
AT LONG last Microchip’s new
PIC16F87x family of microcontrollers

is actually available through component
distributors and retailers. Forecast in late
1998, production release commenced in
July 1999.

The author has had engineering sam-
ples for some months and has examined
them with considerable interest. A general
look at the family was taken in the
PIC16F87x Review (Apr ’99). Now we
can encourage you to explore the possibil-
ities of these very welcome PICs, know-
ing that you can obtain the production
devices.

The aim of this Mini Tutorial is to share
with you some of the findings made by the
author when designing the 8-Channel
Analogue Data Logger, published in
Aug/Sept ’99. The findings relate to inves-
tigations using the PIC16F877 but apply
in principle to the PIC16F873, ’874, and
’876 devices as well.

Readers should also study the 200-page
data sheet that covers the devices,
Microchip code DS30292A (see later).

The following EPE subject material is
also referred to in this Mini Tutorial:
� PIC Tutorial (Mar-May ’98)
� PICtutor (CD-ROM version of the

PIC Tutorial)
� PIC Toolkit Mk1 (Jul ’98)
� PIC Toolkit Mk2 (May-Jun ’99)
� Virtual Scope (Jan-Feb ’98)

��������
In the course of this article, reference is

made to figures from Microchip data sheet
DS30292A and the reference style used is,
for example, DS-FIG.11-2 – meaning data
sheet Figure 11-2.

Note also the use of the $ (dollar) sign
when referring to hexadecimal numbers,
and the % (per cent) sign for binary num-
bers, e.g. $9F and %11001111.

Where PIC source code examples are
given, the dialect used is TASM (the dif-
ferences between TASM and MPASM
were discussed in Toolkit Mk1, PIC
Tutorial and PICtutor).

All registers and bits referred to by
name should have those names and their
values “equated’’ at the head of any pro-
gram that uses them.

���	
������

The subject of Pages in relation to

PIC16x84 devices was well covered in the

PIC Tutorial and PICtutor texts, and a lot
of readers expressed gratitude for the
explanation.

Whereas the ’x84 had only PAGE0 and
PAGE1 to be set in relation to the use of
some Special Registers, the ’F87x devices
have four Pages (Microchip actually calls
them Banks – but we’ll stick with Pages).

In the STATUS register, two bits
(instead of one) control the Page selection,
bits 6 and 5 respectively. Consequently,
the shorthand technique used with the
’x84 of defining the instruction PAGE0 or
PAGE1 to mean clearing or setting of
STATUS bit 5 accordingly, is less easy to
use when two STATUS bits are affected.
Therefore, in common with the Microchip
data sheet, the STATUS bits will be
referred to by their allocated names, of
RP1 (bit 6) and RP0 (bit 5).

Their settings are as follows:

PAGE RP1 RP0
PAGE0 0 0
PAGE1 0 1
PAGE2 1 0
PAGE3 1 1

You will make life easier for yourself if
you “equate’’ these two bits at the head of
your programs:

RP0: .EQU 5
RP1: .EQU 6
The Register File Maps in DS-FIG.2-3

and DS-FIG.2-4 show which registers are
in which Pages (Banks).

���������

��� ����	
PORTA is a 6-bit bi-directional I/O

(input/output) port whose bits RA0 to
RA3 and RA5 can alternatively be used
for analogue input.

PORTE is a 3-bit bi-directional I/O port
whose bits RE0 to RE2 can alternatively
be used for analogue input.

The first matter of interest that came to
light when experimenting with the
PIC16F877 was that its PORTA did not
behave as expected when used as a normal
I/O data port.

The PIC16F877 was originally loaded
with the TUTTEST program that allows
users of the PIC Tutorial and PICtutor
development boards (which are for use
with PIC16x84 devices) to initially test
their system. PORTB behaved as expect-
ed, but not so PORTA.

Examination of the data sheet revealed
that PORTA’s default mode is not for dig-
ital data I/O, but for analogue data input.

742 Everyday Practical Electronics/ETI, October 1999

���������

�������������
������	��	�

����������	
�	����	
���

������
���
����������������������
�������������

Special Feature

Fig.1. Selectable functions of the ADCON1 register.

The register which controls PORTA’s
digital or analogue use is ADCON1,
whose settings options are shown in Fig.1
(taken from data sheet DS-FIG.11-2). This
same register controls PORTE as well.

Register ADCON1 is at address $9F,
which is in PAGE1. Fig.1 shows that
PORTA and PORTE are jointly set for ana-
logue use when ADCON1’s bits 0 to 3 are
set to 0000 (the default condition on power-
up). To jointly use PORTA and PORTE for
digital purposes, the bits are set to 0111 (or
0110 since bit 0 can be 0 or 1 in this
instance), i.e. ADCON1 has to be loaded
with %xxxx111x – where x can be 0 or 1.

You will already be familiar with hav-
ing to set the data direction (TRISx) regis-
ters depending on whether a port’s bits are
to be used for input or output. So, for both
PORTA and PORTE to be fully set for
digital output, TRISA and TRISE have to
be cleared, which also has to be done in
PAGE1.

Thus, an example of initialising your
code to use PORTA and PORTE for digi-
tal output is:

BCF STATUS,RP1 ; clear
; PAGE2/3 bit

BSF STATUS,RP0 ; set PAGE1
; bit

MOVLW %00000111 ; all-digital
; I/O code

MOVWF ADCON1 ; load it
; into
; ADCON1

CLRF TRISA ; all PORTA
; for output

CLRF TRISE ; all PORTE
; for output

BCF STATUS,RP0 ; reset to
; PAGE0

Conversely, an example of initialising
your code to use PORTA and PORTE for
digital input is:

BCF STATUS,RP1 ; clear
; PAGE2/3 bit

BSF STATUS,RP0 ; set PAGE1
; bit

MOVLW %00000111 ; all-digital
; I/O code

MOVWF ADCON1 ; load it into
; ADCON1

MOVLW %00111111 ;
MOVWF TRISA ; all PORTA

; for input
MOVWF TRISE ; all PORTE

; for input
BCF STATUS,RP0 ; reset to

; PAGE0

Note that TRISE ignores bits 3 to 7.

���������	��������
From Fig.1, you will recognise that

ADCON1 is set to xxxx0000 when PORTA
and PORTE are to be used for analogue
input. You also need to set the two associat-
ed TRIS registers for input (in the same
way as setting them for digital input).

There is another option that can be cho-
sen for ADCON1 as well – its bit 7
(ADFM) controls how the 10-bit digital
value of the converted analogue signal is
stored in the PIC’s registers dedicated to
this purpose, ADRESH ($1E – PAGE0)
and ADRESL ($9E – PAGE1).

There is the choice of whether the result
is justified to the left or right in these

bytes. Take the example of a conversion
result of 1023 (the maximum for a 10-bit
conversion). The binary value of 1023 is,
as two bytes, 00000011 11111111, stored
as 00000011 in ADRESH and 11111111
stored in ADRESL.

This is the case when the ADFM bit (bit
7) is set to 1 (DS-FIG.11-8). However, if
the ADFM bit is set to 0, the result is for-
matted as 11111111 11000000. This
choice can be useful in some post-pro-
cessing operations where it can save the
use of multiplying (rotation commands).

As used in the Data Logger, a right-jus-
tified result was required, and so ADFM
was set to 1. Since this design uses all of
PORTA and PORTE for analogue input,
the ADCON1 register was set with the
commands:

BCF STATUS,RP1 ; clear
; PAGE2/3 bit

BSF STATUS,RP0 ; set PAGE1
; bit

MOVLW %10000000 ; all-analogue
; input code

MOVWF ADCON1 ; load it into
; ADCON1

MOVLW %00111111 ;
MOVWF TRISA ; all PORTA

; for input
MOVWF TRISE ; all PORTE

; for input
BCF STATUS,RP0 ; reset to

; PAGE0

������������
When the first tests were made using

the PIC16F877 samples provided by
Microchip, the above commands were
duly given in the Data Logger software
that was being developed. To the author’s
consternation, the ADFM bit had no affect
on the justification, which remained
doggedly to the left when the result was
displayed on an alphanumeric l.c.d.

It was eventually found that bit 5, not
bit 7, was being used as the ADFM bit,
and using that bit produced the required

justification. What led the author to the
conclusion that it should be bit 5 rather
than bit 7 is that DS-Table 2-1 showed the
power-on-reset condition for ADCON1 as
being --0-0000, even though ADFM was
shown as bit 7 on the left of the table.

Taking it up with Microchip, it tran-
spired that the samples provided were
Microchip’s early engineering samples
(version A) in which bit 5 was indeed the
ADFM. They went on to say that produc-
tion devices (version B) do have bit 7 as
ADFM. This was proved when they sent
version B samples to the author.

However, Microchip have asked us to
advise anyone who has early engineering
samples that this situation exists. Readers
buying the chips from distributors or
retailers should automatically be supplied
with the production devices where bit 7 is
the ADFM.

The fact remains, though, that the
ADCON1 reset values given in DS-Table
2-1 of the 1998 DS30292A data sheet are
incorrect and should read as 0---0000.
Other tables in the same data sheet are
similarly incorrect (3-1, 3-9, 3-12, 11-2).

�����������	�
���
We have seen that ADCON1 is the reg-

ister that sets PORTA and PORTE bits for
analogue or digital use, and that ADRESH
and ADRESL hold the 10-bit conversion
value. A fourth register, ADCON0 ($1F –
PAGE0) is responsible for the A-to-D con-
trol modes, as itemised in DS-FIG.11-1,
but summarised as:

Bits 7-6 Conversion clock rate
Bits 5-3 Channel selection
Bit 2 Conversion status
Bit 1 Not used
Bit 0 A/D facility on/off

Prior to an A-to-D conversion being
made, all bits have to be set appropriately.
An example of the conversion sequence is
shown in Listing 1, with entry point at
ADCGET.

Everyday Practical Electronics/ETI, October 1999 743

LISTING 1

The channel number is held in CHAN
and could be any value between 0 and 7. It
has to be set into ADCON0 bits 5-3, con-
sequently the first six commands are con-
cerned with taking a copy of the CHAN
value and rotating it to fill bits 5-3 of the
temporary STORE. If the Channel number
is 7, for example, CHAN holds
%00000111, and the rotation into STORE
produces %00111000.

The conversion clock rate is determined
from DS-Table 11-1. The Data Logger’s
crystal clock runs at 3.2768MHz and the
nearest value to this, as shown in DS-
Table 11-1, is 5MHz and that a conversion
factor of 32Tosc is required, which is set
into ADCON0 with the bit 7-6 code of
binary 10 (DS-FIG.11-1).

The converter is obviously required to
be On, so bit 0 is set to 1.

The values for bits 7, 6 and 0 are thus
set into W as %10000001, which is then
ORed with the channel bits 5-3 held in the
STORE (%00111000 in this example).

This composite value (%10111001) is
then MOVed into ADCON0. Notice that
bit 2, the Start bit (quaintly called the
GO/DONE bit by Microchip!), is still at
zero. The conversion does not start until
this bit is set to 1. Also note that ADCON0
bit 1 has no function.

����
��������
At this point it is possible to get rather

sophisticated – but we’re not going to!
The sophisticated way would be to use

interrupt routines and precise timings, and
a lengthy section in the data sheet discuss-
es the options. They include calculation of
the time taken to acquire the sample
(which is relative to temperature, line
impedance and capacitance values), and
then to wait for an interrupt to occur on
completion of the conversion.

Since the Data Logger is only required
to take samples at the maximum batch rate
of eight (all eight channels) every 0.5 sec-
onds, time is not at a premium and so two
simple delay loops are used, shown in
Listing 1 as WAIT1 and WAIT2.

When WAIT1 has ended, the conver-
sion is started by first clearing the A/D
interrupt flag bit (bit 6 of register PIR1 –
$8C, PAGE0), and then setting ADCON0
bit 2 (the GO bit).

The delay in WAIT2 then occurs, after
which the GO bit is polled in WAIT3 until
it is read as 0, signifying that the conver-
sion is complete.

The values of the 2-byte conversion can
now be read. The high byte (MSB) is held
in ADRESH, which is in PAGE0 and so
can be immediately read and stored in the
user’s own nominated location, in this
case MEMHI. The low byte (LSB), how-
ever, is held in ADRESL, which is in
PAGE1, which has to be set before the
byte can be read. After which a reset to
PAGE0 occurs and the byte is stored in
MEMLO, so ending the conversion
sequence.

As used in the Data Logger, the
sequence is somewhat more padded than
shown here since it is written to read a
conversion for each of eight channels in
turn, and then to store the 2-byte result in
a chain of eight serial EEPROM memo-
ries, and to decimalise the result for show-
ing on an alphanumeric l.c.d. screen.

Apart from the ADFM problem men-
tioned earlier, no surprises occurred when
using the A/D facilities on all eight
PIC16F877 channels, and the program
worked first time. Which is more than can
be said for storing the result in the serial
EEPROM memories, as we shall reveal in
a moment, plus the solution, of course!

�����	�	�	��	

������	

Referring again to Fig.1, you will see

that pins RA2 and RA3 can be used as the
pins on which external ADC reference
voltages can be set, depending on the code
set into ADCON1 bits 0 to 3. The columns
10 and 11 show how the reference voltage
selection takes effect.

Although not discussed in the Data
Logger text, the p.c.b. for that unit has been
designed so that preset potentiometers can
be inserted on it to set desired reference
voltages on pins RA2 and RA3 for other
applications. (The Data Logger itself does
not offer this option through its software –
readers must write their own software to
suit their personal needs in this respect.)

The circuit diagram and p.c.b. assembly
details for the insertions are shown in
Fig.2 and Fig.3. Note the additional two
link wires that are needed in order to com-
plete the circuit between the wipers of the
presets and their respective RA2/RA3
pins.

Preset VR2 allows a reference voltage
variation between approximately 2·5V
and 5V on RA2, whilst VR3 allows varia-
tion between 2·5V and 0V on RA3. The
use of a narrower range of reference volt-
age (which is normally 0V to 5V i.e. Vss to
Vdd) has the effect of providing amplifica-
tion to the analogue input signal being
converted.

By variously selecting different values
for ADCON1 bits 0 to 3, different refer-
ence voltage combinations could be cho-
sen for individual input channels.

It should be noted that when either RA2
or RA3 is selected as a reference voltage
input, the selected pin cannot be used as
an A-to-D input channel.

	������	����
���	

Once you get to know them,
Microchip’s 24LC256 serial EEPROM
memories are really rather super little
chips! It was their data sheet (DS21203D,
1998) that the author had difficulty with.

Attempts were made to write the routine
which would store data at consecutive
addresses in a 24LC256. Somehow, the logic
of the data sheet’s description and illustration
eluded the author (it’s not often he fails in
such situations, but he failed this time!)

Running out of patience, he resorted to
seeing if programs were available
amongst Microchip’s Applications Notes
(on their CD-ROM and web-site).

There were several options available, of
which the programs 2WDPOLL.ASM and
2WSEQR.ASM were selected as appearing
to have the best options available (even
though they were not written for PIC16F87x
devices) and disk copies were made.

Being Microchip’s own programs, they
were naturally written in MPASM, where-
as the author has a great preference for
working in the TASM dialect. Conse-
quently, the MPASM source codes were
processed by the author’s PIC Toolkit Mk2
and converted to a TASM format.

Various modifications were then made
to the programs to suit them to the Data
Logger’s needs, whereupon success was
achieved! Data could now be written to
the serial EEPROMs and, equally
importantly, could be read back as well.

Those of you studying the Data Logger
source code will find entry into the serial
memory Write routine at label WRBYTE,
and entry to the Read routine at READ.
The routines are far too lengthy to list or
describe here.

As a further plug for Microchip’s
Application Notes, they are well worth
examining for all sorts of information and
ideas, plus an awful lot of source code list-
ings as well. Do have a good browse
through them.

	�����������
With the ability to write/read serial data

assured, the next stage to be solved was
that of instructing the PIC16F877 to out-
put the data as a serial stream at a known
baud rate. This turned out to be very
straightforward.

The PIC16F87x family have a built-in
structure which allows serial output
through a dedicated pin, RC6, and for the
rate of output to be selected according to
the needs of the destination for that data
(e.g. a PC) and in relation to the PIC’s
crystal controlled clock rate.

Additionally, these PICs can be
instructed on such matters as synchronous
or asynchronous transmission, parity, stop
bits and byte size.

The ’F87x data sheet, once you have
studied it for details of serial interfacing,
is actually quite helpful.

744 Everyday Practical Electronics/ETI, October 1999

Fig.2. Reference voltage setting pre-
sets added to Data Logger circuit dia-
gram Fig.1, and (below) Fig.3, their
positioning on the Data Logger p.c.b.

It was decided to use asynchronous ser-
ial transmission from the PIC to the PC.
This requires only two lines to be con-
nected between the two systems, one for
data and one for the ground (0V).

It was further decided that the rate of
transmission should be at the maximum
likely to be found on the majority of read-
ers’ PCs, 9600 baud, with no parity, one
stop bit and with 8-bit transmission.

The registers associated with serial
transmission are:

SPBRG ($99 – PAGE1) Baud rate
generator

TXSTA ($98 – PAGE1) Transmit status
and control

RCXTA ($18 – PAGE0) Receive status
and control

PIE1 ($8C – PAGE0) Peripheral interrupt
control

Data sheet tables are provided for estab-
lishing the value to be set into register
SPBRG in relation to several examples of
clock rate: DS-Table 10-4 and DS-Table
10-5. Since these do not quote a value for
a 3·2748MHz clock, as used in the Data
Logger, the formula quoted in the data
sheet’s Example 10-1 was more useful on
this occasion.

��������������	
In fact, two formulae can be derived

from Example 10-1, depending on
whether the PIC is to divide the clock rate
by 64 or 16. The idea is to select a division
rate to produce as large an SPBRG value
as possible, up to a maximum of 255 (it’s
an 8-bit register).

In Listing 2 is shown a Basic program
derived from the formula in Example 10-1.
It calculates the SPBRG value in relation to
the baud rate required, the clock rate avail-
able, and the two division factors of 64 and
16. Bit BRGH (bit 2) of the TXSTA regis-
ter has to be set low if 64 is the divider, and
high for a divider of 16.

Running the program in Listing 2 pro-
duces SPBRG answers of 4·333333
(BRGH = 0) and 20.3333 (BRGH = 1).
Since the latter is the higher, the BRGH
bit has to be set to 1.

The bit which tells the PIC whether it is
required to transmit synchronously or
asynchronously is TXSTA register bit 4
(SYNC). DS-Table 10-1 shows that for
asynchronous transmission the SYNC bit
is set to 0.

Prior to commencing transmission, the
basic transmission parameters are set as in
Listing 3, with entry at label SETBAUD.

Since some of the affected registers are
in PAGE1, this is set first, as in command
lines 1 and 2. Then the integer of the cho-
sen SPBRG value (20) is stored into the
SPBRG register, register TXSTA is condi-
tioned for SYNC = 0 and BRGH = 1,
TRISC bit 6 is cleared for pin RC6 to be
used as an output, and the transmission
interrupt bit (PIE1,4) is cleared (interrupt
not required). A reset to PAGE0 is made
and the SPEN bit (bit 7) of register
RCSTA is set.

This sequence is in accordance with the
first three steps listed in the data sheet at
Section 10.2.1. Step 4 (9-bit transmission)
is not required. Step 5 (enable transmis-
sion) requires a reset to PAGE1, and the
transmission bit (bit 5) of TXSTA is set,

followed by a reset to PAGE0. The scene
is now ready for data to be transmitted
from PIC pin RC6, and the SETBAUD
routine is exited.

	�����������
In the Data Logger the SETBAUD

sequence is performed when power is first
switched on and it remains in a state of
readiness to send data to the PC until
power is switched off again.

Consequently, having read the 2-byte
sample data stored in the selected serial
memory, it can be sent to the computer
through the routine commencing at label
SENDPC, shown in Listing 4.

However, before it can be sent, a slight
readjustment of the data format is needed.
The PC register which receives the serial
data shifts it left by one place (multiplying
it by two). This means that the PIC cannot
send a data byte whose value is greater
than 127. If it were to, bit 7 would be
“lost’’ at the PC end.

To over come this, the least significant
byte of recalled data (held in MEMLO, as
discussed earlier) has to be limited to a
value of less than 128 and its eighth bit
(bit 7) combined with the most significant
byte (MEMHI), whose recalled value is
never greater than three.

On entry into routine SENDPC in
Listing 4, this rearrangement takes place
in the first four lines. An example of what
happens is as follows:

Suppose MEMHI holds a value of
%00000011 and MEMLO holds
%11111111. MEMLO is first rotated left
into the W register (leaving MEMLO
itself untouched) so that its bit 7 “drops’’
into the Carry register. MEMHI is now
rotated left and in doing so the Carry bit is
rotated into it from the right. MEMLO’s
bit 7 can now be cleared, limiting
MEMLO’s value to less than 128.

The result is that MEMHI now holds
%00000111 and MEMLO holds
%01111111 and it is these values that are

Everyday Practical Electronics/ETI, October 1999 745

LISTING 2

LISTING 3

LISTING 4

transmitted to the PC via the called rou-
tine whose label is SERIAL1 (see Listing
5). How they are restored to their “true’’
values will be discussed shortly. Once that
byte pair has been transmitted, the next
pair can be read from one of the serial
memories, and again transmitted via the
SENDPC routine.

�	��
�	�
�� �	�
�����
�

The routine that allows each byte to be
transmitted, SERIAL1, has only three
active commands. As soon as the PIC’s
serial transmission register (TXREG) is
loaded with a byte of data, transmission is
started by the PIC’s own internal facilities.

To summarise the PIC data sheet, the
heart of the transmitter is the Transmit
Serial Register (TSR), which obtains its
data from the read/write transmit buffer reg-
ister TXREG. The user’s software loads
TXREG with the data byte to be transmit-
ted, where it stays until the Stop bit from the
previously loaded data has been sent.

As soon as the Stop bit has been trans-
mitted, the TSR is automatically loaded
with the new data from TXREG. Once this
has occurred, TXREG is now empty and a
flag bit is set in register PIR1 – its bit 4,
named TXIF. When this flag is set, the
software can load the next byte of data
into TXREG, an action which clears the
TXIF bit.

The routine entered at SERIAL1 first
checks the status of PIR1 bit 4. If the bit is
low, a previous transmission is still taking
place. The routine loops continuously
checking bit 4 until it is set. Prior to entry
to SERIAL1, the W register was loaded
with the data byte (as in Listing 4). When
PIR1 bit 4 is found to be set, the W data is
loaded into TXREG, to be automatically
transmitted out by the PIC.

As soon as TXREG has been loaded, the
SERIAL1 routine ends, and software can get
the next byte, or do whatever it is told to do,
such as end the full transmission sequence
because all the bytes have been sent.

���	�����

����
��

���
The Data Logger sends its serial data to

the PC in consecutive blocks of data.
However, in a another design on which the
author is working, the need is for serial
data to be output to the PC at irregular
intervals, two bytes a time.

Whereas for consecutive data blocks,
setting the Baud Rate factors at the head
of the program proved satisfactory, in the
random transmission design, the author
found it necessary to send a byte of zero
prior to each double-byte being sent.

What subtlety of difference between the
two programs makes this action necessary

has not been established, although it is
believed that it might be to do with
PORTC being read between data words in
the second design. PORTC is that which
has to be used for serial input/output, and
it seems possible that reading it (for
switch status) between data words might
affect the serial registers. It has yet to be
more fully investigated.

����	�	�����
A program for use on a PC to receive

serial data from a PIC is not included in
Microchip’s Applications Notes software
listings library. A browse of the Internet
for suitable software did not reveal any-
thing that the author felt was suitable
either. Consequently, he wrote his own
routines specifically to import double-
byte serial data from the Data Logger.

The program is written in a mixture of
Basic (suited to running from QBasic or
QuickBASIC) and machine code. The
Basic program loads and calls the
machine code, which does the actual seri-
al data importing, and then formats the
data for output to disk, in several different
file styles, as discussed in the Data Logger
text.

There are, in fact, several ways in
which machine code can be accessed from
Basic. The example shown in Listing 6 is
the one on which the author has standard-
ised for several years.

The majority of the Basic routines are
self-explanatory to anyone who knows
QBasic or QuickBASIC and will not be
discussed here. However, the routines
which access the machine code, and the
machine code itself, deserve a bit of
explanation.

On running the Basic program, integer
variable array MA%(x) is first DIMmed
for the maximum number of separate val-
ues (32766) as are required for access by

the machine code. All the values are in
consecutive order within the PC’s memo-
ry and their exact locations are accurately
predictable.

Referring to Listing 6, the machine
code whose file name is held in FILE$ is
then loaded as binary data into string vari-
able SERIAL$, at label LOADDATA-
CODE. The address at which MA%(0)
resides is then obtained, and POKED into
the machine code at two predetermined
consecutive addresses.

Note that in line 10 (MC =) attempting
to multiply by 256 as a “live’’ value would
result in an “overflow’’ error and so vari-
able A is used, having been allocated that
value in line 6. Also, because integer vari-
ables whose true values are greater than
32767 are returned as negative numbers,
line 8 intercepts them if they occur, restor-
ing them to their correct positive value.
Additionally note that variable MB is used
for two different purposes.

Once the routine in Listing 6 has been
run, the machine code is accessed through
the command:

CALL ABSOLUTE(SADD(SERIAL$))

When the machine code routine has
ended, the program reverts to Basic.

It is important to note that there is a
slight difference between using QBasic
and QuickBASIC in that QuickBASIC has
to be loaded with the command QB/L,
which automatically loads an additional
library program (part of the QuickBASIC
suite) which allows machine code to be
run. QBasic does not require the addition-
al library program and is simply loaded in
the usual way with the command QB.

The machine code routine is shown in
Listing 7. It is based on two PC interrupt
calls to INT 14H, whose functions are
documented in the PC Sourcebook – a
publication which itemises the principal
registers and interrupt calls for base-stan-
dard PCs (seemingly compatible with

processors from the 8086 upwards,
including Pentiums).

On entry to the machine code, the
address of MA%(0) is acquired from the
value held at label SETSEGMENT, as
previously POKED there from Basic.

Transmission format data passed from
Basic (held in MA%(0)) is then read and
loaded into the AX register. The data
details the baud rate, parity, stop bit, and
bit count configuration (assembled from

746 Everyday Practical Electronics/ETI, October 1999

LISTING 5

LISTING 6

the details in Table 1). The Basic software
also passes details on which COM port
(COM1 or COM2) is to be read (held in
MA%(1)). This is loaded into the BX reg-
ister to be then loaded into register DX,
whereupon interrupt INT 14H is called,
which passes the data to the PC’s serial
operating system.

Routine WAITDATASET is now called,
in which INT 14H is polled until register
AX returns with a value less than 256, sig-
nifying that a byte of serial data has been
received and that it is now available in the
low byte (AL) of register AX.

This data byte is an inversion of the
byte presented to the PIC for transmission
and is shifted left by one place. The inver-
sion is corrected by subtracting the byte
from 255.

Returning to the calling point, the byte
is stored in register CL as the least signif-
icant byte of the double-byte required.
WAITDATASET is again called, where
the second of the two bytes needed is sim-
ilarly acquired, and then stored in register
CH. Note that CH and CL are the high and
low bytes, respectively, of register CX.

Now a mixture of rotation and ANDing
reconstitutes the double-byte data to its
original value as stored in the Data
Logger’s serial memory. The value is then
stored in the pre-determined location in
the PC’s memory relative to the integer
array position back in Basic (from
MA%(0) onwards).

The value is also checked to see if it is
the end marker value transmitted by the
PIC when a serial memory has been fully
read. If it is not that value (two bytes each
of value 127), the next double byte of
transmitted data is acquired, and stored at
the next consecutive PC memory location.

Back in Basic, the locations in which
the machine code was stored (MA%(0)
onwards) is then saved as a block whose
length is the count value reached at the
end of the machine code sequence.

�	����������	��
����

A second serial input machine code
routine is included with the Data Logger
software. This includes the ability to press
“Q’’ to quit from the machine code with-
out waiting for the data transfer to be com-
plete. This routine makes use of the INT
16H keyboard access interrupt to read
which keys are pressed and to return a
value accordingly.

A point of interest, however, is that
although three of the author’s computers
would respond to the INT 16H call, a
fourth (a “custom-built’’ machine used at
EPE HQ) would not. This is puzzling
since it was believed that the basic inter-
rupt calls on PCs are upwards compatible

– seemingly not in some instances. Can
anyone throw light on this?

����		���������
�	����

The routines for writing to and reading
from the PIC16F87x family’s internal
EEPROM data memory are worth high-
lighting. You will no doubt be familiar
with the same routines as used with the
PIC16x84 devices, and the ’F87x routines
are similar, but not exactly the same since
the ’F87x devices use different register
locations to those used by the ’x84, as
shown in Table 2.

The EEPROM data memory
Write/Read routines are shown in full in
Listing 7 and Listing 8. More information
on them is on Microchip data sheet
DS30292A page 43.

As with the ’x84 programming exam-
ples given in the PIC Tutorial and
PICtutor texts (to which readers are also
referred – either text source will do), the
EEPROM Write routine at label SETPRM
is entered with W holding the EEPROM
byte address at which data is to be stored.

Everyday Practical Electronics/ETI, October 1999 747

LISTING 7

7 6 5 4 3 2 1 0 Description Allowable Values
� � � Baud rate 000=110 baud

001=150
010=30
011=600
100=1200 (default)
101=2400
110=4800
111=9600

� � Parity 00=No parity
01=Odd parity
10=No parity
11=Even parity

� Stop bits 0=1 stop bit, 1=2 stop bits

� � Word length 10=7 bits
11=8 bits

TABLE 1: INT 14H Com port parameter byte

The data to be stored is held in STORE1.
Whereas the ’x84 routine was actioned in
PAGE0 and PAGE1, the ’F87x routine is
actioned in PAGE0, PAGE2 and PAGE3,
hence the various RP0 and RP1 paging
instructions.

It is worth noting that the ’F87x data
sheet gives a programming example (page
43) in which a SLEEP command and
interrupt are used to determine when the
EEPROM Write function has been com-
pleted, rather than polling EECON1 bit 4.
However, when the author tried the
SLEEP method it failed to work. It is
probable that another undocumented
action has to be taken in addition to those
shown, but this has not been investigated.

The EEPROM Read routine in Listing 8
is entered at label PRMGET with W hold-
ing the EEPROM byte address to be read.
It is exited with W holding the data read
from the EEPROM.

�

	���	�

���!��	

Readers who are interested in learning
how to program in machine code suited to
the 8086 and above processors are recom-
mended to obtain the excellent shareware
A86/D86 Assembler/Disassembler from
the Public Domain Shareware Library
(PDSL) whose details are given later.

The author has been using it for many
years and for many PC-controlled EPE
projects, including the Virtual Scope and
PIC Toolkit Mk1. It is nearly as easy to
learn as PIC programming, but has far
more commands available. A useful asso-
ciated book is Intel’s 8086/8088 User’s
Manual.

������������
��
Until fairly recently, by far the vast

majority of PCs will have been supplied
with either QBasic or QuickBASIC
installed. However, EPE does sometimes
get questions from readers who do not
have either and ask where they can obtain
one or the other.

So far as is known, neither of the pro-
grams is actually supplied with PCs any
longer – Microsoft wishing, perhaps, that
users should acquire the more advanced
VisualBASIC. The once-popular GW-
Basic has long since been outdated and is
not compatible with regard to using it with
the QB machine code routines illustrated
here.

Readers who would like to get one or
other of the QB versions are recommend-
ed to obtain it through the Internet. There
are quite a lot of sites once you start look-
ing. A general “search’’ call with the key-
word QBASIC should begin to unravel the
web of leads.

����	

The full data sheets for the Microchip

devices used in the Data Logger are avail-
able from Microchip: PIC16F87x family,
code DS30292A, serial EEPROM memo-
ries: DS21203D (24AA256), DS21191C
(24AA128), DS21189B (24AA64),
DS21162C (24AA32). There are three ways
to obtain them from Microchip: as down-
loads from their web site, from their fully
inclusive CD-ROM (all products data and
applications info), or as individual booklets.

Microchip Technology Ltd., Microchip
House, 505 Eskdale Road, Winnersh
Triangle, Woking, Berks RG41 5TU. Tel:
0118 921 5800. Fax: 0118 921 5835.

E-mail: techdesk@arizona.co.uk. Web:
http://www.microchip.com.

Public Domain Shareware Library:
PDSL, Dept EPE, Winscombe House,
Beacon Road, Crowborough, East Sussex
TN16 1UL. Tel: 01892 663298. Fax:
01892 667473.

Intel data books are available from
Electromail, Tel: 01536 204555. �

The Programmer's PC Sourcebook is a
Microsoft Press publication, ISBN 1-
55615-321-X.

748 Everyday Practical Electronics/ETI, October 1999

PIC16F87x PIC16x84 Equivalent

Register Address Page Register Address Page
PIR2 $0D 0 None – –
EEDATA $10C 2 EEDATA $08 0
EEADR $10D 2 EEADR $09 0
EECON1 $18C 3 EECON1 $88 1
EECON2 $18D 3 EECON2 $89 1

Register Bit Name/No Register Bit Name/No

PIR2 EEIF 4 EECON1 EEIF 4
EECON1 RD 0 EECON1 RD 0
EECON1 WR 1 EECON1 WR 1
EECON1 WREN 2 EECON1 WREN 2
EECON1 EEPGD 7 None – –

TABLE 2: Comparison of EEPROM data memory registers

LISTING 7

LISTING 8

the EEPROM to

