Reference Manual

SAC Store Accumulator

Syntax: {label:} SAC Acc, {#Slit4,} Wd
[(Wd]
[Wd++]
[(Wd--]
[--Wd]
[++Wd]
[Wd+Whb]
Operands: Acc € [A,B]
Slit4 € [-8 ... +7]
Wb, Wd € [WO ... W15]
Operation: Shiftg)it4(Acc) (optional)
(Acc[31:16]) -> Wd
Status Affected: None
Encoding: | 11200 | 1100 | Awww | wrrr | rhhh | dddd |
Description: Perform an optional, signed 4-bit shift of the specified accumulator, then

store the shifted contents of AccH (Acc[31:16]) to Wd. The shift range is
-8:7, where a negative operand indicates an arithmetic left shift and a
positive operand indicates an arithmetic right shift. Either register direct
or indirect addressing may be used for Wd.

The ‘A’ bit specifies the source accumulator.

The ‘W’ bits specify the offset register Wb.

The ‘r’ bits encode the optional accumulator pre-shift.
The ‘h’ bits select the destination Address mode.
The ‘d’ bits specify the destination register Wd.

Note 1: This instruction does not modify the contents of Acc.

2: This instruction stores the truncated contents of Acc. The
instruction SAC.R may be used to store the rounded
accumulator contents.

3: If Data Write saturation is enabled (SATDW, CORCON<5>, =
1), the value stored to Wd is subject to saturation after the
optional shift is performed.

Words: 1
Cycles: 1
Example 1 SAC A, #4, W5

; Right shift ACCA by 4
; Store result to W5
; CORCON = 0x0010 (SATDW = 1)

Before After
Instruction Instruction
W5 B900O W5 0120
ACCA | 00 120F FF0O ACCA | 00 120F FF0O
CORCON 0010 CORCON 0010
SR 0000 SR 0000

DS70030F-page 5-216 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2 SAC B, #-4, [W5++]
; Left shift ACCB by 4
; Store result to [W5], Post-increment W5

; CORCON = 0x0010 (SATDW = 1)

Before After
Instruction Instruction
W5 2000 W5 2002
ACCB | FF C891 8F4C ACCB | FF C891 1F4C
Data 2000 SBBE Data 2000 8000
CORCON 0010 CORCON 0010
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-217

dsPIC30F Programmer’s Reference Manual

SAC.R

Store Rounded Accumulator

Syntax:

Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1

{label:} SAC.R wWd
(wd]
[Wd++]
[(Wd--]
[--Wd]
[++Wd]

[Wd+Wb]

Acc, {#Slitd,}

Acc e [A,B]

Slit4 € [-8 ... +7]
Wb e [WO ... W15]
Wd e [WO ... W15]

Shiftg)ii4(Acc) (optional)
Round(Acc)
(Acc[31:16]) —» Wd

None
‘ 1100 |

1101 ‘ Awww | wWrrr ‘ rhhh ‘ dddd ‘

Perform an optional, signed 4-bit shift of the specified accumulator, then
store the rounded contents of AccH (Acc[31:16]) to Wd. The shift range
is -8:7, where a negative operand indicates an arithmetic left shift and a
positive operand indicates an arithmetic right shift. The Rounding mode
(Conventional or Convergent) is set by the RND bit, CORCON<1>.
Either register direct or indirect addressing may be used for Wd.

The ‘A’ bit specifies the source accumulator.

The ‘W’ bits specify the offset register Wb.

The ‘r’ bits encode the optional accumulator pre-shift.
The ‘h’ bits select the destination Address mode.
The ‘d’ bits specify the destination register Wd.

Note 1: This instruction does not modify the contents of the Acc.

2: This instruction stores the rounded contents of Acc. The
instruction SAC may be used to store the truncated
accumulator contents.

3: If Data Write saturation is enabled (SATDW, CORCON<5>,
= 1), the value stored to Wd is subject to saturation after the
optional shift is performed.

SAC.R A, #4, WS

; Right shift ACCA by 4
; Store rounded result to W5

; CORCON =

W5
ACCA
CORCON
SR

0x0010 (SATDW = 1)

Before
Instruction

After
Instruction

B90O W5 0121

00 120F FF00 ACCA | 00 120F FF0O

0010 CORCON 0010

0000 SR 0000

DS70030F-page 5-218

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2 SAC.R B, #-4, [W5++]
; Left shift ACCB by 4
; Store rounded result to [W5], Post-increment W5
; CORCON = 0x0010 (SATDW = 1)

Before After
Instruction Instruction
W5 2000 W5 2002
ACCB | FF F891 8F4C ACCB | FF F891 8F4C
Data 2000 5BBE Data 2000 8919
CORCON 0010 CORCON 0010
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-219

dsPIC30F Programmer’s Reference Manual

SE

Sign-Extend Ws

Syntax: {label:} SE Ws, Wnd
[Ws],
[Ws++],
(Ws-],
[++Ws],
[--Ws],
Operands: Ws € [WO ... W15]
Wnd € [WO ... W15]
Operation: Ws<7:0> - Wnd<7:0>
If (Ws<7>=1):
0xFF — Wnd<15:8>
Else:
0 —» Wnd<15:8>
Status Affected: N,Z C
Encoding: 1111 1011 0000 0ddd dppp ‘ ssss |
Description: Sign-extend the byte in Ws and store the 16-bit result in Wnd. Either

register direct or indirect addressing may be used for Ws, and register
direct addressing must be used for Wnd. The C flag is set to the
complement of the N flag.

The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note 1:

2:

Words: 1
Cycles: 1

Example1 SE W3, W4 ;

Before
Instruction

W3| 7839
W4| 1005
SR 0000

Example2 SE [W2++], W12

Before
Instruction
W2| 0900
W12| 1002
Data 0900| 008F
SR| 0000

This operation converts a byte to a word, and it uses no . B or
. W extension.

The source Ws is addressed as a byte operand, so any
address modification is by ‘1’.

Sign-extend W3 and store to W4

After
Instruction
W3 7839
W4| 0039

SR| 0001|(C=1)

; Sign-extend [W2] and store to W12
; Post-increment W2

After
Instruction
W2| 0901
W12| FF8F

Data 0900 008F
SR| 0008([(N=1)

DS70030F-page 5-220

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

SETM Set f or WREG

Syntax: {label:} SETM{B} f
WREG

Operands: fe[0..8191]

Operation: For byte operation:

0xFF — destination designated by D
For word operation:
0xFFFF — destination designated by D

Status Affected: None

Encoding: 1110 1111 1BDf | FEFE | FEFE | FEFE |

Description: All the bits of the specified register are set to ‘1’. If WREG is specified,
the bits of WREG are set. Otherwise, the bits of the specified file register
are set.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words: 1
Cycles: 1
Example 1 SETM.B 0x891 ; Set 0x891 (Byte mode)
Before After
Instruction Instruction
Data 0890 2739 Data 0890 FF39
SR| 0000 SR| 0000
Example 2 SETM WREG ; Set WREG (Word mode)
Before After
Instruction Instruction
WREG (W0)| 0900 WREG (W0)| FFFF
SR| 0000 SR| 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-221

dsPIC30F Programmer’s Reference Manual

SETM

Set Ws
Syntax: {label:} SETM{.B} Wd
[Wd]
[Wd++]
[Wd--]
[++Wd]
[--Wd]
Operands: Wd e [WO ... W15]
Operation: For byte operation:
0xFF — Wd for byte operation
For word operation:
0xFFFF — Wd for word operation
Status Affected: None
Encoding: 1110 1011 1Bqq | qddd ‘ 3000 ‘ 0000 ‘
Description: All the bits of the specified register are set to ‘1’. Either register direct or
indirect addressing may be used for Wd.
The ‘B’ bits selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example1 SETM.B W13 ; Set W13 (Byte mode)
Before After
Instruction Instruction
W13 2739 W13| 27FF
SR| 0000 SR| 0000
Example 2 SETM [--W6] ; Pre-decrement W6 (Word mode)
; Set [Wé6]
Before After
Instruction Instruction
W6| 1250 W6| 124E
Data 124E 3CD9 Data 124E FFFF
SR| 0000 SR| 0000

DS70030F-page 5-222

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

SFTAC

Arithmetic Shift Accumulator by Slit6é

Syntax: {label:} SFTAC Acc, #Slit6
Operands: Acc € [A,B]
Slité € [-16 ... 16]
Operation: Shift,(Acc) — Acc
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: | 1100 | 1000 | A000 0000 01kk | kkkk ‘
Description: Arithmetic shift the 40-bit contents of the specified accumulator by the
signed, 6-bit literal and store the result back into the accumulator. The
shift range is -16:16, where a negative operand indicates a left shift and
a positive operand indicates a right shift. Any bits which are shifted out of
the accumulator are lost.
The ‘A’ bit selects the accumulator for the result.
The ‘K’ bits determine the number of bits to be shifted.
Note 1: If saturation is enabled for the target accumulator (SATA,
CORCON<7> or SATB, CORCON<6>), the value stored to
the accumulator is subject to saturation.

2: If the shift amount is greater than 16 or less than -16, no
modification will be made to the accumulator, and an
arithmetic trap will occur.

Words: 1
Cycles: 1
Example 1 SFTAC A, #12
; Arithmetic right shift ACCA by 12
; Store result to ACCA
; CORCON = 0x0080 (SATA = 1)
Before After
Instruction Instruction
ACCA | 00 120F FF0O ACCA | 00 0001 20FF
CORCON 0080 CORCON 0080
SR 0000 SR 0000
Example 2 SFTAC B, #-10
; Arithmetic left shift ACCB by 10
; Store result to ACCB
; CORCON = 0x0040 = 1)
Before After
Instruction Instruction
ACCB | FF FFF1 8F4C ACCB | FF C63D 3000
CORCON 0040 CORCON 0040
SR 0000 SR 0000

© 2005 Microchip Technology Inc.

DS70030F-page 5-223

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

SFTAC

Arithmetic Shift Accumulator by Wb

Syntax: {label:} SFTAC Acc, Wb
Operands: Acc € [A,B]
Wb e [WO ... W15]
Operation: Shiftwpy(Acc) — Acc
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: | 1100 | 1000 | m000 0000 0000 | ssss |
Description: Arithmetic shift the 40-bit contents of the specified accumulator and
store the result back into the accumulator. The Least Significant 6 bits of
Wb are used to specify the shift amount. The shift range is -16:16,
where a negative value indicates a left shift and a positive value
indicates a right shift. Any bits which are shifted out of the accumulator
are lost.
The ‘A’ bit selects the accumulator for the source/destination.
The ‘s’ bits select the address of the shift count register.
Note 1: If saturation is enabled for the target accumulator (SATA,
CORCON<7> or SATB, CORCON<6>), the value stored to
the accumulator is subject to saturation.

2: If the shift amount is greater than 16 or less than -16, no
modification will be made to the accumulator, and an
arithmetic trap will occur.

Words: 1
Cycles: 1
Example 1 SFTAC A, WO
; Arithmetic shift ACCA by (W0)
; Store result to ACCA
; CORCON = 0x0000 (saturation disabled)
Before After
Instruction Instruction
wWo FFFC Wo FFFC
ACCA | 00 320F ABO09 ACCA | 03 20FA B090
CORCON 0000 CORCON 0000
SR 0000 SR 8800 [(OA, OAB=1)
Example 2 SFTAC B, W12
; Arithmetic shift ACCB by (W12)
; Store result to ACCB
; CORCON = 0x0040 (SATB = 1)
Before After
Instruction Instruction
w12 000F w12 000F
ACCB | FF FFF1 8F4C ACCB | FF FFFF FFE3
CORCON 0040 CORCON 0040
SR 0000 SR 0000

DS70030F-page 5-224

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

SL Shift Left f

Syntax: {label:} SL{.B} f {,\WREG}
Operands: fe [0...8191]
Operation: For byte operation:

(f<7>) - (C)
(f<6:0>) — Dest<7:1>
0 — Dest<0>
For word operation:
(f<15>) — (C)
(f<14:0>) — Dest<15:1>

0 — Dest<0>
g J=o
Status Affected: N,z C
Encoding: | 1101 | o100 | oBDf FEEE FEEf | FEFE |
Description: Shift the contents of the file register one bit to the left and place the

result in the destination register. The Most Significant bit of the file
register is shifted into the Carry bit of the Status register, and zero is
shifted into the Least Significant bit of the destination register.

The optional WREG operand determines the destination register. If
WREG is specified, the result is stored in WREG. If WREG is not
specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ¥’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words: 1
Cycles: 1
Example1 SL.B 0x909 ; Shift left (0x909) (Byte mode)
Before After
Instruction Instruction
Data 0908| 9439 Data 0908| 0839
SR| 0000 SR| 0001|(C=1)
Example 2 sL 0x1650, WREG ; Shift left (0x1650) (Word mode)
; Store result in WREG
Before After
Instruction Instruction
WREG (W0)[o0900] WREG (W0)[soca S5
Data 1650| 4065 Data 1650 4065 2 @
SR| 0000 SR| o0008|(N=1) -
T 0
= =
©o
=
Fre =)

© 2005 Microchip Technology Inc. DS70030F-page 5-225

dsPIC30F Programmer’s Reference Manual

SL

Shift Left W

S

Syntax:

Operands:

Operation:

Status Affected:
Encoding:
Description:

Words:
Cycles:

Example1 SL.B

W3
W4
SR

{label:}

SL{.B}

Ws e [WO ... W15]
Wd € [WO ... W15]

For byte operation:

(Ws<7>) - C
(Ws<6:0>) —» Wd<7:1>
0 —» Wd<0>

For word operation:

(Ws<15>) » C
(Ws<14:0>) - Wd<15:1>
0 — Wd<0>

g =

N,Z C

Ws,
[Ws],

Wd
[Wd]
[Wd++]
[Wa--]
[++Wd]
[--Wd]

‘ 1101 | 0000 ‘

0Bga

gddd dppp ‘ ssss ‘

Shift the contents of the source register Ws one bit to the left and place
the result in the destination register Wd. The Most Significant bit of Ws is
shifted into the Carry bit of the Status register, and 0 is shifted into the
Least Significant bit of Wd. Either register direct or indirect addressing
may be used for Ws and Wd.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note:

W3, W4

Before
Instruction

78A9
1005
0000

The extension . B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

; Shift left W3

(Byte mode)

; Store result to W4

W3
W4
SR

After
Instruction

78A9
1052
0001

(C=1)

DS70030F-page 5-226

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2 sL [wW2++], [W12] ; Shift left [W2] (Word mode)
; Store result to [W12]
; Post-increment W2

Before After
Instruction Instruction
W2| 0900 W2| 0902
W12| 1002 W12| 1002
Data 0900| 800F Data 0900 800F
Data 1002 6722 Data 1002 001E
SR| 0000 SR| 0001((C=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-227

dsPIC30F Programmer’s Reference Manual

SL

Shift Left by Short Literal

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

Example1 sL

{label:} SL Wb, #litd, Wnd

Wb e [WO ... W15]
lit4 < [0...15]
Wnd € [WO ... W15]

lit4<3:0> — Shift_Val
Wnd<15:Shift_Val> = Wb<15-Shift_Val:0>
Wd<Shift_Val-1:0> = 0

N, Z
1101

1101 Owww wddd 4100 ‘ Kkkk ‘

Shift left the contents of the source register Wb by the 4-bit unsigned
literal and store the result in the destination register Wnd. Any bits
shifted out of the source register are lost. Direct addressing must be
used for Wb and Wnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the destination register.
The ‘K’ bits provide the literal operand, a five-bit integer number.

w2
SR

Example2 sL

W3
W8
SR

Note: This instruction operates in Word mode only.
1
1
W2, #4, W2 ; Shift left W2 by 4
; Store result to W2
Before After
Instruction Instruction
78A9 W2| 8a90
0000 SR| 0008/|(N=1)

W3, #12, W8 ;

Shift left W3 by 12

; Store result to W8

Before
Instruction
0912 W3
1002 w8
0000 SR

After
Instruction

0912
2000
0000

DS70030F-page 5-228

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

SL Shift Left by Wns
Syntax: {label:} SL Wb, Whns, Wnd
Operands: Wb e [WO ... W15]

Whns € [WO0 ...W15]
Wnd e [WO ... W15]

Operation: Whns<4:0> — Shift_Val
Wnd<15:Shift_Val> = Wb<15-Shift_Val:0>
Wd<Shift_Val-1:0> =0

Status Affected: N, Z
Encoding: 1101 1101 ‘ Owww ‘ wddd | dooo | ssss l
Description: Shift left the contents of the source register Wb by the 5 Least

Significant bits of Wns (only up to 15 positions) and store the result in
the destination register Wnd. Any bits shifted out of the source register
are lost. Register direct addressing must be used for Wb, Wns and
Whnd.

The ‘w’ bits select the address of the base register.
The ‘d’ bits select the address of the destination register.
The ‘s’ bits select the address of the source register.

Note 1: This instruction operates in Word mode only.
2: If Wns is greater than 15, Wnd will be loaded with 0xo0.

Words: 1
Cycles: 1
Example1 sSL w0, w1, W2 ; Shift left WO by W1l<0:4>
; Store result to W2
Before After
Instruction Instruction
WO0| o09a4 WO0| 09Aa4
Wi1 8903 W1 8903
W2| 78A9 W2| 4D20
SR| 0000 SR| 0000
Example2 SL W4, W5, Wé ; Shift left W4 by W5<0:4>
; Store result to Wé
Before After
Instruction Instruction
W4| 2n409 W4| n409
W5| FFO1 W5| FFo01
W6| 0883 W6| 4812
SR| 0000 SR| 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-229

dsPIC30F Programmer’s Reference Manual

S U B Subtract WREG from f

Syntax: {label:} SUB{B} f {,WREG}

Operands: fe[0..8191]

Operation: (f) — (WREG) — destination designated by D

Status Affected: DC,N,0V,Z C

Encoding: | 1011 | o101 | ompf FFEE FEEE FEEF
Description: Subtract the contents of the default working register WREG from the

contents of the specified file register, and place the result in the
destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG.
If WREG is not specified, the result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words: 1
Cycles: 1
Example 1 SUB.B Ox1FFF ; Sub. WREG from (0x1FFF) (Byte mode)
; Store result to O0x1FFF
Before After
Instruction Instruction
WREG (W0)| 7804 WREG (W0)| 7804
Data 1FFE 9439 Data 1FFE 9039
SR| 0000 SR| 0009|(N, C=1)
Example2 SUB 0xA04, WREG ; Sub. WREG from (0xA04) (Word mode)
; Store result to WREG
Before After
Instruction Instruction
WREG (W0)| 6234 WREG (W0)| E2EF
Data 0AO4| 4523 Data 0AO4| 4523
SR| 0000 SR| 0008|(N=1)

DS70030F-page 5-230 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

SuB

Subtract Literal from Wn

Syntax:

Operands:

Operation:
Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1 SUB.B

WO
SR

{label:} SUB{B} #it10, Wn

lit10 € [0 ... 255] for byte operation
lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

(Wn) — lit10 — Wn
DC,N,0V, Z C
‘ 1011 ‘ 0001 ‘ 0Bkk Kkkkk Kkkkk ‘ dddd ‘

Subtract the 10-bit unsigned literal operand from the contents of the
working register Wn, and store the result back in the working register
Wn. Register direct addressing must be used for Wn.

The ‘B’ bit selects byte or word operation.
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Lit-
eral Operands” for information on using 10-bit literal
operands in Byte mode.

#0x23, WO ; Sub. 0x23 from WO (Byte mode)
; Store result to WO

Before After
Instruction Instruction
7804 WO0| 78E1
0000 SR| 0008]|(N=1)
#0x108, W4 ; Sub. 0x108 from W4 (Word mode)

Example 2 suUB

W4

; Store result to W4

Before After
Instruction Instruction
6234 W4| e612C
0000 SR| 0001{(C=1)

SR

© 2005 Microchip Technology Inc.

DS70030F-page 5-231

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

S U B Subtract Short Literal from Wb
Syntax: {label:} SUB{.B} Wb, #lit5, Wwd
[Wd]
[Wd++]
(Wd--]
[++Wd]
[--Wd]
Operands: Wb e [WO ... W15]
it € [0 ... 31]
Wd e [WO ... W15]
Operation: (Wb) —lits - Wd
Status Affected: DC,N,QV, Z, C
Encoding: | o101 | owww wBaq gddd dilk | kkkk |
Description: Subtract the 5-bit unsigned literal operand from the contents of the base
register Wb, and place the result in the destination register Wd. Register
direct addressing must be used for Wb. Register direct or indirect
addressing must be used for Wd.
The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘K’ bits provide the literal operand, a five-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example1 SUB.B W4, #0x10, W5 ; Sub. 0x10 from W4 (Byte mode)
; Store result to W5
Before After
Instruction Instruction
W4| 1782 W4| 1782
W5| 7804 W5| 7872
SR| 0000 SR| o0005/((QV, C=1)
Example2 suB WO, #0x8, [W2++] ; Sub. 0x8 from WO (Word mode)
; Store result to [W2]
; Post-increment W2
Before After
Instruction Instruction
WO| F230 WO| F230
W2| 2004 W2| 2006
Data 2004| A557 Data 2004| F228
SR| 0000 SR| 0009((N, C=1)

DS70030F-page 5-232

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

S U B Subtract Ws from Wb

Syntax: {label:} SUB{.B} Wb, Ws, wd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]

Operands: Wb e [WO ... W15]

Ws e [WO ... W15]
Wd e [WO ... W15]

Operation: (Wb) — (Ws) -»> Wd

Status Affected: DC,N,0V,Z,C

Encoding: ‘ 0101 | owww wBgq gddd dppp ‘ ssss ‘
Description: Subtract the contents of the source register Ws from the contents of the

base register Wb and place the result in the destination register Wd.
Register direct addressing must be used for Wb. Either register direct or
indirect addressing may be used for Ws and Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 SUB.B W0, W1, WO ; Sub. Wl from WO (Byte mode)
; Store result to WO
Before After
Instruction Instruction

WO| 1732 WO| 17EE

W1 7844 W1 7844

SR| 0000 SR| 0108|(DC, N=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-233

dsPIC30F Programmer’s Reference Manual

Example 2 suB

w7
w8
W9
Data 1808
Data 2022
SR

W7,

Before
Instruction

[W8++1,

2450

1808

2020

92E4

A557

0000

[WO++]

W7
w8
W9
Data 1808
Data 2022
SR

7

Sub.

[W8] from W7 (Word mode)

Store result to [W9]
Post-increment W8
Post-increment W9

After

Instruction

2450

180A

2022

92E4

916C

01o0cC

(DC, N, OV=1)

DS70030F-page 5-234

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

S U B Subtract Accumulators
Syntax: {label:} SuUB Acc
Operands: Acc € [A,B]
Operation: If (Acc = A):

ACCA - ACCB — ACCA

Else:

ACCB - ACCA — ACCB
Status Affected: OA, OB, OAB, SA, SB, SAB
Encoding: 1100 1011 A011 0000 0000 ’ 0000 ‘
Description: Subtract the contents of the unspecified accumulator from the contents

of Acc, and store the result back into Acc. This instruction performs a
40-bit subtraction.

The ‘A’ bit specifies the destination accumulator.

Words: 1
Cycles: 1
Example 1 SUB A ; Subtract ACCB from ACCA
; Store the result to ACCA
; CORCON = 0x0000 (no saturation)
Before After
Instruction Instruction
ACCA | 76 120F 098A ACCA | 52 1EFC 4D73
ACCB | 23 F312 BC17 ACCB | 23 F312 BC17
CORCON 0000 CORCON 0000
SR 0000 SR 1100 [(OA, OB=1)
Example 2 SUB B ; Subtract ACCA from ACCB
; Store the result to ACCB
; CORCON = 0x0040 (SATB = 1)
Before After
Instruction Instruction
ACCA | FF 9022 2EE1l ACCA | FF 9022 2EE1l
ACCB | 00 2456 8F4C ACCB | 00 7FFF FFFF
CORCON 0040 CORCON 0040
SR 0000 SR 1400 | (SB, SAB=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-235

dsPIC30F Programmer’s Reference Manual

S U B B Subtract WREG and Carry bit from f

Syntax: {label:} SUBB{.B} f {,\WREG}

Operands: fe[0...8191]

Operation: (f) — (WREG) — (6) — destination designated by D

Status Affected: DC,N,QV, Z,C

Encoding: | 1011 | o101 | 1mpe | ffff FEEE FFEE
Description: Subtract the contents of the default working register WREG and the

Borrow flag (Carry flag inverse, C) from the contents of the specified file
register and place the result in the destination register. The optional
WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the
result is stored in the file register

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The f’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
3: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words: 1
Cycles: 1
Example 1 SUBB.B 0x1FFF ; Sub. WREG and C from (0x1FFF) (Byte mode)
; Store result to Ox1FFF
Before After
Instruction Instruction
WREG (WO0)| 7804 WREG (WO0)| 7804
Data 1FFE| 9439 Data 1FFE| 8F39
SR| 0000 SR| 0008]|(N=1)
Example 2 SUBB 0xA04, WREG ; Sub. WREG and C from (0xA04) (Word mode)
; Store result to WREG
Before After
Instruction Instruction
WREG (W0)| 6234 WREG (W0)| 0000
Data OA04| 6235 Data 0A0O4| 6235
SR| 0000 SR 0001 |(C=1)

DS70030F-page 5-236

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

S U B B Subtract Wn from Literal with Borrow
Syntax: {label:} SUBB{.B} #lit10, Wn
Operands: lit10 € [0 ... 255] for byte operation

lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]

Operation: (Wn) —lit10 - (C) — Wn

Status Affected: DC,N,0QV, Z,C

Encoding: | 1011 | ooo1 | 1Bkk kkkk Kkkk | ddad |
Description: Subtract the unsigned 10-bit literal operand and the Borrow flag (Carry

flag inverse, C) from the contents of the working register Wn, and store
the result back in the working register Wn. Register direct addressing
must be used for Wn.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Lit-
eral Operands” for information on using 10-bit literal
operands in Byte mode.

3: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words: 1
Cycles: 1
Example 1 SUBB.B #0x23, WO ; Sub. 0x23 and C from WO (Byte mode)
; Store result to WO
Before After
Instruction Instruction
WO0| 7804 WO0| 78E0
SR| 0000 SR| 0108|(DC, N=1)
Example 2 SUBB #0x108, W4 ; Sub. 0x108 and C from W4 (Word mode)
; Store result to W4
Before After
Instruction Instruction
W4| 6234 W4| e612C
SR| o0001|(C=1) SR 0001 |(C=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-237

dsPIC30F Programmer

’s Reference Manual

SuBB

Subtract Short Literal from Wb with Borrow

Syntax:

Operands:

Operation:

Status Affected:

Encoding:

Description:

Words:

Cycles:

Example 1 SUBB.
W4
W5
SR

Example 2 SuUBB
WO
w2

Data 2004

SR

{label} ~ SUBB{.B} Wb, #lit5, Wd
[Wd]
[Wd++]
[Wd--]
[++Wd]
[--Wd]
Wb e [WO ... W15]
lit5 € [0 ... 31]
Wd e [WO ... W15]
(Wb) — it5 — (C) - Wd
DC,N,QV, zZ,C
| o101 | 1www | wBag qddd dilk | kkkk |

Subtract the 5-bit unsigned literal operand and the Borrow flag (Carry
flag inverse, C) from the contents of the base register Wb and place the
result in the destination register Wd. Register direct addressing must be
used for Wb. Either register direct or indirect addressing may be used
for Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The K’ bits provide the literal operand, a five-bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

B W4, #0x10, W5 ; Sub. 0x10 and C from W4 (Byte mode)
; Store result to W5
Before After
Instruction Instruction
1782 W4| 1782
7804 W5| 7871
0000 SR| 0005/((QV, C=1)
WO, #0x8, [W2++] ; Sub. 0x8 and C from WO (Word mode)
; Store result to [W2]
; Post-increment W2
Before After
Instruction Instruction
0009 WO| 0009
2004 W2| 2006
A557 Data 2004| 0000
0020((Z=1) SR| o0103|(DC, Z, C=1)

DS70030F-page 5-238

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

S U B B Subtract Ws from Wb with Borrow
Syntax: {label:} SUBB{.B} Wb, Ws, Wwd
[Ws], (Wd]

[Ws+4+], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wWd]

Operands: Wb € [WO ... W15]
Ws e [WO ... W15]
Wd e [WO ... W15]

Operation: (Wb) — (Ws) — (C) - Wd

Status Affected: DC,N,0V, zZ C

Encoding: ‘ 0101 I lwww | wBgq gddd dppp I ssss ‘
Description: Subtract the contents of the source register Ws and the Borrow flag

(Carry flag inverse, C) from the contents of the base register Wb, and
place the result in the destination register Wd. Register direct
addressing must be used for Wb. Register direct or indirect addressing
may be used for Ws and Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension
to denote a word operation, but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words: 1
Cycles: 1
Example 1 SUBB.B W0, W1, WO ; Sub. W1 and C from WO (Byte mode)
; Store result to WO
Before After
Instruction Instruction
WO| 1732 WO| 17ED
W1 7844 Wi1 7844
SR| 0000 SR| 0108|(DC, N=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-239

dsPIC30F Programmer’s Reference Manual

Example 2 SUBB W7, [W8++], [W9++] ; Sub. [W8]
; Store result to [W9]
; Post-increment W8
; Post-increment W9

w7
w8
w9
Data 1808
Data 2022
SR

Before
Instruction

2450

1808

2022

92E4

A557

0000

W7
w8
W9
Data 1808
Data 2022
SR

After

Instruction

2450

180A

2024

92E4

916C

010C

and C from W7 (Word mode)

(DC, N, OV=1)

DS70030F-page 5-240

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

SUBBR

Subtract f from WREG with Borrow

Syntax: {label:} SUBBR{.B} f {,WREG}

Operands: fe[0..8191]

Operation: (WREG) - (f) — (C) — destination designated by D

Status Affected: DC,N,0V, ZC

Encoding: | 1011 | 1101 | 1BDf FEEF FEEF FEEF

Description: Subtract the contents of the specified file register f and the Borrow flag
(Carry flag inverse, C) from the contents of WREG, and place the result
in the destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG.
If WREG is not specified, the result is stored in the file register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The f bits select the address of the file register.

Note 1: The extension . B in the instruction denotes a byte operation
rather than a word operation. You may use a . w extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.
3: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.
Words: 1
Cycles: 1
Example 1 SUBBR.B 0x803 ; Sub. (0x803) and C from WREG (Byte mode)
; Store result to 0x803
Before After
Instruction Instruction
WREG (W0)| 7804 WREG (W0)| 7804
Data 0802| 9439 Data 0802| 6F39
SR| 0002((Z=1) SR| 0000
Example 2 SUBBR 0xA04, WREG ; Sub. (0xA04) and C from WREG (Word mode)
; Store result to WREG
Before After
Instruction Instruction
WREG (W0)| 6234 WREG (W0)| FFFE
Data 0A0O4| 6235 Data 0A0O4| 6235
SR| 0000 SR 0008/|(N=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-241

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

S U B B R Subtract Wb from Short Literal with Borrow
Syntax: {label:} SUBBR{.B} Wb, #lit5, Wd
[(wd]
[Wd++]
(Wd--]
[++Wd]
[--Wd]
Operands: Wb e [WO ... W15]
lits € [0 ... 31]
Wd e [WO ... W15]
Operation: lit5 — (Wb) — (C) — Wd
Status Affected: DC,N,0QV,Z,C
Encoding: | o001 | 1www | wBqq qddd diik | kkkk |
Description: Subtract the contents of the base register Wb and the Borrow flag (Carry

flag inverse, 6) from the 5-bit unsigned literal and place the result in the
destination register Wd. Register direct addressing must be used for
Whb. Register direct or indirect addressing must be used for Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘K’ bits provide the literal operand, a five-bit integer number.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Words: 1
Cycles: 1

Example 1 SUBBR.B W0, #0x10, W1 ; Sub. WO and C from 0x10 (Byte mode)
Store result to W1

7

Before After

Instruction Instruction
W0| F310 WO0| F310
Wi+ 786A WA1 7800

SR| 0003((Z, C=1) SR| o0103((DC, Z, C=1)

Example 2 SUBBR WO, #0x8, [W2++] ; Sub. WO and C from 0x8 (Word mode)
; Store result to [W2]
; Post-increment W2

Before After
Instruction Instruction
WO0| 0009 WO0| 0009
W2| 2004 W2| 2006
Data 2004| A557 Data 2004| FFFE
SR| 0020|(Z=1) SR| 0108|(DC, N=1)

DS70030F-page 5-242 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

SUBBR

Subtract Wb from Ws with Borrow

Syntax:

Operands:

Operation:
Status Affected:
Encoding:
Description:

Words:
Cycles:

{label:} SUBBR{.B} Wb, Ws, Wd
[Ws], [wd]
[Ws+4+], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--wd]

Wb € [WO ... W15]
Ws e [WO ... W15]
Wd e [WO ... W15]

(Ws) — (Wb) — (C) - Wd
DC,N,0V,zZ C
‘ 0001 ‘ lwww ‘ wBaqg gddd dppp ‘ ssss ‘

Subtract the contents of the base register Wb and the Borrow flag (Carry
flag inverse, C) from the contents of the source register Ws and place
the result in the destination register Wd. Register direct addressing must
be used for Wb. Register direct or indirect addressing may be used for
Ws and Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . w extension to
denote a word operation, but it is not required.

2: The Zflag is “sticky” for ADDC, CPB, SUBB and SUBBR.
These instructions can only clear Z.

Example 1 SUBBR.B W0, W1, WO ; Sub. WO and C from Wl (Byte mode)

WO
Wi1

; Store result to WO

Before After
Instruction Instruction
1732 WO| 1711
7844 W1 7844
0000 SR| 0001|(C=1)

SR

© 2005 Microchip Technology Inc.

DS70030F-page 5-243

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

Example 2 SUBBR W7, [W8++], [W9++] ; Sub. W7 and C from [W8] (Word mode)
; Store result to [W9]

; Post-increment W8

; Post-increment W9

w7
w8
W9
Data 1808
Data 2022
SR

Before
Instruction

2450

1808

2022

92E4

A557

0000

W7
w8
W9
Data 1808
Data 2022
SR

After

Instruction

2450

180A

2024

92E4

6ES3

0005

(OV, C=1)

DS70030F-page 5-244

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

S U B R Subtract f from WREG

Syntax: {label:} SUBR{.B} f {,WREG}

Operands: fe[0...8191]

Operation: (WREG) — (f) — destination designated by D

Status Affected: DC,N, 0V, Z,C

Encoding: | 1011 | 1101 | omDf FEFE FEEE FEFF
Description: Subtract the contents of the specified file register from the contents of

the default working register WREG, and place the result in the
destination register. The optional WREG operand determines the
destination register. If WREG is specified, the result is stored in WREG.
If WREG is not specified, the result is stored in the file register

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘¥’ bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

Words: 1
Cycles: 1
Example 1 SUBR.B O0x1FFF ; Sub. (0x1FFF) from WREG (Byte mode)
; Store result to O0x1FFF
Before After
Instruction Instruction
WREG (WO0) 7804 WREG (W0) 7804
Data 1FFE 9439 Data 1FFE 7039
SR| 0000 SR 0000
Example 2 SUBR 0xA04, WREG ; Sub. (0xA04) from WREG (Word mode)
; Store result to WREG
Before After
Instruction Instruction
WREG (W0)| 6234 WREG (W0)| FFFF
Data 0A04| 6235 Data 0A04| 6235
SR| 0000 SR 0008 |(N=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-245

dsPIC30F Programmer’s Reference Manual

SUBR

Subtract Wb from Short Literal

Syntax: {label:} SUBR{.B} Wb, #lit5 Wd
(wd]
[Wd++]
(Wd--]
[++Wd]
[--Wd]
Operands: Wb e [WO ... W15]
lits € [0 ... 31]
Wd e [WO ... W15]
Operation: lit5 — (Wb) —» Wd
Status Affected: DC,N,0V,Z, C
Encoding: | 0001 | owww wBaq qddd a1k | Kk |
Description: Subtract the contents of the base register Wb from the unsigned 5-bit
literal operand, and place the result in the destination register Wd.
Register direct addressing must be used for Wb. Either register direct or
indirect addressing may be used for Wd.
The ‘W’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘K’ bits provide the literal operand, a five-bit integer number.
Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .W extension to
denote a word operation, but it is not required.
Words: 1
Cycles: 1
Example 1 SUBR.B W0, #0x10, W1 ; Sub. WO from 0x10 (Byte mode)
; Store result to Wl
Before After
Instruction Instruction
WO| F310 WO| F310
W1| 786A W1| 7800
SR| 0000 SR| 0103((DC, Z, C=1)
Example2 SUBR W0, #0x8, [W2++] ; Sub. WO from 0x8 (Word mode)
; Store result to [W2]
; Post-increment W2
Before After
Instruction Instruction
WO| 0009 WO| 0009
W2| 2004 W2| 2006
Data 2004| A557 Data 2004| FFFF
SR| 0000 SR| 0108|(DC, N=1)

DS70030F-page 5-246

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

S U B R Subtract Wb from Ws
Syntax: {label:} SUBR{.B} Wb, Ws, wd
[Ws], [wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]
Operands: Wb e [WO ... W15]
Ws e [WO ... W15]
Wd e [WO ... W15]
Operation: (Ws) — (Wb) - Wd
Status Affected: DC,N,0V, Z,C
Encoding: ‘ 0001 | owww wBgq gddd dppp ‘ ssss ‘
Description: Subtract the contents of the base register Wb from the contents of the
source register Ws and place the result in the destination register Wd.
Register direct addressing must be used for Wb. Either register direct or
indirect addressing may be used for Ws and Wd.
The ‘w’ bits select the address of the base register.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.
The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.
The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example1 SUBR.B W0, W1, WO ; Sub. WO from W1 (Byte mode)

WO
Wi1

; Store result to WO

Before After
Instruction Instruction
1732 WO| 1712
7844 W1 7844
0000 SR| 0001|(C=1)

SR

© 2005 Microchip Technology Inc.

DS70030F-page 5-247

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

Example 2 SUBR W7,

w7
w8
W9
Data 1808
Data 2022
SR

Before
Instruction

[W8++1,

2450

1808

2022

92E4

A557

0000

[WO++]

w7
w8
W9
Data 1808
Data 2022
SR

7

Sub. W7 from [W8] (Word mode)
Store result to [W9]
Post-increment W8
Post-increment W9

After
Instruction

2450

180A

2024

92E4

6E94

0005

(OV, C=1)

DS70030F-page 5-248

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

SWAP Byte or Nibble Swap Wn

Syntax: {label:} SWAP{.B} Wn
Operands: Wn e [WO ... W15]
Operation: For byte operation:

(Wn)<7:4> < (Wn)<3:0>

For word operation:

(Wn)<15:8> <> (Wn)<7:0>
Status Affected: None
Encoding: | 1111 | 1101 | 1BOO 0000 0000 ssss
Description: Swap the contents of the working register Wn. In Word mode, the two

bytes of Wn are swapped. In Byte mode, the two nibbles of the Least
Significant Byte of Wn are swapped, and the Most Significant Byte of
Whn is unchanged. Register direct addressing must be used for Wn.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘s’ bits select the address of the working register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .w extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 SWAP.B WO ; Nibble swap (WO0)
Before After
Instruction Instruction
WO0| AaB87 WO0| ABR78
SR| 0000 SR| 0000
Example 2 swap WO ; Byte swap (WO0)
Before After
Instruction Instruction
WO0| 8095 WO| 9580
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-249

dsPIC30F Programmer’s Reference Manual

TBLRDH

Table Read High

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

{label:} TBLRDH{.B} [Ws], wd
[Ws++], [wd]
[Ws--], [Wd++]
[++Ws], [Wd--]
[--Ws], [++Wd]
[--Wd]

Ws e [WO ... W15]
Wd e [WO ... W15]

For byte operation:
If (LSB(Ws) = 1)
0—-Wd
Else
Program Mem [(TBLPAG),(Ws)] <23:16> — Wd
For word operation:
Program Mem [(TBLPAG),(Ws)] <23:16> — Wd <7:0>

0 —»> Wd <15:8>
None
1011 ‘ 1010 ‘ 1Bgq I gddd dppp ssss

Read the contents of the Most Significant Word of program memory and
store it to the destination register Wd. The target word address of program
memory is formed by concatenating the 8-bit Table Pointer register,
TBLPAG<7:0>, with the effective address specified by Ws. Indirect
addressing must be used for Ws, and either register direct or indirect
addressing may be used for Wd.

In Word mode, zero is stored to the Most Significant Byte of the destination
register (due to non-existent program memory) and the third program
memory byte (PM<23:16>) at the specified program memory address is
stored to the Least Significant Byte of the destination register.

In Byte mode, the source address depends on the contents of Ws. If Ws is
not word aligned, zero is stored to the destination register (due to
non-existent program memory). If Ws is word aligned, the third program
memory byte (PM<23:16>) at the specified program memory address is
stored to the destination register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination (data) register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source (address) register.

Note: The extension .B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.

DS70030F-page 5-250

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1 TBLRDH.B [WO],
Before
Instruction
Wo 0812
W1 0F71
Data OF70 0944
Program 01 0812 EF 2042
TBLPAG 0001
SR 0000
Example 2 TBLRDH [W6++1,
Before
Instruction
We6 3406
w8 65B1
Program 00 3406 29 2E40
TBLPAG 0000
SR 0000

[WLl++] ; Read PM (TBLPAG: [WO0])
; Store to [W1]
; Post-increment W1

(Byte mode)

After
Instruction
WO 0812
W1 0F72
Data OF70 EF44
Program 01 0812| EF 2042
TBLPAG 0001
SR 0000
W8 ; Read PM (TBLPAG: [W6]) (Word mode)

; Store to W8
; Post-increment W6

After
Instruction
W6 3408
w8 0029
Program 00 3406 29 2E40
TBLPAG 0000
SR 0000

© 2005 Microchip Technology Inc.

DS70030F-page 5-251

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

TBLRDL

Table Read Low

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

{label:} TBLRDL{.B} [Ws], wd
[Ws+4+], [Wd]
[Ws--], [Wd++]
[++Ws], [Wd--]
[--Ws], [++Wd]
[--Wd]

Ws e [WO ... W15]
Wd € [WO ... W15]

For byte operation:
If (LSB(Ws) = 1)
Program Mem [(TBLPAG),(Ws)] <15:8> — Wd
Else
Program Mem [(TBLPAG),(Ws)] <7:0> — Wd
For word operation:
Program Mem [(TBLPAG),(Ws)] <15:0> — Wd

None

1011 ’ 1010 ‘ 0Bgg l gddd dppp ssss

Read the contents of the Least Significant Word of program memory and
store it to the destination register Wd. The target word address of program
memory is formed by concatenating the 8-bit Table Pointer register,
TBLPAG<7:0>, with the effective address specified by Ws. Indirect
addressing must be used for Ws, and either register direct or indirect
addressing may be used for Wd.

In Word mode, the lower 2 bytes of program memory are stored to the
destination register. In Byte mode, the source address depends on the
contents of Ws. If Ws is not word aligned, the second byte of the program
memory word (PM<15:7>) is stored to the destination register. If Ws is
word aligned, the first byte of the program memory word (PM<7:0>) is
stored to the destination register.

The ‘B’ bit selects byte or word operation (0 for word mode, 1 for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination (data) register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source (address) register.

Note: The extension .B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.

DS70030F-page 5-252

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1 TBLRDL.B [WO++], W1 ; Read PM (TBLPAG: [W0]) (Byte mode)
; Store to W1
; Post-increment WO

Before After
Instruction Instruction
WO 0813 WO 0814
Wi 0F71 Wi1 0F20
Data OF70 0944 Data OF70 EF44
Program 01 0812 EF 2042 Program 01 0812| EF 2042
TBLPAG 0001 TBLPAG 0001
SR 0000 SR 0000
Example 2 TBLRDL [Wwel, [W8++] ; Read PM (TBLPAG: [W6]) (Word mode)

; Store to W8
; Post-increment W8

Before After

Instruction Instruction

W6 3406 W6 3408

w8 1202 ws8 1204
Data 1202 658B Data 1202 2E40
Program 00 3406 29 2E40 Program 00 3406 29 2E40
TBLPAG 0000 TBLPAG 0000
SR 0000 SR 0000

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-253

dsPIC30F Programmer’s Reference Manual

TBLWTH

Table Write High

Syntax:

Operands:

Operation:

Status Affected:
Encoding:

Description:

Words:
Cycles:

{label:} TBLWTH{.B} Ws, [Wd]
[Ws], [Wd++]
[Ws++], [Wd--]
[Ws--], [++Wd]
[++Ws], [--wd]
[--Ws],

Ws e [WO ... W15]
Wd e [WO ... W15]

For byte operation:
If (LSB(Wd) = 1)
NOP
Else
(Ws) — Program Mem [(TBLPAG),(Wd)]<23:16>
For word operation:
(Ws)<7:0> — Program Mem [(TBLPAG),(Wd)] <23:16>

None

| 1011 ‘ 1011 ‘ 1Bqgq ‘ gddd | dppp |ssss|

Store the contents of the working source register Ws to the Most
Significant Word of program memory. The destination word address of
program memory is formed by concatenating the 8-bit Table Pointer
register, TBLPAG<7:0>, with the effective address specified by Wd. Either
direct or indirect addressing may be used for Ws, and indirect addressing
must be used for Wd.

Since program memory is 24-bits wide, this instruction can only write to
the upper byte of program memory (PM<23:16>). This may be performed
using a Wd that is word aligned in Byte mode or Word mode. If Byte mode
is used with a Wd that is not word aligned, no operation is performed.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination (address) register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source (data) register.

Note: The extension .B in the instruction denotes a byte move rather
than a word move. You may use a .W extension to denote a
word move, but it is not required.

DS70030F-page 5-254

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1 TBLWTH.B [WO++], [W1] ; Write [WO]... (Byte mode)
; to PM Latch High (TBLPAG: [W1])
; Post-increment WO
Before After
Instruction Instruction
WO 0812 WO 0812
W1 0F70 Wi1 0F70
Data 0812 0944 Data 0812 EF44
Program 01 OF70 EF 2042 Program 01 OF70| 44 2042
TBLPAG 0001 TBLPAG 0001
SR 0000 SR 0000
Note: Only the Program Latch is written to. The contents of program memory
are not updated until the FLASH memory is programmed using the
procedure described in the dsPIC30F Family Reference Manual.
Example 2 TBLWTH W6, [W8++] ; Write W6... (Word mode)
; to PM Latch High (TBLPAG: [W8])
; Post-increment W8
Before After
Instruction Instruction
Wé 0026 W6 0026
w8 0870 W8 0872
Program 00 0870 22 3551 Program 00 0870 26 3551
TBLPAG 0000 TBLPAG 0000
SR 0000 SR 0000
Note: Only the Program Latch is written to. The contents of program memory

are not updated until the FLASH memory is programmed using the
procedure described in the dsPIC30F Family Reference Manual.

© 2005 Microchip Technology Inc.

DS70030F-page 5-255

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

TBLWTL

Table Write Low

Syntax:

Operands:

Operation:

Status Affected:

Encoding:
Description:

Words:
Cycles:

{label:} TBLWTL{.B} Ws, [wd]
[Ws], [Wd++]
[Ws++], [Wd--]
[Ws--1, [++Wd]
[++Ws], [--Wd]
[--Ws],

Ws e [WO ... W15]
Wd e [WO ... W15]

For byte operation:
If (LSB(Wd)=1)
(Ws) — Program Mem [(TBLPAG),(Wd)] <15:8>
Else
(Ws) — Program Mem [(TBLPAG),(Wd)] <7:0>
For word operation:
(Ws) — Program Mem [(TBLPAG),(Wd)] <15:0>

None

‘ 1011 ‘ 1011 ‘ 0Bag ‘ gddd ‘ dppp ssss

Store the contents of the working source register Ws to the Least Significant
Word of program memory. The destination word address of program
memory is formed by concatenating the 8-bit Table Pointer register,
TBLPAG<7:0>, with the effective address specified by Wd. Either direct or
indirect addressing may be used for Ws, and indirect addressing must be
used for Wd.

In Word mode, Ws is stored to the lower 2 bytes of program memory. In
Byte mode, the Least Significant bit of Wd determines the destination byte.
If Wd is not word aligned, Ws is stored to the second byte of program
memory (PM<15:8>). If Wd is word aligned, Ws is stored to the first byte of
program memory (PM<7:0>).

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination (address) register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source (data) register.

Note: The extension .B in the instruction denotes a byte move rather
than a word move. You may use a . W extension to denote a word
move, but it is not required.

DS70030F-page 5-256

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 1 TBLWTL.B WO, [W1++] ; Write WO... (Byte mode)
; to PM Latch Low (TBLPAG: [W1])
; Post-increment W1
Before After
Instruction Instruction
WO 6628 WO 6628
W1 1225 W1 1226
Program 00 1224 78 0080 Program 01 1224 78 2880
TBLPAG 0000 TBLPAG 0000
SR 0000 SR 0000
Note: Only the Program Latch is written to. The contents of program memory
are not updated until the FLASH memory is programmed using the
procedure described in the dsPIC30F Family Reference Manual.
Example 2 TBLWTL [wel, [w8] ; Write [W6]... (Word mode)
; to PM Latch Low (TBLPAG: [W8])
; Post-increment W8
Before After
Instruction Instruction
W6 1600 W6 1600
W8 7208 W8 7208
Data 1600 0130 Data 1600 0130
Program 01 7208 09 0002 Program 01 7208 09 0130
TBLPAG 0001 TBLPAG 0001
SR 0000 SR 0000
Note: Only the Program Latch is written to. The contents of program memory

are not updated until the FLASH memory is programmed using the
procedure described in the dsPIC30F Family Reference Manual.

© 2005 Microchip Technology Inc.

DS70030F-page 5-257

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

U LN K De-allocate Stack Frame

Syntax: {label:} ULNK
Operands: None
Operation: W14 — W15
(W15)-2 - W15
(TOS) > W14
Status Affected: None
Encoding: | 1111 | 1010 1000 0000 0000 ‘ 0000 ‘
Description: This instruction de-allocates a stack frame for a subroutine calling

sequence. The stack frame is de-allocated by setting the stack pointer
(W15) equal to the frame pointer (W14), and then popping the stack to
reset the frame pointer (W14).

Words: 1
Cycles: 1
Example 1 ULNK ; Unlink the stack frame
Before After
Instruction Instruction
W14 2002 W14 2000
W15 20A2 W15 2000
Data 2000 2000 Data 2000 2000
SR 0000 SR 0000
Example 2 ULNK ; Unlink the stack frame
Before After
Instruction Instruction
W14 0802 W14 0800
W15 0812 W15 0800
Data 0800 0800 Data 0800 0800
SR 0000 SR 0000

DS70030F-page 5-258 © 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

XOR

Exclusive OR f and WREG

Syntax:

Operands:
Operation:
Status Affected:
Encoding:
Description:

Words:
Cycles:

Example 1 XOR.B

WREG (WO0)
Data 1FFE
SR

Example 2 XOR

WREG (WO0)
Data 0A04

{label:} XOR{.B} f {,\WREG}

fe[0...8191]

(f).XOR.(WREG) — destination designated by D

N, Z

‘ 1011 ‘ 0110 ‘ 1BDf FEEE FEEE ‘ FEEE ‘

Compute the logical exclusive OR operation of the contents of the
default working register WREG and the contents of the specified file
register and place the result in the destination register. The optional
WREG operand determines the destination register. If WREG is
specified, the result is stored in WREG. If WREG is not specified, the
result is stored in the file register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘D’ bit selects the destination (0 for WREG, 1 for file register).
The ‘f bits select the address of the file register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

2: The WREG is set to working register WO.

0X1FFF ; XOR (0x1FFF) and WREG (Byte mode)
; Store result to O0x1FFF
Before After
Instruction Instruction
7804 WREG (WO0)| 7804
9439 Data 1FFE| 9039
0000 SR| 0008]|(N=1)
0xA04, WREG ; XOR (0xA04) and WREG (Word mode)
; Store result to WREG
Before After
Instruction Instruction
6234 WREG (WO0)| 267
AO053 Data 0AO4| 2053
0000 SR 0008 |(N=1)

SR

© 2005 Microchip Technology Inc.

DS70030F-page 5-259

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

XOR

Exclusive OR Literal and Wn

Syntax: {label:} XOR{.B} #lit10, Wn
Operands: lit10 € [0 ... 255] for byte operation
lit10 € [0 ... 1023] for word operation
Wn e [WO ... W15]
Operation: lit10.XOR.(Wn) — Wn
Status Affected: N, Z
Encoding: | 1011 | o010 | 1Bkk kkkk kkkk | dddd |
Description: Compute the logical exclusive OR operation of the unsigned 10-bit literal
operand and the contents of the working register Wn and store the result
back in the working register Wn. Register direct addressing must be
used for Wn.
The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘K’ bits specify the literal operand.
The ‘d’ bits select the address of the working register.

Note 1: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

2: For byte operations, the literal must be specified as an
unsigned value [0:255]. See Section 4.6 “Using 10-bit Lit-
eral Operands” for information on using 10-bit literal
operands in Byte mode.

Words: 1
Cycles: 1
Example1 XOR.B #0x23, WO ; XOR 0x23 and WO (Byte mode)
; Store result to WO
Before After
Instruction Instruction
WO| 7804 WO| 7827
SR| 0000 SR| o000
Example 2 XOR #0x108, W4 ; XOR 0x108 and W4 (Word mode)
; Store result to W4
Before After
Instruction Instruction
W4| 6134 W4| e603cC
SR| 0000 SR| o000

DS70030F-page 5-260

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

XOR Exclusive OR Wb and Short Literal
Syntax: {label:} XOR{.B} Wb, #lit5, Wd
(Wd]
[Wd++]
(Wd--]
[++Wd]
[--Wd]
Operands: Wb e [WO ... W15]
lit5 € [0 ... 31]
Wd e [WO ... W15]
Operation: (Wb).XOR.lit56 - Wd
Status Affected: N, Z
Encoding: | o110 | 1www wBaq qddd diik | kkkk |
Description: Compute the logical exclusive OR operation of the contents of the base

register Wb and the unsigned 5-bit literal operand and place the result in
the destination register Wd. Register direct addressing must be used for
Whb. Either register direct or indirect addressing may be used for Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘K’ bits provide the literal operand, a 5-bit integer number.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a .Ww extension to
denote a word operation, but it is not required.

Words: 1
Cycles: 1
Example 1 XOR.B W4, #0x16, W5 ; XOR W4 and 0x14 (Byte mode)
; Store result to W5
Before After
Instruction Instruction
w4 c822 w4 c822
W5 1200 W5 1234
SR 0000 SR | 0000
Example 2 XOR W2, #O0x1F, [W8++] ; XOR W2 by O0x1F (Word mode)
; Store result to [W8]
; Post-increment W8
Before After
Instruction Instruction
w2 8505 w2 8505
W8 1004 W8 1006
Data 1004 6628 Data 1004 851A
SR 0000 SR | 0008 | (N=1)

- R
oS
0w »n
(T
55
=9
=)
=

m:

© 2005 Microchip Technology Inc. DS70030F-page 5-261

dsPIC30F Programmer’s Reference Manual

XOR

Exclusive OR Wb and Ws

Syntax:

Operands:

Operation:
Status Affected:
Encoding:
Description:

Words:
Cycles:

{label:} XOR{.B} Wb, Ws, Wd
[Ws], [Wd]
[Ws++], [Wd++]
[Ws--], [Wd--]
[++Ws], [++Wd]
[--Ws], [--Wd]

Wb € [WO ... W15]
Ws e [WO ... W15]
Wd e [WO ... W15]

(Wb).XOR.(Ws) — Wd
N, Z
‘ 0110 ‘ lwww ‘ wBgq gddd dppp ‘ ssss ‘

Compute the logical exclusive OR operation of the contents of the
source register Ws and the contents of the base register Wb, and place
the result in the destination register Wd. Register direct addressing must
be used for Wb. Either register direct or indirect addressing may be used
for Ws and Wd.

The ‘W’ bits select the address of the base register.

The ‘B’ bit selects byte or word operation (0 for word, 1 for byte).
The ‘g’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.

The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note: The extension .B in the instruction denotes a byte operation
rather than a word operation. You may use a . W extension to
denote a word operation, but it is not required.

Exan“ﬂe1 XOR.B W1, [W5++], [W9++] ; XOR W1l and [W5] (Byte mode)

Wi1
W5
W9
Data 2000
Data 2600
SR

; Store result to [W9]
; Post-increment W5 and W9

Before After
Instruction Instruction

AAAA W1 AAAA
2000 W5 | 2001
2600 W9 | 2601
115A Data 2000 | 115A
0000 Data 2600 | 00FO0
0000 SR | 0008 | (N=1)

DS70030F-page 5-262

© 2005 Microchip Technology Inc.

Section 5. Instruction Descriptions

Example 2

XOR W1, W5, W9 ; XOR W1l and W5 (Word mode)
Store the result to W9

7

Before After
Instruction Instruction
Wi1 FEDC Wi+ FEDC
W5 1234 W5 1234
W9 | BA34D W9 ECES8
SR 0000 SR 0008 | (N=1)

© 2005 Microchip Technology Inc.

DS70030F-page 5-263

- R
oS
0w »n
(T
55
=9
=)
=

m:

dsPIC30F Programmer’s Reference Manual

ZE

Zero-Extend Wn

Syntax: {label:} ZE Ws, Wnd
[Ws],
[Ws++],
[Ws--],
[++Ws],
[--Ws],
Operands: Ws e [WO ... W15]
Wnd € [WO ... W15]
Operation: Ws<7:0> — Wnd<7:0>
0 —» Wnd<15:8>
Status Affected: N, Z C
Encoding: 1111 1011 10q9q gddd dppp ‘ ssss ‘
Description: Zero-extend the Least Significant Byte in source working register Ws to

a 16-bit value and store the result in the destination working register
Whnd. Either register direct or indirect addressing may be used for Ws,
and register direct addressing must be used for Wnd. The N flag is
cleared and the C flag is set, because the zero-extended word is always

positive.

The ‘q’ bits select the destination Address mode.

The ‘d’ bits select the address of the destination register.
The ‘p’ bits select the source Address mode.

The ‘s’ bits select the address of the source register.

Note 1: This operation converts a byte to a word, and it uses no .B or
. W extension.
2: The source Ws is addressed as a byte operand, so any

address modification is by 1.

Words: 1
Cycles: 1
Example1 2zE W3, w4 ; zero-extend W3
; Store result to W4
Before After
Instruction Instruction
W3| 7839 W3| 7839
W4| 1005 W4| 0039
SR| 0000 SR| 0001|(C=1)

Example2 ZE [W2++], W12

Before
Instruction
W2| 0900
W12 1002
Data 0900| 268F
SR| 0000

; Zero-extend [W2]
; Store to W12
; Post-increment W2

w2

W12

Data 0900
SR

After

Instruction

0901

008F

268F

0001

DS70030F-page 5-264

© 2005 Microchip Technology Inc.

MICROCHIP

Section 6. Reference

HIGHLIGHTS

This section of the manual contains reference information for the dsPIC30F. It consists of the
following sections:

6.1
6.2
6.3
6.4
6.5

Data MemOrY IMAp ...ttt e e st e e e e e nre e e ean 6-2
Core Special Function RegiSter Mapccocueeiiiriieiii ettt 6-3
Program MemOry MAPooueeiiiiieeie et e e 6-6
INSErUCHION Bit IMAPeeeeeie et 6-7
Instruction Set Summary Tablec.c.oooiiiiiiii e 6-9

© 2005 Microchip Technology Inc. DS70030F-page 6-1

99udJ9)9y H

dsPIC30F Programmer’s Reference Manual

6.1 Data Memory Map
A sample dsPIC30F data memory map is shown in Figure 6-1.

Figure 6-1: Data Memory Map

MS Byte . LS Byte
Address - 16-bits > Address
MSB LSB
- T
0x0001 SFR Space 0x0000
0x07FF | 0x07FE
0x0801 | 0x0800
Near X Data RAM
RAM |
0x17FF | 0x17FE
0x1801 [0x1800
|
~ O0x1FFF Y Data RAM
|
0x27FF | 0x27FE
0x2801 | 0x2800
|
~ oxsool L 0x8000
|
|
X Data RAM
Unimplemented
|
Provides Program |
Space Visibility |
|
|
|
|
OXFFFF | OxXFFFE
.

Note 1: The partition between the X and Y data spaces is device specific. Refer to the
appropriate device data sheet for further details. The data space boundaries
indicated here are for example purposes only.

2: Refer to Section 4. “Instruction Set Details” for information on Data Addressing
modes, performing byte accesses and word alignment requirements.

3: Refer to the dsPIC30F Family Reference Manual for information on accessing
program memory through data address space.

DS70030F-page 6-2 © 2005 Microchip Technology Inc.

Section 6. Reference

6.2 Core Special Function Register Map
The Core Special Function Register Map is shown in Table 6-1. Please refer to the dsPIC30F
Data Sheet for complete register descriptions and the memory map of the remaining special

function registers.

99udJ9)9y

© 2005 Microchip Technology Inc. DS70030F-page 6-3

dsPIC30F Programmer’s Reference Manual

0000 0000 0000 0000 | o5 [z [a0 | N | wva | 0wl [41di [z | 0oa [va | avs [avo | as | vs 80 vo 2r00 us
XOGC X%00 0000 0000 HANZoa — - =T =1 = — — — — — 0v00 HAN30d
XXKKX XXKK XXXK XXXX Jan3oa 3€00 71AaN30a
¥XXX ¥X00 0000 0000 H1HV.LSOd _ — _ — _ — _ — _ — _ — _ — _ — _ — = D€00 HLHYL1SOQ
YO XK XK XK 118V1SOa VEOO 714v1S0q
XXKK XXKK XXXK XXXX 1INNODa 8€00 1INNOOd
KXKK KAXK KAXK KXKXX 1NNODYH 9€00 1NNODYH
0000 0000 0000 0000 DVdASd = || = — — = — = = ¥€00 DVJASd
0000 0000 0000 0000 Ovd1aL — | = — — — = = = 2€00 ovdlgaL
0000 0000 0000 0000 HOd _ — [=1 = — — — — — = 0£00 HOd
0000 0000 0000 0000 10d 3200 10d
0000 0000 0000 0000 ngoov _ <6£>g00V Jo uoisuaixa-ubig 0200 ngoov
0000 0000 0000 0000 Ha0oV V200 HE00V
0000 0000 0000 0000 1900V 8200 1900V
0000 0000 0000 0000 NVOoV _ <6E>VYOOV JO uoIsusixa-ublg 9200 Nvoov
0000 0000 0000 0000 HYOOV 200 HYOOV
0000 0000 0000 0000 WOV 2200 VOOV
0000 0000 0000 0000 WINdS 0200 RER
0000 0000 000T 0000 SIM 3100 SIM
0000 0000 0000 0000 LM 0100 YEM
0000 0000 0000 0OOO LM V100 SIM
0000 0000 0000 0000 LM 8100 2
0000 0000 0000 0000 LM 9100 LEM
0000 0000 0000 0000 OLM 100 0LM
0000 0000 0000 0000 M 2400 6M
0000 0000 0000 0OOOO 8M 0100 8M
0000 0000 0000 0000 IM 3000 LM
0000 0000 0000 0000 M 0000 IM
0000 0000 0000 0OOOO SM Y000 SM
0000 0000 0000 0000 M 8000 M
0000 0000 0000 0000 M 9000 EM
0000 0000 0000 0O0OO Z2M 000 cM
0000 0000 0000 0000 LM 2000 EM
0000 0000 0000 0000 (53HM) OM 0000 oM
olels 1353H oug i Lug i zug i eug _ v ug _ sug _ oug i Lug i gug _ 6ug i oLug i LLug i zLug _ eLug i viug sLug IppY aweN
deyy Jeis1bay 8109 J0€IIdSP !L1-9 a|qeL

© 2005 Microchip Technology Inc.

DS70030F-page 6-4

Section 6. Reference

Reference

0000 0000 0000 0000 — _ — _ — _ — _ — — _ — _ — _ — _ — _ — _ — _ — _ — — — 3200 - 500 paniesey
0000 0000 0000 0000 <0:€1L>1N2ISIa — — ¢s00 1NJISId
KXKK XXXK XXXX XXXX <0:71>A3HAaxX INE| 0S00 AIHaX
KKKK XXKKX XXKKX XXXX <0:S1>ANIAOWA 3700 AN3IAOWA
KKK XKKXKX XXKK XKXXK <0:S1>1HSAOWA o100 1HSAOWA
XXKX KXXK XXXX XXXX <0:G}>aNIAONX V00 AN3AonXx
XXXX XXXX KXXX XKXX <0:51>1HSAONX 81700 1HSAOINX
0000 0000 0000 0000 <0:£>INMX <0:E>INMA <0:e>NMg — — NIAOWA | NIAOWX 9100 NOOJAOW
0000 0T00 0000 0000 4 | aNd | Asd | €1dl | LvSOOV | Malvs | alvs | vivs | 01a | b1a | 21a | 1d3 | sn = = - ¥¥00 NOJOHOO
9jels 13S34 oug | Lyg (cug | evg rug sug oug | Lu¥g |(s¥ug (e¥g [oL¥g | LLuG | cL¥ug | €L UG viug S1ug ppv aweN
(penunuo)) deyy Jsisibay 8109 40£I1dSP :1-9 9|qeL

DS70030F-page 6-5

© 2003 Microchip Technology Inc.

dsPIC30F Programmer’s Reference Manual

6.3 Program Memory Map
A sample dsPIC30F program memory map is shown in Figure 6-2.

Figure 6-2:

Program Space Memory Map

User Memory

Configuration Memory

Space

RESET - GOTO Instruction

RESET - Target Address

Osc. Fail Trap Vector

Stack Error Trap Vector

Address Error Trap Vector

Arithmetic Warn. Trap Vector

Software Trap

Reserved

Vector

Reserved

Vector

Reserved

Vector

Interrupt 0 Vector

Interrupt 1 Vector
L]

Interrupt 52 Vector

Interrupt 53 Vector

Alternate Vector Table

User FLASH
Program Memory
(48K instructions)

Reserved
(Read 0s)

Data FLASH
(4 Kbytes)

Space

Reserved

UNITID

Reserved

Fuse Configuration
Registers

Reserved

DEVID

000000
000002
000004 A

000014 | Vector Tables

00007E
000080
OOOOFE‘
000100

-

017FFE
018000

7FEFFE
7FF000

7FFFFE
800000

8005BE
8005C0

8005FE
800600

F7FFFE
F80000
F8000E
F80010

FEFFFE
FF0000
FFFFFE

DS70030F-page 6-6

© 2005 Microchip Technology Inc.

Section 6. Reference

6.4 Instruction Bit Map

Instruction encoding for the dsPIC30F is summarized in Table 6-2. This table contains the
encoding for the Most Significant Byte of each instruction. The first column in the table represents
bits 23:20 of the opcode, and the first row of the table represents bits 19:16 of the opcode. The
first byte of the opcode is formed by taking the first column bit value and appending the first row
bit value. For instance, the Most Significant Byte of the PUSH instruction (last row, ninth column)
is encoded with 11111000b (0xF8).

Note: The complete opcode for each instruction may be determined by the instruction
descriptions in Section 5. “Instruction Descriptions”, using Table 5.2 through
Table 5-12.

© 2005 Microchip Technology Inc. DS70030F-page 6-7

99udJ9)9y H

dsPIC30F Programmer’s Reference Manual

13534
S'HSNd AdW
SdOd dVMS OVIN
AVSHMd | HOX3 az MNIN ova3
HdON | 1amd1o | mva Isia 3s MNT dod HSNd — = — — a3 TITT
W13s 3N 2o3a ZONI NL3S 93N 2o3a ZONI 3INSdO 11Sdo ad0 ado
410 NOD 03aa ONI 410 W02 23a ONI 03SdO 198d2D = = do 0d0 do 0d0 | ottt
431 n'AIQ ONdd ONTH Hs ONdd | ONTd Hs
1084 sy S — — — 4AId S'AId o4y o ysy s o4y o sy s TOTT
OSI OSW
ans NAdW N'AdI
dldd 53N AdI AdW
L4 — H'ovs ovs aav ovl aav ov.LdS OVSAOW OVIN ov4d10 OVIN 00TT
g4ans JLmIgL | 1adgiar | NsTInw NN AOW HOX g4ans oaav AOW 4OX | @ans | oaav
NOW a'AOW ans NN HLMIEL | Had1gL | SS1NW SN NN HOol anvy ans aav Hol any ans aav | ttot °
T
0s14g ssig msg | sisig 1s19 o1d 4104 13s9 0s14 ssig 1s19 | sislg 1s18 914d 4109 | 1359 | otot 8
o
[
AOW TOOT &
@
NON 000T W
AOW HOl TTT0
HOX aNv 0TTO
adans ans 1010
oaav aav 0010
(N1o) (39) (19) (NN) (zN) (ON) (n37) (1) 37 (N) 2 Q) (AO)
— vdg vdg v4g vdg vdg vdg (AON) vHd vdg vdg vdg vdg vdg vdg vdg vde | tTo0
AON 0TO00
Hadans dans T000
TIvod
0109
(as) (vs) (ao) (vO) NdN13d TV
vdg vdg vdg vdg - - 1v3d3d od TIvod 314134 | M1L3d | OLOD = TIVO vdg dON | 0000
TTTT OTTT TOTT 00TT TTOT 0TO0T TOOT 000T TTITO 0TTO TOTO 00TO TTO0O0 0T00 T000 0000
<9l:6L>9poadQ
Buipoou3z uononJsu| 40£J1dSP ‘g-9 9|qeL

© 2005 Microchip Technology Inc.

DS70030F-page 6-8

Section 6. Reference

6.5 Instruction Set Summary Table

The complete dsPIC30F instruction set is summarized in Table 6-3. This table contains an alpha-
betized listing of the instruction set. It includes instruction assembly syntax, description, size (in
24-bit words), execution time (in instruction cycles), affected status bits and the page number in
which the detailed description can be found. Table 1-2 identifies the symbols which are used in
the Instruction Set Summary Table.

© 2005 Microchip Technology Inc. DS70030F-page 6-9

99udJ9)9y H

dsPIC30F Programmer’s Reference Manual

‘pabueyoun asimIaylo ‘pajgeus si uolielnjes Buipuodsaliod ayy ji payipow Ajuo ale gys pue gs ‘vS :9J0N

pabueyoun — ‘paises|o skemje ,0, ‘10s sheme I, ‘pales|o onsu ing ‘jes aqAew § ‘8S Janau Ing ‘pates|o aqAew ¢ ‘pasespioles § :pusba

S5 — — — — — — — — — — | = @1 i aAebaN Jou i youelg JAdX3'NN vyg
PG| — — — — — — — — — — | = @1 L AireQ jou yt youelg 1dx3°ON vHg
evs| — | — | — | — |- | -1 —-—1—|—-—1|—-1- @1 ! aAiebaN Ji Youelg 1dX3'N vdg
S| — — — — — — — — — — | = @1 L Aireg jou yt youeig 1dx3'nL vdg
s — — | =1 = — — | =1 = — | = | = @+ L uey} ssa| 41 youelg 1dx317 vdg
or-s| — — — — — — — — — — — @ i [enba Jo uey} sse| paubisun yi youeig 1dx3'N37 vdg
6e-G| — — — — — — — — — — | = @+ L [enba Jo ueys ssaj ji youelg 1dx337 vdg
ge-G| — — — — — — — — — — — @1 i uey} Jeyeald paubisun i youelg 1dx3‘n1o vdg
/86| — — — — — — — — — — — @1 L uey} Jeyealb Ji youelg 1dx31H vdg
9e-G| — — | =1 = — — | =1 = — | =1 = @1 L Aue) y1 youelg 1dx3'n3Ho vdd
ge-g| — — — — — — — — — — — @1 i [enba Jo ueyy Jejealb ji youeig 1dx339 vd4g
€e-G| — — — — — — — — — — | = @1 L Kired y1 youesg 1dx3°0 vdg
eS| — — — — — — — — — — | = 2 L youe.q pandwod UM vdg
eS| — — — — — — — — — — — F L Alreuonipuooun youeig 1dx3 vdg
0e-G| — — | =1 - — — | = | = - | =1 = L L SM Jesjo ig PHA# S 41049
62G| — — | =1 = — - | = | = - | =1 = L L [ECETRRT] PHO#'} 4104
82G| — 8 — ¢ — - | = | = - | = | = L L SUM AQ QM H1US 1yBU ondWIyIE = PUM PUM‘SUM QM sy
eS| — 8 — ¢ — - = | = - = | = L L 7HI Ad M YIys WBL dnewyiLe = Pup PUM‘PHI# AM HSY
es| ¢ |8 |- |- =-|=-|=-|-1]-|- L b SM 1IUS 1B onawye = pp PM'SM HSY
ves| & g — ¢ — — — — — — | = L L } Hius B onewye = uoneunseq {o3um} 1S54
ees| — | ¢ | —| S |- =-|=|=-|-1]-1- b L SM "ANV" GM = PM PM'SM‘GM anv
leg| — g — ¢ - | = | = — - | = | = L L GHI ANV’ AM = PM PMSHI# QM any
ozs| — | & | — || —-—|=-|=-]|-|-1-1|=- L b UM ANV O LU = UM UM'O LI anv
gts| — | & | —| & | —|—-—|=-—|-=-|-1]-1- L L DIYM "ANV" } = uoleunsaq {D3uMm?} s anv
as|l ¢l ||| | —|=-|=-|=-]|-1]= b L (D) + SM + M = PM PM'SM'AM oaay
as| & | o | & L O e e e e 1 ! (0) + GHI + aM = PM PAGHI# AM oaav
T =T I I N O (O N I L I T e e b 1 (D) + UM + O LM = UM UM‘O Kl saav
sl ¢l o 8|S |—-—|=-]|-|-—|-1|= b L (D) + ©D3HM + § = uoneunsag {o3HM} 1 oaay
as|l — | — | —|—|—]8 || Q3|0 | C |8 b L JoyeINWINgoE 0} Ppe PaUBIS 1G-9 | 00V PUISH'SM aav
ws| — | — | —| =] =12 ¢ |83]|]3 |8 |8 1 | SI0JEINWINOYE PPY ooy aav
os| & | ¢ ¢ I O e e i B B b ! SM + M = PM PM'SM‘GM aav
es| |8 ||| S| —|—|—-—|—-1]-|- b b GUI + GM = PM PM‘SHI# M aav
gs| ¢ |8 ||| S| —-—|=-|=-|-]-|= b ! UM + O LIl = UM UM'O LI aav
V- I O I O O L e e B e e b ! DIYM + | = uoeUlSaq {o3HM)} 1 aav

#9bed | o0 | z | A0 | N | oa |avs|avo| a@s | vs | g0 | vO | sewho |spiom uonduoseg mwﬁnﬁﬂm”ﬂ%ﬂs
a|qel Arewwng 189S uondNsul 40€J1dSP ‘€-9 9|qeL

© 2005 Microchip Technology Inc.

DS70030F-page 6-10

Section 6. Reference

Reference

‘pabueyoun asimiaylo ‘pajgeus si uonelnies Buipuodsaliod ayy i payipow Ajuo ase gys pue gs ‘vS :9J0N

pabueyoun — ‘pasesjo shemje .0, ‘19Ss sAemje I, ‘paJses|o Jonsu Ing ‘1es aqAew [‘189S JaAsu Ing ‘pases|d aq Aew ¢+ ‘palespioles § :pusber
18-G S I T e B I e I I I b SM = PM PM'SM OO
08-S S I T e B I e e I 1 b } = uopeunsaq {934m} 4 OO
6.-S — — — — — — — — — | = L L Jawi| Bopyoyem Jes|n 1amd1o
11-S — — — — 0 0 0 0 0 0 L L Joye|nwnooy Jes|n MY PAMAM PXM XM 00y 410
9/-G — — — — — — — — — | = L L 0=pM PM 410
G/-§ — — — — — — — — — | = L L 0000%0 = HIYM DIHM 410
G/-§ — — — — — — — — — | = I L 0000%0 =} } 410
v.-G — — — — — — — — - | = 2z L aulnoIqNs Jo8lIpul [[eD UM)
€.-G — — — — — — — — — | = 2 2 auinoiqns |[eD 1dx3 TIv0
2L~ [— — — — — — — - | = ! L 18s sy} 7 0} S\ IS8} g yHa#'sSM Z'S1s19
2L — — — — — — — — - | = ! L 18s UaL} O O} S\ 158} 1ig PHO#'SM O'S1S14
-G [— — — — — — — — | = ! 1 410s UBY} IS8} 1 PHO# slslid
69-G [— — — — — — — — | = L L Z 0} <QM>SM 18} g aGM'SM z1s14d
69-G — — — — — — — — - | = L L O 0} <QM>S/\ 158} g aGMSM olslg
89-G ¢ — — — — — — — - | = L L Z O} S\ 1881 g PHG#'SM z1s14d
89-G — — — — — — — — - | = b L O Ol S\ 1s8} g PHGH#SM 01s14
196 I R e e e e e B B B b L J1se1g pHa#' 1slg
59-G — — — — — — — — — | — |02 L 19s J1 diys ‘s 1sel g PHOH# SM ssld
¥9-G — — — — — — — — — | — |(€i02)1 L 10s J1 diys ‘4 1se1 g PHOH#Y sslg
29-S — — — — — — — — — | — |(e1o2) ! L J1es|o Jl dpis ‘s 1Sl 1] PHG#'SM 0s14
09-G — — — — — — — — — | — |(€i02) 1 L Jeao yi diis ‘y 1s8) Hg PHO#Y osld
6G-G — — — — — — — — — | — L L SM 216603 g PHO#'SM 919
8G-G — — — — — — — — — | = L L } 8|6Boy 1g PHO#' ol1d
9G-G — — — — — — — — — | = L L <QM>SM 01 11q Z 81\ aM'SM ZMSd
9G-G — — — — — — — — — | = L L <QM>SM 01 11g O 8l aM'SM oMsd
GG-G — — — — — — — — — | — L L SM 19s g PHO#'SM 13s4
¥S-G — — — — — — — — — | = L L J1es g ¥HO#} 13s4
€G-S — — — — — — — — — | = @1 L 0197 Ji youelg 1dx3Z vdg
25-S — — — — — — — — — | = @1 L pejeinies g J0jenwindoy §i youeiq 1dx3°'gs vdg
1S-G — — — — — — — — — | = @ L pajeiNnies \ J0JeNWINdY §i Youeiq 1dx3'ys vd4g
05-G — — — — — — — — — | — @ L MOJLBAQ §i Yyouelg 1dx3'AO vdd
6v-G — — — — — — — — — | = @1 L MOIJBA0 g J0Je|NWINOdY Ji Youeig 1dx3'90 vHg
8v-G — — — — — — — — — | — @1 L MOHBAO / JOFRINWNDDY JI Youelg 1dx3'vo vdg
¥ — — — — — — — — — | — @1 L 0197 J0u i Yyouelg 1dx3'ZN vdg
9v-G — — — — — — — — — | — @1 L MOJHBAQ JOU §i Yyouelg 1dX3°AON vdg

9bed z |n0 | N | oa|avs|avo| as | vs | g0 | vo | serho |spiom uonduosag mw___wﬂmmﬂmcswﬁwus
(penunuo)) ajqel Atewwns 19 uononJsu| 40€J1dSp :€-9 a|qeL

DS70030F-page 6-11

© 2003 Microchip Technology Inc.

dsPIC30F Programmer’s Reference Manual

‘pabueyoun asimIBy0 ‘pajqeus si uopeinies Buipuodseliod sy} Ji payipow Ajuo a1e gys pue gs ‘vs 310N

pabueyoun — ‘paies|o skemje ,0, ‘18s shkemje T, ‘paies|o JoAsu INg 18s aqAew [48s JaAsu Ing ‘pates|o eqAew ¢ ‘pasespioles § :pusber

ers] — | — | — | —] =1 =1 —-1T—=—1—=—T1T=7T1-= z I Anoauipur ssaippe o} 05 UM 0109
s — | — | — | — | =1 =1 =T=1T-=-71-=71= z z SSaIppE 0} 09 1dx3 0109
oets| ¢ | — | — |- =—|=|=]1-=-|1-=-1-1|= b L apis (4S7) 1uBu woaj 8UO ISy puld PUM'SM H1dd
sus| &8 | — | — | = | =-]=-|=-|=|=|-=-1= 1 L 3pIS (GSIN) BBl Wouj 8UO ISl pul PUM'SM T4
ol-s| 8 - = | = — - = | = i e L ! apis (ASIN) Yol woiy abueyd 1q puly PUM'SM 1084
GH-S| — — — — — — — — — — | = i L PUM pue sup dems PUM‘SUM HOX3
ews| — | — | — | —|—]8 | ¢ |8 |23 |C |8 b | 20UBISIP UBapIjONT PXMAM XM ‘00 WA, WA ovas
LG | — — — — — 4 [) 4 8 () L L (8¥e|nwnooe ou) souelsip ueaplong PXMAM XA 00V WA WIAA a3
601-G| — — — — — — — — — — — Z 2 sow (T+up) 4dx3+0d 01 8pod og 1dx3 ‘UM oa
016 — — — — — — — — — — | = 2 2z sawl (T+yLHl) 4dx3+0d 03 9p0d 0Q 1dx3 ‘v oa
sors| ¢ g ¢ sl -1 —-1—=-1-=-|-=-1-1=- 8l 1 apIAIP [euonoel) 1G-91/9 | paubls UM ‘WA 4AId
cis| & | & g 0 - === =1-=-1- 8l ! apinIp sebeyul Ha-91/2e paubisun UM ‘WA anald
gois| 8 | & 0 ol —| -1 —=-|=|=1-1= 8l L apiAlp JeBaul 1g-91/91 paubisun UM ‘WA n'Ald
ois| ¢ | ¢ ¢ S e e e I B I 8l b apiAlp JaBaul 1g-9 /28 paubls UM ‘WM asnaia
ors| ¢ [[A e e e e e 8l L apiAIp Jabalul 1g-91/91 paubis UM ‘W S'AId
s — | — | — | = =1 =1 =1=1=1-=1T= b b sojoAo uoRoNASUI - 111l 1o} sidnuaul 81qesiq p I 1SIa
e6s| $ ||| || —|—|—|=-1]-]-— b L Z-SM=PM PM'SM 2o3a
ges| ¢ | ¢ || |G| —|—|—=-|—-1]-]- b ! 2 -} = uoeunseq {o3HM} 1 2o3a
ws| ¢ || ||| —-—|=-|=-|=-]|-1]= 1 L L= SM=PM PM'SM 23a
es| || ||| —|—-—|=-|=-]|-1]= b L L —J = uoneunsaq {o3uMm} 1 23a
6| & | — | — |- =-|-|=-|=-1|—-1-1|- b L UM 1SNfpE [BWIOBP = UM UM amva
¥6-G| — — — — — — — — — — | — [(€w21L L # 1 dis “(um yum gan) esedwod paubls UM ‘dM 3INSdO
egs| — | — | — | — | —| — | — | — | —|—|— ko] 1 > J1 djs (U yum gmw) eredwiog paubls UM ‘aM 17SdO
26| — — — — — — — — — — | — |02 i <1 diys (UM ynm gm) esedwo) paubig UM ‘M 19S8d0D
166 — — — — — — — — — — | — |02 i =1 diys ‘(UM yum) aredwod UM ‘M 03SdO
ess| ¢ | o | B || S| —|=-|=|=-1]-|- b I (0 — SM — aM) mowiog Ym aredwio) SM‘aM ado
ggs| 8 | |G ||| —|=—|—-—|—-]—-]|=- b I (0 — Gl — M) moiog Yum asedwio) UG gdo
ws| ¢l |8 ||| —-—|—-—|—-—|—|—-1]= b ! (0 — D3HM - §) mouog yim dredwio) } gdo
98-g| |} g ¢ ¢ - — — — — — — b b (0000%0 — sp) BredWOD SM 0dD
ggs| g ¢ ¢ - — — — — - | = L L (0000x%0 —}) esedwo) J 0dD
ves| & ||| || —|—-—|=-|=-]|-1]= 1 L (sM — am) aredwod SM‘GM do
eggs| ¢ || ||| —|=-|=-|=-]|-1]= 1 L (g — gm) eredwod SUAM do
ess| 8| ¢ g S A e e B B e L ! (934M - §) aredwo) } do

#obed | 9 | z | A0 | N | oa |avs|avo| @s | vs | g0 | vo | seho |spiom uonduoseq mwﬁnwmﬂﬁﬁwumus
(penunuo?) ajqeL Arewwng s uondn.sul 40€J1dSP :g-9 a|qeL

© 2005 Microchip Technology Inc.

DS70030F-page 6-12

Section 6. Reference

Reference

‘pabueyoun asimiaylo ‘pajgeus si uoneinies Buipuodsaliod ayy Ji paipow Ajuo ale gys pue gs ‘vS :9JON

pabueyoun — ‘pases|o skemie .0, ‘}os sAemie I, ‘pales|o Jonsu ing ‘18s aqAew § 18S JaAsu Ing ‘paleslo aqfew 4 ‘pasespioles § :pusbe
oLLs| — | — - =1 =1 = - = | = = L L (sm)ubis , (Gm)ubis = {pup‘ L+pum} PUM'SM‘GM SSTINN
69l-s| — [— — | =1 —=1- - | =1 = — | = L L DIHM , } = SMEM } INN
ws|l — |- -] -]-12 ||]|]0 |8 | ! b 101BINWNO0Y WO 10eans pue AIdMNIA | SMY PAM KM PXAM XM D0V UM WM oS
S9L-G| — — — — — — 0 — — 0 0 L i Joyeinwnooy o} (W Ag up Aldmniy)- PAMAM PXM XA 00V UM, WA N'AdIN
sl — | — | — | —| -1 |8 |08 |8 |¢C L b J01BNWNoOY 0} asenbg PAMAM PXM XM 00V WA, WM AdIN
s — | — | — | -] 12|30 |8 | ! b Jo1g|NWNooE 0} W Ag up Aidninpy PAMAM PXM XM 00V UM, WM AdW
6SL-G| — — — — — — — — — — | = L L PAM 01 [AM] pue ‘PXM 0} [XM] 8A0N amv PAMAMPXM XY OVSAOW
iS5s| — | — — — | =1 - — 1 =1 - — | = 2 L PM O} T+SUAM:SUM |qnop 8A0 PM'SUM a'AOW
ssis| — [— — — | =1 = — | =1 = — | = k2 L T+PUM:PUA O} SM 8|qnop 8A0N PUM'SM a'AOW
esis| — [— — — | =1 = — | =1 = — | = L L PM O} SM @A0N PM‘SM NOW
2GS | — — — — — — — — — — | = L L [01MIS + Pup] 0} suMm ero [oLuIS+HPUM]'SUM AOWN
ISL-G | — — — — — — — — — — | = L L PUM O} [0 LIS + SUM] @A PUM[OLNIS+SUM] NOWN
osi-s| — [— - | =1 =1 = — | =1 = — | = L L PUAN O} [BJ8Y| HQ-9 BAON PUM‘Q LHI# NOW
eri-s| — [— — — | =1 = - | =1 = — | = L L PUA O} [eJ8)| paubisun 1g-g 8AON PUM‘BHI# a'AON
8vi-g| — — — — — — — — — — — I I 4 0} SUM SN0 J'sum AOW
ws| — [— — — | =1 = — | =1 - — | = L L PUA O} } A0 PUM'} NOW
api-s| — [— — — | =1 = - | =1 = — | = L L } 0} DIHM SrON 1'93HM AOW
Spl-g| — ¢ — ¢ - | = - | = | = i L L uoleunSep O} § SAON {o3am}} AOW
evis| — | — | — | — | —| 8| |88 |8 |C L b aleINWNoYE pue aienbsg ‘PAMAM PXM XA D0V WA, WM OVIN
ws| — | — | — | — | -1 8|80 |8 | L I aleInwnooe pue AN | GMY PAMAM PXM XM 00V UM, WM OVIN
ovL-g| — [— g — | — - — | = — | = L L SUM AQ gM Hus Bu [ed1Bo] = pum PUM'SUM‘GM 4s
6eL-g| — [— ¢ - | = - | = | = - | = L L I Ad M Hius 1Bl [ediBol = pupy PUM‘PHI# AM 4s
;| ¢ ¢ — 0 - | = - = | — - | = L L SM HIus Bl [edlbo] = pm PM‘SM ds
oes| ¢ ¢ — 0 - | = - | = | — e L L } Blus b [eoIBo| = uoneunseq {53am}} Hs1
sels| — — — — — — — — — — — L i Jajuiod swely yur PLUI# N1
eel-s| — | — — — | = 4 g g 4 ¢ ¢ L L Joyenwinody peo 00V ‘PHISH'SM ov1l
ksl — | Sl — 18| - === 1—-1-1- b b SM "HOI' GM = PM PM'SM‘IM ol
ogL-s| — [— g - | = - | = | = - | = L ! GHI "HOI" AM = PM PMGHI#AM 4ol
62L-G| — [— ¢ - | = - | = | = i L L UM "HOI" OLHI = UM UMO LMl Sle]
82L-g| — ¢ — ¢ - | = - | = | = i L L D3IHM "HOI' } = uoljeunseq {o3am}} Sle]
rs| ¢ ¢ |8 ¢ S e T B B B b L Z+SM=PM PM‘SM 2ONI
os| ¢ ¢ ¢ g sl -1 —=-1—=-1-=-1-1- b L 2+ = uoneunsag {o3uMm}} ZONI
ceis| E ||| || —]=-|=-|=-]-1|= I b L+ SM=PM PM'SM ONI
vers| & |18 | ¢ L e e B B P ! L L+ = uofjeunisaQ {D3HM} } ONI

#9bed | O z AO N 00 |Qvs |avo | €8S | VS | 90 | VO | sa19hD | spiom uonduasaq mw___wﬂwmﬂmcswﬁwus
(penunuo) sjgeL Atewwng jos uondNsU| 40€J1dSP :€-9 a|qeL

DS70030F-page 6-13

© 2003 Microchip Technology Inc.

dsPIC30F Programmer’s Reference Manual

‘pabueyoun asimIaylo ‘pajqeus s uolelnies Buipuodsaliod auy ji payipow Ajuo ale gys pue gs ‘vS 190N

pabueyoun — ‘pales|o shemie .0, ‘18s sAeme T, ‘paies|o Jansu ing ‘18s aqAew 4 189S JaAsuU Inq ‘paltes|o aqAew ¢+ ‘pasesploles § :pusben
eS| — g — ¢ — — — — — — — L L SM (AueD ou) ybu srejol = pp PM'SM ONuY
eles| — (: — ¢ — — — — — — — L ! 4 (Aure ou) ybu syejol = uoneunseq {o3um}} ONYY
es| ¢ L e A e e e e B B L b SM Aued yBnoay 1yl ejejol = pm PM‘SM OHY
otes| & gl -S| -|=-|=1=|-=-|-=-1= L ! } Aued yBnoayy ybu eyelol = uoneunsaq {93uM} OdY
ges| — | 8 | — | S| —|—-—|=-|=|=1|-=-|= L b SM (A11eD ou) Yo a1ejos = pp PM‘SM ONTH
02| — g — [— — — — — — — L ! 4 (Are ou) yo| erejol = uoneunseq {o3um’} 4 ONTH
coes| ¢ g — ¢ — - | = | = - | = | = L L sM AueD ybnouys yej srelol = pm PM‘SM o
voe-s| & L e A T B R L ! } Aued ybnouyy Yoy alejos = uoeunsaq {o3uM} oM
€02-S| — — | =1 = — — 1 — 1 = — | =1 - @¢ L aupnoIgns woyy uiniey NHN13H
20e-S| — — 1 =1 = — — 1 — 1 = — | =1 - @¢ L UM UL O LHI Uim uiniay UM'0 LI M113d
tozs| 8 e [L e e e e e (@¢ L a|geus Jdnusjul WOy uInjey 314134
002-G| — — 1 =1 = — — | =1 — — | =1 = L L 13S3H 801A8p 21BMI0S 13S3d
86L-G| — — 1 =1 = — — | =1 = — | =1 = 1 i sawin (T+UM) uononisul 1xau jeaday UM 1v3d3d
161G — — 1 =1 = — — 1 =1 = — | =1 = 1 b sawi (T+11]) uononJlsul 1xau Jeadey vHIE 1v3d3ad
961-5| — — | =1 = — — | =] = — | =1 = Z L I1ed peindwiod Um TvoH
G6L-S| — — 1 =1 - — — | =] = — | =1 = Z L 180 eAnejey 1dx3 TvoH
v6L-§| — — | =1 = — — 1 =1 = — 1 =1 - L L apow Buines Jemod Jeyu3 HI# AVSHMd
€615 — — | =1 = — — 1 =1 = — | =1 - i L sissiba) mopeys ysnd S'HSNd
26L-G| — — | =1 = — — 1 — 1 = — | =1 k3 L SOL 0 T+SUM:SUM 8|dnop ysnd SUM aHsnd
16L-S| — — 1 =1 — — — | =1 = — | =1 = 1 L SOL 01 SM usnd SM HSNd
06L-S| — — | =1 = — — | =] = — | =1 = i L SOL 04} ysnd } HSNd
eg1-s| ¢ 8 [[LA e e e e L ! sie)s1Be1 mopeys dod S'dod
88l-G| — — | =1 = — — | =1 = — | =1 = 2z 1 L+PUM:PUM O} SO wiod} 8jqnop dod pum adod
/81-G| — — — — — — — — — — — L L PM 0} SOL dod PM dod
981G | — — — — — — — — — — — L L 401 S01 dod } dod
GgL-s| — — | =1 = — — | =1 = — | =1 - i 1 uonesado oN HdON
y8L-s| — — | =1 = — — | =1 = — | =1 - i i uopesado oN dON
egrs| — | — | — | — | — | & =0 I A T ¢ |8 b b Joje|nwinooy ajeBoN ooy 93N
s |8 |8 || S| —-|=-|=-|=-1]-=|= 1 L T+SM=PM PM'SM 93aN
E=Te-3 I G O N L L O N I I e e b ! T +4 = uoneunsag {93HM} 4 BENN
6L1-G| — — — — — — — — — — | = L i (sm)ubisun , (gm)ubisun = {pupp’‘L+pupn} PUM'SM‘AM nNINN
8LL-G| — — — — — — — — — — | = L L (suubisun , (Gm)ubisun = {pup\‘L+pum} PUM‘GHI# AM nNINN
9/1-6| — — — — — — — — — — — L L (sm)ubis , (gm)ubisun = {pup‘ L+pup} PUM'SM‘AM sNNN
LG — — — — — — — — — — — i i (sm)ubisun , (GM)ubis = {pum’‘L+pupm} PUMSM‘AM NsSNN
LS| — — — — — — — — — — — i i (gunubisun , (QM)ubis = {PUM' L+PUM} PUM‘GHI# M NS 1NN

#obed | 0 | z | A0 | N | oa |avs|avo| as | vs | g0 | vo | sewho |spiom uonduosag mwﬁnwmﬂﬁﬁwumus
(penunuo?) ajqeL Arewwng s uondn.sul 40€J1dSP :g-9 d|qeL

© 2005 Microchip Technology Inc.

DS70030F-page 6-14

Section 6. Reference

Reference

‘pabueyoun asimIaylo ‘pajqeus si uoleinies Bulpuodsaiioo oy} ji palipow Ajuo ale gys pue gs ‘vs :9JON

mecmcocz — MUQLNQ_U w>M>>_m .0, 1es w>M>>_m T, "U@_mm_o Jlanau Ing ‘18s aq Aew 4 ‘189S Jonau nqg “Uw‘_mw_o a(q Aew @ MUQLNQ_U 10 18s Mw “UCwmml_
8525 — — — — — — — — — — — i] Jajuiod swey yulun MNTIN
9GS — | — | — | — | = | = = —=1—=—1—=71+= F F piom WeiBoid Mo| O} S BN PM'SM TLMIEL
vsz-s| — — — — — — — — — — — 2 i piom weiboid ybiy o3 Sp SIM PM'SM H1Mm19L
2525 | — — — — — — — — — — — 2 i PM 01 piom weiboid mo| peay PM'SM 1ayal
0se-s| — — — — — — — — — — | = 2 L PM 03 p1om weiboud ybiy pesy PMSM Ha4g1a.L
eS| — | — | — | — | — | — | — [= =1 —=1-= I i UM dems 9|qqiu 1o alkq = um UM dVMS
wes| ¢8| 8|S |8 | —|=-|=-|=-1]-1|= L 1 aM — SM = PM PMSM‘AM Hans
wes| T || ||| —|=-|=-—]—-—]|—-]|- ! b aM — SHI = PM PM'SHI# AM Hans
sges| T ||| || —|=-|=-]—=-]|-]|= b 1 }— D3HM = uoneusaq {o3HM}} Hans
gies| 8|l |8 S| | —|—-|—-—|—-—]—-]- ! L (0) —am —sm =pm PM'SM‘AM dgans
aes| E o | B ||| —|—-—|=|=-1]-1|= I b (0) — am — SHI = PM PM'GHI# AM daans
wes| &l o | B ||| —]|—|=|=-1]|-1|= I b () — 4 — DIHM = uoeunsaq {D3uM} 4 daans
eees| 8| || || —|—-|—-|-]-]=- ! L (0) —sM —am = pMm PM'SM‘GM gans
gezs| ¢ | ||| - —-—|—-|—-]—-]- ! L (0) — SHI - AM = PM P 'SHI# M gans
ges| ¢l 88| S| - —-|—-|—-1]—-]- ! L (D) — OLHI — UM = Um UM'O L gans
gzs| E || B ||| -] —-|=-—|-]-1|= I b (0) - ©3HM — 4 = UoneUlISEP {D3UM} 4 gans
sges| — | — | — | — | —]C8 | & |8 |C]|C|C L b S10[8INWNOOY 10BAIqNS ooy ans
gggs| S| |G ||| -] —-—|=|=-]-1|= I b SM — AM = PM PM'SM‘AM ans
eges| ¢ ||| || —|=-|=-]-|-]|- ! b Gl — GM = PM PM'SHI# AM ans
ges| ¢8| |- =|=]|—=-]-]|- 1 b OLMI — UM = UM UMO LI ans
zs| ¢ || ||| —|=-|=-]-|-]|= b L DIYM — § = uojleunseq {53uM} ans
ees| — | S | — | S | —|—]=-|=|=-1-1= I b SUM Ag M BIYs Ha| = pum PUM‘SUM‘AM 18
gees| — |8 | — | S | —|=-1=-|=-|=-1-1= I b M A GM HIUS Y| = PUM PUM ' PHI# AM 1S
ees| ¢ || — || - =-—|=|=-]-1|—-1|- ! b S HIUS 4] onowyIue = P PM‘SM 1S
Gees| ¢ || — |8 |- =—|=|=-]—=-1|-1|- ! b 1 WIYS o] oNBWYILE = UolEUNSe({o3uMm}} 1s
vees| — — — — — 4 g 4 4 g g b b (um) Aq Joreinwnooe Yiys onswyIY UAN'00Y MERS)
gges| — | — | — | —|—]8¢|]C |8 |C]|C|C I b 9lIS Aq J01e|NWNOOE YIYS OBWYIMY QNIS# 00y ov1dS
eS| — | — | — | — | = | =1 =1 =1=1=71= I F ZA33X0 = S\ SM W13S
iees| — | — | — | — | — | = [= =1=1-=1= I F A323%0 = DIHM DIEM W13S
ees| — | — | — | — | — | = = =1 —=1-=1-= I i Z33%0 = |] W13S
oees| ¢ || — || - =-|=|=-]-=-1|-1|= b L SM PapuaIXe-ubis = P PM‘SM as
8laG| — — — — — — — — — — — L i 10}e|NWNJ0Y PepuNO 81019 PMPUIS# 00V H'0vS
eS| — | — | — | — | — | = = =1 —=—1—=71+= I i J0JEINWN0Y 81015 PM PHIS#00Y oVS

#abed | O z AO N 00 |Qvs |avo | €8S | VS | 90 | VO | sa19hD | spiom uonduosag mw___wﬂmmﬂmcewﬁwus
(penunuo)) ajqel Atewwns 19 uononJsu| 40€J1dSp :€-9 a|qeL

DS70030F-page 6-15

© 2003 Microchip Technology Inc.

dsPIC30F Programmer’s Reference Manual

‘pabueyoun asimIsyo ‘pajgeus si uopeinyes Buipuodsaiiod sy} Ji payipow AjUo a1e gys pue gs ‘vS

30N

pabueyoun — ‘pales|o shemie .0, ‘18s sAemie T, ‘paies|o Jansu Ing ‘18s aqAew § ‘18S JoAsuU Ing ‘pates|o aqAew ¢ ‘pasesploles § :pusben
¥92-S ¢ | - 0 e e e B e e L b SM P8pUBIX8-018Z = PM PM‘SM 3z
292-s gl -1¢|=-|=-1-=-|=-|=-1-1= L ! SM "HOX' OM = PM PM'SM‘AM HoX
192-S gl -1¢|=-|=-|=-|=-|=|-1= b L SHI 'HOX AM = PM PAGHI# AM HoX
092-G S A e e e e B B L b UM "HOX' OLHI = UM UMOHHI# HOX
652-G L e e e ! ! DIUM HOX' } = uoleuseq {53uMm’} 4 HOX
mU:m._wQO,U_COEOCS_
obed Z | AO| N | D0 |gvs | GvO| @S | VS | 90 | VO | sapAD | spiom uonduoseq xeyuks Alquiassy
(penunuo?) ajqeL Arewwng s uondn.sul 40€J1dSP :g-9 a|qeL

© 2005 Microchip Technology Inc.

DS70030F-page 6-16

Index

INDEX
A
Accumulator A, Accumulator Bcccceeeeeeeeeiiiiieeeeeeens 2-5
Accumulator Access4-33
Accumulator Usage.......cccoceeeeerieeeiiieeesiee e ...4-32
Addressing Modes for Wd Destination Register 5-3
Addressing Modes for Ws Source Register 5-3
Assigned Working Register Usagecccoeeeeviiiiinnnnne 4-27
B
Byte Operationsccoovveeiineenieeee e 4-13
C
Code Examples
‘Z’ Status bit Operation for 32-bit Addition 4-26
Base MAC Syntax
File Register Addressing.........ccceceevvirieenveenee s 4-3
File Register Addressing and WREG..............cccco..... 4-3
Frame Pointer Usage..................... .
lllegal Word Move Operations..
Immediate Addressingccceoeeviiiiiiiicicieee
Indirect Addressing with Effective Address Update ...4-6
Indirect Addressing with Register Offset.................... 4-7
Legal Word Move Operations
MAC Accumulator WB Syntaxccccceevvevvieennnne. 4-36
MAC Pre-Fetch SyntaXxcccceveiriiiiiiniieiieciieee 4-35
Move with Literal Offset Instructions..............ccccoeeeeee. 4-7
MSC Instruction with Two Pre-Fetches and
Accumulator Write Backcccceeiceeneeennenne
Normalizing with FBCLccccoeiiiiiiiienieeeeiee
Register Direct AdAressingc.ceevevveeeiveeesieeeenieenns
Sample Byte Math Operations.....
Sample Byte Move Operations...........ccccceeveerineeneenne
Scaling With FBCL........cooiiiiiiieiieeeeseeee e
Stack Pointer Usagecccovieveneeienenicseecee
Unsigned f and WREG Multiply
(Legacy MULWEF Instruction)c.ccceceereeens 4-29
Using 10-bit Literals for Byte Operands................... 4-19
Using the Default Working Register WREG.............. 4-28
Conditional Branch Instructions
Core Control REgIStErcoivieiiiieniiiee e
Core Special Function Register Mapccceeeevieeneennnen. 6-3
D
Data Addressing Mode Tree..........cccceeiiiiieieccc e, 4-10
Data Addressing Modes...........coocveeiiiiiiiniiee e 4-2
Data Memory Mapc.ccceeviieiiiee e 6-2
DCOUNT RegiStercccvviiiiiiiiiiie i 2-6
Default Working Register (WREG)ccccovevevenervenennnn. 2-3
Default Working Register WREGccooeiiiieniennieenne. 4-28
Development SUPPOITccceeeiiiiiiiierieeeeeec e 1-2
DOEND ReQISter.....c.eeiviiieiitiniieierieeee e 2-6
DOSTART REJISENooiiiieiiiieeieeiee e 2-6
DSP Accumulator Instructions ...4-37
DSP Data FOrmats........ccceveenereenenieseniesee e 4-30
DSP MAC Indirect Addressing Modesccceveeriieenienne 4-8
DSP MAC Instructions
ASPIC30F OVEIVIEWoiiiiiiiiiiieiieeiie et
F
File Register ADdressing.........cccooueeerrmeennneee e 4-2

Immediate AdAressing.........cocveevrieeriiiiie e 4-9

Implied DSP Operands....................

Operands in the Instruction Set...

Implied Frame and Stack Pointerc..ccccevveeveieencnen.
Instruction Bit Map.........coooiieiiiiiieeieeee e

Instruction Description Example ...

Instruction DesCriptionsocceviiieiiiniiesiecee s

ADD (16-bit Signed Add to Accumulator).................
ADD (Add Accumulators)cccceeeeeene

ADD (Add f to WREG)....
ADD (Add Literal to Wn).......... .
ADD (Add Wb to Short Literal)ccoceeveerieenennnnen.
ADD (Add Wb t0 WS) ..o
ADDC (Add f to WREG with Carry)
ADDC (Add Literal to Wn with Carry)cccecueenee.
ADDC (Add Wb to Short Literal with Carry).............
ADDC (Add Wb to Ws with Carry)............

AND (AND f and WREG)......
AND (AND Literal and Wd).............
AND (AND Wb and Short Literal)cccceeveveennennen.
AND (AND Wb and WS)cccceoeervreeieneeienieeeens
ASR (Arithmetic Shift Right by Short Literal)...........
ASR (Arithmetic Shift Right by Wns)ccccce.e.
ASR (Arithmetic Shift Right f)ccooviiiiiienine
ASR (Arithmetic Shift Right Ws)..
BCLR (Bit Clear in Ws)...

BCLR.B (Bit Clear f)
BRA (Branch Unconditionally)cccccecieniinnenne
BRA (Computed Branch)..........ccccceevieieeiieiniicenenn.
BRA C (Branch if Carry)ccccceveerieeneeiiecneeeienne
BRA GE (Branch if Signed Greater Than

OF EQUAL) ..o 5-35
BRA GEU (Branch if Unsigned Greater Than

or Equal) ...coceveiiiniiieeeeee e
BRA GT (Branch if Signed Greater Than)
BRA GTU (Branch if Unsigned Greater Than) 5-38
BRA LE (Branch if Signed Less Than or Equal)...... 5-39
BRA LEU (Branch if Unsigned Less Than

Or EQUAL) ..o 5-40
BRA LT (Branch if Signed Less Than) 5-41
BRA LTU (Branch if Not Carry)5-44
BRA LTU (Branch if Unsigned Less Than).. ... 5-42
BRA N (Branch if Negative)...................... ...5-43
BRA NN (Branch if Not Negative)...........cccccvvuvrnene 5-45
BRA NOV (Branch if Not Overflow)ccccoceveueeen. 5-46
BRA NZ (Branch if Not Zero)
BRA OA (Branch if Overflow Accumulator A).......... 5-48
BRA OB (Branch if Overflow Accumulator B).......... 5-49
BRA OV (Branch if Overflow)
BRA SA (Branch if Saturation Accumulator A)........ 5-51
BRA SB (Branch if Saturation Accumulator B)........ 5-52
BRA Z (Branch if Zero)cccceeeeeeeeiveeescieeeseieeanns 5-53
BSET (Bit Setf) .ecveveeieieeeerieeereeese e
BSET (Bit Set in Ws) ..
BSW (Bit Write in Ws)
BTG (Bit TOgQIe f)..cccoveiiiiiieeiiieie e
BTG (Bit Toggle in Ws)............ ...5-59
BTSC (Bit Test f, Skip if Clear)....... ... 5-60
BTSC (Bit Test Ws, Skip if Clear)... ... 5-62
BTSS (Bit Test f, Skip if Set)ccocvvieeiiiiiiiieeee 5-64
BTSS (Bit Test Ws, Skip if Set)ccccoeerveenvreencne. 5-65
BTST (Bit Test f)

BTST (Bit TEStiN WS)....vveeeeveeeereeeeereeeesenees 5-68, 5-69

© 2005 Microchip Technology Inc.

DS70030F-page 1

dsPIC30F Programmer’s Reference Manual

BTSTS (Bit Test/Set f)ccceverieiinierieneeerieiee 5-71
BTSTS (Bit Test/Set in Ws) 572
CALL (Call Indirect Subroutine)5-74
CALL (Call Subrouting)ccceevvererireneneenieneesiene 5-73
CLR (Clear Accumulator, Pre-Fetch Operands) 5-77
CLR (Clear f or WREG)coeevuereeiieeecieeesiree e 5-75
CLR (Clear Wd)coceevverveirieenns 5-76
CLRWDT (Clear Watchdog Timer)5-79
COM (Complement)cccovvevrcenenns5-80
COM (Complement WS).......cccoveirieeneenieenee e 5-81
CP (Compare f with WREG, Set Status Flags)........ 5-82
CP (Compare Wb with lit5, Set Status Flags).......... 5-83
CP (Compare Wb with Ws, Set Status Flags) 5-84

CPO (Compare f with 0x0, Set Status Flags)
CPO (Compare Ws with 0x0, Set Status Flags)....... 5-86
CPB (Compare f with WREG using Borrow,

Set Status Flags)cccovriiniiciieecee 5-87
CPB (Compare Wb with lit5 using Borrow,

Set Status FIags)ccccererieeniniicieeieseeene 5-88
CPB (Compare Ws with Wb using Borrow,

Set Status Flags)cccvveveveinieiiieieeneeeene 5-89

CPSEQ (Compare Wb with Wn, Skip if Equal) 5-91
CPSGT (Signed Compare Wb with Wn,

Skip if Greater Than).........cccccovveeiieniecniceeenn. 5-92
CPSLT (Signed Compare Wb with Wn,
Skip if LesS Than)ccceveeienenieneeeeeeene 5-93

CPSNE (Signed Compare Wb with Wn,

Skip if Not Equal)ccceevieiiiiniieieceeecee
DAW.B (Decimal Adjust Wn)
DEC (Decrement f)
DEC (Decrement Ws)
DEC2 (Decrement f by 2)......cccevniirieiniiniecieceeene
DEC2 (Decrement WS by 2)cccceeveeeiveniieenineienne
DISI (Disable Interrupts Temporarily) . .
DIV.S (Signed Integer Divide)..........cccccvvvririnnnnen.
DIV.U (Unsigned Integer Divide)........cccceeveernenee
DIVF (Fractional Divide)
DO (Initialize Hardware Loop Literal).....................
DO (Initialize Hardware Loop Wn)ccccccevreennee.
ED (Euclidean Distance, No Accumulate)
EDAC (Euclidean Distance)........c..ccoceverervernenne.
EXCH (Exchange Wns and Wnd)cccceevnennee
FBCL (Find First Bit Change from Left) .
FF1L (Find First One from Left)cccoeieiniviieenns
FF1R (Find First One from Right)cccoceevvnennen.
GOTO (Unconditional Indirect Jump)..
GOTO (Unconditional Jump)cccceeveveeeruereennnen.
INC (Increment f)cceeeieeiiiiiieie e
INC (Increment Ws)
INC2 (Increment f by 2).....ccceeviiriiiiiinieeeeeeee
INC2 (Increment Ws by 2)ccevviiiieiniiiieeeeee
IOR (Inclusive OR f and WREG)
IOR (Inclusive OR Literal and Wn).........c.ccccenuennee.
IOR (Inclusive OR Wb and Short Literal) 5-130
IOR (Inclusive OR Wb and Ws)
LAC (Load Accumulator).........cccceeeereeeneennieeseeenees
LNK (Allocate Stack Frame)ccccceevvirieenncenen.
LSR (Logical Shift Right by Short Literal) ..
LSR (Logical Shift Right by Wns)........ccccevevrnenee. 5-140
LSR (Logical Shift Right f).........cccceverieeninieneneene.
LSR (Logical Shift Right Ws)
MAC (Multiply and Accumulate)
MAC (Square and Accumulate)
MOV (Move 16-bit Literal to Wn) .
MOV (Move f to Destination)...........cccceeeverriiernnene

(

(

MOV (Move fto WNd) ..ccccevveiieeceee e
MOV (Move Wns to [Wd with offset])............c.c...... 5-152

MOV (Move WNS 10 f) ..oovieiiiiiiiieieeeeee 5-148
MOV (Move WREG tO f) c.oecvcvvveeiiieeciee e 5-146
MOV (Move Ws to Wd).......ccooieiriiiiienieeeeeeene 5-153
MOV (Move Ws with offset to Wnd)............cccoueeee. 5-151

MOV.B (Move 8-bit Literal to Wnd)..........cccceeueeeee. 5-149
MOV.D (Double-Word Move from Source

O WNA) .o 5-155
MOV.D (Double-Word Move from Wns

to Destination)ccocveiiiniiiiicieee 5-157

MOVSAC (Pre-Fetch Operands and

Store Accumulator)........c.ccoceerereenenieneneene
MPY (Multiply Wm by Wn to Accumulator)....
MPY (Square to Accumulator)ccccecvevvevrneenne.
MPY.N (Multiply -Wm by Wn to Accumulator)....... 5-165
MSC (Multiply and Subtract from Accumulator)..... 5-167
MUL (Integer Unsigned Multiply f and WREG)...... 5-169

MUL.SS (Integer 16x16-bit Signed Multiply).......... 5-170
MUL.SU (Integer 16x16-bit
Signed-Unsigned Multiply)........ccccoervenrneenne. 5-174

MUL.SU (Integer 16x16-bit

Signed-Unsigned Short Literal Multiply) 5-172
MUL.US (Integer 16x16-bit

Unsigned-Signed MUltiply)..........ccccoceeeenenen. 5-176
MUL.UU (Integer 16x16-bit Unsigned Multiply) 5-179
MUL.UU (Integer 16x16-bit Unsigned

Short Literal MURiply)cccoovereeninieninene 5-178
NEG (Negate Accumulator).........cccccvevviriennneenne. 5-183

NEG (Negate f)cceeriiiieeiiiceeieeeeeeeeeeee 5-181
NEG (Negate WS)......ccooveeiiiiiienieeeeeeeee e 5-182
NOP (N0 Operation)ccceeeeeeenreneeneeneeeenieenees 5-184
NOPR (No Operation).........ccccoeeerveriiencrieneenneene 5-185
POP (Pop TOS t0) ..veeeeiecieeceee e 5-186
POP (Pop TOS to Wd)......ccoeeiiireineeeneeee e 5-187
POP.D (Double Pop TOS to Wnd/

WNGHT) oo 5-188
POP.S (Pop Shadow Registers).........c.ccceeeereenee. 5-189
PUSH (Push f to TOS)

PUSH (Push Ws 10 TOS)......cccooevviniiiinieeencen 5-191
PUSH.D (Double Push Wns/

Wns+1 10 TOS)...uiieiiiee e 5-192
PUSH.S (Push Shadow Registers)...........ccccenuenee. 5-193
PWRSAYV (Enter Power Saving Mode).................. 5-194

RCALL (Computed Relative Call)
RCALL (Relative Call)......ccccceeverrieiiienieeeeneeene

REPEAT (Repeat Next Instruction ‘lit14’ Times) ... 5-197
REPEAT (Repeat Next Instruction Wn Times)...... 5-198
RESET (RESEt) ...cceeeeeeerieeiieieseee e 5-200
RETFIE (Return from Interrupt)cccoceeieenneenne. 5-201
RETLW (Return with Literal in Wn)...
RETURN (Return).......cccooeveeninieeneeee e
RLC (Rotate Left f through Carry)........ccccoeeeennee.
RLC (Rotate Left Ws through Carry) ...
RLNC (Rotate Left f without Carry)..........cccccerueenee.
RLNC (Rotate Left Ws without Carry).........c.........
RRC (Rotate Right f through Carry)
RRC (Rotate Right Ws through Carry)
RRNC (Rotate Right f without Carry).....................
RRNC (Rotate Right Ws without Carry)..
SAC (Store Accumulator)ccceceevveeneenieeenieene
SAC.R (Store Rounded Accumulator)
SE (Sign-Extend Ws)
SETM (Set f or WREG)........ccoovveeiiieeiceeeee

SETM (S€t WS)...ooiiiiiiiiiiiiiie e

SFTAC (Arithmetic Shift Accumulator by Slit6)...... 5-223
SFTAC (Arithmetic Shift Accumulator by Wb) 5-224
SL (Shift Left by Short Literal)..........ccceevvvrnrnnnnne. 5-228
SL (Shift Left by WNS) ...coceeiiiiiiiiieeciee e 5-229

DS70030F-page 2

© 2005 Microchip Technology Inc.

SL (Shift Left f) .eveeeiieieeeeee e
SL (Shift Left WS)....ocveieeiieeeceeeeeeeee e
SUB (Subtract Accumulators)ccceeeveeneereenee.
SUB (Subtract Literal from Wn)
SUB (Subtract Short Literal from Wb).................... 5-232
SUB (Subtract WREG from f)ccceevivvieciencien, 5-230
SUB (Subtract Ws from WD)ccccceeviniennnennn. 5-233
SUBB (Subtract Short Literal from
Wb with BOITOW)oovniiiiiiiiicecee e 5-238
SUBB (Subtract Wn from Literal with Borrow) 5-237
SUBB (Subtract WREG and Carry bit from f) 5-236
SUBB (Subtract Ws from Wb with Borrow)............ 5-239
SUBBR (Subtract f from WREG with Borrow)........ 5-241
SUBBR (Subtract Wb from
Short Literal with Borrow)cccccevvecvenieenee. 5-242
SUBBR (Subtract Wb from Ws with Borrow) 5-243
SUBR (Subtract f from WREG)
SUBR (Subtract Wb from Short Literal) 5-246
SUBR (Subtract Wb from WS)ccccevivveiernenen.
SWAP (Byte or Nibble Swap Wn)..
TBLRDH (Table Read High)
TBLRDL (Table Read Low)......
TBLWTH (Table Write High)cccoeieiiiiieie
TBLWTL (Table Write LOW)ccceeveieenieneeieneenne
ULNK (De-allocate Stack Frame) ..
XOR (Exclusive OR f and WREG)cccceeverene.
XOR (Exclusive OR Literal and Wn)ccccouuee. 5-260
XOR (Exclusive OR Wb and Short Literal) .
XOR (Exclusive OR Wb and Ws)................
ZE (Zero-Extend Wn)
Instruction Encoding Field Descriptors Introduction........... 5-2
Instruction Set OVerVIEWcccvverinieiinieeneceeseeeee
Bit Instructions
Compare/SKip INStructions..........ccccocvevvveneneeneneennens
Control INStructionscccvrieeieeiesereseeeee
DSP Instructionscccceeueee
dsPIC30F Instruction Groups...
Logic Instructions............cccc.ee.
Math InStructions...........ccceeciiiiiiiiiiii e
Move INStrUCHIONSoocviiiiiiee e
Program Flow Instructions
Rotate/Shift Instructions..........ccccoceeviniiieninicie,
Shadow/Stack Instructions...........cccccceeecveiniiniceninnne
Instruction Set Summary Table..

WX e s 1-4
WX s 1-4
VY e et 1-4
INStruction Stallsccccoirviiiriereeee e 4-12
DO/REPEAT LOOPScveiviiieririeeceeeee e 4-13
EXCeptions......c.coviiieiiiiieeeeeeeee 4-13
Instructions that Change Program Flow ... 4-13
PSV e .. 4-13
RAW Dependency Detection...........ccccccevevvicennnne. 4-12

Instruction SYMDOIScoiiiiiiiiiiiieeee e
Integer and Fractional Data
Representation ...
Interrupt Priority Level..........ccoooiiiiiieeee
INtrOAUCHION ...

M

MAC
OPEratioNSccueeriiiiieeiee et
Pre-Fetch Register Updates....
Pre-Fetches........ccccooiiiieins

MAC or MPY Source Operands

(Different Working Register)ccoccoeviiiiiiiiiiiieenns 5-5
MAC or MPY Source Operands

(Same Working Register)
Manual Objective.........cccceverueenee. .
Microchip Documentationcccoeceeeeriei e
Modulo and Bit-Reversed Addressing Modes 4-8
Multi-Cycle Instructions
Multi-Word Instructions

N
Normalizing the Accumulator with the

FBCL INStruction.........c..ooeriinienieienesec e 4-39
o
Offset Addressing Modes for Wd Destination Register

(with Register Offset)cocooviiiiiiiiiiiiiicecees 5-3
Offset Addressing Modes for Ws Source Register

(with Register Offset)cccovviiiiiiiiiiiiieee s 5-3
P
PICmicro® Microcontroller Compatibilitycccueeeeee. 4-28
PRODH

PRODL Register Paircccoovvevierieeiieieeneeeeeene
Program Addressing Modes

Methods of Modifying FIOW............cccoeeiiiiiiiniiiienn. 4-11
Program CouNtercoceeiiiiiiiiiieee e 2-5
Program Memory Mapccoeviieniniiiece e 6-6

© 2005 Microchip Technology Inc.

DS70030F-page 3

dsPIC30F Programmer’s Reference Manual

Programmer’s Model...........cccocoiiiiiiiiiiiiiicee 2-3
Diagramoooiiiieiiie e s 2-4
Register Descriptions...........cccceciiiiviiiiiniiicis 2-3

PSVPAG Register.........ccocoeiiiiiiiieiiiee e 2-5

R

RCOUNT REQISLENcoviiieiiriieiinieeie e 2-6

Register Direct Addressing

Register Indirect ADdressing..........cccccoeveeviiiiiniiciciice 4-5
MOAES ... 4-5

Register Indirect Addressing and the Instruction Set......... 4-8

Registers
CORCON (Core Control) Register...........ccocevrvueenen. 2-12
SR (Status) Registerccccevveeneierieneneneeeene 2-10

Related DocUmMENtS.........ccccocviiiiiiiieiiice e 1-5

S

Scaling Data with the FBCL Instruction.............ccccecueeueee. 4-37
Scaling Examplescoooviiiniiniieiieceeeeee 4-38

Shadow Registers.......... .29
Automatic Usage.... .29

Software Stack Frame Pointer2-3,4-22
EXamPIoeiiieii e 4-23
OVEITIOW ... 4-24
Underflow 4-24

Software Stack Pointer..........cccceeeeiiiecie e, 2-5, 4-20
EXamPIe ... 4-21

Stack Pointer Limit Register (SPLIM). .

Status Register..................
DSP ALU Status Bits .
Loop Status BitS........ccovuerieeiiiiie e
MCU ALU Status BitS.......ccceeueeieiiieecieeccieee e

Style and Symbol Conventions
Document Conventions...........ccccueeeecieeeccieeeceeee e

T

TBLPAG REQIStEN ...ttt 2-5

Third Party Documentation..............cccooveoiiiinicienne 1-5

U

Using 10-bit Literal Operands..........cccccvervenereenenieennens 4-19
10-bit Literal Coding........ccocverreeenierieeieenieeseeeeeene 4-19

w

Word Move Operations...........ceeveeereerieeneesneesee e senes 4-16
Data Alignment in Memorycccccoeveeiieeneenieeenenn. 4-16

Working Register Array........cccceieeeiiee e 2-3

X

X Data Space Pre-Fetch Destination...........ccceceeveviienne. 5-4

X Data Space Pre-Fetch Operation..........c.ccccevvieenenennne. 5-4

Y

Y Data Space Pre-Fetch Destination...........ccccceeeneenienee. 5-5

Y Data Space Pre-Fetch Operation.............cccccciiiinnne 5-4

V4

Z StatUS Bit ..o 4-26

DS70030F-page 4

© 2005 Microchip Technology Inc.

Index

NOTES:

© 2005 Microchip Technology Inc. DS70030F-page 5

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http:\\support.microchip.com
Web Address:
www.microchip.com

Atlanta

Alpharetta, GA

Tel: 770-640-0034
Fax: 770-640-0307

Boston

Westford, MA

Tel: 978-692-3848

Fax: 978-692-3821
Chicago

ltasca, IL

Tel: 630-285-0071

Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, Ml
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN

Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose

Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200

Fax: 852-2401-3431
China - Shanghai

Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang

Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507
Fax: 86-757-2839-5571
China - Qingdao

Tel: 86-532-502-7355
Fax: 86-532-502-7205

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8632
Fax: 91-11-5160-8632

Japan - Kanagawa
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Taiwan - Hsinchu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

EUROPE

Austria - Weis

Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Ballerup
Tel: 45-4420-9895
Fax: 45-4420-9910
France - Massy

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Ismaning
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
England - Berkshire
Tel: 44-118-921-5869
Fax: 44-118-921-5820

10/20/04

DS70030F-page 6

© 2005 Microchip Technology Inc.

	Section 1. Introduction
	Highlights
	1.1 Introduction
	1.2 Manual Objective
	1.3 Development Support
	1.4 Style and Symbol Conventions
	1.5 Instruction Set Symbols
	1.6 Related Documents
	1.6.1 Microchip Documentation
	1.6.2 Third Party Documentation

	Section 2. Programmer’s Model
	Highlights
	2.1 dsPIC30F Overview
	2.2 Programmer’s Model
	2.2.1 Working Register Array
	2.2.2 Default Working Register (WREG)
	2.2.3 Software Stack Frame Pointer
	2.2.4 Software Stack Pointer
	2.2.5 Stack Pointer Limit Register (SPLIM)
	2.2.6 Accumulator A, Accumulator B
	2.2.7 Program Counter
	2.2.8 TBLPAG Register
	2.2.9 PSVPAG Register
	2.2.10 RCOUNT Register
	2.2.11 DCOUNT Register
	2.2.12 DOSTART Register
	2.2.13 DOEND Register
	2.2.14 Status Register
	2.2.15 Core Control Register
	2.2.16 Shadow Registers

	Section 3. Instruction Set Overview
	Highlights
	3.1 Introduction
	3.2 Instruction Set Overview
	3.2.1 Multi-Cycle Instructions
	3.2.2 Multi-Word Instructions

	3.3 Instruction Set Summary Tables

	Section 4. Instruction Set Details
	Highlights
	4.1 Data Addressing Modes
	4.1.1 File Register Addressing
	4.1.2 Register Direct Addressing
	4.1.3 Register Indirect Addressing
	4.1.4 Immediate Addressing
	4.1.5 Data Addressing Mode Tree

	4.2 Program Addressing Modes
	4.3 Instruction Stalls
	4.3.1 RAW Dependency Detection
	4.3.2 Instruction Stalls and Exceptions
	4.3.3 Instruction Stalls and Instructions that Change Program Flow
	4.3.4 Instruction Stalls and DO/REPEAT Loops
	4.3.5 Instruction Stalls and PSV

	4.4 Byte Operations
	4.5 Word Move Operations
	4.6 Using 10-bit Literal Operands
	4.7 Software Stack Pointer and Frame Pointer
	4.7.1 Software Stack Pointer
	4.7.2 Stack Pointer Example
	4.7.3 Software Stack Frame Pointer
	4.7.4 Stack Frame Pointer Example
	4.7.5 Stack Pointer Overflow
	4.7.6 Stack Pointer Underflow

	4.8 Conditional Branch Instructions
	4.9 Z Status Bit
	4.10 Assigned Working Register Usage
	4.10.1 Implied DSP Operands
	4.10.2 Implied Frame and Stack Pointer
	4.10.3 PICmicro® Microcontroller Compatibility

	4.11 DSP Data Formats
	4.11.1 Integer and Fractional Data
	4.11.2 Integer and Fractional Data Representation

	4.12 Accumulator Usage
	4.13 Accumulator Access
	4.14 DSP MAC Instructions
	4.14.1 MAC Pre-Fetches
	4.14.2 MAC Pre-Fetch Register Updates
	4.14.3 MAC Operations
	4.14.4 MAC Write Back
	4.14.5 MAC Syntax

	4.15 DSP Accumulator Instructions
	4.16 Scaling Data with the FBCL Instruction
	4.17 Normalizing the Accumulator with the FBCL Instruction

	Section 5. Instruction Descriptions
	Highlights
	5.1 Instruction Symbols
	5.2 Instruction Encoding Field Descriptors Introduction
	5.3 Instruction Description Example
	5.4 Instruction Descriptions

	Section 6. Reference
	Highlights
	6.1 Data Memory Map
	6.2 Core Special Function Register Map
	6.3 Program Memory Map
	6.4 Instruction Bit Map
	6.5 Instruction Set Summary Table

	Worldwide Sales and Service

