
AN724
Using PICmicro® MCUs to Connect to Internet via PPP
SOFTWARE LICENSE AGREEMENT

The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller
is intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Micro-
controller products.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights
are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applica-
ble laws, as well as to civil liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED
OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIR-
CUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON
WHATSOEVER.
 1998 Microchip Technology Inc. DS00724B-page 1

AN724
INTRODUCTION

PICmicro microcontrollers (MCU) are suitable for low-
cost connections to the Internet. The desire to connect
everything to the Internet focuses the price reduction
challenge on the Internet interface. Typically, the inter-
face is an overpowered embedded PC running a bulky
operating system and memory intensive applications.
For low-cost applications that handle smaller amounts
of data, a much better choice is the Microchip family of
PICmicro MCUs. This application note will show how
these little processors are capable of connecting to the
Internet with resources to spare for controlling the orig-
inal application.

The software will dial into the Internet and try to con-
nect to the server using Point to Point Protocol (PPP).
It continues pinging once every 30 seconds to keep the
connection open while responding to ping requests.
With the Internet Protocol (IP) connection established
you can add your own algorithms for traceroute, Trivial
File Transfer Protocol (TFTP), Simple Network Man-
agement Protocol (SNMP), or get the time and date
accurate to a millisecond.

Since there are lots of good books and free Internet
resources to describe how the Internet works, this
application note will focus on the less publicized details
of negotiating PPP. Another common protocol used to
connect to the Internet by modem is the Serial Line
Internet Protocol (SLIP). PPP was chosen for this appli-
cation note instead of the simpler SLIP because it is
much more versatile. PPP has the advantage of not
requiring a unique login script for most servers. Another
advantage of PPP is line quality monitoring. Although
not implemented in this algorithm, it is useful when reli-
able communications is a top priority. The most impor-
tant reason is to maintain compatibility with Internet
Service Providers by riding the popularity of desktop
operating systems, which use PPP by default.

This Internet interface requires a physical connection to
a local Internet Service Provider (ISP) with a serial line
or modem. The rest is all software. The algorithm
requires about 145 bytes of RAM and 2170 words of
ROM. The amount of processor time available for other
tasks will depend on the processor’s clock speed and
baud rate of the serial connection. The algorithm takes
time for each received or transmitted character and
extra time to process or create a data or control packet.

This algorithm does not include Transmission Control
Protocol (TCP) which is required for email, Telnet, web
browsing, and File Transfer Protocol (FTP). These
algorithms could be added but they require a processor
with a lot more RAM and ROM. This algorithm will not
connect to every server; it attempts an unscripted PPP
login and falls back to a generic script. If it fails, some
login tweaking or implementing more Link Control Pro-
tocol (LCP) options will usually bring up the connection.

FIGURE 1: PHOTO OF PROTOTYPE
CONNECTED TO THE
INTERNET

FIGURE 2: BLOCK DIAGRAM

Author: Myron Loewen
Microchip Technology Inc.

Dialer

PPP

Ping

Status
LEDs

Trigger
Switch

Internet
Service
Provider

ModemModem

Remote
Host to

Ping

Serial
PICmicro

MCU

Internet

LCP
PAP
IPCP

IP
DS00724B-page 2 1998 Microchip Technology Inc.

AN724
INTERNET PROTOCOLS

The Internet is just a very large bunch of many types of
computers connected in a variety of ways. What makes
it all work is the thousands of standards and conven-
tions that all computers follow. Most standards are doc-
umented and freely available on the Internet. Table 5
lists the standards needed for this algorithm and where
to find them.

Data gets around the Internet in specially marked pack-
ets that are passed from computer to computer. The
packets indicate the type of data they contain such as
a part of a web page or email. Each packet gets stuffed
in its own envelope specially marked to get it to the right
program on the remote computer. This is important
because you may be running several web browsing
windows simultaneously on one machine. The type of
data determines if the envelope is the simpler UDP type
or a more robust TCP type. TCP packets generate
extra packets to open and close the connection and
resend lost packets.

Each computer gets a unique Internet address that
looks like 10.241.45.12, and works much like a postal
mailing address. The envelope is stuffed in a larger
envelope with the source and destination addresses
written on the front. This is like international mail, the
address will get it anywhere on the Internet.

But the Internet works more like passing notes in class.
The larger envelope goes into a bigger envelope with
your friend’s name on it. Your friend opens the enve-
lope and checks the Internet address. If he is the recip-
ient, he processes it, otherwise he puts it in a new big
envelope. From the Internet address he can tell which
direction to send the envelope and puts the name of his
neighbor, in that direction, on the front. The process
repeats until the envelope makes it to the correct Inter-
net address across the class, or gets lost along the way.

In this algorithm only the ping packets travel this way.
The other packets have the same format but are just
exchanged locally between this algorithm and the Inter-
net server it dials up. These packets are discussed in
the next few sections and are used by both ends to con-
figure the serial link options.

PPP requires the serial data format to be set to eight
data bits with no parity. The PPP data is sent as pack-
ets that start and stop with the tilde character (~) or in
hexadecimal 0x7E. Because ~ has a special meaning,
any other instance of ~ is replaced by the }^ escape
sequence. The escape sequence works by transmitting
two characters instead of the original, first the } and
then the original exored with the space character, or in
hexadecimal 0x20. Because the } has a special mean-
ing, it too is also escaped in the same way resulting in
the 2-character sequence }]. For compatibility with all
serial links, the control characters 0x00 to 0x1F can
also be optionally mapped into the 2-character escape
sequence. For more complete details, read RFC 1662
PPP in HDLC-like Framing.

The PPP connection can be broken into several
phases. First, if the link is dead, carrier detect from the
modem is one of the stimuli that starts the link estab-
lishment phase. This phase uses Link Control Protocol
(LCP) to detect and negotiate link options with the
remote computer.

Next the authentication phase verifies the User ID and
password with Password Authentication Protocol
(PAP). Although not one of the phases, this is where
ISPs negotiate compression protocols. The final phase
is the network layer protocol. Each protocol such as IP,
is configured with its control protocol like IPCP.

Control protocols are very similar for LCP, PAP, CCP,
and IPCP but the protocol field is different and the
options have different meanings. Each packet can
request, deny, or accept a list of options. Negotiation
starts with either side requesting a list of options in a
request (REQ) packet. Each option consists of an
option type byte, length byte, and option parameters. If
the receiving end likes all the options, it replies with an
acknowledge (ACK) packet.
 1998 Microchip Technology Inc. DS00724B-page 3

AN724
FIGURE 3: PPP NEGOTIATION WITH REQ,
ACK, NAK, AND REJ PACKETS

If it doesn’t like some parameters, it responds with a not
acknowledge (NAK) packet that repeats all the options
it rejects and replaces the rejected parameters with
acceptable values. If required options are missing
those are added to the NAK reject list.

If some options are not recognized or are considered
non-negotiable they are rejected with the REJ packet
that lists all the bad options. The first side updates its
option list and retransmits requests until it gets an ACK
reply packet. The other side can start negotiations at
any time and the resulting link may have different
options for each direction. The terminate, code reject,
protocol reject, echo, and discard control packet types
are not implemented in this algorithm. The details are
broken down into a section for each control protocol.

LCP-REQ7 - 2, 3, 7, 8

LCP-REJ7 - 2, 7, 8

LCP-REQ 2 - 3

LCP-ACK 8 - 3

LCP-REQ 2 - 2

LCP-ACK 2 - 2

PAP-REQ 3

PAP-ACK 3

IPCP-REQ 9 - 3

IPCP-ACK 9 - 3

IPCP-REQ 4 - 0.0.0.0

IPCP-NAK 4 - 16.52.2.6

IPCP-REQ 5 - 16.52.2.6

IPCP-ACK 4 - 16.52.2.6

Establishing
Connection

Authenticating
User

Getting IP
Options

and Address
16.52.2.6

ISP PICmicro MCU Status

TABLE 1: ACRONYMS

Acronym Description

ACK Acknowledgement

CCP Compression Control Protocol

CRC Cyclic Redundancy Check

CHAP Challenge-Handshake Authentication
Protocol

DNS Domain Name System

DTR Data Terminal Ready

FTP File Transfer Protocol

ICMP Internet Control Message Protocol

IP Internet Protocol

IPCP Internet Protocol Control Protocol

ISP Internet Service Provider

LCP Link Control Protocol

MRU Maximum Receive Unit

NAK Negative Acknowledgement

PAP Password Authentication Protocol

PPP Point-to-Point Protocol

REJ Reject

REQ Request

RFC Request For Comment

SLIP Serial Line Internet Protocol

SNMP Simple Network Management Protocol

TCP Transmission Control Protocol

TFTP Trivial File Transfer Protocol

TTL Time To Live

UDP User Datagram Protocol
DS00724B-page 4 1998 Microchip Technology Inc.

AN724
DIAL-UP SCRIPT

We cannot start link negotiations without a physical
connection to the Internet. In this algorithm, a dial-up
modem makes the connection and then the link is
negotiated. The modem dial script could be removed
for circuits with a direct connection to the server’s serial
port. The sendwait (command, test, timeout)
routine does most of the work for the script. The script
sends the command string and then returns when it
receives the test string or the time expires. The timeout
units are 10 milliseconds, thus a timeout of 100 is 1000
milliseconds or 1 second.

First the modem is taken into command mode with a
pause, then three plus characters (+) and another
pause. The | character in the command string causes a
1 second pause; use them where required in any
sendwait() command string. Then, the ATH com-
mand hangs up the modem in case it was already off
hook. The ATZ and AT&F commands then reset the
modem and restore factory default settings. ATS11=50
speeds up the tone dialing to reduce connect time. The
modem has 3 seconds to echo the command before
the algorithm aborts and assumes the modem is not
functioning.

The algorithm indicates dialing by flashing the status
LED. Then it sends the dial string to the modem and
waits 30 seconds for the modem to respond with the
connect message before the algorithm gives up and
tries the whole process again. If the dial string contains
pauses, or the modem is faster than 2400 baud you
may need to increase the timeout. When the modem
connects, the connection LED stays on steady, other-
wise it is turned off.

The script waits 10 seconds for a colon followed by a
space to detect when the server is prompting for the
password. Whether it gets the prompt or not, it sends
the first PPP packet. This makes use of the fact that
most servers switch to PPP login instead of further text
prompts when they get the first few characters of a PPP
packet instead of a valid User ID. If the bait is taken, the
script ends and PPP negotiation begins. Otherwise the
script continues by sending the User ID, password, and
command to enter PPP. The IP address is not captured
at this time because the IPCP negotiations will capture
it later.

FIGURE 4: PPP LOGIN FLOW CHART

Send PPP
Packet Header

Start

Initialize
Modem

Modem
Ready?

Start PPP

Connect?

Password
Prompt?

PPP
Reply?

Send
User ID

Send
Password

Send
PPP Command

Login
Failure?

Dial ISP

Modem Failed
No

No

No

Yes

Yes

Yes

Yes

No

No
 1998 Microchip Technology Inc. DS00724B-page 5

AN724
LCP OPTIONS

The LCP options are negotiated first to establish the
link. A sample packet is shown in Figure 5. It has the
normal PPP header of 0x7E 0xFF 0x03 followed by
0xC0 0x21 to indicate that the protocol is LCP. The LCP
packet consists of a code, identification, length, and a
list of options to configure followed by the standard 2
byte PPP CRC. The code is a byte to indicate the
meaning of the packet. A list of codes is found in
Table 2. The identification byte is incremented after
each negotiation request, which makes requests
unique and connects them to the correct reply. The
16-bit length is the number of bytes in the LCP packet,
four for the header plus the sum of the lengths of each
option.

The list of possible options is found in Table 3. Each
option is sent as a one byte option type, followed by a
one byte option length, and an optional parameter. The
option length is two for the option header plus the num-
ber of bytes in the parameter. Here is a brief description
of the more common options:

1 Maximum-Receive-Unit – The 2 byte parameter
is the maximum size of PPP packets. It would be
nice to make this value very small to conserve
buffer space in the limited PICmicro MCU RAM.
However, the minimum allowable value of 576 is
much too big to help. Since the MRU option has no
benefit and can be safely left at the 1500 default,
this algorithm doesn’t waste code space to support
it. Note that packets longer than the 47 byte buffer
size are truncated to fit, and typically the longest
packet to handle is about 40 characters. Some
ping packets are much longer but they are quite
tolerant of losing the extra padding characters.

2 Async-Control-Character-Map – The 4-byte
parameter in this option adds up to 32 bits: each bit
represents one of the ASCII control characters
from 0 to 31. Starting with the most significant bit
as character 31 and the least significant as charac-
ter 0. If the bit for the character is a one then that
character must be transmitted as a } sequence.
This way the server and client can decide to
escape only the characters which may cause prob-
lems instead of wasting bandwidth escaping all
control characters. Even characters that do not
need to be escaped may be, this algorithm exploits
that to simplify the software and to transmit all con-
trol characters as two bytes.

3 Authentication-Protocol – This option chooses
the method of sending the password. Unless you
have already logged in with the script, this option
will be required. A parameter value of 0xC023
selects Password Authentication Protocol (PAP)
which sends a packet containing the User ID and
password in plain text. A parameter value of
0xC223 selects the Challenge Handshake Authen-
tication Protocol (CHAP) in which the User ID is
sent in plain text and the password encrypts and
returns a random string from the server. On the
server, the password encrypts the same string; if
the two results match, the user is logged in. For
simplicity, this algorithm only supports the PAP
method. So far no ISP has forced it to use the
CHAP method.

5 Magic-Number – This option did not need to be
implemented for the PPP negotiations to con-
verge. The 4 byte parameter is a random number;
if identical to the server’s, then both ends choose
another random number. Assuming good random-
ness, the chance of random numbers not being
unique after three iterations is so low that the
transmission path is assumed to be looped back,
just echoing packets sent.

7 Protocol-Field-Compression – This option has
no parameters. If requested, the acknowledging
side may transmit future PPP packets with the first
byte of the 2-byte protocol field left out. This is
meant to save bandwidth. It is easy to uncompress
- if an odd byte arrives at the start of the protocol
field it must be the second byte since the first byte
is always even, and the second is always odd. A
zero is inserted for the missing first character.

8 Address-and-Control-Field-Compression –
This option has no parameters. However, if
requested, the acknowledging side may transmit
future PPP packets with the second and third
bytes, 0xFF and 0x03, left out. This is also meant
to save bandwidth. It is also easy to decompress
because if the first character in the packet is not
0xFF, a 0xFF is inserted first, if the second charac-
ter is not 0x03, a 0x03 is inserted first.

The other options didn’t need to be implemented to
make the Internet connection, but as standards evolve
in the future a missing option could prevent login. Note
that only options up to number 16 can be negotiated
without modifying the TestOptions() routine. It has
a one word parameter called option in which each of
the 16 bits indicate acceptance of an option. For exam-
ple, if the Most Significant Bit (MSB) is set, then option
16 is accepted; if bit 0 is cleared, then option 1 is
rejected. LCP is complete when both sides of the con-
nection have their list acknowledged by the other side.
DS00724B-page 6 1998 Microchip Technology Inc.

AN724
FIGURE 5: A SAMPLE LCP REQUEST PACKET

TABLE 2: LCP NEGOTIATION CODES

Type Packet Type Details

0 Vendor Specific RFC2153

1 Configure-Request RFC1661

2 Configure-Ack RFC1661

3 Configure-Nak RFC1661

4 Configure-Reject RFC1661

5 Terminate-Request RFC1661

6 Terminate-Ack RFC1661

7 Code-Reject RFC1661

8 Protocol-Reject RFC1661

9 Echo-Request RFC1661

10 Echo-Reply RFC1661

11 Discard-Request RFC1661

12 Identification RFC1570

13 Time-Remaining RFC1570

01

C0 21 REQ 25 00 18 2 3 5 7 8

7E FF 03 LCP Code ID Length Options 8F 64 7E

Framing Protocol Payload Checksum Framing

The complete packet with more option details:

0000: 7E FF 03 C0 21 01 25 00 18 02 06 00 0A 00 00 03

0010: 04 C0 23 05 06 71 AE BE D2 07 02 08 02 8F 64 7E

Same LCP packet with } escape sequences:

0000: 7E FF 7D 23 C0 21 7D 21 25 7D 20 7D 38 7D 22 7D

0010: 26 7D 20 7D 2A 7D 2A 7D 20 7D 23 7D 24 C0 23 7D

0020: 25 7D 26 71 AE BE D2 7D 27 7D 22 7D 28 7D 22 8F

0030: 64 7E

02 06 00 0A 00 00

Type Length Data

01

C0 21 REQ 25 00 18 2 3 5 7 8

7E FF 03 LCP Code ID Length Options 8F 64 7E

Framing Protocol Payload Checksum Framing

The complete packet with more option details:

0000: 7E FF 03 C0 21 01 25 00 18 02 06 00 0A 00 00 03

0010: 04 C0 23 05 06 71 AE BE D2 07 02 08 02 8F 64 7E

Same LCP packet with } escape sequences:

0000: 7E FF 7D 23 C0 21 7D 21 25 7D 20 7D 38 7D 22 7D

0010: 26 7D 20 7D 2A 7D 2A 7D 20 7D 23 7D 24 C0 23 7D

0020: 25 7D 26 71 AE BE D2 7D 27 7D 22 7D 28 7D 22 8F

0030: 64 7E

02 06 00 0A 00 00

Type Length Data
 1998 Microchip Technology Inc. DS00724B-page 7

AN724
TABLE 3: LCP OPTIONS

Type Configuration Option Details

 0 Vendor Specific RFC2153

 1 Maximum-Receive-Unit RFC1661

 2 Async-Control-Character-Map RFC1662

 3 Authentication-Protocol RFC1661

 4 Quality-Protocol RFC1661

 5 Magic-Number RFC1661

 6 Quality-Protocol Deprecated

 7 Protocol-Field-Compression RFC1661

 8 Address-and-Control-Field-Compression RFC1661

 9 FCS-Alternatives RFC1570

 10 Self-Describing-Pad RFC1570

 11 Numbered-Mode RFC1663

 12 Multi-Link-Procedure Deprecated

 13 Callback RFC1570

 14 Connect-Time Deprecated

 15 Compound-Frames Deprecated

 16 Nominal-Data-Encapsulation Deprecated

 17 Multilink-MRRU RFC1990

 18 Multilink-Short-Sequence-Number-Header RFC1990

 19 Multilink-Endpoint-Discriminator RFC1990

 20 Proprietary

 21 DCE-Identifier RFC1976

 22 Multi-Link-Plus-Procedure RFC1934

 23 Link Discriminator for BACP RFC2125

 24 LCP-Authentication-Option

 25 Consistent Overhead Byte Stuffing (COBS)

 26 Prefix elision

 27 Multilink header format

 28 Internationalization RFC2484

 29 Simple Data Link on SONET/SDH
DS00724B-page 8 1998 Microchip Technology Inc.

AN724
PAP OPTIONS

The PAP details can be found in RFC 1334. For this
algorithm they were simplified to one packet exchange.
The PAP packet is similar to LCP with 0xC023 instead
of 0xC021 in the protocol field. Instead of negotiating
options, only the User ID and password are sent as a
request. If the server acknowledges, then the user is
logged in. A NAK reply would mean that the User ID or
password is incorrect. The format can be seen in
Figure 6. The first payload byte is the length of the User
ID, followed by the User ID. The password is appended
in the same way: Length first followed by password.

FIGURE 6: A SAMPLE PAP REQUEST PACKET

C0 23 01 04 0014 06 userid 08 password

7E FF 03 PAP Code ID Length User ID Password 58 3D 7E

Framing Protocol Payload Checksum Framing

The complete packet:

0000: 7E FF 03 C0 23 01 04 00 14 06 75 73 65 72 69 64

0010: 08 70 61 73 73 77 6F 72 64 58 3D 7E
 1998 Microchip Technology Inc. DS00724B-page 9

AN724
IPCP OPTIONS

After LCP is negotiated and PAP is accepted, the Inter-
net Protocol must be configured. The options are for IP
address and IP Compression with more details in RFC
1332. IP address is option three and its 4-byte param-
eter is the Internet address of this node. The server typ-
ically sends a request with option three followed by the
IP address. Otherwise, the address is found by
requesting an invalid choice like 0.0.0.0 and the server
replies with a NAK and option three with the correct
address. A sample packet is shown in Figure 7. Some
server implementations may request IP Compression
Protocol option type two. These requests are rejected
because TCP is not implemented in this algorithm.
Table 4 shows the IPCP configuration option types.

FIGURE 7: A SAMPLE IPCP NAK PACKET

TABLE 4: IPCP CONFIGURATION OPTION
TYPES

Type Configuration Option Details

 1 IP-addresses Deprecated

 2 IP-Compression-Protocol RFC1332

 3 IP-address RFC1332

 4 Mobile-IPv4 RFC2290

129 Primary DNS Server address RFC1877

130 Primary NBNS Server
address

RFC1877

131 Secondary DNS Server
address

RFC1877

132 Secondary NBNS Server
address

RFC1877

03

80 21 NAK 05 00 0A 3

7E FF 03 IPCP Code ID Length Option A3 4D 7E

Framing Protocol Payload Checksum Framing

The complete packet:

0000: 7E FF 03 80 21 03 05 00 0A 03 06 CD C8 2D 4A A3

0010: 4D 7E

03 06 CD C8 2D 4A

Type Length Data
DS00724B-page 10 1998 Microchip Technology Inc.

AN724
CCP OPTIONS

Some servers will try to negotiate compression, but
since this algorithm is optimized for size instead of
speed, these requests are rejected. The compression
algorithms are complex and in some cases proprietary,
yet have little benefit on the short packets used in this
algorithm. Choosing the puddle jumper option type 3
means that no compression or decompression is
required.

ICMP COMMUNICATIONS

The Internet Control Message Protocol messages are
sent with full IP packets, an example is shown in
Figure 8. This protocol is used to implement ping, but it
has many other uses that you can read about in RFCs
792 and 950. Ping works by sending a packet to a
remote Internet address and waiting for the reply, like
radar or sonar from which it gets the name. This algo-
rithm pings a fixed address once every 30 seconds to
maintain an ISP connection. During this time it also
responds to pings initiated by remote devices on the
Internet.

The description of this packet is better understood as
two parts, the IP header and the ICMP message. The
packets discussed up to this point were just for setting
up the serial link and never made it past the server. A
lot more information is packed into the IP header: Its 20
bytes containing the instructions to take it anywhere on
the Internet.

The first byte is broken into two nibbles, the first 4 bits
are the IP version which is currently still four. The next
4 bits are the header length, which is the number of 32
bit words in the header, 5 in this case. The second byte
is the type of service to optimize for: minimize delay,
maximize throughput, maximize reliability, or minimize
monetary cost. The recommended value for ping is

0x00 which means normal service with no optimization.
The third and fourth bytes are the 16 bit total length of
the IP header plus the following data such as the ICMP
message.

The next 4 bytes are for fragmented packets and since
these packets are so small, this algorithm ignores frag-
mentation. The ninth byte is the time to live (TTL) flag
and it sets the maximum number of routers a packet
can pass through before it is discarded. This is impor-
tant to keep the Internet from getting clogged with lost
packets. The TTL flag is usually set to 32 or 64 and dec-
remented by each router the packet passes through.
The tenth byte is a protocol field which says what type
of information the IP header is attached to.

Bytes 11 and 12 are called the header checksum,
which is a 16 bit one’s complement sum of the 20
header bytes. For implementation details check RFC
1071 which has a very good description and sample C
code. Basically, a 16-bit one’s complement sum is the
16 bit sum of 16 bit data where overflow carries into bit
16 are wrapped around and added to bit 0. The next 4
bytes are the source IP address and the last four bytes
are the destination IP address.

The ICMP message follows with a type byte, code byte,
and checksum word, see Figure 9. The type byte is 0
for a ping reply or 8 for a ping request. The code byte
is zero in both cases and the checksum is again a one’s
complement sum. This time the checksum is the sum
of the ICMP header plus the following data. The
amount of data is the IP header total length minus the
IP header length. In the case of a ping the originator
stuffs in some data to see if it is properly echoed by the
ping reply. This arbitrary data could just as well be your
collected data or other information you wish to send.
This algorithm responds to ping requests without echo-
ing back any of the arbitrary data and causes some
ping programs to report an error.

FIGURE 8: INTERNET PROTOCOL PACKET SHOWING MEMORY LOCATIONS IN RX BUFFER

Buffer
Offset

bit
0

bit
8

bit
16

bit
24

bit
31

4 IP Version Length Type of Service Total Length in Bytes

8 Identification Flags Fragment Offset

12 Time To Live (TTL) Protocol Header Checksum

16 Source IP Address

20 Destination IP Address

24 ICMP, TCP, or UDP Header and Data

.

.

.

 1998 Microchip Technology Inc. DS00724B-page 11

AN724
FIGURE 9: A SAMPLE OF A PING WITH NO OPTIONAL DATA

Buffer
Offset

bit
 0

bit
 8

bit
16

bit
24

bit
31

PPP Packet

0000 : FF 03 00 21

4
Version
0100

Length
0101

Service
0000 0000

Total Length
00000000 00011100

0004 : 45 00 00 1C

8
Identification

1000 1000 0001 0000
Flags
010

Fragment Offset
00000 00000000

0008 : 88 10 40 00

12
TTL

0111 1111
Protocol

0000 0001
Header Checksum

00110011 10100111
000C : 7F 01 33 A7

16
Source IP Address

11001101 11001000 00101101 01111100
0010 : CD C8 2D 7C

20
Destination IP Address

11001111 10100001 01110101 01000011
0014 : CF A1 75 43

24
ICMP Type
0000 1000

ICMP Code
0000 0000

ICMP Checksum
11110111 11111110

0018 : 08 00 F7 FE

28
PING Identifier

00000000 00000001
PING Sequence Number

00000000 00000000
001C : 00 01 00 00

0020 : 22 7C 7E
DS00724B-page 12 1998 Microchip Technology Inc.

AN724
UDP DETAILS

UDP is the protocol required to transfer files with TFTP,
convert host names to IP addresses with DNS, or sta-
tus and event reporting with SNMP. Its simplicity and
bandwidth efficiency make it an important part of some
multimedia Internet protocols. The official specification
is found in RFC 768.

This algorithm doesn’t support UDP protocols but this
section will give you a bit of background and make it
easier for you to add it to the algorithm. First of all UDP
is an unreliable protocol, not that it should be avoided,
but rather that packets can get lost without warning and
may require retransmission. It is deterministic in the
sense that each packet, or timeout, triggers the next
event without regard to what state the connection is in.
This simplifies programming and makes debugging
much easier.

The format of UDP is shown in Figure 10. There are 20
bytes of IP header, then 8 bytes of UDP header, and the
UDP data. The first two 2 byte fields are the source and
destination port numbers. The port numbers are impor-
tant to identify what process gets the UDP data. An
example is port 69 which is always used for TFTP.

The next two bytes are the UDP length, eight bytes of
UDP header plus the length of the UDP data. This
value is redundant because it can be calculated from
the IP header by subtracting the header length from the
total length.

The last 2 bytes of the UDP header are the 16 bit one’s
complement checksum of the pseudo header, the UDP
header, and the UDP data. The pseudo header is not
transmitted but the following 12 bytes are added to the
checksum anyway. The 32 bit source and destination
addresses, the 16-bit UDP address, and the 8-bit pro-
tocol field are extended to 16 bits to ensure that the
UDP data is going to the correct IP address.

The checksum is optional and set to zero if not used.
Since zero means no checksum, then a valid checksum
that adds up to zero must be inverted to 0xFFFF. If the
UDP data is an odd number of bytes, your 16 bit check-
sum routine will need to pretend that there is an extra
byte 0x00 at the end.

The format of the UDP data will depend on which port
you are connecting to and which protocol is using the
data. A good example is the Trivial File Transfer Proto-
col (TFTP) which is well documented in RFC 1350.

TCP DETAILS

TCP is the protocol required to transfer files with FTP,
communicate by email with SMTP, login remotely with
Telnet, or serve web pages with HTTP. The original
specification is found in RFC 793; however, it has been
improved by the Host Requirements RFCs 1122 and
1123.

This algorithm doesn’t even pretend to support TCP
packets because of the larger RAM and ROM require-
ments. Parts of the protocol may fit in a PICmicro
MCUs with larger program memory size, so here is a lit-
tle information for those brave enough to try. TCP is
considered a reliable protocol because it hides lost and
missing packets from the running applications: it tracks
and retransmits them in the background.

This is really no different than UDP for the purpose of
this algorithm since there is no distinction of software
levels. In both cases the same process is responsible
to retransmit missing packets. The difference is in the
complexity and size of the packets. Another difference
is that the other end of the connection is expecting this
algorithm to keep track of packet timing, retransmit pre-
vious packets, and remember the state of multiple
simultaneous connections.

FIGURE 10: THE UDP PACKET FORMAT

Buffer
Offset

bit
0

bit
16

bit
31

4 IP Header

24 Source Port Number Destination Port Number

28 UPD Length UDP Checksum

32 UDP Data Such as TFTP
.
.
.

 1998 Microchip Technology Inc. DS00724B-page 13

AN724
HARDWARE IMPLEMENTATION

This application note was designed for the PIC16C63A
to demonstrate how compact the PPP connection algo-
rithm can be shrunk. The algorithm uses 151 of the 192
file registers and 2.2k of the 4k ROM and only six I/O
pins. There is still plenty of space for your own code
and the code is portable enough to move it into a
smaller or larger PICmicro MCU. The 4 MHz crystal is
fast enough and could be slowed down, unless you
need a faster modem or run additional CPU intensive
tasks.

The modem is a Ceremtek CH1786LC, running at 2400
baud, but with packet sizes under 50 bytes speed is not
much of an issue. For higher traffic connections or large
data transfers you may want to upgrade to the larger
but still pin-compatible 14.4 kilobaud CH1794. Be sure
to check with the modem manufacturer what external
circuitry is required before connecting to the telephone
line. Your circuit must be designed and tested to meet
the telecom standards of the country in which you wish
to use it.

Only the telephone line, power, serial transmit, receive,
and DTR line need to be connected to use this modem.
The DTR line must be tied low for the modem to oper-
ate properly. The modem can be very sensitive to
power supply noise so be sure to keep it close to a
bypass capacitor. You could also change the software
a little and replace the modem with an RS232 driver to
go directly to the server’s serial port.

One desirable characteristic of this modem is that it
draws a maximum of 50 mA. Since it is only on for brief
periods and the entire circuit never draws more than a
total of 65 mA, we can easily power it off a 9V battery.
A typical 9V alkaline battery with a 560mA hour rating
would give us about 9 hours of power. The modem off
hook to ping time is under a minute, so if we just send
one ping and hang up, the battery would last for more
than 500 pings. This works out to be about a year and
a half at one ping per day.

This requires the power supply to turn off completely
after the ping is successful. The power supply design
uses a NPN transistor to turn on a PNP transistor which
supplies the current to the voltage regulator. The NPN
transistor can be turned on by the processor or by a
momentary switch. When the momentary switch closes
it turns on the power, and as the microcontroller initial-

izes it too turns on the NPN transistor. By this time the
user has released the switch and the microcontroller
keeps the power on. The switch could be almost any-
thing like a magnetic burglar sensor or even a thermo-
stat. When the ping is complete it releases the power
and turns itself off. If you need to ping the device, just
keep the manual switch closed until you want the power
off. With the switch released, it will power down after
the first successful ping or an automatic timeout if there
is no modem connection, password fails, or no ping
replies.

The PNP transistor is also a benefit to reducing power
consumption because no voltage drop is lost to a
reverse protection diode. You may also upgrade to a
low dropout (LDO) voltage regulator to get a little extra
life out of the battery before the 5 volt regulator stops
regulating. Choose a regulator that includes a power
switch, or change the PNP to a MOSFET to reduce the
current draw by one mA and add another two percent
to the battery life. Rather than improving efficiency with
a DC-DC converter, I would choose a lower-voltage
battery pack with a flat discharge curve that barely
maintains the minimum LDO regulating voltage. If the
device will be inaccessible or needs a long shelf life,
then go with a lithium-ion battery pack.

There are three LEDs: one indicates the modem status
and the other two indicate serial data transmitted and
received. The modem status LED is off while the soft-
ware initalizes the modem, flashes quickly while dial-
ing, and goes on steady when connected. If it goes off
after flashing then it didn’t connect and it will try again
in a couple seconds. After connecting and negotiating
PPP the status light will go off for a second and then
flash out its 32 bit IP address. A long flash is a one and
a short flash is a zero. Write down each bit as it flashes
and then convert the binary to hexadecimal. Make it
easier by grouping the bits in fours, each a hexadecimal
character. Insert three decimals spaced every 8 bits,
convert the four numbers to decimal, and you have your
IP address, see Figure 11. This address is usually
dynamically assigned resulting in a different address
every time it logs on the Internet.

FIGURE 11: CALCULATION OF IP ADDRESS FROM LED PULSES

Note: For first-time developers of PICmicro
MCUs, using the Microchip PICDEM Dem-
onstration boards (DV163002) may be
useful.

Record long flashes as 1 bit.
Record short flashes as 0 bit.
There will be a pause every eight flashes.
Example:

1100 1101 1100 1000 0010 1101 0100 1010

Hexadecimal: C D • C 8 • 2 D • 4 A

Decimal: 205 • 200 • 45 • 74
DS00724B-page 14 1998 Microchip Technology Inc.

AN724
SOFTWARE IMPLEMENTATION

The software is written in C to keep it portable. This way
the algorithm can be developed on a PC and tested
with a variety of low-cost compilers and debuggers or
simply print all relevant data to the screen. Then, just
press PrintScreen or use DOS to pipe the screen out-
put to a file for analysis. To compile for a PC, replace
the serial functions with COM port routines and use the
PC tick counter at address ‘0040:006C’ instead of
TMR0.

There are a number of excellent C compilers for the
PICmicro MCU. This code was started with the free
compiler CC5X from B. Knudsen Data in Norway and
completed with the PICmicro MCU C Compiler from
HiTech in Australia. The code shown will compile with
the HiTech demo available at http://www.htsoft.com. It
should work with all the other C compilers for the
PICmicro MCU if you do all compiler specific modifica-
tions required to the code.

The code consists of a main routine that does the two
main tasks of modem control scripting and the protocol
state machine. There are a couple of support routines
for calculating the CRC checksums, creating packets,
checking configuration options, and controlling the
modem.

When you press the power switch, the microcontroller
powers up, does a short time delay loop, and asserts
RB3 to keep the power on. The 250 millisecond time
delay is meant to prevent false triggering. As long as
either the user is pressing the power button or RB3 is
asserted the power will stay on. The software will
release RB3 to turn off the power after it successfully
pings a remote host, times out trying, or fails 20 dial
attempts. If the power button is still pressed, the soft-
ware continues to dial or attempt more pings until the
button is released. For example, if you want to ping it
from another computer you will have to hold in the but-
ton until you complete your ping tests.

The software will attempt to phone the number pro-
grammed in the source code up to 20 times at about
30-second intervals. When it connects it tries going
from a script login to a PPP login by sending a PPP
packet instead of a User ID. If that fails, it falls back to
a script login; otherwise it goes into the main loop of the
algorithm. The protocol state machine loop does all the
serial I/O, packet processing, packet creation, and tim-
ing to negotiate PPP and complete a ping.

The state machine starts in state 0. When the Internet
server acknowledges the LCP configuration packet
state, bit 0 is set. When the algorithm acknowledges
the server’s LCP configuration, bit 1 is set. As long as
bit 0 is clear, the algorithm will send an LCP request
once every second. When both bits are set the algo-
rithm moves into state 4.

In state four a PAP request with the User ID and pass-
word is sent once a second. The acknowledgement of
the password moves the algorithm into state five. When
the algorithm acknowledges the server’s IPCP options
it moves into state six. In state six the algorithm
requests IP address 0.0.0.0 once a second. The server
should reply with a NAK packet containing the correct
address to move the algorithm into it final state 7. Here
it flashes out the IP address on the status LED and then
pings the hardcoded host IP address every 30 sec-
onds. After the first good ping reply, it turns off the
power unless the power button is still pressed.

The MakePacket routine creates an outgoing packet
in the transmit buffer. Every loop of the state machine
checks if the serial transmitter is ready for another
character. If the transmit buffer is empty, it sends the
next character. On the last character it marks the buffer
empty and sends an extra 0x7E to mark the end of the
packet.

Every loop of the state machine also checks the serial
receiver for characters from the modem or Internet
server. Characters that are sent using the previously
described } escape sequence are immediately con-
verted back to the original character. The CRC check-
sum is also calculated as the bytes come in so that
packets longer than the buffer can still pass the CRC.

The OptionTest routine is used to test the receive
buffer for whatever options the server is requesting. It
takes a 16-bit option parameter, where each bit repre-
sents an option from 1 to 16 - with 16 being the MSB. If
a bit is set, then its corresponding option can be
accepted. If the server requests options that are not
allowed by the option parameter, then the subroutine
returns a zero and deletes the options that were
allowed. This way a REJ packet can be sent to tell the
server which options to drop. If it is an LCP packet with
option three set to CHAP then the subroutine returns a
one and deletes the options that passed. This way a
NAK packet can be sent to tell the server to switch to
PAP. In all other cases the subroutine returns a value
greater than one and leaves the receive buffer
unchanged.
 1998 Microchip Technology Inc. DS00724B-page 15

AN724
FIGURE 12: PPP NEGOTIATION STATE MACHINE

State 0
No Connection

State 1
Tx Channel Ready

State 2
Rx Channel Ready

State 3
PPP Connected

State 4
Authenticating User

State 5
Configuring IPCP

State 6
Requesting Address

State 7
Ready for Ping

LCP NAK or LCP REJ

Send LCP Requests

LCP REQ/NAK
Send LCP Requests

LCP ACK

LCP REQ/NAK LCP ACK

Automatic

PAP ACK

IPCP REQ/ACK

IPCP ACK

Send PAP Requests

Send IPCP Requests

Send Ping Requests

PAP REQ

PAP NAK

IPCP REQ/REJ

IPCP NAK/REQ

LCP REQ/NAK

LCP REQ/NAK

LCP REQ/NAK
DS00724B-page 16 1998 Microchip Technology Inc.

AN724
CONCLUSION

This algorithm is a little taste of what is possible with a
PICmicro MCU, you will likely use this information as a
basis for even more powerful Internet applications. Just
remember to only make small changes to working code
and test them before making the next change.

This information is quite technical, so don’t give up if
you are not already TCP/IP savvy. Remember that all
the so called experts had to learn it at some time too.
Read a book like TCP/IP Illustrated Volume 1 by Rich-
ard Stevens and the referenced RFCs, then compile
the code and analyze lots of packets. Start your exper-
imenting slowly with a relatively easy task like adding
support for replying to Traceroute requests. Here’s a
hint: test the TTL on valid IP packets received to trigger
sending an ICMP error packet.

This tutorial was meant to encourage the development
of tiny Internet interfaces and not to replace or override
the established Internet standards documents.

The prototype does what I needed it to do but there are
many areas in which it could be improved upon, such
as size, speed, power requirements, RAM usage, sup-
ported protocols, and more universal PPP negotiations.
The possibilities are only limited by your imagination
and creativity in overcoming the obstacles.
 1998 Microchip Technology Inc. DS00724B-page 17

AN724
TABLE 5: REFERENCES
W.R. Stevens, TCP/IP Illustrated, Vol. 1, Addison Wesley, Reading, MA, 1994
RFC 0768 User Datagram Protocol. J. Postel. Aug-28-1980.

RFC 0791 Internet Protocol. J. Postel. Sep-01-1981.
RFC 0792 Internet Control Message Protocol. J. Postel. Sep-01-1981.
RFC 0793 Transmission Control Protocol. J. Postel. Sep-01-1981.

RFC 0867 Daytime Protocol. J. Postel. May-01-1983.
RFC 0950 Internet Standard Subnetting Procedure. J.C. Mogul, J. Postel. Aug-01-1985.
RFC 1055 Nonstandard for transmission of IP datagrams over serial lines: SLIP. J.L. Romkey. Jun-01-1988.

RFC 1071 Computing the Internet checksum. R.T. Braden, D.A. Borman, C. Partridge. Sep-01-1988.
RFC 1122 Requirements for Internet hosts - communication layers. R.T. Braden. Oct-01-1989.
RFC 1123 Requirements for Internet hosts - application and support. R.T. Braden. Oct-01-1989.

RFC 1144 Compressing TCP/IP headers for low-speed serial links. V. Jacobson. Feb-01-1990.
RFC 1157 Simple Network Management Protocol (SNMP). J.D. Case, M. Fedor, M.L. Schoffstall, C. Davin.
May-01-1990.
RFC 1332 The PPP Internet Protocol Control Protocol (IPCP). G. McGregor.May 1992.
RFC 1334 PPP Authentication Protocols. B. Lloyd, W. Simpson. October 1992.

RFC 1350 The TFTP Protocol (Revision 2). K. Sollins. July 1992.
RFC 1547 Requirements for an Internet Standard Point-to-Point Protocol. D. Perkins. December 1993.
RFC 1570 PPP LCP Extensions. W. Simpson. January 1994.

RFC 1661 The Point-to-Point Protocol (PPP). W. Simpson, Editor. July 1994.
RFC 1662 PPP in HDLC-like Framing. W. Simpson, Editor. July 1994.
RFC 1663 PPP Reliable Transmission. D. Rand. July 1994.

RFC 1700 Assigned Numbers. J. Reynolds, J. Postel. October 1994.
RFC 1962 The PPP Compression Control Protocol (CCP). D. Rand. June 1996.
RFC 1989 PPP Link Quality Monitoring. W. Simpson. August 1996.

RFC 1994 PPP Challenge Handshake Authentication Protocol (CHAP). W. Simpson. August 1996.
James Carlson, PPP Design and Debugging, Addison Wesley, Reading, MA, 1997
RFCs available online from sites like: http://www.cis.ohio-state.edu/hypertext/information/rfc.html

Assigned PPP Numbers: ftp://ftp.isi.edu/in-notes/iana/assignments/ppp-numbers
DS00724B-page 18 1998 Microchip Technology Inc.

 1998 M

icrochip T
echnology Inc.

D
S

00724B
-page 19

A
N

724

F
IG

U
R

E
 13:

S
C

H
E

M
A

T
IC

R7
10

TIP

RING

786LC

2

1

R5
10

1

2
RJ11

Legend:

D1 = Status LED
D2 = Power LED
D3 = Tx LED
D4 = Rs LED
VCC

Rx

Tx

DTR

GND

U3
CH1

RB0

Tx

Rx

U2
PIC16C63A

RB1

RB2

RB3

OSC1

OSC2

MCLR

Vcc

VSS

VSS

8 13

19 20

18 10

17 11

1 19

20

24

23

22

21

9

10

R2
1k

R3
1k

R4
1k

R6
10k

C3
22p

C4
22p

IN OUT
G

N
D

U1
79L05

+C1
4.7

C2
0.1

32

7-35V

R1
2.2k

D4
Optional
Else Short

Trigger

S1

VCC

VCCQ1
2N2907

E C

C

E

Q2
2N2222

Vbatt

B

B

X1
4 MHz

R8
10k

Vbatt

D1

D2

D3

AN724
APPENDIX A: SOURCE CODE

SOFTWARE LICENSE AGREEMENT
The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller
is intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Micro-
controller products.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights
are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applica-
ble laws, as well as to civil liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED
OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIR-
CUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON
WHATSOEVER.
DS00724B-page 20 1998 Microchip Technology Inc.

AN724
APPENDIX A: SOURCE CODE

///
//
// PING.C version 1.10 July 29/99 (C)opyright by Microchip Technology Inc.
//
///
//
// For more documentation read the Microchip Application Note 724
// This code is ready to compile with the HiTech C compiler demo for the PIC16C63A.
//
// You will need these additional things to make this code work:
//
// - the simple hardware described in application note
//
// - an Internet account with PPP dialup access (not compatible with all ISPs)
//
// - replace 5551234 with your ISP’s phone number in the line like this
// if (sendwait(“5551234\r”,”NNECT”,3000)) {
//
// - replace userid with your account userid in the line like this:
// if (sendwait(“userid\r”,”word:”,200))
//
// - replace password with your account password in the line like this:
// if (sendwait(“password\r”,”tion:”,1000))
//
// - replace the entire string in the line like this:
// MakePacket(PAP,REQ,number,”\x14\x06userid\x08password”);
//
// C converts the \x## in the string to a character with that ASCII value
// ## is a hexadecimal value, so the following character cannot be
// if the next character is 0-9 or A-F or a-f then it will confuse the compiler
// the solution is to convert the next characters to \x## until a non hex char
// if in doubt look at the assembly output from the compiler
// replace the userid with yours and the \x06 with your userid length
// replace the password with yours and the \x08 with your password length
// replace the first value in the string, it must be the string length plus 4
//
// Once login is working you should also change the IP address of the Internet host to ping
// if you can not ping 207.161.117.67 with your PC this code will not work either
// It is CF.A1.75.43, the characters 2 to 5, in the string in the line like this:
// MakePacket(IP,0,1,”\x10\xCF\xA1\x75\x43\x8\x0\xF7\xFE\x0\x1\x0\x0”);
// Convert the address you want to hexadecimal and replace the four values.
//
// Make sure the power-on reset and brownout detect config bits are enabled
//
///

// Defines for Internet constants
#define REQ 1 // Request options list for PPP negotiations
#define ACK 2 // Acknowledge options list for PPP negotiations
#define NAK 3 // Not acknowledged options list for PPP negotiations
#define REJ 4 // Reject options list for PPP negotiations
#define TERM 5 // Termination packet for LCP to close connection
#define IP 0x0021 // Internet Protocol packet
#define IPCP 0x8021 // Internet Protocol Configure Protocol packet
#define CCP 0x80FD // Compression Configure Protocol packet
#define LCP 0xC021 // Link Configure Protocol packet
#define PAP 0xC023 // Password Authentication Protocol packet

#define MaxRx 46 // Maximum size of receive buffer
#define MaxTx 46 // Maximum size of transmit buffer

unsigned char addr1, addr2, addr3, addr4;// Assigned IP address
unsigned int rx_ptr, tx_ptr, tx_end; // pointers into buffers
unsigned int checksum1, checksum2; // Rx and Tx checksums
 1998 Microchip Technology Inc. DS00724B-page 21

AN724
unsigned char number; // Unique packet id

#include <pic1663.h> // Defines specific to this processor

#define serial_init() RCSTA=0x90;TXSTA=0x24;SPBRG=103// Set up serial port
#define serial_tx_ready() TXIF // Transmitter empty
#define serial_send(a) TXREG=a // Transmit char a
#define serial_rx_ready() RCIF // Receiver full
#define serial_get() RCREG // Receive char
#define serial_error() OERR // USART error
#define serial_fix() {CREN=0;CREN=1;} // Clear error

unsigned int TIME; // 10 milliseconds counter
#define TIME_SET(a) TIME=a // Set 10 millisecond counter to value ‘a’
bank1 unsigned char tx_str[MaxRx+1]; // Transmitter buffer
bank1 unsigned char rx_str[MaxTx+1]; // Receiver buffer

// Process all the interrupts in the PIC here
static void interrupt isr(void) {
 if (T0IF) { // Timer overflow interrupt?
 TMR0 = 100; // Set to overflow again in 10ms @ 4MHz
 T0IF = 0; // Clear overflow interrupt flag
 TIME++; // Increment 10 ms counter
 }
}

// Add next character to the CRC checksum for PPP packets
unsigned int calc(unsigned int c) {
 char i; // Just a loop index
 c &= 0xFF; // Only calculate CRC on low byte
 for (i=0;i<8;i++) { // Loop eight times, once for each bit
 if (c&1) { // Is bit high?
 c /= 2; // Position for next bit
 c ^= 0x8408; // Toggle the feedback bits
 } else c /= 2; // Just position for next bit
 } // This routine would be best optimized in assembly
 return c; // Return the 16 bit checksum
}

// Add character to the new packet
void add(unsigned char c) {
 checksum2 = calc(c^checksum2) ^ (checksum2/256); // Add CRC from this char to running total
 tx_str[tx_ptr] = c; // Store character in the transmit buffer
 tx_ptr++; // Point to next empty spot in buffer
}

// Create packet of type, code, length, and data string specified
// packet is the type, like LCP or IP
// code is the LCP type of packet like REQ, not used for IP packets
// num is the packet ID for LCP, or the IP data type for IP packets
// *str is the packet data to be added after the header
// returns the packet as a string in tx_str
void MakePacket(unsigned int packet, unsigned char code, unsigned char num, const unsigned char
*str) {
 unsigned int length; // Just a dual use temp variable
 tx_ptr = 1; // Point to second character in transmit buffer
 tx_str[0] = ‘ ‘; // Set first character to a space for now
 checksum2 = 0xFFFF; // Initialize checksum
 add(0xFF); // Insert PPP header OxFF
 add(3); // Insert PPP header 0x03
 add(packet/256); // Insert high byte of protocol field
 add(packet&255); // Insert low byte of protocol field
 if (packet==IP) { // If Internet Protocol
 add(0x45); // Insert header version and length
 add(0); // Insert type of service
 add(0); // Insert total packet length high byte
DS00724B-page 22 1998 Microchip Technology Inc.

AN724
 add((*str)+12); // Insert total packet length low byte
 add(0x88); // Insert identification high byte
 add(0x10); // Insert identification low byte
 add(0x40); // Insert flags and fragment offset
 add(0); // Insert rest of fragment offset
 add(127); // Insert time to live countdown
 add(num); // insert the protocol field
 length = 0x45+0x88+0x40+127+addr1+addr3+str[1]+str[3]; // high byte checksum
 packet = *str + 12 + 0x10 + num + addr2 + addr4 + str[2] + str[4];

// low byte checksum
 packet += length/256; // make 1’s complement
 length = (length&255) + packet/256; // by adding low carry to high byte
 packet = (packet&255) + length/256; // and adding high carry to low byte
 length += packet/256; // fix new adding carries
 add(~length); // Insert 1’s complement checksum high byte
 add(~packet); // Insert 1’s complement checksum low byte
 add(addr1); // Insert the 4 bytes of this login’s IP address
 add(addr2);
 add(addr3);
 add(addr4);
 length = *str - 4; // save the number of following data bytes
 str++; // point to the first data byte
 } else {
 add(code); // Insert packet type, like REQ or NAK
 add(num); // Insert packet ID number
 add(0); // Insert most significant byte of length
 length = *str - 3; // point to the first data byte
 }
 while (length) { // copy the whole string into packet
 length--; // decrement packet length
 add(*str); // add current character to packet
 str++; // point to next character
 }
 length = ~checksum2; // invert the checksum
 add(length&255); // Insert checksum msb
 add(length/256); // Insert checksum lsb
 tx_end=tx_ptr; // Set end of buffer marker to end of packet
 tx_ptr = 0; // Point to the beginning of the packet
}

// Test the option list in packet for valid passwords
// option is the 16 bit field, where a high accepts the option one greater than the
// bit #
// returns 2 for LCP NAK, 1 is only correct fields found, and zero means bad options
// return also modifies RX_STR to list unacceptable options if NAK or REJ required
unsigned char TestOptions(unsigned int option){
 unsigned int size; // size is length of option string
 unsigned ptr1 = 8, // ptr1 points data insert location
 ptr2 = 8; // ptr2 points to data origin
 char pass = 3; // pass is the return value
 size = rx_str[7]+4; // size if length of packet
 if (size>MaxRx) size=MaxRx; // truncate packet if larger than buffer
 while (ptr1<size) { // scan options in receiver buffer
 if (rx_str[ptr1]==3 && rx_str[ptr1+2]!=0x80 && rx_str[2]==0xc2)
 pass&=0xfd; // found a CHAP request, mark for NAK
 if (!((1<<(rx_str[ptr1]-1))&option))
 pass=0; // found illegal options, mark for REJ
 ptr1 += rx_str[ptr1+1]; // point to start of next option
 }
 if (!(pass&2)) { // If marked for NAK or REJ
 if (pass&1) { // save state for NAK
 option=0xfffb;
 }
 for (ptr1=8; ptr1<size;) {
 if (!((1<<(rx_str[ptr1]-1))&option)) {// if illegal option
 for (pass=rx_str[ptr1+1]; ptr1<size && pass; ptr1++) { // move option
 1998 Microchip Technology Inc. DS00724B-page 23

AN724
 rx_str[ptr2]=rx_str[ptr1]; // move current byte to new storage
 ptr2++; // increment storage pointer
 pass--; // decrement number of characters
 }
 } else {
 ptr1+=rx_str[ptr1+1]; // point to next option
 }
 }
 rx_str[7] = ptr2-4; // save new option string length
 pass=0; // restore state for REJ
 if (option==0xfffb) pass=1; // restore state for NAK
 }
 return pass;
}

// Send a string and loop until wait string arrives or it times out
// send is the string to transmit
// wait is the string to wait for
// timeout is in multiples of 10 milliseconds
// addr1 is used to control the status LED, 0=off, 1=flash, 2=on
// returns 0 if timeout, returns 1 if wait string is matched
char sendwait(const char *send, const char *wait, unsigned int timeout) {
 addr2=addr3=0;
 for (TIME_SET(0); TIME<timeout;) { // loop until time runs out
 if (!addr1) PORTB&=0xFB; // if addr1=0 turn off status LED
 else if (addr1==1) { // if addr1=1 flash status LED
 if (TIME&4) PORTB&=0xFB; // flash period is 8 x 10ms
 else PORTB|=4;
 } else PORTB|=4; // if addr1>1 turn on status LED
 if (serial_rx_ready()) { // is there an incoming character
 PORTB|=1; // turn on the Rx LED
 addr4 = serial_get(); // get character
 if (serial_error()) serial_fix(); // clear serial errors
 if (wait[addr2]==addr4) addr2++; // does char match wait string
 else addr2=0; // otherwise reset match pointer
 PORTB&=0xFE; // turn off the Rx LED
 if (!wait[addr2]) return 1; // finished if string matches
 } else if (send[addr3] && (serial_tx_ready())) { // if char to send and Tx ready
 if (send[addr3]==’|’) { // if pause character
 if (TIME>100) { // has 1 second expired yet?
 TIME_SET(0); // if yes clear timer
 addr3++; // and point to next character
 }
 } else {
 PORTB|=2; // turn on Tx LED
 TIME_SET(0); // clear timer, timeout starts after last char
 serial_send(send[addr3]); // send the character
 addr3++; // point to next char in tx string
 }
 PORTB&=0xFD; // turn off Tx LED
 if (!send[addr3] && !(*wait))
 return 1; // done if end of string and no wait string
 }
 }
 return 0; // return with 0 to indicate timeout
}

void flash(void) { // flash all LEDs if catastrophic failure
 for (TIME_SET(0);;) {
 if (TIME&8) PORTB|=0x07; // flash period is 16 x 10ms
 else PORTB&=0xF8;
 if (TIME>3000) PORTB&=0xF7; // after 30 seconds turn off the power
 }
}

void pulse(unsigned char data) { // pulse Status LED with IP address
DS00724B-page 24 1998 Microchip Technology Inc.

AN724
 TIME_SET(0);
 for(number=0;number<9;) { // pulse out 8 address bits and a blank
 if (TIME<100) PORTB&=0xFB; // turn off Status LED between bits
 else if (number<8) PORTB|=4; // start each address bit here
 if (TIME>200 || (!(data&0x80) && TIME>120)) { // end of bit?
 TIME_SET(0); // yes, then restart timer for next bit
 number++; // increment bit counter
 data<<=1; // position address to send next bit
 }
 }
}

// The main loop, login script, PPP state machine, and ping transponder
void main(void) {
 signed int c; // serial character received
 unsigned int packet = 0; // Type of the last received packet, reused as temp
 unsigned char state = 0; // PPP negotiation state, from dialing=0 to done=6
 unsigned char extended = 0; // flag if last character was an escape sequence

 PORTA=0;
 PORTB=0; // Turn off power supply, turn off LEDs
 PORTC=0;
 TRISA=0; // Turn all I/O into outputs
 TRISB=0x00;
 TRISC=0xC0;
 OPTION=0x85; // Set up TIMER 0 for millisecond counting
 INTCON=0xA0;

 serial_init(); // Initialize serial port to 2400 baud format N81
 TIME_SET(0);
 while (TIME<25); // 250 millisecond delay to prevent false power up
 PORTB=8; // Turn on the power so user can release power button

 for(number=1;;number++) { // Redial indefinitely every 30 seconds
 if (number==10) PORTB&=0xF7; // Turn off power if dialing fails
 addr1=0; // Set flag to keep the Status LED off
 if(!sendwait(“|+++|\rath\r|atz\r|at&fs11=55\r|atdt”,”atdt”,3000))// Init modem
 flash();
 addr1=1; // Set flag to flash Status LED
 // Modify this line with your ISP phone number
 if (sendwait(“5551234\r”,”NNECT”,3000)) {
 addr1=2; // Set flag to keep the Status LED on
 if (sendwait(““,”: “,1000)) // Wait for user id prompt
 if (sendwait(“\x7e\xff\x7d\x23\x08\x08\x08\x08”,”~~”,1000))
 break; // Start PPP
 else { // Fallback to script if required
 if (sendwait(“userid\r”,”word:”,200))// Modify these lines as described
 if (sendwait(“password\r”,”tion:”,1000))
 if (!sendwait(“ppp\r”,”IP address”,200))
 // Modify is start PPP command is not ppp or 2
 sendwait(“2\r”,”IP address”,200);
 }
 break;
 }
 }

 // State machine loop until successful ping or PPP negotiation timeout
 for (TIME_SET(0);;) {
 if (TIME>7000 || number>20) PORTB&=0xF7;
 if (serial_rx_ready()) { // Incoming character?
 PORTB ^=1; // Turn on Rx LED
 c = serial_get(); // get the character
 if (serial_error()) serial_fix();// clear Rx errors
 if (c == 0x7E) { // start or end of a packet
 if (rx_ptr && (checksum1==0xF0B8))
 packet = rx_str[2]*256 + rx_str[3]; // if CRC passes accept packet
 1998 Microchip Technology Inc. DS00724B-page 25

AN724
 extended &= 0x7E; // clear escape character flag
 rx_ptr = 0; // get ready for next packet
 checksum1 = 0xFFFF; // start new checksum
 } else if (c == 0x7D) { // if tilde character set escape flag
 extended |= 1;
 } else {
 if (extended&1) { // if escape flag
 c ^= 0x20; // recover next character
 extended &= 0xFE; // clear Rx escape flag
 }
 if (rx_ptr==0 && c!=0xff) rx_str[rx_ptr++] = 0xff; // uncompress PPP header
 if (rx_ptr==1 && c!=3) rx_str[rx_ptr++] = 3;
 if (rx_ptr==2 && (c&1)) rx_str[rx_ptr++] = 0;
 rx_str[rx_ptr++] = c; // insert character in buffer
 if (rx_ptr>MaxRx) rx_ptr = MaxRx;// Inc pointer up to end of buffer
 checksum1 = calc(c^checksum1) ^ (checksum1/256); // calculate CRC checksum
 }
 PORTB&=0xFE; // turn off Status LED
 } else if (tx_end && (serial_tx_ready())) { // Data to send and Tx empty?
 PORTB|=2; // turn on Tx LED
 c = tx_str[tx_ptr]; // get character from buffer
 if (tx_ptr==tx_end) { // was it the last character
 tx_end=0; // mark buffer empty
 c=’~’; // send tilde character last
 PORTB&=0xFD; // turn off Tx LED
 } else if (extended&2) { // sending escape sequence?
 c^=0x20; // yes then convert character
 extended &= 0xFD; // clear Tx escape flag
 tx_ptr++; // point to next char
 } else if (c<0x20 || c==0x7D || c==0x7E) { // if escape sequence required?
 extended |= 2; // set Tx escape flag
 c = 0x7D; // send escape character
 } else {
 if (!tx_ptr) c=’~’; // send ~ if first character of packet
 tx_ptr++;
 }
 serial_send(c); // Put character in transmitter
 }

 if (packet == LCP) {
 switch (rx_str[4]) { // Switch on packet type
 case REQ:
 state &= 0xfd; // clear remote ready state bit
 if (c=TestOptions(0x00c6)) {// is option request list OK?
 if (c>1) {
 c = ACK; // ACK packet
 if (state<3) state |= 2;// set remote ready state bit
 } else {
 rx_str[10]=0xc0; // else NAK password authentication
 c = NAK;
 }
 } else { // else REJ bad options
 c = REJ;
 }
 TIME_SET(0);
 MakePacket(LCP,c,rx_str[5],rx_str+7); // create LCP packet from Rx buffer
 break;
 case ACK:
 if (rx_str[5]!=number) break;// does reply id match the request
 if (state<3) state |= 1; // Set the local ready flag
 break;
 case NAK:
 state &= 0xfe; // Clear the local ready flag
 break;
 case REJ:
 state &= 0xfe; // Clear the local ready flag
DS00724B-page 26 1998 Microchip Technology Inc.

AN724
 break;
 case TERM:
 break;
 }
 if (state==3) state = 4; // When both ends ready, go to state 4
 } else if (packet == PAP) {
 switch (rx_str[4]) { // Switch on packet type
 case REQ:
 break; // Ignore incoming PAP REQ
 case ACK:
 state = 5; // PAP ack means this state is done
 break;
 case NAK:
 break; // Ignore incoming PAP NAK
 }
 } else if (packet == IPCP) {
 switch (rx_str[4]) { // Switch on packet type
 case REQ:
 if (TestOptions(0x0004)) {// move to next state on ACK
 c = ACK;
 state = 6;
 } else { // otherwise reject bad options
 c = REJ;
 }
 MakePacket(IPCP,c,rx_str[5],rx_str+7);
 break; // Create IPCP packet from Rx buffer
 case ACK:
 if (rx_str[5]==number) { // If IPCP response id matches request id
 state = 7; // Move into final state
 pulse(addr1); // Pulse Status LED to show the
 pulse(addr2); // IP address
 pulse(addr3);
 pulse(addr4);
 PORTB|=4; // Turn on Status LED after pulsing
 TIME_SET(5800); // Move timer ahead for quicker PING
 }
 break;
 case NAK: // This is where we get our address
 addr1 = rx_str[10];
 addr2 = rx_str[11]; // Store address for use in IP packets
 addr3 = rx_str[12];
 addr4 = rx_str[13];
 MakePacket(IPCP,REQ,rx_str[5],rx_str+7);
 break; // Make IPCP packet from Rx buffer
 case REJ:
 break; // Ignore incoming IPCP REJ
 case TERM:
 break; // Ignore incoming IPCP TERM
 }
 } else if (packet == IP) {
 if (state<7 || (rx_str[19]==addr4 && rx_str[18]==addr3 &&
 rx_str[17]==addr2 && rx_str[16]==addr1)) {
 // ignore echoed packets from our address or before we reach state 7
 // may power down here because echoes are good indications that modem
 // connection hung-up
 // This would be a good place to insert a traceroute test and
 // response
 } else if (rx_str[13]==1) { // IP packet with ICMP payload
 if (rx_str[24]==8) { // Received PING request
 rx_str[20]=rx_str[16]; // Copy 4 origin address bytes to
 // destination address
 rx_str[21]=rx_str[17];
 rx_str[22]=rx_str[18];
 rx_str[23]=rx_str[19];
 rx_str[19]=16; // Length of IP address(4) + ping protocol(8) + 4
 rx_str[24]=0; // Change received ping request(8) to ping reply(0)
 1998 Microchip Technology Inc. DS00724B-page 27

AN724
 packet = rx_str[28]+rx_str[30];// Calculate 1’s comp checksum
 rx_str[26] = packet&255;
 rx_str[27] = packet/256;
 packet = rx_str[27]+rx_str[29]+rx_str[31];
 rx_str[27] = packet&255;
 packet = packet/256 + rx_str[26];
 rx_str[26] = packet&255;
 rx_str[27] += packet/256;
 rx_str[26] = ~rx_str[26]; // Invert the checksum bits
 rx_str[27] = ~rx_str[27];
 MakePacket(IP,0,1,rx_str+19);// Make IP packet from modified Rx buffer
 } else if (rx_str[24]==0) { // Received PING reply
 if ((rx_str[28]|rx_str[30]|rx_str[31])+rx_str[29]==1)
 PORTB&=0xF7; // Turn off the power after successful ping
 }
 }
 } else if (packet == CCP) {
 switch (rx_str[4]) { // If CCP response id matches request id
 case REQ:
 c = REJ;
 if (TestOptions(0x0004)) c = ACK; // ACK option 3 only, REJ anything else
 MakePacket(CCP,c,rx_str[5],rx_str+7);// Create CCP ACK or REJ packet
 // from Rx buffer
 }
 } else if (packet) { // Ignore any other received packet types
 } else if (!tx_end && (state==0 || state==2) && TIME>100) {
 // Once a second try negotiating LCP
 number++; // Increment Id to make packets unique
 TIME_SET(0); // Reset timer
 MakePacket(LCP,REQ,number,”\x0E\x02\x06\x00\x0A\x00\x00\x07\x02\x08\x02”);
 // Request LCP options 2,7,8
 } else if (!tx_end && state == 4 && TIME>100) {
 // Once a second try negotiating password
 TIME_SET(0); // Reset timer
 number++;
 // format like printf(“%c%c%s%c%s”,strlen(name)+strlen(password)+6,
 //strlen(name),name,strlen(password),password);
 // Modify this line as described above
 MakePacket(PAP,REQ,number,”\x14\x06\xuserid\x08password”);
 } else if (!tx_end && state == 6 && TIME>100) {
 // Once a second try negotiating IPCP
 number++; // Increment Id to make packets unique
 TIME_SET(0); // Reset timer
 MakePacket(IPCP,REQ,number,”\xA\x3\x6\x0\x0\x0\x0”);
 // Request IPCP option 3 with addr 0.0.0.0
 } else if (!tx_end && state == 7 && TIME>3000) { // Every 30 seconds do a ping
 TIME_SET(0); // Reset timer
 number++; // Increment ping count
 MakePacket(IP,0,1,”\x10\xCF\xA1\x75\x43\x8\x0\xF7\xFE\x0\x1\x0\x0”);
 // Ping 207.161.117.67
 }
 packet = 0; // Indicate that packet is processed
 }
}

DS00724B-page 28 1998 Microchip Technology Inc.

AN724
NOTES:
 1998 Microchip Technology Inc. DS00724B-page 29

AN724
NOTES:
DS00724B-page 30 1998 Microchip Technology Inc.

AN724
NOTES:
 1998 Microchip Technology Inc. DS00724B-page 31

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.

DS00724B-page 32 1999 Microchip Technology Inc.

All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 9/99 Printed on recycled paper.

AMERICAS
Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-786-7200 Fax: 480-786-7277
Technical Support: 480-786-7627
Web Address: http://www.microchip.com

Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508-480-9990 Fax: 508-480-8575

Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
Microchip Technology Inc.
4570 Westgrove Drive, Suite 160
Addison, TX 75248
Tel: 972-818-7423 Fax: 972-818-2924

Dayton
Microchip Technology Inc.
Two Prestige Place, Suite 150
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175

Detroit
Microchip Technology Inc.
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

New York
Microchip Technology Inc.
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 516-273-5305 Fax: 516-273-5335

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)
Toronto
Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC
Hong Kong
Microchip Asia Pacific
Unit 2101, Tower 2
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2-401-1200 Fax: 852-2-401-3431

Beijing
Microchip Technology, Beijing
Unit 915, 6 Chaoyangmen Bei Dajie
Dong Erhuan Road, Dongcheng District
New China Hong Kong Manhattan Building
Beijing 100027 PRC
Tel: 86-10-85282100 Fax: 86-10-85282104

India
Microchip Technology Inc.
India Liaison Office
No. 6, Legacy, Convent Road
Bangalore 560 025, India
Tel: 91-80-229-0061 Fax: 91-80-229-0062

Japan
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa 222-0033 Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Shanghai
Microchip Technology
RM 406 Shanghai Golden Bridge Bldg.
2077 Yan’an Road West, Hong Qiao District
Shanghai, PRC 200335
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060

ASIA/PACIFIC (continued)
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore 188980
Tel: 65-334-8870 Fax: 65-334-8850

Taiwan, R.O.C
Microchip Technology Taiwan
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5858 Fax: 44-118 921-5835

Denmark
Microchip Technology Denmark ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Arizona Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 München, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-39-65791-1 Fax: 39-39-6899883

09/21/99

WORLDWIDE SALES AND SERVICE

Microchip received ISO 9001 Quality
System certification for its worldwide
headquarters, design, and wafer fabrication
facilities in January 1997. Our field-pro-
grammable PICmicro® 8-bit MCUs,
KEELOQ® code hopping devices, Serial
EEPROMs, related specialty memory prod-
ucts and development systems conform to
the stringent quality standards of the Inter-
national Standard Organization (ISO).

	Appendix A: Source Code

