N

MICROCHIP

In-Circuit Serial Programming™
(ICSP™) Guide

© 2000 Microchip Technology Inc. . May2000DS30277C

MICROCHIP

Al rights reserved. Copyright © 2000, Microchip Technology
Incorporated, USA. Information contained in this publication regarding
device applications and the like is intended through suggestion only and
may be superseded by updates. No representation or warranty is given
and no liability is assumed by Microchip Technology Incorporated with
respect to the accuracy or use of such information, or infringement of
patents arising from such use or otherwise. Use of Microchip’s products
as critical components in life support systems is not authorized except
with express written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any intellectual property rights.”

The Microchip name and logo, PIC, PICmicro, PRO MATE, PICSTART,
MPLAB, and The Embedded Control Solutions Company are registered
trademarks of Microchip Technology Inc. in the U.S.A. and other coun-
tries.

In-Circuit Serial Programming and ICSP are trademarks and SQTP is a
service mark of Microchip Technology Inc.

All other trademarks mentioned herein are property of their respective
companies.

DS30277C - page ii

© 2000 Microchip Technology Inc.

e\

MICROCHIP
Table of Contents
PAGE
SECTION1 INTRODUCTION
In-Circuit Serial Programming™ (ICSPT™) GUIEccuueiieeiiiiiieeiee ettt ettt e e saee b e saeesnee s 1-1
SECTION2 TECHNICAL BRIEFS
How to Implement ICSP™ Using PICT12C5XX OTP MCUSoooiiiiiiiiiiiie ettt s 2-1
How to Implement ICSP™ Using PICTBCXXX OTP MCUScooiiiiiiieeeiee ettt s 29
How to Implement ICSP™ Using PIC17CXXX OTP MCUScccoiiiiiiiiiiieiienee et 2-15
How to Implement ICSP™ Using PICTBF8X FLASH MCUSoccuiiiiiiiiiiiiriene e 2-21
SECTION3 PROGRAMMING SPECIFICATIONS
In-Circuit Serial Programming for PICT12C5XX OTP MCUScoouiiiiiiiiiiie ettt 3-1
In-Circuit Serial Programming for PIC12C67X and PIC12CEG7X OTP MCUSccccccceivieiiiieeeniieeseeeenieenne 3-15
In-Circuit Serial Programming for PIC14000 OTP MCUSccciiiiiiiiiieit et 3-27
In-Circuit Serial Programming for PICT18C55X OTP MCUScoiiiiiiiiiiie ettt 3-39
In-Circuit Serial Programming for PIC18CEXX/7XX/9XX OTP MCUScocviiiiiiiiiiieienee et 3-51
In-Circuit Serial Programming for PIC17C7XX OTP MCUScccuiiiiiiiiiiie ettt 3-71
In-Circuit Serial Programming for PICT8CXXX OTP MCUSccccuuiiiiiieiiiee ettt 3-97
In-Circuit Serial Programming for PICT16F62X FLASH MCUScooiiiiiiiieiiie e 3-135
In-Circuit Serial Programming for PICT16F8X FLASH MCUScccciiiiiiiiiieeiee et 3-149
In-Circuit Serial Programming for PICT16F8XX FLASH MCUSc.coiciiiiiiiiiie e 3-165
SECTION4 APPLICATION NOTES
In-Circuit Serial Programming™ (ICSP™) of Calibration Parameters Using a PICmicro® Microcontroller 4-1

© 2000 Microchip Technology Inc. DS30277C-page iii

MICROCHIP

DS30277C-page iv © 2000 Microchip Technology Inc.

e\

MICROCHIP
SECTION 1
INTRODUCTION
IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP™) GUIDEccociieeecereermmerressmmme s e ssmme s s enssmmms s snsssnnes 1-1

© 2000 Microchip Technology Inc. DS30277C-page 1-i

o

MICROCHIP

DS30277C-page 1-ii © 2000 Microchip Technology Inc.

MICROCHIP

INTRODUCTION

In-Circuit Serial Programming™ (ICSP™) Guide

WHAT IS IN-CIRCUIT SERIAL
PROGRAMMING (ICSP)?

In-System Programming (ISP) is a technique where a
programmable device is programmed after the device
is placed in a circuit board.

In-Circuit Serial Programming (ICSP) is an enhanced
ISP technique implemented in Microchip’s PICmicro®
One-Time-Programmable (OTP) and FLASH RISC
microcontrollers (MCU). Use of only two I/O pins to
serially input and output data makes ICSP easy to use
and less intrusive on the normal operation of the MCU.

Because they can accommodate rapid code changes
in a manufacturing line, PICmicro OTP and FLASH
MCUs offer tremendous flexibility, reduce development
time and manufacturing cycles, and improve time to
market.

In-Circuit Serial Programming enhances the flexibility
of the PICmicro even further.

This In-Circuit Serial Programming Guide is designed
to show you how you can use ICSP to get an edge over
your competition. Microchip has helped its customers
implement ICSP using PICmicro MCUs since 1992.
Contact your local Microchip sales representative today
for more information on implementing ICSP in your
product.

PICmicro MCUs MAKE IN-CIRCUIT
SERIAL PROGRAMMING A CINCH

Unlike many other MCUs, most PICmicro MCUs offer a
simple serial programming interface using only two 1/0
pins (plus power, ground and Vpp). Following very sim-
ple guidelines, these pins can be fully utilized as I/O
pins during normal operation and programming pins
during ICSP.

ICSP can be activated through a simple 5-pin connec-
tor and a standard PICmicro programmer supporting
serial programming mode such as Microchip’s
PRO MATE® .

No other MCU has a simpler and less intrusive Serial
Programming Mode to facilitate your ICSP needs.

WHAT CAN | DO WITH IN-CIRCUIT
SERIAL PROGRAMMING?

ICSP is truly an enabling technology that can be used
in a variety of ways including:

* Reduce Cost of Field Upgrades

The cost of upgrading a system’s code can be
dramatically reduced using ICSP. With very little
effort and planning, a PICmicro OTP- or FLASH-
based system can be designed to have code updates
in the field.

For PICmicro FLASH devices, the entire code
memory can be rewritten with new code. In PICmicro
OTP devices, new code segments and parameter
tables can be easily added in program memory areas
left blank for update purpose. Often, only a portion of
the code (such as a key algorithm) requires update.

¢ Reduce Time to Market

In instances where one product is programmed with
different customer codes, generic systems can be
built and inventoried ahead of time. Based on actual
mix of customer orders, the PICmicro MCU can be
programmed using ICSP, then tested and shipped.
The lead-time reduction and simplification of finished
goods inventory are key benefits.

¢ Calibrate Your System During Manufacturing

Many systems require calibration in the final stages
of manufacturing and testing. Typically, calibration
parameters are stored in Serial EEPROM devices.
Using PICmicro MCUJs, it is possible to save the addi-
tional system cost by programming the calibration
parameters directly into the program memory.

¢ Add Unique ID Code to Your System During
Manufacturing

Many products require a unique ID number or a
serial number. An example application would be a
remote keyless entry device. Each transmitter has a
unique “binary key” that makes it very easy to pro-
gram in the access code at the very end of the man-
ufacturing process and prior to final test.

Serial number, revision code, date code, manufac-
turer ID and a variety of other useful information can
also be added to any product for traceability. Using
ICSP, you can eliminate the need for DIP switches or
jumpers.

In-Circuit Serial Programming and ICSP are trademarks of Microchip Technology Inc. SQTP is a service mark of Microchip Technology Inc.

© 2000 Microchip Technology Inc.

DS30277C-page 1-1

Introduction

In fact, this capability is so important to many of our
customers that Microchip offers a factory program-
ming service called Serialized Quick Turn Program-
ming (SQTP=M), where each PICmicro MCU device is
coded with up to 16 bytes of unique code.

¢ Calibrate Your System in the Field

Calibration need not be done only in the factory.
During installation of a system, ICSP can be used to
further calibrate the system to actual operating
environment.

In fact, recalibration can be easily done during
periodic servicing and maintenance. In OTP parts,
newer calibration data can be written to blank
memory locations reserved for such use.

e Customize and Configure Your System in the
Field

Like calibration, customization need not done in the
factory only. In many situations, customizing a
product at installation time is very useful. A good
example is home or car security systems where 1D
code, access code and other such information can
be burned in after the actual configuration is deter-
mined. Additionally, you can save the cost of DIP
switches and jumpers, which are traditionally used.

FIGURE 1:
(THEORETICAL MINIMUM TIMES)

* Program Dice When Using Chip-On-Board
(CoB)

If you are using COB, Microchip offers a comprehen-
sive die program. You can get dice that are
preprogrammed, or you may want to program the die
once the circuit board is assembled. Programming
and testing in one single step in the manufacturing
process is simpler and more cost effective.

PROGRAMMING TIME
CONSIDERATIONS

Programming time can be significantly different
between OTP and FLASH MCUs. OTP (EPROM) bytes
typically program with pulses in the order of several
hundred microseconds. FLASH, on the other hand,
require several milliseconds or more per byte (or word)
to program.

Figure 1 and Figure 2 below illustrate the programming
time differences between OTP and FLASH MCUs.
Figure 1 shows programming time in an ideal program-
mer or tester, where the only time spent is actually pro-
gramming the device. This is only important to illustrate
the minimum time required to program such devices,
where the programmer or the tester is fully optimized.

Figure 2 is a more realistic programming time compar-
ison, where the “overhead” time for programmer or a
tester is built in. The programmer often requires 3 to 5
times the “theoretically” minimum programming time.

PROGRAMMING TIME FOR FLASH AND OTP MCUS

45

40

35

Typical = -

FLASH MCU —

30

25

/

20

[

15

10

Microchip

OTP MCU

Programming Time (Seconds)

5 A{;_ﬁn//J
0 il ¥ Y .y

1K 2K 4K 8K 16K

Memory Size (in bytes)

each word is viewed as “two bytes”.

Note 1: The programming times shown here only include the total programming time for all memory. Typically, a
programmer will have quite a bit of overhead over this “theoretical minimum” programming time.

2: In the PIC16CXX MCU (used here for comparison) each word is 14 bits wide. For the sake of simplicity,

DS30277C-page 1-2

© 2000 Microchip Technology Inc.

Introduction

FIGURE 2:

PROGRAMMING TIME FOR FLASH AND OTP MCUS

(TYPICAL PROGRAMMING TIMES ON A PROGRAMMER)

280

260

/&

240

/

220

200

/
/

180

160

Typical =
FLASH MCU 7

140

/

120

/Q

100

/

80

/

60

e

Microchip

Programming Time (Seconds)

a0 =
20

OTP MCU —

.

0 1K

i g
[)Jﬁ—'—.(

4K 8K 16K

Memory Size (in bytes)
Note 1: The programming times shown are actual programming times on vendor supplied programmers.
2: Microchip OTP programming times are based on PRO MATE Il programmer.

Ramifications

The programming time differences between FLASH
and OTP MCUs are not particular material for prototyp-
ing quantities. However, its impact can be significant in
large volume production.

MICROCHIP PROVIDES A COMPLETE
SOLUTION FOR ICSP

Products

Microchip offers the broadest line of ICSP-capable
MCUs:

* PIC12C5XX OTP, 8-pin Family

¢ PIC12C67X OTP, 8-pin Family

¢ PIC12CE67X OTP, 8-pin Family

¢ PIC16C6XX OTP, Mid-Range Family

¢ PIC17C7XX OTP High-End Family

¢ PIC18CXXX OTP, High-End Family

* PIC16F62X FLASH, Mid-Range Family
* PIC16F8X FLASH, Mid-Range Family
¢ PIC6F8XX FLASH, Mid-Range Family

All together, Microchip currently offers over 40 MCUs
capable of ICSP.

Development Tools

Microchip offers a comprehensive set of development
tools for ICSP that allow system engineers to quickly
prototype, make code changes and get designs out the
door faster than ever before.

PRO MATE Il Production Programmer — a production
quality programmer designed to support the Serial
Programming Mode in MCUs up to midvolume produc-
tion. PRO MATE Il runs under DOS in a Command Line
Mode, Microsoft® Windows® 3.1, Windows® 95/98,
and Windows NT®. PRO MATE Il is also capable of
Serialized Quick Turn Programming™ (SQTPSY),
where each device can be programmed with up to 16
bytes of unique code.

Microchip offers an ICSP kit that can be used with the
Universal Microchip Device Programmer,
PRO MATE II. Together these two tools allow you to
implement ICSP with minimal effort and use the ICSP
capability of Microchip’s PICmicro MCUs.

Technical support

Microchip has been delivering ICSP capable MCUs
since 1992. Many of our customers are using ICSP
capability in full production. Our field and factory appli-
cation engineers can help you implement ICSP in your
product.

© 2000 Microchip Technology Inc.

DS30277C-page 1-3

Introduction

NOTES:

DS30277C-page 1-4 © 2000 Microchip Technology Inc.

e\

MICROCHIP
SECTION 2
TECHNICAL BRIEFS
HOW TO IMPLEMENT ICSP™ USING PIC12C5XX OTP MCUScoeiieeiireeecreeescrremsssrsmsssssnnsssemnsssennes 2-1
HOW TO IMPLEMENT ICSP™ USING PICT16CXXX OTP MCUSoeiieeiireeecreeeecrsmessrrsmssssennsssemnsssennes 2-9
HOW TO IMPLEMENT ICSP™ USING PICT17CXXX OTP MCUSoeoieeciremeirreee e remnssrsmsssrsnmsssrmmsssens 2-15
HOW TO IMPLEMENT ICSP™ USING PIC16F8X FLASH MCUSooieiiieeiireeeieremesersmesseremsssrnmnnens 2-21

© 2000 Microchip Technology Inc. DS30277C-page 2-i

o

MICROCHIP

DS30277C-page 2-ii © 2000 Microchip Technology Inc.

MICROCHIP

TB0O17

How to Implement ICSP™ Using PIC12C5XX OTP MCUs

Author: Thomas Schmidt
Microchip Technology Inc.
INTRODUCTION

The technical brief describes how to implement in-cir-
cuit serial programming™ (ICSP) using the
PIC12C5XX OTP PICmicro® MCU.

ICSP is a simple way to manufacture your board with
an unprogrammed PICmicro MCU and program the
device just before shipping the product. Programming
the PIC12C5XX MCU in-circuit has many advantages
for developing and manufacturing your product.

¢ Reduces inventory of products with old
firmware. With ICSP, the user can manufacture
product without programming the PICmicro MCU.
The PICmicro MCU will be programmed just
before the product is shipped.

¢ ICSP in production. New software revisions or
additional software modules can be programmed
during production into the PIC12C5XX MCU.

* ICSP in the field. Even after your product has
been sold, a service man can update your
program with new program modules.

* One hardware with different software. ICSP
allows the user to have one hardware, whereas
the PIC12C5XX MCU can be programmed with
different types of software.

¢ Last minute programming. Last minute pro-
gramming can also facilitate quick turnarounds on
custom orders for your products.

FIGURE 1:

TYPICAL APPLICATION CIRCUIT

IN-CIRCUIT SERIAL PROGRAMMING

To implement ICSP into an application, the user needs
to consider three main components of an ICSP system:
Application Circuit, Programmer and Programming
Environment.

Application Circuit

During the initial design phase of the application circuit,
certain considerations have to be taken into account.
Figure 1 shows and typical circuit that addresses the
details to be considered during design. In order to
implement ICSP on your application board you have to
put the following issues into consideration:

1. Isolation of the GP3/MCLR/VPP pin from the rest
of the circuit.

2. Isolation of pins GP1 and GPO from the rest of
the circuit.

3. Capacitance on each of the Vbb, GP3/MCLR/
Vpp, GP1, and GPO pins.

4. Interface to the programmer.

5. Minimum and maximum operating voltage for
VDD.

Application PCB
PIC12C5XX

GP3/MCLR/VPP

\AAs

ICSP Connector

VDD

Vss
GPO

GP1

Oooooao

To application circuit

X|solation circuits

PICmicro, PRO MATE and PICSTART are registered trademarks of Microchip Technology Inc.

In-Circuit Serial Proirammini and ICSP are trademarks of Microchip Technoloii Inc.

© 2000 Microchip Technology Inc.

Preliminary

DS91017B-page 2-1

TBO17

Isolation of the GP3/MCLR/VprP Pin from the
Rest of the Circuit

PIC12C5XX devices have two ways of configuring the
MCLR pin:

¢ MCLR can be connected either to an external RC
circuit or
* MCLR is tied internally to VDD

When GP3/MCLR/VPP pin is connected to an external
RC circuit, the pull-up resistor is tied to VDD, and a
capacitor is tied to ground. This circuit can affect the
operation of ICSP depending on the size of the capac-
itor.

Another point of consideration with the GP3/MCLR/VPP
pin, is that when the PICmicro MCU is programmed,
this pin is driven up to 13V and also to ground. There-
fore, the application circuit must be isolated from the
voltage coming from the programmer.

When MCLR is tied internally to VDD, the user has only
to consider that up to 13V are present during program-
ming of the GP3/MCLR/VPP pin. This might affect other
components connected to that pin.

For more information about configuring the GP3/
MCLR/VPP internally to VDD, please refer to the
PIC12C5XX data sheet (DS40139).

Isolation of Pins GP1 and GPO from the Rest
of the Circuit

Pins GP1 and GPO are used by the PICmicro MCU for
serial programming. GP1 is the clock line and GPO is
the data line.

GP1 is driven by the programmer. GPO is a bidirectional
pin that is driven by the programmer when program-
ming and driven by the PICmicro MCU when verifying.
These pins must be isolated from the rest of the appli-
cation circuit so as not to affect the signals during pro-
gramming. You must take into consideration the output
impedance of the programmer when isolating GP1 and
GPO from the rest of the circuit. This isolation circuit
must account for GP1 being an input on the PICmicro
MCU and for GPO being bidirectional pin.

For example, PRO MATE® Il has an output impedance
of 1 kQ. If the design permits, these pins should not be
used by the application. This is not the case with most
designs. As a designer, you must consider what type of
circuitry is connected to GP1 and GPO and then make
a decision on how to isolate these pins.

Total Capacitance on Vbb, GP3/MCLR/VPP,
GP1, and GPO

The total capacitance on the programming pins affects
the rise rates of these signals as they are driven out of
the programmer. Typical circuits use several hundred
microfarads of capacitance on VDD, which helps to
dampen noise and improve electromagnetic interfer-
ence. However, this capacitance requires a fairly strong
driver in the programmer to meet the rise rate timings
for VDD.

Interface to the Programmer

Most programmers are designed to simply program the
PICmicro MCU itself and don’t have strong enough
drivers to power the application circuit.

One solution is to use a driver board between the pro-
grammer and the application circuit. The driver board
needs a separate power supply that is capable of driv-
ing the VPP, VDD, GP1, and GPO pins with the correct
ramp rates and also should provide enough current to
power-up the application circuit.

The cable length between the programmer and the cir-
cuit is also an important factor for ICSP. If the cable
between the programmer and the circuit is too long, sig-
nal reflections may occur. These reflections can
momentarily cause up to twice the voltage at the end of
the cable, that was sent from the programmer. This volt-
age can cause a latch-up. In this case, a termination
resistor has to be used at the end of the signal line.

Minimum and Maximum Operating Voltage
for VbD

The PIC12C5XX programming specification states that
the device should be programmed at 5V. Special con-
siderations must be made if your application circuit
operates at 3V only. These considerations may include
totally isolating the PICmicro MCU during program-
ming. The other point of consideration is that the device
must be verified at minimum and maximum operation
voltage of the circuit in order to ensure proper program-
ming margin.

For example, a battery driven system may operate from
three 1.5V cells giving an operating voltage range of
2.7V to 4.5V. The programmer must program the device
at 5V and must verify the program memory contents at
both 2.7V and 4.5V to ensure that proper programming
margins have been achieved.

DS91017B-page 2-2

Preliminary

© 2000 Microchip Technology Inc.

TB017

THE PROGRAMMER

PIC12C5XX MCUs only use serial programming and,
therefore, all programmers supporting these devices
will support the ICSP. One issue with the programmer
is the drive capability. As discussed before, it must be
able to provide the specified rise rates on the ICSP sig-
nals and also provide enough current to power the
application circuit. It is recommended that you buffer
the programming signals.

Another point of consideration for the programmer is
what VDD levels are used to verify the memory contents
of the PICmicro MCU. For instance, the PRO MATE I
verifies program memory at the minimum and maxi-
mum VDD levels for the specified device and is there-
fore considered a production quality programmer. On
the other hand, the PICSTART® Plus only verifies at 5V
and is for prototyping use only. The PIC12C5XX pro-
gramming specifications state that the program mem-
ory contents should be verified at both the minimum
and maximum VDD levels that the application circuit will
be operating. This implies that the application circuit
must be able to handle the varying VDD voltages.

There are also several third-party programmers that
are available. You should select a programmer based
on the features it has and how it fits into your program-
ming environment. The Microchip Development Sys-
tems Ordering Guide (DS30177) provides detailed
information on all our development tools. The Microchip
Third Party Guide (DS00104) provides information on
all of our third party development tool developers.
Please consult these two references when selecting a
programmer. Many options exist including serial or par-
allel PC host connection, stand-alone operation, and
single or gang programmers.

PROGRAMMING ENVIRONMENT

The programming environment will affect the type of
programmer used, the programmer cable length, and
the application circuit interface. Some programmers
are well suited for a manual assembly line while others
are desirable for an automated assembly line. A gang
programmer should be chosen for programming multi-
ple MCUs at one time. The physical distance between
the programmer and the application circuit affects the
load capacitance on each of the programming signals.
This will directly affect the drive strength needed to pro-
vide the correct signal rise rates and current. Finally,
the application circuit interface to the programmer
depends on the size constraints of the application cir-
cuit itself and the assembly line. A simple header can
be used to interface the application circuit to the pro-
grammer. This might be more desirable for a manual
assembly line where a technician plugs the
programmer cable into the board.

A different method is the uses spring loaded test pins
(often referred as pogo-pins). The application circuit
has pads on the board for each of the programming sig-
nals. Then there is a movable fixture that has pogo pins

in the same configuration as the pads on the board.
The application circuit is moved into position and the
fixture is moved such that the spring loaded test pins
come into contact with the board. This method might be
more suitable for an automated assembly line.

After taking into consideration the issues with the
application circuit, the programmer, and the program-
ming environment, anyone can build a high quality,
reliable manufacturing line based on ICSP.

OTHER BENEFITS

ICSP provides several other benefits such as calibra-
tion and serialization. If program memory permits, it
would be cheaper and more reliable to store calibration
constants in program memory instead of using an
external serial EEPROM.

Field Programming of PICmicro OTP MCUs

An OTP device is not normally capable of being repro-
grammed, but the PICmicro MCU architecture gives
you this flexibility provided the size of your firmware is
less than half that of the desired device.

This method involves using jump tables for the reset
and interrupt vectors. Example 1 shows the location of
a main routine and the reset vector for the first time a
device with 0.5K-words of program memory is pro-
grammed. Example 2 shows the location of a second
main routine and its reset vector for the second time the
same device is programmed. You will notice that the
GOTO Main that was previously at location 0x0002 is
replaced with an NOP. An NOP is a program memory
location with all the bits programmed as 0s. When the
reset vector is executed, it will execute an NOP and
then a GOTO Mainl instruction to the new code.

© 2000 Microchip Technology Inc.

Preliminary

DS91017B-page 2-3

TBO17

EXAMPLE 1: LOCATION OF THE FIRST MAIN ROUTINE AND ITS INTERRUPT VECTOR

PROGRAM MEMORY
0X000 MOVWF OSCAL RESET VECTOR
0X001 GOTO MAIN1
UNPROGRAMMED
0X040 MAIN1
MAIN1 ROUTINE
0X080
UNPROGRAMMED
OX1FF MOVLW XX CALIBRATION VALUE
LEGEND: XX = CALIBRATION VALUE

DS91017B-page 2-4 Preliminary © 2000 Microchip Technology Inc.

TB017

EXAMPLE 2: LOCATION OF THE SECOND MAIN ROUTINE AND IT INTERRUPT VECTOR
(AFTER SECOND PROGRAMMING)

PROGRAM MEMORY

0X000 MOVWF OSCAL RESET VECTOR
0X001 NOP
0X002 GOTO MAIN2
UNPROGRAMMED
0X040 MAIN1
MAIN1 ROUTINE
0X080
UNPROGRAMMED
-
MAIN2 ROUTINE
0X136
OX1FF MOVLW XX CALIBRATION VALUE

LEGEND: XX = CALIBRATION VALUE

© 2000 Microchip Technology Inc. Preliminary DS91017B-page 2-5

TBO17

Since the program memory of the PIC12C5XX devices
is organized in 256 x 12 word pages, placement of such
information as look-up tables and CALL instructions
must be taken into account. For further information,
please refer to application note AN581, Implementing
Long Calls and application note AN556, Implementing
a Table Read.

CONCLUSION

Microchip Technology Inc. is committed to supporting
your ICSP needs by providing you with our many years
of experience and expertise in developing in-circuit sys-
tem programming solutions. Anyone can create a reli-
able in-circuit system programming station by coupling
our background with some forethought to the circuit
design and programmer selection issues previously
mentioned. Your local Microchip representative is avail-
able to answer any questions you have about the
requirements for ICSP.

DS91017B-page 2-6

Preliminary

© 2000 Microchip Technology Inc.

TB017

SAMPLE DRIVER BOARD SCHEMATIC

APPENDIX A

LINDYIO OL

LNo~aap >

LINDYIO OL

1NO ddA

"LdD 40 0dD ‘ddA ‘AdA uo peo)
eoiiubis e saoeld uoneoldde ayy JI paiinbai aq Aew
sabuey) ‘Buiwiy sreubis Bujwwelboid sy uo NI
suoneoljdde ay; Jo s}oaye 8y} auiwisep 0} uoneoldde
sJasn 8y} ul palsal 8q | SNIN ubisap pieoq JaAup 8yl

LINDYIO OL

:9)0N

JININVIODOEd

"Jaliq [e01Uy08} Ul 1X8) 89S,

{1no odo

N

NO¥d

I"0dD »

LINDYID OL
[LnO”1dD

AHNNVIDO Y
LINDIYID 0L = NO¥A

[1no~ane >————< NIaNo)|

YHNAVIDOAd
NOYdd

‘Jouq [e21uyo8) Ul 1x8) 89S,

NI™ D

my L 7
td - - 1008 YTINNVEDOUd
cezeNg w1 VHHITEIL 001 \\ =
8 \\ o | 614 " // g
OA 81 oS/ﬁ 3 ain
ES 01
906eNg N0
| &6 2
ST
my Lo 7
¢ = = 1004 ANV ID0¥d
‘ | H WO
e) ALd S 14\ o VHPIZAIL +—<_ NIdan]
NS 001 <v3mmd\f | “ . P
9 T } oy M:D/w 9
A 64 vin 4 ¢
= 00l AEE
6
906ENT
I o
I
X ATddNS ¥IMOd TYNIALXT
AST (290
O
OD0A

Preliminary

DS91017B-page 2-7

© 2000 Microchip Technology Inc.

TBO17

NOTES:

DS91017B-page 2-8 Preliminary © 2000 Microchip Technology Inc.

MICROCHIP

TB013

How to Implement ICSP™ Using PIC16CXXX OTP MCUs

Author: Rodger Richey
Microchip Technology Inc.
INTRODUCTION

In-Circuit Serial Programming™ (ICSP) is a great way
to reduce your inventory overhead and time-to-market
for your product. By assembling your product with a
blank Microchip microcontroller (MCU), you can stock
one design. When an order has been placed, these
units can be programmed with the latest revision of
firmware, tested, and shipped in a very short time. This
method also reduces scrapped inventory due to old
firmware revisions. This type of manufacturing system
can also facilitate quick turnarounds on custom orders
for your product.

Most people would think to use ICSP with PICmicro®

OTP MCUs only on an assembly line where the device
is programmed once. However, there is a method by
which an OTP device can be programmed several
times depending on the size of the firmware. This
method, explained later, provides a way to field
upgrade your firmware in a way similar to EEPROM- or
Flash-based devices.

HOW DOES ICSP WORK?

Now that ICSP appeals to you, what steps do you take
to implement it in your application? There are three
main components of an ICSP system: Application
Circuit, Programmer and Programming Environment.

FIGURE 1:

TYPICAL APPLICATION CIRCUIT

Application Circuit

The application circuit must be designed to allow all the
programming signals to be directly connected to the
PICmicro MCU. Figure 1 shows a typical circuit that is
a starting point for when designing with ICSP. The
application must compensate for the following issues:

1. Isolation of the MCLR/V,, pin from the rest of
the circuit.

2. Isolation of pins RB6 and RB7 from the rest of
the circuit.

3. Capacitance on each of the VDD, MCLR/Vpp,
RB6, and RB7 pins.

4. Minimum and maximum operating voltage for
VDD.

5. PICmicro Oscillator.
6. Interface to the programmer.

The MCLR/V,; pin is normally connected to an RC cir-
cuit. The pull-up resistor is tied to VDD and a capacitor
is tied to ground. This circuit can affect the operation of
ICSP depending on the size of the capacitor. Itis, there-
fore, recommended that the circuit in Figure 1 be used
when an RC is connected to MCLR/V,. The diode
should be a Schottky-type device. Another issue with
MCLR/Vpp is that when the PICmicro MCU device is
programmed, this pin is driven to approximately 13V
and also to ground. Therefore, the application circuit
must be isolated from this voltage provided by the
programmer.

Application PCB
PIC16CXXX

MCLR/Vpp|

-~

III—)I——‘LAN\Oé

Vdd
°

A
V¥

ICSP Connector

Vdd

Vss

RB7
RB6

OoooOooo

11
I

To application circuit

X|solation circuits

© 2000 Microchip Technology Inc.

Preliminary

DS91013B-page 2-9

TB013

Pins RB6 and RB7 are used by the PICmicro MCU for
serial programming. RB6 is the clock line and RB7 is
the data line. RB6 is driven by the programmer. RB7 is
a bidirectional pin that is driven by the programmer
when programming, and driven by the PICmicro MCU
when verifying. These pins must be isolated from the
rest of the application circuit so as not to affect the sig-
nals during programming. You must take into consider-
ation the output impedance of the programmer when
isolating RB6 and RB7 from the rest of the circuit. This
isolation circuit must account for RB6 being an input on
the PICmicro MCU, and for RB7 being bidirectional
(can be driven by both the PICmicro MCU and the pro-
grammer). For instance, PRO MATE® Il has an output
impedance of 1k%. If the design permits, these pins
should not be used by the application. This is not the
case with most applications so it is recommended that
the designer evaluate whether these signals need to be
buffered. As a designer, you must consider what type of
circuitry is connected to RB6 and RB7 and then make
a decision on how to isolate these pins. Figure 1 does
not show any circuitry to isolate RB6 and RB7 on the
application circuit because this is very application
dependent.

The total capacitance on the programming pins affects
the rise rates of these signals as they are driven out of
the programmer. Typical circuits use several hundred
microfarads of capacitance on VDD which helps to
dampen noise and ripple. However, this capacitance
requires a fairly strong driver in the programmer to
meet the rise rate timings for VDD. Most programmers
are designed to simply program the PICmicro MCU
itself and don’t have strong enough drivers to power the
application circuit. One solution is to use a driver board
between the programmer and the application circuit.
The driver board requires a separate power supply that
is capable of driving the VPP and VDD pins with the
correct rise rates and should also provide enough cur-
rent to power the application circuit. RB6 and RB7 are
not buffered on this schematic but may require buffer-
ing depending upon the application. A sample driver
board schematic is shown in Appendix A.

Note: The driver board design MUST be tested
in the user’s application to determine the
effects of the application circuit on the
programming signals timing. Changes
may be required if the application places
a significant load on VDD, VPP, RB6 OR
RB7.

The Microchip programming specification states that
the device should be programmed at 5V. Special con-
siderations must be made if your application circuit
operates at 3V only. These considerations may include
totally isolating the PICmicro MCU during program-
ming. The other issue is that the device must be verified
at the minimum and maximum voltages at which the
application circuit will be operating. For instance, a bat-
tery operated system may operate from three 1.5V
cells giving an operating voltage range of 2.7V to 4.5V.

The programmer must program the device at 5V and
must verify the program memory contents at both 2.7V
and 4.5V to ensure that proper programming margins
have been achieved. This ensures the PICmicro MCU
option over the voltage range of the system.

This final issue deals with the oscillator circuit on the
application board. The voltage on MCLR/VPP must rise
to the specified program mode entry voltage before the
device executes any code. The crystal modes available
on the PICmicro MCU are not affected by this issue
because the Oscillator Start-up Timer waits for 1024
oscillations before any code is executed. However, RC
oscillators do not require any startup time and, there-
fore, the Oscillator Startup Timer is not used. The pro-
grammer must drive MCLR/VPP to the program mode
entry voltage before the RC oscillator toggles four
times. If the RC oscillator toggles four or more times,
the program counter will be incremented to some value
X. Now when the device enters programming mode,
the program counter will not be zero and the program-
mer will start programming your code at an offset of X.
There are several alternatives that can compensate for
a slow rise rate on MCLR/VPP. The first method would
be to not populate the R, program the device, and then
insert the R. The other method would be to have the
programming interface drive the OSC1 pin of the
PICmicro MCU to ground while programming. This will
prevent any oscillations from occurring during program-
ming.

Now all that is left is how to connect the application cir-
cuit to the programmer. This depends a lot on the
programming environment and will be discussed in that
section.

Programmer

The second consideration is the programmer.
PIC16CXXX MCUs only use serial programming and
therefore all programmers supporting these devices
will support ICSP. One issue with the programmer is the
drive capability. As discussed before, it must be able to
provide the specified rise rates on the ICSP signals and
also provide enough current to power the application
circuit. Appendix A shows an example driver board.
This driver schematic does not show any buffer circuitry
for RB6 and RB?7. It is recommended that an evaluation
be performed to determine if buffering is required.
Another issue with the programmer is what VDD levels
are used to verify the memory contents of the PICmicro
MCU. For instance, the PRO MATE Il verifies program
memory at the minimum and maximum VDD levels for
the specified device and is therefore considered a pro-
duction quality programmer. On the other hand, the
PICSTART® Plus only verifies at 5V and is for prototyp-
ing use only. The Microchip programming specifica-
tions state that the program memory contents should
be verified at both the minimum and maximum VDD lev-
els that the application circuit will be operating. This
implies that the application circuit must be able to han-
dle the varying VDD voltages.

DS91013B-page 2-10

Preliminary

© 2000 Microchip Technology Inc.

TB013

There are also several third party programmers that are
available. You should select a programmer based on
the features it has and how it fits into your programming
environment. The Microchip Development Systems
Ordering Guide (DS30177) provides detailed informa-
tion on all our development tools. The Microchip Third
Party Guide (DS00104) provides information on all of
our third party tool developers. Please consult these
two references when selecting a programmer. Many
options exist including serial or parallel PC host con-
nection, stand-alone operation, and single or gang pro-
grammers. Some of the third party developers include
Advanced Transdata Corporation, BP Microsystems,
Data I/0, Emulation Technology and Logical Devices.

Programming Environment

The programming environment will affect the type of
programmer used, the programmer cable length, and
the application circuit interface. Some programmers
are well suited for a manual assembly line while others
are desirable for an automated assembly line. You may
want to choose a gang programmer to program multiple
systems at a time.

The physical distance between the programmer and
the application circuit affects the load capacitance on
each of the programming signals. This will directly
affect the drive strength needed to provide the correct
signal rise rates and current. This programming cable
must also be as short as possible and properly
terminated and shielded, or the programming signals
may be corrupted by ringing or noise.

Finally, the application circuit interface to the program-
mer depends on the size constraints of the application
circuit itself and the assembly line. A simple header can
be used to interface the application circuit to the pro-
grammer. This might be more desirable for a manual
assembly line where a technician plugs the
programmer cable into the board. A different method is
the use of spring loaded test pins (commonly referred
to as pogo pins). The application circuit has pads on
the board for each of the programming signals. Then
there is a fixture that has pogo pins in the same config-
uration as the pads on the board. The application circuit
or fixture is moved into position such that the pogo pins
come into contact with the board. This method might be
more suitable for an automated assembly line.

After taking into consideration the issues with the appli-
cation circuit, the programmer, and the programming
environment, anyone can build a high quality, reliable
manufacturing line based on ICSP.

Other Benefits

ICSP provides other benefits, such as calibration and
serialization. If program memory permits, it would be
cheaper and more reliable to store calibration con-
stants in program memory instead of using an external
serial EEPROM. For example, your system has a ther-
mistor which can vary from one system to another.
Storing some calibration information in a table format
allows the microcontroller to compensate in software
for external component tolerances. System cost can be
reduced without affecting the required performance of
the system by using software calibration techniques.
But how does this relate to ICSP? The PICmicro MCU
has already been programmed with firmware that per-
forms a calibration cycle. The calibration data is trans-
ferred to a calibration fixture. When all calibration data
has been transferred, the fixture places the PICmicro
MCU in programming mode and programs the
PICmicro MCU with the calibration data. Application
note AN656, In-Circuit Serial Programming of Calibra-
tion Parameters Using a PICmicro Microcontroller,
shows exactly how to implement this type of calibration
data programming.

The other benefit of ICSP is serialization. Each individ-
ual system can be programmed with a unique or ran-
dom serial number. One such application of a unique
serial number would be for security systems. A typical
system might use DIP switches to set the serial num-
ber. Instead, this number can be burned into program
memory, thus reducing the overall system cost and low-
ering the risk of tampering.

Field Programming of PICmicro OTP MCUs

An OTP device is not normally capable of being
reprogrammed, but the PICmicro MCU architecture
gives you this flexibility provided the size of your firm-
ware is at least half that of the desired device and the
device is not code protected. If your target device does
not have enough program memory, Microchip provides
a wide spectrum of devices from 0.5K to 8K program
memory with the same set of peripheral features that
will help meet the criteria.

The PIC16CXXX microcontrollers have two vectors,
reset and interrupt, at locations 0x0000 and 0x0004.
When the PICmicro MCU encounters a reset or inter-
rupt condition, the code located at one of these two
locations in program memory is executed. The first list-
ing of Example 1 shows the code that is first pro-
grammed into the PICmicro MCU. The second listing of
Example 1 shows the code that is programmed into the
PICmicro MCU for the second time.

© 2000 Microchip Technology Inc.

Preliminary

DS91013B-page 2-11

TB013

EXAMPLE 1:

PROGRAMMING CYCLE LISTING FILES

First Program Cycle

Second Program Cycle

1cocC
284E
1806

0060
0061
0062

3FFF
3FFF
3FFF

00A8
00A9
00AA

3FFF
3FFF
3FFF

Opcode Assembly

Instruction

goto Main
<blank>
<blank>
<blanks>
goto ISR
<blank>
<blanks>
<blank>
bsf STATUS, RPO
movlw 0x07

movwf ADCON1

;Main loop
;at 0x0008

;ISR at
;0x0048

btfss PIR1,RBIF
goto EndISR
btfsc PORTB, 0

<blank>
<blanks>
<blank>

<blank>
<blanks>
<blank>

| Prog
| Mem

| 0000
|ooo1
0002
0003
|o004
o005
0006
|oo07
\

[0009
|oooa

Opcode Assembly

0048
284E
1806

1683
3005
009F

1CocC
28AE
1806

Instruction

nop

goto Main
<blank>
<blanks>
nop

goto ISR
<blanks>
<blank>
1683

movlw 0x07
movwf ADCON1

;Main now
;at 0x0060

;ISR now at
; 0x00A8

bsf STATUS, RPO

icoc btfss PIR1,RBIF
goto EndISR
btfsc PORTB, 0

bsf STATUS, RPO
movlw 0x05
movwf ADCON1

btfss PIR1,RBIF
goto EndISR
btfsc PORTB, 0

DS91013B-page 2-12

Preliminary

© 2000 Microchip Technology Inc.

TB013

The example shows that to program the PICmicro MCU
a second time the memory location 0x0000, originally
goto Main (0x2808), is reprogrammed to all 0’s which
happens to be a nop instruction. This location cannot
be reprogrammed to the new opcode (0x2860)
because the bits that are 0’s cannot be reprogrammed
to 1’s, only bits that are 1’s can be reprogrammed to
0’s. The next memory location 0x0001 was originally
blank (all 1’s) and now becomes a goto Main
(0x2860). When a reset condition occurs, the PICmicro
MCU executes the instruction at location 0x0000 which
is the nop, a completely benign instruction, and then
executes the goto Main to start the execution of code.
The example also shows that all program memory loca-
tions after 0XO05A are blank in the original program so
that the second time the PICmicro MCU is pro-
grammed, the revised code can be programmed at
these locations. The same descriptions can be given
for the interrupt vector at location 0x0004.

This method changes slightly for PICmicro MCUs with
>2K words of program memory. Each of the goto
Main and goto ISR instructions are replaced by the
following code segments due to paging on devices with
>2K words of program memory.

movlw <page> movlw <page>

movwf PCLATH movwf PCLATH

goto Main goto ISR
Now your one time programmable PICmicro MCU is
exhibiting more EEPROM- or Flash-like qualities.

CONCLUSION

Microchip Technology Inc. is committed to supporting
your ICSP needs by providing you with our many years
of experience and expertise in developing ICSP
solutions. Anyone can create a reliable ICSP program-
ming station by coupling our background with some
forethought to the circuit design and programmer
selection issues previously mentioned. Your local
Microchip representative is available to answer any
questions you have about the requirements for ICSP.

© 2000 Microchip Technology Inc.

Preliminary

DS91013B-page 2-13

TB013

SAMPLE DRIVER BOARD SCHEMATIC

APPENDIX A

LINDYID OL

LNO~aap >

LINDYID OL

1NO ddA

ELUN]
90

I

"/94d 10 994 ‘ddA ‘pPpA uo peo|

weoyubis e saoeid uoneoydde ayl ji pasinbai aq Aew
sabuey) ‘Buiwy sreubis Buiwwelboid sy uo NI
uoneoldde sy} Jo s1oaye 8y} aulwislep 0} uoneoldde
sJasn ay} ul pajsal 8q | SNIN ubisep pieoq JaAlp ayL :9JON

I

LINDYID OL

{1no gy

S
[44. |

M“'

eee

"Jaliq [e01Uyoa} Ul 1xa} 99S,

001

YHNINVIDOUd
NO¥A LINDYID OL
Nz8d > [lnO egd

e

JHNINVIDOUd
NO¥d

{_Nrano]

LINDYID OL =

[Lno"ano>

JHNINVIDOUd
NO¥d

‘Jolq [e21uyo8) Ul 1x8) 888,

NI"984

008 qw\ YHNYIO0¥d
WO

VI 4 NCaop|

Vvl NMAH\,\

81y

8 _ 614
5// 3

STy

L)
€D

w\n 001

" S/w €T

i4:!

008 qw\ YHNNYIO0¥d
WO

6d

94

ANI H
§Emm§\i\ 0ot =
T “ L }
i _ ord mS// 9
z
vin
Agg
o
A1ddNS YAMOd TYNIHLXH
AT (22N
@)
O0A

© 2000 Microchip Technology Inc.

iminary

Prel

DS91013B-page 2-14

MICROCHIP

TB015

How to Implement ICSP™ Using PIC17CXXX OTP MCUs

Author: Stan D’Souza
Microchip Technology Inc.

INTRODUCTION

PIC17CXXX microcontroller (MCU) devices can be
serially programmed using an RS-232 or equivalent
serial interface. As shown in Figure 2, using just three
pins, the PIC17CXXX can be connected to an external
interface and programmed. In-Circuit Serial Program-
ming (ICSP™) allows for a greater flexibility in an appli-
cation as well as a faster time to market for the user's
product.

This technical brief will demonstrate the practical
aspects associated with ICSP using the PIC17CXXX. It
will also demonstrate some key capabilities of OTP
devices when used in conjunction with ICSP.

Implementation

The PIC17CXXX devices have special instructions,
which enables the user to program and read the
PIC17CXXX's program memory. The instructions are
TABLWT and TLWT which implement the program mem-
ory write operation and TABLRD and TLRD which per-
form the program memory read operation. For more
details, please check the In-Circuit Serial Programming
for PIC17CXXX OTP Microcontrollers Specification
(DS30273), PIC17C4X data sheet (DS30412) and
PIC17C75X data sheet (DS30264).

When doing ICSP, the PIC17CXXX runs a boot code,
which configures the USART port and receives data
serially through the RX line. This data is then pro-
grammed at the address specified in the serial data
string. A high voltage (about 13V) is required for the
EPROM cell to get programmed, and this is usually
supplied by the programming header as shown in
Figure 2 and Figure 3. The PIC17CXXX's boot code
enables and disables the high voltage line using a ded-
icated I/O line.

FIGURE 2: PIC17CXXX IN-CIRCUIT SERIAL PROGRAMMING USING TABLE WRITE
INSTRUCTIONS
PIC17CXXX SYSTEM BOARD
Vo 13V Enable
Data Program
Memory Memory
- VPP O\O
13V
Data H:Data L
oot
Data L ode
Data H }
TX - In-Circuit
Programming
USART . BRX Level Converter Connector

© 2000 Microchip Technology Inc.

Preliminary

DS91015A-page 2-15

TB015

FIGURE 3: PIC17CXXX IN-CIRCUIT SERIAL PROGRAMMING SCHEMATIC
PIC17CXXX +5V
o
Vdd 7805
l ;’7
: T
13V
MCLR j
RA2 Wy MA- Programming Header
+5V
™ N Serial Port RX
RX | MAX232 |

Vss

Il

Serial Port TX

i

o oo o

ICSP Boot Code

The boot code is normally programmed, into the
PIC17CXXX device using a PRO MATE® or
PICSTART® Plus or any third party programmer. As
depicted in the flowchart in Figure 5, on power-up, or a
reset, the program execution always vectors to the boot
code. The boot code is normally located at the bottom
of the program memory space e.g. 0x700 for a
PIC17C42A (Figure 4).

Several methods could be used to reset the
PIC17CXXX when the ICSP header is connected to the
system board. The simplest method, as shown in
Figure 3, is to derive the system 5V, from the 13V sup-
plied by the ICSP header. It is quite common in manu-
facturing lines, to have system boards programmed
with only the boot code ready and available for testing,
calibration or final programming. The ICSP header
would thus supply the 13V to the system and this 13V
would then be stepped down to supply the 5V required
to power the system. Please note that the 13V supply
should have enough drive capability to supply power to
the system as well as maintain the programming volt-
age of 13V.

The first action of the boot code (as shown in flowchart
Figure 5) is to configure the USART to a known baud
rate and transmit a request sequence to the ICSP host
system. The host immediately responds with an
acknowledgment of this request. The boot code then
gets ready to receive ICSP data. The host starts send-
ing the data and address byte sequences to the
PIC17CXXX. On receiving the address and data
information, the 16-bit address is loaded into the
TBLPTR registers and the 16-bit data is loaded into the
TABLAT registers. The RA2 pin is driven low to enable
13V at MCLR. The PIC17CXXX device then executes
a table write instruction. This instruction in turn causes
a long write operation, which disables further code exe-
cution. Code execution is resumed when an internal

interrupt occurs. This delay ensures that the program-
ming pulse width of 1 ms (max.) is met. Once a location
is written, RA2 is driven high to disable further writes
and a verify operation is done using the Table read
instruction. If the result is good, an acknowledge is sent
to the host. This process is repeated till all desired loca-
tions are programmed.

In normal operation, when the ICSP header is not con-
nected, the boot code would still execute and the
PIC17CXXX would send out a request to the host.
However it would not get a response from the host, so
it would abort the boot code and start normal code
execution.
FIGURE 4: BOOT CODE EXAMPLE FOR
PIC17C42A

Program Memory
Reset Vector

53
CC

22
(€

0x700

Boot Code

0x7FF

DS91015A-page 2-16

Preliminary

© 2000 Microchip Technology Inc.

TB015

FIGURE 5:

FLOWCHART FOR ICSP BOOT CODE

v

Goto Boot Code

v

Configure USART
and send request

o
<«

v

Received Host’s No

ACK?

i Yes

Prepare to receive
ICSP data

»
L
A,

Received Address
and Data info?

v Yes

Do Table Write
operation

No /| ast Data/Address

»
L

A

No

Interrupt?

Yes

Read Program
Location

»

»(Time-out complete?

iYes
Start Code
Execution

A

Program location
verified correctly?

Signal Programming

Error

Yes

4

Yes

}

sequence?

No

© 2000 Microchip Technology Inc.

Preliminary

DS91015A-page 2-17

TB015

USING THE ICSP FEATURE ON
PIC17CXXX OTP DEVICES

The ICSP feature is a very powerful tool when used in
conjunction with OTP devices.

Saving Calibration Information Using ICSP

One key use of ICSP is to store calibration constants or
parameters in program memory. It is quite common to
interface a PIC17CXXX device to a sensor. Accurate,
pre-calibrated sensors can be used, but they are more
expensive and have long lead times. Uncalibrated sen-
sors on the other hand are inexpensive and readily
available. The only caveat is that these sensors have to
be calibrated in the application. Once the calibration
constants have been determined, they would be unique
to a given system, so they have to be saved in program
memory. These calibration parameters/constants can
then be retrieved later during program execution and
used to improve the accuracy of low cost un-calibrated
sensors. ICSP thus offers a cost reduction path for the
end user in the application.

Saving Field Calibration Information Using
ICSP

Sensors typically tend to drift and lose calibration over
time and usage. One expensive solution would be to
replace the sensor with a new one. A more cost effec-
tive solution however, is to re-calibrated the system and
save the new calibration parameter/constants into the
PIC17CXXX devices using ICSP. The user program
however has to take into account certain issues:

1. Un-programmed or blank locations have to be
reserved at each calibration constant location in
order to save new calibration parameters/con-
stants.

The old calibration parameters/constants are all
programmed to 0, so the user program will have
to be “intelligent” and differentiate between blank
(OXFFFF), zero (0x0000), and programmed locations.

Figure 6 shows how this can be achieved.

Programming Unique Serial Numbers Using
ICSP

There are applications where each system needs to
have a unique and sometimes random serial nhumber.
Example: security devices. One common solution is to
have a set of DIP switches which are then set to a
unique value during final test. A more cost effective
solution however would be to program unique serial
numbers into the device using ICSP. The user applica-
tion can thus eliminate the need for DIP switches and
subsequently reduce the cost of the system.

FIGURE 6: FIELD CALIBRATION USING ICSP
Factory Settings Field Calibrate #1 Field Calibrate #2
i~ i~ o~ ~ i~ ~
Parameter 1.1 0x0000 0x0000
OxFFFF Parameter 1.2 0x0000
OxFFFF OxFFFF Parameter 1.3
OXFFFF OxFFFF OxFFFF
Parameter 2.1 0x0000 0x0000
OxFFFF Parameter 2.2 0x0000
OxFFFF OxFFFF Parameter 2.3
OXFFFF OxFFFF OxFFFF
vt o vt ~ o ~

DS91015A-page 2-18

Preliminary

© 2000 Microchip Technology Inc.

TB015

Code Updates in the Field Using ICSP

With fast time to market it is not uncommon to see
application programs which need to be updated or cor-
rected for either enhancements or minor errors/bugs. If
ROM parts were used, updates would be impossible
and the product would either become outdated or
recalled from the field. A more cost effective solution
is to use OTP devices with ICSP and program them in
the field with the new updates. Figure 7 shows an
example where the user has allowed for one field
update to his program.

Here are some of the issues which need to be
addressed:

1. The user has to reserve sufficient blank memory
to fit his updated code.

2. Atleast one blank location needs to be saved at
the reset vector as well as for all the interrupts.

3. Program all the old “goto” locations (located at
the reset vector and the interrupts vectors) to 0
so that these instructions execute as NOPs.

4. Program new “goto” locations (at the reset vec-
tor and the interrupt vectors) just below the old
“goto” locations.

5. Finally, program the new updated code in the
blank memory space.

CONCLUSION

ICSP is a very powerful feature available on the
PIC17CXXX devices. It offers tremendous design flex-
ibility to the end user in terms of saving calibration con-
stants and updating code in final production as well as
in the field, thus helping the user design a low-cost and
fast time-to-market product.

FIGURE 7: CODE UPDATES USING ICSP
Production Program Code Update #1
Goto Boot 0x0000 Goto Boot 0x0000
Main Goto Main1 |« Main . 0x0000 <
OXFFFF ¥ Goto Main2
OxFFFF OxFFFF
Uq v _ =
A n
Main1
Main1 > a)
Main2
Un A Un @
N <
L—— Boot I—i L——» Boot H
n lad N7 la
Goto Main Goto Main

© 2000 Microchip Technology Inc.

Preliminary

DS91015A-page 2-19

TB015

NOTES:

DS91015A-page 2-20 Preliminary © 2000 Microchip Technology Inc.

MICROCHIP

TB016

How to Implement ICSP™ Using PIC16F8X FLASH MCUs

Author: Rodger Richey

Microchip Technology Inc.
INTRODUCTION
In-Circuit Serial Programming™ (ICSP) with

PICmicro® FLASH microcontrollers (MCU) is notonly a
great way to reduce your inventory overhead and time-
to-market for your product, but also to easily provide
field upgrades of firmware. By assembling your product
with a Microchip FLASH-based MCU, you can stock the
shelf with one system. When an order has been placed,
these units can be programmed with the latest revision
of firmware, tested, and shipped in a very short time.
This type of manufacturing system can also facilitate
quick turnarounds on custom orders for your product.
You don’t have to worry about scrapped inventory
because of the FLASH-based program memory. This
gives you the advantage of upgrading the firmware at
any time to fix those “features” that pop up from time to
time.

HOW DOES ICSP WORK?

Now that ICSP appeals to you, what steps do you take
to implement it in your application? There are three
main components of an ICSP system.

These are the: Application Circuit, Programmer and
Programming Environment.

FIGURE 1:

TYPICAL APPLICATION CIRCUIT

Application Circuit

The application circuit must be designed to allow all the
programming signals to be directly connected to the
PICmicro MCUs. Figure 1 shows a typical circuit that is
a starting point for when designing with ICSP. The
application must compensate for the following issues:

1. Isolation of the MCLR/VPP pin from the rest of
the circuit.

2. Isolation of pins RB6 and RB7 from the rest of
the circuit.

3. Capacitance on each of the Vbb, MCLR/VPP,
RB6, and RB7 pins.

4. Minimum and maximum operating voltage for
Voo

5. PICmicro Oscillator.

6. Interface to the programmer.

The MCLR/VPP pin is normally connected to an RC cir-
cuit. The pull-up resistor is tied to VDD and a capacitor
is tied to ground. This circuit can affect the operation of
ICSP depending on the size of the capacitor. Itis, there-
fore, recommended that the circuit in Figure 1 be used
when an RC is connected to MCLR/VPP. The diode
should be a Schottky-type device. Another issue with
MCLR/VPP is that when the PICmicro MCU device is
programmed, this pin is driven to approximately 13V
and also to ground. Therefore, the application circuit
must be isolated from this voltage provided by the
programmer.

Application PCB
PIC16F8X

MCLR/VpPP

Vdd

]

7
N

=

Vdd
o

AAA
VV¥

ICSP Connector

Vdd
Vss

RB7

RB6

To application circuit

Oooooao

*|solation circuits

PICmicro, PRO MATE, and PICSTART are registered trademarks of Microchip Technology Inc.
In-Circuit Serial Programming and ICSP are trademarks of Microchip Technology Inc.

© 2000 Microchip Technology Inc.

DS91016B-page 2-21

TB016

Pins RB6 and RB7 are used by the PICmicro MCU for
serial programming. RB6 is the clock line and RB7 is
the data line. RB6 is driven by the programmer. RB7 is
a bidirectional pin that is driven by the programmer
when programming, and driven by the PICmicro MCU
when verifying. These pins must be isolated from the
rest of the application circuit so as not to affect the sig-
nals during programming. You must take into consider-
ation the output impedance of the programmer when
isolating RB6 and RB7 from the rest of the circuit. This
isolation circuit must account for RB6 being an input on
the PICmicro MCU and for RB7 being bidirectional (can
be driven by both the PICmicro MCU and the program-
mer). For instance, PRO MATE® Il has an output
impedance of 1k%. If the design permits, these pins
should not be used by the application. This is not the
case with most applications so it is recommended that
the designer evaluate whether these signals need to be
buffered. As a designer, you must consider what type of
circuitry is connected to RB6 and RB7 and then make
a decision on how to isolate these pins. Figure 1 does
not show any circuitry to isolate RB6 and RB7 on the
application circuit because this is very application
dependent.

The total capacitance on the programming pins affects
the rise rates of these signals as they are driven out of
the programmer. Typical circuits use several hundred
microfarads of capacitance on VDD which helps to
dampen noise and ripple. However, this capacitance
requires a fairly strong driver in the programmer to
meet the rise rate timings for VDD. Most programmers
are designed to simply program the PICmicro MCU
itself and don’t have strong enough drivers to power the
application circuit. One solution is to use a driver board
between the programmer and the application circuit.
The driver board requires a separate power supply that
is capable of driving the VPP and VDD pins with the cor-
rect rise rates and should also provide enough current
to power the application circuit. RB6 and RB7 are not
buffered on this schematic but may require buffering
depending upon the application. A sample driver board
schematic is shown in Appendix A.

Note: The driver board design MUST be tested
in the user’s application to determine the
effects of the application circuit on the
programming signals timing. Changes
may be required if the application places
a significant load on Vdd, Vpp, RB6 or
RB7.

The Microchip programming specification states that
the device should be programmed at 5V. Special con-
siderations must be made if your application circuit
operates at 3V only. These considerations may include
totally isolating the PICmicro MCU during program-
ming. The other issue is that the device must be verified
at the minimum and maximum voltages at which the
application circuit will be operating. For instance, a bat-
tery operated system may operate from three 1.5V

cells giving an operating voltage range of 2.7V to 4.5V.
The programmer must program the device at 5V and
must verify the program memory contents at both 2.7V
and 4.5V to ensure that proper programming margins
have been achieved. This ensures the PICmicro MCU
option over the voltage range of the system.

This final issue deals with the oscillator circuit on the
application board. The voltage on MCLR/VPP must rise
to the specified program mode entry voltage before the
device executes any code. The crystal modes available
on the PICmicro MCU are not affected by this issue
because the Oscillator Start-up Timer waits for 1024
oscillations before any code is executed. However, RC
oscillators do not require any startup time and, there-
fore, the Oscillator Startup Timer is not used. The pro-
grammer must drive MCLR/VPP to the program mode
entry voltage before the RC oscillator toggles four
times. If the RC oscillator toggles four or more times,
the program counter will be incremented to some value
X. Now when the device enters programming mode,
the program counter will not be zero and the program-
mer will start programming your code at an offset of X.
There are several alternatives that can compensate for
a slow rise rate on MCLR/VPP. The first method would
be to not populate the R, program the device, and then
insert the R. The other method would be to have the
programming interface drive the OSC1 pin of the
PICmicro MCU to ground while programming. This will
prevent any oscillations from occurring during program-
ming.

Now all that is left is how to connect the application cir-
cuit to the programmer. This depends a lot on the
programming environment and will be discussed in that
section.

Programmer

The second consideration is the programmer.
PIC16F8X MCUs only use serial programming and
therefore all programmers supporting these devices
will support ICSP. One issue with the programmer is the
drive capability. As discussed before, it must be able to
provide the specified rise rates on the ICSP signals and
also provide enough current to power the application
circuit. Appendix A shows an example driver board.
This driver schematic does not show any buffer circuitry
for RB6 and RB7. It is recommended that an evalua-
tion be performed to determine if buffering is required.
Another issue with the programmer is what VDD levels
are used to verify the memory contents of the PICmicro
MCU. For instance, the PRO MATE Il verifies program
memory at the minimum and maximum VDD levels for
the specified device and is therefore considered a pro-
duction quality programmer. On the other hand, the
PICSTART® Plus only verifies at 5V and is for prototyp-
ing use only. The Microchip programming specifica-
tions state that the program memory contents should
be verified at both the minimum and maximum VDD lev-
els that the application circuit will be operating. This
implies that the application circuit must be able to han-
dle the varying VDD voltages.

DS91016B-page 2-22

© 2000 Microchip Technology Inc.

TB016

There are also several third party programmers that are
available. You should select a programmer based on
the features it has and how it fits into your programming
environment. The Microchip Development Systems
Ordering Guide (DS30177) provides detailed informa-
tion on all our development tools. The Microchip Third
Party Guide (DS00104) provides information on all of
our third party tool developers. Please consult these
two references when selecting a programmer. Many
options exist including serial or parallel PC host con-
nection, stand-alone operation, and single or gang pro-
grammers. Some of the third party developers include
Advanced Transdata Corporation, BP Microsystems,
Data I/0, Emulation Technology and Logical Devices.

Programming Environment

The programming environment will affect the type of
programmer used, the programmer cable length, and
the application circuit interface. Some programmers
are well suited for a manual assembly line while others
are desirable for an automated assembly line. You may
want to choose a gang programmer to program multiple
systems at a time.

The physical distance between the programmer and
the application circuit affects the load capacitance on
each of the programming signals. This will directly
affect the drive strength needed to provide the correct
signal rise rates and current. This programming cable
must also be as short as possible and properly termi-
nated and shielded or the programming signals may be
corrupted by ringing or noise.

Finally, the application circuit interface to the program-
mer depends on the size constraints of the application
circuit itself and the assembly line. A simple header can
be used to interface the application circuit to the pro-
grammer. This might be more desirable for a manual
assembly line where a technician plugs the
programmer cable into the board. A different method is
the use of spring loaded test pins (commonly referred
to as pogo pins). The application circuit has pads on
the board for each of the programming signals. Then
there is a fixture that has pogo pins in the same config-
uration as the pads on the board. The application circuit
or fixture is moved into position such that the pogo pins
come into contact with the board. This method might be
more suitable for an automated assembly line.

After taking into consideration the issues with the appli-
cation circuit, the programmer, and the programming
environment, anyone can build a high quality, reliable
manufacturing line based on ICSP.

Other Benefits

ICSP provides other benefits, such as calibration and
serialization. If program memory permits, it would be
cheaper and more reliable to store calibration con-
stants in program memory instead of using an external
serial EEPROM. For example, your system has a ther-
mistor which can vary from one system to another.
Storing some calibration information in a table format
allows the microcontroller to compensate in software
for external component tolerances. System cost can be
reduced without affecting the required performance of
the system by using software calibration techniques.
But how does this relate to ICSP? The PICmicro MCU
has already been programmed with firmware that per-
forms a calibration cycle. The calibration data is trans-
ferred to a calibration fixture. When all calibration data
has been transferred, the fixture places the PICmicro
MCU in programming mode and programs the
PICmicro MCU with the calibration data. Application
note AN656, In-Circuit Serial Programming of Calibra-
tion Parameters Using a PICmicro Microcontroller,
shows exactly how to implement this type of calibration
data programming.

The other benefit of ICSP is serialization. Each individ-
ual system can be programmed with a unique or ran-
dom serial number. One such application of a unique
serial number would be for security systems. A typical
system might use DIP switches to set the serial num-
ber. Instead, this number can be burned into program
memory thus reducing the overall system cost and low-
ering the risk of tampering.

Field Programming of FLASH PICmicro MCUs

With the ISP interface circuitry already in place, these
FLASH-based PICmicro MCUs can be easily repro-
grammed in the field. These FLASH devices allow you
to reprogram them even if they are code protected. A
portable ISP programming station might consist of a
laptop computer and programmer. The technician
plugs the ISP interface cable into the application circuit
and downloads the new firmware into the PICmicro
MCU. The next thing you know the system is up and
running without those annoying “bugs”. Another
instance would be that you want to add an additional
feature to your system. All of your current inventory can
be converted to the new firmware and field upgrades
can be performed to bring your installed base of sys-
tems up to the latest revision of firmware.

CONCLUSION

Microchip Technology Inc. is committed to supporting
your ICSP needs by providing you with our many years
of experience and expertise in developing ICSP
solutions. Anyone can create a reliable ICSP program-
ming station by coupling our background with some
forethought to the circuit design and programmer
selection issues previously mentioned. Your local
Microchip representative is available to answer any
questions you have about the requirements for ICSP.

© 2000 Microchip Technology Inc.

DS91016B-page 2-23

TB016

SAMPLE DRIVER BOARD SCHEMATIC

APPENDIX A

1IN3HID OL

LNO~aap >

1INJHI0 OL

1NO ddA

4Jwi0
90

"/94 10 9gY ‘dd/\ ‘PPA UO peo
weoyubis e seoeld uoneoydde ayy ji palsinbai aq Aew
sabuey) ‘Buiwy sreubis Buiwwelboid sy uo NI
uoneoldde sy} Jo s1oaye 8y} aulwislep 0} uoneoldde
sJasn ay} ul pajsal 8q | SNIN ubisep pieoq JaAlp ayL :9JON

HINNWVYHOOHd
1INOHIO OL = WOH4H

[Lno~ane >——< NIaNo)|

JowweJBoid HINWNVYHOOHd
INJJ1YD O woJ
ﬂ.\ ol ‘Joliq [e21uy28) Ul 1x8) 89S, — ' ._._Doﬂ_o oL ‘Joliq [eD1UyD8} Ul }x9) 89S, = PO
{1no gy Nzgd > [Lno9gM NI~ogH
ged = = 0% 0 HIWWYEDOHd
AZ'9 $5 H o
29 ViriegalL 1 NI”PPA
ceeeNg oor VITREAU g | % - A 41
8 - 6ty JEr
29/ 8y 05/7 6 ain
= 00l %01
JARY
906ENZ
€O v
L)
el = 00 ¢ HIWWYEDOHd
N OB
VirleaL +— NITddp|

ek X} H
geeeNg ¥ 14\ 00t
e 0oL <vimm.ﬁ\f | “

L oid
OOA 64

vin

906ENC
1O

9d

AddNS H3MOd T¥NY31X3

AST PN
O
2O\

© 2000 Microchip Technology Inc.

DS91016B-page 2-24

e\

MICROCHIP

SECTION 3
PROGRAMMING SPECIFICATIONS

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC12C5XX OTP MCUSccorvmrrrmrmnmessmmssmersserssnssnsnensns 3-1
IN-CIRCUIT SERIAL PROGRAMMING FOR PIC12C67X AND PIC12CE67X OTP MCUscvuuen 3-15
IN-CIRCUIT SERIAL PROGRAMMING FOR PIC14000 OTP MCUScccvrmmrsmmismrmmsesssssmssssmssssssasssnns 3-27
IN-CIRCUIT SERIAL PROGRAMMING FOR PIC16C55X OTP MCUScccccvremimrmnemssssmssssmssssssassssnns 3-39
IN-CIRCUIT SERIAL PROGRAMMING FOR PIC16C6XX/7XX/9XX OTP MCUSScccvrurrrurrssansanns 3-51
IN-CIRCUIT SERIAL PROGRAMMING FOR PIC17C7XX OTP MCUScccovremrmrrnersssersssssssssssnssssns 3-71
IN-CIRCUIT SERIAL PROGRAMMING FOR PIC18CXXX OTP MCUSc.cccvrmmirmrmssemssssmsssmsssnssassssnns 3-97
IN-CIRCUIT SERIAL PROGRAMMING FOR PIC16F62X FLASH MCUScccvmemsammssanmssmsssassnennnas 3-135
IN-CIRCUIT SERIAL PROGRAMMING FOR PIC16F8X FLASH MCUSccccocirmmmnemnsemsseemssesssasnans 3-149
IN-CIRCUIT SERIAL PROGRAMMING FOR PIC16F8XX FLASH MCUScccveernammssasmssmsssnssnsennnas 3-165

© 2000 Microchip Technology Inc. DS30277C-page 3-i

e\

MICROCHIP

DS30277C-page 3-ii © 2000 Microchip Technology Inc.

MICROCHIP PIC12C5XX

In-Circuit Serial Programming for PIC12C5XX OTP MCUs

This document includes the programming Pin Diagram

specifications for the following devices: PDIP. SOIC. JW

¢ PIC12C508 < PIC12C508A « PIC12CE518 —

» PIC12C509 « PIC12C509A « PIC12CE519 voo—L11 B3 [T+ ves

GP5/0SC1/CLKIN <——-[| 2 oRe 7 []J*e—aro

GP4/0SC2/CLKOUT <—>|: 3 % cm’ 8 6 D<—>GP1

1 0 PROGRAMMING THE GP3/MCLRNVpp —{ | 4 ;% E § 5 [] «— GP2rmocki

PIC12C5XX d
The PIC12C5XX can be programmed using a serial

method. Due to this serial programming, the
PIC12C5XX can be programmed while in the user’s
system increasing design flexibility. This programming
specification applies to PIC12C5XX devices in all pack-
ages.

1.1 Hardware Requirements

The PIC12C5XX requires two programmable power
supplies, one for VDD (2.0V to 6.5V recommended) and
one for VPP (12V to 14V). Both supplies should have a
minimum resolution of 0.25V.

1.2 Programming Mode

The programming mode for the PIC12C5XX allows
programming of user program memory, special loca-
tions used for ID, and the configuration word for the
PIC12C5XX.

© 2000 Microchip Technology Inc. DS30557E-page 3-1

PIC12C5XX

2.0 PROGRAM MODE ENTRY

The program/verify test mode is entered by holding
pins DBO and DB1 low while raising MCLR pin from ViL
to VIHH. Once in this test mode the user program mem-
ory and the test program memory can be accessed and
programmed in a serial fashion. The first selected
memory location is the fuses. GP0 and GP1 are
Schmitt trigger inputs in this mode.

Incrementing the PC once (using the increment
address command) selects location 0x000 of the regu-
lar program memory. Afterwards all other memory loca-
tions from 0x001-01FF (PIC12C508/CE518), 0x001-
03FF (PIC12C509/CE519) can be addressed by incre-
menting the PC.

If the program counter has reached the last user pro-
gram location and is incremented again, the on-chip
special EPROM area will be addressed. (See
Figure 2-2 to determine where the special EPROM
area is located for the various PIC12C5XX devices).

2.1 Programming Method

The programming technique is described in the follow-
ing section. It is designed to guarantee good program-
ming margins. It does, however, require a variable
power supply for Vcc.

2.1.1 PROGRAMMING METHOD DETAILS

Essentially, this technique includes the following steps:

1. Perform blank check at VDD = VDDmin. Report
failure. The device may not be properly erased.

2. Program location with pulses and verify after
each pulse at VbD = VDDP:
where VDDP = VDD range required during pro-
gramming (4.5V - 5.5V).

a) Programming condition:
VPP = 13.0V to 13.25V
VDD = VDDP = 4.5V to 5.5V

VPP must be > VDD + 7.25V to keep “programming
mode” active.

b) Verify condition:
VDD = VDDP
VPP > VDD + 7.5V but not to exceed 13.25V

If location fails to program after “N” pulses, (sug-
gested maximum program pulses of 8) then report
error as a programming failure.

Note: Device must be verified at minimum and
maximum specified operating voltages as

specified in the data sheet.

3. Once location passes “Step 2", apply 11X over
programming, i.e., apply 11 times the number of
pulses that were required to program the loca-
tion. This will guarantee a solid programming
margin. The over programming should be made
“software programmable” for easy updates.

4. Program all locations.

5. Verify all locations (using speed verify mode) at
VDD = VDDmin

6. Verify all locations at VDD = Vbbmax

VDDmin is the minimum operating voltage spec. for
the part. VDbmax is the maximum operating volt-
age spec. for the part.

21.2 SYSTEM REQUIREMENTS

Clearly, to implement this technique, the most stringent
requirements will be that of the power supplies:

VpepP: VPP can be a fixed 13.0V to 13.25V supply. It
must not exceed 14.0V to avoid damage to the pin and
should be current limited to approximately 100maA.

VbD: 2.0V to 6.5V with 0.25V granularity. Since this
method calls for verification at different VDD values, a
programmable VDD power supply is needed.

Current Requirement: 40mA maximum

Microchip may release devices in the future with differ-
ent VDD ranges which make it necessary to have a pro-
grammable VDD.

It is important to verify an EPROM at the voltages
specified in this method to remain consistent with
Microchip's test screening. For example, a
PIC12C5XX specified for 4.5V to 5.5V should be
tested for proper programming from 4.5V to 5.5V.

Note: Any programmer not meeting the programma-
ble VDD requirement and the verify at VDDmax
and VDDmin requirement may only be classi-
fied as “prototype” or “development” program-
mer but not a production programmer.

2.1.3 SOFTWARE REQUIREMENTS

Certain parameters should be programmable (and
therefore easily modified) for easy upgrade.

a) Pulse width

b) Maximum number of pulses, present limit 8.

¢) Number of over-programming pulses: should be
= (A * N) + B, where N = number of pulses
required in regular programming. In our current
algorithm A=11,B = 0.

2.2 Programming Pulse Width

Program Memory Cells: When programming one
word of EPROM, a programming pulse width (TPw) of
100us is recommended.

The maximum number of programming attempts
should be limited to 8 per word.

After the first successful verify, the same location
should be over-programmed with 11X over-program-
ming.

Configuration Word: The configuration word for oscil-
lator selection, WDT (watchdog timer) disable and
code protection, and MCLR enable, requires a pro-
gramming pulse width (TPWF) of 10ms. A series of
100us pulses is preferred over a single 10ms pulse.

DS30557E-page 3-2

© 2000 Microchip Technology Inc.

PIC12C5XX

FIGURE 2-1: PROGRAMMING METHOD FLOWCHART

Start

{d

Blank Check
@ VDD = VDDmin

No

@ﬁ

Yes

Program 1 Location
@ VpPpP =13.0V to 13.25V
VDD = VDDP

No

Yes

Increment PC to point to

Apply 11N additional
next location, N =0

program pulses

!

All
locations
done?

No

Verify all locations
@ VDD = VDDmin

|

Yes

Verify all locations
@ VDD = VDDmax

'

No

Yes

Report Possible Erase Failure
Continue Programming
at user’s option

[Report Programming Failure |

1 Yes

!

N=N+1
(N = # of program pulses)

Report verify failure
@ VDDmin

Report verify failure
@ Vbbmax

Now program
Configuration Word

Verify Configuration Word

@ Vbbmax & Vbbmin

Done

© 2000 Microchip Technology Inc.

DS30557E-page 3-3

PIC12C5XX

FIGURE 2-2: PIC12C5XX SERIES PROGRAM MEMORY MAP IN PROGRAM/VERIFY MODE
Address 11 Bit Number 0

(Hex) 000 R
User Program Memory
(NNN + 1) x 12 bit

NNN
TTT 0 0 IDO
TTT +1 0 0 ID1 For Customer Use
TTT+2 0 0 D2 (4 x 4 bit usable)
TTT+3 0 0 ID3

\ > For Factory Use
TTT + 3F
(FFF) ’ ’ Configuration Word 5 bits

NNN Highest normal EPROM memory address. NNN = 0x1FF for PIC12C508/CE518.
NNN = Ox3FF for PIC12C509/CE519.
Note that some versions will have an oscillator calibration value programmed at NNN
TTT Start address of special EPROM area and ID locations.

DS30557E-page 3-4 © 2000 Microchip Technology Inc.

PIC12C5XX

2.3 Special Memory Locations

The highest address of program memory space is
reserved for the internal RC oscillator calibration value.
This location should not be overwritten except when
this location is blank, and it should be verified, when
programmed, that it is a MOVLW XX instruction.

The ID Locations area is only enabled if the device is in
programming/verify mode. Thus, in normal operation
mode only the memory location 0x000 to OXNNN will be
accessed and the Program Counter will just roll over
from address OXNNN to 0x000 when incremented.

The configuration word can only be accessed immedi-
ately after MCLR going from VIL to VHH. The Program
Counter will be set to all '1’s upon MCLR = VIL. Thus,
it has the value “OxFFF” when accessing the configura-
tion EPROM. Incrementing the Program Counter once
causes the Program Counter to roll over to all '0's.
Incrementing the Program Counter 4K times after reset
(MCLR = VIL) does not allow access to the configura-
tion EPROM.

2.3.1 CUSTOMER ID CODE LOCATIONS

Per definition, the first four words (address TTTto TTT
+ 3) are reserved for customer use. It is recommended
that the customer use only the four lower order bits (bits
0 through 3) of each word and filling the eight higher
order bits with '0's.

A user may want to store an identification code (ID) in
the ID locations and still be able to read this code after
the code protection bit was programmed.

EXAMPLE 2-1: CUSTOMER CODE 0xD1E2

The Customer ID code “OxD1E2” should be stored in
the ID locations 0x200-0x203 like this (PIC12C508/
508A/CE518):

200: 0000 0000 1101
201: 0000 0000 0001
202: 0000 0000 1110
203: 0000 0000 0010

Reading these four memory locations, even with the
code protection bit programmed would still output on
GPO the bit sequence “1101”, “0001”, “1110”, “0010”
which is “OxD1E2”.

Note: All other locations in PICmicro® MCU con-
figuration memory are reserved and
should not be programmed.

2.4 Program/Verify Mode

The program/verify mode is entered by holding pins
GP1 and GPO low while raising MCLR pin from VIL to
VIHH (high voltage). Once in this mode the user pro-
gram memory and the configuration memory can be
accessed and programmed in serial fashion. The mode
of operation is serial. GP0 and GP1 are Schmitt Trigger
inputs in this mode.

The sequence that enters the device into the program-
ming/verify mode places all other logic into the reset
state (the MCLR pin was initially at VIL). This means
that all I/O are in the reset state (High impedance
inputs).

Note: The MCLR pin should be raised from VIL to
VIHH within 9 ms of VDD rise. This is to
ensure that the device does not have the
PC incremented while in valid operation
range.

© 2000 Microchip Technology Inc.

DS30557E-page 3-5

PIC12C5XX

2.4.1 PROGRAM/VERIFY OPERATION

The GP1 pin is used as a clock input pin, and the GPO
pin is used for entering command bits and data input/
output during serial operation. To input a command, the
clock pin (GP1) is cycled six times. Each command bit
is latched on the falling edge of the clock with the least
significant bit (LSB) of the command being input first.
The data on pin GPO is required to have a minimum
setup and hold time (see AC/DC specs) with respect to
the falling edge of the clock. Commands that have data
associated with them (read and load) are specified to
have a minimum delay of 1 us between the command
and the data. After this delay the clock pin is cycled 16
times with the first cycle being a start bit and the last
cycle being a stop bit. Data is also input and output LSB
first. Therefore, during a read operation the LSB will be
transmitted onto pin GPO on the rising edge of the sec-
ond cycle, and during a load operation the LSB will be
latched on the falling edge of the second cycle. A min-
imum 1 us delay is also specified between consecutive
commands.

All commands are transmitted LSB first. Data words
are also transmitted LSB first. The data is transmitted
on the rising edge and latched on the falling edge of the
clock. To allow for decoding of commands and reversal
of data pin configuration, a time separation of at least 1
us is required between a command and a data word (or
another command).

The commands that are available are listed in Table .

TABLE 2-1: COMMAND MAPPING
Command Mapping (MSB ... LSB) Data
Load Data 0 0 0 0 1 0 0, data(14), 0
Read Data 0 0 0 1 0 0 0, data(14), 0
Increment Address 0 0 0 1 1 0
Begin programming 0 0 1 0 0 0
End Programming 0 0 1 1 1 0

Note:

The clock must be disabled during in-circuit programming.

DS30557E-page 3-6

© 2000 Microchip Technology Inc.

PIC12C5XX

2411 LOAD DATA

After receiving this command, the chip will load in a
14-bit “data word” when 16 cycles are applied, as
described previously. Because this is a 12 bit core, the
two msb’s of the data word are ignored. A timing dia-
gram for the load data command is shown in
Figure 5-1.

24.1.2 READ DATA

After receiving this command, the chip will transmit
data bits out of the memory currently accessed starting
with the second rising edge of the clock input. The GPO
pin will go into output mode on the second rising clock
edge, and it will revert back to input mode (hi-imped-
ance) after the 16th rising edge. Because this is a 12-
bit core, the two MSB’s of the data are unused and read
as '0’. A timing diagram of this command is shown in
Figure 5-2.

2.4.1.3 INCREMENT ADDRESS

The PC is incremented when this command is
received. A timing diagram of this command is shown
in Figure 5-3.

2414 BEGIN PROGRAMMING

A load data command must be given before every
begin programming command. Programming of the
appropriate memory (test program memory or user
program memory) will begin after this command is
received and decoded. Programming should be per-
formed with a series of 100us programming pulses. A
programming pulse is defined as the time between the
begin programming command and the end program-
ming command.

2415 END PROGRAMMING

After receiving this command, the chip stops program-
ming the memory (configuration program memory or
user program memory) that it was programming at the
time.

2.5 Programming Algorithm Requires
Variable VbD

The PIC12C5XX uses an intelligent algorithm. The
algorithm calls for program verification at VDbmin as
well as VDbmax. Verification at VDDmin guarantees
good “erase margin”. Verification at VDbmax guaran-
tees good “program margin”.

The actual programming must be done with VDD in the
VDDP range (4.75 - 5.25V).

VDDP = VCC range required during programming.
VDD min. = minimum operating VDD spec for the part.
Vbbmax = maximum operating VDD spec for the part.

Programmers must verify the PIC12C5XX at its speci-
fied VDDmax and VDDmin levels. Since Microchip may
introduce future versions of the PIC12C5XX with a
broader VDD range, it is best that these levels are user
selectable (defaults are ok).

Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer
but not a “production” quality programmer.

© 2000 Microchip Technology Inc.

DS30557E-page 3-7

PIC12C5XX

3.0 CONFIGURATION WORD

The PIC12C5XX family members have several config-
uration bits. These bits can be programmed (reads '0’)
or left unprogrammed (reads ’1’) to select various
device configurations. Figure 3-1 provides an overview
of configuration bits.

FIGURE 3-1: CONFIGURATION WORD BIT MAP

Bit
Number: 11 10 9 8 7 6 5 4 3 2 1 0
PiIciecsxx [— [— [— [— [— [—] — [MCLRE] CP [WDTE [FOSC1 [FOSCO |

bit 11-5:Reserved, '-' write as '0' for PIC12C5XX

bit 4: MCLRE, Master Clear pin Enable Bit
0 = MCLR internally connected to Vdd
1 = MCLR pin enabled

bit 3: CP, Code Protect Enable Bit
1 = Code Memory Unprotected
0 = Code Memory Protected

bit 2: WDTE, WDT Enable Bit
1 =WDT enabled
0 = WDT disabled

bit 1-0: FOSC<1:0>, Oscillator Selection Bit
11: ExtRC oscillator
10: IntRC oscillator
01: XT oscillator
00: LP oscillator

DS30557E-page 3-8

© 2000 Microchip Technology Inc.

PIC12C5XX

4.0 CODE PROTECTION

The program code written into the EPROM can be pro-
tected by writing to the CP bit of the configuration word.

In PIC12C5XX, it is still possible to program and read
locations 0x000 through 0x03F, after code protection.
Once code protection is enabled, all protected seg-
ments read '0O's (or “garbage values”) and are pre-
vented from further programming. All unprotected

segments, including ID locations and configuration
word, read normally. These locations can be pro-
grammed.

Once code protection is enabled, all code protected
locations read 0’s. All unprotected segments, including
the internal oscillator calibration value, ID, and configu-
ration word read as normal.

4.1 Embedding Configuration Word and ID Information in the Hex File

An option to not include this information may be provided.

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

TABLE 4-1: CODE PROTECTION

PIC12C508
To code protect:

¢ (CP enable pattern: XXXXXXXX0XXX)

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (OxFFF)

Read Enabled, Write Enabled

Read Enabled, Write Enabled

[0x00:0x3F]

Read Enabled, Write Enabled

Read Enabled, Write Enabled

[0x40:0x1FF]

Read Disabled (all 0’s), Write Disabled

Read Enabled, Write Enabled

ID Locations (0x200 : 0x203)

Read Enabled, Write Enabled

Read Enabled, Write Enabled

PIC12C508A
To code protect:

* (CP enable pattern: XXXXXXXX0XXX)

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (OxFFF)

Read enabled, Write Enabled

Read enabled, Write Enabled

[0x00:0x3F]

Read enabled, Write Enabled

Read enabled, Write Enabled

[0x40:0x1FE]

Read disabled (all 0’s), Write Disabled

Read enabled, Write Enabled

0x1FF Oscillator Calibration Value

Read enabled, Write Enabled

Read enabled, Write Enabled

ID Locations (0x200 : 0x203)

Read enabled, Write Enabled

Read enabled, Write Enabled

PIC12C509
To code protect:

¢ (CP enable pattern: XXXXXXXX0XXX))

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (OxFFF)

Read enabled, Write Enabled

Read enabled, Write Enabled

[0x00:0x3F]

Read enabled, Write Enabled

Read enabled, Write Enabled

[0x40:0x3FF]

Read disabled (all 0’s), Write Disabled

Read enabled, Write Enabled

ID Locations (0x400 : 0x403)

Read enabled, Write Enabled

Read enabled, Write Enabled

© 2000 Microchip Technology Inc.

DS30557E-page 3-9

PIC12C5XX

PIC12C509A
To code protect:

¢ (CP enable pattern: XXXXXXXX0XXX))

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (OxFFF)

Read enabled, Write Enabled

Read enabled, Write Enabled

[0x00:0x3F]

Read enabled, Write Enabled

Read enabled, Write Enabled

[0x40:0x3FE]

Read disabled (all 0’s), Write Disabled

Read enabled, Write Enabled

0x3FF Oscillator Calibration Value

Read enabled, Write Enabled

Read enabled, Write Enabled

ID Locations (0x400 : 0x403)

Read enabled, Write Enabled

Read enabled, Write Enabled

PIC12CE518
To code protect:

¢ (CP enable pattern: XXXXXXXX0XXX)

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (OxFFF)

Read enabled, Write Enabled

Read enabled, Write Enabled

[0x00:0x3F]

Read enabled, Write Enabled

Read enabled, Write Enabled

[0x40:0x1FE]

Read disabled (all 0’s), Write Disabled

Read enabled, Write Enabled

0x1FF Oscillator Calibration Value

Read enabled, Write Enabled

Read enabled, Write Enabled

ID Locations (0x200 : 0x203)

Read enabled, Write Enabled

Read enabled, Write Enabled

PIC12CE519
To code protect:

¢ (CP enable pattern: XXXXXXXX0XXX))

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (OxFFF)

Read enabled, Write Enabled

Read enabled, Write Enabled

[0x00:0x3F]

Read enabled, Write Enabled

Read enabled, Write Enabled

[0x40:0x3FF]

Read disabled (all 0’s), Write Disabled

Read enabled, Write Enabled

ID Locations (0x400 : 0x403)

Read enabled, Write Enabled

Read enabled, Write Enabled

DS30557E-page 3-10

© 2000 Microchip Technology Inc.

PIC12C5XX

4.2 Checksum
421 CHECKSUM CALCULATIONS

Checksum is calculated by reading the contents of the
PIC12C5XX memory locations and adding up the
opcodes up to the maximum user addressable location,
(not including the last location which is reserved for the
oscillator calibration value) e.g., Ox1FE for the
PIC12C508/CE518. Any carry bits exceeding 16-bits
are neglected. Finally, the configuration word (appropri-
ately masked) is added to the checksum. Checksum
computation for each member of the PIC12C5XX fam-
ily is shown in Table 4-2.

The checksum is calculated by summing the following:
* The contents of all program memory locations

* The configuration word, appropriately masked

* Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-
ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

The oscillator calibration value location is not used in
the above checksums.

TABLE 4-2: CHECKSUM COMPUTATION
. Code . Blank 0x723 at
Device Checksum 0 and max
Protect Value
address
PIC12C508 OFF SUM[0x000:0x1FE] + CFGW & 0x01F EE20 DC68
ON SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS) EDF7 D363
PIC12C508A OFF SUM[0x000:0x1FE] + CFGW & 0x01F EE20 DC68
ON SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS) EDF7 D363
PIC12C509 OFF SUM[0x000:0x3FE] + CFGW & 0x01F EC20 DA68
ON SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS) EBF7 D163
PIC12C509A OFF SUM[0x000:0x3FE] + CFGW & 0x01F EC20 DA68
ON SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS) EBF7 D163
PIC12CE518 OFF SUM[0x000:0x1FE] + CFGW & 0x01F EE20 DC68
ON SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS) EDF7 D363
PIC12CE519 OFF SUM[0x000:0x3FE] + CFGW & 0x01F EC20 DA68
ON SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS) EBF7 D163

Legend: CFGW = Configuration Word

SUM][a:b] = [Sum of locations a through b inclusive]

SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.

For example,

IDO = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.
*Checksum = [Sum of all the individual expressions] MODULO [OxFFFF]

+ = Addition
& = Bitwise AND

© 2000 Microchip Technology Inc.

DS30557E-page 3-11

PIC12C5XX

5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

TABLE 5-1: AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

Standard Operating Conditions
Operating Temperature: +10°C < TA < +40°C, unless otherwise stated, (20°C recommended)

Operating Voltage: 4.5V < VDD £ 5.5V, unless otherwise stated.
Par:;::eter Sym. Characteristic Min. Typ.| Max. |Units Conditions
General
PD1 VDDP | Supply voltage during programming 4.75 5.0 5.25 \
PD2 IDDP Supply current (from VDD) 20 mA
during programming
PD3 VDDV Supply voltage during verify VDDmin Vbbmax | V Note 1
PD4 VIHH1 Voltage on MCLR/VppP during 12.75 13.25 \ Note 2
programming
PD5 VIHH2 | Voltage on MCLR/VPP during verify | VDD + 4.0 13.5
PD6 PP Programming supply current (from 50 mA
VPP)
PD9 VIH1 (GP1, GPO) input high level 0.8 VDD V | Schmitt Trigger input
PD8 Vi1 (GP1, GPO) input low level 0.2 VbD V | Schmitt Trigger input

Serial Program Verify

P1 TR MCLR/VPP rise time (VSS to VHH) 8.0 us
P2 T MCLR Fall time 8.0 us
P3 Tset1 Data in setup time before clock | 100 ns
P4 Thid1 Data in hold time after clock | 100 ns
P5 Tdly1 Data input not driven to next clock 1.0 us

input (delay required between com-
mand/data or command/command)

P6 Tdly2 | Delay between clock { to clock T of 1.0 us
next command or data
P7 Tdly3 Clock T to date out valid 200 ns
(during read data)
P8 ThidO Hold time after MCLR T 2 us

Note 1: Program must be verified at the minimum and maximum VDD limits for the part.
2: VIHH must be greater than VDD + 4.5V to stay in programming/verify mode.

DS30557E-page 3-12 © 2000 Microchip Technology Inc.

PIC12C5XX

FIGURE 5-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

VIHH.-
MCLR/VPP_/ .
o : - I100nls ' P6 ,
1 1 1 ! 1
ey : ! :<—> 1 2 3 4 5 6, 1ms min. '! 2 3 4 5 15
ree-<:Y o\ I 1 [Y e o e e Y Y e Y Y s O o
oo o ' 100ris . : 3
(DATA) X ! 0 /N0 0 N e N R XN
Vo ! I , P5 o
. —=Pdar - —~=pa
' —roiP4-— \1ms min. IP3__,,_
. oo Toons
! min. min.

Program/Verify Mode

y

Reset— &

FIGURE 5-2: READ DATA COMMAND (PROGRAM/VERIFY)

__ VHH- g
MCLR/NVPP ./

, : 100ns .oPe
5 S 3 4 5 6 %remEi 2 3 4 5 15
R +.\C SRR 1 Y) Y e Y Y s Y Oy
: : ' " 100ns : p7 I o
RN 0 b/ 1\ 0 00 0 X X)
o '« P4, - : '
l P83 = 1ms m|r1I \ :
, N . . ' !
' e ! | GPO
- > < GPO = output TPl
Roset — . <¢ Program/Verify Mode : -

FIGURE 5-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

VIHH - -
MCLR/VPP
: '] Pe —p Next Command
!] 5 3 4 5 ms min. 1 5
__GP1 _ !
(CLOCK]___ R I I I I R
GPO ' :
(DATA) . 0 1 1 0 0 0 j----- ¢« 0 0
. — B
\ > ~—p
' P33, P4, ' 1ms min.,
X N ' .
\ 100ns
! min

_ ! Program/Verify Mode
Reset — <

y

© 2000 Microchip Technology Inc. DS30557E-page 3-13

PIC12C5XX

DS30557E-page 3-14 © 2000 Microchip Technology Inc.

MicrocHIP PIC12C67X AND PIC12CE67X

In-Circuit Serial Programming for PIC12C67X and PIC12CE67X OTP MCUs

This document includes the programming
specifications for the following devices:

* PIC12C671
* PIC12C672
* PIC12CE673
* PIC12CE674

1.0 PROGRAMMING THE

PIC12C67X AND PIC12CE67X

The PIC12C67X and PIC12CE67X can be pro-
grammed using a serial method. In serial mode the
PIC12C67X and PIC12CE67X can be programmed
while in the users system. This allows for increased
design flexibility.

1.1 Hardware Requirements

The PIC12C67X and PIC12CE67X requires two pro-
grammable power supplies, one for VDD (2.0V to 6.0V
recommended) and one for VPP (12V to 14V). Both
supplies should have a minimum resolution of 0.25V.

1.2 Programming Mode

The programming mode for the PIC12C67X and
PIC12CE67X allows programming of user program
memory, special locations used for ID, and the configu-
ration word for the PIC12C67X and PIC12CE67X.

Pin Diagram:

PDIP, SOIC, JW

—
Voo —[1 h 8 [« Vss
GP5/OSC1/CLKIN =—[]2 S 7 []=—GPO/ANO
GP4/OSCIANY « T3 Q 6 []«— GPUANI/VREF
GP3/MCLR/VPP ——=[]4 N 5 [=—=aP2ToCKN
AN2/INT
PDIP, JW
~—

VDD ——[1 bl 8 [J=——Vss
GP5/OSC1/CLKIN =—[]2 g 7 []=—GPO/ANO
GP4/OSCIANY «»[]3 O 6 [J=—=GP1/ANIVREF

GP3MCLRVPP —»[[4 @ 5 []=—=GP2/TOCKV/
x AN2/INT

© 2000 Microchip Technology Inc.

DS40175B-page 3-15

PIC12C67X and PIC12CE67X

2.0 PROGRAM MODE ENTRY

21 User Program Memory Map

The user memory space extends from 0x0000 to
Ox1FFF (8K). Table 2-1 shows actual implementation
of program memory in the PIC12C67X family.

TABLE 2-1: IMPLEMENTATION OF
PROGRAM MEMORY IN THE

PIC12C67X
Device Program Memory Size
PIC12C671/ 0x000 - 0x3FF (1K)
PIC12CE673
PIC12C672/ 0x000 - 0x7FF (2K)
PIC12CE674

When the PC reaches the last location of the imple-
mented program memory, it will wrap around and
address a location within the physically implemented
memory (see Figure 2-1).

In programming mode the program memory space
extends from 0x0000 to Ox3FFF, with the first half
(0x0000-0x1FFF) being user program memory and the
second half (0x2000-0x3FFF) being configuration
memory. The PC will increment from 0x0000 to Ox1FFF
and wrap to 0x000 or 0x2000 to Ox3FFF and wrap
around to 0x2000 (not to 0x0000). Once in configura-
tion memory, the highest bit of the PC stays a ’1’, thus
always pointing to the configuration memory. The only
way to point to user program memory is to reset the
part and reenter program/verify mode, as described in
Section 2.2.

The last location of the program memory space holds
the factory programmed oscillator calibration value.
This location should not be programmed except when
blank (a non-blank value should not cause the device to
fail a blank check). If blank, the programmer should pro-
gram it to a RETLW XX statement where “XX” is the
calibration value.

In the configuration memory space, 0x2000-0x20FF
are utilized. When in configuration memory, as in the
user memory, the 0x2000-0x2XFF segment is repeat-
edly accessed as the PC exceeds Ox2XFF (see
Figure 2-1).

A user may store identification information (ID) in four
ID locations. The ID locations are mapped in [0x2000:
0x2003].

Note 1: All other locations in PICmicro® MCU con-
figuration memory are reserved and should
not be programmed.

2: Due to the secure nature of the on-board
EEPROM memory in the PIC12CE673/674,
it can be accessed only by the user pro-
gram.

DS40175B-page 3-16

© 2000 Microchip Technology Inc.

PIC12C67X and PIC12CE67X

FIGURE 2-1: PROGRAM MEMORY MAPPING
. 0
2 ID Locat 1KW 2KW
000 ocation 1EF
2001 ID Location 3FF Implemented Implemented
400
7FF Implemented
2002 ID Location gool — T
2003 ID Location BFF
Ccoo
2004 Reserved FFF
1000
2005 Reserved
2006 Reserved Reserved
Reserved
2007 | Configuration Word
Reserved Reserved
Reserved Reserved
+3FFF

© 2000 Microchip Technology Inc.

DS40175B-page 3-17

PIC12C67X and PIC12CE67X

2.2 Program/Verify Mode

The program/verify mode is entered by holding pins
GP1 and GPO low while raising MCLR pin from VIL to
VIHH (high voltage). VDD is then raised from VIL to
VIH.Once in this mode the user program memory and
the configuration memory can be accessed and pro-
grammed in serial fashion. The mode of operation is
serial, and the memory that is accessed is the user pro-
gram memory. GP1 is a Schmitt Trigger input in this
mode.

The sequence that enters the device into the program-
ming/verify mode places all other logic into the reset
state (the MCLR pin was initially at VIL). This means
that all I/O are in the reset state (High impedance
inputs).

Note 1:The MCLR pin must be raised from VIL
to VIHH before VDD is applied. This is to
ensure that the device does not have the
PC incremented while in valid operation
range.

Note 2:Do not power GP2, GP4 or GP5

before VDD is applied.

TABLE 1-1: COMMAND MAPPING

2.2.1 PROGRAM/VERIFY OPERATION

The GP1 pin is used as a clock input pin, and the GPO
pin is used for entering command bits and data input/
output during serial operation. To input a command, the
clock pin (GP1) is cycled six times. Each command bit
is latched on the falling edge of the clock with the least
significant bit (LSB) of the command being input first.
The data on pin GPO is required to have a minimum
setup and hold time (see AC/DC specs) with respect to
the falling edge of the clock. Commands that have data
associated with them (read and load) are specified to
have a minimum delay of 1us between the command
and the data. After this delay the clock pin is cycled 16
times with the first cycle being a start bit and the last
cycle being a stop bit. Data is also input and output LSB
first. Therefore, during a read operation the LSB will be
transmitted onto pin GPO on the rising edge of the sec-
ond cycle, and during a load operation the LSB will be
latched on the falling edge of the second cycle. A min-
imum 1us delay is also specified between consecutive
commands.

All commands are transmitted LSB first. Data words
are also transmitted LSB first. The data is transmitted
on the rising edge and latched on the falling edge of the
clock. To allow for decoding of commands and reversal
of data pin configuration, a time separation of at least
1us is required between a command and a data word
(or another command).

The commands that are available are listed in Table .

2211 LOAD CONFIGURATION

After receiving this command, the program counter
(PC) will be set to 0x2000. By then applying 16 cycles
to the clock pin, the chip will load 14-bits a “data word”
as described above, to be programmed into the config-
uration memory. A description of the memory mapping
schemes for normal operation and configuration mode
operation is shown in Figure 2-1. After the configura-
tion memory is entered, the only way to get back to the
user program memory is to exit the program/verify test
mode by taking MCLR low (VIL).

Command

Mapping (MSB ... LSB)

Data

Load Configuration
Load Data
Read Data

Increment Address

Begin programming

0 0, data(14), 0
0, data(14), 0

0, data(14), 0

0

1

o|]o o o o o

End Programming

o|]o o o o o

Pl O O O O
o B O BB O
o|]o o o o o

DS40175B-page 3-18

© 2000 Microchip Technology Inc.

PIC12C67X and PIC12CE67X

FIGURE 2-2: PROGRAM FLOW CHART - PIC12C67X AND PIC12CE67X PROGRAM MEMORY

Set Vpp = Vi

-y

Set Vpp = Vppp'

Y

N=0

*4 No
Yes |Report Programming
Program Cycle —> Failure

Read Data i
Command N=N+1

N = # of Program Cycles
Increcrg(x}tnéggress Data Correct?
Yes

Apply 3N Additional
Program Cycles Load Data
Command

v

Program Cycle

All Locations Done?
Begin Programming
Command
Yes
Verify all Locations *
VDD MIN.® .
Vep = VigHe Wait 100 ps

Report Verify +
Data Correct? @ Vpp . Error End Programming

Command

Yes

Verify all Locations
VDD wmax.
Vep = ViHHz

Data Correct?
Yes

Report Verify
Vpp max Error

* Vppp = Vpp range for programming (typically 4.75V - 5.25V).
Vpp win. = Minimum Vpp for device operation.
Vpp max. = Maximum Vpp for device operation.

© 2000 Microchip Technology Inc. DS40175B-page 3-19

PIC12C67X and PIC12CE67X

FIGURE 2-3: PROGRAM FLOW CHART - PIC12C67X AND PIC12CE67X CONFIGURATION WORD

& ID LOCATIONS

Set Vpp = Vi

A4

Load Configuration
Command

»
L8

\ 4
N=0

.

Program ID Loc?

No

Yes

v

Read Data
Command

Program Cycle

v

—
v

Increment Address — v
Command N=N+1

No
N = # of Program <—@30"601? >
Cycles
y

Yes
No v
Address = 2004 No
Yes

A

Yes
Increment Address v v
Command ID/Configuration Apply 3N
Error Program Cycles

A4

Increment Address
Command

v

Increment Address | Program Cycle . Read Data
Command 4 100 Cycles i Command
4
No :
Data Correct? >
Yes

v

No Set Vpp = Vppmin
Report Program DD DD
ID/F())onfig. Error Data Correct? Regdtlizlata Ci)/mmand
et Vpp = ViHH2
A
Ye
No es

Yes " Set Vpp = Vppmax
Data Correct? Read Data Command

Set Vpp = Vi

DS40175B-page 3-20 © 2000 Microchip Technology Inc.

PIC12C67X and PIC12CE67X

22.1.2 LOAD DATA

After receiving this command, the chip will load in a
14-bit “data word” when 16 cycles are applied, as
described previously. A timing diagram for the load data
command is shown in Figure 5-1.

22.1.3 READ DATA

After receiving this command, the chip will transmit
data bits out of the memory currently accessed starting
with the second rising edge of the clock input. The GPO
pin will go into output mode on the second rising clock
edge, and it will revert back to input mode (hi-imped-
ance) after the 16th rising edge. A timing diagram of
this command is shown in Figure 5-2.

2214 INCREMENT ADDRESS

The PC is incremented when this command is
received. A timing diagram of this command is shown
in Figure 5-3.

22.1.5 BEGIN PROGRAMMING

A load command (load configuration or load data)
must be given before every begin programming
command. Programming of the appropriate memory
(test program memory or user program memory) will
begin after this command is received and decoded.
Programming should be performed with a series of
100us programming pulses. A programming pulse is
defined as the time between the begin programming
command and the end programming command.

2.2.1.6 END PROGRAMMING

After receiving this command, the chip stops program-
ming the memory (configuration program memory or
user program memory) that it was programming at the
time.

2.3 Programming Algorithm Requires
Variable VbD

The PIC12C67X and PIC12CE67X uses an intelligent
algorithm. The algorithm calls for program verification
at Vbbmin as well as Vbbmax. Verification at VDDmin
guarantees good “erase margin”. Verification at
VDDmax guarantees good “program margin”.

The actual programming must be done with VDD in the
VDDP range (4.75 - 5.25V).

VDDP = VCC range required during programming.
VDD min. = minimum operating VDD spec for the part.
VDD max.= maximum operating VDD spec for the part.

Programmers must verify the PIC12C67X and
PIC12CE67X at its specified VDDmax and VDDmin lev-
els. Since Microchip may introduce future versions of
the PIC12C67X and PIC12CE67X with a broader VDD
range, it is best that these levels are user selectable
(defaults are ok).

Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer

but not a “production” quality programmer.

© 2000 Microchip Technology Inc.

DS40175B-page 3-21

PIC12C67X and PIC12CE67X

3.0 CONFIGURATION WORD

The PIC12C67X and PIC12CE67X family members
have several configuration bits. These bits can be pro-
grammed (reads '0’) or left unprogrammed (reads ’1’) to

select various device configurations. Figure 3-1 pro-
vides an overview of configuration bits.

FIGURE 3-1: CONFIGURATION WORD
Bit Number:
13 12 11 10 9 8 7 6 5 4 3 2 1 0
Register: CONFIG
CP1|CP0O|CP1 |CPO |CP1|CPO IMCLRE |CP1|CP0 |PWRTE |WDTE |FOSC2 |FOSC1 [FOSCO Address 2007h

bit 13-8, 6-5: CP1:CPO0: Code Protection bits (1) (2)

11 = Code protection off

10 = 0400h-07FFh code protected;
01 = 0200h-07FFh code protected;
00 = 0000h-07FFh code protected;

MCLRE: GP3/MCLR pin function select
1 = GP3/MCLR pin function is MCLR

bit 7:

bit 4: PWRTE: Power-up Timer Enable bit (1)

1 = PWRT disabled
0 = PWRT enabled

WDTE: Watchdog Timer Enable bit

1 =WDT enabled
0 = WDT disabled

FOSC2:FOSCO: Oscillator Selection bits

bit 3:

bit 2-0:

011 = invalid selection
010 = HS oscillator
001 = XT oscillator
000 = LP oscillator

0 = GP3/MCLR pin function is digital /O, MCLR internally tied to Vdd

111 = EXTRC oscillator / CLKOUT function on GP4/0OSC2/CLKOUT pin
110 = EXTRC oscillator / GP4 function on GP4/OSC2/CLKOUT pin
101 = INTRC oscillator / CLKOUT function on GP4/0SC2/CLKOUT pin
100 = INTRC oscillator / GP4 function on GP4/0SC2/CLKOUT pin

3: All of the CP1:CPO pairs have to be given the same value to enable the code protection scheme listed.

4: 07FFh is always uncode protected on the 12C672 and 03FFh is always uncode protected on the 12C671. This location
contains the RETLW xx calibration instruction for the INTRC.

DS40175B-page 3-22

© 2000 Microchip Technology Inc.

PIC12C67X and PIC12CE67X

4.0 CODE PROTECTION

The program code written into the EPROM can be pro-
tected by writing to the CPO & CP1 bits of the configu-
ration word.

For PIC12C67X and PIC12CE67X devices, once code
protection is enabled, all protected segments read '0’s
(or “garbage values”) and are prevented from further
programming. All unprotected segments, including 1D
and configuration word locations, and calibration word
location read normally and can be programmed.

4.1 Embedding Configuration Word and ID Information in the Hex File

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.

An option to not include this information may be provided.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

TABLE 1-2:

PIC12C671, PIC12CE673
To code protect:

¢ Protect all memory 00
¢ Protect 0200h-07FFh 01
* No code protection 11

CONFIGURATION WORD

0000 XO00X XXXX
0101 X01X XXXX
1111 X11X XXXX

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (0x2007)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

Unprotected memory segment

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

Protected memory segment

Read All 0’s, Write Disabled

Read Unscrambled, Write Enabled

ID Locations (0x2000 : 0x2003)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

INTRC Calibration Word (0X3FF)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

PIC12C672, PIC12CE674

To code protect:
¢ Protect all memory 00
¢ Protect 0200h-07FFh 01
¢ Protect 0400h-07FFh 10
¢ No code protection 11

0000 XO00X XXXX
0101 X01X XXXX
1010 X10X XXXX
1111 X11X XXXX

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (0x2007)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

Unprotected memory segment

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

Protected memory segment

Read All 0’s, Write Disabled

Read Unscrambled, Write Enabled

ID Locations (0x2000 : 0x2003)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

INTRC Calibration Word (0X7FF)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

© 2000 Microchip Technology Inc.

DS40175B-page 3-23

PIC12C67X and PIC12CE67X

4.2 Checksum
421 CHECKSUM CALCULATIONS

Checksum is calculated by reading the contents of the
PIC12C67X and PIC12CE67X memory locations and
adding the opcodes up to the maximum user address-
able location, excluding the oscillator calibration loca-
tion in the last address, e.g., Ox3FE for the PIC12C671/
CE673. Any carry bits exceeding 16-bits are neglected.
Finally, the configuration word (appropriately masked)
is added to the checksum. Checksum computation for
each member of the PIC12C67X and PIC12CE67X
devices is shown in Table 4-1.

The checksum is calculated by summing the following:

* The contents of all program memory locations
* The configuration word, appropriately masked

* Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-
ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

Note that some older devices have an additional value
added in the checksum. This is to maintain compatibil-
ity with older device programmer checksums.

TABLE 4-1: CHECKSUM COMPUTATION
Ox25E6 at
Device Code Checksum* Blank 0 and max
Protect Value
address

PIC12C671 OFF SUM[0x000:0x3FE] + CFGW & 0x3FFF 3B3F 070D
PIC12CE673 1/2 SUM[0x000:0x1FF] + CFGW & 0x3FFF + SUM_ID 4E5E 0013
ALL CFGW & 0x3FFF + SUM_ID 3B4E 071C
PIC12C672 OFF SUM[0x000:0x7FE] + CFGW & 0x3FFF 373F 030D
PIC12CE674 1/2 SUM[0x000:0x3FF] + CFGW & 0x3FFF + SUM_ID 5D6E 0F23
3/4 SUM[0x000:0x1FF] + CFGW & 0x3FFF + SUM_ID 4A5E FC13
ALL CFGW & 0x3FFF + SUM_ID 374E 031C

Legend: CFGW = Configuration Word
SUM]Ja:b] = [Sum of locations a through b inclusive]

SUM_ID = ID locations masked by 0xF then made into a 16-bit value with IDO as the most significant nibble.

For example,

IDO = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.
*Checksum = [Sum of all the individual expressions] MODULO [OxFFFF]

+ = Addition
& = Bitwise AND

DS40175B-page 3-24

© 2000 Microchip Technology Inc.

PIC12C67X and PIC12CE67X

5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS
TABLE 1-3:

AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Operating Voltage:

Standard Operating Conditions
Operating Temperature: +10°C < TA < +40°C, unless otherwise stated, (25°C is recommended)

4.5V < VDD < 5.5V, unless otherwise stated.

Parameter

No Sym. Characteristic Min. Typ.| Max. | Units Conditions
General
PD1 VDDP | Supply voltage during programming 4.75 5.0 5.25 \
PD2 IDDP Supply current (from VDD) 20 mA
during programming
PD3 VDDV Supply voltage during verify VDDmin Vbbmax | V Note 1
PD4 VIHH1 Voltage on MCLR/VpPP during 12.75 13.25 \ Note 2
programming
PD5 VIHH2 | Voltage on MCLR/VPP during verify | VDD + 4.0 13.5
PD6 PP Programming supply current (from 50 mA
VPP)
PD9 VIH1 (GPO, GP1) input high level 0.8 VDD V | Schmitt Trigger input
PD8 Vi1 (GPO, GP1) input low level 0.2 VDD V | Schmitt Trigger input
Serial Program Verify
P1 TR MCLR/VPP rise time (VSS to VIHH) 8.0 us
for test mode entry

P2 Tf MCLR Fall time 8.0 us

P3 Tsett Data in setup time before clock | 100 ns

P4 Thid1 Data in hold time after clock { 100 ns

P5 Tdly1 Data input not driven to next clock 1.0 us

input (delay required between com-
mand/data or command/command)
P6 Tdly2 | Delay between clock | to clock T of 1.0 us
next command or data
P7 Tdly3 Clock T to data out valid 200 ns
(during read data)
P8 Thido Hold time after VDDT 2 us
P9 TPPDP Hold time after VPpT 5 us

Note 1: Program must be verified at the minimum and maximum VDD limits for the part.

2: VIHH must be greater than VDD + 4.5V to stay in programming/verify mode.

© 2000 Microchip Technology Inc.

DS40175B-page 3-25

PIC12C67X and PIC12CE67X

FIGURE 5-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

VoD | /7
‘. P9
VIHH
MCLR/VPP_I/T : 100ns e
. '
! P8, Lo -
U ! [hig 1 2 3 4 5 6 Husmin, ! 2 3 4 5 15
(CLOCK)W B I N
o ' 100ns :
GPORFy, ' .
oA 1 0 /I 0 0 0 0 g 0 X X X X \°
R ! ' ., P5
" —»Plar D "—’P4
r,.p4< s min . PN
100ns Toons
min. . min.
. Program/Verify Mode
Reset P >
FIGURE 5-2: READ DATA COMMAND (PROGRAM/VERIFY)
VbD .
fan P9
IHH- 7
MCLRNFF__/I : 100ns R
1us min. 15
<cmcmw B I N
, ' 100ns p7 ™
GPO ! 0 0 0 0 Vi -
A b/ TTRE XXX
o - P4, - . .
, P38 e :1psm|n:.
! N , '
l e : | RB7
L o RB7 = output o g iNPUt

Program/Verify Mode

Reset

Y.
A
\J

FIGURE 5-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

VbD!

= P9
VIHH - - —
MCLR/VPP "
:] Pe Next Command
A 2 3 4 5 g nemM 2
GP1 !
(CLOCK) : V_I_l _1 | | | . J—l_,—l _____
GPO ' ' '
(DATA) ! 0 1 1 0 0 0 ;----- 3 0 0
. Lot . P5
! -— ~—
' P33, P4, ' 1us min. |
! N~ X '
, 100ns
' min
' Program/Verify Mode
Reset > >

DS40175B-page 3-26 © 2000 Microchip Technology Inc.

MICROCHIP

PIC14000

In-Circuit Serial Programming for PIC14000 OTP MCUs

This document includes the programming
specifications for the following devices:

e PIC14000

1.0 PROGRAMMING THE PIC14000

The PIC14000 can be programmed using a serial
method. In serial mode the PIC14000 can be pro-
grammed while in the users system. This allows for
increased design flexibility. This programming specifi-
cation applies to PIC14000 devices in all packages.

1.1 Hardware Requirements

The PIC14000 requires two programmable power sup-
plies, one for VDD (2.0V to 6.5V recommended) and
one for VPP (12V to 14V).

1.2 Programming Mode

The programming mode for the PIC14000 allows pro-
gramming of user program memory, configuration
word, and calibration memory.

PIN DIAGRAM

PDIP, SOIC, SSOP, Windowed CERDIP

RA1/AN1T <— []*

RAO/ANO <—» []
RD3/REFB <— []
RD2/CMPB <— [
RD1/SDAB <—» [
RDO/SCLB <— []

0SC2/CLKOUT <—— [
0SC1/PBTN — []
Voo — []

VREG <— []
RC7/SDAA <— []
RC6/SCLA <— []
RC5 <— []

MCLRVPr — []

©® N O s®N

11
12
13
14

d

000 101d

27
26
25
24
23
22
21
20
19
18
17
16
15

] <— RA2/AN2
[] <— RA3/AN3
[] <—> RD4/AN4
[] <—> RD5/AN5
[] <— RD6/AN6
[] <— RD7/AN7
[1 — cDAC

[] — sum

[] <— Vss

[] <— RCO/REFA
[] <— RC1/CMPA
[] «<— RC2

[1 <— RC3/TOCKI
[1 <-— Rc4

© 2000 Microchip Technology Inc.

DS30555B-page 3-27

PIC14000

2.0 PROGRAM MODE ENTRY

21 User Program Memory Map

The program and calibration memory space extends
from 0x000 to OXFFF (4096 words). Table 2-1 shows
actual implementation of program memory in the
PIC14000.

TABLE 2-1: IMPLEMENTATION OF
PROGRAM AND
CALIBRATION MEMORY IN
THE PIC14000P
Access to
Area Memory Space Memory
Program 0x000-0xFBF PC<12:0>
Calibration 0xFCO -OxFFF PC<12:0>

When the PC reaches address OxFFF, it will wrap
around and address a location within the physically
implemented memory (see Figure 2-1).

In programming mode the program memory space
extends from 0x0000 to Ox3FFF, with the first half
(0x0000-0x1FFF) being user program memory and the
second half (0x2000-0x3FFF) being configuration
memory. The PC will increment from 0x0000 to 0x1FFF
and wrap to 0x0000, or 0x2000 to Ox3FFF and wrap
around to 0x2000 (not to 0x0000). Once in configura-
tion memory, the highest bit of the PC stays a '1’, thus
always pointing to the configuration memory. The only
way to point to user program memory is to reset the
part and reenter program/verify mode, as described in
Section 2.2.

In the configuration memory space, 0x2000-0x20FF
are utilized. When in configuration memory, as in the
user memory, the 0x2000-0x2XFF segment is repeat-
edly accessed as PC exceeds Ox2XFF (Figure 2-1).

A user may store identification information (ID) in four
ID locations. The ID locations are mapped in [0x2000:
0x2003]. All other locations are reserved and should
not be programmed.

The ID locations read out normally, even after code pro-
tection. To understand how the devices behave, refer to
Table 4-1.

To understand the scrambling mechanism after code
protection, refer to Section 4.1.

DS30555B-page 3-28

© 2000 Microchip Technology Inc.

PIC14000

FIGURE 2-1: PROGRAM MEMORY MAPPING

2000

2001

2002

2003

2004

2005

2006

2007

ID Location

ID Location

ID Location

ID Location

Reserved

Reserved

Reserved

Configuration Word

0
Program

OFBF

OFCO
Calibration

OFFF
Reserved

1FFF

2000

Test

20FF
Reserved

3FFF

© 2000 Microchip Technology Inc.

DS30555B-page 3-29

PIC14000

2.2 Program/Verify Mode

The program/verify mode is entered by holding pins
RC6 and RC7 low while raising MCLR pin from VIL to
VIHH (high voltage). Once in this mode the user pro-
gram memory and the configuration memory can be
accessed and programmed in serial fashion. The mode
of operation is serial, and the memory that is accessed
is the user program memory. RC6 and RC7 are both
Schmitt Trigger inputs in this mode.

The sequence that enters the device into the program-
ming/verify mode places all other logic into the reset
state (the MCLR pin was initially at VIL). This means
that all I/O are in the reset state (High impedance
inputs).

The MCLR pin should be raised as quickly
as possible from VIL to VIHH. This is to
ensure that the device does not have the
PC incremented while in valid operation
range.

Note:

2.2.1 PROGRAM/VERIFY OPERATION

The RB6 pin is used as a clock input pin, and the RB7
pin is used for entering command bits and data input/
output during serial operation. To input a command, the
clock pin (RCB8) is cycled six times. Each command bit
is latched on the falling edge of the clock with the least
significant bit (LSB) of the command being input first.
The data on pin RC7 is required to have a minimum
setup and hold time (see AC/DC specs) with respect to
the falling edge of the clock. Commands that have data

associated with them (read and load) are specified to
TABLE 2-1: COMMAND MAPPING

have a minimum delay of 1us between the command
and the data. After this delay the clock pin is cycled 16
times with the first cycle being a start bit and the last
cycle being a stop bit. Data is also input and output LSB
first. Therefore, during a read operation the LSB will be
transmitted onto pin RC7 on the rising edge of the sec-
ond cycle, and during a load operation the LSB will be
latched on the falling edge of the second cycle. A min-
imum 1us delay is also specified between consecutive
commands.

All commands are transmitted LSB first. Data words
are also transmitted LSB first. The data is transmitted
on the rising edge and latched on the falling edge of the
clock. To allow for decoding of commands and reversal
of data pin configuration, a time separation of at least
1us is required between a command and a data word
(or another command).

The commands that are available are listed in Table .

22.11 LOAD CONFIGURATION

After receiving this command, the program counter
(PC) will be set to 0x2000. By then applying 16 cycles
to the clock pin, the chip will load 14-bits a “data word”
as described above, to be programmed into the config-
uration memory. A description of the memory mapping
schemes for normal operation and configuration mode
operation is shown in Figure 2-1. After the configura-
tion memory is entered, the only way to get back to the
user program memory is to exit the program/verify test
mode by taking MCLR low (VIL).

Command

Load Configuration
Load Data
Read Data
Increment Address

O O © O o

Begin programming

End Programming 0

o O ©O O o

0

Note:

Mapping (MSB ... LSB) Data
0 0 0 0 0, data(14), 0
0 0 1 0 0, data(14), 0
0 1 0 0 0, data(14), 0
0 1 1 0
1 0 0 0
1 1 1 0
o avoid incrementing the PC).

The CPU clock must be disabled during in-circuit programming (t

DS30555B-page 3-30

© 2000 Microchip Technology Inc.

PIC14000

FIGURE 2-2:

PROGRAM FLOW CHART - PIC14000 PROGRAM MEMORY AND CALIBRATION

Set VbD = VDDP*

Program Cycle '

Read Data
Command

Data Correct?
Yes

Apply 3N Additional
Program Cycles

All Locations Done?

Yes

Increment Address
Command

Verify all Locations
@ VbD min.*
VPP = VIHH2

No

Verify all Locations
@ VDD max.
VPP = VIHH2

No

Data Correct?]
Yes

Data Correct? >
Yes

No

Y
oy

Report Programming
Failure

N=N+1 N=#
of Program Cycles

Program Cycle

Load Data
Command

Begin Programming
Command

Wait 100 us

Report Verify
@ Vbp min. Error

End Programming
Command

Report Verify
@ Vbbp max. Error

© 2000 Microchip Technology Inc.

DS30555B-page 3-31

PIC14000

FIGURE 2-3: PROGRAM FLOW CHART - PIC14000 CONFIGURATION WORD & ID LOCATIONS

Load Configuration
Command
>
A 4
N=0
No Yes
Program ID Loc? 2" Program Cycle N g%erl:‘imDaé:]tg
47
v
Increment Address No \ 4
Command N=N+1N=# Data Correct?
of Program Cycles)
v Yes
No v
Address = 2004 No
Yes
v Yes
Increment Address v v
Command Report ID Apply 3N
Configuration Error Program Cycles
v
Increment Address
Command
v
Increment Address | Program Cycle ~ Read Data
Command d 100 Cycles i Command
4
No :
Data Correct? >
Yes

\ 4

No Set VDD = VDDmin
Report Program
e =

A
Ye
No es

Yes ” Set VDD = VDDmax
Data Correct? Read Data Command
Set VPP = VIHH2

DS30555B-page 3-32 © 2000 Microchip Technology Inc.

PIC14000

22.1.2 LOAD DATA

After receiving this command, the chip will load in a
14-bit “data word” when 16 cycles are applied, as
described previously. A timing diagram for the load data
command is shown in Figure 5-1.

22.1.3 READ DATA

After receiving this command, the chip will transmit
data bits out of the memory currently accessed starting
with the second rising edge of the clock input. The RC7
pin will go into output mode on the second rising clock
edge, and it will revert back to input mode (hi-imped-
ance) after the 16th rising edge. A timing diagram of
this command is shown in Figure 5-2.

2214 INCREMENT ADDRESS

The PC is incremented when this command is
received. A timing diagram of this command is shown
in Figure 5-3.

22.1.5 BEGIN PROGRAMMING

A load command (load configuration or load data)
must be given before every begin programming
command. Programming of the appropriate memory
(test program memory or user program memory) will
begin after this command is received and decoded.
Programming should be performed with a series of
100us programming pulses. A programming pulse is
defined as the time between the begin programming
command and the end programming command.

2.2.1.6 END PROGRAMMING

After receiving this command, the chip stops program-
ming the memory (configuration program memory or
user program memory) that it was programming at the
time.

2.3 Programming Algorithm Requires
Variable VbD

The PIC14000 uses an intelligent algorithm. The algo-
rithm calls for program verification at Vbbmin as well as
Vbbmax. Verification at Vbbmin guarantees good
“erase margin”. Verification at VDDmax guarantees
good “program margin”.

The actual programming must be done with VDD in the
VDDP range (4.75 - 5.25V).

VDDP = VCC range required during programming.
VDDmin = minimum operating VDD spec for the part.
Vbbmax = maximum operating VDD spec for the part.

Programmers must verify the PIC14000 at its specified
Vbbmax and VDDmin levels. Since Microchip may
introduce future versions of the PIC14000 with a
broader VDD range, it is best that these levels are user
selectable (defaults are ok).

Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer

but not a “production” quality programmer.

© 2000 Microchip Technology Inc.

DS30555B-page 3-33

PIC14000

3.0 CONFIGURATION WORD

The PIC14000 has several configuration bits. These
bits can be programmed (reads ’0’) or left unpro-
grammed (reads '1’) to select various device configura-
tions. Figure 3-1 provides an overview of configuration
bits.

FIGURE 3-1: CONFIGURATION WORD BIT MAP

Nurmber: 13 12 11 10 o 8 7 6 5 4 3 2 1 0
PIC14000[CPC [CPP1 [CPPO [CPPO [CPP1 [CPC [CPC | F [CPP1[CPP0| PWRTE [WDTE[F [FOSC |

CPP<1:0>
11: All Unprotected
10: N/A
01: N/A

00: All Protected
bit 1,6: F Internal trim, factory programmed. DO NOT CHANGE! Program as ‘1’. Note 1.

bit 3: PWRTE, Power Up Timer Enable Bit
0 = Power up timer enabled
1 = Power up timer disabled (unprogrammed)

bit2: WDTE, WDT Enable Bit

0 = WDT disabled
1 = WDT enabled (unprogrammed)

bit 0: FOSC<1:0>, Oscillator Selection Bit
0: HS oscillator (crystal/resonator)
1: Internal RC oscillator (unprogrammed)

Note 1: See Section 4.1.2 for cautions.

DS30555B-page 3-34 © 2000 Microchip Technology Inc.

PIC14000

4.0 CODE PROTECTION

The memory space in the PIC14000 is divided into two
areas: program space (0-OxFBF) and calibration space
(OxXFCO0-0xFFF).

For program space or user space, once code protection
is enabled, all protected segments read ‘0’s (or “gar-
bage values”) and are prevented from further program-
ming. All unprotected segments, including ID locations
and configuration word, read normally. These locations
can be programmed.

41 Calibration Space

The calibration space can contain factory-generated
and programmed values. For non-JW devices, the CPC
bits in the configuration word are set to ‘0’ at the factory,
and the calibration data values are write-protected;
they may still be read out, but not programmed. JW
devices contain the factory values, but DO NOT have
the CPC bits set.

Microchip does not recommend setting code protect
bits in windowed devices to ‘0. Once code-protected,
the device cannot be reprogrammed.

4.1.1 CALIBRATION SPACE CHECKSUM

The data in the calibration space has its own check-
sum. When properly programmed, the calibration
memory will always checksum to 0x0000. When this

checksum is 0x0000, and the checksum of memory
[0x0000:0xFBF] is 0x2FBF, the part is effectively blank,
and the programmer should indicate such.

If the CPC bits are set to ‘1’, but the checksum of the
calibration memory is 0x0000, the programmer should
NOT program locations in the calibration memory
space, even if requested to do so by the operator. This
would be the case for a new JW device.

If the CPC bits are set to ‘1’, and the checksum of the
calibration memory is NOT 0x0000, the programmer is
allowed to program the calibration space as directed by
the operator.

The calibration space contains specially coded data
values used for device parameter calibration. The pro-
grammer may wish to read these values and display
them for the operator’'s convenience. For further infor-
mation on these values and their coding, refer to
AN621 (DS00621B).

41.2 REPROGRAMMING CALIBRATION SPACE

The operator should be allowed to read and store the
data in the calibration space, for future reprogramming
of the device. This procedure is necessary for repro-
gramming a windowed device, since the calibration
data will be erased along with the rest of the memory.
When saving this data, Configuration Word <1,6> must
also be saved, and restored when the calibration data
is reloaded.

4.2 Embedding Configuration Word and ID Information in the Hex File

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.
An option to not include this information may be provided.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

TABLE 4-1: CODE PROTECT OPTIONS

¢ Protect calibration memory
0XXXX00XXXXXXX

* Protect program memory
X0000XXX00XXXX

* No code protection
1111111X11XXXX

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (0x2007)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

Unprotected memory segment

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

Protected memory segment

Read All 0’'s, Write Disabled

Read Unscrambled, Write Enabled

Protected calibration memory

Read Unscrambled, Write Disabled Read Unscrambled, Write Enabled

ID Locations (0x2000 : 0x2003)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

Legend: X = Don’t care

© 2000 Microchip Technology Inc.

DS30555B-page 3-35

PIC14000

4.3 Checksum
4.3.1 CHECKSUM CALCULATIONS

Checksum is calculated by reading the contents of the
PIC14000 memory locations and adding up the
opcodes up to the maximum user addressable location,
OxFBF. Any carry bits exceeding 16-bits are neglected.
Finally, the configuration word (appropriately masked)
is added to the checksum. Checksum computation for
the PIC14000 device is shown in Table 4-2:

The checksum is calculated by summing the following:

* The contents of all program memory locations
* The configuration word, appropriately masked
* Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-
ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

Note that some older devices have an additional value
added in the checksum. This is to maintain compatibil-
ity with older device programmer checksums.

TABLE 4-2: CHECKSUM COMPUTATION

Code . Blank 0x25E6 at
Checksum 0 and max
Protect Value
address
OFF SUM[0000:0FBF] + CFGW & 0x3FBD 0x2FFD 0xFBCB
OFF OTP SUM[0000:0FBF] + CFGW & 0x3FBD 0x0E7D 0xDA4B
ON CFGW & 0x3FBD + SUM(IDs) 0x300A 0xFBD8

Legend: CFGW = Configuration Word
SUMIA:B] = [Sum of locations a through b inclusive]

SUM(ID) = ID locations masked by 0x7F then made into a 28-bit value with IDO as the most significant byte
*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]

+ = Addition
& = Bitwise AND

DS30555B-page 3-36

© 2000 Microchip Technology Inc.

PIC14000

5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

TABLE 5-1: AC/DC CHARACTERISTICS
AC/DC TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

Standard Operating Conditions
Operating Temperature: +10°C < TA < +40°C, unless otherwise stated, (25°C recommended)

Operating Voltage: 4.5V < VDD < 5.5V, unless otherwise stated.
Pari;::eter Sym. Characteristic Min. |Typ.| Max. |Units Conditions
General
PD1 VDDP |Supply voltage during programming 4.75 5.0 5.25 \
PD2 IDDP |Supply current (from VDD) - - 20 mA
during programming
PD3 VDDV |Supply voltage during verify VDDmin Vbbmax| V |Note 1
PD4 VIHH1 |Voltage on MCLR/VPP during 12.75 - 13.25 V |Note 2
programming
PD5 VIHH2 |Voltage on MCLR/VPP during verify | VDD + 4.0 13.5
PD6 IPP | Programming supply current (from - - 50 mA
VPP)
PD9 ViH1 |(RC6, RC7) input high level 0.8VoD | — - V |Schmitt Trigger input
PD8 ViL1 [(RC6, RC7) input low level 0.2VbD | — - V | Schmitt Trigger input
Serial Program Verify
P1 TR |MCLR/VPP rise time (VSS to VHH) - - 8.0 us
for test mode entry
P2 Tf |MCLR Fall time - - 8.0 us
P3 Tset1 |Data in setup time before clock | 100 - - ns
P4 Thid1 |Data in hold time after clock | 100 - - ns
P5 Tdly1 |Data input not driven to next clock 1.0 - - us
input (delay required between com-
mand/data or command/command)
P6 Tdly2 |Delay between clock | to clock T of 1.0 - - us
next command or data
P7 Tdly3 |Clock T to date out valid 200 - - ns
(during read data)
P8 Thido [Hold time after MCLR T 2 - - us

Note 1: Program must be verified at the minimum and maximum VDD limits for the part.
Note 2: VIHH must be greater than VDD + 4.5V to stay in programming/verify mode.

© 2000 Microchip Technology Inc. DS30555B-page 3-37

PIC14000

FIGURE 5-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

VIHH-
MCLR/VPP—/ .
o 100ns , P6
P Co >
I i 2 3 4 5 6 1us min, "1 2 3 4 5 15
o] R [I [e Y O I o
fG e ' 100ns . :
7 ¢! ' A ' -
oA B o /N0 0 0 o /0 L XX X X N0
o L . P5 [
i —>Plar - e py
X Pl 11us mine P
| R ' ' R
' 100ns 100nS
' min. min
\

Program/Verify Test Mode

Reset— =&

\j

FIGURE 5-2: READ DATA COMMAND (PROGRAM/VERIFY)

VIHH- 7
MCLR/VPP /

: 100ns : P6
" P8 . . !
S R 3 4 5 6 s mim 1 2 3 4 5 15
@dGoRX: LI L Ll L L e
RCTF! : ' y oo A= o
AT U N N/ I WS SR vy s GNNND GHED D SR D s
o '~ P4, - . '
. 'P3 :ms min: \ '
: Nm? St : .
' oS . . ' RC7
:< -~ C7 = output > input
' Program/Verify Test Mode * :
Reset —p' >
FIGURE 5-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)
VIHH - -
MCLR/VPP
! '] P6. > Next Command
. 1 2 3 4 5 g MMy 2
RC6 ' '
(CLOGK)___! I I I I I R
RC7 . :
(DATA) ___, 0 ! ! 2 0 0 j=--r- o .
. o . Ps
! - !
' P3., P4, * 1us min. |
! N ' ,
' 100ns
! min
! Program/Verify Test Mode
Reset —» >

DS30555B-page 3-38 © 2000 Microchip Technology Inc.

MICROCHIP PIC16C55X

In-Circuit Serial Programming for PIC16C55X OTP MCUs

This document includes the programming PIN Diagrams
specifications for the following devices: PDIP, SOIC, Windowed CERDIP
¢ PIC16C554
* PIC16C556 RA2 <—»- []*1 18] <—» RA1
. RA
PIC16C558 RA4ITOOK! %o HS 26— O3 1/0LKIN
MGLR —»= [4 Q 55 —» 0SC2/CLKOUT
SS—»[] 5 14 -
1.0 PROGRAMMING THE roNT <= B8 & 130 2 rhe
-
- -
The PIC16C55X can be programmed using a serial
method. In serial mode the PIC16C55X can be pro-
grammed while in the users system. This allows for
increased design flexibility. SSOP
1.1 Hardware Requirements A2 g 2h RAt
- RAYTOCKI < > 3 T 18P <— OSCI/CLKIN
The PIC16C55X requires two programmable power MCLR B3 & B8 O3C2/CLKOUT
supplies, one for VDD (2.0V to 6.5V recommended) and Vss —- 5 & 160 <— ¥DD
one for VPP (12V to 14V). Both supplies should have a RBOINT <o 1 & 9 LHE A ek
minimum resolution of 0.25V. RB1 «—» [8 O 13[] < RB6
H32+>|:190 x ﬁg«»sgi
. RB3 < -
1.2 Programming Mode ° .
The programming mode for the PIC16C55X allows pro-

gramming of user program memory, special locations
used for ID, and the configuration word for the
PIC16C55X.

© 2000 Microchip Technology Inc. DS30261C-page 3-39

PIC16C55X

2.0 PROGRAM MODE ENTRY

21 User Program Memory Map

The user memory space extends from 0x0000 to
0x1FFF (8K). Table 2-1 shows actual implementation
of program memory in the PIC16C55X family.

TABLE 2-1: IMPLEMENTATION OF
PROGRAM MEMORY IN THE

PIC16C55X
Access to
Device Program Memory Size| Program
Memory

PIC16C554 |0x000 - Ox1FF (0.5K) | PC<8:0>

PIC16C556 |0x000 - Ox3FF (1K) PC<9:0>

PIC16C558 |0x000 - Ox7FF (2K) PC<10:0>

When the PC reaches the last location of the imple-
mented program memory, it will wrap around and
address a location within the physically implemented
memory (see Figure 2-1).

In programming mode the program memory space
extends from 0x0000 to Ox3FFF, with the first half
(0x0000-0x1FFF) being user program memory and the
second half (0x2000-0x3FFF) being configuration
memory. The PC will increment from 0x0000 to Ox1FFF
and wrap to 0x000 or 0x2000 to Ox3FFF and wrap
around to 0x2000 (not to 0x0000). Once in configura-
tion memory, the highest bit of the PC stays a '1’, thus
always pointing to the configuration memory. The only
way to point to user program memory is to reset the
part and reenter program/verify mode, as described in
Section 2.2.

In the configuration memory space, 0x2000-0x20FF
are utilized. When in a configuration memory, as in the
user memory, the 0x2000-0x2XFF segment is repeat-
edly accessed as the PC exceeds O0x2XFF (see
Figure 2-1).

A user may store identification information (ID) in four
ID locations. The ID locations are mapped in [0x2000:
0x2003]. It is recommended that the user use only the
four least significant bits of each ID location. In some
devices, the ID locations read-out in a scrambled fash-
ion after code protection is enabled. For these devices,
it is recommended that ID location is written as “11
1111 1000 bbbb” where 'bbbb’ is ID information.

Note: All other locations are reserved and should
not be programmed.

In other devices, the ID locations read out normally,
even after code protection. To understand how the
devices behave, refer to Table 4-1.

To understand the scrambling mechanism after code
protection, refer to Section 4.1.

DS30261C-page 3-40

© 2000 Microchip Technology Inc.

PIC16C55X

FIGURE 2-1: PROGRAM MEMORY MAPPING
0.5KW 1KW 2KW
0
2000 ID Location 1FF | Implemented Implemented Implemented
3FF | _ _ _
. 400
2001 ID Location Implemented
7FF L] l
. 800
2002 ID Location
BFF
) C00
2003 ID Location
FFF
1000 Reserved
2004 Reserved
Reserved
2005 Reserved
Reserved
2006 Reserved
2007 | Configuration Word
1FFF
2000
2008 Reserved Reserved Reserved
2100
Reserved Reserved Reserved
3FFF

© 2000 Microchip Technology Inc.

DS30261C-page 3-41

PIC16C55X

2.2 Program/Verify Mode

The program/verify mode is entered by holding pins
RB6 and RB7 low while raising MCLR pin from VIL to
VIHH (high voltage). Once in this mode the user pro-
gram memory and the configuration memory can be
accessed and programmed in serial fashion. The mode
of operation is serial, and the memory that is accessed
is the user program and configuration memory. RB6 is
a Schmitt Trigger input in this mode.

The sequence that enters the device into the program-
ming/verify mode places all other logic into the reset
state (the MCLR pin was initially at VIL). This means
that all I/O are in the reset state (High impedance
inputs).

The MCLR pin should be raised as quickly
as possible from VIL to VIHH. this is to
ensure that the device does not have the
PC incremented while in valid operation
range.

Note:

2.2.1 PROGRAM/VERIFY OPERATION

The RB6 pin is used as a clock input pin, and the RB7
pin is used for entering command bits and data input/
output during serial operation. To input a command, the
clock pin (RB6) is cycled six times. Each command bit
is latched on the falling edge of the clock with the least
significant bit (LSB) of the command being input first.
The data on pin RB7 is required to have a minimum

setup and hold time (see AC/DC specs) with respect to
the falling edge of the clock. Commands that have data
associated with them (read and load) are specified to
have a minimum delay of 1us between the command
and the data. After this delay the clock pin is cycled 16
times with the first cycle being a start bit and the last
cycle being a stop bit. Data is also input and output LSB
first. Therefore, during a read operation the LSB will be
transmitted onto pin RB7 on the rising edge of the sec-
ond cycle, and during a load operation the LSB will be
latched on the falling edge of the second cycle. A min-
imum 1us delay is also specified between consecutive
commands.

The commands that are available are listed

in Table 2-1.

22141 LOAD CONFIGURATION

After receiving this command, the program counter
(PC) will be set to 0x2000. By then applying 16 cycles
to the clock pin, the chip will load 14-bits a “data word”
as described above, to be programmed into the config-
uration memory. A description of the memory mapping
schemes for normal operation and configuration mode
operation is shown in Figure 2-1. After the configura-
tion memory is entered, the only way to get back to the
user program memory is to exit the program/verify test
mode by taking MCLR low (VIL).

TABLE 2-1: COMMAND MAPPING
Command Mapping (MSB ... LSB) Data

Load Configuration 0 0 0 0 0 0 0, data(14), 0
Load Data 0 0 0 0 1 0 0, data(14), 0
Read Data 0 0 0 1 0 0 0, data(14), 0
Increment Address 0 0 0 1 1 0

Begin programming 0 0 1 0 0 0

End Programming 0 0 1 1 1 0

Note: The CPU clock must be disabled during in-circuit programming.

DS30261C-page3-42

© 2000 Microchip Technology Inc.

PIC16C55X

FIGURE 2-2:

PROGRAM FLOW CHART - PIC16C55X PROGRAM MEMORY

Increment Address

Command

Program Cycle
Read Data
Command

Data Correct?

Yes
Apply 3N Additional
Program Cycles
All Locations Done?

Verify all Locations
@ Vop min.*

VPP = VIHH2

Data Correct? >

Verify all Locations
@ VpD max.

VPP = VIHH2

Data Correct? |

| No

Yes
ST

N=N+1 N=#
of Program Cycles

Report Verify
@ Vop min. Error

Report Verify
@ Vbbp max. Error

* VbpP = VDD range for programming (typically 4.75V - 5.25V).
Vpbmin = Minimum VDD for device operation.
Vbbmax = Maximum VDD for device operation.

Report Programming
Failure

Program Cycle

Load Data
Command

Begin Programming
Command

Wait 100 ps

End Programming

Command

© 2000 Microchip Technology Inc.

DS30261C-page 3-43

PIC16C55X

FIGURE 2-3: PROGRAM FLOW CHART - PIC16C55X CONFIGURATION WORD & ID LOCATIONS

Load Configuration
Command

Program ID Loc?

Yes
Read Data
—=a P Program Cycle Command

v
Increment Address No v
Command N=N+1N=4# Data Correct?
of Program Cycles i
Yes
Address = 2004 No
N> 25
Yes
Increment Address v 4
Command ID/CoEfiguration Apply 3N
i rror Program Cycles
Increment Address
Command
Increment Address »| Program Cycle Read Data
Command 4 100 Cycles ’ Command

Data Correct?

v

Set VDD = VDDmMIn
Report Program
ID/%onfig_ I%rror Data Correct? Read Data Command
Set VPP = VIHH2
" Set VDD = VbDmax
Data Correct? Read Data Command

Set VPP = VIHH2

DS30261C-page 3-44 © 2000 Microchip Technology Inc.

PIC16C55X

2212 LOAD DATA

After receiving this command, the chip will load in a
14-bit “data word” when 16 cycles are applied, as
described previously. A timing diagram for the load data
command is shown in Figure 5-1.

2213 READ DATA

After receiving this command, the chip will transmit
data bits out of the memory currently accessed starting
with the second rising edge of the clock input. The RB7
pin will go into output mode on the second rising clock
edge, and it will revert back to input mode (hi-imped-
ance) after the 16th rising edge. A timing diagram of
this command is shown in Figure 5-2.

22.1.4 INCREMENT ADDRESS

The PC is incremented when this command is
received. A timing diagram of this command is shown
in Figure 5-3.

2215 BEGIN PROGRAMMING

A load command (load configuration or load data)
must be given before every begin programming
command. Programming of the appropriate memory
(test program memory or user program memory) will
begin after this command is received and decoded.
Programming should be performed with a series of
100us programming pulses. A programming pulse is
defined as the time between the begin programming
command and the end programming command.

2.2.1.6 END PROGRAMMING

After receiving this command, the chip stops program-
ming the memory (configuration program memory or
user program memory) that it was programming at the
time.

2.3 Programming Algorithm Requires
Variable Vbp

The PIC16C55X uses an intelligent algorithm. The
algorithm calls for program verification at VDDmin as
well as VDbmax. Verification at VDDmin guarantees
good “erase margin”. Verification at Vbbmax guaran-
tees good “program margin”.

The actual programming must be done with VDD in the
VDDP range (4.75 - 5.25V).

VDDP = Vcc range required during programming.
VDD min. = minimum operating VDD spec for the part.
VDD max.= maximum operating VDD spec for the part.

Programmers must verify the PIC16C55X at its speci-
fied VDDmax and Vbbmin levels. Since Microchip may
introduce future versions of the PIC16C55X with a
broader VDD range, it is best that these levels are user
selectable (defaults are ok).

Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer
but not a “production” quality programmer.

© 2000 Microchip Technology Inc.

DS30261C-page 3-45

PIC16C55X

3.0 CONFIGURATION WORD

The PIC16C55X family members have several configu-
ration bits. These bits can be programmed (reads '0’) or
left unprogrammed (reads ’1’) to select various device
configurations. Figure 3-1 provides an overview of con-
figuration bits.

FIGURE 3-1: CONFIGURATION WORD BIT MAP

Bit
Number: 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PIC16Cs54/556/558 | CP1 [CPo [cP1 [cPo [cPi[cro| — | o | cpt | CPO |PWRTE | WDTE | FOSCT | FOSCO |
bit 7: Reserved for future use
bit 6: Setto 0
bit 5-4: CP1:CPO0, Code Protect
bit 8-13
Device CP1| CPO Code Protection
PIC16C554 0 0 All memory protected
0 1 Do not use
1 0 Do not use
1 1 Code protection off
PIC16C556 0 0 All memory protected
0 1 Upper 1/2 memory protected
1 0 Do not use
1 1 Code protection off
PIC16C558 0 0 All memory protected
0 1 Upper 3/4 memory protected
1 0 Upper 1/2 memory protected
1 1 Code protection off

bit 3: PWRTE, Power Up Timer Enable Bit
PIC16C554/556/558:
0 = Power up timer enabled
1 = Power up timer disabled

bit 2: WDTE, WDT Enable Bit
1 =WDT enabled
0 = WDT disabled

bit 1-0:FOSC<1:0>, Oscillator Selection Bit
11: RC oscillator
10: HS oscillator
01: XT oscillator
00: LP oscillator

DS30261C-page 3-46

© 2000 Microchip Technology Inc.

PIC16C55X

4.0 CODE PROTECTION

The program code written into the EPROM can be pro-
tected by writing to the CP0O & CP1 bits of the configu-
ration word.

4.1 Programming Locations 0x0000 to
0x03F after Code Protection

For PIC16C55X devices, once code protection is
enabled, all protected segments read '0's (or “garbage
values”) and are prevented from further programming.
All unprotected segments, including ID locations and
configuration word, read normally. These locations can
be programmed.

4.2 Embedding Configuration Word and ID Information in the Hex File

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.
An option to not include this information may be provided.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

TABLE 4-1: CONFIGURATION WORD

PIC16C554

To code protect:
¢ Protect all memory
* No code protection

0000001000XXXX
1111111011XXXX

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (0x2007)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

Protected memory segment

Read All 0’s, Write Disabled

Read Unscrambled, Write Enabled

ID Locations (0x2000 : 0x2003)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

PIC16C556

To code protect:
¢ Protect all memory 0000001000XXXX
¢ Protect upper 1/2 memory 0101011001XXXX
* No code protection 1111111011XXXX

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (0x2007)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

Protected memory segment

Read All 0’s, Write Disabled

Read Unscrambled, Write Enabled

ID Locations (0x2000 : 0x2003)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

PIC16C558

To code protect:
¢ Protect all memory 0000001000XXXX
* Protect upper 3/4 memory 0101011001XXXX
¢ Protect upper 1/2 memory 1010101010XXXX
* No code protection 1111111011XXXX

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (0x2007)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

Protected memory segment

Read All 0’s, Write Disabled

Read Unscrambled, Write Enabled

ID Locations (0x2000 : 0x2003)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

© 2000 Microchip Technology Inc.

DS30261C-page 3-47

PIC16C55X

4.3 Checksum
4.3.1 CHECKSUM CALCULATIONS

Checksum is calculated by reading the contents of the
PIC16C55X memory locations and adding up the
opcodes up to the maximum user addressable location,
e.g., 0x1FF for the PIC16C74. Any carry bits exceeding
16-bits are neglected. Finally, the configuration word
(appropriately masked) is added to the checksum.
Checksum computation for each member of the
PIC16C55X devices is shown in Table .

The checksum is calculated by summing the following:
¢ The contents of all program memory locations

¢ The configuration word, appropriately masked

* Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-
ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

Note that some older devices have an additional value
added in the checksum. This is to maintain compatibil-
ity with older device programmer checksums.

TABLE 4-2: CHECKSUM COMPUTATION
. Code . Blank | OX25E6at
Device Checksum 0 and max
Protect Value
address
PIC16C554 OFF SUMI[0x000:0x1FF] + CFGW & 0x3F3F 3D3F 090D
ALL SUM_ID + CFGW & 0x3F3F 3D4E 091C
PIC16C556 OFF SUM[0x000:0x3FF] + CFGW & 0x3F3F 3B3F 070D
1/2 SUM[0x000:0x1FF] + CFGW & 0x3F3F + SUM_ID 4E5E 0013
ALL CFGW & 0x3F3F + SUM_ID 3B4E 071C
PIC16C558 OFF SUMI[0x000:0x7FF] + CFGW & 0x3F3F 373F 030D
1/2 SUM[0x000:0x3FF] + CFGW & 0x3F3F + SUM_ID 5D6E 0F23
3/4 SUM[0x000:0x1FF] + CFGW & 0x3F3F + SUM_ID 4A5E FC13
ALL CFGW & 0x3F3F + SUM_ID 374E 031C

Legend: CFGW = Configuration Word
SUM][a:b] = [Sum of locations a through b inclusive]

SUM_ID = ID locations masked by OxF then made into a 16-bit value with IDO as the most significant nibble.

For example,

IDO = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.
*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]

+ = Addition
& = Bitwise AND

DS30261C-page 3-48

© 2000 Microchip Technology Inc.

PIC16C55X

5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

TABLE 5-1: AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions
Operating Temperature: +10°C < TA < +40°C, unless otherwise stated, (25°C is recommended)

Operating Voltage: 4.5V < VDD < 5.5V, unless otherwise stated.
Par:ln(:eter Sym. Characteristic Min. |Typ.| Max. |Units Conditions
General
PD1 VDDP | Supply voltage during programming 4.75 5.0 5.25 Vv
PD2 IbDP Supply current (from VDD) - - 20 mA
during programming
PD3 VDDV Supply voltage during verify VDDmin - | Vbobmax| V Note 1
PD4 VIHH1 Voltage on MCLR/Vpp during 12.75 - 13.25 \Y Note 2
programming
PD5 VIHH2 | Voltage on MCLR/VPP during verify | VDD + 4.0| - 135 -
PD6 PP Programming supply current (from - - 50 mA
VPP)
PD9 VIH1 (RB6, RB7) input high level 0.8 VbD - - V | Schmitt Trigger input
PD8 ViLt (RB6, RB7) input low level 0.2 VbD - - \ Schmitt Trigger input

Serial Program Verify

P1 TR MCLR/VPPp rise time (VSS to VHH) - - 8.0 us
for test mode entry

P2 T MCLR Fall time - - 8.0 us

P3 Tset1 Data in setup time before clock 100 - - ns

P4 Thid1 Data in hold time after clock | 100 - - ns

P5 Tdly1 Data input not driven to next clock 1.0 - - us

input (delay required between com-
mand/data or command/command)

P6 Tdly2 | Delay between clock | to clock T of 1.0 - - us
next command or data
P7 Tdly3 Clock T to date out valid 200 - - ns
(during read data)
P8 Thido Hold time after MCLR T 2 - - us
- Tpw Programming Pulse Width 10 100| 1000 us

Note 1: Program must be verified at the minimum and maximum VDD limits for the part.
2: VIHH must be greater than VDD + 4.5V to stay in programming/verify mode.

© 2000 Microchip Technology Inc. DS30261C-page 3-49

PIC16C55X

FIGURE 5-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

VIHH.
TR f
MCLRVPP_ o 100ns D e
' S ' -
s L 12 3 4 5 6 tusmin, 1 2 3 4 5 15
6 " i :
rewstc<] eSS Iy I s) Y Y I Yy O
[T p . !
RB7 : . 100ns . ' _
OREBRRL 0 /TN o 0 o o, 0 X X X X o,
! . . P5 . .
o —»Pder - ~py
\ e PA— s ming Pl
. 100ns Toons
' min.)
' Program/Verify Test Mode
Reset— & L

FIGURE 5-2: READ DATA COMMAND (PROGRAM/VERIFY)

___ VHH- £
MC'-FWF’P__;/v 100ns . Pe
L. P8 Lo <
roe 1 2 3 4 5 6 s mim 1 2 3 4 5 15
eSY<:~ e SRR 1y e e Y e Y Y S s Y
P ' 100ns . o
R 0 b /1o 00— X XXX o—
[0 0 ' 1
o s P4 - . .
o P3 e :1|.lS mlns
. “Soons . !
: oons . ey
[o RB7 = output g iNPUL
- > <

>

' Program/Verify Test Mode *
Reset —p» -t

\

FIGURE 5-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

VIHH - -
MCLR/VPP

) . P6
1us min.

Next Command

{DATA 0 1 ! 0 0 0 prooes PN
L P
' -~ !
! +P3. P4, * 1us min.
: R ! .
. 100ns
! min
! Program/Verify Test Mode
Reset — = >

DS30261C-page 3-50 © 2000 Microchip Technology Inc.

MICROCHIP PIC16C6XX/7XX/9XX

In-Circuit Serial Programming for PIC16C6XX/7XX/9XX OTP MCUs

This document includes the programming Pin Diagrams
specifications for the following devices: PDIP, Windowed CERDIP
* PIC16C61 « PIC16C72A + PIC16CE623 e dT T b e
* PIC16C62 e« PIC16C73 PIC16CE624 RAO «— [2 39 [+—= RB6
RA1 «—[] 3 U U 38 [1=—= RB5
¢ PIC16C62A + PIC16C73A e PIC16CE625 RA2 -—»E4 § § a7g~—»na4
« PIC16C62B + PIC16C73B + PIC16C710 mamock — Qo 22 30— neo
e PIC16C63 * PIC16C74 * PIC16C711 P H: §g T T
» PIC16C63A + PIC16C74A » PIC16C712 RE-Oe 32 BH—w
* PIC16C64 + PIC16C74B e« PIC16C716 voo— L1t §§ S0l —Ro7
* PIC16C64A « PIC16C76 » PIC16C745 oscrokin—H1s @ & 28— rDs
0SC2/CLKOUT ——0] 14 IO 70— RD4
e PIC16C65 e PIC16C77 e PIC16C765 RCO ‘—515 3 g 26%‘—‘HC7
« PIC16C65A PIC16C620 PIC16C773 e —dir @Y Hh R
* PIC16C65B PIC16C620A PIC16C774 s THE D
» PIC16C66 * PIC16C621 » PIC16C923 ROt H20 21— Re2
¢ PIC16C67 e PIC16C621A « PIC16C924 PDIP. SOIC. Wind d CERDIP 300 mil
« PIC16C71 PIC16C622 » 5016, Windowed CERD! (300 mil
* PIC16C72 + PIC16C622A WoLVPP ——» [}+1 g 2] <> Re7
RAO —» [|2 oo 27%<—>HBG
RAl «—» [|3 — 4 26] «—> RB5
(<2302
1.0 PROGRAMMING THE w88 P
PIC16CEXX/7XX/9XX e+ fe - Jg 0
RAS5 «—» 7 -~ 1
S§ ——» 2 -+
The PIC16C6XX/7XX/9XX can be programmed using a st /CL\é,N E . § & :)% -— CSS“NT
serial method. In serial mode the PIC16C6XX/7XX/ 0SC2ICLKOUT <—— [] 10 g S 19f] - vss
9XX can be programmed while in the users system. ro0 El; 23 :j% DI
This allows for increased design flexibility. This pro- Ro2 «—» 13 & S 16[] <— Res
gramming specification applies to PIC16C6XX/7XX/ Ry <— [14 > 1s[] =—>rcs

9XX devices in all packages.

1.1 Hardware Requirements

The PIC16C6XX/7XX/9XX requires two programmable
power supplies, one for VDD (2.0V to 6.5V recom-
mended) and one for VPP (12V to 14V). Both supplies
should have a minimum resolution of 0.25V.

1.2 Programming Mode

The programming mode for the PIC16C6XX/7XX/9XX
allows programming of user program memory, special
locations used for ID, and the configuration word for the
PIC16CB6XX/7XX/9XX.

© 2000 Microchip Technology Inc. DS30228J-page 3-51

PIC16C6XX/7XX/9XX

Pin Diagrams (Con’t)

PDIP, SOIC, Windowed CERDIP

300 mil. SDIP, SOIC, Windowed CERDIP, SSOP

U
. 18] - —
Raz =—» [+ - u Rat MCLR/VPP —= [« 1 T [] <—> RB7
Ras =— []2 353 170 RAO RAO/ANO <— [2 27 [] <—> RB6
Rragrocki — 3 Q > o 16|] ——0sC1/CLKIN RA1/AN1 <— [3 26] <—> RB5
McLRvPP — (4 8 O @ 15[] — oscz/cLkouT RA2/AN2/VREF-VRL <— [4 25[] -—> RB4
ves — 5 & g 14[] <—— voo RA3/AN3/VREF+/VRH <— [5 o 24 [] <—» RB3/AN9/LVDIN
RBO/INT <-— [|6 § g 2 13[] - RB7 RA4/TOCKI <— [6 5 23 [] <—» RB2/AN8
Ret <— L7 = N 12[] <~— RB6 Avop— [7 - 22 [] <— RB1/SS
. s 11[] =—» Res Avss—» []8 » 21 [] <— RBO/INT
Os 100] RB4 OSC1/CLKIN — [|9 Q 20 []<— VoD
RB3 < 0SC2/CLKOUT <— [] 10 N 19— vss
RCO/T10SO/T1CKI <— [] 11 w 18 [] <«— RC7/RX/DT
RC1/T10SI/CCP2 =— [12 17 [] «+— RC6/TX/CK
RC2/CCP1 <-—» [13 16 [] «— RC5/SDO
RC3/SCK/SCL -— [| 14 15 [] <— RC4/SDI/SDA
18 pin PDIP, SOIC, Windowed CERDIP
20 pin SSOP
RA2/AN2 <—[«1 J 18 []<— RA1/AN1
RA3/AN3/VREF <+—» <«—» RAO/ANO
e [RAZ/AN2 <[] -1 T o D<—sRAT/AN1
RA4/TOCKI -— []3 o7 16[]<—OSCI/CLKIN
= == RA3/AN3/VREF <—[2 19 []+—> RAO/ANO
MCLRVPP —»[] 4 00 15[J—=0SC2/CLKOUT
Vs Os oy w0 VDD RA4/TOCKI <-—»[]3 v 18 []<+——0OSC1/CLKIN
22 MCLRVPP —»[4 00 17[J—0SC2/CLKOoUT
RBO/INT <—[] 6 00 13 []+—>RB7 Vss Os 2% wh VDD
RB1/T10SO/T1CKI <—»[]7 I i N ’ QR
on Vss— 6 00 15 []<——VDD
RB2/T10S! <—»[]8 1 [J=—RB5 NN
RBO/INT <—»[]7 aa 14 [J<—RB7
RB3/CCP1 <+—[9 10 [J<—> RB4 on
RB1/T10SO/T1CKI <«—»[]8 13 [J«—RB6
RB2/T10S| <+—[]9 12 []<—» RB5
RB3/CCP1 <-—[] 10 11 []<+—RB4
-
==
" o0
& QQ
Sy o & B8
PLCC
2943288do38588558
CCS>SCCOCXSZCcccc>0co
a000000000000n0nnan
OONOWULT ONT™ OO STM N~
© © OO OO ©©O
RA4/TOCKI <+] 10 o 60 (1< RD5/SEG29/COM3
RA5/AN4/SS <> 4 11 59 <> RG6/SEG26
RB1 <> 4 12 58 1 RG5/SEG25
RBO/INT <> O 13 57 <> RG4/SEG24
RC3/SCK/SCL <> 4 14 56 1< RG3/SEG23
RC4/SDI/SDA <> 15 55 g <= RG2/SEG22
RC5/SDO <+ 16 54 [1 < RG1/SEG21
ct —> 17 P|C1 60923 53 1< RGO/SEG20
c2—> [18 52 <= RG7/SEG28
Vicp2 —> O 19 P|C1 60924 51 (< RF7/SEG19
Vicp3 — 0 20 50 1< RF6/SEG18
Avbp —> 4 21 49 <= RF5/SEG17
Vop — O 22 48 <= RF4/SEG16
vss — O 23 47 <> RF3/SEG15
OSC1/CLKIN —> O 24 46 [J<—> RF2/SEG14
0SC2/CLKOUT <— 25 45 [RF1/SEG13
RCO/T10SO/T1CKI <+ [26 44 [= RFO/SEG12
NODDOT-~AMTULONDODDO N M
ANANMOMMOOMOMOO®MS < <
ooooooooooooooooa
25p3855835885882—
[SRSEHONORORORORONORORORORORORO)
v_()>QLIJuJuJuJLIJLIJuJuJuJLIJLIJuJuJ
EQ7 Q0000000000000
02 >8n833Lonanaag
o rrecCcCcococococooo

DS30228J-page 3-52

© 2000 Microchip Technology Inc.

PIC16C6XX/7XX/9XX

2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The user memory space extends from 0x0000 to
Ox1FFF (8K). Table 2-1 shows actual implementation
of program memory in the PIC16C6XX/7XX/9XX fam-

ily.

TABLE 2-1: IMPLEMENTATION OF

PROGRAM MEMORY IN THE

PIC16C6XX/7XX/9XX
Device Progran? Memory
Size
PIC16C61 0x000 — 0x3FF (1K)

PIC16C620/620A

0x000 — 0x1FF (0.5K)

PIC16C621/621A

0x000 — 0x3FF (1K)

PIC16C622/622A

0x000 — 0x7FF (2K)

PIC16C62/62A/62B

0x000 — 0x7FF (2K)

(

(

(

(

(
PIC16C63/63A 0x000 — OXFFF (4K)
PIC16C64/64A 0x000 — Ox7FF (2K)
PIC16C65/65A/65B | 0x000 — OXFFF (4K)
PIC16CE623 0x000 — 0x1FF (0.5K)
PIC16CE624 0x000 — Ox3FF (1K)
PIC16CE625 0x000 — Ox7FF (2K)
PIC16C71 0x000 — 0x3FF (1K)
PIC16C710 0x000 — 0x1FF (0.5K)
PIC16C711 0x000 — Ox3FF (1K)
PIC16C712 0x000 — 0x3FF (1K)
PIC16C716 0x000 — Ox7FF (2K)

PIC16C72/72A

0x000 — OX7FF (2K)

PIC16C73/73A/73B

0x000 — OXFFF (4K)

PIC16C74/74A/74B

0x000 — OXFFF (4K)

PIC16C66 0x000 — 0x1FFF (8K)
PIC16C67 0x000 — 0x1FFF (8K)
PIC16C76 0x000 — Ox1FFF (8K)
PIC16C77 0x000 — 0x1FFF (8K)
PIC16C745 0x000 — 0x1FFF (8K)
PIC16C765 0x000 — Ox1FFF (8K)
PIC16C773 0x000 — OXFFF (4K)

PIC16C774 0x000 — OXFFF (4K)

PIC16C923/924

0x000 — OXFFF (4K)

When the PC reaches the last location of the imple-
mented program memory, it will wrap around and
address a location within the physically implemented
memory (see Figure 2-1).

Once in configuration memory, the highest bit of the PC
stays a ’1’, thus always pointing to the configuration
memory. The only way to point to user program mem-
ory is to reset the part and reenter program/verify
mode, as described in Section 2.2.

A user may store identification information (ID) in four
ID locations. The ID locations are mapped in [0x2000:
0x2003]. It is recommended that the user use only the
four least significant bits of each ID location. In some
devices, the ID locations read-out in a scrambled fash-
ion after code protection is enabled. For these devices,
it is recommended that ID location is written as “11
1111 1bbb bbbb” where 'bbbb'is ID information.

Note: All other locations are reserved and should
not be programmed.

In other devices, the ID locations read out normally,
even after code protection. To understand how the
devices behave, refer to Table 4-1.

To understand the scrambling mechanism after code
protection, refer to Section 3.1.

© 2000 Microchip Technology Inc.

DS30228J-page 3-53

PIC16C6XX/7XX/9XX

FIGURE 2-1: PROGRAM MEMORY MAPPING
0.5K 1K 2K 4K 8K
words words words words words
i Oh
2000h ID Location Implemented
1FFh Implemented | Implemented | Implemented | Implemented
2001h ID Location iEEE— — — >
Implemented | Implemented | Implemented
7FFh
2002h ID Location goonl | T —
Reserved Implemented | Implemented
2003h ID Location EEEE —————————— - = —
Reserved Implemented | Implemented
2004h Reserved FPrhL — — — - — — — 4 - - — >
1poon Reserved Implemented
2005h Reserved
Reserved Implemented
2006h Reserved
Implemented
2007h | Configuration Word
Implemented
1FFF
2008h
Reserved Reserved Reserved Reserved Reserved
2100h
Reserved Reserved Reserved Reserved Reserved
3FFFh

DS30228J-page 3-54

© 2000 Microchip Technology Inc.

PIC16C6XX/7XX/9XX

2.2 Program/Verify Mode

The program/verify mode is entered by holding pins
RB6 and RB7 low while raising MCLR pin from Vss to
the appropriate VIHH (high voltage). Once in this mode
the user program memory and the configuration mem-
ory can be accessed and programmed in serial fash-
ion. The mode of operation is serial, and the memory
that is accessed is the user program memory. RB6 is a
Schmitt Trigger input in this mode.

The sequence that enters the device into the program-
ming/verify mode places all other logic into the reset
state (the MCLR pin was initially at Vss). This means
that all I/O are in the reset state (High impedance
inputs).

Note 1: The MCLR pin should be raised as quickly
as possible from VIL to VIHH. this is to
ensure that the device does not have the
PC incremented while in valid operation
range.

2: Do not power any pin before VDD is
applied.

2.2.1 PROGRAM/VERIFY OPERATION

The RB6 pin is used as a clock input pin, and the RB7
pin is used for entering command bits and data input/
output during serial operation. To input a command, the
clock pin (RB6) is cycled six times. Each command bit
is latched on the falling edge of the clock with the least
significant bit (LSb) of the command being input first.
The data on pin RB7 is required to have a minimum
setup and hold time (see AC/DC specs) with respect to
the falling edge of the clock. Commands that have data
associated with them (read and load) are specified to

have a minimum delay of 1 us between the command
and the data. After this delay the clock pin is cycled 16
times with the first cycle being a start bit and the last
cycle being a stop bit. Data is also input and output LSb
first. Therefore, during a read operation the LSb will be
transmitted onto pin RB7 on the rising edge of the sec-
ond cycle, and during a load operation the LSb will be
latched on the falling edge of the second cycle. A min-
imum 1 us delay is also specified between consecutive
commands.

All commands are transmitted LSb first. Data words are
also transmitted LSb first. The data is transmitted on
the rising edge and latched on the falling edge of the
clock. To allow for decoding of commands and reversal
of data pin configuration, a time separation of at least
1 us is required between a command and a data word
(or another command).

The commands that are available are listed

in Table 2-2.

2211 LOAD CONFIGURATION

After receiving this command, the program counter
(PC) will be set to 0x2000. By then applying 16 cycles
to the clock pin, the chip will load 14-bits a “data word”
as described above, to be programmed into the config-
uration memory. A description of the memory mapping
schemes for normal operation and configuration mode
operation is shown in Figure 2-1. After the configura-
tion memory is entered, the only way to get back to the
user program memory is to exit the program/verify test
mode by taking MCLR low (VIL).

TABLE 2-2: COMMAND MAPPING

Mapping (MSb... LSb)

Data

Command
Load Configuration
Load Data
Read Data

Increment Address
Begin programming

o o o o o

0, data(14), 0
0, data(14), 0
0, data(14), 0

oO|lo o o o o

End Programming

0

H|lrPr o o o o
r|lo B B o o
H|lo B o r o
olo o o o o

Note:

The clock must be disabled during In-Circuit Serial Programming.

© 2000 Microchip Technology Inc.

DS30228J-page 3-55

PIC16C6XX/7XX/9XX

FIGURE 2-2: PROGRAM FLOW CHART - PIC16C6XX/7XX/9XX PROGRAM MEMORY

Set VDD = VDDP*

b

Set VPP = VIHH1

N=1
l<
| No
=] Cycl Yes Report programming
rogram Cycle N > 257 fallure
L A
Read Data
Command N=N+1 N=#
of Program Cycles
A

Increment Address < Data correct? >No
Command
A

v Yes

Apply 3N Additional
Program Cycles

Program Cycle

Load Data
—No< All locations done? > Command
Y

A ves v
Verify all locations Begin Programming
@ VDD min.* Command
VPP = VIHH2
v
v Wait 100 us
No Report verify
?
Yes v _
\ 4 End Programming
Verify all locations Command
@ VDD max.*
VPP = VIHH2

Report verify

Data correct? @ VDD max. Error

* VDDP = VDD range for programming (typically 4.75V - 5.25V).
VDDmin = Minimum VDD for device operation.
Vbbmax = Maximum VDD for device operation.

DS30228J-page 3-56 © 2000 Microchip Technology Inc.

PIC16C6XX/7XX/9XX

FIGURE 2-3: PROGRAM FLOW CHART - PIC16C6XX/7XX/9XX CONFIGURATION WORD & ID

LOCATIONS
Set VDD = VDDP*
Set VPP = VIHH1
Load Configuration
Command
v
N=1
No Yes
Read Data
Program ID Loc? 2 > Program Cycle > Command
4—
v
Increment Address No v
Command N=N+1N=# Data Correct?
of Program Cycles)

y Yes
No v
Address = 2004 No

Yes
A Yes
Increment Address v
Command Report ID

Apply 3N
Program Cycles

Configuration Error

v
Increment Address

Command
\ 4

Increment Address »| Program Cycle . Read Data
Command 4 100 Cycles 4 Command

4

No 3

Data Correct? >

Yes

v

No Set Vpp = Vppmin
Report Program DD DD
ID/%onﬁg. %rror 4@ Read Data Command

Set VPP = VIHH2
A

Yes
No

Yes R Set VDD = VDDmax
Data Correct? Read Data Command

Set VPP = VIHH2

VDDP = VDD Range for programming (Typically 4.25V — 5.25V)
VDDMIN = minimum VDD for device operation
VDDMAX = maximum VDD for device operation

© 2000 Microchip Technology Inc. DS30228J-page 3-57

PIC16C6XX/7XX/9XX

22.1.2 LOAD DATA

After receiving this command, the chip will load in a
14-bit “data word” when 16 cycles are applied, as
described previously. A timing diagram for the load data
command is shown in Figure 4-1.

22.1.3 READ DATA

After receiving this command, the chip will transmit
data bits out of the memory currently accessed starting
with the second rising edge of the clock input. The RB7
pin will go into output mode on the second rising clock
edge, and it will revert back to input mode (hi-imped-
ance) after the 16th rising edge. A timing diagram of
this command is shown in Figure 4-2.

2214 INCREMENT ADDRESS

The PC is incremented when this command is
received. A timing diagram of this command is shown
in Figure 4-3.

22.1.5 BEGIN PROGRAMMING

A load command (load configuration or load data)
must be given before every begin programming
command. Programming of the appropriate memory
(test program memory or user program memory) will
begin after this command is received and decoded.
Programming should be performed with a series of
100us programming pulses. A programming pulse is
defined as the time between the begin programming
command and the end programming command.

22.1.6 END PROGRAMMING

After receiving this command, the chip stops program-
ming the memory (configuration program memory or
user program memory) that it was programming at the
time.

2.3 Programming Algorithm Requires
Variable VDD

The PIC16C6XX/7XX/9XX uses an intelligent algo-
rithm. The algorithm calls for program verification at
Vbbmin as well as Vbbmax. Verification at Vbbmin
guarantees good “erase margin”. Verification at
VDDmax guarantees good “program margin”.

The actual programming must be done with VDD in the
VDDP range (4.75 - 5.25V).

VDDP = VCC range required during programming.
VDD min. = minimum operating VDD spec for the part.
VDDmax = maximum operating VDD spec for the part.

Programmers must verify the PIC16C6XX/7XX/9XX at
its specified Vbbmax and VDDmin levels. Since
Microchip may introduce future versions of the
PIC16CB6XX/7XX/9XX with a broader VDD range, it is
best that these levels are user selectable (defaults are
ok).

Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer

but not a “production” quality programmer.

DS30228J-page 3-58

© 2000 Microchip Technology Inc.

PIC16C6XX/7XX/9XX

3.0 CONFIGURATION WORD

The PIC16C6XX/7XX/9XX family members have sev-
eral configuration bits. These bits can be programmed
(reads ’0’) or left unprogrammed (reads ’1’) to select
various device configurations. Figure 3-1 and
Figure 3-2 provides an overview of configuration bits.

© 2000 Microchip Technology Inc. DS30228J-page 3-59

PIC16C6XX/7XX/9XX

FIGURE 3-1: CONFIGURATION WORD BIT MAP

Bit
- 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PIC16C61/71| — — — — — — — — — | CPO | PWRTE | WDTE | FOSC1 | FOSCO
PIC16C62/64/65/73/74] — — — — — — — 0 CP1 | CPO | PWRTE | WDTE | FOSC1 | FOSCO
PIC16C62A/62B/63A/CR62/
63/
64A/CR64/65A/65B/66/67/
72[72A/73A/73B/74A/74B/76/
77/620/620A/621/621A/622/
622A/ [
712/716 | CP1 | CPO | CP1 | CPO | CP1 | CPO | — | BODEN | CP1 | CPO | PWRTE | WDTE | FOSC1 | FOSCO
PIC16C9XX/745/765 | CP1 | CPO | CP1 | CPO | CP1 | CPO | — — CP1 | CPO | PWRTE | WDTE | FOSC1 | FOSCO

Reserved, '-' write as '1' for PIC16C6XX/7XX/9XX
CP <1:0>, Code Protect

Device CP1 CPO Code Protection
ﬁ:g} gggg%g%ﬁ&B 0 0 All memory protected
g:gl gggiﬁiﬁ/? 12/716 0 1 Upper 3/4 memory protected
E:g ggggg?g@i‘z A 1 0 Upper 1/2 memory protected
PIC16C73/73A/73B
PIC16C74/74A/74B/76/77 1 1 Code protection off
PIC16C745/765
PIC16C9XX
PIC16C61/71 — 0 All memory protected
PIC16C710/711 — 1 Off
PIC16C620 0 0 All memory protected
0 1 Do not use
1 0 Do not use
1 1 Code protection off
PIC16C621 0 0 All memory protected
1 0 Upper 1/2 memory protected
1 1 Code protection off

bit 6: BODEN, Brown Out Enable Bit
1 = Enabled
2 = Disable

bit 4: PWRTE/PWRTE, Power Up Timer Enable Bit

PIC16C61/62/64/65/71/73/74:

1 = Power up timer enabled

0 = Power up timer disabled
PIC16C620/620A/621/621A/622/622A/62A/63/63A/65A/65B/66/67/72/72A/73A/73B/74A/74B/76/77/710/
711/923/924/745/765:

0 = Power up timer enabled

1 = Power up timer disabled

bit 3-2: WDTE, WDT Enable Bit
1 =WDT enabled
0 = WDT disabled

bit 1-0: FOSC<1:0>, Oscillator Selection Bit
11: RC oscillator
10: HS oscillator
01: XT oscillator
00: LP oscillator

bit 1-0: FOSC<1:0>, PIC16C745/765
11: E external clock with 4k PLL
10: H HS oscillator with 4k PL enabled
01: EC external clock, clkout on osc2
00: HS
Note 1: Enabling Brown-out Reset automatically enables the Power-up Timer (PWRT) regardless of the value of bit
PWRTE. Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.

DS30228J-page 3-60 © 2000 Microchip Technology Inc.

PIC16C6XX/7XX/9XX

FIGURE 3-2: CONFIGURATION WORD FOR PIC16C773/774 DEVICE

CP1 | CPO [BORV1|BORVO| CP1 | CPO - BODEN | CP1 | CPO | PWRTE | WDTE | FOSC1 | FOSCO | |Register: CONFIG
Address 2007h

bit13 12 1 10 9 8 7 6 5 4 3 2 1 bit0

CP <1:0> Code Protection bits (@

Device CP1 CPO Code Protection
PIC16C773/774 0 0 All memory protected
0 1 Upper 3/4 memory protected
1 0 Upper 1/2 memory protected’
1 1 Code protection off

bit 11-10: BORV <1:0>: Brown-out Reset Voltage bits
11 = VBOR set to 2.5V
10 = VBOR set to 2.7V
01 = VBOR set to 4.2V
00 = VBOR set to 4.5V

bit 7: Unimplemented, Read as '1’

bit 6: BODEN: Brown-out Reset Enable bit ()
1 = Brown-out Reset enabled
0 = Brown-out Reset disabled

bit 3: PWRTE: Power-up Timer Enable bit ()
1 = PWRT disabled
0 = PWRT enabled

bit 2: WDTE: Watchdog Timer Enable bit
1 =WDT enabled
0 = WDT disabled

bit 1-0: FOSC <1:0>: Oscillator Selection bits
11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

Note 1: Enabling Brown-out Reset automatically enables the Power-up Timer (PWRT) regardless of the value of bit PWRTE.
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.
2: All of the CP <1:0> pairs have to be given the same value to enable the code protection scheme listed.

© 2000 Microchip Technology Inc. DS30228J-page 3-61

PIC16C6XX/7XX/9XX

FIGURE 3-3: CONFIGURATION WORD, PIC16C710/711

| cro | cro | cro | cro | cro | cro | cro [BODEN| cPo | cro [PWRTE|wpTE|Fosct[Fosco| |Register: CONFIG

bit13

5-4:

bit 6:

bit 3:

bit 2:

bit 1-0:

Note 1:

pito | Address 2007h

bit 13-7 CPO0: Code protection bits @

1 = Code protection off

0 = All memory is code protected, but 00h - 3Fh is writable
BODEN: Brown-out Reset Enable bit (V)

1 =BOR enabled

0 = BOR disabled

PWRTE: Power-up Timer Enable bit ()
1 = PWRT disabled
0 = PWRT enabled

WDTE: Watchdog Timer Enable bit
1 =WDT enabled
0 = WDT disabled

FOSC <1:0>: Oscillator Selection bits
11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE.
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.
All of the CPO bits have to be given the same value to enable the code protection scheme listed.

DS30228J-page 3-62 © 2000 Microchip Technology Inc.

PIC16C6XX/7XX/9XX

3.1 Embedding Configuration Word and ID Information in the Hex File.

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.
An option to not include this information may be provided.

Microchip Technology Inc. feels strongly that this feature is beneficial to the end customer.

© 2000 Microchip Technology Inc. DS30228J-page 3-63

PIC16C6XX/7XX/9XX

3.2 Checksum
3.2.1 CHECKSUM CALCULATIONS

Checksum is calculated by reading the contents of the
PIC16CB6XX/7XX/9XX memory locations and adding
up the opcodes up to the maximum user addressable
location, e.g., Ox1FF for the PIC16C74. Any carry bits
exceeding 16-bits are neglected. Finally, the configura-
tion word (appropriately masked) is added to the check-
sum. Checksum computation for each member of the
PIC16C6XX/7XX/9XX devices is shown in Table 3-1.

The checksum is calculated by summing the following:
* The contents of all program memory locations

* The configuration word, appropriately masked

¢ Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-
ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

Note that some older devices have an additional value
added in the checksum. This is to maintain compatibil-
ity with older device programmer checksums.

TABLE 3-1: CHECKSUM COMPUTATION
. Code . Blank 0x25E6 at
Device Checksum 0 and max
Protect Value
address
PIC16C61 OFF SUM[0x000:0x3FF] + CFGW & 0x001F + Ox3FEO Ox3BFF 0x07CD
ON SUM_XNOR7[0x000:0x3FF] + (CFGW & 0x001F | 0x0060) 0xFC6F 0xFC15
PIC16C620 OFF SUM[0x000:0x1FF] + CFGW & 0x3F7F 0x3D7F 0x094D
ON SUM_ID + CFGW & 0x3F7F 0x3DCE 0x099C
PIC16C620A OFF SUM[0x000:0x1FF] + CFGW & 0x3F7F 0x3D7F 0x094D
ON SUM_ID + CFGW & 0x3F7F 0x3DCE 0x099C
PIC16C621 OFF SUM[0x000:0x3FF] + CFGW & 0x3F7F 0x3B7F 0x074D
1/2 SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID Ox4EDE 0x0093
ALL CFGW & 0x3F7F + SUM_ID 0x3BCE 0x079C
PIC16C621A OFF SUM[0x000:0x3FF] + CFGW & 0x3F7F 0x3B7F 0x074D
1/2 SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID 0Ox4EDE 0x0093
ALL CFGW & 0x3F7F + SUM_ID 0x3BCE 0x079C
PIC16C622 OFF SUM[0x000:0x7FF] + CFGW & 0x3F7F 0x377F 0x034D
1/2 SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID Ox5DEE Ox0FA3
3/4 SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID 0x4ADE 0xFC93
ALL CFGW & 0x3F7F + SUM_ID 0x37CE 0x039C
PIC16C622A OFF SUM[0x000:0x7FF] + CFGW & 0x3F7F 0x377F 0x034D
1/2 SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID Ox5DEE Ox0FA3
3/4 SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID 0x4ADE 0xFC93
ALL CFGW & 0x3F7F + SUM_ID 0x37CE 0x039C
PIC16CE623 OFF SUM[0x000:0x1FF] + CFGW & 0x3F7F 0x3D7F 0x094D
ON SUM_ID + CFGW & 0x3F7F 0x3DCE 0x099C

Legend: CFGW = Configuration Word
SUM][a:b] = [Sum of locations a through b inclusive]
SUM_XNOR7[a:b] = XNOR of the seven high order bits of memory location with the seven low order bits summed over
locations a through b inclusive. For example, XNOR(0x3C31)=0x78 XNOR 0c31 = 0x0036.
SUM_ID = ID locations masked by OxF then made into a 16-bit value with IDO as the most significant nibble. For example,

IDO = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.

*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]
+ = Addition

& = Bitwise AND

| = Bitwise OR

DS30228J-page 3-64

© 2000 Microchip Technology Inc.

PIC16C6XX/7XX/9XX

TABLE 3-1: CHECKSUM COMPUTATION (CONTINUED)

0x25E6 at
. Code Blank
Device Checksum* 0 and max
Protect Value
address
PIC16CE624 OFF SUM[0x000:0x3FF] + CFGW & 0x3F7F 0x3B7F 0x074D
1/2 SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID Ox4EDE 0x0093
ALL CFGW & 0x3F7F + SUM_ID 0x3BCE 0x079C
PIC16CE625 | OFF | SUM[0x000:0x7FF] + CFGW & Ox3F7F 0x377F | 0x034D
1/2 SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID Ox5DEE Ox0FA3
3/4 SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID 0x4ADE 0xFC93
ALL CFGW & 0x3F7F + SUM_ID 0x37CE 0x039C
PIC16C62 OFF | SUM[0x000:0x7FF] + CFGW & 0x003F + 0x3F80 0x37BF | 0x038D
1/2 SUM[0x000:0x3FF] + SUM_XNOR7[0x400:0x7FF] + CFGW & 0x003F + Ox37AF 0x1D69
3/4 0x3F80 0x379F 0x1D59
ALL SUM[0x000:0x1FF] + SUM_XNOR7[0x200:0x7FF] + CFGW & 0x003F + 0x378F 0x3735
0x3F80
SUM_XNOR7[0x000:0x7FF] + CFGW & 0x003F + 0x3F80
PIC16C62A OFF | SUM[0x000:0x7FF] + CFGW & Ox3F7F 0x377F | 0x034D
1/2 SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID Ox5DEE 0x0FA3
3/4 SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID 0x4ADE 0xFC93
ALL CFGW & 0x3F7F + SUM_ID 0x37CE 0x039C
PIC16C62B OFF | SUM[0x000:0x7FF] + CFGW & Ox3F7F 0x377F | 0x034D
1/2 SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID 0x5DEE 0x0FA3
3/4 SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID 0x4ADE 0xFC93
ALL CFGW & 0x3F7F + SUM_ID 0x37CE 0x039C
PIC16C63 OFF | SUM[0X000:0xFFF] + CFGW & 0x3F7F Ox2F7F | OxFB4D
1/2 SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID OX51EE | 0x03A3
3/4 SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID 0x40DE 0xF293
ALL CFGW & 0x3F7F + SUM_ID 0x2FCE 0xFB9C
PIC16C63A OFF | SUM[0x000:0xFFF] + CFGW & Ox3F7F Ox2F7F | OxFB4D
1/2 SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID Ox51EE 0x03A3
3/4 SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID 0x40DE 0xF293
ALL CFGW & 0x3F7F + SUM_ID 0x2FCE 0xFB9C
PIC16C64 OFF SUM[0x000:0x7FF] + CFGW & 0x003F + 0x3F80 0x37BF 0x038D
1/2 SUM[0x000:0x3FF] + SUM_XNOR7[0x400:0x7FF] + CFGW & 0x003F + 0x37AF 0x1D69
3/4 0x3F80 0x379F 0x1D59
ALL SUM[0x000:0x1FF] + SUM_XNOR7[0x200:0x7FF] + CFGW & 0x003F + 0x378F 0x3735
0x3F80
SUM_XNOR7[0x000:0x7FF] + CFGW & 0x003F + 0x3F80
PIC16C64A OFF | SUM[0x000:0x7FF] + CFGW & Ox3F7F 0x377F | 0x034D
1/2 SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID Ox5DEE Ox0FA3
3/4 SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID 0x4ADE 0xFC93
ALL CFGW & 0x3F7F + SUM_ID 0x37CE 0x039C
PIC16C65 OFF | SUM[0x000:0xFFF] + CFGW & 0x003F + 0x3F80 Ox2FBF | O0xFB8D
1/2 SUM[0x000:0x7FF] + SUM_XNOR7[0x800:FFF] + CFGW & 0x003F + Ox2FAF 0x1569
3/4 0x3F80 Ox2F9F 0x1559
ALL SUM[0x000:0x3FF] + SUM_XNOR7[0x400:FFF] + CFGW & 0x003F + 0x2F8F 0x2F35
0x3F80
SUM_XNOR7[0x000:0xFFF] + CFGW & 0x003F + 0x3F80

Legend: CFGW = Configuration Word
SUM[a:b] = [Sum of locations a through b inclusive]
SUM_XNOR7[a:b] = XNOR of the seven high order bits of memory location with the seven low order bits summed over
locations a through b inclusive. For example, XNOR(0x3C31)=0x78 XNOR 0c31 = 0x0036.
SUM_ID = ID locations masked by OxF then made into a 16-bit value with IDO as the most significant nibble. For example,
IDO = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.
*Checksum = [Sum of all the individual expressions] MODULO [OxFFFF]
+ = Addition
& = Bitwise AND
| = Bitwise OR

© 2000 Microchip Technology Inc. DS30228J-page 3-65

PIC16C6XX/7XX/9XX

TABLE 3-1: CHECKSUM COMPUTATION (CONTINUED)

0x25E6 at
. Code . Blank
Device Checksum 0 and max
Protect Value

address

PIC16C65A OFF SUM[0x000:0xFFF] + CFGW & 0x3F7F Ox2F7F OxFB4D
1/2 SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID Ox51EE 0x03A3

3/4 SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID 0x40DE 0xF293

ALL CFGW & 0x3F7F + SUM_ID 0x2FCE 0xFB9C

PIC16C65B OFF SUM[0x000:0xFFF] + CFGW & 0x3F7F Ox2F7F OxFB4D
1/2 SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID Ox51EE 0x03A3

3/4 SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID 0x40DE 0xF293

ALL CFGW & 0x3F7F + SUM_ID 0x2FCE 0xFB9C

PIC16C66 OFF SUM[0x000:0x1FFF] + CFGW & 0x3F7F Ox1F7F OxEB4D
1/2 SUM[0x000:0xFFF] + CFGW & 0x3F7F + SUM_ID Ox39EE OxEBA3

3/4 SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID 0x2CDE 0xDE93

ALL CFGW & 0x3F7F + SUM_ID Ox1FCE 0xEB9C

PIC16C67 OFF SUM[0x000:0x1FFF] + CFGW & 0x3F7F Ox1F7F OxEB4D
1/2 SUM[0x000:0xFFF] + CFGW & 0x3F7F + SUM_ID Ox39EE OxEBA3

3/4 SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID 0x2CDE OxDE93

ALL CFGW & 0x3F7F + SUM_ID Ox1FCE 0xEB9C

PIC16C710 OFF SUM[0x000:0x1FF] + CFGW & 0x3FFF 0x3DFF 0x09CD
ON SUM[0x00:0x3F] + CFGW & 0x3FFF + SUM_ID 0x3EOE OxEFC3

PIC16C71 OFF SUM[0x000:0x3FF] + CFGW & 0x001F + Ox3FEO 0x3BFF 0x07CD
ON SUM_XNOR7[0x000:0x3FF] + (CFGW & 0x001F | 0x0060) 0xFC6F 0xFC15

PIC16C711 OFF SUM[0x000:0x03FF] + CFGW & Ox3FFF 0x3BFF 0x07CD
ON SUM[0x00:0x3FF] + CFGW & 0x3FFF + SUM_ID 0x3COE OxEDC3

PIC16C712 OFF SUM[0x000:0x07FF] + CFGW & Ox3F7F 0x377F 0x034D
1/2 SUM[0x000:0x03FF] + CFGW & 3F7F + SUM_ID Ox5DEE OxF58A

ALL CFGW & 0x3F7F + SUM_ID 0x37CE 0x039C

PIC16C716 OFF SUM[0x000:0x07FF] + CFGW & Ox3F7F 0x377F 0x034D
1/2 SUM[0x000:0x03FF] + CFGW & 0x3F7F + SUM_ID 0x5DEE Ox0FA3

3/4 SUM]0x000:0x01FF] + CFGW & 0x3F7F + SUM_ID 0x4ADE 0xFC93

ALL CFGW & 0x3F7F + SUM_ID 0x37CE 0x039C

PIC16C72 OFF SUM[0x000:0x7FF] + CFGW & 0x3F7F 0x377F 0x034D
1/2 SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID Ox5DEE OxO0FA3

3/4 SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID 0x4ADE 0xFC93

ALL CFGW & 0x3F7F + SUM_ID 0x37CE 0x039C

PIC16C72A OFF SUM[0x000:0x7FF] + CFGW & 0x3F7F 0x377F 0x034D
1/2 SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID Ox5DEE OxO0FA3

3/4 SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID 0x4ADE 0xFC93

ALL CFGW & 0x3F7F + SUM_ID 0x37CE 0x039C

PIC16C73 OFF SUM[0x000:0xFFF] + CFGW & 0x003F + 0x3F80 Ox2FBF OxFB8D
1/2 SUM[0x000:0x7FF] + SUM_XNOR7[0x800:FFF] + CFGW & 0x003F + Ox2FAF 0x1569

3/4 0x3F80 0x2F9F 0x1559

ALL SUM[0x000:0x3FF] + SUM_XNOR7[0x400:FFF] + CFGW & 0x003F + Ox2F8F 0x2F35

0x3F80
SUM_XNOR7[0x000:0xFFF] + CFGW & 0x003F + 0x3F80

PIC16C73A OFF | SUM[0x000:0xFFF] + CFGW & Ox3F7F Ox2F7F | OxFB4D
1/2 SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID Ox51EE 0x03A3

3/4 SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID 0x40DE 0xF293

ALL CFGW & 0x3F7F + SUM_ID 0x2FCE 0xFB9C

Legend: CFGW = Configuration Word
SUM][a:b] = [Sum of locations a through b inclusive]
SUM_XNOR7[a:b] = XNOR of the seven high order bits of memory location with the seven low order bits summed over
locations a through b inclusive. For example, XNOR(0x3C31)=0x78 XNOR 0c31 = 0x0036.
SUM_ID = ID locations masked by OxF then made into a 16-bit value with ID0O as the most significant nibble. For example,
IDO = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.
*Checksum = [Sum of all the individual expressions] MODULO [OxFFFF]
+ = Addition
& = Bitwise AND
| = Bitwise OR

DS30228J-page 3-66 © 2000 Microchip Technology Inc.

PIC16C6XX/7XX/9XX

TABLE 3-1: CHECKSUM COMPUTATION (CONTINUED)

. Code Blank 0x25E6 at
Device Checksum* 0 and max
Protect Value
address
PIC16C73B OFF SUM[0x000:0xFFF] + CFGW & 0x3F7F Ox2F7F 0xFB4D
1/2 SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID Ox51EE 0x03A3
3/4 SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID 0x40DE 0xF293
ALL CFGW & 0x3F7F + SUM_ID 0x2FCE 0xFB9C
PIC16C74 OFF SUM[0x000:0xFFF] + CFGW & 0x003F + 0x3F80 Ox2FBF OxFB8D
1/2 SUM[0x000:0x7FF] + SUM_XNOR7[0x800:FFF] + CFGW & 0x003F + Ox2FAF 0x1569
3/4 0x3F80 Ox2F9F 0x1559
ALL SUM[0x000:0x3FF] + SUM_XNOR7[0x400:FFF] + CFGW & 0x003F + Ox2F8F 0x2F35
0x3F80
SUM_XNOR7[0x000:0xFFF] + CFGW & 0x003F + 0x3F80
PIC16C74A OFF SUM[0x000:0xFFF] + CFGW & 0x3F7F Ox2F7F 0xFB4D
1/2 SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID Ox51EE 0x03A3
3/4 SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID 0x40DE 0xF293
ALL CFGW & 0x3F7F + SUM_ID 0x2FCE 0xFB9C
PIC16C74B OFF SUM[0x000:0xFFF] + CFGW & 0x3F7F Ox2F7F 0xFB4D
1/2 SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID Ox51EE 0x03A3
3/4 SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID 0x40DE 0xF293
ALL CFGW & 0x3F7F + SUM_ID 0x2FCE 0xFB9C
PIC16C76 OFF SUM[0x000:0x1FFF] + CFGW & Ox3F7F Ox1F7F OxEB4D
1/2 SUM[0x000:0xFFF] + CFGW & 0x3F7F + SUM_ID 0x39EE OxEBA3
3/4 SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID 0x2CDE OxDE93
ALL CFGW & 0x3F7F + SUM_ID Ox1FCE 0xEB9C
PIC16C77 OFF SUM[0x000:0x1FFF] + CFGW & 0x3F7F Ox1F7F OxEB4D
1/2 SUM[0x000:0xFFF] + CFGW & 0x3F7F + SUM_ID 0x39EE OxEBA3
3/4 SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID 0x2CDE OxDE93
ALL CFGW & 0x3F7F + SUM_ID 0x1FCE 0xEB9C
PIC16C773 OFF | SUM[0x000:0xOFFF] + CFGW & 0x3F7F Ox2F7F | OxFB4D
1/2 SUMI[0x000:07FF] + CFGW & 0x3F7F + SUM_ID OX55EE | 0x07A3
3/4 SUM[0x000:03FF] + CFGW & 0x3F7F + SUM_ID 0x48DE OxFA93
ALL CFGW & 0x3F7F + SUM_ID 0x3BCE 0x079C
PIC16C774 OFF | SU:M[0x000:0FFF] + CFGW & Ox3F7F Ox2F7F | OxFB4D
1/2 SUM[0x000:07FF] + CFGW & 0x3F7F + SUM_ID OX55EE 0x07A3
3/4 SUM[0x000:03FF] + CFGW & 0x3F7F + SUM_ID 0X48DE 0xFA93
ALL CFGW & 0x3F7F + SUM_ID 0x3BCE 0X079C
PIC16C923 OFF | SUM[0x000:0xFFF] + CFGW & Ox3F3F Ox2F3F | OxFBOD
1/2 SUM[0x000:0x7FF] + CFGW & 0x3F3F + SUM_ID 0x516E 0x0323
3/4 SUM[0x000:0x3FF] + CFGW & 0x3F3F + SUM_ID 0x405E 0xF213
ALL CFGW & 0x3F3F + SUM_ID Ox2F4E 0xFB1C
PIC16C924 OFF | SUM[0x000:0xFFF] + CFGW & Ox3F3F Ox2F3F | OxFBOD
1/2 SUM[0x000:0x7FF] + CFGW & 0x3F3F + SUM_ID 0x516E 0x0323
3/4 SUM[0x000:0x3FF] + CFGW & 0x3F3F + SUM_ID 0x405E 0xF213
ALL CFGW & 0x3F3F + SUM_ID Ox2F4E OxFB1C
PIC16C745 OFF | SUM(0000:1FFF) + CFGW & Ox3F3F 1F3F EBOD
1000:1FFF | SUM(0000:0FFF) + CFGW & 0x3F3F+SUM_ID 396E EB23
800:1FFF | SUM(0000:07FF) + CFGW & 0x3F3F + SUM_ID 2C5E DE13
ALL CFGW * 0x3F3F + SUM_ID 1F4E EB1C

Legend: CFGW = Configuration Word
SUM][a:b] = [Sum of locations a through b inclusive]
SUM_XNOR7[a:b] = XNOR of the seven high order bits of memory location with the seven low order bits summed over
locations a through b inclusive. For example, XNOR(0x3C31)=0x78 XNOR 0c31 = 0x0036.
SUM_ID = ID locations masked by OxF then made into a 16-bit value with ID0O as the most significant nibble. For example,
IDO = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.
*Checksum = [Sum of all the individual expressions] MODULO [OxFFFF]
+ = Addition
& = Bitwise AND
| = Bitwise OR

© 2000 Microchip Technology Inc. DS30228J-page 3-67

PIC16C6XX/7XX/9XX

TABLE 3-1: CHECKSUM COMPUTATION (CONTINUED)

0x25E6 at
. Code . Blank
Device Checksum 0 and max
Protect Value
address
PIC16c765 OFF SUM(0000:1FFF) + CFGW & 0x3F3F 1F3F EBOD
1000:1FFF | SUM(0000:0FFF) + CFGW & 0x3F3F+SUM_ID 396E EB23
800:1FFF | SUM(0000:07FF) + CFGW & 0x3F3F + SUM_ID 2C5E DE13
ALL CFGW * 0x3F3F + SUM_ID 1F4E EB1C

Legend: CFGW = Configuration Word
SUM][a:b] = [Sum of locations a through b inclusive]
SUM_XNOR7[a:b] = XNOR of the seven high order bits of memory location with the seven low order bits summed over
locations a through b inclusive. For example, XNOR(0x3C31)=0x78 XNOR 0c31 = 0x0036.
SUM_ID = ID locations masked by OxF then made into a 16-bit value with IDO as the most significant nibble. For example,
IDO = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.
*Checksum = [Sum of all the individual expressions] MODULO [OxFFFF]
+ = Addition
& = Bitwise AND
| = Bitwise OR

DS30228J-page 3-68 © 2000 Microchip Technology Inc.

PIC16C6XX/7XX/9XX

4.0 PROGRAM/VERIFY MODE

AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

TABLE 4-1:

Standard Operating Conditions
Operating Temperature: +10°C < TA < +40°C, unless otherwise stated, (20°C recommended)
Operating Voltage:

4.5V < VDD < 5.5V, unless otherwise stated.

Parameter

No Sym. Characteristic Min. |Typ.| Max. |Units Conditions
General
PD1 VDDP |Supply voltage during programming 4.75 5.0 5.25 Vv
PD2 IDDP |Supply current (from VDD) - - 20 mA
during programming
PD3 VDDV |Supply voltage during verify Vobmin | — | Vbbmax| V |Note 1
PD4 VIHH1 |Voltage on MCLR/VPP during 12.75 - 13.25 V |Note 2
programming
PD5 VIHH2 |Voltage on MCLR/VPP during verify |VDD +4.5| — 13.25 -
PD6 IpP |Programming supply current (from - - 50 mA
VPP)
PD9 ViH |(RB6, RB7) input high level 0.8VbD | — - V | Schmitt Trigger input
PD8 ViL |(RB6, RB7) input low level 02VbD | — - V |Schmitt Trigger input
Serial Program Verify
P1 TR |MCLR/VPP rise time (VSS to VHH) - - 8.0 us
for test mode entry
P2 Tf |MCLR Fall time - - 8.0 us
P3 Tset1 |Data in setup time before clock | 100 - - ns
P4 Thid1 |Data in hold time after clock | 100 - - ns
P5 Tdly1 |Data input not driven to next clock 1.0 - - us
input (delay required between com-
mand/data or command/command)
P6 Tdly2 |Delay between clock | to clock T of 1.0 - - us
next command or data
P7 Tdly3 [Clock T to date out valid 200 - - ns
(during read data)
P8 ThidO |Hold time after MCLR T 2 - - us

Note 1: Program must be verified at the minimum and maximum VDD limits for the part.

2: VIHH must be greater than VDD + 4.5V to stay in programming/verify mode.

© 2000 Microchip Technology Inc.

DS30228J-page 3-69

PIC16C6XX/7XX/9XX

FIGURE 4-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

VIHH.
MCLRNPP—/ .
T P8 100ns , P6
' ' ' ' - »'
rEe . 1 2 3 4 5 6 1usmin. "1 2 3 4 5 15
adoolN. L LI LTI i e e
() —r — ! \
RB7 L ' 100ns ') _
(oA [N 0 /rriN_ 0 0 0 0/ . N /<: X X X X n.0°
. ' . P5
L PI—s! = e L
, Ph—rp ‘e :1H5 mine Phpt -
' 100ns 100s
' min. min.

' Program/Verify Test Mode

Reset— &

\J

FIGURE 4-2: READ DATA COMMAND (PROGRAM/VERIFY)

VIHH- 7
MCLR/VPP_‘_:/, 100ns e
- : g P& 3 4 5 6 s mim 1 2 3 4 5 15
cdoomN: LI L i Ll L L
RB7 ¥ ' . 1oons B A -
PR g b B S XX X
.. ' ps! - . |
. 'P3 ‘s min! ! '
: ! Nm? N : .
: i ! | RB?
:= > RB7 = output > input
' Program/Verify Test Mode ° .
Reset —p»' g -
FIGURE 4-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)
VIHH - -
MCLR/VPP
: :4—»1 PG, * Next Command
e . ; 5 3 4 5 6 us min. 5
(CLOCK) ' ’__/ L | | [__,_l _____
RB7 ' ! '
(DATA) ! 0 1 1 0 0 0 N °
| R ' P5
! s e
! P33, P4, ' 1us min."'
! et X '
\ 100ns
: min

Program/Verify Test Mode

Reset — >

Y

DS30228J-page 3-70 © 2000 Microchip Technology Inc.

MICROCHIP

PIC17C7XX

In-Circuit Serial Programming for PIC17C7XX OTP MCUs

This document includes the programming
specifications for the following devices:

* PIC17C752

PIC17C756

PIC17C756A

PIC17C762

PIC17C766

1.0 PROGRAMMING THE
PIC17C7XX

The PIC17C7XX is programmed using the TABLWT
instruction. The table pointer points to the internal
EPROM location start. Therefore, a user can program
an EPROM location while executing code (even from
internal EPROM). This programming specification
applies to PIC17C7XX devices in all packages.

For the convenience of a programmer developer, a
“program & verify” routine is provided in the on-chip test
program memory space. The program resides in ROM
and not EPROM, therefore, it is not erasable. The “pro-
gram/verify” routine allows the user to load any
address, program a location, verify a location or incre-
ment to the next location. It allows variable program-
ming pulse width.

The PIC17C7XX group of the High End Family has
added a feature that allows the serial programming of
the device. This is very useful in applications where it is
desirable to program the device after it has been man-
ufactured into the users system (In-circuit Serial Pro-
gramming (ISP)). This allows the product to be shipped
with the most current version of the firmware, since the
microcontroller can be programmed just before final
test as opposed to before board manufacture. Devices
may be serialized to make the product unique, “special”
variants of the product may be offered, and code
updates are possible. This allows for increased design
flexibility.

1.1 Hardware Requirements

Since the PIC17C7XX under programming is actually
executing code from “boot ROM,” a clock must be pro-
vided to the part. Furthermore, the PIC17C7XX under
programming may have any oscillator configuration
(EC, XT, LF or RC). Therefore, the external clock driver
must be able to overdrive pulldown in RC mode. CMOS
drivers are required since the OSC1 input has a
Schmitt trigger input with levels (typically) of 0.2 VDD
and 0.8 VDD. See the PIC17C7XX data sheet
(DS30289) for exact specifications.

The PIC17C7XX requires two programmable power
supplies, one for VDD (3.0V to 5.5V recommended) and
one for VPP (13 £ 0.25V). Both supplies should have a
minimum resolution of 0.25V.

The PIC17C7XX uses an intelligent algorithm. The
algorithm calls for program verification at VDDmin as
well as VDDmax. Verification at VDDmin guarantees
good “erase margin”. Verification at VDbmax guaran-
tees good “program margin.” Three times (3X)
additional pulses will increase program margin beyond
Vbbmax and insure safe operation in user system.

The actual programming must be done with VDD in the
VDDP range (Parameter PD1).

VDDP = VDD range required during programming.
VDDmin. = minimum operating VDD spec. for the part.
VDDmax. =maximum operating Vcc spec for the part.

Programmers must verify the PIC17C7XX at its speci-
fied VDDmax and VDDmin levels. Since Microchip may
introduce future versions of the PIC17C7XX with a
broader VDD range, it is best that these levels are user
selectable (defaults are ok). Blank checks should be
performed at VDDMIN.

Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer
but not a “production” quality programmer.

© 2000 Microchip Technology Inc.

DS30274B-page 3-71

PIC17C7XX

FIGURE 1-1:

PIC17C752/756/756A/762/766 LCC

SryeYe, SN8288%
222923¢ 2238222
iR
111098 7 6 5 4 3 2 18483828180 7978777675
RH2 =12 74— RJ5
RH3 =13 73— RJ4
RD1/AD9 =14 72— RAO/INT
RDO/AD8 =15 71F= RBO/CAP1
REO/ALE 16 70— RB1/CAP2
RE1/OE 17 sgg RB3/PWM2
RE2/WR 18 68 RB4/TCLK12
RE3/CAP4 =19 PIC17C762/766 67— RB5/TCLK3
MCLR/VPP 20 66— RB2/PWM1
TEST 21 . 65— vss
NC 22 Top View 64— ne
vss T2 63— oscz/cLkouT
Voo =24 62— OSC1/CLKIN
RF7/AN11 o5 61— voo
RF6/AN10 =26 60— RB7/SDO
RF5/AN9 T—27 59— RB6/SCK
RF4/AN8 T—]28 58— RA3/SDI/SDA
RF3/AN7 =29 57— RA2/SS/SCL
RF2/AN6 =30 56— RA1/TOCKI
RH4/AN12 =31 55— RJ3
RH5/AN13 —{32 54— RJ2
435363738394041 42 4H4454647484950
Ui critits sisgss
102388£43298802308r35 2839885 2252252
<<$§<>(<I§$$ >3z288¢¢ 080800080 80083880
%%ELL g'_68 g%éé%é Crrrorcd>Z>C0C@Ccdcoc@
ro ZZa@a stk
BESE L2 Onanaonanaononm
gm 987 6 54 3 2 16867666564636261
RD1/AD9 10 o 60 — RAOINT
RDO/ADS 1 59 = Reo/cAP1
REO/ALE 12 58 — Re1/cAP2
RE1/OE 13 57 = ReaPwM2
RE2/WR 14 56 — RB4/TCLK12
RE3/CAP4 15 55 — RB5/TCLK3
MCLRVPr 16 PIC17C752/756/756A 54 1 Rezpwmi
TEST 17 53 1 vss
NC 18 i 2
Vss 19 Top View :1 — ggczcwom
VoD — 0SC1/CLKIN
RF7/ANT1 — voo
RF6/AN10 — me7/spo
RF5/AN9 — RB6/SCK
RF4/AN8 F— RA3/SDI/SDA
RF3/AN7 1 Ra2/sS/scL
RF2/ANG F— ratocki
2288542228883 8¢F%r
SEIegoETREE0REE
E i gz2¢ ForgEg
=g C@rR o © 3
28 R
T
TABLE 1-1: PIN DESCRIPTIONS (DURING PROGRAMMING IN PARALLEL MODE): PIC17C7XX
During Programming
Pin Name Pin Name Pin Type Pin Description
RA4:RAO RA4:RAO0 | Necessary in programming mode
TEST TEST | Must be set to “high” to enter programming mode
PORTB<7:0> DAD15:DAD8 I/0 Address & data: high byte
PORTC<7:0> DAD7:DADO I/0 Address & data: low byte
MCLR/VpPP VPP P Programming Power
VDD VDD P Power Supply
Vss Vss P Ground

Legend: | = Input, O = Output, P = Power

DS30274B-page 3-72

© 2000 Microchip Technology Inc.

PIC17C7XX

2.0 PARALLEL MODE PROGRAM
ENTRY

To execute the programming routine, the user must hold
TEST pin high, RA2, RA3 must be low and RA4 must
be high (after power-up) while keeping MCLR low and
then raise MCLR pin from VIL to VDD or VPP. This will
force FFEOh in the program counter and execution will
begin at that location (the beginning of the boot code)
following reset.

The Oscillator must not have 72 OSC
clocks while the device MCLR is between
VIL and VIHH.

Note:

All unused pins during programming are in hi-imped-
ance state.

PORTB (RB pins) has internal weak pull-ups which are
active during the programming mode. When the TEST
pin is high, the Power-up timer (PWRT) and Oscillator
Start-up Timers (OST) are disabled.

FIGURE 2-1:

2.1 Program/Verify Mode

The program/verify mode is intended for full-feature

programmers. This mode offers the following capabili-

ties:

a) Load any arbitrary 16-bit address to start pro-
gram and/or verify at that location.

b) Increment address to program/verify the next
location.

c) Allows arbitrary length programming pulse width.

d) Following a “verify” allows option to program the
same location or increment and verify the next
location.

e) Following a “program” allows options to program
the same location again, verify the same loca-
tion or to increment and verify the next location.

PROGRAMMING/VERIFY STATE DIAGRAM

Pulse RA1
Pulse Pulse (Raise RA1
RA1 RA1 after RAOL)
Load |_ o
Address
RAOT
Pulse RAO
Raise RA1 Program (RAO pulse
before RAOL width is

programming time)

© 2000 Microchip Technology Inc.

DS30274B-page 3-73

PIC17C7XX

2.1.1 LOADING NEW ADDRESS

The program allows new address to be loaded right out
of reset. A 16-bit address is presented on ports B (high
byte) and C (low byte) and the RA1 is pulsed (0 — 1,
then 1 — 0). The address is latched on the rising edge
of RA1. See timing diagrams for details. After loading
an address, the program automatically goes into a “ver-
ify cycle.” To load a new address at any time, the
PIC17C7XX must be reset and the programming mode
re-entered.

2.1.2 VERIFY (OR READ) MODE

“Verify mode” can be entered from “Load address”
mode, “program mode” or “verify mode.” In verify mode
pulsing RA1 will turn on PORTB and PORTC output
drivers and output the 16-bit value from the current
location. Pulsing RA1 again will increment location
count and be ready for the next verify cycle. Pulsing
RAO will begin a program cycle.

21.3 PROGRAM CYCLE

“Program cycle” is entered from “verify cycle” or pro-
gram cycle” itself. After a verify, pulsing RAO will begin
a program cycle. 16-bit data must be presented on
PORTB (high byte) and PORTC (low byte) before RAO
is raised.

The data is sampled 3 TCY cycles after the rising edge
of RAO. Programming continues for the duration of RAO
pulse.

At the end of programming, the user can choose one of
three different routes. If RA1 is kept low and RAO is
pulsed again, the same location will be programmed
again. This is useful for applying over programming
pulses. If RA1 is raised before RAO falling edge, then a
verify cycle is started without address increment. Rais-
ing RA1 after RAO goes low will increment address and
begin verify cycle on the next address.

PIC17C756/756A PIC17C762 PIC17C766
On-chip On-chip On-chip
Program Program Program
EPROM EPROM EPROM

Configuration
Word

Configuration
Word

FIGURE 2-2: PIC17C7XX PROGRAM MEMORY MAP
PIC17C752
0000h
FEOOh| FOSCO On-chip
Program
FEO1h| FOSC1 EPROM
1FFFh
FEO2h | WDTPSO
FEO3h| WDTPSH1
FEO4h PMO 3FFFh
FEO5h | Reserved
FEO6h PM1
FEO7h | Reserved
FEO8h | Reserved
FEO9h | Reserved
FEOEh| BODEN FEOOh|Configuration
FEOFh Word
FEOFh PM2
FFFFh

Configuration
Word

DS30274B-page 3-74

© 2000 Microchip Technology Inc.

PIC17C7XX

3.0

FIGURE 3-1:

PARALLEL MODE PROGRAMMING SPECIFICATIONS

PROGRAMMING ROUTINE FLOWCHART

RESET

4
NO
RA1=0
YES
NO
MCLR =1
Bport = OxE1
(hold for 10 Tcy) VES
Y NO
Present address Read MSB of data L
on ports RB, RC from portB.
hold Tcy after Read LSB of data
RA1 changes from portC YES
to 1 Enable RAO to end
program cycle Band G
4" ports not
driven by part
Program
16-bit j
data If programming is desired
force portB = MSB of data
force portC = LSB of data
(hold 10 Tcy after RAO
is raised)
NO
RA0 =0 ¢
YES YES

YES

Stop driving
address on ports

Increment
Address

Y
NO
YES
NO
YES

Bport = xxx
- B port is forced by the part
B port =
MSB of Data
C port =
LSB of Data
Bport = xxx

- B port tristate, should be forced by user

Min RA + high or low = 10 Tcy

© 2000 Microchip Technology Inc. DS30274B-page 3-75

PIC17C7XX

FIGURE 3-2:

RECOMMENDED PROGRAMMING ALGORITHM FOR USER EPROM

v

Load new address
Pulse-count = 0

'

Set VDD = VDDMIN

!

Verify blank

Pulse
Blank
Check?

¢ YES

Load new data

[

Set VDD to VDDP

'

Program using 100 ps
pulse increment
pulse-count

Verify location
for correct date

YES

Issue “Blank check fail”
error message

Set VDD = VDDMIN

Program err:

or message

Issue error message
“Fail verify @ VDDMIN/MAX”

YES

NO
Pass?

t

Set VDD = VDDMIN
verify location(s)

t

Set VDD = VDDMIN
verify location

t

Location fails
programming issue error
message “Unable to
programming location”

more 100 ps programming

Apply (3x Pulse-count)

pulses for margin
(Over programming)

[

DS30274B-page 3-76

© 2000 Microchip Technology Inc.

PIC17C7XX

FIGURE 3-3: RECOMMENDED PROGRAMMING ALGORITHM FOR CONFIGURATION WORDS

\
Load new address
Pulse-count =0

1 ! |

Set VDD = VDDmin

y

Verify blank

Issue “blank check fail”
error message

Programming error:
Issue error message
“Fail verify @ VDDmin/max”

Load new data Set VDD = VDDMIN

Set VDD = VDDP

Y YES

Program using 100 ps NO
pulse increment Pass? >—— »»l

pulse-count

Set VDD = VDDmax
Verify location(s)

A

Set VDD = VDDmin

Verify location for Verify location
correct data A

YES
Pass? >

NO

Location fails
programming, issue error
message “Unable to
program location”

}

© 2000 Microchip Technology Inc. DS30274B-page 3-77

PIC17C7XX

4.0 SERIAL MODE PROGRAM

ENTRY

41 Hardware Requirements

Certain design criteria must be taken into account for
ISP. Seven pins are required for the interface. These

are shown in Table 4-1.

TABLE 4-1: ISP Interface Pins

4.2 Serial Program Mode Entry

To place the device into the serial programming test
mode, two pins will need to be placed at VIHH. These
are the TEST pin and the MCLR/VPP pins. Also, the fol-
lowing sequence of events must occur:

1. The TEST pin is placed at VIHH.
2. The MCLR/VPP pin is placed at VIHH.
There is a setup time between step 1 and step 2 that

must be meet (See “Electrical Specifications for Serial
Programming Mode” on page 93.)

After this sequence the Program Counter is pointing to
Program Memory Address OxFF60. This location is in
the Boot ROM. The code initializes the USART/SCI so
that it can receive commands. For this the device must
be clocked. The device clock source in this mode is the
RA1/TOCKI pin. Once the USART/SCI has been initial-
ized, commands may be received. The flow is show in
these 3 steps:

1. The device clock source starts.

2. Wait 80 device clocks for Boot ROM code
to configure the USART/SCI.

3. Commands may be sent now.

During Programming

Name Function Type Description
RA4/RX/DT DT I/0 Serial Data
RA5/TX/CK CK I Serial Clock
RA1/TOCKI OSCI | Device Clock Source
TEST TEST | Test mode selection control input. Force to VIHH,
MCLR/VPP MCLR/VPP P Programming Power
VDD VDD P Power Supply
Vss Vss P Ground

DS30274B-page 3-78

© 2000 Microchip Technology Inc.

PIC17C7XX

4.3 Software Commands

This feature is similar to that of the PIC16CXXX mid-
range family, but the programming commands have
been implemented in the device Boot ROM. The Boot
ROM is located in the program memory from OxFF60 to
OxFFFF. The ISP mode is entered when the TEST pin
has a VIHH voltage applied. Once in ISP mode, the
USART/SCI module is configured as a synchronous
slave receiver, and the device waits for a command to
be received. The ISP firmware recognizes eight com-
mands. These are shown in Table 4-2.

TABLE 4-2: ISP COMMANDS

Command Value

RESET PROGRAM 0000 0000
MEMORY POINTER

LOAD DATA 0000 0010
READ DATA 0000 0100
INCREMENT ADDRSS 0000 0110
BEGIN PROGRAMMING 0000 1000
LOAD ADDRESS 0000 1010
READ ADDRESS 0000 1100
END PROGRAMMING 0000 1110

4.3.1 RESET PROGRAM MEMORY POINTER

This is used to clear the address pointer to the Program
Memory. This ensures that the pointer is at a known
state as well as pointing to the first location in program
memory.

4.3.2 INCREMENT ADDRESS

This is used to increment the address pointer to the
Program Memory. This is used after the current location
has been programmed (or read).

FIGURE 4-1: RESET ADDRESS POINTER COMMAND (PROGRAM/VERIFY)

ratrocki JULUTUUTUUUUUUUUTUTUUUUTUTT DU -

VIHH - -

Test /. Ps2
. VIHH -:- - “ : ,,,,,,,,
MCLR/VPP ! L < PS3. (NEXT COMMAND)
'Psi' 1 . 2 | 3 4 5 6 7 8 1 2

rascioog <=0 L L LD L L L P

| s Pse '

| PS4PSS5

RA4 (Data) L, 0 . o o0 0 0 L L N

‘ RA4 = Input

Reset

Program/Verify Test Mode

FIGURE 4-2: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

ravmocis JUIUUUUUTTUUUUTTUUUUUTTUUUUUU DN UU U suuuUvoiuue -~

L Pst 1 2 3,
-

VIHH - -
Test Lo Ps2
—
VIHH - - -
MCLR/VPP : o <PS3. (NEXT COMMAND)

6 7 8 1 2

mscocy ~- L L L L

4, s
‘
‘

PS6

! | PS4PSS :
RA4 (Data) L0 1 A0 ! 0 L L N
‘ RA4 = Input

Reset

Program/Verify Test Mode

© 2000 Microchip Technology Inc.

DS30274B-page 3-79

PIC17C7XX

4.3.3 LOAD ADDRESS

This is used to load the address pointer to the Program
Memory with a specific 16-bit value. This is useful when
a specific range of locations are to be accessed.

4.3.4 READ ADDRESS

This is used so that the current address in the Program
Memory pointer can be determined. This can be used
to increase the robustness of the ISP programming

(ensure that the Program Memory pointers are still in

sync).
FIGURE 4-3: LOAD ADDRESS COMMAND
RA1/TOCKI
VIHH - -
Test 1 F’S<2_
VIHH -1 = 7
MCLR/VPP : ! PS3 . (NEXT COMMAND)
PS1
RAS5 (Clock),
<_> PS7 , PS6 ,
I PS4PS5
RA4 (Data) L0 /o 0 1 0 0 0 0 ¥ X X
! RA4 = Input
Reset “

Program/Verify Test Mode

FIGURE 4-4: READ ADDRESS COMMAND

RA1/TOCKI
VIHH - -
Test _/ _Ps2
ViHe - -
MCLR/VPP . - F’Sij,‘ (NEXT COMMAND)
' PSt |
RAS (Clock) M_ﬂ_ﬂ_ﬂ_ﬂ M
I ! - PSB 'e_PSB_ |
: ' PS4PS5 L '
! Lo | PS9 ‘ -
RA4 (Data) o o/ 1 i N0 o o o DN
‘ RA4 = Input RA4 = Output 1
Reset -

Program/Verify Test Mode

DS30274B-page 3-80 © 2000 Microchip Technology Inc.

PIC17C7XX

4.3.5 LOAD DATA 4.3.6 READ DATA

This is used to load the 16-bit data that is to be pro- This is used to read the data in Program Memory that
grammed into the Program Memory location. The Pro- is pointed to by the current address pointer. This is use-
gram Memory address may be modified after the data ful for doing a verify of the programming cycle and can
is loaded. This data will not be programmed until a be used to determine the number for programming
BEGIN PROGRAMMING command is executed. cycles that are required for the 3X overprogramming.

FIGURE 4-5: LOAD DATA COMMAND

RA1/TOCKI
VIHH - -
Test Lo ps2
ViHH - -
MCLR/VPP ' : ' PS3) (NEXT COMMAND)
I PS1‘
RAS cmckL44444444T4144T4144T4144T4144T4144T4144T414ATATAAAAAAATATAATATAATAT TATAATATAAAAAAATAW
- '« PST SP6
' | PS4PS5
RA4 (Data) o /1 \o o o o 0o o XX
RA4 = Input
Reset <

Program/Verify Test Mode

FIGURE 4-6: READ DATA COMMAND

RA1/TOCKI

VIHH - -
Test /, _PS2
— e

VIHH -1 - T

MCLR/VPP : ! ‘ - PSS : (NEXT COMMAND)
. Pst
RAS CbckL______4_r_1__(_1__(_1__f_1__{_1__{_1__(_1__(_1_______(_1__{_1__(_1 T_T__(_T_______(_W
anlas 1 Pss
: | PS4PSE] ‘
‘ ! : P -
RA4 (Data) L0 o/ 1 0 0 0 0 0 4 { X X \
‘ RA4 = Input ‘ RA4 = Output 1

Reset

Program/Verify Test Mode

© 2000 Microchip Technology Inc. DS30274B-page 3-81

PIC17C7XX

4.3.7 BEGIN PROGRAMMING

This is used to program the current 16-bit data (last
data sent with LOAD DATA Command) into the Pro-
gram Memory at the address specified by the current
address pointer. The programming cycle time is speci-
fied by specification P10. After this time has elapsed,
any command must be sent, which wakes the proces-
sor from the Long Write cycle. This command will be
the next executed command.

4.3.8 3X OVERPROGRAMMING

Once a location has been both programmed and veri-
fied over a range of voltages, 3X overprogramming
should be applied. In other words, apply three times the
number of programming pulses that were required to
program a location in memory, to ensure a solid pro-
gramming margin.

This means that every location will be programmed a
minimum of 4 times (1 + 3X overprogramming).

FIGURE 4-7: BEGIN PROGRAMMING COMMAND (PROGRAM)

ravmoct JUTUUUTUTTUUUUTTUUUUUTTURUUUU DN U U suuuuvouue -~

VIHH - -
Test . Ps2
-

VIHH ':’ -
MCLR/VPP L/ PS3

| -

6 7 8 1 2

L pst | 7 8
VR te e et AN A O e R O e R

! \
1 2 3 . 4 . 5

(NEXT COMMAND)

‘.;*; PS10 :
! | PS4PS5
RA4 (Data) Y 0 o/ 1 0 o .
‘ RA4 = Input

Reset

Program/Verify Test Mode

DS30274B-page 3-82

© 2000 Microchip Technology Inc.

PIC17C7XX

FIGURE 4-8:

RECOMMENDED PROGRAMMING FLOWCHART

START

ISP Command
INCREMENT ADDRESS
or
LOAD ADDRESS

TEST = MCLR = RA4 = RA5 = Vss

4.75V < VDD < 5.25V

1

TEST = Vihh

1

MCLR = Vihh

1

Start Device Clock (on RAO),

Wait 80 Device Clocks

1

ISP Command
RESET ADDRESS

1

N=1

1

A

ISP Command
LOAD DATA

1

ISP Command

BEGIN PROGRAMMING

1

No Yes
A

Wait approx 100 ms

1

ISP Command
READ DATA

1

Data Correct?

No

Yes
N

N=3

1

Y

ISP Command

BEGIN PROGRAMMING

1

Wait approx 100 ms

1

N=N-1

No

No

1

N =07?
*Yes

Programmed all
required locations?

Yes

> N=N+1

Report
Programming
Failure

Verify all Locations

o @ Vddmin

1

Report
No P

< Data Correct?

- Verify
Error

* Yes

@ Vddmin

Verify all Locations
@ Vddmax

* Yes

Report

< Data Correct?

No verify
Error

!

DONE

@ Vddmax

© 2000 Microchip Technology Inc.

DS30274B-page 3-83

PIC17C7XX

5.0 CONFIGURATION WORD

Configuration bits are mapped into program memory.
Each bit is assigned one memory location. In erased
condition, a bit will read as ‘1’. To program a bit, the
user needs to write to the memory address. The data is
immaterial; the very act of writing will program the bit.
The configuration word locations are shown in
Table 5-3. The programmer should not program the
reserved locations to avoid unpredictable results
and to be compatible with future variations of the
PIC17C7XX. It is also mandatory that configuration
locations are programmed in the strict order start-
ing from the first location (0xFE00) and ending with
the last (OXxFEOF). Unpredictable results may occur
if the sequence is violated.

5.1 Reading Configuration Word

The PIC17C7XX has seven configuration locations
(Table 5-1). These locations can be programmed (read
as ‘0’) or left unprogrammed (read as ‘1’) to select var-
ious device configurations. Any write to a configuration
location, regardless of the data, will program that con-
figuration bit. Reading any configuration location
between OxFEOO and OxFEQ7 will place the low byte of
the configuration word (Table 5-2) into DAD<7:0>
(PORTC). DAD<15:8> (PORTD) will be set to OxFF.
Reading a configuration location between OxFE08 and
OxFEOF will place the high byte of the configuration
word into DAD<7:0> (PORTC). DAD<15:8> (PORTD)
will be set to OxFF.

TABLE 5-1: CONFIGURATION BIT
PROGRAMMING LOCATIONS

Bit Address

FOSCO0 0xFE00

FOSC1 OxFEO1

WDTPS0 O0xFE02

WDTPS1 0xFEO3

PMO OxFE04

PM1 0xFE06

BODEN OXFEOE

PM2 OxFEOF

TABLE 5-2: READ MAPPING OF CONFIGURATION BITS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[T] 1] 1] 1] 1] 1] 1] 1]—1Tpm] — [PmMo]WDTPS1WDTPSO|FOSC1[FOSCO]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[T 1 1] 171171711 [pm2] BODEN]PM2]PM2] PM2 | PM2 | PM2 | PM2 |

—=Unused

PM<2:0>, Processor Mode Select bits

1
0

111 = Microprocessor mode

110 = Microcontroller mode

101 = Extended Microcontroller mode

000 = Code protected microcontroller mode

BODEN, Brown-out Detect Enable

Brown-out Detect Circuitry enabled
Brown-out Detect Circuitry disabled

WDTPS1:WDTPS0, WDT Prescaler Select bits.

11 = WDT enabled, postscaler = 1

10 = WDT enabled, postscaler = 256

01 = WODT enabled, postscaler = 64

00 = WDT disabled, 16-bit overflow timer
FOSC1:FOSCO, Oscillator Select bits

11 = EC oscillator

10 = XT oscillator

01 = RC oscillator

00 = LF oscillator

DS30274B-page 3-84

© 2000 Microchip Technology Inc.

PIC17C7XX

5.2 Embedding Configuration Word Information in the Hex File

To allow portability of code, a PIC17C7XX programmer is required to read the configuration word locations from the
hex file when loading the hex file. If the configuration word information was not present in the hex file, then a simple
warning message may be issued. Similarly, while saving a hex file, all configuration word information must be included.
An option to not include the configuration word information may be provided. When embedding configuration word
information in the hex file, it should be to address FEOOh.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

5.3 Reading From and Writing To a Code
Protected Device

When a device is code-protected, writing to program
memory is disabled. If program memory is read, the
value returned is the XNORS result of the actual pro-
gram memory word. The XNORS result is the upper
eight bits of the program memory word XNOR’d with
the lower eight bits of the same word. This 8-bit result
is then duplicated into both the upper and lower 8-bits
of the read value. The configuration word can always
be read and written.

© 2000 Microchip Technology Inc. DS30274B-page 3-85

PIC17C7XX

5.4 CHECKSUM COMPUTATION

The checksum is calculated by summing the following:

¢ The contents of all program memory locations
¢ The configuration word, appropriately masked
¢ Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

Table describes how to calculate the checksum for
each device. Note that the checksum calculation differs
depending on the code protect setting. Since the pro-
gram memory locations read out differently, depending
on the code protect setting, the table describes how to
manipulate the actual program memory values to sim-

ulate the values that would be read from a protected
device. When calculating a checksum by reading a
device, the entire program memory can simply be read
and summed. The configuration word and ID locations
can always be read.

Note: Some older devices have an additional
value added in the checksum. This is to
maintain compatibility with older device

programmer checksums.

TABLE 5-3: CHECKSUM COMPUTATION
. Code . Blank | 9XCODE at0
Device Checksum and max
Protect Value
address
PIC17C752 | MP mode SUM[0x0000:0x1FFF] + (CONFIG & 0xCO05F) 0xAO5F 0x221D
MC mode SUM[0x0000:0x1FFF] + (CONFIG & 0xCO5F) O0xAO04F 0x220D
EMC mode SUM[0x0000:0x1FFF] + (CONFIG & 0xCO5F) O0xAO1F 0x21DD
PMC mode SUM_XNORB8[0x0000:0x1FFF] + (CONFIG & 0xCO5F) 0x200F O0xE3D3
PIC17C756 | MP mode SUM[0x0000:0x3FFF] + (CONFIG & 0xCO5F) 0x805F 0x021D
MC mode SUM[0x0000:0x3FFF] + (CONFIG & 0xCO05F) 0x804F 0x020D
EMC mode SUM[0x0000:0x3FFF] + (CONFIG & 0xCO05F) 0x801F 0x01DD
PMC mode SUM_XNORB8[0x0000:0x3FFF] + (CONFIG & 0xCO5F) 0x000F 0xC3D3
PIC17C756A | MP mode SUM[0x0000:0x3FFF] + (CONFIG & 0xCO5F) 0x805F 0x021D
MC mode SUM[0x0000:0x3FFF] + (CONFIG & 0xCO05F) 0x804F 0x020D
EMC mode SUM[0x0000:0x3FFF] + (CONFIG & 0xCO05F) 0x801F 0x01DD
PMC mode SUM_XNORB8[0x0000:0x3FFF] + (CONFIG & 0xCO5F) 0x000F 0xC3D3
PIC17C762 MP mode SUM[0x0000:0x1FFF] + (CONFIG & 0xCO5F) OxAO5F 0x221D
MC mode SUM[0x0000:0x1FFF] + (CONFIG & 0xCO5F) O0xAO04F 0x220D
EMC mode SUM[0x0000:0x1FFF] + (CONFIG & 0xCO5F) O0xAO1F 0x21DD
PMC mode SUM_XNORB8[0x0000:0x1FFF] + (CONFIG & 0xCO5F) 0x200F O0xE3D3
PIC17C766 | MP mode SUM[0x0000:0x3FFF] + (CONFIG & 0xCO5F) 0x805F 0x021D
MC mode SUM[0x0000:0x3FFF] + (CONFIG & 0xCO05F) 0x804F 0x020D
EMC mode SUM[0x0000:0x3FFF] + (CONFIG & 0xCO05F) 0x801F 0x01DD
PMC mode SUM_XNORS8[0x0000:0x3FFF] + (CONFIG & 0xCO05F) 0x000F 0xC3D3

Legend: CFGW = Configuration Word
SUM][a:b] = [Sum of locations a to b inclusive]

SUM_XNORS8(a:b) = [Sum of 8-bit wide XNOR copied into upper and lower byte, of locations a to b inclusive]
*Checksum = [Sum of all the individual expressions] MODULO [OxFFFF]

+ = Addition
& = Bitwise AND

DS30274B-page 3-86

© 2000 Microchip Technology Inc.

PIC17C7XX

5.5 Device ID Register

Program memory location FDFFh is preprogrammed
during the fabrication process with information on the
device and revision information. These bits are
accessed by a TABLRO instruction, and are access
when the TEST pin is high. As as a result, the device ID
bits can be read when the part is code protected.

TABLE 5-4: DEVICE ID REGISTER DECODE

Resultant Device
Device ID Value
Device
DEV REV
PIC17C766 0000 0001 001 X XXXX
PIC17C762 0000 0001 101 X XXXX
PIC17C756 0000 0000 001 X XXXX
PIC17C756A 0000 0010 001 X XXXX
PIC17C752 0000 0010 101 X XXXX

© 2000 Microchip Technology Inc.

DS30274B-page 3-87

PIC17C7XX

6.0

REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

PARALLEL MODE AC/DC CHARACTERISTICS AND TIMING

Operating Temperature:
Operating Voltage:

Standard Operating Conditions

+10°C < TA < +70°C, unless otherwise stated, (25°C is recommended)

4.5V < VDD < 5.25V, unless otherwise stated.

Par:lr::eter Sym. Characteristic Min. | Typ.| Max. |Units| Conditions/Comments
PD1 VDDP Supply voltage during pro- | 4.75 | 5.0 5.25 Vv
gramming
PD2 IDDP Supply current during pro- — — 50 mA | Freq=10MHz, VDD = 5.5V
gramming
PD3 VDDV Supply voltage during verify| VDD — VDD \" Note 2
min. max.
PD4 VPP Voltage on VPP/MCLR pin | 12.75 | — 13.25 \' Note 1
during programming
PD6 IPP Programming current on — 25 50 mA
VPP/MCLR pin
P1 Foscp Osc/clockin frequency dur- 4 — 10 MHz
ing programming
P2 Tcy Instruction cycle 1 — 0.4 us Tcy = 4/Foscp
P3 TIRV2TSH | RAO, RA1, RA2, RA3, RA4 1 — — us
setup before TESTT
P4 TTsH2mcH TESTT to MCLRT 1 — — us
P5 TBcV2IRH |RC7:RCO, RB7:RBOvalidto| 0 — — us
RA1 or RAOT:Address/Data
input setup time
P6 TiIRH2BcL | RA1 or RAOT to RB7:RBO, [10 Tcy| — — us
RC7:RCO invalid; Address
data hold time;
P7 TOckiL2recZ |RT! to RB7:RB0O, RC7:RCO| — | — | 8Tcy
hi-impedance
P8 TOcKIH2BCV RA1T to data out valid — — | 10 Tey
P9 TPROG Programming pulse width 100 1000 us
P10 TIRH2IRL RAO, RA1 high pulse width [10 Tcy| — — us
P11 TIRL2IRH RAO, RA1 low pulse width {10 Tcy| — — us
P12 TOckiV2NL | RA1T before INT! (to go 0 — — us
from prog cycle to verify w/o
increment)
P13 TINL2RTL RAT1 valid after RAO (to |10 Tcy| — — us
select increment or no
increment going from pro-
gram to verify cycle
P14 TvPPS VPP setup time before RAOT| 100 | — — us Note 1
P15 TVPPH VPP hold time after INT{ 0 — — us Note 1
P16 TvDV2TSH VDD stable to TESTT 10 | — — ms
P17 TrRBV2MCH | RB input (E1h) valid to VPP/| 0 — — us
MCLRT
P18 TMCH2RBI RB input (E1h) hold after | 10Tcy| — — ns
VPP/MCLRT
P19 TvPL2VDL VDD power down after VPP 10 — — ms
power down

Note 1: VPP/MCLR pin must only be equal to or greater than VDD at times other than programming.
2: Program must be verified at the minimum and maximum VDD limits for the part.

DS30274B-page 3-88

© 2000 Microchip Technology Inc.

PIC17C7XX

PARALLEL MODE PROGRAMMING AND VERIFY TIMINGS |

FIGURE 6-1:

ovy
ai04aq Ly bBuisiel Aq
0Od WawsaJoul Jou oq
i + X uoneoo| weiboid

| + X uoneoo| Ajuap

1

_

_ _
|

| + X uoneoo| Ajuan

(

|
100 0T vI¥a y———(1NO o._\,EBM

|
|
_ o Timaa
1NO IH vlva D f._.DO IH %Pdﬁ_n_)

1NO IH viva

Lvd Buisind Aq
| + X O} SSaIppY JUswWalou|
X uoieoo| Ajiep

I =vVvd
0=¢vd
0=¢vd 910N
X SSeIppy peoT Anuz apony

Buiwwesboiq

(_otuaav X o e e e e <0270
n induj
| ssaippy dwnp

A _I|_n_m__o<X HL3

ONI lid 0ld

£\ T

DS30274B-page 3-89

© 2000 Microchip Technology Inc.

PIC17C7XX

PARALLEL MODE PROGRAMMING AND VERIFY TIMINGS Il

FIGURE 6-2:

X uoieoo| Ajuep

0vY 81048q
Lvd Buistes Ag Od
JO JuBWaJIOUI JUSABId
81040 Ajlian 0} anoN
X uoleso| weiboid

X uoneoo| welibold

X uoneoo| Ajusp

I =¥vH
0=¢vd

0=¢vd 90N

Anus apow

X Ssalppe peoT
Buiwweiboid

1Nn0O O7 vivd)

O7 Haav <0:/>0H

| : | |

1NO 0T viva v|"|A NI"0T, vivaQ)—— NI"OT yivg—(NI"O7 Wiva)
|
1

{10 viva

induj
ssaippy dwnp

¢ NCIH

1NO H viva — _Ilm_n_n_<x Hi3

N <oay

|
|
viva)——(NITIH ¥lya—(NITIH Vv }
T |
I I
|

6d

* ' vid

Y o
N v

SN\

| V. HIOW/ddA

i s

ASH
/ 1seL

© 2000 Microchip Technology Inc.

DS30274B-page 3-90

PIC17C7XX

PARALLEL MODE PROGRAMMING AND VERIFY TIMINGS Il

FIGURE 6-3:

2 + X uoneoo| Ajsp

|m NI 0T vivd 1//

|& NI H vivd

|

2 + X O} ssalppe
JuswaJoul 0} LYY asind
L + X uoneoo| Ajiep

| + X UOI}ED0| JUBWaIOU| O}

0VY Joye |vY esiey
X uoneoo| welboid

N

I =vVY
0=¢vY
0=2¢vH
ddA = HTOW/ddA
9t =1sal
spow \DHd ul 8dIAeQ :8lON

Sy} Op O} Ovd

X uoneoo] Auep | 24044 HvH 8SIEY Od X uoieoo| Ajuap
JuswiaIoul Jou 0q

X uoneoo| weiboid

1

1N0 OT VIVY NI'OT vivd 100 0T VAVO: NI 0T Vlva)y—4Nno oﬂﬁél/ <0:£>0H
1N0 IH VIvG NI IH vLlva 1N0 IH vvO) NITH VIVay»—(1NOIH VIv(, / <0:.>gd
\ uﬂ 4/ ovH
|
| Od ONI
! vy

DS30274B-page 3-91

© 2000 Microchip Technology Inc.

PIC17C7XX

POWER-UP/DOWN SEQUENCE FOR PROGRAMMING

FIGURE 6-4:

((
))
§§

VDD

((

)/

((
)/

((
)/

((

)7

((

VPP/MCLR

Test

RA4

RA2

RA3

RAO

)/
((
)/

E1H

RB<7:0>

P18

© 2000 Microchip Technology Inc.

DS30274B-page 3-92

PIC17C7XX

7.0 ELECTRICAL SPECIFICATIONS FOR SERIAL PROGRAMMING MODE
All parameters apply across the specified operating ranges Vcec = 2.5V to 5.5V
unless otherwise noted. Commercial (C): Tamb = 0°to +70°C
Industrial (1): Tamb = -40°C to +85°C
Parameter Sym Characteristic Min Typt Max Units Conditions
No.
VIHH Programming Voltage on VPP/ 12.75 — 13.75 \%
MCLR pin and TEST pin.
PP Programming current on MCLR pin — 25 50 mA
Fosc Input OSC frequency on RA1 — — 8 MHz
Tcy Instruction Cycle Time — 4/Fosc —
PS1 TVH2VH | Setup time between TEST = VIHH 1 — — us
and MCLR = VIHH
PS2 TSER Serial setup time 20 — — Tcy
PS3 TSCLK Serial Clock period 1 — — Tcy
PS4 TSET1 Input Data Setup Time to serial 15 — — ns
clock 4
PS5 THLD1 Input Data Hold Time from serial 15 — — ns
clock 4
PS6 ToLY1 Delay between last clock 1 to first 20 — — Tey
clock T of next command
PS7 ToLy2 | Delay between last clock 1 of com- 20 — — Tey
mand byte to first clock T of read of
data word
PS8 ToLy3 | Delay between last clock of com- 30 — — Tey
mand byte to first clock T of write of
data word
PS9 TDLY4 Data input not driven to next clock 1 — — Tcy
input
PS10 ToLy5 | Delay between last begin program- 100 — — us
ming clock { to last clock 4 of next
command (minimum programming
time)

*

These parameters are characterized but not tested.

T Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not

tested.

© 2000 Microchip Technology Inc.

DS30274B-page 3-93

PIC17C7XX

FIGURE 7-1: RESET ADDRESS POINTER COMMAND (PROGRAM/VERIFY)

ravmoce JUUUUUUUTUUUUUUTUUUUUTUDUUUU T URUU U e Uit

72 L e
Test _/, _Ps2
e
R T e e
MCLR/VPP L/ _ Ps3. (NEXT COMMAND)
N I T S 4 5 6 7 8 1 2
Rascioc < L L0 L L
| s - PS6
| PS4PSS5
RA4 (Data) 0l 0 o0 o o o o o /A
‘ RA4 = Input
Reset

Program/Verify Test Mode

FIGURE 7-2: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

ravmocki JULUTUUTUUUUUUUUTUTUUUUTUTTUUURUuU U vouuue -~

vw™s - - = = - - = -
Test /. _Ps2.
. VIHH - - - ———————————————S
MCLR/VpPP ! ‘ ! <Ps3. (NEXT COMMAND)
'pst 1 2 - 6 7 8 1 2
rascoc = L L L P
] lenlent . PS6 |
! | Ps4Psh
RA4 (Data) o [/ 1\ o' 0o o o o /N
] RA4 = Input
Reset

Program/Verify Test Mode

DS30274B-page 3-94 © 2000 Microchip Technology Inc.

PIC17C7XX

FIGURE 7-3: LOAD ADDRESS COMMAND
RA1/TOCKI
VIHH - -
Test P2
VIHH - -
MCLR/VpPpP ‘ : !) PS3 . (NEXT COMMAND)

PS1
RAS5 (Clock),

Program/Verify Test Mode

<—> ‘<—>PS7 <—>PSG d
wPS4P35
RA4 (Data) 0o/ 1 0 1 0 0 0 0 _ X
! RA4 = Input
Reset -

FIGURE 7-4: READ ADDRESS COMMAND
RA1/TOCKI
VIHH - -
Test /, _Ps2
VIHH - - :
MCLR/VPP*I ‘ ‘45‘3’» (NEXT COMMAND)

‘PS1
RA5 (Clock) HHHQHHHHQ

Program/Verify Test Mode

‘<—>4<-> '« > : « PS6
' X ' PS4PSS ! . | i
' \ I ! - |
! ‘ \ PS9 : _
RA4 (Data) ‘ o 0o/ 1 1 0 0 0 0 { . |
‘ RA4 = Input ‘ RA4 = Output 1
Reset ‘

© 2000 Microchip Technology Inc.

DS30274B-page 3-95

PIC17C7XX

FIGURE 7-5: LOAD DATA COMMAND

RA1/TOCKI
VIHH - -,
Test Lo ps2
VIHH : - ‘
MCLR/VerP ! 1 ! PS3,. (NEXT COMMAND)
‘ PS1‘
RAS5 (Clock),
- '« PST 4&»
| PS4PS5
RA4 (Data) L0 1 0 o o 0 0 0 X X
RA4 = Input
Reset -
‘ Program/Verify Test Mode
FIGURE 7-6: READ DATA COMMAND
RA1TOCKI
VIHH - -
Test /, _Ps2
VIHH ,:, -7 :
MCLR/VPP : ! ‘ - PSS : (NEXT COMMAND)
| PS1
RA5 (Clock)
! ' .. PS8 '« PS6
1 \PS4P85] '
‘ | ' ‘<_S>g :
‘ ‘ s _
RA4 (Data) .0 o/ 1 B 0 0 { X ;
‘ RA4 = Input ‘ RA4 = Output |
Reset -
Program/Verify Test Mode
FIGURE 7-7: BEGIN PROGRAMMING COMMAND (PROGRAM)
ravmockt JULTTITUUUUUTUITUUUTUUTUU T UuiL -
vws- - -~ - - - -
Test /[, _Ps2.
VIHH ':' - ‘ : ________
MCLR/VPP . PSg ‘ (NEXT COMMAND)
St | 7 8
RA5 (Clock) -]
1 M» PS10 ‘
! | PS4PS!
RA4 (Data) L0 0 o/ 1 o o 0 o
] RA4 = Input
Reset :

Program/Verify Test Mode

DS30274B-page 3-96 © 2000 Microchip Technology Inc.

MICROCHIP

PIC18CXXX

In-Circuit Serial Programming for PIC18CXXX OTP MCUs

This document includes the programming
specifications for the following devices:

* PIC18C452 * PIC18C242

* PIC18C252 * PIC18C442

1.0 PROGRAMMING THE
PIC18CXXX

The PIC18CXXX can be programmed using a serial
method. while in the users system. This allows for
increased design flexibility. This programming specifi-
cation applies to PIC18CXXX devices in all package
types.

1.1 Hardware Requirements

The PIC18CXXX requires two programmable power
supplies, one for VDD (2.0V to 5.5V recommended) and
one for VPP (12V to 14V). Both supplies should have a
minimum resolution of 0.25V.

1.2 Programming Mode

The programming mode for the PIC18CXXX allows
programming of user program memory, special loca-
tions used for ID, and the configuration word for the
PIC18CXXX.

Pin Diagram
PDIP, Windowed CERDIP

MCLR/VPp — [1 J 40 1 — RB7
RA0 «—=[] 2 39 [1-— RB6
RA1 «—[] 3 38 [1=— RB5
RA2 ~—[] 4 37 ~— RB4
RA3 ~—[] 5 36 [~ RB3
RA4/TOCKI — O 6 35 1 — RB2
RA5 — [7 34 [1 ~—— RB1

REO «—[8 Y 33 [J<—= RBO/INT
RE1 <—[9 o) 32 1 <~—vop
RE2 ~—[] 10 ; 31 [0 ~—vss
Voo — O 11 o) 30 d~— RD7
vss — [12 B 29 [1+— RD6
OSC1/CLKIN — [13 x 28 [1 —— RD5
0SC2/CLKOUT «——[14 > 27 [0 —— RD4
RCo «—[] 15 26 [1=— RC7
RC1 «—[] 16 25 [1<— RC6
RCc2 —[] 17 24 1 +—RC5
Rc3 —[] 18 23 1 +— RC4
RDO — [] 19 22 [1 ~—— RD3
RD1 — [] 20 21 [~—— RD2

PDIP, SOIC, Windowed CERDIP (300 mil)

MCLRVPP — = [] 1 J 28[] <«— RB7
RAO -—» []2 27] «-— RB6
RA1 «— []3 26|] «+— RBS5
RA2 «—» []4 25] «—» RB4
RA3 «— [|5 - 24[] «+—» RB3
RA4/TOCKI <+—» [|6 o 23[] «+— RB2
RA5 «—» [|7 - 22[] <— RB1

Vss — [8 8 21[7] <— RBO/INT
OSC1/CLKIN — []9 § 20[7] <— Voo
0SC2/CLKOUT <—— [10 19 19[] -—— Vss
RCO «—» [] 11 18[] <— RC7
RC1 <+— []12 17[]] <+—> RCé
RC2 «— []13 16|] <—Rcs
RC3 -— [] 14 15[] <—Rc4

TABLE 1-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18C242/252/442/452

During Programming
Pin Name
Pin Name Pin Type Pin Description

MCLR/VpPp Vpp Programming Power

VDD VDD Power Supply

Vss Vss Ground

RB6 RB6 Serial Clock

RB7 RB7 Serial Data

Legend: | = Input, O = Output, P = Power

© 2000 Microchip Technology Inc.

DS39028A-page 3-97

PIC18CXXX

2.0 IN-CIRCUIT SERIAL
PROGRAMMING MODE (ICSP)

2.1 Introduction

Serial programming mode is entered by asserting
MCLR/VPP = VIHH and RB6, RB7 = 0.

Instructions are fed into the CPU serially on RB7, and
are shifted in on the rising edge of the serial clock pre-
sented on RB6. Programming and verification are per-
formed by executing TBLRD and TBLWT instructions.
The address pointer to the program memory is simply
the table pointer. The address pointer can be incre-
mented and decremented by executing table reads and
writes with auto-decrement and auto-increment.

2.2 ICSP OPERATION

In ICSP mode, instruction execution takes place
through a serial interface using RB6 and RB7. RB7 is
used to shift in instructions and shift out data from the
TABLAT register. RB6 is used as the serial shift clock
and the CPU execution clock. Instructions and data
are shifted in LSb first.

In this mode all instructions are shifted serially, then
loaded into the instruction register, and executed. No
program fetching occurs from internal or external pro-
gram memory. 8-bit data bytes are read from the
TABLAT register via the same serial interface.

2.2.1 4-BIT SERIAL INSTRUCTIONS

A set of 4-bit instructions are provided for ICSP mode,
so that the most common instructions used for ICSP
can be fetched quickly, and thus reduce the amount of
time required to program a device. The 4-bit opcode is
shifted in while the previous instruction fetched exe-
cutes. The 4-bit instruction contains the lower 4-bits of
an instruction opcode. The upper 12-bits default as all
0’s. Instructions with all 0’s in the upper byte of the
instruction word, are by default considered special
instructions. The serial instructions are decoded as
shown in Table 2-1:

TABLE 2-1: SPECIAL INSTRUCTIONS FOR SERIAL INSTRUCTION EXECUTION AND ICSP
I\g;ee':'a‘::::’ Description Cycles | 4-Bit Opcode Asfft:::: d

NOP No Operation (Shift in16-bit instruction) 1 0000 None
TBLRD * Table Read (no change to TBLPTR) 2 1000 None
TBLRD *+ Table Read (post-increment TBLPTR) 2 1001 None
TBLRD *- Table Read (post-decrement TBLPTR) 2 1010 None
TBLRD +* Table Read (pre-increment TBLPTR) 2 1011 None
TBLWT * Table Write (no change to TBLPTR) 2 1100 None
TBLWT *+ Table Write (post-increment TBLPTR) 2 1101 None
TBLWT *- Table Write (post-decrement TBLPTR) 2 1110 None
TBLWT +* Table Write (pre-increment TBLPTR) 2 1111 None
Legend: Refer to the PIC18CXXX Data Sheet (DS39026) for opcode field descriptions.

Note: All special instructions not included in this table are decoded as NOP’s

In-Circuit Serial Programming™ (ICSP) is a trademark of Microchip Technology Inc.

DS39028A-page 3-98

© 2000 Microchip Technology Inc.

PIC18CXXX

2.2.2 INITIAL SERIAL INSTRUCTION
OPERATION

Upon ICSP mode entry, the CPU is idle. The execution
of the CPU is governed by a state machine. The CPU
clock source comes from RB6 which also acts as the
serial shift clock. The first clock transition on RB6 is
absorbed after RESET. While the first instruction is
being clocked in, a forced NOP is executed.

Following the FNOP instruction execution and the next
shifting in of the next instruction, the serial state
machine will do one of three things depending upon
the 4-bit instruction that was fetched:

1. If the instruction fetched was a NOP, the state
machine will suspend the CPU awaiting a 16-bit
wide instruction to be shifted in.

2. If the instruction is a TBLWT, the state machine
suspends the CPU from execution while sixteen
bits of data are shifted in as data for the TBLWT
instruction.

3. If the instruction is a TBLRD, then execution of
the TBLRD instruction begins immediately for
eight clock cycles, followed by eight clock cycles
where the contents of the TABLAT register is
shifted out onto RB7.

Once sixteen clock cycles have elapsed, the next 4-bit
instruction is fetched while the current instruction is
executed. Each instruction type is described in later
sections.

FIGURE 2-1: SERIAL INSTRUCTION TIMING AFTER RESET

QCycles Q1Q1'Q2! Q3. Q4
Pttt

Q4.Q1,Q2,Q3, Q4

VIHH - = %

MCLR/VPP

. P2,

Reset

RB7 = Input or Output depending upon instruction

\
\
! . . . -
\ \
i 2 3 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4

RB6 (Clock) | . oo
! I p5 ! ! ! " p5 ! =
: -~ ! ;3:0':1 -~ . .
\

RB7 (Data) /1 1\ o /1 \ A /\ /A \i/T_

Z ~— ,
' YT T~ Y
! Execute FNOP 16-bit Instruction Load or Execute Instruction,
! Fetch 4-bit Instruction 16-bit data Fetch or) Fetch Next 4-bit
. (TBLWT **) Perform TABLRD followed by shift data out Instruction
\
\
\

ICSP Mode

© 2000 Microchip Technology Inc.

DS39028A-page 3-99

PIC18CXXX

2.2.3 NoP SERIAL INSTRUCTION EXECUTION 224 ONE CYCLE 16-BIT INSTRUCTIONS

The NOP serial instruction is used to allow execution of If the instruction fetched is a one cycle instruction,
all other instructions not included in Table 2-1. When then the instruction operation will be completed in the
the NOP instruction is fetched, the serial execution 4 clock cycles following the instruction fetched. During
state machine suspends the CPU for 16 clock cycles. instruction execution, the next 4-bit serial instruction is
During these 16 clock cycles, all 16-bits of an instruc- fetched (See Figure 2-2).

tion are fed into the CPU and the NOP instruction is
discarded. Once all 16 bits have been shifted in the
state machine will allow the instruction to be executed
for the next 4 clock cycles.

Note: 16-bit TBLWT and TBLRD instructions are
not permitted. They will cause timing prob-
lems with the serial state machine. If the
user wishes to perform a TBLWT or TBLRD
instruction, it must be performed as a 4-bit
instruction.

FIGURE 2-2: SERIAL INSTRUCTION TIMING FOR 1 CYCLE 16-BIT INSTRUCTIONS
Q Cycles fQ1 fozf st Q4 Q4 fo1 sz st Q4

MCLR/VPP = VIHH

\ ' ' ' ' '
\ , . ' ' '
‘i 2 3 4 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4

RB6 (Clock) u u u |_’ u u u \—
P5 ' '« P5,
' ' Ppap4 ! '

RB7 (Data) 0 0 0 0 /<)\ /1 1\&/TL

~ ~
Execute PC-2, 16-bit Instruction Fetch Execute 16-bit Instruction,
Fetch NOP to enable Fetch Next Serial
16-bit Instruction fetch 4-bit Instruction

RB7 = Input

ICSP Mode

DS39028A-page 3-100 © 2000 Microchip Technology Inc.

PIC18CXXX

FIGURE 2-3: 16-BIT 1 CYCLE SERIAL INSTRUCTION FLOW AFTER RESET

s >

Execute 16-bit Instruction,
MCLR = Vss, anc_! s_hift in r?ext
RB6, RB7 =0 4-bit instruction,
Num_Clk =1,
MCLR = VIHH
l Clock
Transition
Shift in 1st RB6?
4-bit instruction, Yes
Num_Clk =1,
Shift(R) RB7
Num_CIlk = Num_CIk + 1
Clock o
Transition —
Nt
Yes

Shift(R) RB7
Num_Clk = Num_Clk + 1

!

4-bit instruction = NOP,
Shift in 16-bit instruction,
Num_Clk =1

I

Clock
Transition
RB6?

Yes

No

Shift(R) RB7
Num_CIlk = Num_Clk + 1

No
Num_Clk = 162>——m—

Yes

© 2000 Microchip Technology Inc. DS39028A-page 3-101

PIC18CXXX

FIGURE 2-4:

16-BIT 1 CYCLE SERIAL INSTRUCTION FLOW

execute (PC - 2),

and shift in next

4-bit instruction,
Num_Clk =1,

CIO(.:I'(No
Transition
RB6?

Yes l

execute 16-bit Instruction,
and shift in next
4-bit instruction,
Num_Clk =1,

Shift(R) RB7
Num_Clk = Num_CIk + 1

Clock
Transition
RB6?

Yes

l

4-bit instruction = NOP,
Shift in 16-bit instruction,
Num_Clk =1

Shift(R) RB7
Num_Clk = Num_Clk + 1

Clock
Transition
RB6?

Yes

No

Shift(R) RB7
into ROMLAT<15>,
Num_CIlk = Num_CIk + 1

End

DS39028A-page 3-102

© 2000 Microchip Technology Inc.

PIC18CXXX

2.3 Serial Instruction Execution For Two
Cycle, One Word Instructions

When a NOP instruction is fetched, the serial execution
state machine suspends the CPU for 16 clock cycles.
During these 16 clock cycles, all 16-bits of an instruc-
tion are fed in and the NOP instruction is discarded.

If the instruction fetched is a two cycle, one word
instruction, then the instruction operation will require a
second “dummy fetch” to be performed before the
instruction execution can be completed. The first cycle
of the instruction will be executed in the 4 clock cycles
following the instruction fetched. During the first cycle
of instruction execution, the next 4-bit serial instruction
is fetched. In order to perform the second half of the
two cycle instruction, this 4-bit instruction loaded in
must be a NOP, so that state machine will remain idle
for the second half of the instruction. Following the
fetch of the second NOP, the state machine will shift
16-bits of data that will be discarded. After the 16-bits
of data is shifted in, the state machine will release the
CPU, and allow it to perform the second half of the two
cycle instruction. During the second half of the two
cycle instruction execution, the next 4-bit instruction is
loaded (See Figure 2-5).

FIGURE 2-5: 2 CYCLE 1 WORD 16-BIT INSTRUCTION SEQUENCE

QCycles 'Q1:Q2!Q3' Q4 'Q1,Q2,Q3, Q4 .Q1,Q2,Q3, Q4
MCLR/VPP o P2, o o
:1 :2 :3 :4 :1 :2 15 16 :1 :2 :3 :4 1 2 15 16 :1 :2 :3 :4
mes ooy — U LU U UL T UL UL
' P ' P5," ' P5,! ' P5,!
. i o, ; . i i i i

RB7 (Data) 0 0 0 0 A)y A N/t \e ST\

A ! X J
~ ~ ~ ~ ~
Execute PC-2 Fetch 16-bit Instruction Fetch 4-bit NOP, Fetch 2nd 16-bit Execute 2nd Cycle, .
Fetch 4-bit NOP Execute 1st Cycle Operand Word (discarded) Fetch Next 4-bit Instruction
of 16-bit Instruction
RB7 = Input
ICSP Mode

© 2000 Microchip Technology Inc. DS39028A-page 3-103

PIC18CXXX

2.4 Serial Instruction Execution For Two
Word, Two Cycle Instructions

After a NOP instruction is fetched, the serial execution
state machine suspends the CPU in the Q4 state for
16 clock cycles. During these 16 clock cycles, all 16-
bits of an instruction are fed in and the NOP instruction
is discarded.

If the 16-bit instruction fetched is a two cycle, two word
instruction, then the instruction operation will require a
second operand fetch to be performed before the
instruction execution can be completed. The first cycle
of the instruction will be executed in the 4 clock cycles
following the 16-bit instruction fetch. During the first
cycle of instruction execution, the next 4-bit serial
instruction is fetched. In order to perform the second
half of the two cycle instruction, this 4-bit instruction
loaded in must also be a NOP, so that the state
machine will remain idle for the second half of the
instruction. Following the fetch of the second NOP, the
state machine will shift 16-bits of data that will be used
as an operand for the two cycle instruction. After the
16-bits of data are shifted in, the state machine will
release the CPU, and allow it to execute the second
half of the two cycle instruction. During the second half
of the two cycle instruction execution, the next 4-bit
instruction is loaded (see Figure 2-6).

FIGURE 2-6: 16-BIT 2 CYCLE 2 WORD INSTRUCTION SEQUENCE

QCycles 'Q1!Q2/Q3' Q4 1Q1,Q2,Q3, Q4 1Q1,Q2/Q3,Q4

MCLR/VPP = VIHH Py

12 3 4 15 16 1 2 3

- ' '
1.2 .3 4 1 2 15 16 1 2 '3 4
Res Clooky | L LT T gUL JTUUUL
6 (C OC) I P5 I ' I ' I P5 I I P5 I I P5 I
I e [[[

P3P4

RB7 (Data) 00 0 o0 A \ o 0 0o o[N /1 1\o /1\

h'd N e e e
Execute PC-2, Fetch 1st word Execute 1st Cycle, Fetch 2nd word Execute 2nd Cycle,
Fetch 4-bit NOP Fetch 4-bit NOP Fetch next 4-bit

Instruction
RB7 = Input
ICSP Mode

DS39028A-page 3-104 © 2000 Microchip Technology Inc.

PIC18CXXX

FIGURE 2-7:

16-BIT 2 CYCLE 2 WORD SERIAL INSTRUCTION FLOW AFTER RESET

MCLR = VPP,
RB6, RB7 =0

!}
‘ MCLR = VIHH ‘
|

A 4

execute FNOP and shift in
1st 4-bit instruction,
Num_Clk =1,

Clock
Transition
RB6?

Yes L

Shift(R) RB7,
Num_CIlk = Num_CIk + 1

}

4-bit instruction = NOP,
Shift in 16-bit instruction,
Num_Clk =1

Clock
Transition
RB6?

Yes

No

Shift(R) RB7,
Num_Clk = Num_Clk + 1

No

Yes l

Enable CPU,
execute 1st cycle of 16-bit
instruction, and shift in next

4-bit instruction,

Num_Clk = 1,

Clock
Transition
RB6?

Yes |
A 4

No

Shift(R) RB7,
Num_Clk = Num_Clk + 1

|

4-bit instruction = NOP,
Shift in 2nd 16-bit operand,
Num_Clk =1

Clock
Transition
RB6?

Yes

No

Shift(R) RB7,
Num_Clk = Num_CIk + 1

No

Yes

execute 2nd cycle of 16-bit
instruction, and shift in
next 4-bit instruction
Num_Clk =1

Clock
Transition
RB6?

Yes ¢

No

Shift(R) RB7,
Num_Clk = Num_CIK + 1

!

© 2000 Microchip Technology Inc.

DS39028A-page 3-105

PIC18CXXX

FIGURE 2-8:

16-BIT 2 CYCLE 2 WORD SERIAL INSTRUCTION FLOW

v

execute (PC-2)and shift in
4-bit instruction,
Num_Clk =1,

Clock
Transition
RB6?

Yes ¢

Shift(R) RB7,
Num_Clk = Num_ClIk + 1

!

4-bit instruction = NOP,

Shift in 16-bit instruction,
Num_Clk =1

Clock
Transition
RB6?

Yes

No

Shift(R) RB7,
Num_Clk = Num_Clk + 1

No

Yes l

execute 1st cycle of 16-bit
instruction, and shift in next
4-bit instruction,
Num_Clk =1,

Clock
Transition
RB6?

Yes l

No

Shift(R) RB7,
Num_Clk = Num_Clk + 1

A 4

4-bit instruction = NOP,
Shift in 2nd 16-bit operand,
Num_Clk =1

|

Clock
Transition
RB6?

Yes

No

Shift(R) RB7,
Num_Clk = Num_CIk + 1

No

Yes

execute 2nd cycle of 16-bit
instruction, and shift in
next 4-bit instruction
Num_Clk =1

Clock
Transition
RB6?

Yes $

No

Shift(R) RB7,
Num_CIlk = Num_CIk + 1

[

DS39028A-page 3-106

© 2000 Microchip Technology Inc.

PIC18CXXX

2.5 TBLWT Instruction

The TBLWT instruction is a unique two cycle instruc-
tion.

All forms of TBLWT instructions (post/pre-increment,
post decrement, etc.) are encoded as 4-bit special
instructions. This is useful as TBLWT instructions are
used repeatedly in ICSP mode. A 4-bit instruction will
minimize the total number of clock cycles required to
perform programming algorithms.

The TBLWT instruction sequence operates as follows:

1. The 4-bit TBLWT instruction is read in by the
state machine on RB7 during the 4 clock cycle
execution of the instruction fetched previous to
the TBLWT (which is an FNOP if the TBLWT is
executed following a reset).

2. Once the state machine recognizes that the
instruction fetched is a TBLWT, the state
machine proceeds to fetch in the 16-bits of data
that will be written into the program memory
location pointed to by the TBLPTR.

3. The serial state machine releases the CPU to
execute the first cycle of the TBLWT instruction
while the first 4 bits of the 16-bit data word are
shifted in. After the first cycle of TBLWT instruc-
tion has completed the state machine shifts in
the remaining 12 of the sixteen bits of data. The
data word will not be used until the second cycle
of the instruction.

4. After all 16-bits of data are shifted in and the first
cycle of the TBLWT is performed, the CPU is
allowed to execute the second cycle of the
TBLWT operation, programming the current
memory location with the 16-bit value. The next
instruction following the TBLWT instruction is
shifted in during the execution of the second
cycle (See Figure 2-9).

FIGURE 2-9: TBLWT INSTRUCTION SEQUENCE

The TBLWT instruction is used in ICSP mode to pro-
gram the EPROM array. When writing a 16-bit value
to the EPROM, ID locations, or configuration locations,
the device, RB6, must be held high for the appropriate
programming time during the TBLWT instruction as
specified by parameter P9.

When RB6 is asserted low the device will cease pro-
gramming the specified location.

After RB6 is asserted low, RB6 is held low for the time
specified by parameter P10, to allow high voltage dis-
charge of the program memory array.

QCycles ;Q1,Q2,Q3,Q4 ,Q1,Q2,Q3, Q4

,Q1,Q2,Q3, Q4

MCLR/VPP = VIHH b o ey

1 2 3 4 123

P1q
415 8 9 10 11 12 13 14 15 16 12 3 4 ew
ass oeaq [1T TP T rr e L et
. . P . . i]
| P5 | |~>l»| | P5 | . ,
P3P4 . !
RB7 (Data) _/1' 1\ o o A \ 0o 0 0o f NEAE \O—ﬁ—L
« N N ,
e Execute 1st
xecute 1s
Execute PC-2 Cycle TBLWT Execute 2nd Cycle TBLWT
Fetch TBLWT yole and fetch next 4-bit

Load TBLWT Data

RB7 = Input

instruction

ICSP Mode

© 2000 Microchip Technology Inc.

DS39028A-page 3-107

PIC18CXXX

FIGURE 2-10: TBLWT SERIAL INSTRUCTION FLOW AFTER RESET

MCLR = Vss,
RB6, RB7 =0

'

’ MCLR = VIHH ‘

!

Execute FNOP,
and shift in 4-bit
TBLWT instruction,
Num_Clk =1,

Clock
Transition
RB6?

Yes

No

Shift(R) RB7
Num_CIlk = Num_CIk + 1

|

4-bit instruction = TBLWT,
Execute 1st cycle of TBLWT,
Begin Shifting in TBLWT data
Num_Clk =1
T

Clock
Transition
RB6?

Yes

No

Shift(R) RB7
Num_Clk = Num_Clk + 1

No

Yes

shift in last 12 bits
of TBLWT data,
Num_Clk =1,

Clock
Transition
RB6?

Yes

No

Shift(R) RB7
Num_Clk = Num_Clk + 1

No

Yes

Execute 2nd cycle of TBLWT
instruction and shift in next

4-bit instruction,
Num_Clk =1,

Clock
Transition
RB6?

Yes

No

Shift(R) RB7
Num_CIlk = Num_CIk + 1

DS39028A-page 3-108

© 2000 Microchip Technology Inc.

PIC18CXXX

FIGURE 2-11: TBLWT SERIAL INSTRUCTION FLOW

Y

Clock
Transition
RB6?

Yes

No

Shift(R) RB7
Num_Clk = Num_CIk + 1

Execute (PC-2),
and shift in 4-bit
TBLWT instruction,
Num_Clk =1,

No

Yes

Cloc_:l_< No
Transition
RB6?

Yes

Shift(R) RB7
Num_Clk = Num_CIk + 1

l

Execute 2nd cycle of TBLWT

instruction and shift in next
4-bit instruction,
Num_Clk =1,

4-bit instruction = TBLWT,
Execute 1st cycle of TBLWT,
Begin Shifting in TBLWT data,
Num_Clk =1

Clock
Transition
RB6?

Yes

No

Shift(R) RB7
Num_CIlk = Num_CIk + 1

Clock
Transition
RB6?

Yes

No

Shift(R) RB7
Num_Clk = Num_CIk + 1

No

Shift in last 12 bits
of TBLWT data,
Num_Clk =1,

© 2000 Microchip Technology Inc.

DS39028A-page 3-109

PIC18CXXX

2.6 TBLRD Instruction

The TBLRD instruction is another unique two cycle

instruction.

All forms of TBLRD instructions (post/pre-increment,
post decrement, etc.) are encoded as 4-bit special
instructions. This is useful as TBLRD instructions are 2
used repeatedly in ICSP mode. A 4-bit instruction will
minimize the total number of clock cycles required to

perform programming algorithms.

The TBLRD instruction sequence operates as follows:

1. The 4-bit TBLRD instruction is read in by the
state machine on RB7 during the 4 clock cycle
execution of the instruction fetched previous to
the TBLRD (which is an FNOP if the TBLRD is
executed following a reset).

Once the state machine recognizes that the
instruction fetched is a TBLRD, the state
machine releases the CPU and allows execu-
tion of the first and second cycles of the TBLRD
instruction for eight clock cycles. When the
TBLRD is performed, the contents of the pro-
gram memory byte pointed to by the TBLPTR is
loaded into the TABLAT register.

3. After eight clock cycles have transitioned on
RB6, and the TBLRD instruction has completed,
the state machine will suspend the CPU for eight
clock cycles. During these eight clock cycles,
the state machine configures RB7 as an output,
and will shift out the contents of the TABLAT reg-
ister onto RB7 LSb first.

4. When the state machine has shifted out all eight
bits of data, the state machine suspends the
CPU to allow an instruction pre-fetch. Four (4)
clock cycles are required on RB6 to shift in the
next 4-bit instruction.

FIGURE 2-12: TBLRD INSTRUCTION SEQUENCE

QCycles 'Q1'Q2!Q3' Q4

'Q1,Q2,Q3,Q4,Q1,Q2,Q3, Q4

MCLR/VPP = VikH

1 2 3 4 1 2 '3 4

‘3 4 1 2 3 4 5 6 7 8 1 2 3 4

RB6 (Clock) |

I I I ‘ | | | I I
~F5e <P oL =P
! | | 1 1 1 | ['
| | | | | | |
| | ! | | |
RB7 (Data) /1 o o /1 —sm1)z 3«)5) o s 1\
(Data) |) () 1A\0_0 /1
~ ~ ~
Execute PC-2 Execute Cycle 1 Execute Cycle 2 Shift Data Out From TABLAT No Execution takes place,
Fetch TBLRD TBLRD TBLRD Fetch Next 4-bit instruction
RB7 = Input RB7 = Output RB7 = Input
ICSP Mode

DS39028A-page 3-110

© 2000 Microchip Technology Inc.

Pl

C18CXXX

FIGURE 2-13: TBLRD SERIAL INSTRUCTION FLOW AFTER RESET

MCLR = Vss,
RB6, RB7 =0

!

‘ MCLR = ViHH ‘

!

Execute FNOP,
and shift in 4-bit
TBLRD instruction,
Num_Clk =1,

Clock
Transition
RB6?

Yes

No

Shift(R) RB7
Num_Clk = Num_ClIk + 1

l

Enable CPU,
execute 1st and 2nd
cycle TBLRD instruction

Clock No
Transition
RB6?

Yes

TBLRD instruction execution
takes place here
Num_Clk = Num_CIk + 1

No

Clock
Transition
RB6?

Yes

No

Shift(R) TABLAT<0>
out onto RB7
Num_Clk = Num_CIk + 1

No
Yes
Shift in next
4-bit instruction
Clock No

Transition

RB6?
Yes

Shift(R) RB7
Num_Clk = Num_CIk + 1

Yes

Shift out 8-bits
of data to RB7

I

No

Yes

© 2000 Microchip Technology Inc.

DS39028A-page 3-111

PIC18CXXX

FIGURE 2-14:

TBLRD SERIAL INSTRUCTION FLOW

Execute (PC-2),
and shift in 4-bit
TBLRD instruction,
Num_Clk =1,

Clock
Transition

No

RB6?
Yes

C|0(.)|'(No
Transition
RB6?

Yes

Shift(R) TABLAT<0>
out onto RB7
Num_Clk = Num_CIk + 1

Shift(R) RB7
Num_Clk = Num_Clk + 1

|

Execute 1st and 2nd
cycle TBLRD instruction

Clock No
Transition

RB6?
Yes

No
Yes
Shift in next
4-bit instruction
Clock No

Transition
RB6?

Yes

TBLRD instruction execution
takes place here
Num_Clk = Num_Clk + 1

Shift(R) RB7
Num_Clk = Num_Clk + 1

No

Yes

Shift out 8-bits
of data to RB7

[

!

No

Yes

DS39028A-page 3-112

© 2000 Microchip Technology Inc.

PIC18CXXX

2.6.1 SOFTWARE COMMANDS

ICSP commands of the PICmicro® MCU are supported
in the PIC18CXXX family by simply combining CPU
instructions. Once in In-Circuit Serial Programming
(ICSP) mode, the instructions are loaded into a shift
register, and the device waits for a command to be
received. The ICSP commands for the PIC16CXXX
family are now “pseudo-commands” and are shown in
Table 2-2. The following sections are a description of
how the pseudo-commands can be implemented using
CPU instructions.

TABLE 2-2: ICSP PSEUDO COMMAND MAPPING

ICSP Command Golden Gate Instructions

Load Configuration | MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF
#Addressl TBLPTRL #Address2 TBLPTRH #Address3 TBLPTRU

Load Data Not needed. Data encoded in 4-bit TBLWT instruction sequence.

Read Data TBLRD instruction

Increment Address |Not needed. Use TBLWT with increment/decrement (TBLWT *+/%-).

Load Address MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF
#Addr_low TBLPTRL #Addr_high TBLPTRH #Addr_upper TBLPTRU
Reset Address MOVLW MOVWF MOVWF MOVWF
#Data TBLPTRH TBLPTRL TBLPTRU

Beginprogramming | TBLWT

End Programming |Not needed. Programming will cease at the end of TBLWT execution.

© 2000 Microchip Technology Inc. DS39028A-page 3-113

PIC18CXXX

2.6.2

RESET ADDRESS

A reset of the program memory pointer is a write to the
upper, high, and low bytes of the TBLPTR. To reset the
program memory pointer, the following instruction
sequence is used.

NOP
MOVLW
NOP
MOVWF
NOP
MOVWF
NOP
MOVWF

; (4-BIT
00h

; (4-BIT
TBLPTRU, O

; (4-BIT
TBLPTRH, 0

; (4-BIT
TBLPTRL, 0

INSTRUCTION)

INSTRUCTION)

INSTRUCTION)

INSTRUCTION)

DS39028A-page 3-114

© 2000 Microchip Technology Inc.

PIC18CXXX

FIGURE 2-15: RESET ADDRESS SERIAL INSTRUCTION SEQUENCE

Y

execute (PC - 2),
shift in next 4-bit instruction,

Num_Clk =1,

!

On rising edge RB6
Shift(R) RB7

(NOP)

into Shift Reg<3>,
Num_Clk = Num_CIk + 1

No

Yes y

4-bit instruction = NOP,
Shift in 16-bit MOVLW instruction,
Num-Clk = 1

I

L
On rising edge RB6
Shift(R) RB7
into Shift Reg<15>,
Num_Clk = Num_CIk + 1

'

No

Yes l

Execute MOVLW Instruction,
shift in 4-bit NOP instruction,
Num_Clk =1,

!

On rising edge RB6
Shift(R) RB7
into Shift Reg<3>,
Num_Clk = Num_Clk + 1

!

Yes

(NOP)

(NOP)

MOVLW 00h

(NOP)

(NOP)

4-bit instruction = NOP,
Shift in 16-bit MOVWF instruction,
Num_Clk =1

!

On rising edge RB6
Shift(R) RB7
into Shift Reg<15>,
Num_Clk = Num_Clk + 1
1

Yes |
v

execute MOVWF Instruction,
shift in 4-bit NOP instruction,
Num_Clk =1,

i

On rising edge RB6
Shift(R) RB7

into Shift Reg<3>,
Num_Clk = Num_CIk + 1

¥
’No_
Yes

4-bit instruction = NOP,
Shift in 16-bit MOVWF instruction,
Num_Clk =1

!

On rising edge RB6
Shift(R) RB7
into Shift Reg<15>,
Num_Clk = Num_Clk + 1
Y

Execute MOVWF Instruction,
shift in next 4-bit instruction,
Num_Clk =1,

!

MOVWF
TBLPTRM,0

(NOP)

MOVWF
TBLPTRM,0

© 2000 Microchip Technology Inc.

DS39028A-page 3-115

PIC18CXXX

2.6.3

This is used to load the address pointer to the Program
Memory with a specific 22-bit value. This is useful when
a specific range of locations are to be accessed. To
load the address into the table pointer, the following

LOAD ADDRESS

commands must be used:

NOP
MOVLW
NOP
MOVWF
NOP
MOVLW
NOP
MOVWF
NOP
MOVLW
NOP
MOVWF

Low_Address
TBLPTRL, O
High Address
TBLPTRH, O
Upper_Address

TBLPTRU, O

4-bit

4-bit

4-bit

4-bit

4-bit

4-bit

instruction

instruction

instruction

instruction

instruction

instruction

DS39028A-page 3-116

© 2000 Microchip Technology Inc.

PIC18CXXX

FIGURE 2-16: LOAD ADDRESS SERIAL INSTRUCTION SEQUENCE

execute (PC - 2),
shift in next 4-bit instruction,
Num_Clk =1,

v

On rising edge RB6
Shift(R) RB7
into Shift Reg<3>,
Num_Clk = Num_CIKk + 1

v

No

Yes

4-bit instruction = NOP,

Shift in 16-bit MOVLW instruction,

Num_Clk =1

|

On rising edge RB6
Shift(R) RB7

into Shift Reg<15>,
Num_CIlk = Num_CIk + 1

‘)
z
‘ 5

Yes l

execute MOVLW Instruction,
shift in 4-bit NOP instruction,
Num_Clk =1,

{

On rising edge RB6
Shift(R) RB7

into Shift Reg<3>,
Num_Clk = Num_CIk + 1

No

‘.

Yes

(NOP)

MOVLW
LOW_Address

(NOP)

4-bit instruction = NOP,
Shift in 16-bit MOVWF instruction,
Num_Clk =1

!

On rising edge RB6
Shift(R) RB7 e
into Shift Reg<15>,
Num_Clk = Num_CIk + 1
1

No

Yes

execute MOVWF Instruction,
shift in 4-bit NOP instruction,
Num_Clk =1,

'

On rising edge RB6
Shift(R) RB7

MOVWF
TBLPTRL,0

into Shift Reg<3>,
Num_Clk = Num_CIk + 1

]

No

Yes

4-bit instruction = NOP,
Shift in 16-bit MOVWF instruction,
Num_Clk =1

!

On rising edge RB6
Shift(R) RB7
into Shift Reg<15>,
Num_Clk = Num_CIk + 1

No

Yes

execute MOVWF Instruction,
shift in next 4-bit instruction,
Num_Clk =1,

(NOP)

MOVLW
HIGH_Address

© 2000 Microchip Technology Inc.

DS39028A-page 3-117

PIC18CXXX

2.6.4 ICSP BEGIN PROGRAMMING

Programming is performed by executing a TBLWT
instruction. In ICSP mode the TBLWT instruction
sequence will include 16-bits of data that are shifted
into a data buffer, and then written to the word location
that is addressed by the TBLPTR. Although the
TBLPTR addresses the program memory on a byte
wide boundary, all 16-bits of data that are shifted in dur-
ing the TBLWT sequence are written at once. The
16-bits are shifted into the TABLAT and buffer registers.
The TBLPTR points to the word that will be pro-
grammed; it can point to either the high or the low byte.
(See Figure 2-17).

The sequence for programming a location could occur
as follows:

1. Setup the TLBPTR with the first ok address to
be programmed (even or odd byte).

2. Shiftin a 4 bit TBLWT instruction.

3. 16-bits of data are then shifted in for program-
ming both high and low byte of the first pro-
grammed location.

4. Execute TBLWT instruction to program location.

5. Verify high byte (odd address) by executing
TLBRD *- (post-decrement). (If TBLPTR point-
ing at odd address.)

6. \Verify low byte (even address) by executing
TLBRD *+ (post-increment). TBLPTR is point-
ing to odd address again.

7. If location doesn’t verify, go back to step 4.

8. If location does verify, begin 3x overprogram-
ming.

The TBLWT instruction offers flexibility with multiple

addressing modes: pre-increment, post-increment,

post decrement, and no change of the TBLPTR. These
modes eliminate the need for the increment address
command sequence.

FIGURE 2-17: DATA BUFFERING SCHEME FOR ICSP

Program Memory Program Memory
bank 0 bank 1
(Even Address) (Odd Address)
TBLWT TBLWT
Odd or Even Odd or Even Data shifted into
address address TABLAT and

| Buffer Register

l<-{ TABLAT Register |

TBLRD

Buffer registers @

TBLRD RB7

Odd Even

DS39028A-page 3-118

© 2000 Microchip Technology Inc.

PIC18CXXX

2.6.5 PROGRAMMING INSTRUCTION
SEQUENCE

The series of instructions needed to execute a pro-
gramming sequence is as follows. Many of the instruc-
tion sequences used in the following example are also
shown in previous sections.

NOP ; 4-bit instruction
; Set up low byte
; of program address

MOVLW Low Byte Address ; = 00

NOP ; 4-bit instruction
MOVWF TBLPTRL, O

NOP ; 4-bit instruction

; Set up high byte
; of program

; address

MOVLW High Byte Address ; = 00

NOP ; 4-bit instruction

MOVWF TBLPTRH, O

NOP ; 4-bit instruction
; Set up upper byte
; of program
; address

MOVLW Upper Byte Address; = 00

NOP ; 4-bit instruction

MOVWF TBLPTRU, O ; Program data byte
; included in TBLWT
; instruction
; sequence

TBLWT+* ; TBLPTR = 000000h

A write of a program memory location with an odd or an
even address causes a long write cycle in ICSP mode.
The 16-bit data is encoded in the TBLWT sequence and
is loaded into the temporary buffer register for word
wide writes.

The user must wait 100 us for the long write to com-
plete before the next instruction is executed.

2.6.6 VERIFY SEQUENCE

The table pointer = 000001h in the last example. A
TBLRD will then read the odd address byte of the cur-
rent program word address location first. The verify
sequence will be as follows:
; Read/verify high byte first

TBLRD* -
; TBLPTR = 0000 post-dec
; Read/verify low byte

TBLRD*

The first TBLRD decrements the table pointer to point to
the even address byte of the current program word.
After the first and second cycle of the TBLRD are per-
formed, all 8-bits of data are shifted out on RB7. The
fetch of the second TBLRD occurs on the next 4 clock
cycles. The second TBLRD does not modify the table
pointer address. This allows another programming
cycle (TBLWT+*) to take place if the verify doesn’t
match the program data without having to update the
table pointer.

If the contents of the verify do not match the intended
program data word, then the TBLWT instruction must be
repeated with the correct contents of the current pro-
gram word. Therefore, only one instruction needs to be
performed to repeat the programming cycle:

TBLWT+*
2.6.7 3X OVER PROGRAMMING

Once a location has been both programmed and veri-
fied over a range of voltages, 3x over programming
should be applied. In other words, apply three times the
number of programming pulses that were required to
program a location in memory, to ensure a solid pro-
gramming margin.

This means that every location will be programmed a
minimum of 4 times (1 + 3x over programming).

© 2000 Microchip Technology Inc.

DS39028A-page 3-119

PIC18CXXX

FIGURE 2-18: DETAILED PROGRAMMING FLOW CHART - PROGRAM MEMORY

MCLR = VPP,
RB6, RB7 =0

|
[weo
'

Execute FNOP
for four clock cycles
shift in 4-bit NOP

l

4-bit instruction = NOP,
Shift in 16-bit MOVLW Low_Addr
instruction for 16 clock cycles

!

Execute MOVLW
for 4 clock cycles
and shift in 4-bit NOP

!

4-bit instruction = NOP,
Shift in 16-bit MOVWF TBLPTRL
instruction for 16 clock cycles

!

Execute MOVWF
for 4 clock cycles
and shift in 4-bit NOP

'

Execute MOVWF
for 4 clock cycles
and shift in 4-bit NOP

)

Execute 1st cycle

TBLWT +*, and shiftin
first 4-bits of data ~
for 4 clock cycles

l

Shift in last 12-bits of data
for 12 clock cycles

Execute 2nd cycle
TBLWT +* for 4 clock cycles
Shift in TBLRD *-
for 4 clock cycles

Hold RB6
Clock high

!

Wait 100 psec to
ensure programming

Clock Low
for Discharge

I

Hold RB6
Clock high (P10)

Execute 1st and 2nd cycle
TBLRD *- for 8 clock cycles

1

4-bit instruction = NOP,
Shift in 16-bit MOVLW Upper Addr
instruction for 16 clock cycles

Shift Data Out
for 8 clock cycles

{

!

4-bit instruction = NOP,
Shift in 16-bit MOVLW High Addr
instruction for 16 clock cycles

!

Execute MOVLW
for 4 clock cycles
and shift in 4-bit NOP

Execute MOVLW
for 4 clock cycles
and shift in 4-bit NOP

Hold CPU,
Shift in TBLRD *
for 4 clock cycles

]

Execute 1st and 2nd cycle
TBLRD * for 8 clock cycles

4-bit instruction = NOP,
Shift in 16-bit MOVWF TBLPTRU
instruction for 16 clock cycles

Shift Data Out
for 8 clock cycles

!

4-bit instruction = NOP,
Shift in 16-bit MOVWF TBLPTRH
instruction for 16 clock cycles

Execute current instruction

shift in 4-bit TBLWT+*

for 4 clock cycles, and —

Yes @

No
N=N+1
Yes
Report
No Programming
Failure

DS39028A-page 3-120

© 2000 Microchip Technology Inc.

PIC18CXXX

FIGURE 2-19: DETAILED PROGRAMMING FLOW CHART — PROGRAM MEMORY (CONTINUED)

Execute current instruction,
Shift in TBLWT *+
for 4 clock cycles

!

Execute 1st cycle
TBLWT *+ or *, and shiftin
first 4-bits of data
for 4 clock cycles

!

Shift in last 12-bits of data
for 12 clock cycles

No

'

Execute 2nd cycle
TBLWT * for 4 clock cycles
v Yes Shift in TBLWT *
for 4 clock cycles

Execute 2nd cycle

TBLWT * for 4 clock cycles '
Shift in TBLWT *+ :
for 4 clock cycles Hold RJ'B6 high
I

Y

Shift in last 12-bits of data Wait 100 pS

for 12 clock cycles !

Clock Low
l for Discharge

I

v

Execute current instruction
for 4 clock cycles, and N=N-1 —
shift in 4-bit TBLRD+*

l

Hold RB6 high
l Verify all Locations
Wait 100 usec to @ VDDMIN
ensure programming l . Report
Verif
Data Correct? > E‘::clny
Yes
All locations™_ Yes l @ Voowmin
programmed? Verify all Locations
@ VDDMAX
l Yes N Report
O _ Verify
? »
< Data Correct? Error

i @ VDDMAX

© 2000 Microchip Technology Inc. DS39028A-page 3-121

PIC18CXXX

2.6.8 LOAD CONFIGURATION

The Configuration registers are located in ok memory,
and are only addressable when the high address bit of
the TBLPTR (bit 21) is set. Test program memory con-
tains test memory, configuration registers, calibration
registers, and ID locations. The desired address must
be loaded into all three bytes of the table pointer to pro-
gram specific ID locations or the configuration bits. To
program the configuration registers, the following
sequence must be followed:

NOP ; 4-bit instruction

; shift in 16-bit

; MOVLW instruction
MOVLW 03h
NOP ; 4-bit instruction

; shift in 16-bit

; MOVWF instruction

; Enable Test memory
MOVWF TBLPTRU, O
NOP ; 4-bit instruction

; shift in 16-bit

; MOVLW instruction
MOVLW Low_Config_ Address
NOP ; 4-bit instruction

; shift in 16-bit

; MOVWF instruction
MOVWF TBLPTRL, O
NOP ; 4-bit instruction

; shift in 16-bit

; MOVLW instruction
MOVLW ; High Config Address
NOP ; 4-bit instruction

; shift in 16-bit

; MOVWF instruction
MOVWF TBLPTRH, 0
NOP ; 4-bit instruction

; shift in 16-bit

; MOVLW instruction
TBLWT * 4

; 16-bits of data are

; shifted in for write

; of configlL and

; configlH TBLWT is a

; 4-bit special

; instruction Wait

; 100 psec for programming

2.6.9 END PROGRAMMING

When programming occurs, 16 bits of data are pro-
grammed into memory. The 16-bits of data are shifted
in during the TBLWT sequence. After the programming
command (TBLWT) has been executed, the user must
wait for 100 us until programming is complete, before
another command can be executed by the CPU. There
is no command to end programming.

RB6 must remain high for as long as programming is
desired. When RB6 is lowered programming will cease.

After the falling edge occurs on RB6, RB6 must be held
low for a period of time so that a high voltage discharge
can be performed to ensure that the program array isn’t
stressed at high voltage during execution of the next
instruction. The high voltage discharge will occur while
RB6 is low following the programming time.

DS39028A-page 3-122

© 2000 Microchip Technology Inc.

PIC18CXXX

FIGURE 2-20: SYMBOLIC PROGRAMMING FLOW CHART — CONFIG WORD /ID LOCATION

MCLR = Vss
4.75V < VDD < 5.25V

{

MCLR = VIHH

ICSP Command
LOAD CONFIGURATION
Address = 300000h

v
N=0 _ ICSP Command
* LOAD DATA
No Program ID Loc? Yes | +
) - ICSP Command
o BEGIN PROGRAMMING

\

ICSP Command +
LOAD ADDRESS :
Address = 300000h Wait approx 100 ps

ICSP Command
ICEOPACS DATA d - READ DATA

+ N i
N = 100 —< Data Correct? >
Yes

* + Yes
Report ’ N = 3N ‘
ICSP Command f -
BEGIN PROGRAMMING Programming
Failure
* ICSP Command

| Waitapprox100ps | —> BEGIN PRO+GRAMMING
v

‘ N=N-1 ‘ ’ Wait approx 100 us ‘
1 I Y

No
N =07? ICSP Command ’ N=N-1 ‘
+ v INCREMENT ADDRESS +
es I No
— N =0?

ICSP Command
READ DATA | Yes

v

No Report > Verify all Locations
Data Correct? » Programming @ VDDMIN
| Yes Failure + Report
- Verify
Data Correct? * Error
+ @ VDDMIN
Verify all Locations
VDDMAX
v o Report
o p
Data Correct? » Verify
Error
+ @ VDDMAX

DONE

© 2000 Microchip Technology Inc. DS39028A-page 3-123

PIC18CXXX

FIGURE 2-21: DETAILED PROGRAMMING FLOW CHART — CONFIG WORD

l

@ Execute MOVLW
for 4 clock cycles
—— and shift in 4-bit NOP
MCLR = Vss
4.75V < VDD < 5.25V i
_¢ 4-bit instruction = NOP,
MCLR = VIHH Shift in 16-bit MOVWF TBPLTRL
¢ instruction for 16 clock cycles
TBPLTR = 0x300000h
Execute FNOP CONFIG1L and CONFIG1H
for four clock cycles
shift in 4-bit NOP !

‘ N =99 }‘;

4-bit instruction = NOP,
Shift in 16-bit MOVLW 30 Execute last fetched inst.

instruction for 16 clock cycles for 4 clock cycles
and shift in 4-bit TBLWT+*

!

Execute MOVLW Execute 1st cycle
for 4 clock cycles TBLWT, and shiftin
and shift in 4-bit NOP first 4-bits of config. reg.

‘ for 4 clock cycles

!

4-bit instruction = NOP,

Shift in 16-bit MOVWF TBLPTRU Shift in last 12-bits of data
instruction for 16 clock cycles for 12 clock cycles
‘ |
Execute MOVWF Yes

for 4 clock cycles
and shift in 4-bit NOP

‘ No
4-bit instruction = NOP, Execute 2nd cycle
Shift in 16-bit MOVLW 00 TBLWT for 4 clock cycles
instruction for 16 clock cycles Shift in TBLWT
for 4 clock cycles

! i

Execute MOVLW RB6 High

for 4 clock cycles ¢
and shift in 4-bit NOP -
Wait 100 pusec to
‘ ensure programming
4-bit instruction = NOP, CIo_ck Low
Shift in 16-bit MOVWF TBLPTRH for Discharge

instruction for 16 clock cycles l

: 4{ N=N-1
A

Execute MOVWF
for 4 clock cycles
and shift in 4-bit NOP

Execute 2nd cycle
TBLWT* for 4 clock cycles
Shift in TBLWT *-
‘ for 4 clock cycles

4-bit instruction = NOP,

Wait 100 pusec to
Shift in 16-bit MOVLW 00 ensure progﬁamming —’@
instruction for 16 clock cycles

DS39028A-page 3-124 © 2000 Microchip Technology Inc.

PIC18CXXX

FIGURE 2-22: DETAILED PROGRAMMING FLOW CHART — CONFIG WORD

Execute 1st cycle
TBLWT*-, and shiftin
first 4-bits of config. reg.

for 4 clock cycles

Shift in last 12-bits of data
for 12 clock cycles

Execute 2nd cycle
TBLWT *- for 4 clock cycles
Shift in TBLRD*+
for 4 clock cycles

Verify?

Yes

All
locations
programmed?

Yes

> » Verify

No Report

Error

o

Wait 100 pusec to
ensure programming

Verify all ID_Locations
@ VDDMIN

Execute 1st and 2nd cycle
TBLRD*+ for 8 clock cycles

Shift Data Out
for 8 clock cycles

Data Correct?

Yes

Report
No Verify

——> Error

@ VDDMIN

Shift in TBLRD* +
for 4 clock cycles

Verify all Locations
@ VDDMAX

Execute 1st and 2nd cycle
TBLRD*+ for 8 clock cycles

Shift Data Out
for 8 clock cycles

Data Correct? >—>

Yes

Report
Verify
Error

@ VDDMAX

No

© 2000 Microchip Technology Inc.

DS39028A-page 3-125

PIC18CXXX

FIGURE 2-23: DETAILED PROGRAMMING FLOW CHART - ID LOCATION

MCLR = VPP,
RB6, RB7 =0
!
| oo]

i

Execute FNOP
for four clock cycles
shift in 4-bit NOP

l

4-bit instruction = NOP,
Shift in 16-bit MOVLW Low Addr
instruction for 16 clock cycles

!

Execute MOVLW
for 4 clock cycles
and shift in 4-bit NOP

!

4-bit instruction = NOP,
Shift in 16-bit MOVWF TBLPTRL
instruction for 16 clock cycles

{

Execute MOVWF
for 4 clock cycles
and shift in 4-bit NOP

)

|

Execute MOVWF
for 4 clock cycles
and shift in 4-bit NOP

)

4-bit instruction = NOP,
Shift in 16-bit MOVLW High Addr
instruction for 16 clock cycles

4-bit instruction = NOP,
Shift in 16-bit MOVLW Upper Addr
instruction for 16 clock cycles

!

Execute MOVLW
for 4 clock cycles
and shift in 4-bit NOP

4-bit instruction = NOP,
Shift in 16-bit MOVWF TBLPTRH
instruction for 16 clock cycles

!

Execute MOVLW
for 4 clock cycles
and shift in 4-bit NOP

]

Execute 1st cycle

TBLWT +*, and shiftin
first 4-bits of data
for 4 clock cycles
]

Shift in last 12-bits of data
for 12 clock cycles

|

Execute 2nd cycle
TBLWT +* for 4 clock cycles
Shift in TBLRD *-
for 4 clock cycles

!

Wait 100 psec to
ensure programming

Execute 1st and 2nd cycle
TBLRD *- for 8 clock cycles

Shift Data Out
for 8 clock cycles

!

Shift in TBLRD *
for 4 clock cycles

)

Execute 1st and 2nd cycle
TBLRD * for 8 clock cycles
v

Shift Data Out
for 8 clock cycles

|

Yes @

4-bit instruction = NOP, No
Shift in 16-bit MOVWF TBLPTRU
instruction for 16 clock cycles N=N+1
Execute current instruction Y

for 4 clock cycles, and €s

shift in 4-bit TBLWT+* v
Report

No Programming

Failure

DS39028A-page 3-126

© 2000 Microchip Technology Inc.

PIC18CXXX

FIGURE 2-24: DETAILED PROGRAMMING FLOW CHART —ID LOCATIONS (CONTINUED)

Execute current instruction,
Shift in TBLWT *+
for 4 clock cycles

!

Execute 1st cycle
TBLWT *+ or *, and shiftin
first 4-bits of data
for 4 clock cycles

!

Shift in last 12-bits of data
for 12 clock cycles

No

Yes

Execute 2nd cycle
TBLWT * for 4 clock cycles
Shift in TBLWT *+
for 4 clock cycles

!

Execute 1st cycle
TBLWT *+, and shiftin
first 4-bits of data
for 4 clock cycles

!

Shift in last 12-bits of data
for 12 clock cycles

!

Execute 2nd cycle TBLWT *+
for 4 clock cycles, and
shift in 4-bit TBLWT +*

{

Wait 100 psec to
ensure programming

All locations Yes

programmed?

Wait 100 psec to
ensure programming

Execute 2nd cycle
TBLWT * for 4 clock cycles
Shift in TBLWT *
for 4 clock cycles

I
Y

N=N-1

Verify all Locations
@ VDDMIN

l Report
No .
o Verify
< Data Correct? * Error
l Yes @ VDDMIN
Verify all Locations
@ VDDMAX
l Yes N Report
O _ Verify
? »
< Data Correct? Error
@ VDDMAX

© 2000 Microchip Technology Inc.

DS39028A-page 3-127

PIC18CXXX

3.0 CONFIGURATION WORD

The configuration bits can be programmed (read as '0’)
or left unprogrammed (read as '1’) to select various
device configurations. These bits are mapped starting
at program memory location 300000h.

The user will note that address 300000h is beyond the
user program memory space. In fact, it belongs to the
configuration memory space (300000h — 3FFFFFh).

TABLE 3-1: CONFIGURATION BITS AND DEVICE IDS

Default /
Filename Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 unprogrammed
value

300000h | CONFIG1L CP CP CP CP CP CP CP CP 1111 1111
300001h | CONFIG1H | RES' | RES' | OSCSEN | — — Fosc2 | Fosci | Fosco 111- 111
300002h | CONFIG2L — — — — BORVA1 BORVO | BODEN | PWRTEN - 1111
300003h | CONFIG2H | — — — — | WDTPS2 | WDTPS1 | WDTPSO | WDTEN - 1111
300005h | CONFIG3H — — — — — — — CCP2MX | - - 1
300006h | CONFIG4L — — — — — — RES' STVREN | - - 11
3FFFFEh | DEVID1 DEV2 | DEVA DEVO REV4 REV3 REV2 REVA REVO | -
3FFFFFh | DEVID2 DEV10 | DEV9 DEV8 DEV7 DEV6 DEV5 DEV4 DEV3 | = -

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, grayed cells are unimplemented read
as0
Note 1: Resvered —Read as 1.

DS39028A-page 3-128 © 2000 Microchip Technology Inc.

PIC18CXXX

Register 3-1: Configuration Register 1 High (CONFIG1H: Byte Address 300001h)

R/P-1 R/P-1 R/P-1 U-0 U-0 R/P-1 R/P-1 R/P-1
| Reserved | Reserved | OSCSEN | — | — | Fosc2 | Fosci | Fosco
bit 7 bit 0

bit 7-6 Reserved: Read as ’'1’

bit 5 OSCSEN: Oscillator System Clock Switch Enable bit
1 =Oscillator system clock switch option is disabled (OSCA is source)
0 =Oscillator system clock switch option is enabled
(OSCA — OSCB, OSCB — OSCA switching is enabled)

bit 4-3 Reserved: Read as '0’

bit2-0 FOSC2:FOSCO0: Oscillator Selection bits
111 = RC oscillator w/ OSC2 configured as RA6
110 = HS oscillator with PLL enabled/CLock frequency = (4 x Fosc1)
101 = EC oscillator w/ OSC2 configured as RA6
100 = EC oscillator w/ OSC2 configured as divide by 4 clock output
011 = RC oscillator
010 = HS oscillator
001 = XT oscillator
000 = LP oscillator

Legend
R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’
- n = Value when device is unprogrammed u = Unchanged from programmed state

Register 3-2: Configuration Register 1 Low (CONFIG1L: Byte Address 300000h)

R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1
| e | ce | e | cp | cp | cp | cP CcP
bit 7 bit 0

CP: Code Protection bits (apply when in Code Protected Microcontroller Mode)
1 = Program memory code protection off
0 = All of program memory code protected

Legend
R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’
- n = Value when device is unprogrammed u = Unchanged from programmed state

© 2000 Microchip Technology Inc. DS39028A-page 3-129

PIC18CXXX

Register 3-3: Configuration Register 2 High (CONFIG2H: Byte Address 300003h)

U-0 U-0 U-0 u-0 R/P-1 R/P-1 R/P-1 R/P-1
| — | — 1 — 1 —=]wbptps2 | wpTPst | wDTPSO | WDTEN
bit 7 bit 0

bit 7-4 Reserved: Read as '0’

bit 3-1 WDTPS2:WDTPSO0: Watchdog Timer Postscale Select bits
111 =1:128
110 = 1:64
101 =1:32
100 = 1:16
011=1:8
010=1:4
001 =1:2
000 =1:1
bit 0 WDTEN: Watchdog Timer Enable bit
1 =WDT enabled
0 = WDT disabled (control is placed on the SWDTE bit)

Legend
R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’
- n = Value when device is unprogrammed u = Unchanged from programmed state

Register 3-4: Configuration Register 2 Low (CONFIG2L: Byte Address 300002h)

U-0 U-0 U-0 U-0 R/P-1 R/P-1 R/P-1 R/P-1
| — | — [—= 1 — | BoRvi | BORVO | BOREN | PWRTEN
bit 7 bit 0

bit 7-4 Reserved: Read as '0’

bit 3-2 BORV1:BORVO0: Brown-out Reset Voltage bits
11 = VBOR set to 2.5V
10 = VBOR set to 2.7V
01 = VBOR set to 4.2V
00 = VBOR set to 4.5V

bit 1 BOREN: Brown-out Reset Enable bit (1)
1 = Brown-out Reset enabled
0 = Brown-out Reset disabled
Enabling Brown-out Reset automatically enables the Power-up Timer (PWRT) regardless of the value of
bit PWRTEN. Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.

bit 0 PWRTEN: Power-up Timer Enable bit ()
1 = PWRT disabled
0 = PWRT enabled
Enabling Brown-out Reset automatically enables the Power-up Timer (PWRT) regardless of the value of
bit PWRTEN. Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.

Legend
R = Readable bit P = Programmabile bit U = Unimplemented bit, read as ‘0’
- n = Value when device is unprogrammed u = Unchanged from programmed state

DS39028A-page 3-130 © 2000 Microchip Technology Inc.

PIC18CXXX

Register 3-5: Configuration Register 3 High (CONFIG3H: Byte Address 300005h)

U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/P-1
— [- [- [- T - T - T - Tocrmx
bit 7 bit 0
bit 7-1 Reserved: Read as 'O’
bit 0 CCP2MX: CCP2 Mux bit
1 = CCP2 input/output is multiplexed with RC1
0 = CCP2 input/output is multiplexed with RB3
Legend
R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’
- n = Value when device is unprogrammed u = Unchanged from programmed state
Register 3-6: Configuration Register 4 Low (CONFIG3H: Byte Address 300006h)
U-0 U-0 U-0 U-0 U-0 U-0 R/P-1 R/P-1
— I — I — I — I — l — l Reserved | STVREN
bit 7 bit 0
bit 7-2 Reserved: Read as’0’
bit 1 Reserved: Maintain this bit set.
bit 0 STVREN: Stack Full/Underflow Reset Enable bit

1 = Stack Full/Underflow will cause reset
0 = Stack Full/Underflow will not cause reset

Legend
R = Readable bit
- n = Value when device is unprogrammed

P = Programmable bit

U = Unimplemented bit, read as ‘0’
u = Unchanged from programmed state

3.1 ID Locations

A user may store identification information (ID) in 8 ID
locations. The ID locations are mapped in
[0x200000:0x200007]. It is recommended that the user
use only the 4 least significant bits of each ID location.
The ID locations do not read out in a scrambled fashion
after code protection is enabled. For all devices it is rec-
ommended that all ID locations are written as ‘1111
bbbb’ where bbbb is the ID information. When the
upper four bits of an ID location is written as ‘1111’, the
resulting opcode when executed is read as a NOP. This
allows Reset testing of test program memory after ID
locations have been programmed.

© 2000 Microchip Technology Inc.

DS39028A-page 3-131

PIC18CXXX

3.2 Embedding Configuration Word Information in the Hex File

mation in the hex file, it should be to address FEOOh.

To allow portability of code, a PIC18C4X programmer is required to read the configuration word locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, all configuration word information must be included. An
option to not include the configuration word information may be provided. When embedding configuration word infor-

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

3.3 CHECKSUM COMPUTATION

The checksum is calculated by summing the following:
¢ The contents of all program memory locations

¢ The configuration word, appropriately masked

¢ Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-

TABLE 3-2: CHECKSUM COMPUTATION

ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

Note that some older devices have an additional value
added in the checksum. This is to maintain compatibil-
ity with older device programmer checksums.

Code

Device Protect

Blank OxAA at 0

Checksum* and max

Value address

Disable SUM[0C000:0x7FFF] + CFGWO & OxFF + CFGW1 & 0x27 + CFGW2 | 0x8148 0x809E
& 0xOF + CFGW3 & 0xOF + CFGW4 & 0x00 + CFGWS5 & 0x01 +
CFGWS6 & 0x03 + CFGW?7 & 0x00

PIC18C452

Enabled CFGWO0 & 0xFF + CFGW1 & 0x27 + CFGW2 & OxF + CFGW3 & 0xOF | Ox005E 0x0068
+ CFGW4 & 0x00 + CFGWS5 & 0x01 + CFGW6 & 0x03 + CFGW7 &
0x00 + SUM_ID

Disable SUMI[0x000:0x3FFF] + CFGWO0 & OxFF + CFGW1 & 0x27 + CFGW2 | 0xC148 0xCO9E
& 0xOF + CFGW3 & 0x0F + CFGW4 & 0x00 + CFGWS5 & 0x01 +
CFGWS6 & 0x03 + CFGW?7 & 0x00

PIC18C442

Enabled CFGWO & 0xFF + CFGW1 & 0x27 + CFGW2 & 0x0F + CFGW3 & 0x0062 0x006C
0xOF + CFGW4 & 0x00 + CFGW5 & 0x01 + CFGW6 & 0x03 +
CFGW?7 & 0x00 + SUM_ID

Disable SUMI[0x000:0x7FFF] + CFGWO0 & OxFF + CFGW1 & 0x27 + CFGW2 | 0x8148 0x809E
& 0xOF + CFGW3 & 0xOF + CFGW4 & 0x00 + CFGWS5 & 0x01 +
CFGWS6 & 0x03 + CFGW?7 & 0x00

PIC18C252

Enabled CFGWO0 & 0xFF + CFGW1 & 0x27 + CFGW2 & 0xOF + CFGW3 & 0x005E 0x0068
0xOF + CFGW4 & 0x00 + CFGWS5 & 0x01 + CFGW6 & 0x03 +
CFGW?7 & 0x00 + SUM_ID

Disable SUMI[0x000:0x3FFF] + CFGWO0 & OxFF + CFGW1 & 0x27 + CFGW2 | 0xC148 0xCO9E
& 0xOF + CFGW3 & 0xOF + CFGW4 & 0x00 + CFGWS5 & 0x01 +
CFGWS6 & 0x03 + CFGW?7 & 0x00

PIC18C242

Enabled CFGWO & OxFF + CFGW1 & 0x27 + CFGW2 & 0xOF + CFGW3 & 0x0062 0x006C
0x0F + CFGW4 & 0x00 + CFGWS5 & 0x01 + CFGW6 & 0x03 +
CFGW?7 & 0x00 + SUM_ID

Legend: CFGW = Configuration Word
SUM][a:b] = [Sum of locations a to b inclusive]

SUM_ID = Byte-wise sum of lower four bits of all ID locations

+ = Addition
& = Bitwise AND

DS39028A-page 3-132

© 2000 Microchip Technology Inc.

PIC18CXXX

4.0 AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions
Operating Temperature: +10°C < TA < +70°C, unless otherwise stated, (25°C is recommended)

Operating Voltage: 4.5V < VDD < 5.25V, unless otherwise stated.
Parameter
No Sym Characteristic Min Typt Max Units | Conditions
VIHH Programming Voltage on VPP/ VDD + 4.0 — 13.25 \"
MCLR pin and TEST pin.
PP Programming current on MCLR pin 25 50 mA

P1 TSER Serial setup time 20 — — ns

P2 TscLK | Serial Clock period 100 — — ns

P3 TSET1 Input Data Setup Time to serial 15 — — ns
clock

P4 THLD1 | Input Data Hold Time from serial 15 — — ns
clock

P5 ToLy1 | Delay between last clock . to first 20 — — ns
clock T of next command

P6 ToLY2 | Delay between last clock | of com- 20 — — ns
mand byte to first clock T of read of
data word

P8 TpoLy4 | Data input not driven to next clock 1 — — ns
input

P9 ToLY5 | RB6 high time (minimum program- 100 — — us
ming time)

P10 ToLY6 | RB6 low time after programming 100 — — ns

(high voltage discharge time)

*

These parameters are characterized but not tested.
1 Data in “Typ” column is at 5V, 25xC unless otherwise stated. These parameters are for design guidance only and are not
tested.

© 2000 Microchip Technology Inc. DS39028A-page 3-133

PIC18CXXX

NOTES:

DS39028A-page 3-134 © 2000 Microchip Technology Inc.

MICROCHIP

PIC16F62X

In-Circuit Serial Programming for PIC16F62X FLLASH MCUs

This document includes the programming
specifications for the following devices:

* PIC16F627

* PIC16F628

* PIC16LF627

* PIC16LF628
1.0 PROGRAMMING THE
PIC16F62X
The PIC16F62X is programmed using a serial method.
The serial mode will allow the PIC16F62X to be pro-
grammed while in the users system. This allows for
increased design flexibility. This programming specifi-
cation applies to PIC16F62X devices in all packages.

PIC16F62X devices may be programmed using a sin-
gle +5 volt supply (low voltage programming mode).

1.1 Hardware Requirements

The PIC16F62X requires one programmable power
supply for VDD (4.5V to 5.5V) and a Vpp of 12V to 14V
or VPP of (4.5V to 5.5V) when using low voltage. Both
supplies should have a minimum resolution of 0.25V.

1.2 Programming Mode

The programming mode for the PIC16F62X allows pro-
gramming of user program memory, data memory, spe-
cial locations used for ID, and the configuration word.

PIN Diagram

PDIP, SOIC

RA2/AN2/VREF <—» D .
RAS/ANS/CMP1 <—» D 2
RA4/TOCK/CMP2 <—» D B
RA5/MCLR/THV —» D 4
VSs 5 D 5

RBO/INT <—» D s
RB1/RX/DT <— D 7

RB2/TX/CK =—[s

RB3/CCP1 <—» |: o

d

X294912i1d

13 :| ~<—» RB7/T10SI

] ~<—» RA1/AN1

:] ~<—» RAOD/ANO

] ~— RA7/OSC1/CLKIN
[] =— RAe/OSC2/CLKOUT

]4— VDD

[]=— mBOTIOSOTICKI
[]=—> R85

:] ~<—» RB4/PGM

RAZ/AN2/VREF <— [| -1
RA3/AN3/CMP1 <—» |: 2
RA4/TOCKICMP2 <— [|
RAS/MCLRITHV — [|4
VSS [5

Vss —» |: s

RBO/INT <— [|7
RB1/RX/DT <— [o
RB2/TX/CK <— [|

RB3/CCP1 <— Dm

d

X2¢949101d

:| ~<—» RA1/AN1

[]=—> RA0/ANO

[] =— RA7/0SC1/CLKIN
] ~-—> RA6/0SC2/CLKOUT
] <— VDD

[] <=— voo

] ~—> RB7/T10SI

] ~—" RB6/T10SO/T1CKI
:]‘—' RB5

:| ~— RB4/PGM

PIN DESCRIPTIONS (DURING PROGRAMMING): PIC16F62X

During Programming
Pin Name Function Pin Type Pin Description

RB4 PGM | Low voltage programming input if configuration bit
equals 1

RB6 CLOCK | Clock input

RB7 DATA I/O Data input/output

MCLR VTEST MODE P* Program Mode Select
VDD VDD P Power Supply
Vss Vss P Ground

Legend: | = Input, O = Output, P = Power

*In the PIC16F62X, the programming high voltage is internally generated. To activate the programming mode, high voltage needs
to be applied to MCLR input. Since the MCLR is used for a level source, this means that MCLR does not draw any significant current.

© 2000 Microchip Technology Inc.

Preliminary

DS30034A-page 3-135

PIC16F62X

2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The user memory space extends from 0x0000 to
0x7FFF. In programming mode the program memory
space extends from 0x0000 to Ox3FFF, with the first
half (0x0000-0x7FFF) being user program memory and
the second half (0x2000-0x3FFF) being configuration
memory. The PC will increment from 0x0000 to Ox7FFF
and wrap to 0x000, 0x2000 to Ox3FFF and wrap
around to 0x2000 (not to 0x0000). Once in configura-
tion memory, the highest bit of the PC stays a ‘1’, thus
always pointing to the configuration memory. The only
way to point to user program memory is to reset the
part and reenter program/verify mode as described in
Section 2.3.

In the configuration memory space, 0x2000-0x200F
are physically implemented. However, only locations
0x2000 through 0x2007 are available. Other locations
are reserved. Locations beyond 0x200F will physically
access user memory. (See Figure 2-1).

2.2 ID Locations

A user may store identification information (ID) in four
ID locations. The ID locations are mapped in [0x2000 :
0x2003]. It is recommended that the user use only the
four least significant bits of each ID location. In some
devices, the ID locations read-out in an unscrambled
fashion after code protection is enabled. For these
devices, it is recommended that ID location is written as
“11 1111 1000 bbbb” where ‘bbbb’ is ID information.

In other devices, the ID locations read out normally,
even after code protection. To understand how the
devices behave, refer to Table 4-1.

To understand the scrambling mechanism after code
protection, refer to Section 3-1.

FIGURE 2-1: PROGRAM MEMORY MAPPING
1KW 2 KW
Ox1FF
Implemented Implemented
1FFF
2000 |p Location 2000
Implemented Implemented
2001 ID Location 2008
2002 ID Location
2003
ID Location
2004
Reserved
Not Implemented
2005 Reserved
2006
Reserved
2007 .
Configuration Word 3FFF

DS30034A-page 3-136

Preliminary

© 2000 Microchip Technology Inc.

PIC16F62X

2.3 Program/Verify Mode

The program/verify mode is entered by holding pins
RB6 and RB7 low while raising MCLR pin from VIL to
VIHH (high voltage) or by applying Vbb to MCLR and
raising RB3 from VIL to VDD. Once in this mode the user
program memory and the configuration memory can be
accessed and programmed in serial fashion. The mode
of operation is serial, and the memory that is accessed
is the user program memory. RB6 and RB7 are Schmitt
Trigger Inputs in this mode.

Note: The OSC must not have 72 osc clocks
while the device MCLR is between ViL and
VIHH.

The sequence that enters the device into the program-
ming/verify mode places all other logic into the reset
state (the MCLR pin was initially at VIL). This means
that all I/O are in the reset state (High impedance
inputs).

The normal sequence for programming is to use the
load data command to set a value to be written at the
selected address. Issue the begin programming com-
mand followed by read data command to verify, and
then increment the address.

A device reset will clear the PC and set the address to
0. The “increment address” command will increment
the PC. The “load configuration” command will se the
PC to 0x2000. The available commands are shown in
Table 2-1.

2.3.1 LOW-VOLTAGE PROGRAMMING MODE

When LVP bitis set to ‘1’, the low-voltage programming
entry is enabled. Since the LVP configuration bit allows
low voltage programming entry in its erased state, an
erased device will have the LVP bit enabled at the fac-
tory. While LVP is ‘1’, RB4 is dedicated to low voltage
programming. Bring MCLR to VDD and then RB4 to
VDD to enter programming mode. All other specifica-
tions for high-voltage ICSP™ apply.

To disable low voltage mode, the LVP bit must be pro-
grammed to ‘0. This must be done while entered with
high voltage entry mode (LVP bit= 1). RB4 is now a
general purpose I/O pin.

2.3.2 SERIAL PROGRAM/VERIFY OPERATION

The RB6 pin is used as a clock input pin, and the RB7
pin is used for entering command bits and data input/
output during serial operation. To input a command, the
clock pin (RB6) is cycled six times. Each command bit
is latched on the falling edge of the clock with the least
significant bit (LSB) of the command being input first.
The data on pin RB7 is required to have a minimum
setup and hold time (see AC/DC specifications) with
respect to the falling edge of the clock. Commands that
have data associated with them (read and load) are
specified to have a minimum delay of 1 us between the
command and the data. After this delay, the clock pin is
cycled 16 times with the first cycle being a start bit and
the last cycle being a stop bit. Data is also input and
output LSB first.

Therefore, during a read operation the LSB will be
transmitted onto pin RB7 on the rising edge of the sec-
ond cycle, and during a load operation the LSB will be
latched on the falling edge of the second cycle. A min-
imum 1us delay is also specified between consecutive
commands.

All commands are transmitted LSB first. Data words
are also transmitted LSB first. The data is transmitted
on the rising edge and latched on the falling edge of
the clock. To allow for decoding of commands and
reversal of data pin configuration, a time separation of
at least 1 us is required between a command and a
data word (or another command).

The commands that are available are:
2.3.2.1 LOAD CONFIGURATION

After receiving this command, the program counter
(PC) will be set to 0x2000. By then applying 16 cycles
to the clock pin, the chip will load 14-bits in a “data
word,” as described above, to be programmed into the
configuration memory. A description of the memory
mapping schemes of the program memory for normal
operation and configuration mode operation is shown
in Figure 2-1. After the configuration memory is
entered, the only way to get back to the user program
memory is to exit the program/verify test mode by tak-
ing MCLR low (VIL).

© 2000 Microchip Technology Inc.

Preliminary

DS30034A-page 3-137

PIC16F62X

2.3.2.2 LOAD DATA FOR PROGRAM MEMORY

After receiving this command, the chip will load in a
14-bit “data word” when 16 cycles are applied, as
described previously. A timing diagram for the load data

command is shown in Figure 5-1.

TABLE 2-1: COMMAND MAPPING FOR PIC16F627/PIC16F628
Command Mapping (MSB ... LSB) Data
Load Configuration X X 0 0 0 0 0, data (14), 0
Load Data for Program Memory X X 0 0 1 0 |[0,data(14),0
Read Data from Program Memory X X 0 1 0 0 0, data (14), 0
Increment Address X X 0 1 1 0
Begin Erase Programming Cycle 0 0 1 0 0 0
Begin Programming Only Cycle 0 1 1 0 0 0
Load Data for Data Memory X X 0 0 1 1 0, data (14), 0
Read Data from Data Memory X X 0 1 0 1 0, data (14), 0
Bulk Erase Program Memory X X 1 0 0 1
Bulk Erase Data Memory X X 1 0 1 1
DS30034A-page 3-138 Preliminary © 2000 Microchip Technology Inc.

PIC16F62X

FIGURE 2-2: PROGRAM FLOW CHART - PIC16F62X PROGRAM MEMORY

Set VDD = VDDP

v
Program Cycle
l PROGRAM CYCLE
Read Data
Command Load Data
Command
Report
Data Correct? Programming Begin
Failure Programming
Command
Increment)
Address Al IIScécr:]aet';ons
Command ’ Wait 2 ms
Verify all
Locations @
VDDMIN
Report Verify o
Error @ Data Correct?
VDDMIN
Verify all
Locations @
VDDMAX

Report Verify | No
Error @
VDDMAX

Data Correct?

Done

© 2000 Microchip Technology Inc. Preliminary DS30034A-page 3-139

PIC16F62X

FIGURE 2-3: PROGRAM FLOW CHART - PIC16F62X CONFIGURATION MEMORY

Load
Configuration
Data

|
v

Read Data
Command

Program ID
Location?

Program Cycle —

Increment Report. No
Address Programming Data Correct?
Command Failure
Address =
0x20047?
Increment
Address
Command
Increment
Address
Command
Increment Program _
Address Cycle S\%\éaix_
Command (Config. Word)
Report Program No
) f R D
Configuration ~——<_ Data Correct? Ceoarg maartfj
Word Error
lYes
Set VDD =
VDDMAX
No l

Read Data

Yes
Data Correct? ><+— Command

DS30034A-page 3-140 Preliminary © 2000 Microchip Technology Inc.

PIC16F62X

2.3.2.3 LOAD DATA FOR DATA MEMORY

After receiving this command, the chip will load in a 14-
bit “data word” when 16 cycles are applied. However,
the data memory is only 8-bits wide, and thus only the
first 8-bits of data after the start bit will be programmed
into the data memory. It is still necessary to cycle the
clock the full 16 cycles in order to allow the internal cir-
cuitry to reset properly. The data memory contains 64
words. Only the lower 8-bits of the PC are decoded by
the data memory, and therefore if the PC is greater than
0x3F, it will wrap around and address a location within
the physically implemented memory. If the device is
code protected, the data is read as all zeros.

2.3.24 READ DATA FROM PROGRAM
MEMORY

After receiving this command, the chip will transmit
data bits out of the program memory (user or configu-
ration) currently accessed starting with the second ris-
ing edge of the clock input. The RB7 pin will go into
output mode on the second rising clock edge, and it will
revert back to input mode (hi-impedance) after the 16th
rising edge. A timing diagram of this command is
shown in Figure 5-2.

2.3.25 READ DATA FROM DATA MEMORY

After receiving this command, the chip will transmit
data bits out of the data memory starting with the sec-
ond rising edge of the clock input. The RB7 pin will go
into output mode on the second rising edge, and it will
revert back to input mode (hi-impedance) after the 16th
rising edge. As previously stated, the data memory is 8-
bits wide, and therefore, only the first 8-bits that are out-
put are actual data.

2.3.2.6 INCREMENT ADDRESS

The PC is incremented when this command is
received. A timing diagram of this command is shown
in Figure 5-3.

2.3.2.7 BEGIN ERASE/PROGRAM CYCLE

A load command must be given before every begin
programming command. Programming of the appro-
priate memory (test program memory, user program
memory or data memory) will begin after this command
is received and decoded. An internal timing mechanism
executes an erase before write. The user must allow for
both erase and programming cycle times for program-
ming to complete. No “end programming” command is
required.

2.3.2.8 BEGIN PROGRAMMING

A load command must be given before every begin
programming command. Programming of the appro-
priate memory (test program memory, user program
memory or data memory) will begin after this command
is received and decoded. An internal timing mechanism
executes a write. The user must allow for program cycle
time for programming to complete. No “end program-
ming” command is required.

This command is similar to the ERASE/PROGRAM
CYCLE command, except that a word erase is not
done. It is recommended that a bulk erase be per-
formed before starting a series of programming only
cycles.

2.3.2.9 BULK ERASE PROGRAM MEMORY

After this command is performed, the next program
command will erase the entire program memory.

To perform a bulk erase of the program memory, the fol-
lowing sequence must be performed.

1. Do a “Load Data All 1’s” command.

2. Do a “Bulk Erase User Memory” command.

3. Do a “Begin Programming” command.

4. Wait 10 ms to complete bulk erase.

If the address is pointing to the test program memory
(0x2000 - 0x200F), then both the user memory and the
test memory will be erased. The configuration word will

not be erased, even if the address is pointing to location
0x2007.

Note: If the device is code-protected, the BULK
ERASE command will not work.

2.3.2.10 BULK ERASE DATA MEMORY

To perform a bulk erase of the data memory, the follow-
ing sequence must be performed.

1. Do a“Load Data All 1’s” command.

2. Do a “Bulk Erase Data Memory” command.
3. Do a “Begin Programming” command.

4. Wait 10 ms to complete bulk erase.

Note: All BULK ERASE operations must take

place at 4.5 to 5.5 VDD range.

© 2000 Microchip Technology Inc.

Preliminary

DS30034A-page 3-141

PIC16F62X

2.4 Programming Algorithm Requires
Variable VDD

The PIC16F62X uses an intelligent algorithm. The
algorithm calls for program verification at Vbbmin. as
well as Vbbmax. Verification at VDDmin. guarantees
good “erase margin”. Verification at Vbbmax guaran-
tees good “program margin”.

The actual programming must be done with VDD in the
VDDP range (See Table 5-1).

\VVDDP

Vcce range required during programming.
VDDmin.

minimum operating VDD spec for the part.
VDDmax.= maximum operating VDD spec for the part.

Programmers must verify the PIC16F62X at its speci-
fied VDD max. and VDDmin levels. Since Microchip may
introduce future versions of the PIC16F62X with a
broader VDD range, it is best that these levels are user
selectable (defaults are ok).

Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer
but not a “production” quality programmer.

DS30034A-page 3-142 Preliminary

© 2000 Microchip Technology Inc.

PIC16F62X

3.0 CONFIGURATION WORD TABLE 3-1:

The PIC16F62X has several configuration bits. These Devl Device ID Value
bits can be set (reads ‘0’) or left unchanged (reads ‘1’) evice Dev Rev
to select various device configurations. STCToFeoT T EEERE —
3.1 Device ID Word PIC16F628 00 0111 001 X XXXX

The device ID word for the PIC16F62X is located at
2006h.

FIGURE 3-1: CONFIGURATION WORD FOR PIC16F877/876/873

‘ CP1 ‘CPO‘CP1 ‘cpo‘ - ‘CPD‘ LVP ‘ BODEN ‘ MCLRE‘ FOSC2 ‘W‘ WDTE ‘ FOSCH ‘ FOSCO ‘ Registe: CONFIG
Address 2007h

bit13 bit0

bit 13-10: CP1:CP0: Code Protection bits (2
Code protection for 2K program memory
11 = Program memory code protection off
10 = 0400h-07FFh code protected
01 = 0200h-07FFh code protected
00 = 0000h-07FFhcode protected
Code protection for 1K program memory
11 = Program memory code protection off
10 = Program memory code protection off
01 = 0200h-03FFh code protected
00 = 0000h-03FFh code protected

bit 8: CPD: Data Code Protection bit®
1 = Data memory code protection off
0 = Data memory code protected

bit 7: LVP: Low Voltage Programming Enable
1 = RB4/PGM pin has PGM function, low voltage programming enabled
0 = RB4/PGM is digital /0, HV on MCLR must be used for programming

bit 6: BODEN: Brown-out Detect Reset Enable bit (1)
1 = BOD reset enabled
0 = BOD reset disabled

bit 5: MCLRE: RA5/MCLR pin function select
1 = RA5/MCLR pin function is MCLR
0 = RA5/MCLR pin function is digital I/O, MCLR internally tied to VDD

bit 3: PWRTE: Power-up Timer Enable bit ("
1 = PWRT disabled
0 = PWRT enabled

bit 2: WDTE: Watchdog Timer Enable bit
1 = WDT enabled
0 = WDT disabled

bit 4,1-0: FOSC2:FOSCO: Oscillator Selection bits
111 = ER oscillator: CLKOUT function on RA6/0SC2/CLKOUT pin, Resistor on RA7/OSC1/CLKIN
110 = ER oscillator: I/0 function on RA6/OSC2/CLKOUT pin, Resistor on RA7/OSC1/CLKIN
101 = INTRC oscillator: CLKOUT function on RA6/0SC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN
100 = INTRC oscillator: 1/0 function on RA6/0SC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN
011 = EXTCLK: /O function on RA6/0SC2/CLKOUT pin, CLKIN on RA7/OSC1/CLKIN
010 = HS oscillator: High speed crystal/resonator on RA6/0OSC2/CLKOUT and RA7/OSC1/CLKIN
001 = XT oscillator: Crystal/resonator on RA6/0SC2/CLKOUT and RA7/OSC1/CLKIN
000 = LP oscillator: Low power crystal on RA6/0SC2/CLKOUT and RA7/OSC1/CLKIN

Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE. Ensure
the Power-up Timer is enabled anytime Brown-out Reset is enabled.
2: All of the CP1:CPO pairs have to be given the same value to enable the code protection scheme listed. The entire pro-
gram EEPROM will be erased if the code protection is reduced.
3: The entire data EEPROM will be erased when the code protection is turned off. The calibration space in the test memory
is not erased.
4: When MCLR is asserted in INTRC or ER mode, the internal clock oscillator is disabled.

© 2000 Microchip Technology Inc. Preliminary DS30034A-page 3-143

PIC16F62X

4.0 CODE PROTECTION

For PIC16F62X devices, once code protection is
enabled, all program memory locations read all 0’s.
The ID locations and the configuration word read out in
an unscrambled fashion. Further programming is dis-
abled for the entire program memory as well as data
memory. It is possible to program the ID locations and
the configuration word.

4.1 Disabling Code-Protection

It is recommended that the following procedure be per-
formed before any other programming is attempted. It
is also possible to turn code protection off (code protect
bit = 1) using this procedure; however, all data within
the program memory and the data memory will be
erased when this procedure is executed, and thus,
the security of the data or code is not compro-
mised.

Procedure to disable code protect:

a)

b)

Execute load configuration (with a ‘1’ in bit 4,
code protect).

Increment to configuration word location
(0x2007)

Execute command (000001)

Execute command (000111)

Execute ‘Begin Programming’ (001000)
Wait 10 ms

Execute command (000001)

Execute command (000111)

4.2 Embedding Configuration Word and ID Information in the Hex File

Section 5.1).

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.
An option to not include this information may be provided.

Specifically for the PIC16F62X, the EEPROM data memory should also be embedded in the hex file (see

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

DS30034A-page 3-144

Preliminary

© 2000 Microchip Technology Inc.

PIC16F62X

4.3 CHECKSUM COMPUTATION

4.3.1 CHECKSUM

Checksum is calculated by reading the contents of the
PIC16F62X memory locations and adding up the
opcodes up to the maximum user addressable location,
e.g., Ox1FF for the PIC16F62X. Any carry bits exceed-
ing 16-bits are neglected. Finally, the configuration
word (appropriately masked) is added to the check-
sum. Checksum computation for each member of the
PIC16F62X devices is shown in Table 4-1.

The checksum is calculated by summing the following:

¢ The contents of all program memory locations
¢ The configuration word, appropriately masked
¢ Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-
ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

Note that some older devices have an additional value
added in the checksum. This is to maintain compatibil-
ity with older device programmer checksums.

TABLE 4-1: CHECKSUM COMPUTATION

Code Blank 0x25E6 at 0

. Checksum* and max

Device Protect Value

address

PIC16F627 OFF SUM[0x0000:0x3FFF] + CFGW & 0x3DFF 0x39FF 0x05CD

0x200 : Ox3FF SUM[0x0000:0x01FF] + CFGW & 0x3DFF + SUM_ID 0x4DFE OxFFB3

ALL 0x3BFE 0x07CC

PIC16F628 OFF SUM[0x0000:0x07FF] + CFGW & 0x3DFF 0x35FF 0x01CD

0x400 : OxFFF SUM[0x0000:0x03FF] + CFGW & 0x3DFF +SUM_ID 0x5BFE 0x0DB3

0x200 : Ox7FF SUM[0x0000:0x01FF] + CFGW & 0x3DFF + SUM_ID 0x49FE 0xFBB3

ALL CFGW & 0x3DFF + SUM_ID 0x37FE 0x03CC

Legend: CFGW = Configuration Word
SUM][a:b] = [Sum of locations a to b inclusive]

SUM_ID = ID locations masked by OxF then made into a 16-bit value with IDO as the most significant nibble.
For example, IDO = 0x1, ID1 = 0x2, ID3 = 0x3, ID4 = 0x4, then SUM_ID = 0x1234
*Checksum = [Sum of all the individual expressions] MODULO [OxFFFF]

+ = Addition
& = Bitwise AND

© 2000 Microchip Technology Inc.

Preliminary

DS30034A-page 3-145

PIC16F62X

5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS
5.1 Embedding Data EEPROM Contents in Hex File

The programmer should be able to read data EEPROM information from a hex file and conversely (as an option) write
data EEPROM contents to a hex file along with program memory information and fuse information.

The 64 data memory locations are logically mapped starting at address 0x2100. The format for data memory storage
is one data byte per address location, LSB aligned.

TABLE 5-1: AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

Standard Operating Conditions (unless otherwise stated)
Operating Temperature: 0°C <TA < +70°C

Operating Voltage: 4.5V <VDD < 5.5V
Characteristics ‘ Sym ‘ Min ‘ Typ ‘ Max ‘ Units ‘ Conditions/Comments
General
VDD level for word operations, program
memory VDD 2.0 5.5 Vv
VDD level for word operations, data mem-
ory VDD 2.0 5.5 \Y
VDD level for bulk erase/write operations,
program and data memory VDD 4.5 5.5 \Y
High voltage on MCLR and
RA4/TOCKI for test-mode entry VIHH VDD + 3.5 135 Vv
MCLR rise time (VSS to VHH) for test tVHHR 1.0 us
mode entry
(RB6, RB7) input high level VIH1 0.8VDD \Y Schmitt Trigger input
(RB6, RB7) input low level VIL1 0.2VDD \Y Schmitt Trigger input
RB<7:4> setup time before MCLRT tset0 100 ns
(test mode selection pattern setup time)
RB<7:4> hold time after MCLRT thido 5 us

(test mode selection pattern setup time)
Serial Program/Verify

Data in setup time before clock! tset1 100 ns
Data in hold time after clock{ thid1 100 ns
Data input not driven to next clock input tdly1 1.0 us
(delay required between command/data or

command/command)

Delay between clockd to clockT of next tdly2 1.0 us
command or data

ClockT to data out valid (during read data) tdly3 80 ns
Parallel Program/Verify

Data in setup time before clock! tseto 1.0 us
Data in hold time after clockl thido 1.0 us
RB6 and RB7 setup time before clockl tset1 1.0 us
RB6 and RB7 hold time after clockd thid1 1.0 us
RA4/TOCKI (clock)! to (clock) T tdly4 2.0 us
RB7 (data/command select input) setup tset2 1.0 us
before RA4/TOCKI (clock)T

RB7 (data/command select input) hold time thid2 1.0 us
after RA4/TOCKI (clock)d

RA4/TOCKI (clock)T to data out valid tdlys 1.0 us
RB6 (hi/lo select) valid to data out valid tdly6 1.0 us
Erase cycle time tera 2 5 ms
Programming cycle time tprog 2 5 ms
Time delay from program to compare (HV tdis 0.5 us

discharge time)

DS30034A-page 3-146 Preliminary © 2000 Microchip Technology Inc.

PIC16F62X

FIGURE 5-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

v

VIHH_
MCLR /1 Aus min.
|
tset0—P :<|— ; 5 3 4 5 6"@1 2 3 4 5 15 16
RBG w Mo
(CLOCK) —*—— -
| | :<+| thido ! | !
(. [
BT L H : T D D S S >
(e i tsett tdmﬁ —» e tsett
! < thid1 1us min. 4 thid
| B S
I 100ns min. 100ns min.
|
Reset : Program/Verify Test Mode

FIGURE 5-2: READ DATA COMMAND (PROGRAM/VERIFY)

VIHH_
MCLR I

tset0—» < .

I<—>| thido s mint

I 1 2 3 4 5 6 Il 2 3 4 5 15 16
I

e TR e B W W O B B W M W B
(CLOCK) | | -
RB7 I | -
(DATA) E A ERNEIARNEIVAS € =S G G D S
I

; [
I tsetlie—» | 'ty | |
I oo ! — | I
[I e thid1 1us min | |
I e | |
' 100ns min.) | I RB7
I RB7 = input g RB7 = output U input
I [» <
|

Reset ;:4 Program/Verify Test Mode

FIGURE 5-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

VIHH _
MOLR "otdly2
' I Next Command
I | 1us min.i
| ! 2 3 4 5 6 11 2
(CLOCK) | | U R I R A
|
: ! I
(DATA) . 0 1 TN [/ X X x > | o
! tset! le—n | ' tdiy1 |
' [T « >
: I I | thidt 1us m|n.
| ——
| 100ns min.
|
Reset ;: < Program/Verify Test Mode >

© 2000 Microchip Technology Inc. Preliminary DS30034A-page 3-147

PIC16F62X

NOTES:

DS30034A-page 3-148 Preliminary © 2000 Microchip Technology Inc.

MICROCHIP

PIC16F8X

In-Circuit Serial Programming for PIC16F8X FLLASH MCUs

This document includes the programming
specifications for the following devices:

¢ PIC16F83

* PIC16CR83

* PIC16F84

* PIC16CR84

* PIC16F84A

* PIC16F877

1.0 PROGRAMMING THE PIC16F8X

The PIC16F8X is programmed using a serial method.
The serial mode will allow the PIC16F8X to be pro-
grammed while in the users system. This allows for
increased design flexibility. This programming specifi-
cation applies to PIC16F8X devices in all packages.

1.1 Hardware Requirements

The PIC16F8X requires one programmable power sup-
ply for VDD (4.5V to 5.5V) and a VPP of 12V to 14V. Both
supplies should have a minimum resolution of 0.25V.

1.2 Programming Mode

The programming mode for the PIC16F8X allows pro-
gramming of user program memory, data memory, spe-
cial locations used for ID, and the configuration word.

Pin Diagram
PDIP, SOIC
RA2 <— 1 U/ 1sh<—>Rat
RA3 =—[12 170 <—= RAO
RA4/TOCKI <=—[13 p) 16 [J<— OSC1/CLKIN
MCLR — 4 'e) 15[J— OSC2/CLKOUT
Vss —=[5 - 14 -<—VDD
RBO/INT <6 $ 13sp<=nRB7
RB1 =17 © 12[J<— RB6
RB2 <—[]8 x 110 < RB5
RB3 <—[]9 10[J<— RB4
MCLR/Vep — [1 U 40 [] =— RB7
RAO/ANO <—» [2 39 [] =——> RB6
RA1/AN1 <-— [] 3 38 [] =—»> RB5
RA2/AN2/VREF <— [4 37 [] <— RB4
RA3/AN3/VREF <—» [5 36 [] =——» RB3
RA4/TOCKI <—» [] 6 35 [] <——» RB2
RA5/AN4/SS <— [7 34 [] =— RB1
REO/RD/AN5 <— [8 9 33 [] =— RBO/INT
RE1/WR/AN6 <— [9 9 32 [] =— Vop
RE2/CS/AN7 <— [] 10 (22} 31 [] -— vss
VDD —— [11 ;'.f' 30 [1 «<—> RD7/PSP7
Vss — » [12 J 290 «— roersps
OSC1/CLKIN — [13 28 [] =—» RD5/PSP5
OSC2/CLKOUT < [14 27 [] <—» RD4/PSP4
RCO/T10SO/T1CKl <-— [] 15 26 [] <— RC7/RX/DT
RC1/T10SI/CCP2 < [16 25 [] «—» RC6/TX/CK
RC2/CCP1 -—» [] 17 24 [] «—» RC5/SDO
RC3/SCK/SCL <— [] 18 23 [] «— RC4/SDI/SDA
RDO/PSPO <— [19 22 [] «<——» RD3/PSP3
RD1/PSP1 <— [] 20 21 [] =—> RD2/PSP2

PIN DESCRIPTIONS (DURING PROGRAMMING): PIC16F8X

During Programming
Pin Name Function Pin Type Pin Description
RB6 CLOCK | Clock input
RB7 DATA I/0O Data input/output
MCLR VTEST MODE P* Program Mode Select
VDD VDD P Power Supply
Vss Vss P Ground

Legend: | = Input, O = Output, P = Power

*In the PIC16F8X, the programming high voltage is internally generated. To activate the programming mode, high voltage needs to
be applied to MCLR input. Since the MCLR is used for a level source, this means that MCLR does not draw any significant current.

© 2000 Microchip Technology Inc.

DS30262C-page 3-149

PIC16F8X

2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The user memory space extends from 0x0000 to
Ox1FFF (8K), of which 1K (0x0000 - 0x03FF) is physi-
cally implemented. In actual implementation the on-
chip user program memory is accessed by the lower
10-bits of the PC, with the upper 3-bits of the PC
ignored. Therefore if the PC is greater than Ox3FF, it will
wrap around and address a location within the physi-
cally implemented memory. (See Figure 2-1).

In programming mode the program memory space
extends from 0x0000 to Ox3FFF, with the first half
(0x0000-0x1FFF) being user program memory and the
second half (0x2000-0x3FFF) being configuration
memory. The PC will increment from 0x0000 to Ox1FFF
and wrap to 0x000 or 0x2000 to Ox3FFF and wrap
around to 0x2000 (not to 0x0000). Once in configura-
tion memory, the highest bit of the PC stays a ‘1’, thus
always pointing to the configuration memory. The only
way to point to user program memory is to reset the
part and reenter program/verify mode as described in
Section 2.3.

In the configuration memory space, 0x2000-0x200F
are physically implemented. However, only locations
0x2000 through 0x2007 are available. Other locations
are reserved. Locations beyond 0x200F will physically
access user memory. (See Figure 2-1).

2.2 ID Locations

A user may store identification information (ID) in four
ID locations. The ID locations are mapped in [0x2000 :
0x2003]. It is recommended that the user use only the
four least significant bits of each ID location. In some
devices, the ID locations read-out in an unscrambled
fashion after code protection is enabled. For these
devices, it is recommended that ID location is written as
“11 1111 1000 bbbb” where ‘bbbb’ is ID information.

In other devices, the ID locations read out normally,
even after code protection. To understand how the
devices behave, refer to Table 4-2.

To understand the scrambling mechanism after code
protection, refer to Section 4.0.

DS30262C-page 3-150

© 2000 Microchip Technology Inc.

PIC16F8X

FIGURE 2-1: PROGRAM MEMORY MAPPING

0.5 KW 1 KW 8 KW
0
Implemented
;EE P Implemented
a0 [T T T .
Not Implementefl Not Implemented Implemented
1FFF
2000
Implemented Implemented Implemented
2000 ID Location 2008
2001 ID Location
2002 ID Location
2003 ID Location
2004 Reserved Not Implemented Not Implemented Not Implemented
2005 Reserved
2006 Reserved
2007 Configuration Word
3FFF

© 2000 Microchip Technology Inc. DS30262C-page 3-151

PIC16F8X

2.3 Program/Verify Mode

The program/verify mode is entered by holding pins
RB6 and RB7 low while raising MCLR pin from VIL to
VIHH (high voltage). Once in this mode the user pro-
gram memory and the configuration memory can be
accessed and programmed in serial fashion. The mode
of operation is serial, and the memory that is accessed
is the user program memory. RB6 and RB7 are Schmitt
Trigger Inputs in this mode.

Note: The OSC must not have 72 osc clocks
while the device MCLR is between VIL and
VIHH.

The sequence that enters the device into the program-
ming/verify mode places all other logic into the reset
state (the MCLR pin was initially at VIL). This means
that all I/O are in the reset state (High impedance
inputs).

The normal sequence for programming is to use the
load data command to set a value to be written at the
selected address. Issue the begin programming com-
mand followed by read data command to verify, and
then increment the address.

2.3.1 SERIAL PROGRAM/VERIFY OPERATION

The RB6 pin is used as a clock input pin, and the RB7
pin is used for entering command bits and data input/
output during serial operation. To input a command, the
clock pin (RB6) is cycled six times. Each command bit
is latched on the falling edge of the clock with the least
significant bit (LSB) of the command being input first.
The data on pin RB7 is required to have a minimum
setup and hold time (see AC/DC specifications) with
respect to the falling edge of the clock. Commands that
have data associated with them (read and load) are
specified to have a minimum delay of 1 us between the
command and the data. After this delay, the clock pin is
cycled 16 times with the first cycle being a start bit and
the last cycle being a stop bit. Data is also input and
output LSB first.

Therefore, during a read operation the LSB will be
transmitted onto pin RB7 on the rising edge of the sec-
ond cycle, and during a load operation the LSB will be
latched on the falling edge of the second cycle. A min-
imum 1us delay is also specified between consecutive
commands.

All commands are transmitted LSB first. Data words
are also transmitted LSB first. The data is transmitted
on the rising edge and latched on the falling edge of
the clock. To allow for decoding of commands and
reversal of data pin configuration, a time separation of
at least 1 us is required between a command and a
data word (or another command).

The commands that are available are:
2.3.1.1 LOAD CONFIGURATION

After receiving this command, the program counter
(PC) will be set to 0x2000. By then applying 16 cycles
to the clock pin, the chip will load 14-bits in a “data
word,” as described above, to be programmed into the
configuration memory. A description of the memory
mapping schemes of the program memory for normal
operation and configuration mode operation is shown
in Figure 2-1. After the configuration memory is
entered, the only way to get back to the user program
memory is to exit the program/verify test mode by tak-
ing MCLR low (VIL).

DS30262C-page 3-152

© 2000 Microchip Technology Inc.

PIC16F8X

23.1.2 LOAD DATA FOR PROGRAM MEMORY

After receiving this command, the chip will load in a
14-bit “data word” when 16 cycles are applied, as
described previously. A timing diagram for the load data

command is shown in Figure 5-1.

TABLE 2-1: COMMAND MAPPING FOR PIC16F83/CR83/F84/CR84

Command Mapping (MSB ... LSB) Data

Load Configuration 0 0 0 0 0 0 0, data (14), 0
Load Data for Program Memory 0 0 0 0 1 0 |[0,data(14),0
Read Data from Program Memory 0 0 0 1 0 0 |[0,data(14),0
Increment Address 0 0 0 1 1 0

Begin Programming 0 0 1 0 0 0

Load Data for Data Memory 0 0 0 0 1 1 0, data (14), 0
Read Data from Data Memory 0 0 0 1 0 1 0, data (14), 0
Bulk Erase Program Memory 0 0 1 0 0 1

Bulk Erase Data Memory 0 0 1 0 1 1

TABLE 2-2: COMMAND MAPPING FOR PIC16F84A/PIC16F877

Command Mapping (MSB ... LSB) Data

Load Configuration X X 0 0 0 0 0, data (14), 0
Load Data for Program Memory X X 0 0 1 0 |[0,data(14),0
Read Data from Program Memory X X 0 1 0 0 0, data (14), 0
Increment Address X X 0 1 1 0

Begin Erase Programming Cycle 0 0 1 0 0 0

Begin Programming Only Cycle 0 1 1 0 0 0

Load Data for Data Memory X X 0 0 1 1 0, data (14), 0
Read Data from Data Memory X X 0 1 0 1 0, data (14), 0
Bulk Erase Program Memory X X 1 0 0 1

Bulk Erase Data Memory X X 1 0 1 1

© 2000 Microchip Technology Inc.

DS30262C-page 3-153

PIC16F8X

FIGURE 2-2: PROGRAM FLOW CHART - PIC16F8X PROGRAM MEMORY

Set VDD = VDDP

Program Cycle

l

Read Data
Command
Data Correct?
Increment .
Address Al I[_)%(':;tfl)ons
Command ’
Verify all
Locations @
VDDMIN
Report Verify o
Error @ Data Correct?
VDDMIN
Verify all
Locations @
VDDMAX
Report Verify
Error @ Data Correct?
VDDMAX

Done

Report
Programming
Failure

PROGRAM CYCLE

Load Data
Command

l

Begin
Programming
Command

l

Wait 10 ms

DS30262C-page 3-154

© 2000 Microchip Technology Inc.

PIC16F8X

FIGURE 2-3:

PROGRAM FLOW CHART - PIC16F8X CONFIGURATION MEMORY

Load
Configuration
Data

Increment
Address
Command

Address =
0x20047?

Increment
Address
Command

|

Increment
Address
Command

|

Increment

Address
Command

Yes
Done Data Correct?

Program ID ™_Yes Read Data
Location? — 7| Program Cycle |1 command
Report No
Programming [«—<_Data Correct?
Failure
Pg)grlam Set VDD =
ycle
(Config. Word) VDDMAX
Report Program
Configuration ~——<_Data Correct? Read Data
Command
Word Error
lYes
Set VDD =
VDDMAX
No l
Read Data
Command

© 2000 Microchip Technology Inc.

DS30262C-page 3-155

PIC16F8X

2.3.1.3 LOAD DATA FOR DATA MEMORY

After receiving this command, the chip will load in a 14-
bit “data word” when 16 cycles are applied. However,
the data memory is only 8-bits wide, and thus only the
first 8-bits of data after the start bit will be programmed
into the data memory. It is still necessary to cycle the
clock the full 16 cycles in order to allow the internal cir-
cuitry to reset properly. The data memory contains 64
words. Only the lower 8-bits of the PC are decoded by
the data memory, and therefore if the PC is greater than
0x3F, it will wrap around and address a location within
the physically implemented memory.

2.3.14 READ DATA FROM PROGRAM
MEMORY

After receiving this command, the chip will transmit
data bits out of the program memory (user or configu-
ration) currently accessed starting with the second ris-
ing edge of the clock input. The RB7 pin will go into
output mode on the second rising clock edge, and it will
revert back to input mode (hi-impedance) after the 16th
rising edge. A timing diagram of this command is
shown in Figure 5-2.

2.3.1.5 READ DATA FROM DATA MEMORY

After receiving this command, the chip will transmit
data bits out of the data memory starting with the sec-
ond rising edge of the clock input. The RB7 pin will go
into output mode on the second rising edge, and it will
revert back to input mode (hi-impedance) after the 16th
rising edge. As previously stated, the data memory is 8-
bits wide, and therefore, only the first 8-bits that are out-
put are actual data.

2.3.1.6 INCREMENT ADDRESS

The PC is incremented when this command is
received. A timing diagram of this command is shown
in Figure 5-3.

2.3.1.7 BEGIN ERASE/PROGRAM CYCLE

A load command must be given before every begin
programming command. Programming of the appro-
priate memory (test program memory, user program
memory or data memory) will begin after this command
is received and decoded. An internal timing mechanism
executes an erase before write. The user must allow for
both erase and programming cycle times for program-
ming to complete. No “end programming” command is
required.

2.3.1.8 BEGIN PROGRAMMING

A load command must be given before every begin
programming command. Programming of the appro-
priate memory (test program memory, user program
memory or data memory) will begin after this command
is received and decoded. An internal timing mechanism
executes a write. The user must allow for program cycle
time for programming to complete. No “end program-
ming” command is required.

This command is similar to the ERASE/PROGRAM
CYCLE command, except that a word erase is not
done. It is recommended that a bulk erase be per-
formed before starting a series of programming only
cycles.

2.3.1.9 BULK ERASE PROGRAM MEMORY

After this command is performed, the next program
command will erase the entire program memory.

To perform a bulk erase of the program memory, the fol-
lowing sequence must be performed.

1. Do a“Load Data All 1’s” command.

2. Do a “Bulk Erase User Memory” command.

3. Do a “Begin Programming” command.

4. Wait 10 ms to complete bulk erase.

If the address is pointing to the test program memory
(0x2000 - 0x200F), then both the user memory and the
test memory will be erased. The configuration word will

not be erased, even if the address is pointing to location
0x2007

For PIC16F84 perform the following commands:

Issue Command 2 (write program memory).
Send out 3FFFH data.

Issue Command 1 (toggle select even rows).
Issue Command 7 (toggle select even rows).
Issue Command 8 (begin programming)
Delay 10 ms

Issue Command 1 (toggle select even rows).
Issue Command 7 (toggle select even rows).

©No O~ LNMd =

Note: If the device is code-protected
(PIC16F84A), the BULK ERASE com-
mand will not work.

DS30262C-page 3-156

© 2000 Microchip Technology Inc.

PIC16F8X

2.3.1.10 BULK ERASE DATA MEMORY

To perform a bulk erase of the data memory, the follow-
ing sequence must be performed.

1. Do a“Load Data All 1’s” command.

2. Do a “Bulk Erase Data Memory” command.

3. Do a “Begin Programming” command.

4. Wait 10 ms to complete bulk erase.

For PIC16F84 perform the data memory).

5. Send out 3FFFH data.

6. Issue Command 1 (toggle select even rows).
7. lIssue Command 7 (toggle select even rows).
8. Issue Command 8 (begin data)

9. Delay 10 ms

10. Issue Command 1 (toggle select even rows).
Issue Command 7 (toggle select even rows).

Note: All BULK ERASE operations must take
place at 4.5 to 5.5 VDD range.

2.4 Programming Algorithm Requires
Variable VDD

The PIC16F8X uses an intelligent algorithm. The algo-
rithm calls for program verification at Vbbmin. as well
as Vbbmax. Verification at VDDmin. guarantees good
“erase margin”. Verification at VDDmax guarantees
good “program margin”.

The actual programming must be done with VDD in the
VDDP range (See Table 5-1).

VDDP

Vcc range required during programming.
VDDmin. = minimum operating VDD spec for the part.
Vbbmax.= maximum operating VDD spec for the part.

Programmers must verify the PIC16F8X at its specified
VDD max. and VDDmin levels. Since Microchip may
introduce future versions of the PIC16F8X with a
broader VDD range, it is best that these levels are user
selectable (defaults are ok).

Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer

but not a “production” quality programmer.

© 2000 Microchip Technology Inc.

DS30262C-page 3-157

PIC16F8X

3.0 CONFIGURATION WORD

The PIC16F8X has five configuration bits. These bits
can be set (reads ‘0’) or left unchanged (reads ‘1) to
select various device configurations.

3.1 Device ID Word

The device ID word for the PIC16F8XX is located at
2006h.

TABLE 3-1:
Device ID Value
Device
Dev Rev
PIC16F84A 000101 010 0 0000
PIC16F877 00 1001 101 0 0000
FIGURE 3-1: CONFIGURATION WORD BIT MAP FOR PIC16F83/CR83/F84/CR84/F84A
Bit
N'umber: 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PIC16F83/ SWETE
Fearaan| CF cP cP ol cP cP cP cP cP CP | PWRTE | WDTE | FOSC1 | FOSCO
PIC16%F|;883‘{ cP cP cP cP cP cP DP cP cP CP | PWRTE | WDTE | FOSC1 | FOSCO

bit 4-13: CP, Code Protection Configuration Bits
1 = code protection off
0 = code protection on

PIC16CR83/CR84 only

DP, Data Memory Code Protection Bit
1 = code protection off

0 = data memory is code protected

bit 7:

bit 3:
1 = Power up timer disabled
0 = Power up timer enabled

WDTE, WDT Enable Configuration Bits

1 =WDT enabled
0 = WDT disabled

bit 2:

bit 1-0
11: RC oscillator
10: HS oscillator
01: XT oscillator
00: LP oscillator

PWRTE, Power Up Timer Enable Configuration Bit

FOSC<1:0>, Oscillator Selection Configuration Bits

DS30262C-page 3-158

© 2000 Microchip Technology Inc.

PIC16F8X

FIGURE 3-2: CONFIGURATION WORD FOR PIC16F877

| cp1 [cpo |BkBuG| - | wRT | cPp | LvP [BODEN| cP1 | cPo |[PWRTE|WDTE [FosC1|FoSCo| |Register: CONFIG
bit13 pito |Address 2007h
bit 13-12:

bit 11: BKBUG: Background Debugger Mode (This bit documented as reserved in data sheet)
1 = Background debugger functions not enabled
0 = Background debugger functional.
bit 5-4: CP1:CPO0: Flash Program Memory Code Protection bits @
11 = Code protection off
10 = 1FOOh to 1FFFh code protected
01 = 1000h to 1FFFh code protected
00 = 0000h to 1FFFh code protected
bit 11: Reserved: Set to ‘1’ for normal operation
bit 10: Unimplemented: Read as ‘1’
bit 9: WRT: Flash Program Memory Write Enable
1 = Unprotected program memory may be written to by EECON control
0 = Unprotected program memory may not be written to by EECON control
bit 8: CPD: Data EE Memory Code Protection
1 = Code protection off
0 = Data EE memory code protected

bit 7: LVP: Low voltage programming Enable bit
1 = RB3/PGM pin has PGM function, low voltage programming enabled
0 = RB3 is digital I/O, HV on MCLR must be used for programming

bit 6: BODEN: Brown-out Reset Enable bit (V)
1 = BOR enabled
0 = BOR disabled

bit 3: PWRTE: Power-up Timer Enable bit (V)
1 = PWRT disabled
0 = PWRT enabled

bit 2: WDTE: Watchdog Timer Enable bit
1=WDT enabled
0 = WDT disabled

bit 1-0: FOSC1:FOSCO: Oscillator Selection bits
11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE.
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.
2: All of the CP1:CPO pairs have to be given the same value to enable the code protection scheme listed.

© 2000 Microchip Technology Inc. DS30262C-page 3-159

PIC16F8X

4.0 CODE PROTECTION

For PIC16F8X devices, once code protection is
enabled, all program memory locations read all 0’s.
The ID locations and the configuration word read out in
an unscrambled fashion. Further programming is dis-
abled for the entire program memory as well as data
memory. It is possible to program the ID locations and
the configuration word.

4.1 Disabling Code-Protection

It is recommended that the following procedure be per-
formed before any other programming is attempted. It
is also possible to turn code protection off (code protect
bit = 1) using this procedure; however, all data within
the program memory and the data memory will be
erased when this procedure is executed, and thus,
the security of the data or code is not compro-
mised.

Procedure to disable code protect:

a) Execute load configuration (with a ‘1’ in bit 4,
code protect).

b) Increment to configuration word location
(0x2007)

c) Execute command (000001)

d) Execute command (000111)

e) Execute ‘Begin Programming’ (001000)

f) Wait 10 ms

g) Execute command (000001)

h) Execute command (000111)

4.2 Embedding Configuration Word and ID Information in the Hex File

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.
An option to not include this information may be provided.

Specifically for the PIC16F8X, the EEPROM data memory should also be embedded in the hex file (see Section 5.1).
Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

TABLE 4-1:
PIC16F83
To code protect:

CONFIGURATION WORD

0000000000XXXX

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (0x2007)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

All memory Read All 0's, Write Disabled Read Unscrambled, Write Enabled
ID Locations [0x2000 : 0x2003] Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled
PIC16CR83

To code protect: 0000000000XXXX

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (0x2007)

Read Unscrambled

Read Unscrambled

All memory

Read All 0’s for Program Memory,
Read All 1’s for Data Memory -
Write Disabled

Read Unscrambled, Data Memory -
Write Enabled

ID Locations [0x2000 : 0x2003]

Read Unscrambled

Read Unscrambled

DS30262C-page 3-160

© 2000 Microchip Technology Inc.

PIC16F8X

PIC16CR84

To code protect: 0000000000XXXX

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (0x2007)

Read Unscrambled

Read Unscrambled

All memory

Read All 0’s for Program Memory,
Read All 1’s for Data Memory -
Write Disabled

Read Unscrambled, Data Memory -
Write Enabled

ID Locations [0x2000 : 0x2003]

Read Unscrambled

Read Unscrambled

PIC16F84

To code protect: 0000000000XXXX

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (0x2007)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

All memory

Read All 0’s, Write Disabled

Read Unscrambled, Write Enabled

ID Locations [0x2000 : 0x2003]

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

PIC16F84A

To code protect: 0000000000XXXX

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (0x2007)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

All memory

Read All 0’'s, Write Disabled

Read Unscrambled, Write Enabled

ID Locations [0x2000 : 0x2003]

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

PIC16F8XX

To code protect: 00X1XXXX00XXXX

Program Memory Segment

R/W in Protected Mode

R/W in Unprotected Mode

Configuration Word (0x2007)

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

All memory

Read All 0’'s, Write Disabled

Read Unscrambled, Write Enabled

ID Locations [0x2000 : 0x2003]

Read Unscrambled, Write Enabled

Read Unscrambled, Write Enabled

Legend: X = Don’t care

© 2000 Microchip Technology Inc.

DS30262C-page 3-161

PIC16F8X

4.3 CHECKSUM COMPUTATION

4.3.1 CHECKSUM

Checksum is calculated by reading the contents of the
PIC16F8X memory locations and adding up the
opcodes up to the maximum user addressable location,
e.g., Ox1FF for the PIC16F8X. Any carry bits exceeding
16-bits are neglected. Finally, the configuration word
(appropriately masked) is added to the checksum.
Checksum computation for each member of the
PIC16F8X devices is shown in Table 4-2.

The checksum is calculated by summing the following:

* The contents of all program memory locations
* The configuration word, appropriately masked
¢ Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-
ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

Note that some older devices have an additional value
added in the checksum. This is to maintain compatibil-
ity with older device programmer checksums.

TABLE 4-2: CHECKSUM COMPUTATION
Code Blank | 0X25E6at0
. Checksum* and max
Device Protect Value

address
PIC16F83 OFF SUM[0x000:0x1FF] + CFGW & Ox3FFF 0x3DFF 0x09CD
ON CFGW & 0x3FFF + SUM_ID Ox3EOE 0x09DC
PIC16CR83 OFF SUM[0x000:0x1FF] + CFGW & 0x3FFF 0x3DFF 0x09CD
ON CFGW & 0x3FFF + SUM_ID Ox3EOE 0x09DC
PIC16F84 OFF SUM[0x000:0x3FF] + CFGW & 0x3FFF 0x3BFF 0x07CD
ON CFGW & 0x3FFF + SUM_ID 0x3COE 0x07DC
PIC16CR84 OFF SUM[0x000:0x3FF] + CFGW & 0x3FFF 0x3BFF 0x07CD
ON CFGW & 0x3FFF + SUM_ID 0x3COE 0x07DC
PIC16F84A OFF SUM[0x000:0x3FF] + CFGW & O0x3FFF 0x3BFF 0x07CD
ON CFGW & 0x3FFF + SUM_ID 0x3COE 0x07DC
PIC16F877 OFF SUM[0x0000:0x1FFF] + CFGW & 0x3BFF 0x1BFF 0xE7CD
0X1FO0 SUM[0x0000:0x1EFF] + CFGW & 0x3BFF +SUM_ID 0x28EE 0xDAA3

O0X1FFF
0x1000 SUMI[0x0000:0x0FFF] + CFGW & 0x3BFF + SUM_ID 0x27DE 0xD993

Ox1FFF
ALL CFGW & 0x3BFF + SUM_ID 0x27CE 0xF39C

Legend: CFGW = Configuration Word
SUM][a:b] = [Sum of locations a to b inclusive]

SUM_ID = ID locations masked by OxF then made into a 16-bit value with IDO as the most significant nibble.
For example, IDO = 0x1, ID1 = 0x2, ID3 = 0x3, ID4 = 0x4, then SUM_ID = 0x1234
*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]

+ = Addition
& = Bitwise AND

DS30262C-page 3-162

© 2000 Microchip Technology Inc.

PIC16F8X

5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS
5.1 Embedding Data EEPROM Contents in Hex File

The programmer should be able to read data EEPROM information from a hex file and conversely (as an option) write
data EEPROM contents to a hex file along with program memory information and fuse information.

The 64 data memory locations are logically mapped starting at address 0x2100. The format for data memory storage
is one data byte per address location, LSB aligned.

TABLE 5-1: AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions
Operating Temperature: +10°C < TA < +40°C, unless otherwise stated, (25°C is recommended)

Operating Voltage: 4.5V < VDD < 5.5V, unless otherwise stated.
Paramet -
er Sym. Characteristic Min. | Typ. | Max. | Units Conditions/
Comments
No.
VDDP | Supply voltage during programming 4.5 5.0 5.5 \
VDDV | Supply voltage during verify VDDmin Vobmax| V |Note1
VIHH | High voltage on MCLR for test mode 12 14.0 V | Note 2
entry
IDDP | Supply current (from VDD) during 50 mA
program/verify
IHH | Supply current from VIHH (on MCLR) 200 LA
VIH1 | (RB6, RB7) input high level 0.8 VDD V | Schmitt Trigger input
ViL1 | (RB6, RB7) input low level MCLR 0.2 VbD V | Schmitt Trigger input
(test mode selection)
P1 TvHHR | MCLR rise time (Vss to VHH) for test 8.0 us
mode entry
P2 Tset0 |RB6, RB7 setup time (before pattern 100 ns
setup time)
P3 Tset! |Data in setup time before clock | 100 ns
P4 Thid1 |Data in hold time after clock { 100 ns
P5 Tdly1 | Data input not driven to next clock 1.0 us
input (delay required between com-
mand/data or command/command)
P6 Tdly2 | Delay between clock | to clock T of 1.0 us
next command or data
P7 Tdly3 |Clock to data out valid (during read 80 ns
data)
P8 Thido |RB <7:6> hold time after MCLR T 100 ns
- - Erase cycle time - - 10 ms
- - Program cycle time - - 10 ms

Note 1: Program must be verified at the minimum and maximum VDD limits for the part.
Note 2: VIHH must be greater than VDD + 4.5V to stay in programming/verify mode.

© 2000 Microchip Technology Inc. DS30262C-page 3-163

PIC16F8X

FIGURE 5-1: LOAD

DATA COMMAND (PROGRAM/VERIFY)

Program/Verify Test Mode

VRN TR S W W G G D G G W
o v . P5 . [-
o —>Pler -~ Py
\ Pl s min :P3
: 1IOQnS .1OQnS
I min. min.
|

\j

FIGURE 5-2:

MCLR

RB7
(DATA,'-%lI

READ DATA COMMAND (PROGRAM/VERIFY)
VIHH- 7
g 100ns . P
e, 12 3 4 5 sf‘_ms i 2 3 4 5 15
RB6 =\ ' ' P8 :
ReT)kl [I Y e e e e) e Y s Y N
. ' ' 100ns ; p7T I o
ST S/ S T I A e G XCo—
o '~ P4, » : '
' 'P3 - :1us mint) '
: T00ns : '
on: : !
L min- o RB7 = output ‘: E\EZt

Program/Verify Test Mod

[¢)

Reset —p»'

Program/Verify Test Mode

FIGURE 5-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)
VIHH - -
MCLR .
! ' Pé - > Next Command
- ! | 5 3 4 5 6 1us min. 1 2
oo L LI L P L rert L
aB7 : : :
ATA) 9 ! ! 2 0 0 jimroer e o
| s .~
: +P3. P4, ' Tus min.,
. e
' 100ns
! min

Y

DS30262C-page 3-164

© 2000 Microchip Technology Inc.

MICROCHIP

PIC16F8XX

In-Circuit Serial Programming for PIC16F8XX FLASH MCUs

This document includes the programming
specifications for the following devices:

* PIC16F870 * PIC16F874
* PIC16F871 * PIC16F876
* PIC16F872 * PIC16F877
* PIC16F873

1.0 PROGRAMMING THE
PIC16F8XX

The PIC16F8XX is programmed using a serial method.

The serial mode will allow the PIC16F8XX to be pro-

grammed while in the users system. This allows for

increased design flexibility. This programming specifi-

cation applies to PIC16F8XX devices in all packages.

PIC16F8XX devices may be programmed using a sin-
gle +5 volt supply (low voltage programming mode).

1.1 Hardware Requirements

The PIC16F8XX requires one programmable power
supply for VDD (4.5V to 5.5V) and a Vpp of 12V to 14V
or VPP of (4.5V to 5.5V) when using low voltage In-Cir-
cuit Serial Programming™ (ICSP™). Both supplies
should have a minimum resolution of 0.25V.

1.2 Programming Mode

The programming mode for the PIC16F8XX allows pro-
gramming of user program memory, data memory, spe-
cial locations used for ID, and the configuration word.

Pin Diagram
PDIP, SOIC
MeLR/vee— L1°1 - 28] <> RB7
rRao/ANO =+ L] 2 - 27[] <> RBs
Rat/aN1=<>L] 3 5 26] == RBs
RA2/AN2/Vrer <L 4 - 25[] <> RB4
RAZ/ANaVrer <+ L 5 % 24[1 <> RB3
rA4Tocki =L 6 * 23] <> RB2
RA5/AN4/SS=<+>L] 7 o 22[] <> RB1
vss— L] 8 =] 21[1 <> RBO/INT
osc1/cLKIN—>=L] 9 o 20[] <— Voo
osca/cLkouT<—L] 10 @ 190 <— vss
RCOT10SO1CKI=— L] 11 E 18] == RC7/RX/DT
RC1/T108l/CCP2=—>[]12 ® 17[] <> RC6/TX/CK
rcz/copt=<—=[]13 S 16[] <> RC5/SDO
RC3/SCK/SCL=<>[]14 15[] < RC4/SDI/SDA
MCLR/VPP — [1 U 40 [1 =—> RB7
RAO/ANO <—» [2 39 [] =——»> RB6
RA1/AN1 <— [] 3 38 [] =—» RB5
RA2/AN2/VREF <— [4 37 [] <—> RB4
RA3/AN3/VREF -— [5 36 [] =—> RB3
RA4/TOCKI <——» [] 6 35[] «——» RB2
RA5/AN4/SS <— [7 34 [] <—> RB1
REO/RD/AN5 <—» [8 3 5 [1 <— RBO/INT
RE1/WR/AN6 <— [] 9 9 32 [] =— vop
RE2/CS/AN7 <— [] 10 [22] 31 [] =— Vss
VoD — [11 ;'.f' 30 [] =—> RD7/PSP7
Vss — » [12 :“ 29 [] =—> RD6/PSP6
OSC1/CLKIN — [] 13 & 28[0=— RD5/PSPS
OSC2/CLKOUT <[] 14 N 27[] <—» RD4/PSP4
RCO/T10SO/T1CKI <— [15 g 26 [] <—» RC7/RX/DT
RC1/T10SI/CCP2 <-— [16 N 25 [] <—» RCETX/CK
RC2/CCP1 <— [] 17 = 54[] <—» RC5/SDO
RC3/SCK/SCL <— [] 18 23 [] =—» RC4/SDI/SDA
RDO/PSPO0 «— [19 22 [] «——» RD3/PSP3
RD1/PSP1 <— [] 20 21 [] <—» RD2/PSP2

PIN DESCRIPTIONS (DURING PROGRAMMING): PIC16F8XX

During Programming
Pin Name
Function Pin Type Pin Description
RB3 PGM | Low voltage ICSP programming input if
configuration bit equals 1
RB6 CLOCK | Clock input
RB7 DATA I/O Data input/output
MCLR VTEST MODE P* Program Mode Select
VDD VDD P Power Supply
Vss Vss P Ground

Legend: | = Input, O = Output, P = Power

*In the PIC16F8XX, the programming high voltage is internally generated. To activate the programming mode, high voltage needs
to be applied to MCLR input. Since the MCLR is used for a level source, this means that MCLR does not draw any significant current.

In-circuit Serial Programming (ICSP) is a trademark of Microchip Technology Inc.

© 2000 Microchip Technology Inc.

DS39025D-page 3-165

PIC16F8XX

2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The user memory space extends from 0x0000 to
0x1FFF (8K). In programming mode the program mem-
ory space extends from 0x0000 to 0x3FFF, with the first
half (0x0000-0x1FFF) being user program memory and
the second half (0x2000-0x3FFF) being configuration
memory. The PC will increment from 0x0000 to Ox1FFF
and wrap to 0x000, 0x2000 to Ox3FFF and wrap
around to 0x2000 (not to 0x0000). Once in configura-
tion memory, the highest bit of the PC stays a ‘1’, thus
always pointing to the configuration memory. The only
way to point to user program memory is to reset the
part and reenter program/verify mode as described in
Section 2.3.

In the configuration memory space, 0x2000-0x200F
are physically implemented. However, only locations
0x2000 through 0x2007 are available. Other locations
are reserved. Locations beyond 0x200F will physically
access user memory. (See Figure 2-1).

2.2 ID Locations

A user may store identification information (ID) in four
ID locations. The ID locations are mapped in [0x2000 :
0x2003]. It is recommended that the user use only the
four least significant bits of each ID location. In some
devices, the ID locations read-out in an unscrambled
fashion after code protection is enabled. For these
devices, it is recommended that ID location is written as
“11 1111 1000 bbbb” where ‘bbbb’ is ID information.

In other devices, the ID locations read out normally,
even after code protection. To understand how the
devices behave, refer to Table 4-1.

To understand the scrambling mechanism after code
protection, refer to Section 4.0.

DS39025D-page 3-166

© 2000 Microchip Technology Inc.

PIC16F8XX

FIGURE 2-1: PROGRAM MEMORY MAPPING
2K 4K 8K
words words words
2000h ID Location Oh
1FFh| Implemented | Implemented | Implemented
2001h ID Location i';g:
Implemented | Implemented | Implemented
2002h ID Location ;’;E: >
Implemented | Implemented
. BFFh
2003h ID Location coonl — T
Implemented | Implemented
2004h Reserved FFFRL
1pooh Reserved Implemented
2005h Reserved
Reserved Implemented
2006h Device ID
Implemented
2007h | Configuration Word
Implemented
1FFF
2008h
Reserved Reserved Reserved
2100h
Reserved Reserved Reserved
3FFFh

© 2000 Microchip Technology Inc.

DS39025D-page 3-167

PIC16F8XX

2.3 Program/Verify Mode

The program/verify mode is entered by holding pins
RB6 and RB7 low while raising MCLR pin from VIL to
VIHH (high voltage). In this mode, the state of the RB3
pin does not effect programming. Low-voltage ICSP
programming mode is entered by applying VDD to
MCLR and raising RB3 from VIL to VDD. Once in this
mode the user program memory and the configuration
memory can be accessed and programmed in serial
fashion. The mode of operation is serial, and the mem-
ory that is accessed is the user program memory. RB6
and RB7 are Schmitt Trigger Inputs in this mode.

Note: The OSC must not have 72 osc clocks
while the device MCLR is between ViL and

VIHH.

The sequence that enters the device into the program-
ming/verify mode places all other logic into the reset
state (the MCLR pin was initially at VIL). This means
that all I/O are in the reset state (High impedance
inputs).

The normal sequence for programming is to use the
load data command to set a value to be written at the
selected address. Issue the begin programming com-
mand followed by read data command to verify, and
then increment the address.

A device reset will clear the PC and set the address to
0. The “increment address” command will increment
the PC. The “load configuration” command will se the
PC to 0x2000. The available commands are shown in
Table 2-1.

2.3.1 LOW-VOLTAGE ICSP PROGRAMMING
MODE

When LVP bit is set to ‘1’, the low-voltage ICSP pro-
gramming entry is enabled. Since the LVP configura-
tion bit allows low voltage ICSP programming entry in
its erased state, an erased device will have the LVP bit
enabled at the factory. While LVP is ‘1’, RB3 is dedi-
cated to low voltage ICSP programming. Bring MCLR
to Vbb and then RB3 to VDD to enter programming
mode. All other specifications for high-voltage ICSP™
apply.

To disable low voltage ICSP mode, the LVP bit must be
programmed to ‘0’. This must be done while entered
with high voltage entry mode (LVP bit= 1). RB3 is now
a general purpose 1/O pin.

2.3.2 SERIAL PROGRAM/VERIFY OPERATION

The RB6 pin is used as a clock input pin, and the RB7
pin is used for entering command bits and data input/
output during serial operation. To input a command, the
clock pin (RB6) is cycled six times. Each command bit
is latched on the falling edge of the clock with the least
significant bit (LSB) of the command being input first.
The data on pin RB7 is required to have a minimum
setup and hold time (see AC/DC specifications) with
respect to the falling edge of the clock. Commands that
have data associated with them (read and load) are
specified to have a minimum delay of 1 ps between the
command and the data. After this delay, the clock pin is
cycled 16 times with the first cycle being a start bit and
the last cycle being a stop bit. Data is also input and
output LSB first.

Therefore, during a read operation the LSB will be
transmitted onto pin RB7 on the rising edge of the sec-
ond cycle, and during a load operation the LSB will be
latched on the falling edge of the second cycle. A min-
imum 1ps delay is also specified between consecutive
commands.

All commands are transmitted LSB first. Data words
are also transmitted LSB first. The data is transmitted
on the rising edge and latched on the falling edge of
the clock. To allow for decoding of commands and
reversal of data pin configuration, a time separation of
at least 1 ps is required between a command and a
data word (or another command).

The commands that are available are:
2.3.2.1 LOAD CONFIGURATION

After receiving this command, the program counter
(PC) will be set to 0x2000. By then applying 16 cycles
to the clock pin, the chip will load 14-bits in a “data
word,” as described above, to be programmed into the
configuration memory. A description of the memory
mapping schemes of the program memory for normal
operation and configuration mode operation is shown
in Figure 2-1. After the configuration memory is
entered, the only way to get back to the user program
memory is to exit the program/verify test mode by tak-
ing MCLR low (VIL).

DS39025D-page 3-168

© 2000 Microchip Technology Inc.

PIC16F8XX

23.2.2 LOAD DATA FOR PROGRAM MEMORY

After receiving this command, the chip will load in a
14-bit “data word” when 16 cycles are applied, as
described previously. A timing diagram for the load data

command is shown in Figure 5-1.

TABLE 2-1: COMMAND MAPPING FOR PIC16F84A/PIC16F877

Command

Mapping (MSB ... LSB)

Data

Load Configuration

Load Data for Program Memory
Read Data from Program Memory
Increment Address

Begin Erase Programming Cycle
Begin Programming Only Cycle
Load Data for Data Memory

Read Data from Data Memory
Bulk Erase Program Memory
Bulk Erase Data Memory

X X X X O o X X X X

X 0 0 0
X 0 0 1
X 0 1 0
X 0 1 1
0 1 0 0
1 1 0 0
X 0 0 1
X 0 1 0
X 1 0 0
X 1 0 1

- =4 =4 4 O O O O O o

0, data (14), 0
0, data (14), 0
0, data (14), 0

0, data (14), 0
0, data (14), 0

© 2000 Microchip Technology Inc.

DS39025D-page 3-169

PIC16F8XX

FIGURE 2-2: PROGRAM FLOW CHART - PIC16F8XX PROGRAM MEMORY

Set VDD = VDDP

Program Cycle

l

Read Data
Command
Data Correct?
Increment .
Address Al I[_)%(':;tfl)ons
Command ’
Verify all
Locations @
VDDMIN
Report Verify o
Error @ Data Correct?
VDDMIN
Verify all
Locations @
VDDMAX
Report Verify
Error @ Data Correct?
VDDMAX

Done

Report
Programming
Failure

PROGRAM CYCLE

Load Data
Command

l

Begin
Programming
Command

l

Wait tprog

DS39025D-page 3-170

© 2000 Microchip Technology Inc.

PIC16F8XX

FIGURE 2-3:

PROGRAM FLOW CHART - PIC16F8XX CONFIGURATION MEMORY

Load
Configuration
Data

Increment
Address
Command

Address =
0x20047?

Increment
Address
Command

|

Increment
Address
Command

|

Increment

Address
Command

Program ID ™_Yes Read Data
Location? — 7| Program Cycle |1 command
Report No
Programming [«—<_Data Correct?
Failure
Pg)grlam Set VDD =
ycle
(Config. Word) VDDMAX
Report Program
Configutation ~——<_Data Correct? Read Data
Command
Word Error
lYes
Set VDD =
VDDMAX
No l
Read Data
Command

Yes
Done Data Correct?

© 2000 Microchip Technology Inc.

DS39025D-page 3-171

PIC16F8XX

2.3.23 LOAD DATA FOR DATA MEMORY

After receiving this command, the chip will load in a 14-
bit “data word” when 16 cycles are applied. However,
the data memory is only 8-bits wide, and thus only the
first 8-bits of data after the start bit will be programmed
into the data memory. It is still necessary to cycle the
clock the full 16 cycles in order to allow the internal cir-
cuitry to reset properly. The data memory contains 64
words. Only the lower 8-bits of the PC are decoded by
the data memory, and therefore if the PC is greater than
0x3F, it will wrap around and address a location within
the physically implemented memory. If the device is
code protected, the data is read as all zeros.

2.3.24 READ DATA FROM PROGRAM
MEMORY

After receiving this command, the chip will transmit
data bits out of the program memory (user or configu-
ration) currently accessed starting with the second ris-
ing edge of the clock input. The RB7 pin will go into
output mode on the second rising clock edge, and it will
revert back to input mode (hi-impedance) after the 16th
rising edge. A timing diagram of this command is
shown in Figure 5-2.

2.3.25 READ DATA FROM DATA MEMORY

After receiving this command, the chip will transmit
data bits out of the data memory starting with the sec-
ond rising edge of the clock input. The RB7 pin will go
into output mode on the second rising edge, and it will
revert back to input mode (hi-impedance) after the 16th
rising edge. As previously stated, the data memory is 8-
bits wide, and therefore, only the first 8-bits that are out-
put are actual data.

2.3.2.6 INCREMENT ADDRESS

The PC is incremented when this command is
received. A timing diagram of this command is shown
in Figure 5-3.

2.3.2.7 BEGIN ERASE/PROGRAM CYCLE

A load command must be given before every begin
programming command. Programming of the appro-
priate memory (test program memory, user program
memory or data memory) will begin after this command
is received and decoded. An internal timing mechanism
executes an erase before write. The user must allow for
both erase and programming cycle times for program-
ming to complete. No “end programming” command is
required.

2.3.2.8 BEGIN PROGRAMMING

A load command must be given before every begin
programming command. Programming of the appro-
priate memory (test program memory, user program
memory or data memory) will begin after this command
is received and decoded. An internal timing mechanism
executes a write. The user must allow for program cycle
time for programming to complete. No “end program-
ming” command is required.

This command is similar to the ERASE/PROGRAM
CYCLE command, except that a word erase is not
done. It is recommended that a bulk erase be per-
formed before starting a series of programming only
cycles.

2.3.2.9 BULK ERASE PROGRAM MEMORY

After this command is performed, the next program
command will erase the entire program memory.

To perform a bulk erase of the program memory, the fol-
lowing sequence must be performed.

1. Do a“Load Data All 1’s” command.

2. Do a “Bulk Erase Program Memory” command.

3. Do a “Begin Programming” command.

4. Wait 10 ms to complete bulk erase.

If the address is pointing to the test program memory
(0x2000 - 0x200F), then both the user memory and the
test memory will be erased. The configuration word will

not be erased, even if the address is pointing to location
0x2007.

Note: If the device is code-protected, the BULK
ERASE command will not work.

2.3.2.10 BULK ERASE DATA MEMORY

To perform a bulk erase of the data memory, the follow-
ing sequence must be performed.

1. Do a “Load Data All 1’s” command.

2. Do a “Bulk Erase Data Memory” command.

3. Do a “Begin Programming” command.

4. Wait 10 ms to complete bulk erase.

Note: All BULK ERASE operations must take

place at 4.5 to 5.5 VDD range.

DS39025D-page 3-172

© 2000 Microchip Technology Inc.

PIC16F8XX

2.4 Programming Algorithm Requires
Variable VDD

The PIC16F8XX uses an intelligent algorithm. The
algorithm calls for program verification at Vbbmin. as
well as Vbbmax. Verification at VDDmin. guarantees
good “erase margin”. Verification at VDbmax guaran-
tees good “program margin”.

The actual programming must be done with VDD in the
VDDP range (See Table 5-1).

VDDP

Vcc range required during programming.
VDDmin. = minimum operating VDD spec for the part.
Vbbmax.= maximum operating VDD spec for the part.

Programmers must verify the PIC16F8XX at its speci-
fied VDD max. and VDDmin levels. Since Microchip may
introduce future versions of the PIC16F8XX with a
broader VDD range, it is best that these levels are user
selectable (defaults are ok).

Note: Any programmer not meeting these
requirements may only be classified as
“prototype” or “development” programmer
but not a “production” quality programmer.

© 2000 Microchip Technology Inc.

DS39025D-page 3-173

PIC16F8XX

3.0 CONFIGURATION WORD TABLE 3-1: DEVICE ID VALUE

The PIC16F8XX has several configuration bits. These Device ID Value

bits can be set (reads ‘0’) or left unchanged (reads ‘1’) Device

to select various device configurations. Dev Rev

. PIC16F870 00 1101 000 X XXXX

3.1 Device |D Word PIC16F871 00 1101 001 X XXXX

The device ID word for the PIC16F8XX is located at PIC16F872 00 1000 111 X XXXX

2006h. PIC16F873 | 001001011 X XXXX
PIC16F874 00 1001 001 X XXXX
PIC16F876 00 1001 111 X XXXX
PIC16F877 00 1001 101 X XXXX

FIGURE 3-1: CONFIGURATION WORD FOR PIC16F873/874/876/877

| cpt [cro|Resv| - | wrT | crp | LvP [BODEN| cP1 | cPo |[PWRTE|WDTE [FosC1|FosCo| |Register: CONFIG
bit13 bito | Address 2007h
bit 13-12:

bit 11: Reserved: set to ‘1’ for normal operation

bit 5-4: CP1:CPO0: Flash Program Memory Code Protection bits @
4K Devices:
11 = Code protection off
10 = not supported
01 = not supported
00 = 0000h to OFFFh code protected
8K Devices:
11 = Code protection off
10 = 1FOOh to 1FFFh code protected
01 = 1000h to 1FFFh code protected
00 = 0000h to 1FFFh code protected
bit 11: Reserved: Set to ‘1’ for normal operation
bit 10: Unimplemented: Read as ‘1’
bit 9: WRT: Flash Program Memory Write Enable
1 = Unprotected program memory may be written to by EECON control
0 = Unprotected program memory may not be written to by EECON control
bit 8: CPD: Data EE Memory Code Protection
1 = Code protection off
0 = Data EE memory code protected

bit 7: LVP: Low voltage programming Enable bit
1 = RB3/PGM pin has PGM function, low voltage programming enabled
0 = RB3 is digital I/O, HV on MCLR must be used for programming

bit 6: BODEN: Brown-out Reset Enable bit (V)
1 = BOR enabled
0 = BOR disabled

bit 3: PWRTE: Power-up Timer Enable bit (V)
1 = PWRT disabled
0 = PWRT enabled

bit 2: WDTE: Watchdog Timer Enable bit
1 =WDT enabled
0 = WDT disabled

bit 1-0: FOSC1:FOSCO: Oscillator Selection bits
11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE.
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.
2: All of the CP1:CPO pairs have to be given the same value to enable the code protection scheme listed.

DS39025D-page 3-174 © 2000 Microchip Technology Inc.

PIC16F8XX

FIGURE 3-2: CONFIGURATION WORD FOR PIC16F870/871/872

bit 11:
bit 10:
bit 9:

bit 8:

bit 7:

bit 6:

bit 3:

bit 2:

bit 1-0:

Note 1:

| cp1 | cro [Resv| - | wRT | crp | LvP [BODEN| cP1 | cPo |[PWRTE|WDTE [FosC1|FosCo| |Register: CONFIG
bit13 pito |Address 2007h
bit 13-12:

bit 5-4: CP1:CPO0: Flash Program Memory Code Protection bits @

11 = Code protection off
10 = not supported
01 = not supported
00 = 0000h to 07FFh code protected
Reserved: Set to ‘1’ for normal operation
Unimplemented: Read as ‘1’
WRT: Flash Program Memory Write Enable
1 = Unprotected program memory may be written to by EECON control
0 = Unprotected program memory may not be written to by EECON control
CPD: Data EE Memory Code Protection
1 = Code protection off
0 = Data EE memory code protected

LVP: Low voltage programming Enable bit
1 = RB3/PGM pin has PGM function, low voltage programming enabled
0 = RB3 is digital I/O, HV on MCLR must be used for programming

BODEN: Brown-out Reset Enable bit (1)
1 = BOR enabled
0 = BOR disabled

PWRTE: Power-up Timer Enable bit U
1 = PWRT disabled
0 = PWRT enabled

WDTE: Watchdog Timer Enable bit
1 =WDT enabled
0 = WDT disabled

FOSC1:FOSCO: Oscillator Selection bits
11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE.
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.
All of the CP1:CPO pairs have to be given the same value to enable the code protection scheme listed.

© 2000 Microchip Technology Inc. DS39025D-page 3-175

PIC16F8XX

4.0 CODE PROTECTION

For PIC16F8XX devices, once code protection is
enabled, all program memory locations read all 0’s.
The ID locations and the configuration word read out in
an unscrambled fashion. Further programming is dis-
abled for the entire program memory as well as data
memory. It is possible to program the ID locations and
the configuration word.

4.1 Disabling Code-Protection

It is recommended that the following procedure be per-
formed before any other programming is attempted. It
is also possible to turn code protection off (code protect
bit = 1) using this procedure; however, all data within
the program memory and the data memory will be
erased when this procedure is executed, and thus,
the security of the data or code is not compro-
mised.

Procedure to disable code protect:

a)

b)

Execute load configuration (with a ‘1’ in bit 13-4,
code protect).

Increment to configuration word location
(0x2007)

Execute command (000001)

Execute command (000111)

Execute ‘Begin Programming’ (001000)
Wait 12 ms

Execute command (000001)

Execute command (000111)

4.2 Embedding Configuration Word and ID Information in the Hex File

Section 5.1).

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex
file when loading the hex file. If configuration word information was not present in the hex file then a simple warning
message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.
An option to not include this information may be provided.

Specifically for the PIC16F8XX, the EEPROM data memory should also be embedded in the hex file (see

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

DS39025D-page 3-176

© 2000 Microchip Technology Inc.

PIC16F8XX

4.3 CHECKSUM COMPUTATION

4.3.1 CHECKSUM

Checksum is calculated by reading the contents of the
PIC16F8XX memory locations and adding up the
opcodes up to the maximum user addressable location,
e.g., Ox1FF for the PIC16F8XX. Any carry bits exceed-
ing 16-bits are neglected. Finally, the configuration
word (appropriately masked) is added to the check-
sum. Checksum computation for each member of the
PIC16F8XX devices is shown in Table 4-1.

The checksum is calculated by summing the following:

¢ The contents of all program memory locations
¢ The configuration word, appropriately masked
¢ Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-
sum.

The following table describes how to calculate the
checksum for each device. Note that the checksum cal-
culation differs depending on the code protect setting.
Since the program memory locations read out differ-
ently depending on the code protect setting, the table
describes how to manipulate the actual program mem-
ory values to simulate the values that would be read
from a protected device. When calculating a checksum
by reading a device, the entire program memory can
simply be read and summed. The configuration word
and ID locations can always be read.

Note that some older devices have an additional value
added in the checksum. This is to maintain compatibil-
ity with older device programmer checksums.

© 2000 Microchip Technology Inc.

DS39025D-page 3-177

PIC16F8XX

TABLE 4-1: CHECKSUM COMPUTATION

., | 0X25E6 at 0
Device P(r::tc:-: it Checksum* BI::L ke v and max
address
PIC16F870 OFF SUM[0x0000:0x07FFF] + CFGW & 0x3BFF 0x33FF 0xFFCD
ALL CFGW & 0x3BFF + SUM_ID 0x3FCE 0x0B9C
PIC16F871 OFF SUM[0x0000:0x07FFF] + CFGW & 0x3BFF 0x33FF OxFFCD
ALL CFGW & 0x3BFF + SUM_ID 0x3FCE 0x0B9C
PIC16F872 OFF SUM[0x0000:0x07FFF] + CFGW & 0x3BFF 0x33FF 0xFFCD
ALL CFGW & 0x3BFF + SUM_ID 0x3FCE 0x0B9C
PIC16F873 OFF SUM[0x0000:0x0FFF] + CFGW & 0x3BFF 0x2BFF 0xF7CD

0xOF00 : OxFFF | SUM[0x0000:0x0EFF] + CFGW & 0x3BFF +SUM_ID O0x48EE O0xFAA3
0x0800 : OxFFF | SUM[0x0000:0x07FF] + CFGW & 0x3BFF + SUM_ID 0x3FDE 0xF193
ALL CFGW & 0x3BFF + SUM_ID 0x37CE 0x039C

PIC16F874 OFF SUM[0x0000:0x0FFF] + CFGW & O0x3BFF 0x2BFF 0xF7CD
0xOFO00 : OXFFF | SUM[0x0000:0x0EFF] + CFGW & 0x3BFF +SUM_ID Ox48EE OxFAA3
0x0800 : OxFFF | SUM[0x0000:0x07FF] + CFGW & 0x3BFF + SUM_ID 0x3FDE 0xF193

ALL CFGW & 0x3BFF + SUM_ID 0x37CE 0x039C

PIC16F876 OFF SUM[0x0000:0x1FFF] + CFGW & 0x3BFF Ox1BFF OxE7CD
0x1F00 : Ox1FFF | SUM[0x0000:0x1EFF] + CFGW & 0x3BFF +SUM_ID 0x28EE 0xDAA3
0x1000 : Ox1FFF | SUM[0x0000:0x0FFF] + CFGW & 0x3BFF + SUM_ID 0x27DE 0xD993

ALL CFGW & 0x3BFF + SUM_ID 0x27CE 0xF39C

PIC16F877 OFF SUM[0x0000:0x1FFF] + CFGW & O0x3BFF Ox1BFF OxE7CD
0x1F00 : Ox1FFF | SUM[0x0000:0x1EFF] + CFGW & Ox3BFF +SUM_ID 0x28EE O0xDAAS3
0x1000 : Ox1FFF | SUM[0x0000:0x0OFFF] + CFGW & 0x3BFF + SUM_ID 0x27DE 0xD993

ALL CFGW & 0x3BFF + SUM_ID 0x27CE 0xF39C

Legend: CFGW = Configuration Word
SUM][a:b] = [Sum of locations a to b inclusive]
SUM_ID = ID locations masked by OxF then made into a 16-bit value with IDO as the most significant nibble.
For example, IDO = 0x1, ID1 = 0x2, ID3 = 0x3, ID4 = 0x4, then SUM_ID = 0x1234
*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]
+ = Addition
& = Bitwise AND

DS39025D-page 3-178 © 2000 Microchip Technology Inc.

PIC16F8XX

5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS
5.1 Embedding Data EEPROM Contents in Hex File

The programmer should be able to read data EEPROM information from a hex file and conversely (as an option) write
data EEPROM contents to a hex file along with program memory information and fuse information.

The 256 data memory locations are logically mapped starting at address 0x2100. The format for data memory storage
is one data byte per address location, LSB aligned.

TABLE 5-1: AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

Standard Operating Conditions (unless otherwise stated)
Operating Temperature: 0°C <TA < +70°C

Operating Voltage: 4.5V <VDD < 5.5V
Characteristics ‘ Sym ’ Min ‘ Typ ’ Max ‘ Units ‘ Conditions/Comments
General
VDD level for word operations, program
memory VDD 2.0 5.5 Vv
VDD level for word operations, data mem-
ory VDD 2.0 5.5 Vv
VDD level for bulk erase/write operations,
program and data memory VDD 4.5 5.5 \
High voltage on MCLR for
high-voltage programming entry VIHH VDD + 3.5 13.5 Vv
Voltage on MCLR for VIH 4.5 5.5 \Y
low-voltage programming entry
MCLR rise time (VSS to VHH) for test tVHHR 1.0 us
mode entry
(RB6, RB7) input high level VIH1 0.8VDD \ Schmitt Trigger input
(RB6, RB7) input low level ViL1 0.2VDD \ Schmitt Trigger input
RB<7:4> setup time before MCLRT tsetO 100 ns
(test mode selection pattern setup time)
RB<7:4> hold time after MCLRT thido 5 us

(test mode selection pattern setup time)

Serial Program/Verify

Data in setup time before clockl tset1 100 ns
Data in hold time after clock! thid1 100 ns
Data input not driven to next clock input tdly1 1.0 us
(delay required between command/data or

command/command)

Delay between clock{ to clockT of next tdly2 1.0 us
command or data

ClockT to data out valid (during read data) tdly3 80 ns
Erase cycle time tera 2 5 ms
Programming cycle time tprog 2 5 ms

© 2000 Microchip Technology Inc. DS39025D-page 3-179

PIC16F8XX

FIGURE 5-1: LOAD DATA COMMAND HIGH-VOLTAGE MODE (PROGRAM/VERIFY)
VIHH
MCLR | Aus min.
tset0 > - 1 2 3 5 6 " 2 3 4 5 15 16
Gac A e e Y e e e e o e Y A o
(CLOCK) RPN | | _
L I<—>| thld0 | | :
1| | -
BT KL o /TN o K O XX X o<
(DATA) =T - i tsett tally1 4 > 14 tsetd
: % 4 thid1 1us min. ™ thid1
I 100ns min. 100ns min.
I
Reset — p« Program/Verify Test Mode >
FIGURE 5-2: READ DATA COMMAND HIGH-VOLTAGE MODE (PROGRAM/VERIFY)
VIHH_
MCLR /1 ' tdly2
tseto—», € | —»
| | e—>thld0 ifus mint
I 1 2 3 5 6 11 2 3 4 5 15 16

RB6 W\ | |
(CLOCK)&—II N e e Y e e Y s I 0 o

| — +—tdly3

|
|
|
! |
RB7 ! | -
(DATA) = : ° , io [x X x 4 S |<I XXX > ©| to_bit
o tsetre—n | ' tdlly1! : |
! ! ! :4_’!	
	e thid1 e !
i us min	
! 100ns min. , | | RB7
> RB7 = input L RB7 = output J! input
N P« >«
|
Reset ;:4 Program/Verify Test Mode
FIGURE 5-3: INCREMENT ADDRESS COMMAND HIGH-VOLTAGE MODE (PROGRAM/VERIFY)

MCLR

RB7
(DATA)

VIHH _

6 1
RB6
(CLOCK) .

"otdly2
[—
| Tus min.i

Next Command

|
|
|
1 0
T

tset1 le—n | tdly1 !
I I I —»!
: |<—>: thid1 1us min.
e
100ns min.

Program/Verify Test Mode

v

DS39025D-page 3-180

© 2000 Microchip Technology Inc.

PIC16F8XX

FIGURE 5-4: LOAD DATA COMMAND LOW-VOLTAGE MODE (PROGRAM/VERIFY)

VIH _
MCLR /1 dus min.
| —p
tseto P 14 - 1 5 3 4 5 N tdy2 - 2 3 4 5 15 16
RB6 Sk | |
(CLOCK) | i -
|| 14p thido ! ! !
| | |
1 I)
A SRRV D @D e I G D
| ;
(DATA) : : ! —Nl I<J|— tset1 tdly1 4P —Nl I<J|— tset1
| ! N
aE < thidt 1us min. > < thidt
I RS e
o 100ns min. 100ns min.
(I
RB3 _1 V)
(I
Reset 4 |4: Program/Verify Test Mode .

FIGURE 5-5: READ DATA COMMAND LOW-VOLTAGE MODE (PROGRAM/VERIFY)

VIH _
MCLR > '41_/' ; tdly2 I
teet0 : (|<—>; thldo s mint
I 1 2 3 4 5 6 Il 2 3 4 5 15 16

RB6 £ Y | |
Lo ﬁ_JI: L N

|~ —tdly3

|
| |
RB7 . '1 ! | . -
e VALY P ey v (D G D G > -
! |
E tsetiie—n | ' tdly1! : |
Ly roa ! —» | |
(- I el thid1) | |
[' 1us min. | !
b 100ns min.) [I RB7
by RB7 = input P RB7 = output L input
I 1N L PN
o
rRB3 | ™
Reset —p'q Program/Verify Test Mode
[]

FIGURE 5-6: INCREMENT ADDRESS COMMAND LOW-VOLTAGE MODE (PROGRAM/VERIFY)

ViH _
MCLR / e
! I Next Command
I | 1us min.i
| ! 2 3 4 5 6 " 2
(CLOCK) | | S T S L
|
: ! I
I |
RB7 |
0 1 1 0 X X o o
(DATA) ; L X >I N x \ o
! tset! le—n | I tdly1 !
! | | | l |
! I 1+l thid1 {us min
l 1 1 .
| o
| 100ns-min-:
RB3
Reset > Program/Verify Test Mode R

|4
1

© 2000 Microchip Technology Inc. DS39025D-page 3-181

PIC16F8XX

NOTES:

DS39025D-page 3-182 © 2000 Microchip Technology Inc.

e\

MICROCHIP

SECTION 4
APPLICATION NOTES

IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP™) OF CALIBRATION PARAMETERS
USING A PICMicro® MICROCONTROLLERccccureueeuecueeseearessessesssssssssssesssssssssssassssesssssessssessassaseas 4-1

© 2000 Microchip Technology Inc. DS30277C-page 4-i

o

MICROCHIP

DS30277C-page 4-ii © 2000 Microchip Technology Inc.

MICROCHIP

ANG56

In-Circuit Serial Programming™ (ICSP™) of Calibration Parameters
Using a PICmicro® Microcontroller

Author: John Day
Microchip Technology Inc.

INTRODUCTION

Many embedded control applications, where sensor
offsets, slopes and configuration information are mea-
sured and stored, require a calibration step. Tradition-
ally, potentiometers or Serial EEPROM devices are
used to set up and store this calibration information.
This application note will show how to construct a pro-
gramming jig that will receive calibration parameters
from the application mid-range PICmicro® microcon-
trollers (MCU) and program this information into the
application baseline PICmicro MCU using the In-Circuit
Serial Programming (ICSP) protocol. This method uses
the PIC16CXXX In-Circuit Serial Programming algo-
rithm of the 14-bit core microcontrollers.

PROGRAMMING FIXTURE

A programming fixture is needed to assist with the self
programming operation. This is typically a small re-
usable module that plugs into the application PCB
being calibrated. Only five pin connections are needed
and this programming fixture can draw its power from
the application PCB to simplify the connections.

FIGURE 1:
Customer Application PCB Calibration Programming Jig
+5V +5V +5V
T i i +13V VPP
PIC16CXXX Generator L
Sensor(s) 10k L—1 VbD VCIR -
VPP — GND_ON
RAX MCLR/VpPpP * V:l O — VpP_ON Vss
VDD %I o — J_— 1k
Vss =
Vss — 1| 0
Application 1/0 RB7 :IRB7 O
<«—] RBX RB6 RB6 O
1 PIC16C58 1w
- re7 RCosc RB1 —@ Wait
RB6 — 1
| RB5 RB2 4@ Done
To Application Input(s) — RB4 _RB3
pf P = Optional PC Connection

© 2000 Microchip Technology Inc.

DS00656B-page 4-1

ANG656

Electrical Interface

There are a total of five electrical connections needed
between the application PIC16CXXX microcontroller
and the programming jig:

* MCLR/VPP - High voltage pin used to place appli-
cation PIC16CXXX into programming mode

* VDD - +5 volt power supply connection to the
application PIC16CXXX

* Vss - Ground power supply connection to the
application PIC16CXXX

* RB6 - PORTB, bit6 connection to application
PIC16CXXX used to clock programming data

* RB7 - PORTB, bit7 connection to application
PIC16CXXX used to send programming data

This programming jig is intended to grab power from
the application power supply through the VDD connec-
tion. The programming jig will require 100 mA of peak
current during programming. The application will need
to set RB6 and RB7 as inputs, which means external
devices cannot drive these lines. The calibration data
will be sent to the programming jig by the application
PIC16CXXX through RB6 and RB7. The programming
jig will later use these lines to clock the calibration data
into the application PIC16CXXX.

Programming Issues

The PIC16CXXX programming specification suggests
verification of program memory at both Maximum and
Minimum VDD for each device. This is done to ensure
proper programming margins and to detect (and reject)
any improperly programmed devices. All production
quality programmers vary VDD from VDDmin to VDDmax
after programming and verify the device under each of
these conditions.

Since both the application voltage and it’s tolerances
are known, it is not necessary to verify the PIC16CXXX
calibration parameters at the device VDbmax and
VDDmin. It is only necessary to verify at the application
power supply Max and Min voltages. This application
note shows the nominal (+5V) verification routine and
hardware. If the power supply is a regulated +5V, this
is adequate and no additional hardware or software is
needed. If the application power supply is not regulated
(such as a battery powered or poorly regulated system)
it is important to complete a VDbmin and VDDmax veri-
fication cycle following the +5V verification cycle. See
programming specifications for more details on VDD
verification procedures.

* PIC16C5X Programming Specifications -
DS30190

¢ PIC16C55X Programming Specifications -
DS30261

¢ PIC16C6X/7X/9XX Programming Specifications -
DS30228

* PIC16C84 Programming Specifications -
DS30189

Note: The designer must consider environmental
conditions, voltage ranges, and aging
issues when determining VDD min/max
verification levels. Please refer to the pro-
gramming specification for the application
device.

The calibration programming and initial verification
MUST occur at +5V. If the application is intended to run
at lower (or higher voltages), a second verification pass
must be added where those voltages are applied to
VDD and the device is verified.

DS00656B-page 4-2

© 2000 Microchip Technology Inc.

ANG656

Communication Format (Application
Microcontroller to Programming Jig)

Unused program memory, in the application
PIC16CXXX, is left unprogrammed as all 1s; therefore
the unprogrammed program memory for the calibration
look-up table would contain 3FFF (hex). This is inter-
preted as an “ADDLW FF”. The application microcon-
troller simply needs one “RETLW FF” instruction at the
end of the space allocated in program memory for the
calibration parameter look-up table. When the applica-
tion microcontroller is powered up, it will receive a “FFh”
for each calibration parameter that is looked up; there-
fore, it can detect that it is uncalibrated and jump to the
calibration code.

Once the calibration constants are calculated by the
application PICmicro MCU, they need to be communi-
cated to the (PIC16C58A based) programming jig. This

FIGURE 2:

is accomplished through the RB6 and RB7 lines. The
format is a simple synchronous clock and data format
as shown in Figure 2.

A pull-down on the clock line is used to hold it low. The
application microcontroller needs to send the high and
low bytes of the target start address of the calibration
constants to the calibration jig. Next, the data bytes are
sent followed by a checksum of the entire data transfer
as shown in Figure 1.

Once the data transfer is complete, the checksum is
verified by the programming jig and the data printed at
9600 baud, 8-bits, no parity, 1 stop bit through RB3. A
connection to this pin is optional. Next the programming
jig applies +13V, programs and verifies the application
PIC16CXXX calibration parameters.

e/ _/ /. S

RB7 /CALbit7 >< CALbit6 >< CALbit5 ><CALbit4 ><CALbit3 ><CALbit2 ><CALbit1 >< CALDbit0 X

FIGURE 1:

’ AddrH ‘ ’ AddrL ‘ ‘ Data 0 ‘ ’

Data 1 ‘ - — ’ Data N H CKSUM ‘

© 2000 Microchip Technology Inc.

DS00656B-page 4-3

ANG656

LED Operation

When the programming jig is waiting for communication
from the application PICmicro MCU, both LEDs are
OFF. Once a valid data stream is received (with at least
one calibration byte and a correct checksum) the
WORK LED is lit while the calibration parameters are
printed through the optional RB3 port. Next, the DONE
LED is lit to indicate that these parameters are being
programmed and verified by the programming jig. Once
the programming is finished, the WORK LED is extin-
guished and the DONE LED remains lit. If any param-
eters fail programming, the DONE LED is extinguished;
therefore both LEDs would remain off.

FIGURE 3: ISP CALIBRATION JIG PROGRAMMER SCHEMATIC

Ve VT
vée APPLICATION ISP
CONNECTOR
1 1 J1
D2 D1 MER T meR
=~ LD == LD 2| VoD
2] DONE [~ WORK 5| oo
4 4 | 2| rE7
2 2 1 ‘D‘z | 5 | RB6
1 i
1 1 v 7.0 Mhz = CON5
RB R7 1 1 1
270 270 E1 c1 c2 R15
] | 18 2 15 pF 2 15 pF K vee
" " > RA2 RAT Z
RA3 RAQ a— — —
37 e oscl 5 0sC1 = = 2
PRGMCIR 4 L 0eds 5 05C2 1
S v vy g = Pl
6 5 3 RE7 270 uH
WORK_LED 7| K80 R8T 7 wee
DONELED 8 | rap RBS T VPPON
SEROUT 9 | ras G4 | 10___GNDON 2
1 PICT6C58
SEROUT IS OPTIONAL CONNECTION TO MAX-232A E2 vee
RS-232 DRIVER DEVICE, THIS CAN BE USED TO CATHODE w16 R9
DATA LOG ALL STORED CALIBRATION PARAMETERS, ANODE ORVC 5 1 2 VW
7
WE SENSE
Gan . 0AOUT Vi s 180
vee Vée oAV T %
OA+IN GND
OA-IN COMP—IN D ! Comp
Wi COMP+IN
TM78540 =
vin~
Q4
2N2907 1 I _
c4 c6 c3
PRG_MCLR 2 Q1 uF 2 220 uF |2 620 pF
16V
R12 - - N
10K
Q3
2N2907
TR
1 1
R4 R3
1K 1K
2 2
Microchip Technology Inc.
R2 R1 5 Mount Royal A
VPP_ON 1 2 02 GNDON 1 2 1 Mar@inroug?owv;wsz
2N2222 N2222 :
4 1K A (508) 480-9990
R5 (508) 480-8575 FAX
10K 1 1 Title
" = = PIC ISP CALIBRATION JIG
Size Document Number REV
= A 0.1
Date: September 14, 1995 [Sheet 1 of 1

DS00656B-page 4-4 © 2000 Microchip Technology Inc.

ANG656

Code Protection

Selection of the code protection configuration bits on
PIC16CXXX microcontrollers prevents further pro-
gramming of the program memory array. This would
prevent writing self calibration parameters if the device
is code protected prior to calibration. There are two
ways to address this issue:

1. Do not code protect the device when program-
ming it with the programmer. Add additional
code (See the PIC16C6X/7X programming
Spec) to the ISPPRGM . ASM to program the code
protection bit after complete verification of the
calibration parameters

2. Only code protect 1/2 or 3/4 of the program
memory with the programmer. Place the calibra-
tion constants into the unprotected part of pro-
gram memory.

Software Routines

There are two source code files needed for this appli-
cation note:

1. ISPTEST.ASM (Appendix A) Contains the source
code for the application PIC16CXXX, sets up the cali-
bration look-up table and implements the communica-
tion protocol to the programming jig.

2. ISPPRGM.ASM (Appendix B) Source code for a
PIC16C58A to implement the programming jig. This
waits for and receives the calibration parameters from

the application PIC16CXXX, places it into program-
ming mode and programs/verifies each calibration
word.

CONCLUSION

Typically, calibration information about a system is
stored in EEPROM. For calibration data that does not
change over time, the In-circuit Serial Programming
capability of the PIC16CXXX devices provide a simple,
cost effective solution to an external EEPROM. This
method not only decreases the cost of a design, but
also reduces the complexity and possible failure points
of the application.

TABLE 1: PARTS LIST FOR PIC16CXXX ISP CALIBRATION JIG
Bill of Material
Item Quantity Reference Part
1 2 C1,Cc2 15 pF
2 1 C3 620 pF
3 1 C4 0.1 mF
4 2 C5,C6 220 mF
5 2 D1,D2 LED
6 1 E1 PIC16C58
7 1 E2 LM78S40
8 1 J1 CON5
9 1 L1 270 mH
10 2 Q1,Q2 2N2222
11 2 Q3,Q4 2N2907
12 5 R1,R2,R3,R4,R15 1k
13 4 R5,R6,R12,R14 10k
14 2 R7,R8 270
15 1 R9 180
16 1 R10 23.7k
17 1 R11 2.49k
18 1 R13 2.2k
19 1 Y1 4.0 MHz

© 2000 Microchip Technology Inc.

DS00656B-page 4-5

ANG656

APPENDIX A:

MPASM 01.40.01 Intermediate ISPPRGM.ASM 3-31-1997 10:57:03 PAGE 1
LOC OBJECT CODE LINE SOURCE TEXT
VALUE
00001 ; Filename: ISPPRGM.ASM
00002 ; IR E R R R EE SRR SRR R RS R R R R R R R R EEEEEEEEEEESEES
00003 ; * Author: John Day *
00004 ; * Sr. Field Applications Engineer *
00005 ; * Microchip Technology *
00006 ; * Revision: 1.0 *
00007 ; * Date August 25, 1995 *
00008 ; * Part: PIC16C58 *
00009 ; * Compiled using MPASM V1.40 *
00010 ; IR RS
00011 ; * Include files: *
00012 ; * P16C5X.ASM *
00013 ; IR RS
00014 ; * Fuses: OSC: XT (4.0 Mhz xtal) *
00015 ; ~* WDT: OFF *
00016 ; * Cp: OFF *
00017
;***
00018 ; This program is intended to be used as a self programmer
00019 ; to store calibration constants into a lookup table
00020 ; within the main system processor. A 4 Mhz crystal
00021 ; is needed and an optional 9600 baud seiral port will
00022 ; display the parameters to be programmed.
00023 ;
;***
00024 ; * Program Memory: *
00025 ; * Words - communication with test jig *
00026 ; * 17 Words - calibration look-up table (16 bytes of data) *
00027 ; * 13 Words - Test Code to generate Calibration Constants *
00028 ; * RAM memory: *
00029 ; * 64 Bytes - Store up to 64 bytes of calibration constant *
00030 ; * 9 Bytes - Store 9 bytes of temp variables (reused) *
00031 ;
;**
00032
00033 list p=16C58A
00034 include <pl6C5x.inc>
00001 LIST
00002 ; P16C5X.INC Standard Hdr File, Version 3.30 Microchip Technology, Inc.
00224 LIST
OFFF OFF9 00035 __CONFIG _CP_OFF& WDT OFF& XT_OSC
00036
00037 ; R EEEEEREEEE R
00038 ; * Port A (RAO-RA4) bit definitions *
00039 ; R EEEEEEEEEEEEE SRR R R EEEEEEEEESEESES
00040 ; No PORT A pins are used in this design
00041
00042 ; R EE R R SRS EEEEEEEEEE R R EREEEEEEEESESEES
00043 ; * Port B (RBO-RB7) bit definitions *
00044 ; R EEEEEREEE SR
00000006 00045 ISPCLOCK EQU 6 ; Clock line for ISP and parameter comm
00000007 00046 ISPDATA EQU 7 ; Data line for ISP and parameter comm
00000005 00047 VPPON EQU 5 ; Apply +13V VPP voltage to MCLR (test mode)
00000004 00048 GNDON EQU 4 ; Apply +0V (gnd) voltage to MCLR (reset)
00000003 00049 SEROUT EQU 3 ; Optional RS-232 TX output (needs 12V driver)
00000002 00050 DONELED EQU 2 ; Turns on LED when done sucessfully program
00000001 00051 WORKLED EQU 1 ; On during programming, off when done
00052 ; RBO is not used in this design
00053

DS00656B-page 4-6 © 2000 Microchip Technology Inc.

ANG656

00054 ; L EEEEEEEEEEEEEE SRR R R R R R R R EREEEEEEEEEEEEEE]
00055 ; * RAM register definition: *
00056 ; * 07h - OFh - used for internal counters, vars *
00057 ; * 10h - 7Fh - 64 bytes for cal param storage *
00058 . IR RS

00059 ; ***
00060 ; *** The following VARS are used during ISP programming:
00061 ; **xx*

00000007 00062 HIADDR EQU 07h ; High address of CAL params to be stored
00000008 00063 LOADDR EQU 08h ; Low address of CAL params to be stored
00000007 00064 HIDATA EQU 07h ; High byte of data to be sent via ISP
00000008 00065 LODATA EQU 08h ; Low byte of data to be sent via ISP
00000009 00066 HIBYTE EQU 09h ; High byte of data received via ISP
0000000A 00067 LOBYTE EQU 0Ah ; Low byte of data received via ISP
0000000B 00068 PULSECNT EQU 0Bh ; Number of times PIC has been pulse programmed
0000000C 00069 TEMPCOUNT EQU 0Ch ; TEMP var used in counters
0000000D 00070 TEMP EQU 0Dh ; TEMP var used throughout program

00071 ; ***

00072 ; *** The following VARS are used to receive and store CAL params:

00073 ; ***
00000007 00074 COUNT EQU 07h ; Counter var used to receive cal params
00000008 00075 TEMP1 EQU 08h ; TEMP var used for RS-232 comm
00000009 00076 DATAREG EQU 09h ; Data register used for RS-232 comm
0000000A 00077 CSUMTOTAL EQU 0Ah ; Running total of checksum (addr + data)
0000000B 00078 TIMEHIGH EQU O0OBh ; Count how long CLOCK line is high
0000000C 00079 TIMELOW EQU 0Ch ; Count how long CLOCK line is low
0000000E 00080 ADDRPTR EQU OEh ; Pointer to next byte of CAL storage
0000000F 00081 BYTECOUNT EQU OFh ; Number of CAL bytes received

00082

00083 ; LEEEEEEEEEEEEEE SRR R EEEEEEEEEEESEEEES

00084 ; * Various constants used in program *

00085 ; LR R R R R R E R EEEE]
00000001 00086 DATISPOUT EQU b’00000001" ; tris settings for ISP data out
00000081 00087 DATISPIN EQU b’10000001" ; tris settings for ISP data in
00000006 00088 CMDISPCNT EQU 6 ; Number of bits for ISP command
00000010 00089 STARTCALBYTE EQU 10h ; Address in RAM where CAL byte data stored
00000007 00090 VFYYES EQU PA2 ; Flag bit enables verification (STATUS)
00000006 00091 CMDISPINCRADDR EQU b’00000110° ; ISP Pattern to increment address
00000008 00092 CMDISPPGMSTART EQU b’00001000° ; ISP Pattern to start programming
0000000E 00093 CMDISPPGMEND EQU b’00001110" ; ISP Pattern to end programming
00000002 00094 CMDISPLOAD EQU b’00000010" ; ISP Pattern to load data for program
00000004 00095 CMDISPREAD EQU b’00000100" ; ISP Pattern to read data for verify
00000034 00096 UPPER6BITS EQU 034h ; Upper 6 bits for retlw instruction

00097

00098 ; LR R

00099 ; * delaybit macro *

00100 ; * Delays for 104 uS (at 4 Mhz clock)*

00101 ; * for 9600 baud communications *

00102 ; * RAM used: COUNT *

00103 ; LR R

00104 delaybit macro

00105 local dlylabels

00106 ; 9600 baud, 8 bit, no parity, 104 us per bit, 52 uS per half bit

00107 ; (8) shift/usage + (2) setup + (1) nop + (3 * 31) literal = (104) 4Mhz

00108 movlw .31 ; place 31 decimal literal into count

00109 movwi COUNT ; Initialize COUNT with loop count

00110 nop ; Add one cycle delay

00111 dlylabels

00112 decfsz COUNT,F ; Decrement count until done

00113 goto dlylabels ; Not done delaying - go back!

00114 ENDM ; Done with Macro

00115

00116 ; LR RS

00117 ; * addrtofsr macro *

00118 ; * Converts logical, continuous address 10h-4Fh *

00119 ; * to FSR address as follows for access to (4) *

© 2000 Microchip Technology Inc. DS00656B-page 4-7

ANG656

07FF

Message [306] :

O7FF

0000
0000
0000
0001
0002
0003
0004
0005
0006
0007
0008
0008
0009
000A

000A
000B
ooocC
000D
O00E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001A

0AQO0

0COA
0026
0CC1
0006
0040
0065
0005
0586

0C10
0027

0C10
0087
0024
06A4
05C4
04A4
0684
05A4
0584
0060
02A7
0C50
0087
0743
OAOA
0486

006A

*
*
*
*
*
*
*
*
*
*

Place “0” into port b latch register

TEST ONLY-RESET PIC-NOT NEEDED IN REAL DESIGN!

TEST ONLY-LET IT GO-NOT NEEDED IN REAL DESIGN!

00120 ; * banks of file registers in PIC16C58:
00121 ; * Logical Address FSR Value
00122 ; * 10h-1Fh 10h-1Fh
00123 ; * 20h-2Fh 30h-3Fh
00124 ; * 30h-3Fh 50h-5Fh
00125 ; * 40h-4Fh 70h-7Fh
00126 ; * Variable Passed: Logical Address
00127 ; * RAM used:
00128 ; *
00129 H EEEE RS EE SRR SRR R R R R R R R R R EEEEEEEEEEEEEESS
00130 addrtofsr macro TESTADDR
00131 movliw STARTCALBYTE ; Place base address into W
00132 subwf TESTADDR, w ; Offset by STARTCALBYTE
00133 movwf FSR ; Place into FSR
00134 btfsc FSR, 5 ; Shift bits 4,5 to 5,6
00135 bsf FSR, 6
00136 bcf FSR, 5
00137 btfsc FSR, 4
00138 bsf FSR,5
00139 bsf FSR, 4
00140 endm
00141
00142
00143 ; IR EEEEEEEE S
00144 ; * The PC starts at the END of memory *
00145 ; IR EEEEEEEEEEEE SRR R EEEEEEREEEEEEEEESES]
00146 ORG 7FFh
Crossing page boundary -- ensure page bits are set.
00147 goto start
00148
00149 H IR EEE R EEEEEEEE SRR R R EEREEEEEEEEESES]
00150 ; * Start of CAL param read routine *
00151 ; IR EEEEEEEEEEE]
00152 ORG Oh
00153 start
00154 movliw b’00001010" Serial OFF, LEDS OFF, VPP OFF
00155 movwf PORTB
00156 movliw b’11000001" RB7; :RB6, RBO set to inputs
00157 tris PORTB Move to tris registers
00158 clrw Place 0 into W
00159 clrf PORTA Place all ZERO into latch
00160 tris PORTA Make all pins outputs to be safe..
00161 bsf PORTB, GNDON
00162 clearram
00163 movlw 010h Place start of buffer into W
00164 movwf COUNT Use count for RAM pointer
00165 loopclrram
00166 addrtofsr COUNT Set up FSR
M movlw STARTCALBYTE Place base address into W
M subwf COUNT, w Offset by STARTCALBYTE
M movwE FSR Place into FSR
M btfsc FSR, 5 Shift bits 4,5 to 5,6
M bsf FSR, 6
M bcf FSR, 5
M btfsc FSR, 4
M bsf FSR, 5
M bsf FSR, 4
00167 clrf INDF Clear buffer value
00168 incf COUNT, F Move to next reg
00169 movlw 050h Move end of buffer addr to W
00170 subwf COUNT, W Check if at last MEM
00171 btfss STATUS, Z Skip when at end of counter
00172 goto loopclrram go back to next location
00173 bcf PORTB, GNDON
00174 calget
00175 clrf CSUMTOTAL Clear checksum total byte

DS00656B-page 4-8

© 2000 Microchip Technology Inc.

ANG656

001B
001cC
001D
001E
001E
001F
0020
0020
0021
0022
0022
0023
0024
0024
0025
0026
0027
0028
0029
0029
002A
002B
002C
002D
002E
002E
002F
0030
0031
0032
0033
0034
0034
0035
0036
0037
0038
0039

003A
003B
003C
003D
003E
003F
0040
0041
0042
0043
0044
0045
0046
0047
0047
0048
0049
004A
004B
004cC
004D
004E
004F
004F
0050
0051
0052

0069
0C10
002E

07Ceé
OALlE

0Co8
0027

006B
006C

06C6
0A29
02EB
0A24
0A47

07Ceé
OA2E
02EC
0A29
0A47

0cos8
0087
0743
0A34
0209
01EA

0503
07E6
0403
0369
02E7
0A22

0C10
008E
0024
06A4
05C4
04A4
0684
05A4
0584
0209
0020
02AE
0A20

0C14
008E
0703
0A93
0200
00AA
0743
OA9F

0426
0C10
008E
002F

00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214

TRERRERRER

M
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232

clrf DATAREG

movliw STARTCALBYTE

movwf ADDRPTR
waitclockpulse

btfss PORTB, ISPCLOCK

goto waitclockpulse
loopcal

movliw .8

movwf COUNT
loopsendcal

clrf TIMEHIGH

clrf TIMELOW
waitclkhi

btfsc PORTB, ISPCLOCK

goto waitclklo

decfsz TIMEHIGH,F

goto waitclkhi

goto timeout
waitclklo

btfss PORTB, ISPCLOCK

goto clockok

decfsz TIMELOW,F

goto waitclklo

goto timeout
clockok

movliw .8

subwf COUNT, W

btfss STATUS, Z

goto skipcsumadd

movEf DATAREG, W

addwf CSUMTOTAL, F
skipcsumadd

bsf STATUS, C

btfss PORTB, ISPDATA

bcf STATUS, C

rlf DATAREG, F

decfsz COUNT,F

goto loopsendcal

addrtofsr ADDRPTR

movlw STARTCALBYTE

subwf ADDRPTR, w

movwf FSR

btfsc FSR, 5

bsf FSR, 6

bcf FSR, 5

btfsc FSR, 4

bsf FSR, 5

bsf FSR, 4

movEf DATAREG, W

movwf INDF

incf ADDRPTR, F

goto loopcal
timeout

movliw STARTCALBYTE+4

subwf ADDRPTR, W

btfss STATUS, C

goto sendnoise

movE INDF,W

subwf CSUMTOTAL, F

btfss STATUS, Z

goto sendcsumbad
csumok

bcf PORTB, WORKLED

movlw STARTCALBYTE

subwf ADDRPTR, W

movwf BYTECOUNT

7

7

7

7

Clear out data receive register
Place RAM start address of first cal byte
Place this into ADDRPTR

Wait for CLOCK high pulse - skip when high
CLOCK is low - go back and wait!

Place 8 into W (8 bits/byte)
set up counter register to count bits

Clear timeout counter for high pulse
Clear timeout counter for low pulse

Wait for CLOCK high - skip if it is low
Jump to wait for CLOCK low state
Decrement counter - skip if timeout
Jump back and wait for CLOCK high again
Timed out waiting for high - check data!

Wait for CLOCK low - skip if it is high
Got a high to low pulse - jump to clockok
Decrement counter - skip if timeout

Jump back and wait for CLOCK low again
Timed out waiting for low - check data!

Place initial count value into W

Subtract from count, place into W

Skip if we are at count 8 (first value)
Skip checksum add if any other count value
Place last byte received into W

Add to checksum

Assume data bit is high

Skip if the data bit was high
Set data bit to low

Rotate next bit into DATAREG
Skip after 8 bits

Jump back and send next bit
Convert pointer address to FSR
Place base address into W
Offset by STARTCALBYTE

Place into FSR

Shift bits 4,5 to 5,6

Place received byte into W

Move recv’d byte into CAL buffer location
Move to the next cal byte

Go back for next byte

check if we received (4) params
Move current address pointer to W
Skip if we have at least (4)

not enough params - print and RESET!
Move received checksum into W

Subtract received Checksum from calc’d checksum

Skip if CSUM OK
Checksum bad - print and RESET!

Turn on WORK LED

Place start pointer into W

Subtract from current address

Place into number of bytes into BYTECOUNT

© 2000 Microchip Technology Inc.

DS00656B-page 4-9

ANG656

0053 002B 00233 movwf TIMEHIGH
0054 0C10 00234 movlw STARTCALBYTE
0055 002E 00235 movwi ADDRPTR
0056 00236 loopprintnums

00237 addrtofsr ADDRPTR
0056 0C10 M movliw STARTCALBYTE
0057 0O08E M subwf ADDRPTR, w
0058 0024 M movwf FSR
0059 06A4 M btfsc FSR, 5
005A 05C4 M bsf FSR, 6
005B 04A4 M bcf FSR,5
005C 0684 M btfsc FSR, 4
005D 05A4 M bsf FSR,5
O05E 0584 M bsf FSR, 4
005F 0380 00238 swapf INDF, W
0060 OEOF 00239 andlw O0Fh
0061 002D 00240 movwf TEMP
0062 O0COA 00241 movlw .10
0063 O0OAD 00242 subwf TEMP, F
0064 0603 00243 btfsc STATUS, C
0065 OA6D 00244 goto printhiletter
0066 00245 printhinumber
0066 0380 00246 swapf INDF, W
0067 OEOF 00247 andlw OFh
0068 002D 00248 movwf TEMP
0069 0C30 00249 movlw r0’
006A 01CD 00250 addwf TEMP, w
006B 09AE 00251 call putchar
006C OA73 00252 goto printlo
006D 00253 printhiletter
006D 0380 00254 swapf INDF, W
006E OEOF 00255 andlw OFh
006F 002D 00256 movwf TEMP
0070 0C37 00257 movlw ‘A’-.10
0071 01CD 00258 addwf TEMP, w
0072 O09AE 00259 call putchar
0073 00260 printlo
0073 0200 00261 movEf INDF, W
0074 OEOF 00262 andlw 0Fh
0075 002D 00263 movwf TEMP
0076 0COA 00264 movlw .10
0077 00AD 00265 subwf TEMP, F
0078 0603 00266 btfsc STATUS, C
0079 0A81 00267 goto printloletter
007A 00268 printlonumber
007A 0200 00269 movEf INDF, W
007B OEOF 00270 andlw O0Fh
007C 002D 00271 movwf TEMP
007D 0C30 00272 movlw ‘0’
007E 01CD 00273 addwf TEMP, w
007F O9AE 00274 call putchar
0080 OA87 00275 goto printnext
0081 00276 printloletter
0081 0200 00277 movE INDF, W
0082 OEOF 00278 andlw 0Fh
0083 002D 00279 movwf TEMP
0084 0C37 00280 movlw ‘A’-.10
0085 01CD 00281 addwf TEMP, w
0086 09AE 00282 call putchar
0087 00283 printnext
0087 0C7C 00284 movlw K
0088 09AE 00285 call putchar
0089 028E 00286 incf ADDRPTR, W
008A OEOF 00287 andlw 0Fh
008B 0643 00288 btfsc STATUS, Z

TEMP store into timehigh reg
Place start address into W

Set up address pointer

Set up FSR

Place base address into W
Offset by STARTCALBYTE

Place into FSR

Shift bits 4,5 to 5,6

Place received char into W
Strip off upper digits

Place into TEMP
Place .10 into W

Subtract 10 from TEMP
Skip if TEMP is less than 9
Greater than 9 - print letter instead

Place received char into W

Strip off upper digits

Place into TEMP
Place ASCII ‘0’

into W

Add to TEMP, place into W

Send out char

Jump to print next char

Place received char into W
Strip off upper digits

Place into TEMP
Place ASCII ‘A’

into W

Add to TEMP, place into W

send out char

Place received char into W

Strip off upper digits

Place into TEMP
Place .10 into W

Subtract 10 from TEMP
Skip if TEMP is less than 9
Greater than 9 - print letter instead

Place received char into W
Strip off upper digits

Place into TEMP
Place ASCII ‘0’

into W

Add to TEMP, place into W

send out char

jump to print next char

Place received char into W
Strip off upper digits

Place into TEMP
Place ASCII ‘A’

into W

Add to TEMP, place into W

send out char

Place ASCII ‘|’ into W
Send out character

Go to next buffer wvalue

And with F

Skip if this is NOT multiple of 16

DS00656B-page 4-10

© 2000 Microchip Technology Inc.

ANG656

008C 09A9 00289 call printcrlf ; Print CR and LF every 16 chars
008D 02AE 00290 incf ADDRPTR, F ; go to next address
008E O02EF 00291 decfsz BYTECOUNT,F ; Skip after last byte
008F O0A56 00292 goto loopprintnums ; Go back and print next char
0090 09A9 00293 call printcrlf ; Print CR and LF
0091 05A3 00294 bsf STATUS, PAO ; Set page bit to page 1
Message [306] : Crossing page boundary -- ensure page bits are set.
0092 O0OA6B 00295 goto programpartisp ; Go to program part through ISP
0093 00296 sendnoise
0093 O0C4E 00297 movliw ‘N ; Place ‘N’ into W
0094 O09AE 00298 call putchar ; Send char in W to terminal
0095 0C4F 00299 movliw ‘O ; Place ‘0’ into W
0096 09AE 00300 call putchar ; Send char in W to terminal
0097 0C49 00301 movlw ‘I’ ; Place ‘I’ into W
0098 09AE 00302 call putchar ; Send char in W to terminal
0099 0C53 00303 movliw ‘S ; Place ‘'S’ into W
009A 09AE 00304 call putchar ; Send char in W to terminal
009B 0C45 00305 movliw ‘Ef ; Place ‘E’ into W
009C 09AE 00306 call putchar ; Send char in W to terminal
009D 09A9 00307 call printcrlf ; Print CR and LF
009E OAlA 00308 goto calget ; RESET!
009F 00309 sendcsumbad
009F 0C43 00310 movliw rcr ; Place ‘C’ into W
00AQ0 O09AE 00311 call putchar ; Send char in W to terminal
00A1 0C53 00312 movliw ‘S ; Place 'S’ into W
00A2 O09AE 00313 call putchar ; Send char in W to terminal
00A3 0C55 00314 movliw ‘U’ ; Place ‘U’ into W
00A4 O09AE 00315 call putchar ; Send char in W to terminal
00A5 0C4D 00316 movliw ‘M’ ; Place ‘M’ into W
00A6 09AE 00317 call putchar ; Send char in W to terminal
00A7 09A9 00318 call printcrlf ; Print CR and LF
00A8 O0AlA 00319 goto calget ; RESET!

00320

00321 ; IR EEEEEEEEEEE SRR R R R R R R R R EEEEEEEEESESES

00322 ; * printcrlf *

00323 ; * Sends char .13 (Carrage Return) and *

00324 ; * char .10 (Line Feed) to RS-232 port *

00325 ; * by calling putchar. *

00326 ; * RAM used: W *

00327 ; IR EEEEEEEE SRS SRR R R R R R R R EEEEEEEEEESESES
00A9 00328 printcrlf
00A9 0COD 00329 movlw .13 ; Value for CR placed into W
00AA 09AE 00330 call putchar ; Send char in W to terminal
00AB 0CO0A 00331 movlw .10 ; Value for LF placed into W
00AC O09AE 00332 call putchar ; Send char in W to terminal
00AD 0800 00333 retlw 0 ; Done - return!

00334

00335 ; IR EEEE S

00336 ; * putchar *

00337 ; * Print out the character stored in W *

00338 ; * by toggling the data to the RS-232 *

00339 ; * output pin in software. *

00340 ; * RAM used: W, DATAREG, TEMP1 *

00341 ; IR R R R R R R R R R E R R R R R R R R R R R R R R R R R EEEE S
00AE 00342 putchar
O0OAE 0029 00343 movwf DATAREG ; Place character into DATAREG
00AF 0C09 00344 movlw 09h ; Place total number of bits into W
00BO 0028 00345 movwf TEMP1 ; Init TEMP1 for bit counter
00B1 0403 00346 bcf STATUS, C ; Set carry to send start bit
00B2 0AB4 00347 goto putloopl ; Send out start bit
00B3 00348 putloop
00B3 0329 00349 rrf DATAREG, F ; Place next bit into carry
00B4 00350 putloopl
00B4 0703 00351 btfss STATUS, C ; Skip if carry was set
00B5 0466 00352 bcf PORTB, SEROUT ; Clear RS-232 serial output bit
00B6 0603 00353 btfsc STATUS, C ; Skip if carry was clear

© 2000 Microchip Technology Inc. DS00656B-page 4-11

ANG656

00B7 0566 00354 bsf PORTB, SEROUT ; Set RS-232 serial output bit
00355 delaybit ; Delay for one bit time
0000 M local dlylabels
M ; 9600 baud, 8 bit, no parity, 104 us per bit, 52 uS per half bit
M ; (8) shift/usage + (2) setup + (1) nop + (3 * 31) literal = (104) 4Mhz
00B8 0C1F M movliw .31 ; place 31 decimal literal into count
00B9 0027 M movwf COUNT ; Initialize COUNT with loop count
00BA 0000 M nop ; Add one cycle delay
00BB M dlylabels
00BB 02E7 M decfsz COUNT,F ; Decrement count until done
00BC OABB M goto dlylabels ; Not done delaying - go back!
00BD 02ES8 00356 decfsz TEMP1,F ; Decrement bit counter, skip when done!
00BE O0OAB3 00357 goto putloop ; Jump back and send next bit
O00BF 0566 00358 bsf PORTB, SEROUT ; Send out stop bit
00359 delaybit ; delay for stop bit
0000 M local dlylabels
M ; 9600 baud, 8 bit, no parity, 104 us per bit, 52 uS per half bit
M ; (8) shift/usage + (2) setup + (1) nop + (3 * 31) literal = (104) 4Mhz
00CO O0OC1F M movliw .31 ; place 31 decimal literal into count
00C1 0027 M movwf COUNT ; Initialize COUNT with loop count
00C2 0000 M nop ; Add one cycle delay
00C3 M dlylabels
00C3 02E7 M decfsz COUNT,F ; Decrement count until done
00C4 OAC3 M goto dlylabels ; Not done delaying - go back!
00C5 0800 00360 retlw 0 ; Done - RETURN
00361
00362 ; R R R R R R R R R R R R R R E R EEEEEEES]
00363 ; * ISP routines from PICSTART-16C *
00364 ; * Converted from PIC17C42 to PIC16C5X code by John Day *
00365 ; * Originially written by Jim Pepping *
00366 H R R R R R E RS R RS E SRR R R R R R R R R RS R R EEEEREEEEEEEEEEEEEES]
0200 00367 ORG 200 ; ISP routines stored on page 1
00368
00369 H R R R R R E RS E RS S SRR R R R R R R R R R R R RS R R E R EREEEEEEEEEEEEESES]
00370 ; * poweroffisp *
00371 ; * Power off application PIC - turn off VPP and reset device after *
00372 ; * programming pass 1is complete *
00373 H R R R R R R R R R S S S R R R R R R R R R R R R R R R RS R R EEEEREEEEEEEEEEEEEES]
0200 00374 poweroffisp
0200 04A6 00375 bcf PORTB, VPPON ; Turn off VPP 13 volts
0201 0586 00376 bsf PORTB, GNDON ; Apply 0 V to MCLR to reset PIC
0202 o0cCcC1 00377 movliw b’11000001" ; RB6,7 set to inputs
0203 0006 00378 tris PORTB ; Move to tris registers
0204 0486 00379 bcf PORTB, GNDON ; Allow MCLR to go back to 5 volts, deassert reset
0205 0526 00380 bsf PORTB, WORKLED ; Turn off WORK LED
0206 0800 00381 retlw O ; Done so return!
00382
00383 ; R R R R R R R R R R R R R R R R E R EEEEEEES]
00384 ; * testmodeisp *
00385 ; * Apply VPP voltage to place application PIC into test mode. *
00386 ; * this enables ISP programming to proceed *
00387 ; * RAM used: TEMP *
00388 ; R R R R R R RS R R S S S R R R R R R R R R R R R R R R R SRR E R R R R EREEEEEEEEEEEEEES]
0207 00389 testmodeisp
0207 0Co08 00390 movlw b’00001000" ; Serial OFF, LEDS OFF, VPP OFF
0208 0026 00391 movwf PORTB ; Place “0” into port b latch register
0209 04A6 00392 bcf PORTB, VPPON ; Turn off VPP just in case!
020A 0586 00393 bsf PORTB, GNDON ; Apply 0 volts to MCLR
020B 0CO1 00394 movlw b’00000001" ; RB6,7 set to outputs
020C 0006 00395 tris PORTB ; Move to tris registers
020D 0206 00396 movE PORTB, W ; Place PORT B state into W
020E 002D 00397 movwf TEMP ; Move state to TEMP
020F 048D 00398 bcf TEMP, 4 ; Turn off MCLR GND
0210 05AD 00399 bsf TEMP, 5 ; Turn on VPP voltage
0211 020D 00400 movEf TEMP, W ; Place TEMP into W
0212 0026 00401 movwf PORTB ; Turn OFF GND and ON VPP

DS00656B-page 4-12 © 2000 Microchip Technology Inc.

ANG656

0213
0214

0215
0215
0216
0217
0218
0219
021A
021B
021C
021D
021E
021E
021F
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
022A
022B

022C
022C
022D
022E
022F
0230
0231
0232
0233
0234
0235
0236
0237
0237
0238
0239
023A
023B
023C
023D
023E
023F
0240

0546
0800

OCOE
002D
04Ce
04E6
0CO01
0006
04E6
05Cé6
04Ce

0403
04E6
0329
032A
0603
O5E6
05Cé6
04Ce
02ED
OAlE
04E6
05Cé6
04Cé6
0800

0COE
002D
0069
006A
0403
04Ce
04E6
ocsl
0006
05C6
04Ce6

05Cé6
0000
0403
06E6
0503
0329
032A
04Ce6
0000
0000

00402
00403
00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420
00421
00422
00423
00424
00425
00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00436
00437
00438
00439
00440
00441
00442
00443
00444
00445
00446
00447
00448
00449
00450
00451
00452
00453
00454
00455
00456
00457
00458
00459
00460
00461
00462
00463
00464
00465
00466
00467

bsf
retlw 0

PORTB, DONELED

Turn ON GREEN LED
Done so return!

R R R R R R RS E RS E R R R R R R R R R R R R R RS E R EEEEREEEEEEEEEEEEEES]

* pléecispout
* Send 14-bit data word to application PIC for writing this data *

* to it’s program memory.

*

The data to be sent is stored in both *

; * HIBYTE (6 MSBs only) and LOBYTE. *
;o* RAM used: TEMP, W, HIBYTE (inputs), LOBYTE (inputs) *
H R R R R R R RS E RS E SRR R R R R R R R R R R RS R R EEEEREEEEEEEEEEEEESES]
Plécispout

movlw .14 Place 14 into W for bit counter

movwf TEMP Use TEMP as bit counter

bcf PORTB, ISPCLOCK Clear CLOCK line

bcf PORTB, ISPDATA Clear DATA line

movlw DATISPOUT Place tris value for data output

tris PORTB Set tris latch as data output

bef PORTB, ISPDATA Send a start bit (0)

bsf PORTB, ISPCLOCK Set CLOCK output

jolel PORTB, ISPCLOCK Clear CLOCK output (clock start bit)
Plécispoutloop

bcf STATUS, C Clear carry bit to start clean

bcf PORTB, ISPDATA Clear DATA bit to start (assume 0)

rrf HIBYTE, F Rotate HIBYTE output

rrf LOBYTE, F Rotate LOBYTE output

btfsc STATUS, C Skip if data bit is zero

bsf PORTB, ISPDATA Set DATA line to send a one

bsf PORTB, ISPCLOCK Set CLOCK output

bcf PORTB, ISPCLOCK Clear CLOCK output (clock bit)

decfsz TEMP,F Decrement bit counter, skip when done

goto Plécispoutloop Jump back and send next bit

bcf PORTB, ISPDATA Send a stop bit (0)

bsf PORTB, ISPCLOCK Set CLOCK output

bcf PORTB, ISPCLOCK Clear CLOCK output (clock stop bit)

retlw O Done so return!

; * plécispin
; * Receive 14-bit data word from
; * data from it’s program memory.
; * both HIBYTE (6 MSBs only)
; o* RAM used:
Plé6écispin
movliw .14
movwf TEMP
clrf HIBYTE
clrf LOBYTE
bcf STATUS, C
bcf PORTB, ISPCLOCK
bcf PORTB, ISPDATA
movlw DATISPIN
tris PORTB
bsf PORTB, ISPCLOCK
bcf PORTB, ISPCLOCK
Plé6écispinloop
bsf PORTB, ISPCLOCK
nop
jolel STATUS, C
btfsc PORTB, ISPDATA
bsf STATUS, C
rrf HIBYTE, F
rrf LOBYTE, F
bcf PORTB, ISPCLOCK
nop
nop

R EEEEEEEEEE R SRR EEEEEEEEEEEEEES]

TEMP, W, HIBYTE

R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEES]
*

application PIC for reading this *
The data received is stored in *
LOBYTE. *
(output), LOBYTE (output) *

R R R R R E RS E RS E R R R R R R R R R R RS E R E R R R EEEEEEEEEEEEEES]

Place 14 data bit count value into W
Init TEMP and use for bit counter
Clear recieved HIBYTE register

Clear recieved LOBYTE register

Clear carry bit to start clean

Clear CLOCK output

Clear DATA output

Place tris value for data input into W
Set up tris latch for data input

Send a single clock to start things going
Clear CLOCK to start receive

Set CLOCK bit
Wait one cycle
Clear carry bit,
Check the data, skip if it was zero
Set carry bit if data was one

Move recevied bit into HIBYTE
Update LOBYTE

Clear CLOCK 1line

Wait one cycle

assume 0 read

Wait one cycle

© 2000 Microchip Technology Inc.

DS00656B-page 4-13

ANG656

0241 02ED 00468 decfsz TEMP,F ; Decrement bit counter, skip when zero

0242 O0A37 00469 goto Plécispinloop ; Jump back and receive next bit

0243 05Ce6 00470 bsf PORTB, ISPCLOCK ; Clock a stop bit (0)

0244 0000 00471 nop ; Wait one cycle

0245 04cCe6 00472 bcf PORTB, ISPCLOCK ; Clear CLOCK to send bit

0246 0000 00473 nop ; Wait one cycle

0247 0403 00474 bcf STATUS, C ; Clear carry bit

0248 0329 00475 rrf HIBYTE, F ; Update HIBYTE with the data

0249 032A 00476 rrf LOBYTE, F ; Update LOBYTE

024A 0403 00477 bcf STATUS, C ; Clear carry bit

024B 0329 00478 rrf HIBYTE, F ; Update HIBYTE with the data

024C 032A 00479 rrf LOBYTE, F ; Update LOBYTE with the data

024D 04cCe6 00480 bcf PORTB, ISPCLOCK ; Clear CLOCK line

024E 04E6 00481 bcf PORTB, ISPDATA ; Clear DATA line

024F 0CO1 00482 movliw DATISPOUT ; Place tris value for data output into W

0250 0006 00483 tris PORTB ; Set tris to data output

0251 0800 00484 retlw 0 ; Done so RETURN!
00485
00486 ; R R R R R R RS R RS SRR R R R R R R R R R R R RS R R E R EEEEEEEEEEEEEEEESES]
00487 ; * commandisp *
00488 ; * Send 6-bit ISP command to application PIC. The command is sent *
00489 ; * in the W register and later stored in LOBYTE for shifting. *
00490 ; * RAM used: LOBYTE, W, TEMP *
00491 ; R R R E R EEEEEEES]

0252 00492 commandisp

0252 002A 00493 movwf LOBYTE ; Place command into LOBYTE

0253 0C06 00494 movliw CMDISPCNT ; Place number of command bits into W

0254 002D 00495 movwf TEMP ; Use TEMP as command bit counter

0255 04E6 00496 bcf PORTB, ISPDATA ; Clear DATA line

0256 04Ce6 00497 bcf PORTB, ISPCLOCK ; Clear CLOCK line

0257 0CO01 00498 movlw DATISPOUT ; Place tris value for data output into W

0258 0006 00499 tris PORTB ; Set tris to data output

0259 00500 Pléecispcmmdoutloop

0259 0403 00501 bcf STATUS, C ; Clear carry bit to start clean

025A 04E6 00502 bcf PORTB, ISPDATA ; Clear the DATA line to start

025B 032A 00503 rrf LOBYTE, F ; Update carry with next CMD bit to send

025C 0603 00504 btfsc STATUS, C ; Skip if bit is supposed to be 0

025D 05E6 00505 bsf PORTB, ISPDATA ; Command bit was a one - set DATA to one

025E 05C6 00506 bsf PORTB, ISPCLOCK ; Set CLOCK line to clock the data

025F 0000 00507 nop ; Wait one cycle

0260 04cCe6 00508 bcf PORTB, ISPCLOCK ; Clear CLOCK line to clock data

0261 02ED 00509 decfsz TEMP,F ; Decement bit counter TEMP, skip when done

0262 0A59 00510 goto Plécispcmmdoutloop ; Jump back and send next cmd bit

0263 0000 00511 nop ; Wait one cycle

0264 04E6 00512 bcf PORTB, ISPDATA ; Clear DATA line

0265 04cCe6 00513 bcf PORTB, ISPCLOCK ; Clear CLOCK line

0266 0C81 00514 movliw DATISPIN ; Place tris value for data input into W

0267 0006 00515 tris PORTB ; set as input to avoid any contention

0268 0000 00516 nop ; Wait one cycle

0269 0000 00517 nop ; Wait one cycle

026A 0800 00518 retlw 0 ; Done - return!
00519
00520 H IR EE R R R RS E RS EE R R R R RS R R R R R R R R R R R R R R R R R R EEEEEEEEEEEESEE]
00521 ; * programpartisp *
00522 ; * Main ISP programming loop. Reads data starting at STARTCALBYTE *
00523 ; * and calls programming subroutines to program and verify this *
00524 ; * data into the application PIC. *
00525 ; * RAM used: LOADDR, HIADDR, LODATA, HIDATA, FSR, LOBYTE, HIBYTE*
00526 ; IR EE R R R R SRR S E SRR R R SRR R R R R R R R R E R R R R R EEEEEEEEEEEEES]

026B 00527 programpartisp

026B 0907 00528 call testmodeisp ; Place PIC into test/program mode

026C 0064 00529 clrf FSR ; Point to bank 0

026D 0210 00530 movf STARTCALBYTE,W ; Upper order address of data to be stored into W

026E 0027 00531 movwt HIADDR ; place into counter

026F 0211 00532 movf STARTCALBYTE+1,W ; Lower order address byte of data to be stored

0270 0028 00533 movwt LOADDR ; place into counter

DS00656B-page 4-14 © 2000 Microchip Technology Inc.

ANG656

0271
0272
0273
0273
0274
0275
0276
0277
0278
0279
027A
027B
027C
027D
027E
027E
027F

0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
028A
028B
028C
028D
028E
028F
0290
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
029A
029B
029C
029D
029E
029F
02A0
02A1
02A2
02A3
02A4
02A4
02A5
02A6
02A7
02A8
02A9
02A9
02AA
02AA
02AB

OOES8
02A7

0CO06
0952
02E8
0A73
02E7
0A73
0CO03
008B
002F
0C12
002E

0C34
0027

0C10
008E
0024
06A4
05C4
04A4
0684
05A4
0584
0200
0028
0208
002A
0207
0029
006B

O5E3
09B1
02AB
0C19
008B
0643
O0AA9
0209
0087
0743
0A90
020A
0088
0743
0A90
0040
01CB
01CB
01CB
002B

04E3
09B1
02EB
0AA4
OAAA

0446

0Co06
0952

00534
00535
00536
00537
00538
00539
00540
00541
00542
00543
00544
00545
00546
00547
00548
00549
00550
00551

M

TERERRERRERRERER

=

00552
00553
00554
00555
00556
00557
00558
00559
00560
00561
00562
00563
00564
00565
00566
00567
00568
00569
00570
00571
00572
00573
00574
00575
00576
00577
00578
00579
00580
00581
00582
00583
00584
00585
00586
00587
00588
00589
00590

decf LOADDR, F

incf HIADDR, F
programsetptr

movlw CMDISPINCRADDR

call commandisp

decfsz LOADDR,F

goto programsetptr

decfsz HIADDR,F

goto programsetptr

movlw .3

subwf TIMEHIGH,W

movwf BYTECOUNT

movlw STARTCALBYTE+2

movwf ADDRPTR
programisploop

movlw UPPER6BITS

movwf HIDATA

addrtofsr ADDRPTR

movlw STARTCALBYTE

subwf ADDRPTR, w

movwf FSR

btfsc FSR, 5

bsf FSR, 6

bcf FSR, 5

btfsc FSR, 4

bsf FSR, 5

bsf FSR, 4

movf INDF, W

movwf LODATA

movEf LODATA, W

movwf LOBYTE

movE HIDATA,W

movwf HIBYTE

clrf PULSECNT
pgmispcntloop

bsf STATUS, VFYYES

call pagmviyisp

incf PULSECNT, F

movlw .25

subwf PULSECNT, w

btfsc STATUS, Z

goto pgmispfail

movEf HIBYTE, w

subwf HIDATA,w

btfss STATUS, Z

goto pgmispcntloop

movE LOBYTE, w

subwf LODATA,w

btfss STATUS, Z

goto pgmispcntloop

clrw

addwf PULSECNT, W

addwf PULSECNT , W

addwf PULSECNT , W

movwf PULSECNT
pgmisp3X

bcf STATUS, VFYYES

call pagmviyisp

decfsz PULSECNT,F

goto pgmisp3X

goto prgnextbyte
pgmispfail

bcf PORTB, DONELED
prgnextbyte

movliw CMDISPINCRADDR

call commandisp

Subtract one from loop constant
Add one for loop constant

Increment address command load into W
Send command to PIC

Decrement lower address

Go back again

Decrement high address

Go back again

Place start pointer into W, offset address
Restore byte count into W

Place into byte counter

Place start of REAL DATA address into W
Update pointer

retlw instruction opcode placed into W
Set up upper bits of program word

Set up FSR to point to next value
Place base address into W

Offset by STARTCALBYTE

Place into FSR

Shift bits 4,5 to 5,6

Place next cal param into W
Move it out to LODATA
Place LODATA into LOBYTE

Place HIDATA into HIBYTE
Clear pulse counter

Set verify flag

Program and verify this byte

Increment pulse counter

Place 25 count into W

Subtract pulse count from 25

Skip if NOT 25 pulse counts

Jump to program failed - only try 25 times
Subtract programmed and read data

Skip if programmed is OK
Miscompare - program it again!
Subtract programmed and read data

Skip if programmed is OK

Miscompare - program it again!

Clear W reg

now do 3 times overprogramming pulses

Add 3X pulsecount to pulsecount

Clear verify flag

Program this byte

Decrement pulse counter, skip when done
Loop back and program again!

Done - jump to program next byte!

Failure - clear green LED!

Increiment address command load into W
Send command to PIC

© 2000 Microchip Technology Inc.

DS00656B-page 4-15

ANG656

02AC
02AD
02AE
02AF
02B0O
02BO

02B1
02B1
02B1
02B2
02B3
02B4
02B5
02B6
02B7
02B8
02B9
02BA
02BB
02BC
02BD
02BD
02BE
02BF
02C0
02C0
02C1
02C2
02C3
02C4
02C5
02Ce6
02C7
02C7
02C8
02C9
02CA

02AE
02EF
OA7E
0900

0ABO

0C02
0952
0000
0000
0000
0208
002A
0207
0029
0915
0co8
0952

0C20
0000
002D

02ED
O0ACO
OCOE
0952
07E3
0800
0000

0C04
0952
092C
0800

00591
00592
00593
00594
00595
00596
00597
00598
00599
00600
00601
00602
00603
00604
00605
00606
00607
00608
00609
00610
00611
00612
00613
00614
00615
00616
00617
00618
00619
00620
00621
00622
00623
00624
00625
00626
00627
00628
00629
00630
00631
00632
00633
00634
00635
00636
00637
00638

incf

decfsz

goto

call
self

goto

*
*
*
*
; *
; *
pagmviyisp
loadcisp
movlw
call
nop
nop
nop
movE
movwf
movEf
movwf
call
movlw
call
delayl00us
movlw
nop
movwf
loopprgm
decfsz
goto
movlw
call
btfss
retlw
nop
readcisp
movlw
call
call
retlw
END

application PIC.
LODATA.

RAM used: HIBYTE,
EEEEEEEEEEEEEEEEEEREEEEEEEEEESESE]

ADDRPTR, F

BYTECOUNT, F
programisploop
poweroffisp

self

CMDISPLOAD
commandisp

LODATA, w
LOBYTE
HIDATA,w
HIBYTE
Plécispout
CMDISPPGMSTART
commandisp

.32
TEMP

TEMP, F
loopprgm
CMDISPPGMEND
commandisp
STATUS, VFYYES

CMDISPREAD
commandisp
Plécispin

LR R SRR SRR EEEEEEEEREEEEEEEEEEEEES]
pagmviyisp
Program and/or Veryify a word in program memory on the

The data to be programmed is in HIDATA and

LOBYTE,

7
7

7

7

7

Increment pointer

to next address

See if we sent last byte
Jump back and send next byte
Done - power off PIC and reset it!

Done with programming - wait here!

R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESESES]

HIDATA, LODATA, TEMP

EEEEEEEE RS R EEEEEEEEEEEEEEEEEEEEEESES]

*
*
*
*
*
*

Place load data command into W
Send load data command to PIC

Wait one cycle
Wait one cycle
Wait one cycle
Place LODATA byte
Move it to LOBYTE
Place HIDATA byte
Move it to HIBYTE
Send data to PIC

into W
reg
into W
reg

Place start programming command into W
Send start programming command to PIC

Place 32 into W
Wait one cycle

Move it to TEMP for delay counter

Decrement TEMP, skip when delay done

Jump back and loop delay

Place stop programming command into W
Send end programming command to PIC

Skip if we are supposed to verify this time

Done - return!
Wait one cycle

Place read data command into W

Send read data command to PIC
Read programmed data

Done - return!

DS00656B-page 4-16

© 2000 Microchip Technology Inc.

ANG656

MEMORY USAGE MAP (‘'X’ = Used, ‘-’ = Unused)

0000 : XXXXXXX XXXXXXXXXXX
0040 : XXXXXXX XXXXXXXXXXX
0080 :

00CO : XXXXXX---mmmmm oo oo oo o oo o o e o e e e e o mmmm e mmm————----
0200 : XXXXXXX XXXXXXXXXXX
0240

0280 : XXXXXXX XXXXXXXXXXX
02C0 : XXXXXXXX KKK === == oo oo oo oo o e e o e e e e e mm o mm—— o ----
O07C0 : ———---————————— - —— o= o — o —m— o ——m - X
(0] o] I e e X

All other memory blocks unused.

Program Memory Words Used:
Program Memory Words Free:

Errors : 0
Warnings : 0 reported,
Messages : 2 reported,

402
1646

0 suppressed
0 suppressed

© 2000 Microchip Technology Inc.

DS00656B-page 4-17

ANG656

APPENDIX B:

MPASM 01.40.01 Intermediate ISPTEST.ASM 3-31-1997 10:55:57 PAGE 1
LOC OBJECT CODE LINE SOURCE TEXT
VALUE

00001 ; Filename: ISPTEST.ASM
00002 ; IR E R R R EE SRR SRR R RS R R R R R R R R EEEEEEEEEEESEES
00003 ; * Author: John Day *
00004 ; * Sr. Field Applications Engineer *
00005 ; * Microchip Technology *
00006 ; * Revision: 1.0 *
00007 ; * Date August 25, 1995 *
00008 ; * Part: PIC16CXX *
00009 ; * Compiled using MPASM V1.40 *
00010 ; IR RS
00011 ; * Include files: *
00012 ; * P16CXX.ASM *
00013 ; IR RS
00014 ; * Fuses: OSC: XT (4.0 Mhz xtal) *
00015 ; ~* WDT: OFF *
00016 ; * Cp: OFF *
00017 ; * PWRTE: OFF *
00018 ; IR EE R R EE R R RS SRR R R R R RS R R R R R R R R R R R R R R R R EREEEEEEEEEEEEESESES
00019 ; * This program is intended to be used as a code example to *
00020 ; * show how to comunicate with a manufacturing test jig that *
00021 ; * allows this PIC16CXX device to self program. The RB6 and RB7 *
00022 ; * lines of this PIC16CXX device are used to clock the data from *
00023 ; * this device to the test jig (running ISPPRGM.ASM). Once the *
00024 ; * PIC16C58 running ISPPRGM in the test jig receives the data, *
00025 ; * it places this device in test mode and programs these parameters. *
00026 ; * The code with comments “TEST -“ is used to create some fakecalibration *
00027 ; * parameters that are first written to addresses STARTCALBYTE through *
00028 ; * ENDCALBYTE and later used to call the self-programming algorithm. *
00029 ; * Replace this code with your parameter calculation procedure, *
00030 ; * placing each parameter into the STARTCALBYTE to ENDCALBYTE *
00031 ; * file register addresses (16 are used in this example). The address *
00032 ; * “lookuptable” is used by the main code later on for the final lookup *
00033 ; * table of calibration constants. 16 words are reserved for this lookup *
00034 ; * table. *
00035 H IR EE R R SRR R RS SRR R R R R R SRR R R R R RS R R E R R EREEEEEEEEEEEEESESES
00036 ; * Program Memory: *
00037 ; * 49 Words - communication with test jig *
00038 ; * 17 Words - calibration look-up table (16 bytes of data) *
00039 ; * 13 Words - Test Code to generate Calibration Constants *
00040 ; * RAM Memory: *
00041 ; * 16 Bytes -Temporary- Store 16 bytes of calibration constant*
00042 ; * 4 Bytes -Temporary- Store 4 bytes of temp variables *
00043 ; IR REEEEEESE]
00044

Warning[217] : Hex file format specified on command line.
00045 list p=16C71, f=inhx8m
00046 include <pléC71.inc>
00001 LIST
00002 ; P16C71.INC Standard Header File, Version 1.00 Microchip Technology, Inc.
00142 LIST

2007 3FF1 00047 __CONFIG _CP_OFF& WDT OFF& XT OSC& PWRTE_OFF
00048
00049 ; R EEEEEREEE SR
00050 ; * Port A (RAO-RA4) bit definitions *
00051 ; IR R R R SRR SRR R SRR EEEEEREEEESEES]
00052 ; Port A is not used in this test program
00053
00054 ; IR R R SRS EE SRR RS EEREEEEREEEEEEREEEESEES]

DS00656B-page 4-18

© 2000 Microchip Technology Inc.

ANG656

0000000C
0000000D
0000000E
0000000F

00000010
0000002F

00000020

0000

0000
0000
0001
0002
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
0o0o0cC
000D
000E
000E

3010
0084

0804
0080
OA84
0804
3C30
1D03
2802
0103
200F
3CFF
1903
2830

280E

00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118

; * Port B (RBO-RB7) bit definitions *
R EEEEEEEE R
#define CLOCK 6 ; clock line for ISP
#define DATA 7 ; data line for ISP
; Port pins RBO-5 are not used in this test pr

R EEEEEEEEEEEEEEEEEE R EEREREEEEEEESESEES

ogram

; * RAM register usage definition *
R EEEEEEEEEEEEEEEEEE R EEREEEEEEEEESESES
CSUMTOTAL EQU 0Ch ; Address for checksum var
COUNT EQU 0Dh ; Address for COUNT var
DATAREG EQU OEh ; Address for Data output register var
COUNTDLY EQU OFh ; Address for clock delay counter

STARTCALBYTE
ENDCALBYTE

7

CALTABLELENGTH EQU ENDCALBYTE -

These two symbols are used for the start and end address
in RAM where the calibration bytes are stored. There are 16 bytes
to be stored in this example; however, you can increase or

decrease the number of bytes by changing the STARTCALBYTE or ENDCALBYTE

address values.

EQU 10h
EQU 2Fh

; Address pointer
; Address pointer

for start CAL byte
for end CAL byte
Table length of lookup table (number of CAL parameters to be stored)

STARTCALBYTE + 1

ORG O
; R R R R R R R R R R R R R R R E R R R R R R R R R R R R R R R R EEEEEES]
; * testcode routine *
; * TEST code - sets up RAM register with register address as data *
; * Uses file register STARTCALBYTE through ENDCALBYTE to store the*
; * calibration values that are to be programmed into the lookup *
; * table by the test jig running ISPPRGM. *
; * Customer would place calibration code here and make sure that *
; * calibration constants start at address STARTCALBYTE *
H R E R R R R R EE R R SRR E R R R R R R R R R R R R R R R R R EEEEEEEEEEEEEESEESESS
testcode
movliw STARTCALBYTE ; TEST -
movwf FSR ; TEST - Init FSR with start of RAM addres
looptestram
movEf FSR, W ; TEST - Place address into W
movwf INDF ; TEST - Place address into RAM data byte
incf FSR, F ; TEST - Move to next address
movE FSR, W ; TEST - Place current address into W
sublw ENDCALBYTE+1 ; TEST - Subtract from end of RAM
btfss STATUS, Z ; TEST - Skip if at END of ram
goto looptestram ; TEST - Jump back and init next RAM byte
clrw ; TEST - Clear W
call lookuptable ; TEST - Get first CAL value from lookup table
sublw OFFh ; TEST - Check if lookup CAL table is blank
btfsc STATUS, Z ; TEST - Skip if table is NOT blank
goto calsend ; TEST - Table blank - send out cal parameters
mainloop
goto mainloop ; TEST - Jump back to self since CAL is done

R EEEEEES]

* lookuptable
* Calibration constants look-up table. This is where the CAL
Constants will be stored via ISP protocol later. Note it is
blank, since these values will be pogrammed by the test jig
running ISPPRGM later.

Input Variable: W stores index for table lookup

Output Variable: W returns with the calibration constant

* Ok kX F X F

* % F kX

© 2000 Microchip Technology Inc.

DS00656B-page 4-19

ANG656

000F
000F

002F
002F

0030
0030
0031
0032
0032
0033
0034
0035
0036
0037
0038

Message [302] :

0039
003A
003B
003C
003D
003E
003F
0040
0041
0042
0042
0043
0044
0045
0046
0047
0048
0049
004A
004B
004cC
004C

004D
004D
004E
004F
0050
0051
0051
0052
0053
0054
0055

0782

34FF

018C
018D

0B8D
2832
0B8C
2832
0186
1683
303F

0086
1283
018C
3001
204D
3010
204D
3010
0084

0800
204D
0A84
0804
3C30
1D03
2842
080C
204D
0186

284cC

008E
078C
3008
008D

1706
205C
OD8E
1786
1C03

00119 ; * NOTE: Blank table when programmed reads “FF” for all locations *
00120 R R R R R R R R E RS RS R E R EEEEEEEEEEEEEESESES
00121 lookuptable
00122 addwf PCL, F ; Place the calibration constant table here!
00123
00124 ORG lookuptable + CALTABLELENGTH
00125 retlw OFFh ; Return FF at last location for a blank table
00126
0012’7 ; R EEEEEES]
00128 ; * calsend subroutine *
00129 ; * Send the calibration data stored in locations STARTCALBYTE *
00130 ; * through ENDCALBYTE in RAM to the programming jig using a serial*
00131 ; * clock and data protocol *
00132 ; ~* Input Variables: STARTCALBYTE through ENDCALBYTE *
00133 R EEEEEES]
00134 calsend
00135 clrf CSUMTOTAL ; Clear CSUMTOTAL reg for delay counter
00136 clrf COUNT ; Clear COUNT reg to delay counter
00137 delayloop ; Delay for 100 mS to wait for prog jig wakeup
00138 decfsz COUNT,F ; Decrement COUNT and skip when zero
00139 goto delayloop ; Go back and delay again
00140 decfsz CSUMTOTAL,F ; Decrement CSUMTOTAL and skip when zero
00141 goto delayloop ; Go back and delay again
00142 clrf PORTB ; Place “0” into port b latch register
00143 bsf STATUS,RPO ; Switch to bank 1
00144 movlw b’00111111" ; RB6,7 set to outputs

Register in operand not in bank 0. Ensure that bank bits are correct.
00145 movwf TRISB ; Move to TRIS registers
00146 bcf STATUS,RPO ; Switch to bank 0
00147 clrf CSUMTOTAL ; Clear checksum total byte
00148 movlw high lookuptable+l ; place MSB of first addr of cal table into W
00149 call sendcalbyte ; Send the high address out
00150 movlw low lookuptable+l ; place LSB of first addr of cal table into W
00151 call sendcalbyte ; Send low address out
00152 movlw STARTCALBYTE ; Place RAM start address of first cal byte
00153 movwE FSR ; Place this into FSR
00154 loopcal
00155 movf INDF, W ; Place data into W
00156 call sendcalbyte ; Send the byte out
00157 incf FSR,F ; Move to the next cal byte
00158 movf FSR,W ; Place byte address into W
00159 sublw ENDCALBYTE+1 ; Set Z bit if we are at the end of CAL data
00160 btfss STATUS, Z ; Skip if we are done
00161 goto loopcal ; Go back for next byte
00162 movE CSUMTOTAL, W ; place checksum total into W
00163 call sendcalbyte ; Send the checksum out
00164 clrf PORTB ; clear out port pins
00165 calsenddone
00166 goto calsenddone ; We are done - go home!
00167
00168 R EEEEEES]
00169 ; * sendcalbyte subroutine *
00170 ; * Send one byte of calibration data to the programming jig *
00171 ; * Input Variable: W contains the byte to be sent *
00172 R R R R R R R R RS RS SRR R R R R R R R R R SRR RS E R R R EEEEEEEEEEEEEEEESESS
00173 sendcalbyte
00174 movwi DATAREG ; Place send byte into data register
00175 addwf CSUMTOTAL, F ; Update checksum total
00176 movliw .8 ; Place 8 into W
00177 movwf COUNT ; set up counter register
00178 loopsendcal
00179 bsf PORTB, CLOCK ; Set clock line high
00180 call delaysend ; Wait for test jig to synch up
00181 rlf DATAREG, F ; Rotate to next bit
00182 bsf PORTB, DATA ; Assume data bit is high
00183 btfss STATUS, C ; Skip if the data bit was high

DS00656B-page 4-20

© 2000

Microchip Technology Inc.

ANG656

0056 1386 00184 bcf PORTB, DATA ; Set data bit to low

0057 1306 00185 bcf PORTB, CLOCK ; Clear clock bit to clock data out

0058 205C 00186 call delaysend ; Wait for test jig to synch up

0059 0B8D 00187 decfsz COUNT,F ; Skip after 8 bits

005A 2851 00188 goto loopsendcal ; Jump back and send next bit

005B 0008 00189 return ; We are done with this byte so return!
00190
00191 ; R EEEEEES]
00192 ; * delaysend subroutine *
00193 ; * Delay for 50 ms to wait for the programming jig to synch up *
00194 ; R R R R R R R R R R R R R R R R E R R R R R R R R R R R R R R R R R EEEEEES]

005C 00195 delaysend

005C 3010 00196 movlw 10h ; Delay for 16 loops

005D 008F 00197 movwf COUNTDLY ; Use COUNTDLY as delay count variable

005E 00198 loopdelaysend

0O05E OBS8SF 00199 decfsz COUNTDLY,F ; Decrement COUNTDLY and skip when done

005F 285E 00200 goto loopdelaysend ; Jump back for more delay

0060 0008 00201 return
00202 END

MEMORY USAGE MAP (‘'X’ = Used, ‘-’ = Unused)

0000 : XXXXXXXXXXXXXXXX =—=-------mmmmmmm mmmm oo oo oo oo oo o X

0040 : XXXXXXX D e

2000 : ------- Xmmmmmmm e e e e e

All other memory blocks unused.

Program Memory Words Used: 66

Program Memory Words Free: 958

Errors : 0

Warnings : 1 reported, 0 suppressed
Messages : 1 reported, 0 suppressed

© 2000 Microchip Technology Inc. DS00656B-page 4-21

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS AMERICAS (continued) ASIA/PACIFIC (continued)

Corporate Office Toronto Singapore

Microchip Technology Inc. Microchip Technology Inc. Microchip Technology Singapore Pte Ltd.

2355 West Chandler Blvd. 5925 Airport Road, Suite 200 200 Middle Road

Chandler, AZ 85224-6199 Mississauga, Ontario L4V 1W1, Canada #07-02 Prime Centre

Tel: 480-786-7200 Fax: 480-786-7277 Tel: 905-405-6279 Fax: 905-405-6253 Singapore, 188980

Technical Support: 480-786-7627 ASIA/PACIFIC Tel: 65-334-8870 Fax: 65-334-8850

Web Address: http://www.microchip.com China - Beijing Taiwan

Atlanta Microchip Technology, Beijing 11\/I0|<'::r-c:cch|§0'l;echnology Taiwan

Microchip Technology Inc. Unit 915, 6 Chaoyangmen Bei Dajie Tuna Hua North Road

500 Sugar Mill Road, Suite 200B Dong Erhuan Road, Dongcheng District ng nug

Atlanta, GA 30350 New China Hong Kong Manhattan Building P:pglsgzwgq 7-7175 Fax: 886-2-2545-0139

Tel: 770-640-0034 Fax: 770-640-0307 Beijing, 100027, PR.C. et ax:

Boston Tel: 86-10-85282100 Fax: 86-10-85282104 EUROPE

Microchip Technology Inc. China - Shanghai Denmark

5 Mount Royal Avenue Microchip Technology Microchip Technology Denmark ApS

Marlborough, MA 01752 Unit B701, Far East International Plaza, Regus Business Centre

Tel: 508-480-9990 Fax: 508-480-8575 No. 317, Xianxia Road Lautrup hoj 1-3

Chicago Shanghai, 200051, P.R.C. Ballerup DK-2750 Denmark

Microchip Technology Inc. Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 Tel: 45 4420 9895 Fax: 45 4420 9910

333 Pierce Road, Suite 180 Hong Kong France

ltasca, IL 60143 Microchip Asia Pacific Arizona Microchip Technology SARL

Tel: 630-285-0071 Fax: 630-285-0075 Unit 2101, Tower 2 Parc d’Activite du Moulin de Massy

Dallas Metroplaza 43 Rue du Saule Trapu

Microchip Technology Inc. 223 Hing Fong Road Batiment A - ler Etage

4570 Westgrove Drive, Suite 160 Kwai Fong, N.T., Hong Kong 91300 Massy, France

Addison, TX 75248 Tel: 852-2-401-1200 Fax: 852-2-401-3431 Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Tel: 972-818-7423 Fax: 972-818-2924 India Germany

Dayton Microchip Technology Inc. Arizona Microchip Technology GmbH

Microchip Technology Inc. India Liaison Office Gustav-Heinemann-Ring 125

Two Prestige Place, Suite 150 No. 6, Legacy, Convent Road D-81739 Minchen, Germany

Miamisburg, OH 45342 Bangalore, 560 025, India Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Tel: 937-291-1654 Fax: 937-291-9175 Tel: 91-80-229-0061 Fax: 91-80-229-0062 Italy

Detroit Japan Arizona Microchip Technology SRL

Microchip Technology Inc. Microchip Technology Intl. Inc. Centro Direzionale Colleoni

Tri-Atria Office Building Benex S-1 6F Palazzo Taurus 1 V. Le Colleoni 1

32255 Northwestern Highway, Suite 190 3-18-20, Shinyokohama 20041 Agrate Brianza

Farmington Hills, MI 48334 Kohoku-Ku, Yokohama-shi Milan, Italy

Tel: 248-538-2250 Fax: 248-538-2260 Kanagawa, 222-0033, Japan Tel: 39-039-65791-1 Fax: 39-039-6899883

Los Angeles Tel: 81-45-471- 6166 Fax: 81-45-471-6122 United Kingdom

Microchip Technology Inc. Korea Arizona Microchip Technology Ltd.

18201 Von Karman, Suite 1090 Microchip Technology Korea 505 Eskdale Road

Irvine, CA 92612 168-1, Youngbo Bldg. 3 Floor Winnersh Triangle

Tel: 949-263-1888 Fax: 949-263-1338 Samsung-Dong, Kangnam-Ku Wokingham

New York Seoul, Korea Berkshire, England RG41 5TU

Microchip Technology Inc. Tel: 82-2-554-7200 Fax: 82-2-558-5934 Tel: 44 118 921 5858 Fax: 44-118 921-5835

150 Motor Parkway, Suite 202

Hauppauge, NY 11788 03/23/00

Tel: 631-273-5305 Fax: 631-273-5335

San Jose Microchip received QS-9000 quality system

Microchip Technology Inc. DNV Certification, inc. DNV MSC certification for its worldwide headquarters,
USA The Netherlands

2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955 ANSI~RAB

Qms
*

design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
(procedures are QS-9000 compliant for its

Accredited by the RVA

PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral

DIN[\W products. In addition, Microchip’s quality
N—"

system for the design and manufacture of
1SO 9001 / QS-9000 development systems is ISO 9001 certified.

REGISTERED FIRM

ailiaiydddy

All rights reserved. © 2000 Microchip Technology Incorporated. Printed in the USA. 5/00 e Printed on recycled paper.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates.
It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by
Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights
arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written
approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property
rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other
trademarks mentioned herein are the property of their respective companies.

DS30277C-page 4-22 © 2000 Microchip Technology Inc.

	Section 1 Introduction
	In-Circuit Serial Programming™ (ICSP™) Guide
	What is In-Circuit Serial Programming (ICSP)
	PICmicro MCUs Make In-Circuit Serial Programming a Cinch
	What Can I Do with In-Circuit Serial Programming
	Programming the Considerations
	Microchip Provides a Complete Solution for ICSP

	SECTION 2 TECHNICAL BRIEFS
	How to Implement ICSP™ Using PIC12C5XX OTP MCUs
	Introduction
	In-Circuit Serial Programming
	The Programmer
	Programming Environment
	Other Benefits
	Conclusion

	How to Implement ICSP™ Using PIC16CXXX OTP MCUs
	Introduction
	How Does ICSP Work?
	Application Circuit
	Programmer
	Programming Environment
	Other Benefits

	Conclusion
	How to Implement ICSP™ Using PIC17CXXX OTP MCUs
	Introduction
	Using the ICSP Feature on PIC17CXXX OTP Deivces
	Conclusion

	How to Implement ICSP™ Using PIC16CXXX OTP MCUs
	Introduction
	HOW DOES ICSP WORK?
	CONCLUSION

	How to Implement ICSP™ Using PIC17CXXX OTP MCUs
	Introduction
	USING THE ICSP FEATURE ON PIC17CXXX OTP Devices
	CONCLUSION

	How to Implement ICSP™ Using PIC16F8X FLASH MCUs
	INTRODUCTION
	HOW DOES ICSP WORK?
	CONCLUSION

	SECTION 3 PROGRAMMING SPECIFICATIONS
	In-Circuit Serial Programming for PIC12C5XX OTP MCUs
	Programming the PIC12C5XX
	PROGRAM MODE ENTRY
	CONFIGURATION WORD
	CODE PROTECTION
	PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

	In-Circuit Serial Programming for PIC12C67X and PIC12CE67X OTP MCUs
	PROGRAMMING THE PIC12C67X AND PIC12CD67X
	PROGRAM MODE ENTRY
	CONFIGURATION WORD
	CODE PROTECTION
	PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

	In-Circuit Serial Programming for PIC14000 OTP MCUs
	PROGRAMMING THE PIC14000
	PROGRAM MODE ENTRY
	CONFIGURATION
	CODE PROTECTION
	PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

	In-Circuit Serial Programming for PIC16C55X OTP MCUs
	PROGRAMMING THE PIC16C55X
	PROGRAM MODE ENTRY
	CONFIGURATION WORD
	CODE PROTECTION
	PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

	In-Circuit Serial Programming for PIC16C6XX/7XX/9XX OTP MCUs
	PROGRAMMING THE PIC16C6XX/7XX/9XX
	PROGRAM MODE ENTRY
	CONFIGURATION WORD
	PROGRAM/VERIFY MODE

	In-Circuit Serial Programming for PIC17C7XX
	PROGRAMMING THE PIC17C7XX
	PARALLEL MODE PROGRAM ENTRY
	PARALLEL MODE PROGRAMMING SPECIFICATIONS
	SERIAL MODE PROGRAM ENTRY
	CONFIGURATION WORD
	PARALLEL MODE AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE
	ELECTRICAL SPECIFICATIONS FOR SERIAL PROGRAMMING MODE

	PIC18CXXX PIC18C2XX PIC18C4XX In-MCUs
	PROGRAMMING THE PIC18CXXX
	IN-CIRCUIT SERIAL PROGRAMMING MODE (ICSP)
	CONFIGURATION WORD
	AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

	In-Circuit Serial Programming for PIC16F62X FLASH MCUs
	PROGRAMMING THE PIC16F62X
	PROGRAM MODE ENTRY
	CONFIGURATION WORD
	CODE PROTECTION
	PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

	In-Circuit Serial Programming for PIC16F8X FLASH MCUs
	PROGRAMMING THE PIC16F8X
	PROGRAM MODE ENTRY
	CONFIGURATION WORD
	CODE PROTECTION
	PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

	In-Circuit Serial Programming for PIC16F8XX FLASH MCUs
	PROGRAMMING THE PIC16F8XX
	PROGRAM MODE ENTRY
	CONFIGURATION WORD
	CODE PROTECTION
	PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

	SECTION 4 APPLICATION NOTES
	In-Circuit Serial Programming™ (ICSP™) of Calibration Parameters Using a PICmicro ® Microcontroller
	INTRODUCTION
	PROGRAMMING FIXTURE

