H8/300H Series

Programming Manual

HITACHI

ADE-602-053A

Major Revisions and Additionsin this Version

Page Item

Description

P27 Figure 1-12 Instruction Formats

Figure (4) amended

P33 Table 1-6 Effective Address Calculation (8)

Table amended

P51 2.2.6 BAND

Notes added

P58 2.2.11 BIOR Operand Format and Number of
States Required for Execution

Register direct 1st byte
amended

P67 2.2.18 BSR

Notes description added

P74 2.2.22 (3) CMP (L) Operand Format and Number of
States Required for Execution

Operands amended

P86 2.2.26 (3) DIVXS

Description amended

P87 DIVXS Example 2

Example 2 added

P106 2.2.33 JSR Cautions

Description added

P108 2.2.34 (1) LDC (B)

Description amended
/added

P110 2.2.34 (2) LDC (W) Operand Format and Number of
States Required for Execution

Mnemonic amended

P114 2.2.35(4) MOV (B) Description

Description amended

P117 2.2.35(5) MOV (W) Operand Format and Number of
States Required for Execution

Table contents amended

P119 2.2.35(6) MOV (L) Operand Format and Number of
States Required for Execution

Table contents amended

P123 2.2.35(8) MOV (W) Operand Format and Number of
States Required for Execution

Table contents amended

P125 2.2.35(9) MOV (L) Operand Format and Number of
States Required for Execution

Table contents amended

P129 2.2.38 (2) MULXS (W)

Figure amended

P144 2.2.45(2) POP (L)

Number of execution states
amended

P146 2.2.46 (2) PUSH (L)

Number of execution states
amended

P160 2.2.52 RTS

Figure amended

P174 2.2.58 (1) STC (B) Assembly-Language Format

Assembler format amended

2.2.58 (1) STC (B) Operand Format and Number of
States Required for Execution

Mnemonic amended

Page

Iltem

Description

P175 2.2.58 (2) STC (W) Instruction amended
2.2.58 (2) STC (W) Assembler Format Assembler format amended
P176 2.2.58 (2) STC (W) Operand Format and Number of Mnemonic amended
States Required for Execution
P180 2.2.60 SUBS Operation Operation amended
P189 (1) Data Transfer Instructions MOV.W @ERs+,Rd Operation amended
(1) Data Transfer Instructions MOV.W Rs,@ERd Operation amended
(1) Data Transfer Instructions MOV.W Rs,@(d:24,ERd) Number of execution states
amended
(1) Data Transfer Instructions MOV.L #xx:32,ERd Operation and number of
execution states amended
P190 (1) Data Transfer Instructions MOV.L @ERs+,ERd Operation amended
(1) Data Transfer Instructions POP.L ERn Number of execution states
amended
(1) Data Transfer Instructions PUSH.L ERn Number of execution states
amended
P191 (2) Arithmetic Operation Instructions DAA Rd Condition code amended
P192 (2) Arithmetic Operation Instructions CMP.L #xx:32,ERd ~ Number of execution states
amended
P196 (5) Bit Manipulation Instructions Table amended
P197, (6) Branch Instructions Added
P198
P198 (7) System Control Instructions LDC @ERs,CCR Operation amended
(7) System Control Instructions LDC @(d:16,ERs),CCR Operation amended
(7) System Control Instructions LDC @(d:24,ERs),CCR Operation amended
(7) System Control Instructions LDC @ERs+,CCR Operation amended
P204 Table 2-3 Instruction Codes (4) MOV.B@aa:16,Rd Instruction format amended
P231 Table 2-8 Bus States BSR d:16 Execution order nos.2 to
5 amended
P234, Table 2-8 Bus States POP.W Rn to PUSH.L ERn Instruction added
P235
P240 Figure 3-2 State Transitions Figure amended

Contents

SECHON L CPU ..ottt 1
L1 OVEIVIEW..oiiiiiiceeere ettt et st n et s et e s e e nen et e nra 1
111 FEAIUMES......ooiciiti e s 1

1.1.2 Differencesfrom H8/300 CPUcccoeiiiiirieiieeseeseseseesre e 2

1.2 CPU OpPerating MOUES.........coeuirieierietirieiesiett sttt eb e eb e s eb e e b e sn e sn e sneneas 3
1.3 AQGIESS SPACE......ecueiiiieieieteeete ettt ettt bbbt eb e e bt e et n e nr e 7
14 Register CONfiQUIAiON.cooveirieiirieiieeriet ettt s be st 8
LA L OVEIVIBW...ouiiecicieeres ettt p e 8

1.4.2 General REJISLEIS......cccieiieieieeeieeeee ettt te et se e se e sresaesaesreneas 9

1.4.3 CONrOl REGISLEISeiieiteeeieieeeeeeeie ettt sbesbe e sae s 10

1.4.4 Initial REQISIEr VEIUES........ooiieeeeeeee e 1

15 Dz k= 0] 41 T TP 12
151 General Register Data FOrMELS.........ccoveerieirieirieiese et 12

152 Memory Data FOrMELS........cccoecvreeieieern e sie s ee st re e e saesneas 13

1.6 INSIIUCHION SEL....cuiieeieeiiresieteesesi ettt 15
L.6.1 OVEIVIBW...cuiiiieiiiresie itttk b etk b b sn bt es 15

1.6.2 Instructions and Addressing MOUES..........ccccieririneierienese e 16

1.6.3 Tablesof Instructions Classified by FUNCLIONcccoiininninnicee 18

1.6.4 BasiCINSrUCtiON FOMMAaLS.....ccveoveeeeeeireeese st 27

1.6.5 Addressing Modes and Effective Address Calculationccccceveeeeeerenenennnn, 28
[Section 2 INStruction DESCIIPHIONS...........ooccccceeeeceeeeeeeeeeeeveeeeeeeeessrees s 35
21 Tablesand SYMBOIS.......ccoiiiiiie e 35
211 ASSEMDIEr FOMMEL.......ceiieieieieeise ettt se e snesreseeseeseens 36

212 OPEIEHION ..cveneceeeetereet ettt bbb 37

213 CONItiON COUL.......ooveureerereereierereereeese st er e 38

214 INSLrUCLION FOMAELoeieiiieieiereseeieesese bbb 38

215 Register SPeCIfiCalioN........ccocriririiierere st 39

2.1.6 Bit DataAccessin Bit Manipulation INStructions..........ccccceeeeeeeierienieneneneneens 40

2.2 INSLrUCLION DESCIIPLIONS.iueeiietiieiereeiesee sttt 41
b2) -0 D (=) OO 42

221 (2) ADD (W) oottt 43

221 (3) ADD (L) stoeereiriririeieesesieie st 44

222 ADDS .. bbbt 45

223 ADDX ..ttt bbb b et bbbt e et 46

224 (1) AND (B) ceieeteereeerieieeeisieiee sttt sttt ettt et eas 47
2.24(2) AND (W) cooreeoeeeeeeeeeeeseeeseeeeseessessssesssss s sssnsssssssesssnssnssssssssnssessanssssnenan 48

224 (3) AND (L) sttt 49

225 ANDC ... 50

2.2.6 BAND ...ttt s 51

227 = o o 52
2.2.8] O I 54
2.29 5] 7N N 2 56
2.2.10 5 0 R 57
2211 (5] 1 SRR 58
2.2.12 2] 15 59
2.2.13 (2] 1 O | S 60
2.2.14] I 61
2.2.15 5 N[2 62
2.2.16 ST R 64
2.2.17 S TR 65
2.2.18 S S 67
2.2.19 2] 68
2.2.20 S 1S 69
2.2.21 (53,40 71
2.2.22 (1) CMP (B) c.veiveiieeieiesieseeieeee e st e et te e s te et sae bt sae e e e e e neeneetessesnesresneens 72
2.2.22 (2) CMP (W) ettt ettt st et e e ne b et sb e b e 73
W () I OV (TR 74
2.2.23 1D AN 75
2.2.24 1D 77
L () B = O () 79
N 2 T B = O (L) T 80
A () I B = O (I SRR 81
A N) B R G Y (=) TR 82
2.2.26 (2) DIVXS (W) 1ottt sttt sttt st e e sne s snesne s e 84
L () T I 1 G T 86
2.2.27 (1) DIVXU (B) cteitereesteriereeieeieieeiestesesestestesnestes e steseessessesaessssssssssssssssessessessesseses 90
2.2.27 (2) DIVXU (W) 1ttt sttt ettt s a e e sne et nesnesresne e 91
2.2.28 (1) EEPMOV (B) .ueiiieeieeeeeeeeeeterene sttt sttt 95
2.2.28 (2) EEPMOV (W) 1.ttt sttt sttt 96
2.2.29 (1) EXTS (W) ettt sttt sttt st ene s snesnenne s 98
A N) T =5 G IS Y (T 99
2.2.30 (L) EXTU (W) cttieiieseseeeees ettt st st ene st sne st nne s 100
2.2.30 (2) EXTU (L) tioeieeiesesieseeieeee sttt te e ste e st sre st sa e e e nesnestesnesnesresneens 101
2.2.31 (1) INC (B) ceeveeereereeienie ettt sttt et b et sae b b e 102
P N 2 T L N O (L TR 103
P2) T\ L (I R 104
2.2.32 Y R 105
2.2.33 N U 106

2.2.34 (1) LDC (B rreeeeeeeveveeoeeesessssesssssseessessssssssssssssseeeessssssessssssseessssesssssssssssensenns 108

33X N 0 1ok (/) T 109

2.2.35 (1) MOV (B) reeeeeeeeeeeeeeeeeeeeeeeeeeeessesseseeeeseeseeesessesssssssssssesseesseeeeeeeesesessesssseseene 111
2.2.35(2) MOV (W) oo eeeesessseseseeeessesessessessessssssssssssesseeseeseesesessssseseseene 112
P33 e WY LV (1) T 113
33 T N Y [0V (=) N 114
2.2.35 (5) MOV (W) oo eeeeeeeseeeeseseeseeseeeesessessesssss e see e sesessssseseseeees 116
XX (0 W OV () T 118
XX L) N OV (=) N 120
2.2.35 (8) MOV (W) oo eeeesessseseseseessessesessessessssssssssssseseeseeseesesssssssessseene 122
P33 (o) WY L.V () T 124
P33 RV 01V = = = 126
3 X< TR V [0\ 1 = = 127
2.2.38 (1) MULXS (B) ceseeeeeeeeereeeeeeeeeeeeeeeeeeseeeeseeeeeseseseessssessessssssssessessseeseeseesesesesseeseseene 128
2.2.38(2) MULXS (W) eeeeeeeeeeeeeeeeeeeeeeseeseeeeeeeeeseeesessessesssessssesssees e sesessssseseseenes 129
2.2.39 (1) MULXU (B) creeserereereeeeeeeeeeeeeeeeesseeseseeeeseesesseesessessssssssssssssessseessessssssssssssessssene 130
2.2.39 (2) MULXU (W) cooseeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeseeeeeseeesessessesssessssesseeeseeseeeeesesesssssssesenees 131
P33 L N (=X () o 132
2.2.40 (2) NEG (W) 1.roeeeeeeeeeeeeeeeeeeeeeeeeeeseeseseseeseeseeeesessesssssssssesesseeee e sesessesseseseene 133
2.2.40 (3) NEG (L) ereeeeseeeeeeeeeeeeeeeeeeeeeeeesseeseseesesseseeeesessessesssssssses e sesessesseseseeee 134
P33 R N[=T 135
2.2.482 (1) NOT (B)rrereeeeeseeeeeeeeeeeeeeeeeeeesesessseseseseeseeseeesessesssssssssssssssssseeseessesessssssssseseene 136
XX) N N [C LI\) oo 137
3 X X)W N L@ LI () T 138
XX T N0 =X (=) N 139
XX X N0 =T () D 140
XX Tt N O s () OO 141
P33 Y R o = o S 142
2.2.45 (1) POP (W) .oooeseeeeeeeeeeeeeeeeeeeeeseessseseseeseseeseseessssesssssssssssesseeeeeeseeeeesesessssseseneeees 143
X X X)W ='e =X (1) T 144
2.2.46 (1) PUSH (W) 1.eeeeeeeeeeeeeeeeeeeeeeeeseeseseeeeeeeseesesessessesssss s sesessesseseseenes 145
XX T X W= UL () D 146
XX N W (o 1 NI (=) WO 147
2.2.47 (2) ROTL (W) oo eeeeeessseseseeeesseseessessessessssssssesssseseee e sessssssseseseene 148
X X e M=o 1 NI (1N T 149
X X TGN W =lo 1 =X (=) P 150
XX X W=l L=\) PO 151
XXXt W=l 1 = (1) W 152
2.2.49 (1) ROTXL (B) eeeeeeeeeeeeeeeeeeeeeeeeeesseeseseeeeeseseeesessesssssssssssesssesseeeeeesesessssesseseseeee 153
2.2.49 (2) ROTXL (W) oo eeeeeeeeesseeseseeeeseeseeseesessesssssssssssssssssseeseeseesesesssssessseene 154
X Xt W =T0 1 0 A I (1) YO 155

3 N I O LD (X (=) DT 156

2.2.50 (2) ROTXR (W) .o eeeeeeeeeeeeeeeeeseeesessesseeeeeeseeasessesesseeseessessesseseeeeeeeeee 157

2.2.50 (3) ROTXR (L) cevorrveeeeeeeeeeeeeeeeeseeeseesesseesssssssssssnssessesssssssssessssssssessssssssssssssnnes 158

2251 PR TRTUPPRTRO 159

2252 RISt 160

2.2.53 (1) SHAL (B) .eererreeriierieieieneres et s 161

2.2.53 (2) SHAL (W) 1ottt e 162

2.2.53 (B) SHAL (L) -ettereeieenerieieie sttt et 163

2.2.54 (1) SHAR (B) cooocvvreveeeeereeeeeseeeesseeseesessissssssssssssnssessssssssssssssassssssessssssssssssssnnes 164

2.2.54 (2) SHAR (W) c.oooreeeeeeeeeeeeseeeoeseeseesessees s snessnssess s ssssssnsassssssessnssssssssnssnnes 165

2.2.54 (3) SHAR (L) -oereireirirereeieeseres et 166

2.2.55 (1) SHLL (B)..ertrerreurerereeieiereresieresesesieseesesesss e sese e s sesssnesesesssnesns 167

2.2.55 (2) SHLL (W) 1ttt et 168

2.2.55 (B) SHLL (L) cuertereeteerererieiereres ettt st st 169

2.2.56 (1) SHLR (B)-..oovvereverreeereeeeeeseesesseessessssissssssssssssnssessssssssssssessssssssessssssnsssssssnses 170

2.2.56 (2) SHLR (W) coreeoeereeeeeeeeeeseeeesseeseesssseessssssssssenssesssssssssssssssssssssessnsssnssssnssnees 171

2.2.56 (3) SHLR (L) .eeeireeeerereeieerere e 172

2257 SLEEP ... 173

2.2.58 (1) STC (B) veuererereeirererieieieseres et sttt ettt st st 174

2.2.58 (2) STC (W) ettt sttt ettt ettt st e 175

2.2.59 (1) SUB (B) cuvvvoceereeeeeeeseaeesesessesseesssssssessssssssssssnsssnsssssssssssssssessssessssssssssssssnses 177

P 2 S 8 | T 178

2.2.59 (3) SUB (L) creeerrreirerereeieie s 179

2.2.60 SUBS ... e 180

2.2.61 SUBX ittt et 181

2.2.62 TRAPA .o e 182

2.2.63 (1) XOR (B) .eeeerereerrnerererueieneresiesesesesiesesesesessssesesessssesesessssesensssssssesssessssessssssssesens 183

2.2.63 (2) XOR (W) cetrtereeieerereeeree s ieeeseses e sesesesesesse e sesesse e e assesenessssesenssesassesessssnsesens 184

2.2.63 (3) XOR (L) rvererrrrerrmerereererereresreseesessesesesesesssse e s e sssse e sesnenenssessssesns 185

2.2.84 XORC.....ciiiiieeittririeieie sttt bbb 186

2.3 INSIIUCHION SEE SUMIMAIYueiiiieiieieeeeet ettt ettt ae b b 187
2.4 INSITUCHION COOES......eeeeeeieieeeteteeee ettt sttt sttt se ettt seebesaeenesteseeee 200
25 Operation COUE Map........ceiiuirieiriiirtiieies ettt b s bbb naenes 209
2.6 Number of States Required for INStruction EXECULIONccoererireeenieereeenieerieeniens 212
2.7 Condition Code MOdifiCatioN..........ccirirereeeiirrseeeses s 221
2.8 Buscycles During INStruction EXECULIONc.ccceieriereiesiesiese et 226
[SECtion 3 ProCESSING SEAES.......o.oocccoeoeeeeeeeeeee e 239
0 R © = oV Y 239
3.2 Program EXECULION SEALEccueuirieirieiirieiriecr ettt 241
3.3 EXCEPtioN-Handling SEaLe........ccccviviiereieeieeeeeeee st 241

3.3.1 Typesof Exception Handling and Their Priority.......cccccceeeveveeieeiieieeieeeneneenens 241

3.3.2 Exception-Handling SEQUENCES.........cceereirieeirieirieisieesieese e 242

34 BUSREEASED SEAEceeiiiiciiie ettt sttt s e sneene e e s 244
T = RS =< R 244
3.6 POWE-DOWN SEEE......ccveeieierrieeieeesee e 244
G S S 1= o 11, o L= S 244

3.6.2 Software Standby MOTEcccooiiiiiiiiere et 244

3.6.3 Hardware Standby MOE...........coviiiininireeeeree s 244
[A = F S TR T e e — 245)|
N @Y= V7= SO TP 245
42 On-Chip Memory (RAM, ROM).....couceirririeienerie et 245
4.3 ONn-Chip SUPPOrtiNg MOAUIES..........ooeeiiiieeeeeet e 247
44 EXtErNal Dal@aBUS.......ccoiiiiieieiee ettt st nne 248

Section1l CPU

1.1 Overview

The H8/300H CPU is a high-speed central processing unit with an internal 32-bit architecture that
is upward-compatible with the H8/300 CPU. The H8/300H CPU has sixteen 16-bit general
registers, can address a 16-Mbyte linear address space, and isideal for realtime control.

1.1.1 Features
The H8/300H CPU has the following features.
e Upward-compatible with H8/300 CPU

— Can execute H8/300 object programs
* General-register architecture

— Sixteen 16-bit general registers (also usable as sixteen 8-hit registers or eight 32-bit
registers)

e Sixty-two basic instructions

— 8/16/32-bit arithmetic and logic instructions
— Multiply and divide instructions
— Powerful bit-manipulation instructions

» Eight addressing modes

— Register direct [Rn]

— Register indirect [@ERN]

— Register indirect with displacement [@(d:16,ERn) or @(d:24,ERn)]

— Register indirect with post-increment or pre-decrement [@ERN+ or @—ERN]
— Absolute address [@aa:8, @aa: 16, or @aa:24]

— Immediate [#xx:8, #xx:16, or #xx:32]

— Program-counter relative [@(d:8,PC) or @(d:16,PC)]

— Memory indirect [@@aa:8]

e 16-Mbyte address space
« High-speed operation

— All frequently-used instructions execute in two to four states
— Maximum clock frequency: 16 MHz

— 8/16/32-bit register-register add/subtract: 125 ns
— 8 x 8-hit register-register multiply: 875 ns
— 16 + 8-hit register-register divide: 875 ns
— 16 x 16-bit register-register multiply: 1375 ns
— 32+ 16-hit register-register divide: 1375 ns

» Two CPU operating modes

— Norma mode
— Advanced mode

e Low-power mode
— Transition to power-down state by SLEEP instruction
1.1.2 Differencesfrom H8/300 CPU
In comparison to the H8/300 CPU, the H8/300H CPU has the following enhancements.
* Moregenera registers
Eight 16-bit registers have been added.
* Expanded address space
Normal mode supports the same 64-kbyte address space as the H8/300 CPU.
Advanced mode supports a maximum 16-Mbyte address space.
» Enhanced addressing

The addressing modes have been enhanced to make effective use of the 16-Mbyte address
space.

* Enhanced instructions

Signed multiply/divide instructions and other instructions have been added.

1.2 CPU Operating Modes

The H8/300H CPU has two operating modes: normal and advanced. Normal mode supports a
maximum 64-kbyte address space. Advanced mode supports up to 16 Mbytes. The modeis
selected at the mode pins of the microcontroller. For further information, refer to the relevant
hardware manual .

Maximum 64 kbytes, program
Normal mode and data areas combined

CPU operating modes li

Maximum 16 Mbytes, program

4' Advanced mode | 54 gata areas combined

Figure1-1 CPU Operating Modes

(1) Normal Mode: The exception vector table and stack have the same structure as in the H8/300
CPU.

Address Space: A maximum address space of 64 kbytes can be accessed, asin the H8/300 CPU.

Extended Registers (En): The extended registers (EO to E7) can be used as 16-bit data registers,
or they can be combined with the general registers (R0 to R7) for use as 32-bit data registers.
When En isused as a 16-bit register it can contain any value, even when the corresponding
genera register (RO to R7) is used as an address register. If the general register is referenced in the
register indirect addressing mode with pre-decrement (@—Rn) or post-increment (@Rn+) and a
carry or borrow occurs, however, the value in the corresponding extended register will be affected.

Instruction Set: All additional instructions and addressing modes of the H8/300 CPU can be
used. If a24-hit effective address (EA) is specified, only the lower 16 bits are used.

Exception Vector Tableand Memory Indirect Branch Addresses: In normal mode the top area
starting at H'0000 is allocated to the exception vector table. One branch addressis stored per 16
bits (figure 1-2). The exception vector table differs depending on the microcontroller, so see the
microcontroller hardware manual for further information.

H'0000
H'0001

-- Reset exception vector ~ ---

H'0002 |
H'0003
H'0004 |
H'0005

t-- Reserved for system use ---

H'0006
H'0007

Exception vector 1

\ Exception
vector table

H'0008
H'0009

Exception vector 2

O

The memory indirect addressing mode (@@aa:8) employed in the IMP and JSR instructions uses
an 8-hit absolute address to specify amemory operand that contains a branch address. In normal
mode the operand is a 16-bit word operand, providing a 16-bit branch address. Branch addresses

Figure1-2 Exception Vector Table (normal mode)

can be stored in the top area from H'0000 to H'O0FF. Note that this areais also used for the
exception vector table.

Stack Structure: When the program counter (PC) is pushed on the stack in a subroutine call, and
the PC and condition-code register (CCR) are pushed on the stack in exception handling, they are

stored in the same way asin the H8/300 CPU. Seefigure 1-3.

(@) Subroutine branch

sp— |

Note:

J\

PC

(16 bits)

SP— CCR

\/\

* |gnored at return.

(b) Exception handling

\/_\

CCR*
PC

(16 bits)

\/_\

Figure1-3 Stack Structure (normal mode)

(2) Advanced Mode: In advanced mode the exception vector table and stack structure differ from
the H8/300 CPU.

Address Space: Up to 16 Mbytes can be accessed linearly.

Extended Registers (En): The extended registers (EO to E7) can be used as 16-bit data registers,
or they can be combined with the general registers (RO to R7) for use as 32-bit data registers.
When a 32-bit register is used as an address register, the upper 8 bits are ignored.

Instruction Set: All additional instructions and addressing modes of the H8/300H can be used.

Exception Vector Table and Memory Indirect Branch Addresses: In advanced mode the top
area starting at H'000000 is allocated to the exception vector tablein units of 32 bits. In each 32
bits, the upper 8 bits are ignored and a branch addressis stored in the lower 24 bits (figure 1-4).
The exception vector table differs depending on the microcontroller, so see the relevant hardware
manual for further information.

H'000000 Don'’t care

H'000003

H'000004)]
) "1 > Exception vector table
-- Reserved for system use

H'00000B | o

H'00000C | Don’t care

Exception vector

Figure1-4 Exception Vector Table (advanced mode)

The memory indirect addressing mode (@@aa:8) employed in the IMP and JSR instructions uses
an 8-bit absolute address to specify amemory operand that contains a branch address. In advanced
mode the operand is a 32-bit longword operand, of which the lower 24 bits are the branch address.
Branch addresses can be stored in the top area from H'000000 to H'0000FF. Note that this areais
also used for the exception vector table.

Stack Structure;When the program counter (PC) is pushed on the stack in a subroutine call, and
the PC and condition-code register (CCR) are pushed on the stack in exception handling, they are
stored as shown in figure 1-5.

(a) Subroutine branch (b) Exception handling
s~ Reserved SP— CCR
fffff PC PC
,,,,, (24 bits) (24 bits)

Figure1-5 Stack Structure (advanced mode)

1.3 Address Space

Figure 1-6 shows a memory map of the H8/300H CPU.

(@) Normal mode (b) Advanced mode
H'0000 H'000000
H'FFFF
H'FFFFFF

Figure1-6 Memory Map

1.4 Register Configuration
1.4.1 Overview

The H8/300H CPU has the internal registers shown in figure 1-7. There are two types of registers:
general and extended registers, and control registers.

General registers (Rn) and extended registers (En)

15 07 07 0
EO ROH ROL
El R1H RiL
E2 R2H R2L
E3 R3H R3L
E4 R4H R4L
ES5 R5H R5L
E6 R6H R6L
SP E7 R7H R7L

Control registers (CR)

23 0
| PC |

76543210
ccRr [1]UlH|UN|Z]v|c]

Legend

SP: Stack pointer

PC: Program counter

CCR: Condition code register
Interrupt mask bit

User bit or interrupt mask bit
Half-carry flag
Negative flag

Zero flag

Overflow flag

Carry flag

OsSNzICT

Figure1-7 CPU Registers

1.4.2 General Registers

The H8/300H CPU has eight 32-bit general registers. These general registers are al functionally
alike and can be used without distinction between data registers and address registers. When a
general register is used as a dataregister, it can be accessed as a 32-bit, 16-bit, or 8-bit register.
When the general registers are used as 32-bit registers or as address registers, they are designated
by the letters ER (ERO to ER7).

The ER registers divide into 16-bit general registers designated by the letters E (EO to E7) and R
(RO to R7). Theseregisters are functionally equivalent, providing a maximum sixteen 16-hit
registers. The E registers (EO to E7) are also referred to as extended registers.

The R registers divide into 8-bit general registers designated by the letters RH (ROH to R7H) and
RL (ROL to R7L). These registers are functionally equivalent, providing a maximum sixteen 8-bit
registers.

Figure 1-8 illustrates the usage of the general registers. The usage of each register can be selected
independently.

Address registers

» 32-bit registers * 16-bit registers 8-bit registers
E registers (extended registers)
(EO to E7)

ER registers RH registers
(ERO to ER7) (ROH to R7H)
R registers
(RO to R7)

RL registers
(ROL to R7L)

Figure1-8 Usage of General Registers

Generd register ER7 has the function of stack pointer (SP) in addition to its general-register
function, and is used implicitly in exception handling and subroutine calls. Figure 1-9 shows the
stack.

/\/

Free area

SP (ER7) —»

Stack area

Figure1-9 Stack
1.4.3 Control Registers

The control registers are the 24-bit program counter (PC) and the 8-hit condition-code register
(CCR).

(1) Program Counter (PC): This 24-bit counter indicates the address of the next instruction the
CPU will execute. The length of all CPU instructions is 16 bits (one word) or amultiple of 16 bits,
so the least significant PC bit isignored. When an instruction is fetched, the least significant PC
bit isregarded as 0.

(2) Condition Code Register (CCR): This 8-hit register contains internal CPU status
information, including the interrupt mask bit (1) and half-carry (H), negative (N), zero (2),
overflow (V), and carry (C) flags.

Bit 7—Interrupt Mask Bit (1): Masks interrupts other than NM| when set to 1. (NMI is accepted
regardless of the | bit setting.) The | bit is set to 1 by hardware at the start of an exception-
handling sequence.

Bit 6—User Bit (U): Can be written and read by software using the LDC, STC, ANDC, ORC,
and XORC instructions. This bit can also be used as an interrupt mask bit. For details see the
relevant microcontroller hardware manual.

10

Bit 5—Half-Carry Flag (H): When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMPB, or NEG.B
instruction is executed, thisflag isset to 1 if thereisacarry or borrow at bit 3, and cleared to O
otherwise. When the ADD.W, SUB.W, CMPW, or NEG.W instruction is executed, the H flag is
setto 1if thereisacarry or borrow at bit 11, and cleared to 0 otherwise. When the ADD.L,
SUB.L, CMPL, or NEG.L instruction is executed, the H flag is set to 1 if thereisacarry or
borrow at bit 27, and cleared to O otherwise.

Bit 4—User Bit (U): Can be written and read by software using the LDC, STC, ANDC, ORC,
and XORC instructions.

Bit 3—Negative Flag (N): Indicates the most significant bit (sign bit) of the result of an
instruction.

Bit 2—Zero Flag (Z): Set to 1 to indicate a zero result, and cleared to O to indicate a non-zero
result.

Bit 1—Overflow Flag (V): Set to 1 when an arithmetic overflow occurs, and cleared to O at other
times.

Bit 0—Carry Flag (C): Set to 1 when acarry occurs, and cleared to 0 otherwise. Used by:

e Addinstructions, to indicate a carry
* Subtract instructions, to indicate a borrow
« Shift and rotate instructions, to store the value shifted out of the end bit

The carry flag is also used as a bit accumulator by bit manipulation instructions. Some
instructions leave some or all of the flag bits unchanged. For the action of each instruction on the
flag bits, refer to the detailed descriptions of the instructions starting in section 2.2.1.

Operations can be performed on the CCR bits by the LDC, STC, ANDC, ORC, and XORC
instructions. The N, Z, V, and C flags are used as branching conditions for conditional branch
(Bcc) instructions.

1.4.4 Initial Register Values

When the CPU is reset, the program counter (PC) isloaded from the vector table and the | bit in
the condition-code register (CCR) is set to 1. The other CCR bits and the general registers and
extended registers are not initialized. In particular, the stack pointer (extended register E7 and
general register R7) is not initialized. The stack pointer must therefore be initialized by an MOV.L
instruction executed immediately after areset.

11

1.5 Data Formats

The H8/300H CPU can process 1-hit, 4-bit, 8-hit (byte), 16-bit (word), and 32-hit (longword)
data. Bit-manipulation instructions operate on 1-bit data by accessing bitn (n=0, 1, 2, ..., 7) of
byte operand data. The DAA and DAS decimal-adjust instructions treat byte data as two digits of
4-bit BCD data.

1.5.1 General Register Data Formats

Figure 1-10 shows the dataformats in general registers.

Data type Register number Data format
1-bit data RnH 7 0
7]6[5]4[3]2[1]0] Dontcare
1-bit data rRo 7 0
| Dontcare |7]6[5]4]3]2[1]0]
4-bit BCD data RnH 7 43 O
| Upper | Lower | pontcare
4-bit BCD data rRo 7 43 0
| Dontcare | Upper | Lower |
Byte data RnH 7 o
] Toonteae
MSB Lsg T
Byte data R 7 0
' Don't care |
""""""""""" MSB LSB

Figure1-10 General Register Data Formats

12

Word data Rn

15 0
MSB LSB
Word data En
15 0
MSB LSB
Longword data ERnN
31 16 15 0
MSB En Rn LSB

Legend

ERn: General register ER
En: General register E
Rn: General register R
RnH: General register RH
RnL: General register RL
MSB: Most significant bit
LSB: Least significant bit

Figure1-10 General Register Data Formats (cont)
1.5.2 Memory Data Formats

Figure 1-11 shows the data formats on memory. The H8/300H CPU can access word data and
longword data on memory, but word or longword data must begin at an even address. If an
attempt is made to access word or longword data at an odd address, no address error occurs but
the least significant bit of the addressis regarded as 0, so the access starts at the preceding
address. This also appliesto instruction fetches.

13

Data type Data format

Address /\/

7 0
1-bit data AddressL| 7|6 |54 |3|2|1]0
Byte data AddressL|MSB: 1 1 ILSB
Word data Address 2M |MsB, 1 1 1 1 1
Address 2M + 1 Lo 0SB
Longword data Address 2N [wsB! @ 1 1
Address 2N + 1
Address2N+2| © 10
Address 2N + 3 3'—55

Figure1-11 Memory Data Formats

When ER7 is used as an address register to access the stack, the operand size should be word size
or longword size.

14

1.6 Instruction Set
1.6.1 Overview

The H8/300H CPU has 62 types of instructions, which are classified by function in table 1-1. For
adetailed description of each instruction see section 2.2, Instruction Descriptions.

Table 1-1 Instruction Classification

Function Instructions Number
Data transfer MOV, PUSH*1, POP*2, MOVTPE, MOVFPE 3
Arithmetic ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, DAA, 18
operations DAS, MULXU, MULXS, DIVXU, DIVXS, CMP, NEG, EXTS,
EXTU
Logic operations AND, OR, XOR, NOT
Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL,
ROTXR
Bit manipulation BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR, BIOR, 14
BXOR, BIXOR, BLD, BILD, BST, BIST
Branch Bcc*2, IMP, BSR, JSR, RTS 5
System control TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP 9
Block data transfer EEPMOV 1

Total 62 types

Notes: The shaded instructions are not present in the H8/300 instruction set.
1. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV.W Rn, @-SP.
POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn and MOV.L ERn,
@-SP.
2. Bcc is the generic designation of a conditional branch instruction.

15

1.6.2 Instructionsand Addressing M odes
Table 1-2 indicates the instructions available in the H8/300H CPU.

Table 1-2 Instruction Set Overview

Addressing Modes

Function Instruction #xx Rn @ERN @(d:16,ERn) @(d:24,ERn) @ERn+/@-ERn @aa:8 @aa:16 @aa:24 @(d:8,PC) @(d:16,PC) @@aa:8 —

Data MOV BWL BWL BWL BWL BWL BWL B BWL BWL — — — —
ranster pop pyusH — — — _ — — — _ _ _ — Wi
MOVFPE, — — — — — — — B — _ _ _ _
MOVTPE
Arithmgtic ADD,CMP BWL BWL — — — — — — — — — — _
operations <\ WL BWL — — — — — — — — — — —
ADDX, B B — — — — — — — — — — _
SUBX
ADDS, — " = — — — - - — — — — —
SUBS
INC, DEC — BWL — — — — — — — — — — _
DAA, DAS — B — — — — — — — — — — _
MULXU, — BW — — — — — — — — — — _
DIVXU —
MULXS, BW — — — — — — — — — — _
DIVXS —
NEG BWL — — — — — — — — — — —
EXTU, EXTS — wL — — — — — — — — — — —
Logic AND, OR, BWL BWL — — — — — — — — — — _
operations XOR
NOT — BWL — — — — — — — — — — —
Shift — BWL — — _ _ _ _ _ _ o _ _
Bit manipu- — B B — — — B — — — — — _

lation

16

Table 1-2 Instruction Set Overview (cont)

Addressing Modes

Function Instruction #xx Rn @ERnN @(d:16,ERn) @(d:24,ERn) @ERn+/@-ERn @aa:8 @aa:16 @aa:24 @(d:8,PC) @(d:16,PC) @@aa:8 —

Branch Bcc, BSR — —_ — — — — _ _ _ O @) _

JMP,JSR — — O — — — - - o — — @)

RTS - - = — — — — — — — — —

System TRAPA — — — — — — — — — — — —

control RTE — — — — — — — — — — — —

O|0|0|0

SLEEP S — — — — - - — — — —

LDC B

2=
2|

STC —_

ANDC, B - — — — — — — — — — — —
ORC,
XORC

NOP S — — — — - - — — — —

Block data EEPMOV.B — — — — — — — — — — — —

0|00

transfer EEPMOV.W — - — — — — — — — — — —

Legend
B: Byte
W: Word
L: Longword

. Newly added instruction in H8/300H CPU

Notes: 1. The operand size of the ADDS and SUBS instructions of the H8/300H CPU has been changed to longword size. (In the
H8/300 CPU it was word size.)
2. Because of its larger address space, the H8/300H CPU uses a 24-bit absolute address for the JMP and JSR instructions.
(The H8/300 CPU used 16 bits.)

17

1.6.3 Tables of Instructions Classified by Function

Table 1-3 summarizes the instructions in each functional category. The notation used in table 1-3
is defined next.

Operation Notation

Rd General register (destination)*
Rs General register (source)*

Rn General register*

ERn General register (32-bit register)
(EAd) Destination operand

(EASs) Source operand

CCR Condition code register

N (negative) bit of CCR

Z (zero) bit of CCR

V (overflow) bit of CCR

C C (carry) bit of CCR
PC Program counter
SP Stack pointer

#IMM Immediate data
disp Displacement

+ Addition

- Subtraction

X Multiplication

+ Division

ad AND logical

ad OR logical

d Exclusive OR logical
- Move

- Not

:3/:8/:16/:24 3-, 8-, 16-, or 24-hit length

Note: * General registers include 8-bit registers (ROH/ROL to R7H/R7L), 16-bit registers (RO to
R7, EO to E7), and 32-bit registers (ERO to ER7).

18

Table 1-3 Instructions Classified by Function

Type Instruction

Size*

Function

Data transfer MOV

B/W/L

(EAs) - Rd, Rs - (EAd)

Moves data between two general registers or between
a general register and memory, or moves immediate
data to a general register.

MOVFPE

(EAs) - Rd

Moves external memory contents (addressed by
@aa:16) to a general register in synchronization with
an E clock.

MOVTPE

Rs - (EAd)

Moves general register contents to an external memory
location (addressed by @aa:16) in synchronization with
an E clock.

POP

WIL

@SP+ - Rn

Pops a register from the stack. POP.W Rn is identical to
MOV.W @SP+, Rn. POP.L ERn is identical to MOV.L
@SP+, ERN.

PUSH

WiL

Rn - @-SP

Pushes a register onto the stack. PUSH.W Rn is
identical to MOV.W Rn, @-SP. PUSH.L ERn is
identical to MOV.L ERn, @-SP.

Note: * Size refers to the operand size.

B: Byte
W: Word
L: Longword

19

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function
Arithmetic ADD B/W/L RdzRs -» Rd, Rd+#MM - Rd
operations SUB Performs addition or subtraction on data in two general

registers, or on immediate data and data in a general
register. (Immediate byte data cannot be subtracted
from data in a general register. Use the SUBX or ADD
instruction.)

ADDX B Rd+Rs+C - Rd, Rd+#MM+C - Rd

SUBX Performs addition or subtraction with carry or borrow
on byte data in two general registers, or on immediate
data and data in a general register.

INC B/W/L Rdz*z1 - Rd, Rd+2 - Rd

DEC Increments or decrements a general register by 1 or 2.
(Byte operands can be incremented or decremented by
1 only.)

ADDS L Rd+1 - Rd, Rd+2 - Rd, Rd+4 - Rd

SUBS Adds or subtracts the value 1, 2, or 4 to or from data in
a 32-hit register.

DAA B Rd decimal adjust — Rd

DAS Decimal-adjusts an addition or subtraction result in a

general register by referring to the CCR to produce
4-bit BCD data.

MULXS B/W Rd xRs - Rd
Performs signed multiplication on data in two general
registers: either 8 bits x 8 bits - 16 bits or 16 bits x 16
bits — 32 bits.

MULXU B/W Rd xRs - Rd
Performs unsigned multiplication on data in two general
registers: either 8 bits x 8 bits - 16 bits or 16 bits x 16
bits - 32 bits.

DIVXS B/W Rd+Rs - Rd
Performs signed division on data in two general
registers: either 16 bits + 8 bits — 8-bit quotient and
8-bit remainder or 32 bits + 16 bits — 16-bit quotient
and 16-bit remainder.

Note: * Size refers to the operand size.

B: Byte
W: Word
L: Longword

20

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function
Arithm_etic DIVXU B/W Rd+Rs - Rd
operations Performs unsigned division on data in two general
registers: either 16 bits + 8 hits — 8-bit quotient and 8-
bit remainder or 32 bits + 16 bits - 16-bit quotient and
16-bit remainder.
CMP B/W/L Rd-Rs, Rd-#MM
Compares data in a general register with data in
another general register or with immediate data, and
sets the CCR according to the result.
NEG B/W/L O0-Rd - Rd
Takes the two’s complement (arithmetic complement) of
data in a general register.
EXTS WI/L Rd (sign extension) - Rd
Extends byte data in the lower 8 bits of a 16-bit register
to word data, or extends word data in the lower 16 bits
of a 32-bit register to longword data, by extending the
sign bit.
EXTU WI/L Rd (zero extension) — Rd
Extends byte data in the lower 8 bits of a 16-bit register
to word data, or extends word data in the lower 16 bits
of a 32-bit register to longword data, by padding with
zeros.
Logic operations AND B/W/L RdORs - Rd, RdO#MM - Rd
Performs a logical AND operation on a general register
and another general register or immediate data.
OR B/W/L RdORs - Rd, RdO#MM - Rd
Performs a logical OR operation on a general register
and another general register or immediate data.
XOR B/W/L Rd O Rs - Rd, RdO#MM - Rd
Performs a logical exclusive OR operation on a general
register and another general register or immediate
data.
NOT B/W/L - (Rd) - (Rd)

Takes the one’s complement of general register
contents.

Note: * Size refers to the operand size.

B: Byte
W: Word
L: Longword

21

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function
Shift operations SHAL B/W/L Rd (shift) -~ Rd
SHAR Performs an arithmetic shift on general register
contents.
SHLL B/W/L Rd (shift) -~ Rd
SHLR Performs a logical shift on general register contents.
ROTL B/W/L Rd (rotate) — Rd
ROTR Rotates general register contents.
ROTXL B/W/L Rd (rotate) — Rd
ROTXR Rotates general register contents through the carry bit.
Bit-manipulation BSET B 1 - (<bit-No.> of <EAd>)
instructions Sets a specified bit in a general register or memory

operand to 1. The bit number is specified by 3-bit
immediate data or the lower three bits of a general
register.

BCLR B 0 - (<bit-No.> of <EAd>)
Clears a specified bit in a general register or memory
operand to 0. The bit number is specified by 3-bit
immediate data or the lower three bits of a general
register.

BNOT B = (<bit-No.> of <EAd>) - (<bit-No.> of <EAd>)
Inverts a specified bit in a general register or memory
operand. The bit number is specified by 3-bit
immediate data or the lower three bits of a general
register.

BTST B = (<bit-No.> of <EAd>) - Z
Tests a specified bit in a general register or memory
operand and sets or clears the Z flag accordingly. The
bit number is specified by 3-bit immediate data or the
lower three bits of a general register.

BAND B C 0O (<hit-No.> of <EAd>) - C
ANDs the carry flag with a specified bit in a general
register or memory operand and stores the result in the
carry flag.

BIAND B C U~ (<bit-No.> of <EAd>) - C
ANDs the carry flag with the inverse of a specified bit in
a general register or memory operand and stores the
result in the carry flag.

The bit number is specified by 3-bit immediate data.

Note: * Size refers to the operand size.

B: Byte
W: Word
L: Longword

22

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function
Bit-manipulation BOR B C 0 (<hit-No.> of <EAd>) - C
instructions ORs the carry flag with a specified bit in a general
register or memory operand and stores the result in the
carry flag.
BIOR B C O[~ (<bit-No.> of <EAd>)] -~ C

ORs the carry flag with the inverse of a specified bit in a
general register or memory operand and stores the
result in the carry flag.

The bit number is specified by 3-bit immediate data.

BXOR B C O (<bit-No.> of <EAd>) - C
Exclusive-ORs the carry flag with a specified bit in a
general register or memory operand and stores the
result in the carry flag.

BIXOR B C O [~ (<bit-No.> of <EAd>)] — C
Exclusive-ORs the carry flag with the inverse of a
specified bit in a general register or memory operand
and stores the result in the carry flag.

The bit number is specified by 3-bit immediate data.

BLD B (<bit-No.> of <EAd>) —~ C
Transfers a specified bit in a general register or
memory operand to the carry flag.

BILD B = (<bit-No.> of <EAd>) - C
Transfers the inverse of a specified bit in a general
register or memory operand to the carry flag.

The bit number is specified by 3-bit immediate data.

BST B C - (<bit-No.> of <EAd>)
Transfers the carry flag value to a specified bit in a
general register or memory operand.

BIST B = C - (<bit-No.> of <EAd>)
Transfers the inverse of the carry flag value to a
specified bit in a general register or memory operand.

The bit number is specified by 3-bit immediate data.

Note: * Size refers to the operand size.
B: Byte

23

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function
Branching Bcc — Branches to a specified address if a specified condition
instructions is true. The branching conditions are listed below.
Mnemonic Description Condition
BRA(BT) Always (true) Always
BRN(BF) Never (false) Never
BHI High coz=o0
BLS Low or same coz=1
Bcc(BHS) Carry clear C=0
(high or same)
BCS(BLO) Carry set (low) c=1
BNE Not equal Z=0
BEQ Equal z=1
BVC Overflow clear V=0
BVS Overflow set V=1
BPL Plus N=0
BMI Minus N=1
BGE Greater or equal NOV=0
BLT Less than NOV=1
BGT Greater than ZONOV)=0
BLE Less or equal ZONOV)=1
JMP — Branches unconditionally to a specified address.
BSR — Branches to a subroutine at a specified address.
JSR — Branches to a subroutine at a specified address.
RTS — Returns from a subroutine.

Note: * Size refers to the operand size.

24

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function
System control TRAPA — Starts trap-instruction exception handling.
instructions - . .
RTE — Returns from an exception-handling routine.
SLEEP — Causes a transition to the power-down state.
LDC B/W (EAs) - CCR
Moves the source operand contents to the condition
code register. Byte transfer is performed in the #xx:8,
Rs addressing mode and word transfer in other
addressing modes.
STC B/W CCR - (EAd)
Transfers the CCR contents to a destination location.
Byte transfer is performed in the Rd addressing mode
and word transfer in other addressing modes.
ANDC B CCR O#IMM - CCR
Logically ANDs the condition code register with
immediate data.
ORC B CCR O#IMM - CCR
Logically ORs the condition code register with
immediate data.
XORC B CCR O #IMM - CCR
Logically exclusive-ORs the condition code register
with immediate data.
NOP — PC+2 - PC

Only increments the program counter.

Note: * Size refers to the operand size.

B: Byte
W: Word

25

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

Block data EEPMOV.B — if R4L # 0 then
transfer Repeat @ER5 +- @ERG6 +
instruction R4L —1-R4L
UntilR4L =0
else next;

EEPMOV.W — if R4 # 0 then
Repeat @ER5 +- @ERG6 +
R4 - 1-R4L
UntiiR4=0
else next;

Transfers a data block according to parameters set in
general registers R4L or R4, ERS5, and R6.

R4L or R4: size of block (bytes)
ERS: starting source address
R6: starting destination address

Execution of the next instruction begins as soon as the
transfer is completed.

Note: * Size refers to the operand size.

26

1.6.4 Basic |nstruction Formats

The H8/300H instructions consist of 2-byte (1-word) units. An instruction consists of an operation
field (OPfield), aregister field (r field), an effective address extension (EA field), and a condition
field (cc).

Operation Field: Indicates the function of the instruction, the effective address, and the operation
to be carried out on the operand. The operation field always includes the first four bits of the
instruction. Some instructions have two operation fields.

Register Field: Specifiesagenera register. Address registers are specified by 3 bits, data
registers by 3 bits or 4 bits. Some instructions have two register fields. Some have no register
field.

Effective Address Extension: Eight, 16, or 32 bits specifying immediate data, an absolute
address, or adisplacement. A 24-bit address or a displacement is treated as 32-bit datain which
thefirst 8 bitsare 0.

Condition Field: Specifiesthe branching condition of Bcc instructions.

Figure 1-12 shows examples of instruction formats.

(1) Operation field only

op

NOP, RTS, etc.

(2) Operation field and register fields

op n rm

ADD. Rn, Rm, etc.

(3) Operation field, register fields, and effective address extension

op rn m

EA (disp) MOV @(d:16, Rn), Rm

(4) Operation field, effective address extension, and condition field

op cc EA (disp)

BRA @(d:8, PC)

Figure1-12 Instruction Formats

27

1.6.5 Addressing M odes and Effective Address Calculation

(1) Addressing Modes: The H8/300H CPU supports the eight addressing modes listed in table 1-
4. Each instruction uses a subset of these addressing modes. Arithmetic and logic instructions can
use the register direct and immediate modes. Data transfer instructions can use all addressing
modes except program-counter relative and memory indirect. Bit manipulation instructions use
register direct, register indirect, or absolute (8-bit) addressing mode to specify an operand, and
register direct (BSET, BCLR, BNOT, and BTST instructions) or immediate (3-bit) addressing
mode to specify abit number in the operand.

Table1-4 Addressing Modes

No. Addressing Mode Symbol
1 Register direct Rn
2 Register indirect @ERN
3 Register indirect with displacement @(d:16,ERn)/@(d:24,ERn)
4 Register indirect with post-increment @ERN+
Register indirect with pre-decrement @-ERn
5 Absolute address @aa:8/@aa:16/@aa:24
6 Immediate H#XX:8/#xX:16/#xx:32
7 Program-counter relative @(d:8,PC)/@(d:16,PC)
8 Memory indirect @@aa:8

1 Register Direct—Rn: Theregister field of the instruction specifies an 8-, 16-, or 32-bit general
register containing the operand. ROH to R7H and ROL to R7L can be specified as 8-bit registers.
RO to R7 and EO to E7 can be specified as 16-bit registers. ERO to ER7 can be specified as 32-bit
registers.

2 Register Indirect—@ERN: Theregister field of the instruction code specifies an address
register (ERn), the lower 24 bits of which contain the address of a memory operand.

3 Register Indirect with Displacement—@(d: 16, ERn) or @(d:24, ERn): A 16-bit or 24-bit
displacement contained in the instruction is added to an address register (an extended register
paired with a general register) specified by the register field of the instruction, and the lower 24
bits of the sum specify the address of a memory operand. A 16-bit displacement is sign-extended
when added.

28

4 Register Indirect with Post-Increment or Pre-Decrement—@ERN+ or @—ERn:
* Register indirect with post-increment—@ERN+

Theregister field of the instruction code specifies an address register (ERn), the lower 24 bits
of which contain the address of a memory operand. After the operand is accessed, 1, 2, or 4 is
added to the address register contents (32 bits) and the sum is stored in the address register.
The value added is 1 for byte access, 2 for word access, or 4 for longword access. For word or
longword access, the register value should be even.

* Register indirect with pre-decrement—@-ERn

Thevalue 1, 2, or 4 is subtracted from an address register (ERn) specified by the register field
in the instruction code, and the lower 24 bits of the result becomes the address of a memory
operand. Theresult is also stored in the address register. The value subtracted is 1 for byte
access, 2 for word access, or 4 for longword access. For word or longword access, the
resulting register value should be even.

5 Absolute Address—@aa: 8, @aa: 16, or @aa:24: Theinstruction code contains the absolute
address of amemory operand. The absolute address may be 8 bits long (@aa:8), 16 bits long
(@aa:16), or 24 bitslong (@aa:24). For an 8-bit absolute address, the upper 16 bits are all
assumed to be 1 (H'FFFF). For a 16-bit absolute address the upper 8 bits are a sign extension.

A 24-bit absolute address can access the entire address space. Table 1-5 indicates the accessible
address ranges.

Table1-5 Absolute Address Access Ranges

Normal Mode Advanced Mode
8 bits H'FFOO to H'FFFF H'FFFFO0 to H'FFFFF
(@aa:8) (65,280 to 65,535) (16,776,960 to 16,777,215)
16 bits H'0000 to H'FFFF H'000000 to H'007FFF, H'FF8000 to H'FFFFFF
(@aa:16) (0 to 65,535) (0 to 32,767, 16,744,448 to 16,777,215)
24 hits H'0000 to H'FFFF H'00000 to H'FFFFF
(@aa:24) (0 to 65,535) (0 to 16,777,215)

For further details on the accessible range, see the relevant microcontroller hardware manual.

6 Immediate—#xx:8, #xx: 16, or #xx:32: The instruction contains 8-bit (#xx:8), 16-bit (#xx:16),
or 32-bit (#xx:32) immediate data as an operand.

The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some bit

mani pulation instructions contain 3-bit immediate data in the second or fourth byte of the
instruction, specifying a bit number. The TRAPA instruction contains 2-bit immediate datain the
second byte of the instruction, specifying a vector address.

29

7 Program-Counter Relative—@(d:8, PC) or @(d:16, PC): Thismode is used in the Bcc and
BSR instructions. An 8-bit or 16-bit displacement contained in the instruction is sign-extended
and added to the 24-hit program counter (PC) contents to generate a branch address. The PC value
to which the displacement is added is the address of the first byte of the next instruction, so the
possible branching range is—126 to +128 bytes (—63 to +64 words) or —32766 to +32768 bytes
(16383 to +16384 words) from the branch instruction. The resulting value should be an even
number.

8 Memory Indirect—@@aa: 8: This mode can be used by the IMP and JSR instructions. The
second byte of the instruction specifies a memory operand by an 8-bit absolute address. This
memory operand contains a branch address. The upper 8 bits of the absolute address are assumed
to be 0 (H'00), so the address range is 0 to 255 (H’ 0000 to H’ O0FF in normal mode, H'000000 to
H'0000FF in advanced mode). In normal mode the memory operand is aword operand and the
branch address is 16 hits long. In advanced mode the memory operand is alongword operand. The
first byte isignored and the branch address is 24 bits long. Note that the first part of the address
range is also the exception vector area. For further details see the relevant microcontroller
hardware manual.

\/\J\

Specified — Specified — Reserved
by @aa8 | Branch address ----1 by @aa:8

_/—\

Branch address

(@) Normal mode (b) Advanced mode

Figure1-13 Branch Address Specification in Memory Indirect Mode

If an odd address is specified in word or longword memory access, or as a branch address, the
least significant bit is regarded as 0, causing access to be performed at the address preceding the
specified address. [See (2) Memory Data Formatsin section 1.5.2 for further information.]

(2) Effective Address Calculation: Table 1-6 indicates how effective addresses are calculated in
each addressing mode. In normal mode the upper 8 bits of the effective address areignored in
order to generate a 16-bit address.

30

Table 1-6 Effective Address Calculation

No. Addressing Mode and Instruction Format

Effective Address Calculation

Effective Address (EA)

1) Register direct Rn

Operands are contents of regm and regn

’ op ‘Regm‘ Regn ‘
2) Register indirect @ERnN 31 0 23 0
[.
> Register contents
! - ’
Lo [l]
?3) Register indirect with displacement
@(d:16, ERn) 31 0
l >J‘ Register contents
’ op ‘ reg ‘ ‘ disp 2 °
31 0
’ Sign extension ‘ disp
4) Register indirect with post-increment or pre-decrement
« Register indirect with post-increment ng 0 23 0
@ERN+ "l Register contents 4%
A
[o [e] |
 Register indirect with pre-decrement 31
@-ERn
I >J Register contents
\ 0
’ op ‘ reg ‘ ‘ A
Operand Size |Added Value
Byte 1
Word 2
Longword 4

31

Table1-6 Effective Address Calculation (cont)

No. Addressing Mode and Instruction Format Effective Address Calculation Effective Address (EA)
(5) Absolute address
@aa:8 23 8 7 0
HFFFF ‘
’ op ‘ abs ‘ T
@aa:16 23 16 15 0
Sign
’ op ‘ abs ’ extension ‘
@aa:24
op ‘ 23 0
‘ abs T
6) Immediate #xx:8/#xx:16/#xx:32

op IMM

Operand is immediate data.

32

Table 1-6 Effective Address Calculation (cont)

No. Addressing Mode and Instruction Format Effective Address Calculation Effective Address (EA)
(7 Program-counter relative 23 0
’ PC contents }7
@(d:8, PC)/@(d:16, PC)
23
Y [
: S -
op disp 23 0 i |
Sign .
’ exter?sion ‘ disp
(8) Memory indirect @ @aa:8
Normal mode
’ op ‘ abs }
23 87 Yy O
’ H'0000 ‘ abs ‘
23 16 15

Advanced mode

15 0
’ Memory contents }7

’ op ‘ abs }

’ Memory contents

4% H'00 ‘

23

33

Legend

reg, regm, regn: General registers
op: Operation field

disp: Displacement

abs: Absolute address

IMM: Immediate data

34

Section 2 Instruction Descriptions

2.1 Tablesand Symbols

This section explains how to read the tables describing each instruction. Note that the descriptions
of some instructions extend over two pages or more.

Mnemonic (full name): Gives the full and mnemonic names of the instruction.
Type: Indicates the type of instruction.
Operation: Describes the instruction in symbolic notation. (See section 2.1.2, Operation.)

Assembly-L anguage Format: Indicates the assembly-language format of the instruction. (See
section 2.1.1, Assembler Format.)

Operand Size: Indicates the available operand sizes.

Condition Code: Indicates the effect of instruction execution on the flag bitsin the CCR. (See
section 2.1.3, Condition Code.)

Description: Describes the operation of the instruction in detail .

Available Register s: Indicates which registers can be specified in the register field of the
instruction.

Operand Format and Number of States Required for Execution: Shows the addressing modes
and instruction format together with the number of states required for execution.

Notes: Gives notes concerning execution of the instruction.

35

2.1.1 Assembler Format

Example: ADD.B <EAs>, Rd

L Destination operand

Source operand

Size

—— Mnemonic

The operand size is byte (B), word (W), or longword (L). Some instructions are restricted to a
limited set of operand sizes.

The symbol <EA> indicates that two or more addressing modes can be used. The H8/300H CPU
supports the eight addressing modes listed next. Effective address calculation is described in
section 1.7, Effective Address Calculation.

Symbol Addressing Mode

Rn Register direct

@ERN Register indirect

@(d:16, ERn)/@(d:24, ERn) Register indirect with displacement (16-bit or 24-bit)
@ERN+, @-ERn Register indirect with post-increment or pre-decrement
@aa:8/16/24 Absolute address (8-bit, 16-bit, or 24-bit)

#xx:8/16/32 Immediate (8-bit, 16-bit, or 32-bit)

@(d:8, PC)/@(d:16, PC) Program-counter relative (8-bit or 16-bit)

@@aa:8 Memory indirect

36

2.1.2 Operation

The symbols used in the operation descriptions are defined as follows.

Symbol Meaning

Rd General destination register*

Rs General source register*

Rn General register*

ERd General destination register (address register or 32-bit register)
ERs General source register (address register or 32-bit register)
ERnN General register (32-bit register)

(EAd) Destination operand

(EASs) Source operand

PC Program counter

SP Stack pointer

CCR Condition-code register

N N (negative) flag in CCR

Z Z (zero) flag in CCR

\% V (overflow) flag in CCR

C C (carry) flag in CCR

disp Displacement

- Transfer from the operand on the left to the operand on the right, or transition

from the state on the left to the state on the right

+ Addition of the operands on both sides

- Subtraction of the operand on the right from the operand on the left

X Multiplication of the operands on both sides

Division of the operand on the left by the operand on the right

ad Logical AND of the operands on both sides

ad Logical OR of the operands on both sides

ad Logical exclusive OR of the operands on both sides
- Logical NOT (logical complement)

()< > Contents of effective address of the operand

Note: * General registers include 8-bit registers (ROH to R7H and ROL to R7L), 16-bit registers
(RO to R7 ad EO to E7) and 32-hit registers.

37

2.1.3 Condition Code

The symbols used in the condition-code description are defined as follows.

Symbol Meaning

P Changes according to the result of the instruction
* Undetermined (no guaranteed value)

0 Always cleared to 0

- Not affected by execution of the instruction

A Varies depending on conditions; see the notes.

2.1.4 Instruction Format

The symbols used in the instruction format descriptions are listed below.

Symbol Meaning

IMM Immediate data (2, 3, 8, 16, or 32 bhits)

abs Absolute address (8, 16, or 24 bits)

disp Displacement (8, 16, or 24 bits)

rs, rd, rn Register number (4 bits. The symbol rs corresponds to operand symbols such
as Rs. The symbol rd corresponds to operand symbols such as Rd. The symbol
rn corresponds to the operand symbol Rn.)

ers, erd, ern Register number (3 bits. The symbol ers corresponds to operand symbols such

as ERs. The symbol erd corresponds to operand symbols such as ERd and
@ERd. The symbol ern corresponds to the operand symbol ERn.)

38

2.1.5 Register Specification

Address Register Specification: When a general register is used as an address register [@ERN,
@(d:16, ERn), @(d:24, ERn), @ERN+, or @-ERn], the register is specified by a 3-bit register
field (ers or erd). The lower 24 bits of the register are valid.

Data Register Specification: A general register can be used as a 32-bit, 16-bit, or 8-bit data
register, which is specified by a 3-bit register number. When a 32-hit register (ERn) isused asa
longword dataregister, it is specified by a 3-bit register field (ers, erd, or ern). When a 16-hbit
register is used as aword data register, it is specified by a4-hit register field (rs, rd, or rn). The
lower 3 bits specify the register number. The upper bit is set to 1 to specify an extended register
(En) or cleared to O to specify agenera register (Rn). When an 8-bit register is used as a byte data
register, it is specified by a 4-bit register field (rs, rd, or rn). The lower 3 bits specify the register
number. The upper bit is set to 1 to specify alow register (RnL) or cleared to 0 to specify ahigh
register (RnH). Thisis shown next.

Address Register

32-bit Register 16-bit Register 8-bit Register

Register General Register General Register General

Field Register Field Register Field Register

000 ERO 0000 RO 0000 ROH

001 ER1 0001 R1 0001 R1H

111 ER7 0111 R7 0111 R7H
1000 EO 1000 EOL
1001 El 1001 E1L
1111 E7 1111 E7L

39

2.1.6 Bit Data Accessin Bit Manipulation Instructions

Bit datais accessed asthen-th bit (n=0, 1, 2, 3, ..., 7) of abyte operand in a general register or
memory. The bit number is given by 3-bit immediate data, or by the lower 3 bits of ageneral
register value.

Example 1: Tosetbit3inR2H to 1

BSET R1L, R2H

RIL| | Dontcare | 0111

Bit number
(10 1]

1

R2H[0 (11 0|

—»| O

Setto 1
Example 2: Toload bit 5 at address H'FFFFO2 into the bit accumulator

BLD #5, @FFFF02

#5

HFFO2 |1 /0]1]0i0 1.1 0

— T 1

Load

\4

The operand size and addressing mode are as indicated for register or memory operand data.

40

2.2 Instruction Descriptions

Theinstructions are described starting in section 2.2.1.

41

2.2.1(1) ADD (B)

ADD (ADD binary) Add Binary
Operation Condition Code
Rd + (EAs) - Rd I UU HUN Z V C

Assembly-L anguage For mat
ADD.B <EAs>, Rd

H: Settolif thereisacarry at bit 3;
otherwise cleared to 0.

Operand Size >)))
N: Setto 1if theresult is negative; otherwise
Byte cleared to 0.
Z. Settolif theresultiszero; otherwise
cleared to O.
V: Setto 1if anoverflow occurs; otherwise
cleared to O.
C: Settolif thereisacarry at bit 7;
otherwise cleared to 0.
Description

This instruction adds the source operand to the contents of an 8-bit register Rd (destination
operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: ROL to R7L, ROH to R7H
Rs: ROL toR7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Immediate ADD.B #xx:8, Rd 8 i IMM 2
Register direct ADD.B Rs, Rd 0 8 rs : rd 2
Notes

42

2.2.1(2) ADD (W)

ADD (ADD binary) Add Binary
Operation Condition Code
Rd + (EAs) - Rd I UU H UN Z V C

Assembly-L anguage For mat |_‘_‘ ! ‘_‘ ! ‘ ! ‘ ! ‘ I |

ADD.W <EAs>, Rd

H: Settolif thereisacarry at bit 11,
otherwise cleared to 0.

Operand Size i]))
N: Setto 1if theresult is negative; otherwise
Word cleared to 0.
Z. Settolif theresult iszero; otherwise
cleared to 0.
V. Setto 1if anoverflow occurs; otherwise
cleared to 0.
C: Settolif thereisacarry at bit 15;
otherwise cleared to 0.
Description

This instruction adds the source operand to the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: ROtoR7,EOtoE7
Rs: ROtoR7,EOtoE7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2ndbyte | 3rd byte | 4thbyte | States
Immediate ADDW | #xx:16,Rd | 7 : 9 1 rd IMM 4
Register direct | ADD.W Rs, Rd 0 9 |rs 2
Notes

43

2.2.1(3) ADD (L)

ADD (ADD binary) Add Binary

Operation Condition Code

ERd + (EAs) - ERd |l U H UN Z V C
[=[=lsl=Ts s fs]s]

Assembly-L anguage Format
ADD.L <EAs>, ERd

H: Setto lif thereisacarry at bit 27;
otherwise cleared to O.

Operand Size >) .)
N: Setto 1if theresult is negative; otherwise
L ongword cleared to O.
Z. Settolif theresult iszero; otherwise
cleared to O.
V: Setto 1if an overflow occurs; otherwise
cleared to 0.
C. Settolif thereisacarry at bit 31;
otherwise cleared to 0.
Description

This instruction adds the source operand to the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: EROto ER7
ERs: EROto ER7

Operand Format and Number of States Required for Execution

Addressing | pnemonic Operands Instruction Format No. of
Mode 1st byte | 2nd byte | 3rd byte ‘ 4th byte ‘ 5th byte ‘ 6th byte States
Immediate ADDL |#xx32,ERd| 7 i A 1 :0erd IMM 6
Register direct ADD.L Rs,ERd | 0 | A |liersiOerd ‘ ‘ ‘ 2
Notes

44

2.2.2 ADDS

ADDS (ADD with Sign extension) Add Binary Address Data
Operation Condition Code
23*;*523 | U H UN Z V C
+ —
Rd+4 - ERd |_‘_‘_‘_‘_‘_‘_‘_|
Assembly-L anguage For mat H: gev?ous vj ue remd ns uncEanggg.
ADDS #1, ERd : evious value remains unchanged.
Z: Previous value remains unchanged.
ADDS #2, ERd) .)
ADDS #4 ERd V: Previous value remains unchanged.
' C: Previous value remains unchanged.
Operand Size
Longword
Description

Thisinstruction adds the immediate value 1, 2, or 4 to the contents of a 32-bit register ERd.
Differing from the ADD instruction, it does not affect the condition code flags.

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte | 3rd byte 4th byte | States
Register direct ADDS #1, ERd 0 B 0 :0erd 2
Register direct | ADDS #,ERd | 0 | B | 8 Oerd 2
Register direct ADDS #4, ERd 0 B 9 i0ierd 2
Notes

45

2.2.3 ADDX

ADDX (ADD with eXtend carry) Add with Carry
Operation Condition Code

Assembly-L anguage For mat
ADDX <EAs>, Rd

H: Settolif thereisacarry at bit 3;
otherwise cleared to O.

N: Setto 1if theresult is negative; otherwise

Byte cleared to O.

Z: Previous value remains unchanged if the
result is zero; otherwise cleared to 0.

V: Setto 1if an overflow occurs; otherwise
cleared to O.

C: Settolif thereisacarry at bit 7;
otherwise cleared to O.

Operand Size

Description

This instruction adds the source operand and carry flag to the contents of an 8-bit register Rd
(destination register) and stores the result in the 8-bit register Rd.

Available Registers

Rd: ROL to R7L, ROH to R7H
Rs: ROL toR7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Immediate ADDX #xx:8, Rd 9 | rd IMM 2
Register direct ADDX Rs, Rd 0 E rs : rd 2
Notes

46

2.2.4(1) AND (B)

AND (AND logical)

Logical AND

Operation

Rd O(EAs) - Rd

Assembly-L anguage For mat
AND.B <EAs>, Rd

Condition Code

H: Previous value remains unchanged.
N: Setto 1if theresult is negative; otherwise

Operand Size
cleared to 0.
Byte Z: Settolif theresultiszero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

Thisinstruction ANDSs the source operand with the contents of an 8-bit register Rd (destination
register) and stores the result in the 8-bit register Rd.

Available Registers

Rd: ROL to R7L, ROH to R7H
Rs: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Immediate AND.B #xx:8, Rd E | rd IMM 2
Register direct AND.B Rs, Rd 1 6 rs : rd 2

Notes

a7

2.2.4(2) AND (W)

AND (AND logical)

Logical AND

Operation

Rd O(EAS) - Rd

Assembly-L anguage For mat
AND.W <EAs>, Rd

Condition Code

H: Previous value remains unchanged.
N: Setto 1if theresult is negative; otherwise

Operand Size
cleared to 0.
Word Z: Settolif theresult iszero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

Thisinstruction ANDs the source operand with the contents of a 16-bit register Rd (destination
register) and stores the result in the 16-bit register Rd.

Available Registers

Rd: ROtoR7,EOtoE7
Rs: ROtoR7,EOto E7

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Immediate ANDW | #xx:16,Rd | 7 : 9 6 : rd IMM 4
Register direct AND.W Rs, Rd 6 6 rs rd 2

Notes

48

2.2.4(3) AND (L)

AND (AND logical)

Logical AND

Operation

ERd O (EAS) — ERd

Condition Code

Assembly-L anguage For mat
AND.L <EAs>, ERd

H: Previous value remains unchanged.
Operand Size N: Setto 1if theresult is negative; otherwise
cleared to 0.
L.ongword Z: Settolif theresultiszero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

Thisinstruction ANDSs the source operand with the contents of a 32-bit register ERd (destination

register) and stores the result in the 32-bit register ERd.

Available Registers

ERd: EROto ER7
ERs. EROto ER7

Operand Format and Number of States Required for Execution

Addressing Mnemonic | Operands Instruction Format No. of
Mode States
1st byte | 2nd byte | 3rd byte | 4th byte | 5th byte | 6th byte
Immediate AND.L | #xx:32,ERd| 7 : A 6 :Oerd IMM 6
Registerdirect | AND.L | Rs,ERd | 0 . 1 | F . 0| 6 : 6 |oers0erd| | 4

Notes

49

2.2.5 ANDC

ANDC (AND Control register) Logical AND with CCR
Operation Condition Code
CCRO#IMM - CCR | U HUNZ V C

Assembly-L anguage For mat | ! ‘ ! ‘ ! ‘ ! ‘ ! ‘ ! ‘ ! ‘ I |

ANDC #xx:8, CCR

Stores the corresponding bit of the result.

: Stores the corresponding bit of the result
Stores the corresponding bit of the result.
Stores the corresponding bit of the result
Stores the corresponding bit of the result.
Stores the corresponding bit of the result.
Stores the corresponding bit of the result.
Stores the corresponding bit of the result.

Operand Size
Byte

OsSNzczTCc™

Description

This instruction ANDs the contents of the condition-code register (CCR) with immediate data and
stores the result in the condition-code register. No interrupt requests, including NMI, are accepted
immediately after execution of thisinstruction.

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Immediate ANDC #xx:8,CCR| 0 : 6 IMM 2
Notes

50

2.2.6 BAND

BAND (Bit AND) Bit Logical AND
Operation Condition Code
C O(<bit No.> of <EAd>) - C |l U HUN Z V C

Assembly-L anguage For mat
BAND #xx:3, <EAd>

H: Previous value remains unchanged.
Operand Size N: Prev!ous value rema! ns unchanged.

Z: Previous value remains unchanged.
Byte V: Previous value remains unchanged.

C: Storestheresult of the operation.
Description

Thisinstruction ANDs a specified bit in the destination operand with the carry bit and stores the
result in the carry bit. The bit number is specified by 3-bit immediate data. The destination
operand contents remain unchanged.
Specified by #xx:3
BitNo. 7 L 0
<EAd> — | | | |

Available Registers

Rd: ROL to R7L, ROH to R7H
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
n Mnemonic | Operands
Mode 1st byte 2nd byte | 3rd byte 4th byte | States
Register direct BAND #xx:3.Rd 7. 6 OﬁlMMi rd 2
Register indirect BAND |#x:3.@ERd| 7 @ C Oerd: 0 7 0 6 |0IMM: 0 6
Absolute address| BAND |#xx3.@aa8| 7 = E abs 7 0 6 |0IMM: 0 6

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes
See the corresponding L SI hardware manual for details on the access range for @aa: 8.

51

2.2.7 Bcc

Bcc (Branch conditionally) Conditional Branch
Operation Condition Code
If condition istrue, then | U HUN Z V C
PC +disp - PC
s next == [=[=]-[=]-]-]
Assembly-L anguage For mat H: Previous value remai ns unchanged.
i N: Previous value remains unchanged.
Bcc disp | . .
Condition field Z: Previous value remains unchanged.
- onti V: Previous value remains unchanged.
Operand Size C: Previous value remains unchanged.
Description

If the condition specified in the condition field (cc) istrue, a displacement is added to the program
counter (PC) and execution branches to the resulting address. The PC value used in the address
calculation is the starting address of the instruction immediately following the Bec instruction.
The displacement is asigned 8-bit or 16-bit value. The branch destination address can be located
in the range from —126 to +128 bytes or —32766 to +32768 bytes from the Bcc instruction.

Mnemonic Meaning cc Condition Signed/Unsigned*
BRA (BT) Always (true) 0000 | True

BRn (BF) Never (false) 0001 False

BHI High 0010 | Cz=0 X >Y (unsigned)

BLS Low or Same 0011 Clz=1 X <Y (unsigned)

BCC (BHS) | Carry Clear (High or Same) 0100 | C=0 X 2Y (unsigned)

BCS (BLO) Carry Set (LOw) 0101 | C=1 X <Y (unsigned)

BNE Not Equal 0110 | zZz=0 X #Y (unsigned or signed)
BEQ EQual 0111 zZ=1 X >Y (unsigned or signed)
BVvVC oVerflow Clear 1000 | V=0

BVS oVerflow Set 1001 | v=1

BPL PLus 1010 | N=0

BMI Minus 1011 N=1

BGE Greater or Equal 1100 NOV =0 X =Y (signed)

BLT Less Than 1101 NOV =1 X <Y (signed)

BGT Greater Than 1110 ZONNOV) =0 | X>Y (signed)

BLE Less or Equal 1111 ZOANOV) =1 | X <Y (signed)

Note: * If the immediately preceding instruction is a CMP instruction, X is the destination operand
and Y is the source operand.

52

Bcc (Branch conditionally) Conditional Branch

Operand Format and Number of States Required for Execution

Addressing Mnemonic | Operands Instruction Format No. of

Mode P 1stbyte | 2nd byte | 3rd byte 4th byte States
Program-counter | g BT d:8 4 0 dl;p . 4
relative d:16 5 8 0 : 0 disp 6
Program-counter | pon (BF) d:8 4 1 dlsp ‘ 4
relative d:16 5 8 1 :0 disp 6
Program-counter BHI d:8 4 2 disp \ 4
relative d:16 5 8 2 0 disp 6
Program-counter | g o d:8 4 3 disp \ 4
relative d:16 5 8 3 10 disp 6
Program-counter | p.. (BHS) d:8 4 4 dlsp ‘ 4
relative d:16 5 8 4 0 disp 6
Program-counter d:8 4 5 disp \ 4
. BCS (BLO .
relative () d:16 5 8 5 : 0 disp 6
Program-counter | g\ = d:8 4 6 disp \ 4
relative d:16 5 8 6 {0 disp 6
Program-counter BEQ d:8 4 7 disp ‘ 4
relative d:16 5 8 7 0 disp 6
Program-counter BVC d:8 4 8 disp \ 4
relative d:16 5 8 8 : 0 disp 6
Program-counter | gy/g d:8 4 9 disp \ 4
relative d:16 5 8 9 0 disp 6
Program-counter BPL d:8 4 A disp ‘ 4
relative d:16 5 8 A 0 disp 6
Program-counter BMI d:8 4 B disp \ 4
relative d:16 5 8 B |0 disp 6
Program-counter | g~ d:8 4 c disp \ 4
relative d:16 5 8 cC 0 disp 6
Program-counter BLT d:8 4 D disp ‘ 4
relative d:16 5 8 D {0 disp 6
Program-counter | g~ d:8 4 E disp \ 4
relative d:16 5 8 E | 0 disp 6
Program-counter | g = d:8 4 F disp \ 4
relative d:16 5 8 F 0 disp 6
Notes

1. Thebranch destination address must be even.

2. Inmachine language BRA, BRN, BCC, and BCS are identical to BT, BF, BHS, and BLO,
respectively. The number of execution states for BRn (BF) isthe same as for two NOP
instructions.

53

2.2.8 BCLR

BCLR (Bit CLeaR) Bit Clear
Operation Condition Code
0 - (<bit No.> of <EAd>) | U H UN Z V C

Assembly-L anguage For mat |_‘_‘_‘_‘_‘_‘_‘_|
BCLR #xx:3, <EAd>

H: Previous value remains unchanged.
BCLR Rn, <EAd> _ lous vaiu NS unchang

N: Previous value remains unchanged.
Operand Size Z: Prev!ous value rema! ns unchanged.

V: Previous value remains unchanged.
Byte C: Previous value remains unchanged.
Description

Thisinstruction clears a specified bit in the destination operand to 0. The bit number can be
specified by 3-bit immediate data, or by the lower three bits of a general register (Rn). The
specified bit is not tested. The condition-code flags are not altered.

Specified by #xx:3 or Rn
Bit No. 7 L 0
<EAd> —» \ \ \ \ \

O —»

Available Registers
Rd: ROL to R7L, ROH to R7H

Rn: ROL to R7L, ROH to R7H
ERd: EROto ER7

54

BCLR (Bit CLeaR) Bit Clear

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of

Mode* Mnemonic | Operands 1st byte 2nd byte 3rd byte 4th byte | States
Register direct BCLR #xx:3, Rd 7 2 |oIMM 2
Register indirect | BCLR |#xx3,@ERd| 7 = D |0erd 0 | 7 = 2 |0IMM 0 8
Absolute address BCLR |#xx:3, @aa:8| 7 F abs 7 2 |0 IMM 0 8
Register direct BCLR Rn, Rd 6 2 m rd 2
Register indirect BCLR Rn, @ERd 7 D Ogerdé 0 6 @ 2 m 8
Absolute address| BCLR Rn, @aa:8 | 7 F abs 6 2 m 8

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes
For the @aa.8 access range, refer to the relevant microcontroller hardware manual.

55

2.2.9 BIAND

BIAND (Bit Invert AND) Bit Logical AND
Operation Condition Code

Assembly-L anguage For mat |_‘_‘_‘_‘_‘_‘_‘ I |
BIAND #xx:3, <EAd>

H: Previous value remains unchanged.
Operand Size N: Prev!ousval ue rema!ns unchanged.

Z: Previous value remains unchanged.
Byte V: Previous value remains unchanged.

C. Storestheresult of the operation.
Description

Thisinstruction ANDs the inverse of a specified bit in the destination operand with the carry bit
and stores the result in the carry bit. The bit number is specified by 3-bit immediate data. The
destination operand contents remain unchanged.

Specified by #xx:3

Bit No. 7 L 0
<EAd> _» \ 77\ \ \
% Invert
x
C O — C

Available Registers

Rd: ROL toR7L, ROH to R7H
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
. Mnemonic | Operands
Mode 1st byte 2nd byte | 3rd byte 4th byte | States
Register direct BIAND #xx:3.Rd 70 6 |1IMM rd 2
Register indirect | BIAND |#xx:3.@ERd| 7 : C |Oierd: O 7 6 |1IMM 0 6
Absolute address| BIAND |#xx:3.@aa8| 7 | E abs 70 6 |1IMM 0 6

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes
For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

56

2.2.10 BILD

BILD (Bit Invert L oaD)

Bit L oad

Operation
= (<bit No.> of <EAd>) - C

Assembly-L anguage For mat
BILD #xx:3, <EAd>

Condition Code

H: Previous value remains unchanged.
Operand Size N: Prev! ous value rema! ns unchanged.

Z: Previous value remains unchanged.
Byte V: Previous value remains unchanged.

C: Loaded with the inverse of the specified bit.
Description

Thisinstruction loads the inverse of a specified bit from the destination operand into the carry bit.
The bit number is specified by 3-bit immediate data. The destination operand contents remain

unchanged.

Specified by #xx:3
Bit No. 7

<EAd> —» \ \ \

1 Invert ——»

Available Registers

Rd: ROL to R7L, ROH to R7H
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing _ Instruction Format No. of
. Mnemonic | Operands
Mode 1st byte 2nd byte | 3rd byte 4th byte | States
Register direct BILD #xx:3.Rd 7007 1§IMM§ rd 2
Register indirect | BILD |[#xx:3.@ERd| 7 | C |Oierd: O | 7 i 7 [1LIMM 0 6
Absolute address BILD #xx:3.@aa:8| 7 E abs 7 7 1§IMM§ 0 6

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

57

2.2.11 BIOR

BIOR (Bit Invert inclusive OR) Bit Logical OR
Operation Condition Code

Assembly-L anguage For mat |_‘_‘_‘_‘_‘_‘_‘ I |
BIOR #xx:3, <EAd>

H: Previous value remains unchanged.
Operand Size N: Prev!ousval ue rema!ns unchanged.

Z: Previous value remains unchanged.
Byte V: Previous value remains unchanged.

C. Storestheresult of the operation.
Description

Thisinstruction ORs the inverse of a specified bit in the destination operand with the carry bit and
stores the result in the carry bit. The bit number is specified by 3-bit immediate data. The
destination operand contents remain unchanged.

Specified by #xx:3

Bit No. 7 i 0
<EAd> —»| | —7‘ | |
Invert
(o O R C

Available Registers

Rd: ROL to R7L, ROH to R7H
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
; Mnemonic | Operands
Mode 1st byte 2nd byte | 3rd byte 4th byte | States
Register direct BIOR #xx:3.Rd 7 0 4 |1IMM rd 2
Register indirect BIOR |#x3.@ERd 7 @ C |0erd: O 7 4 |1IMM 0 6
Absolute address| ~ BIOR |#xx:3.@aa8| 7 : E abs 7 0 4 |1IMM 0 6

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes
For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

58

2.2.12 BIST

BIST (Bit Invert STore) Bit Store
Operation Condition Code
-C - (<b|t No.> of <EAd>) [U H U N Z V C

Assembly-L anguage For mat
BIST #xx:3, <EAd>

H: Previous value remains unchanged.
Operand Size N: Prev! ous value rema! ns unchanged.

Z: Previous value remains unchanged.
Byte V: Previous value remains unchanged.

C: Previous value remains unchanged.
Description

Thisinstruction stores the inverse of the carry bit in a specified bit location in the destination
operand. The bit number is specified by 3-bit immediate data. Other bits in the destination
operand remain unchanged.

Specified by #xx:3

BitNo. 7 | 0
\ \ \ \
V\

<EAd> —»|

C — Invert

Available Registers

Rd: ROL to R7L, ROH to R7H
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
. Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct BIST #xx:3,Rd 6 i 7 1§IMM§ rd 2
Register indirect BIST |#x3@ERd 7 : D |0erd O 6 : 7 |1IMM 0 8
Absolute address BIST #xx:3,@aa:8| 7 F abs 6 7 1§IMM§ 0 8

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes
For the @aa.8 access range, refer to the relevant microcontroller hardware manual.

59

2.2.13 BIXOR

BIXOR (Bit Invert eXclusive OR) Bit Exclusive Logical OR
Operation Condition Code
C O [~ (<bit No.> of <EAd>)] - C | U HUN Z V C

Assembly-L anguage For mat
BIXOR #xx:3, <EAd>

H: Previous value remains unchanged.
Operand Size N: Prev!ousval ue rema!ns unchanged.

Z: Previous value remains unchanged.
Byte V: Previous value remains unchanged.

C. Storestheresult of the operation.
Description

Thisinstruction exclusively ORs the inverse of a specified bit in the destination operand with the
carry bit and stores the result in the carry bit. The bit number is specified by 3-bit immediate data.
The destination operand contents remain unchanged.

Specified by #xx:3

BitNo. 7 L 0
<EAd> —» | —7‘ | |
Invert
C 0 — C

Available Registers

Rd: ROL to R7L, ROH to R7TH
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
" Mnemonic | Operands
Mode 1st byte 2nd byte | 3rd byte 4th byte | States
Register direct BIXOR #xx:3,Rd 7 5 1§|MM§ rd 2
Register indirect | BIXOR |#xx:3,@ERd 7 : C |Oerd: 0 7 0 5 |[1iIMM 0 6
Absolute address| BIXOR |#xx:3,@aa:8| 7 | E abs 7 0 5 |1IMM 0 6

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes
For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

60

2214 BLD

BLD (Bit LoaD) Bit Load
Operation Condition Code
(<Bit No.> of <EAd>) - C | U H UN Z V C

Assembly-L anguage For mat
BLD #xx:3, <EAd>

H: Previous value remains unchanged.
Operand Size N: Prev! ous value rema! ns unchanged.

Z: Previous value remains unchanged.
Byte V: Previous value remains unchanged.

C: Loaded from the specified bit.
Description

Thisinstruction loads a specified bit from the destination operand into the carry bit. The bit
number is specified by 3-bit immediate data. The destination operand contents remain unchanged.

Specified by #xx:3
BitNo. 7 i 0
<EAd> \ \ \ \

Available Registers

Rd: ROL to R7L, ROH to R7H
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
. Mnemonic | Operands
Mode 1st byte 2nd byte | 3rd byte 4th byte | States
Register direct BLD #xx:3,Rd 7 7 |oilMM 2
Register indirect BLD |#x3,@ERd 7 | C |0ierd: 0 7 0 7 |0iMM: 0 6
Absolute address BLD #xx:3,@aa:8| 7 E abs 7 7 0§IMM§ 0 6

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes
For the @aa.8 access range, refer to the relevant microcontroller hardware manual.

61

2.2.15 BNOT

BNOT (Bit NOT) Bit NOT
Operation Condition Code
- (<b|t No.> of <EAd>) — (<b|t No.> of | Ul H U N Z \VJ C

) (=== === =1

Assembly-L anguage For mat

H: Previous value remains unchanged.
BNOT #xx:3, <EAd> _ lous vaiu NS unchang
N: Previous value remains unchanged.
BNOT Rn, <EAd>) . .
Z: Previous value remains unchanged.
Operand Size V: Previous value remains unchanged.
C: Previous value remains unchanged.
Byte
Description

Thisinstruction inverts a specified bit in the destination operand. The bit number is specified by
3-bit immediate data or by the lower 3 bits of ageneral register. The specified bit is not tested.
The condition code remains unchanged.

Specified by #xx:3 or Rn

BitNo. 7 | 0
\ I R

!

L men

<EAd> —»]

Available Registers
Rd: ROL to R7L, ROH to R7H

Rn: ROL to R7L, ROH to R7H
ERd: EROto ER7

62

BNOT (Bit NOT) Bit NOT
Operand Format and Number of States Required for Execution
Addressing . Instruction Format No. of
Mode* Mnemonic | Operands 1st byte 2nd byte 3rd byte 4th byte | States
Register direct BNOT #xx:3, Rd 7 1 |oIMM 2
Register indirect | BNOT |#x«3, @ERd 7 = D |0erd 0 | 7 = 1 |0IMM 0 8
Absolute address BNOT [#xx:3, @aa:8 7 F abs 7 110 IMM 0 8
Register direct BNOT Rn, Rd 6 1 m rd 2
Register indirect BNOT Rn, @ERd 7 D Ogerdé 0 6 1 m 8
Absolute address| BNOT Rn, @aa:8 7 F abs 6 1 m 8

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

63

2.2.16 BOR

BOR (bit inclusive OR) Bit Logical OR
Operation Condition Code
C O[(<bit No.> of <EAd>)] - C | U H UN Z V C
Assembly-L anguage For mat |_‘_‘_‘_‘_‘_‘_‘ I |
BOR #xx:3, <EAd> H: Previous value remains unchanged.
Operand Size N: Prev!ous value rema! ns unchanged.

Z: Previous value remains unchanged.
Byte V: Previous value remains unchanged.

C. Storestheresult of the operation.
Description

Thisinstruction ORs a specified bit in the destination operand with the carry bit and stores the
result in the carry bit. The bit number is specified by 3-bit immediate data. The destination
operand contents remain unchanged.

Specified by #xx:3

BitNo. 7 | 0
\ I \

<EAd> —»|

Available Registers

Rd: ROL to R7L, ROH to R7H
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
A Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct BOR #xx:3,Rd 7 0 4 |0IMM rd 2
Register indirect BOR |#3,@ERd 7 . C |Oierd: 0 7 0 4 [0IMM 0 6
Absolute address BOR #xx:3,@aa:8 7 E abs 7 4 0§|MM§ 0 6

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes
For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

64

2.2.17 BSET

BSET (Bit SET)

Operation
1 - (<bit No.> of <EAd>)

Assembly-L anguage For mat

BSET #xx:3, <EAd>
BSET Rn, <EAd>

Operand Size
Byte

Condition Code

I U H UN Z V C

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

Description

Thisinstruction sets a specified bit in the destination operand to 1. The bit number can be

specified by 3-bit immediate data, or by the lower three bits of a general register. The specified bit
is not tested. The condition code flags are not altered.

Specified by #xx:3 or Rn

Bit No. 7

<EAd> —» | |

[N

Available Registers
Rd: ROL to R7L, ROH to R7H

Rn: ROL to R7L, ROH to R7H
ERd: EROto ER7

65

BSET (Bit SET) Bit Set

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of

Mode* Mnemonic | Operands 1st byte 2nd byte 3rd byte 4th byte | States
Register direct BSET #xx:3, Rd 7 0 |0IMM 2
Register indirect | BSET |#xx3, @ERd 7 = D |oerd 0 | 7 ° 0 |0IMM 0 8
Absolute address| BSET |#xx:3, @aa:8 7 @ F abs 7 0 0 |[0IMM O 8
Register direct BSET Rn, Rd 6 0 m rd 2
Register indirect BSET Rn, @ERd 7 D Ogerdé 0 6 0 m 8
Absolute address| BSET Rn, @aa:8 7 F abs 6 0 m 8

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.
<EAd> isbyte datain aregister or on memory.

66

2.2.18 BSR

BSR (Branch to SubRoutine) Branch to Subroutine
Operation Condition Code

PC - @-SP | U HUN Z V C
PC +disp » PC

Assembly-L anguage For mat

BSR di H: Previous value remains unchanged.

P N: Previous value remains unchanged.

Operand Size Z: Prev! ous value rema! ns unchanged.

V: Previous value remains unchanged.

T C: Previous value remains unchanged.
Description

Thisinstruction branches to a subroutine at a specified address. It pushes the program counter
(PC) value onto the stack as arestart address, then adds a specified displacement to the PC value
and branches to the resulting address. The PC value pushed onto the stack is the address of the
instruction following the BSR instruction. The displacement is a signed 8-bit or 16-bit value, so
the possible branching range is—126 to +128 bytes or —32766 to +32768 bytes from the address of
the BSR instruction.

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of States
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte | 4th byte | Normal | Advanced
Program-counter BSR d:8 5 5 disp 6 8
relative d:16 5:C| 00 disp 8 10
Notes

The stack structure differs between normal mode and advanced mode. In normal mode only the
lower 16 hits of the program counter are pushed on the stack.

(N
TN Reserved
PC | ‘ ! . PC ‘ ! =
23 16 15 87 0 23 16 15 87 0
Normal mode Advanced mode

The branch address must be even.

67

2.2.19 BST

BST (Bit STore) Bit Store
Operation Condition Code
C - (<bit No.> of <EAd>) | U H UN Z V C

Assembly-L anguage For mat
BST #xx:3, <EAd>

H: Previous value remains unchanged.
Operand Size N: Prev!ousval ue rema!ns unchanged.

Z: Previous value remains unchanged.
Byte V: Previous value remains unchanged.

C: Previous value remains unchanged.
Description

This instruction stores the carry bit in a specified bit location in the destination operand. The bit
number is specified by 3-bit immediate data. Other bitsin the destination operand remain
unchanged.

Specified by #xx:3

BitNo. 7 | 0
\ I \

<EAd> —»

Available Registers

Rd: ROL to R7L, ROH to R7H
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
. Mnemonic | Operands
Mode 1st byte 2nd byte | 3rd byte 4th byte | States
Register direct BST #xx:3,Rd 6 0 7 |0IMM rd 2
Register indirect BST |#x3,@ERd 7 | D |Oerd 0 6 7 |0IMM O 8
Absolute address| ~ BST |#xx:3,@aa8 7 : F abs 6 0 7 |0IMM 0 8

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes
For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

68

2.2.20 BTST

BTST (Bit TeST)

Bit Test

Operation
= (<Bit No.> of <EAd>) - Z

Assembly-L anguage For mat

BTST #xx:3, <EAd>
BTST Rn, <EAd>

Condition Code

| U HUN Z V C
(=== == T =]

H: Previous value remains unchanged.
N: Previous value remains unchanged.

Operand Size Z: Settolif the specified bit is zero;
Byte otherwise cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

Thisinstruction tests a specified bit in the destination operand and sets or clearsthe Z flag
according to the result. The bit number can be specified by 3-bit immediate data, or by the lower
three bits of a general register. The destination operand remains unchanged.

Specified by #xx:3 or Rn

BitNo. 7

<EAd> —» | |

Test

Available Registers
Rd: ROL toR7L, ROH to R7H

Rn: ROL to R7L, ROH to R7H
ERd: EROto ER7

69

BTST (Bit TeST) Bit Test
Operand Format and Number of States Required for Execution
Addressing . Instruction Format No. of
Mode* Mnemonic | Operands 1st byte 2nd byte 3rd byte 4th byte | States
Register direct BTST #xx:3, Rd 7 : 3 OfIMMi rd 2
Register indirect BTST |#xx:3, @ERd| 7 C Oferdé 0 OEIMMi 0 6
Absolute address BTST |#xx:3, @aa:8 7 E abs 0 IMM 0 6
Register direct BTST Rn, Rd 6 3 m o rd 2
Register indirect BTST Rn, @ERd 7 C 0§erd§ 0 6 m 6
Absolute address BTST Rn, @aa:8 7 E abs 6 m 6

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

70

2.2.21 BXOR

BXOR (Bit eXclusive OR) Bit Exclusive Logical OR
Operation Condition Code
C O (<bit No.> of <EAd>) - C | U H UN Z V C

Assembly-L anguage For mat
BXOR #xx:3, <EAd>

H: Previous value remains unchanged.
Operand Size N: Prev! ous value rema! ns unchanged.

Z: Previous value remains unchanged.
Byte V: Previous value remains unchanged.

C: Storesthe result of the operation.
Description

Thisinstruction exclusively ORs a specified bit in the destination operand with the carry bit and
stores the result in the carry bit. The bit number is specified by 3-bit immediate data. The
destination operand contents remain unchanged.

Specified by #xx:3

BitNo. 7 | 0
epds]] - \
v
c O — c

Available Registers

Rd: ROL to R7L, ROH to R7H
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
. Mnemonic | Operands
Mode 1st byte 2nd byte | 3rd byte 4th byte | States
Register direct BXOR #xx:3,Rd 7 5 0§IMM§ rd 2
Register indirect BXOR |#xx3,@ERd 7 @ C |0erd: 0 7 ¢ 5 |0iMM 0O 6
Absolute address| BXOR |#xx:3,@aa8] 7 | E abs 7 0 5 |0IMM 0 6

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes
For the @aa.8 access range, refer to the relevant microcontroller hardware manual.

71

2.2.22 (1) CMP (B)

CMP (CoMPare)

Compare

Operation

Rd — (EAS), set or clear CCR

Assembly-L anguage For mat
CMP.B <EAs>, Rd

Condition Code

H: Setto1if thereisaborrow at bit 3;
otherwise cleared to 0.

Operand Size >)))
N: Setto 1if theresult is negative; otherwise
Byte cleared to 0.
Z. Settolif theresultiszero; otherwise
cleared to O.
V: Setto 1if anoverflow occurs; otherwise
cleared to O.
C. Settolif thereisaborrow at bit 7;
otherwise cleared to 0.
Description

This instruction subtracts the source operand from the contents of an 8-bit register Rd (destination
register) and sets or clears the CCR bits according to the result. The destination register contents
remain unchanged.

Available Registers

Rd: ROL to R7L, ROH to R7H
Rs: ROL toR7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Immediate CMP.B #x8,Rd | A i rd IMM 2
Register direct CMP.B Rs, Rd 1 C rs :rd 2

Notes

72

2.2.22(2) CMP (W)

CMP (CoMPare)

Compare

Operation

Rd — (EAs), set CCR

Condition Code

Assembly-L anguage For mat
CMP.W <EAs>, Rd

H: Setto1if thereisaborrow at bit 11;

otherwise cleared to 0.

Operand Size i]))
N: Setto 1if theresult is negative; otherwise
Word cleared to 0.
Z. Settolif theresult iszero; otherwise
cleared to 0.
V. Setto 1if anoverflow occurs; otherwise
cleared to 0.
C:. Settolif thereisaborrow at bit 15;
otherwise cleared to 0.
Description

This instruction subtracts the source operand from the contents of a 16-bit register Rd (destination
register) and sets or clears the CCR bits according to the result. The contents of the 16-bit register
Rd remain unchanged.

Available Registers

Rd: ROtoR7,EOto E7
Rss ROtoR7,EOtoE7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Immediate CMPW | #xx:16,Rd | 7 : 9 2 i rd IMM 4
Register direct CMP.W Rs, Rd 1 D rs rd 2

Notes

73

2.2.22(3) CMP (L)

CMP (CoMPare) Compare
Operation Condition Code
ERd - (EAS), set CCR I H N Z V C

Assembly-L anguage For mat
CMP.L <EAs>, ERd

Previous value remains unchanged.

Operand Size Settol_ifthereisaborrowatbit27;
otherwise cleared to O.
Longword N: Setto 1if theresult is negative; otherwise
cleared to O.
Z. Settolif theresult iszero; otherwise
cleared to O.
V: Setto 1if an overflow occurs; otherwise
cleared to O.
C. Settolif thereisaborrow at bit 31;
otherwise cleared to 0.
Description

This instruction subtracts the source operand from the contents of a 32-hit register ERd
(destination register) and sets or clears the CCR bits according to the result. The contents of the
32-hit register ERd remain unchanged.

Available Registers

ERd: EROto ER7
ERs: EROto ER7

Operand Format and Number of States Required for Execution

Addressing Mnemonic | Operands Instruction Format No. of
Mode istbyte | 2nd byte | 3rd byte | 4th byte | 5thbyte | 6th byte |States
Immediate CMPL |#xx:32,ERd| 7 | A | 2 iOerd IMM 6
Register direct CMP.L ERs, ERd 1 F 1:ers§0§erd ‘ ‘ ‘

Notes

74

2.2.23 DAA

DAA (Decimal Adjust Add) Decimal Adjust

Operation Condition Code
Rd (decimal adjust) - Rd

*

| U HUN ZV C
SRR

Assembly-L anguage For mat
DAA Rd

H: Undetermined (no guaranteed value).

Operand Size N: Setto lif the adjusted result is negative;
otherwise cleared to 0.

Byte .) .
Z: Settolif the adjusted result is zero;
otherwise cleared to 0.
V: Undetermined (no guaranteed value).
C. Settolif thereisacarry at bit 7;
otherwise left unchanged.
Description

Given that the result of an addition operation performed by an ADD.B or ADDX instruction on
4-bit BCD datais contained in an 8-bit register Rd (destination register) and the carry and half-
carry flags, the DAA instruction adjusts the general register contents by adding H'00, H'06, H'60,
or H'66 according to the table below.

C Flag Upper 4 Bits H Flag Lower 4 Bits value Added C Flag
before before before before (hexadecimal) after
Adjustment | Adjustment Adjustment Adjustment Adjustment
0 Oto9 0 Oto9 00 0
0 Oto8 0 AtoF 06 0
0 Oto9 1 Oto3 06 0
0 AtoF 0 Oto9 60 1
0 9to F 0 AtoF 66 1
0 AtoF 1 Oto3 66 1
1 1to2 0 Oto9 60 1
1 1to2 0 AtoF 66 1
1 1to3 1 Oto3 66 1

75

DAA (Decimal Adjust Add) Decimal Adjust

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rdbyte | 4thbyte | States
Register direct DAA Rd 0 : F 0 :rd 2
Notes

Valid results (8-hit register Rd contentsand C, V, Z, N, and H flags) are not assured if this
instruction is executed under conditions other than those described above.

76

2.2.24 DAS

DAS (Decimal Adjust Subtract)

Decimal Adjust

Operation
Rd (decimal adjust) - Rd

Assembly-L anguage For mat
DAS Rd

Operand Size
Byte

Condition Code
Ul H UN Z V C

|
(==l = e e]

Undetermined (no guaranteed value).
Set to 1 if the adjusted result is negative;
otherwise cleared to 0.

Set to 1 if the adjusted result is zero;
otherwise cleared to 0.

Undetermined (no guaranteed value).
Previous value remains unchanged.

* *

Description

Given that the result of a subtraction operation performed by a SUB.B, SUBX.B, or NEG.B
instruction on 4-bit BCD datais contained in an 8-bit register Rd (destination register) and the
carry and half-carry flags, the DAS instruction adjusts the general register contents by adding
H'00, H'FA, H'AOQ, or H'9A according to the table bel ow.

C Flag Upper 4 Bits H Flag Lower 4 Bits Value Added C Flag
before before before before (hexadecimal) after
Adjustment | Adjustment Adjustment Adjustment Adjustment
0 0to9 0 0to9 00 0
0 0to8 1 6toF FA 0
1 7t0F 0 0to9 A0 1
1 6toF 1 6toF 9A 1

Available Registers
Rd: ROL to R7L, ROH to R7H

77

DAS (Decimal Adjust Subtract)

Decimal Adjust

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct DAS Rd 1 : F 0 :rd 2

Notes

Valid results (8-bit register Rd contentsand C, V, Z, N, and H flags) are not assured if this

instruction is executed under conditions other than those described above.

78

2.2.25(1) DEC (B)

DEC (DECrement)

Decrement

Operation
Rd-1 - Rd

Assembly-L anguage For mat
DEC.B Rd

Operand Size
Byte

Condition Code

H: Previous value remains unchanged.

N: Setto1if theresult isnegative; otherwise
cleared to O.

Z: Settolif theresult iszero; otherwise
cleared to O.

V: Setto 1if an overflow occurs (the
previous value in Rd was H'80);
otherwise cleared to 0.

C: Previous value remains unchanged.

Description

Thisinstruction decrements an 8-bit register Rd (destination register) and stores the result in the

8-bit register Rd.

Available Registers
Rd: ROL to R7L, ROH to R7TH

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode istbyte | 2ndbyte | 3rd byte | 4thbyte | States
Register direct DEC.B Rd 1 : A 0 :rd 2
Notes

An overflow is caused by the operationH'80—-1 — H'7F.

79

2.2.25(2) DEC (W)

DEC (DECrement) Decrement
Operation Condition Code
Rd-1 - Rd
Rd—2 - Rd I UU HUN Z V C
(== =l=le e [e [
Assembly-L anguage Format
DEC.W #1, Rd H: Previous value remains unchanged.
DECW #2. Rd N: Setto1if theresult isnegative; otherwise
cleared to O.
Operand Size Z: Settolif theresultis zero; otherwise
Word cleared to O.
V: Setto 1if an overflow occurs (the
previous value in Rd was H'8000);
otherwise cleared to 0.
C: Previous value remains unchanged.
Description

Thisinstruction subtracts the immediate value 1 or 2 from the contents of a 16-bit register Rd
(destination register) and stores the result in the 16-bit register Rd.

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct DEC.W #1, Rd 1 i B 5 i rd 2
Register direct DEC.W #2, Rd 1 B | D 2
Notes

An overflow is caused by the operations H'8000 -1 - H'7FFF, H'8000—-2 - H'7FFE, and
H'8001 -2 - H7FFF.

80

2.2.25(3) DEC (L)

DEC (DECrement) Decrement
Operation Condition Code
ERd-1 - ERd
ERd—2 - ERd Il Ul H UN Z V C
(=== [=[e s][]
Assembly-L anguage For mat
DEC.L#1. ERd H: Previous value remains unchanged.
DEC.L #2. ERd N: Setto1if theresult isnegative; otherwise
cleared to 0.
Operand Size Z: Settolif theresultis zero; otherwise
Longword cleared to O.
V: Setto 1if an overflow occurs; otherwise
cleared to O.

C: Previous value remains unchanged.

Description

This instruction subtracts the immediate value 1 or 2 from the contents of a 32-bit register ERd
(destination register) and stores the result in the 32-bit register ERd.

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
. Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct DEC.L #L,ERd | 1 | B | 7 :0erd 2
Register direct DEC.L #2,ERd | 1 . B | F Oerd 2
Notes

An overflow is caused by the operations H'80000000 -1 - H'7FFFFFFF, H'80000000 -2 -
H'7FFFFFFE, and H'80000001 — 2 - H'7FFFFFFF.

81

2.2.26 (1) DIVXS(B)

DIVXS (DIVide eXtend as Signed) Divide Signed
Operation Condition Code
Rd+Rs - Rd | U HUN Z V C

Assembly-L anguage For mat
DIVXS.B Rs,Rd

H: Previous value remains unchanged.
N: Setto1if the quotient is negative;

Operand Size -
otherwise cleared to 0.
Byte Z: Settolif thedivisor iszero; otherwise
cleared to O.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction divides the contents of a 16-hit register Rd (destination register) by the contents
of an 8-bit register Rs (source register) and stores the result in the 16-bit register Rd. The division
is signed. The operation performed is 16 bits + 8 bits — 8-bit quotient and 8-bit remainder. The
guotient is placed in the lower 8 bits of Rd. The remainder is placed in the upper 8 bits of Rd.

Rd Rs Rd
Dividend ‘ + ‘ Divisor ‘ - ‘Remainder‘ Quotient ‘
16 bits 8 bits 8 bits 8 bits

Valid results are not assured if division by zero is attempted or an overflow occurs. For
information on avoiding overflow, see DIV XS Instruction, Zero Divide, and Overflow.

Available Registers

Rd: ROtoR7,EOto E7
Rs: ROL to R7L, ROH to R7H

82

DIVXS (B)

DIVXS (DIVide eXtend as Signed) Divide Signed
Operand Format and Number of States Required for Execution
Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rdbyte | 4thbyte | States
Register direct DIVXS.B Rs, Rd 0 : 1 D : 0 5 1 rs i ord 16
Notes

The N flag isset to 1 if the dividend and divisor have different signs, and cleared to O if they have
the same sign. The N flag may therefore be set to 1 when the quotient is zero.

83

2.2.26 (2) DIVXS (W)

DIVXS (DIVide eXtend as Signed) Divide Signed

Operation Condition Code

ERd+Rs - ERd |l U H UN Z V C
(===l [e =]

Assembly-L anguage For mat

DIVXS.W Rs, ERd H: Previous value remains unchanged.

N: Setto1if the quotient is negative;

Operand Size -
otherwise cleared to O.
Word Z. Setto lif thedivisor is zero; otherwise
cleared to O.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction divides the contents of a 32-hit register ERd (destination register) by the contents
of a16-bit register Rs (source register) and stores the result in the 32-bit register ERd. The
division is signed. The operation performed is 32 bits + 16 bits — 16-bit quotient and 16-bit
remainder. The quotient is placed in the lower 16 bits (Rd) of the 32-bit register ERd. The
remainder is placed in the upper 16 bits (Ed).

ERd Rs ERd
Dividend ‘ + ‘ Divisor ‘ - ‘Remainder‘ Quotient ‘
32 bits 16 bits 16 bits 16 bits

Valid results are not assured if division by zero is attempted or an overflow occurs. For
information on avoiding overflow, see DIV XS Instruction, Zero Divide, and Overflow.

Available Registers

ERd: EROto ER7
Rs: ROto R7,EOto E7

84

DIVXS (W)

DIVXS (DIVide eXtend as Signed) Divide Signed

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2ndbyte | 3rdbyte | 4thbyte | States

Register direct DIVXS.W Rs, ERd 0o : 1 D: O 5 : 3 rs :Oerd| 24

Notes

The N flag isset to 1 if the dividend and divisor have different signs, and cleared to O if they have
the same sign. The N flag may therefore be set to 1 when the quotient is zero.

85

2.2.26 (3) DIVXS

DIVXS (DIVide eXtend as Signed) Divide Signed

DIVXSinstruction, Division by Zero, and Overflow

Since the DIV XS instruction does not detect division by zero or overflow, applications should
detect and handle division by zero and overflow using techniques similar to those used in the
following program.

1. Programming solution for DIVXS.B ROL, R1

Example 1. Convert dividend and divisor to non-negative numbers, then use DIVXU
programming solution for zero divide and overflow

MOV.B ROL, ROL ;. Test divisor
BEQ ZERODIV ; Branch to ZERODIV if ROL = 0
ANDC #AF, CCR ; Clear CCR user bits (bits 6 and 4) to 0
BPL L1 ; Branch to L1 if N flag = O (positive divisor)
NEG.B ROL ; Take 2’s complement of ROL to make sign positive
ORC #10, CCR ; Set CCRbit4to 1

L1: MOV.W R1.R1 ; Test dividend
BPL L2 ; Branchto L2 if N flag = O (positive dividend)
NEG.W R1 ; Take 2's complement of R1 to make sign positive
XORC #50, CCR : Invert CCR bits 6 and 4

L2: MOV.B R1H, R2L

EXTU.W R2

DIVXU.B ROL, R2 Use DIVXU.B instruction to divide non-negative dividend

MOV.B R2H, R1H by positive divisor

DIVXU.B ROL, R1 16 bits + 8 bits - quotient (16 bits) and remainder (8 bits)

MOV.B R2L, R2H (See DIVXU Instruction, Zero Divide, and Overflow)

MOV.B R1L, R2L

STC CCR, R1L ; Copy CCR contents to R1L

BTST #6, R1L ; Test CCR bit 6

BEQ L3 ; Branchto L3ifbit6=1

NEG.B R1H ; Take 2's complement of R1H to make sign of remainder negative
L3: BTST #4, R1L ; Test CCR bit 4

BEQ L4 ; Branchto L4 ifbit4=1

NEG.W R2 ; Take 2's complement of R2 to make sign of quotient negative
L4: RTS
ZERODIV: ; Zero-divide handling routine

This program leaves a 16-hit quotient in R2 and an 8-bit remainder in R1H.

ROL | Divisor |
R1 \ Dividend \
R1H ‘ Remainder ‘
R2 ‘ Quotient ‘

86

DIVXS

DIVXS (DIVide eXtend as Signed) Divide Signed

Example 2: Sign extend the 8-bit divisor to 16 bits, sign extend the 16-bit dividend to 32 bits, and
then use DIV XSto divide

EXTS.W RO

BE? ZERODIV

EXTS.L ER1

DIVXS.L RO,ER1

RTS
ZERODIV:

This program leaves the 16-bit quotient in R1 and the 8-bit remainder in E1 (in a 16-bit sign
extended format).

RL | Dvidend |
ROL ‘Signextension‘ Divisor ‘
ER1 ‘ Sign extension ‘ Dividend ‘
ER1 ‘ Remainder ‘ Quotient ‘

87

DIVXS

DIVXS (DIVide eXtend as Signed) Divide Signed

2. Programming solution for DIVXS.W RO, ER1

Example: Convert dividend and divisor to non-negative numbers, then use DIV XU programming
solution for zero divide and overflow

MOV.W RO, RO ; Test divisor
BEQ ZERODIV ; Branch to ZERODIV if RO=0
ANDC #AF, CCR ; Clear CCR user bits (bits 6 and 4) to 0
BPL L1 ; Branchto L1 if N flag = O (positive divisor)
NEG.W RO ; Take 2's complement of RO to make sign positive
ORC #10, CCR : Set CCRbit4to1
L1: MOV.L ER1,ER1 ; Test dividend
BPL L2 ; Branchto L2 if N flag = O (positive dividend)
NEG.L ER1 ; Take 2's complement of ER1 to make sign positive
XORC #50,CCR ; Invert CCR bits 6 and 4
L2: MOV.W El, R2 ;
EXTU.L ER2 ;
DIVXU.W RO, E2 ; Use DIVXU.W instruction to divide non-negative dividend
MOV.W E2, R1 ; by positive divisor
DIVXU.W RO, ER1 ;32 bits + 16 bits - quotient (32 bits) and remainder
MOV.W R2, E2 (16 bits)
MOV.W R1, R2 (See DIVXU Instruction, Zero Divide, and Overflow)
STC CCR, R1L ; Copy CCR contents to R1L
BTST #6, R1L : Test CCR bit 6
BEQ L3 ; Branchto L3ifbit6=1
NEG.W El ; Take 2's complement of E1 to make sign of remainder negative
L3: BTST #4, R1L ; Test CCR bit 4
BEQ L4 ; Branchto L4 ifbit4=1
NEG.L ER2 ; Take 2's complement of ER2 to make sign of quotient negative
L4: RTS
ZERODIV: ; Zero-divide handling routine

This program leaves a 32-bit quotient in ER2 and a 16-bit remainder in E1.

RO ‘ Divisor ‘
ER1 | Dividend |
v
El ‘ Remainder ‘
ER2 | Quotient |

88

DIVXS (W)

DIVXS (DIVide eXtend as Signed)

Divide Signed

The preceding two examples flag the status of the divisor and dividend in the Ul and U bitsin the
CCR, and modify the sign of the quotient and remainder in the unsigned division result of the

DIV XU instruction as shown next.

ul | U Divisor Dividend |Remainder | Quotient Sign Modification
0|0 Positive Positive Positive Positive | No sign modification

01 Negative Positive Positive Negative | Sign of quotient is reversed
1,0 Negative Negative Negative Positive | Sign of remainder is reversed
111 Positive Negative Negative Negative | Signs of quotient and remainder

are both reversed

89

2.2.27 (1) DIVXU (B)

DIVXU (DIVide eXtend as Unsigned)

Divide

Operation Condition Code
Rd+Rs - Rd

Assembly-L anguage For mat |—‘—‘—‘_‘ ! ‘ ! ‘_‘_|

DIVXU.B Rs, Rd

H: Previous value remains unchanged.

Operand Size N: Settolif thedivisorisnegative;
Byte otherwise cleared to 0.
Z: Settolif thedivisor is zero; otherwise
cleared to O.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

Thisinstruction divides the contents of a 16-bit register Rd (destination register) by the contents
of an 8-hit register Rs (source register) and stores the result in the 16-bit register Rd. The division
isunsigned. The operation performed is 16 bits + 8 bits — 8-bit quotient and 8-bit remainder. The
quotient is placed in the lower 8 bits of Rd. The remainder is placed in the upper 8 bits of Rd.

Rd Rs Rd
Dividend ‘ + ‘ Divisor ‘ - ‘Remainder‘ Quotient ‘
16 bits 8 bits 8 bits 8 bits

Valid results are not assured if division by zero is attempted or an overflow occurs. For

information on avoiding overflow, see DIV XU Instruction, Zero Divide, and Overflow.

Available Registers

Rd: ROtoR7,EOtoE7
Rs: ROL toR7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode Istbyte | 2ndbyte | 3rdbyte | 4thbyte | States
Register direct DIVXU.B Rs, Rd 5 1 rs : rd 14
Notes

90

2.2.27 (2) DIVXU (W)

DIVXU (DIVide eXtend as Unsigned) Divide
Operation Condition Code

Assembly-L anguage For mat
DIVXU.W Rs, ERd

H: Previous value remains unchanged.

N: Setto 1if thedivisor isnegative;

Operand Size -
otherwise cleared to 0.
Word Z: Settolif thedivisor iszero; otherwise
cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction divides the contents of a 32-hit register ERd (destination register) by the contents
of a16-bit register Rs (source register) and stores the result in the 32-bit register ERd. The
division isunsigned. The operation performed is 32 bits + 16 bits — 16-bit quotient and 16-bit
remainder. The quotient is placed in the lower 16 bits (Rd) of the 32-bit register ERd. The
remainder is placed in the upper 8 bits of (Ed).

ERd Rs ERd
Dividend ‘ + ‘ Divisor ‘ - ‘Remainder‘ Quotient ‘
32 hits 16 bits 16 bits 16 bits

Valid results are not assured if division by zero is attempted or an overflow occurs. For
information on avoiding overflow, see DIV XU Instruction, Zero Divide, and Overflow.

Available Registers

ERd: EROto ER7
Rss ROtoR7,EOtoE7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct DIVXU.W Rs, ERd 5: 3 rs :0:ERd 22
Notes

91

DIVXU

DIVXU (DIVide eXtend as Unsigned) Divide

DIV XU Instruction, Zero Divide, and Over flow

Zero divide and overflow are not detected in the DIV XU instruction. A program like the following
can detect zero divisors and avoid overflow.

1. Programming solutionsfor DIVXU.B ROL, R1

Example 1. Divide upper 8 bits and lower 8 bits of 16-hit dividend separately and obtain 16-bit
quotient

CMP.B
BEQ
MOV.B
EXTU.W
DIVXU.B
MOV.B
DIVXU.B

MOV.B
MOV.B
RTS

ZERODIV:

#0, ROL
ZERODIV
R1H,R2L
R2 (*1) .
ROL,R2 (*2)
R2H, R1H (*3)
ROL, R1 (*4)

R2L, R2H
R1L, R2L (*5)

; ROL = 07? (Zero divisor?)
; Branch to ZERODIV if ROL =0
Copy upper 8 bits of dividend to R2L and
; zero-extend to 16 bits
; Divide upper 8 bits of dividend
; R2H - R1H (store partial remainder in R1H)
; Divide lower 8 bits of dividend (including repeated division of
upper 8 bits)
Store upper part of quotient in R2H
Store lower part of quotient in R2L

; Zero-divide handling routine

The resulting operation is 16 bits + 8 bits — quotient (16 bits) and remainder (8 bits), and no
overflow occurs. The 16-bit quotient is stored in R2, the 8-bit remainder in R1H.

R1

R2

R2

R1

R1

R1

R2

Dividend

v

| sign extension | Dividend (nigh) | (*1)

v

|Remainder (part)‘ Quotient (high) | (*2)

v

|Remainder (part)‘ Dividend (low) | (*3)

v

| Remainder ‘ Quotient (low) | (*4)

v

| Remainder ‘ Quotient(low)|

Quotient

| 5)

92

DIVXU

DIVXU (DIVide eXtend as Unsigned) Divide

Example 2: Zero-extend divisor from 8 to 16 bits and dividend from 16 to 32 bits before dividing

EXTU.W RO ; Zero-extend 8-bit divisor to 16 bits
BEQ ZERODIV ; Branch to ZERODIV if RO =0
EXTU.L ER1 ; Zero-extend 16-bit dividend to 32 bits
EXTU.W RO, ER1 ; Divide using DIVXU.W
RTS

ZERODIV: ; Zero-divide handling routine

Instead of 16 bits + 8 hits, the operation performed is 32 bits + 16 bits - quotient (16 bits) and
remainder (16 bits), and no overflow occurs. The 16-bit quotient is stored in R1 and the 8-bit
remainder in the lower 8 bits of E1. The upper 8 bits of E1 are all 0.

RL | Dividend |

'

ROL |Sign extension‘ Divisor |

ER1 | Sign extension ‘ Dividend |

v

ER1 | Remainder ‘ Quotient |

93

DIVXU

DIVXU (DIVide eXtend as Unsigned)

Divide

2. Programming solution for DIVXU.W RO, ER1
Example 1: Divide upper 16 bits and lower 16 bits of 32-bit dividend separately and obtain 32-bit

guotient
MOV.W RO, RO ;
BEQ ZERODIV ;
MOV.W E1,E2 ;
EXTU.L ER2 1)
DIVXU.W RO, ER2 (*2) ;
MOV.W E2,E1 (*3)

DIVXU.W RO, ER1 (*4)

MOV.W R2, E2 ;
MOV.W R1,R2 (*5)
RTS

ZERODIV: ;

RO = 07? (Zero divisor?)

Branch to ZERODIV if RO=0

Copy upper 16 bits of dividend to R2 and

zero-extend to 32 bits

Divide upper 16 bits of dividend

E2 - E1 (store partial remainder in E1)

Divide lower 16 bits of dividend (including repeated division of
upper 16 bits)

Store upper part of quotient in E2

Store lower part of quotient in R2

Zero-divide handling routine

The resulting operation is 32 bits + 16 hits — quotient (32 bits) and remainder (16 bits), and no
overflow occurs. The 32-bit quotient is stored in ER2, the 16-bit remainder in E1.

o (oo |

ER1 | Dividend

v

ER2 | Sign extension | Dividend (high) | (*1)
ER2 |Remainder (part)‘ Quotient (high) | (*2)
ER1 |Remainder (part)‘ Dividend (low) | (*3)
ER1 | Remainder ‘ Quotient (low) | (*4)
ER1 | Remainder ‘Quotient(low)

(*5)
ER2 | Quotient

94

2.2.28 (1) EEPMOV (B)

EEPMOV (MOVedatato EEPROM) Block Data Transfer
Operation Condition Code
repeat @ER5+ - @ERG6+ |_‘_‘_‘_‘_‘_‘_‘_|
RAL —1 - R4L
until R4L =0 . .
) H: Previous value remains unchanged.
else next; . .
N: Previous value remains unchanged.
Assembly-L anguage For mat Z: Prev?ous value remai ns unchanged.
EEPMOV B V: Previous value remains unchanged.
' C: Previous value remains unchanged.
Operand Size
Description

This instruction performs a block memory transfer. It moves data from the memory location
specified in ER5 to the memory location specified in ER6, increments ER5 and ER6, decrements
RA4L, and repeats these operations until R4L reaches zero. Execution then proceeds to the next
instruction. No interrupts are detected while the block transfer isin progress. When the EEPMOV
instruction ends, R4L contains 0, and ER5 and ER6 contain the last transfer address + 1. The data
transfer is performed a byte at atime, with R4L indicating the number of bytes to be transferred.
The byte symbol in the assembly-language format designates the size of R4L (and limits the
maximum number of bytes that can be transferred to 255).

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands

Mode 1st byte | 2nd byte | 3rd byte 4th byte States

— EEPMOV.B 7 | B 5 : C 5 9 8 | F 8+4n*

Note: * nis the initial value of R4L. Although n bytes of data are transferred, memory is accessed
2(n + 1) times, requiring 4(n + 1) states. (n =0, 1, 2, ..., 255).

Notes

Thisinstruction first reads the memory locations indicated by ER5 and ER6, then performs the
data transfer. The number of states required for execution differs from the H8/300 CPU.

95

2.2.28 (2) EEPMOV (W)

EEPMOV (MOVedatato EEPROM) Block Data Transfer
Operation Condition Code
if R4 #0then
repest @ER5+ . @ERG+ | U HUNZV C
R4-1 - R4 |_‘_‘_‘_‘_‘_‘_‘_|
until R4=0
else next: H: Previous value remains unchanged.
N: Previous value remains unchanged.
Assembly-L anguage For mat Z: Previous value remains unchanged.
EEPMOV.W V: Previous value remains unchanged.
C: Previous value remains unchanged.
Operand Size
Description

This instruction performs a block memory transfer. It moves data from the memory location
specified in ER5 to the memory location specified in ERG, increments ER5 and ER6, decrements
R4, and repeats these operations until R4 reaches zero. Execution then proceeds to the next
instruction. No interrupts except NM|I are detected while the block transfer isin progress. When
the EEPMOQV instruction ends, R4 contains 0, and ER5 and ERG6 contain the last transfer address
+ 1. The datatransfer is performed a byte at atime, with R4 indicating the number of bytesto be
transferred. The word symbol in the assembly-language format designates the size of R4
(alowing a maximum 65535 bytes to be transferred).

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands

Mode 1stbyte | 2nd byte | 3rdbyte | 4thbyte | States

— EEPMOV.W 7 | B D : 4 5 9 8 | F 8+4n

Note: n is the initial value of R4. Although n bytes of data are transferred, memory is accessed
2(n + 1) times, requiring 4(n + 1) states. (n =0, 1, 2, ..., 65535).

Notes

Thisinstruction first reads memory at the addresses indicated by ER5 and ERS, then carries out
the block data transfer.

96

EEPMOV (W)

EEPMOV (MOVedatato EEPROM) Block Data Transfer

EEPMOV.W Instruction and NM1 Interrupt
If an NMI request occurs while the EEPMOV.W instruction is being executed, NMI interrupt

exception handling is carried out at the end of the current read-write cycle. Register contents are
then asfollows:

ER5: address of the next byte to be transferred
ERG6: destination address of the next byte
R4: number of bytes remaining to be transferred

The program counter value pushed on the stack in NMI interrupt exception handling is the
address of the next instruction after the EEPMOV.W instruction. Programs should be coded as
followsto allow for NMI interrupts during execution of the EEPMOV.W instruction.

Example:

L1: EEPMOV.W
MOV.W R4, R4
BNE L1

During execution of the EEPMOV.B instruction no interrupts are accepted, including NMI.

97

2.2.29 (1) EXTS (W)

EXTS (EXTend as Signed)

Sign Extension

Operation
(<Bit 7> of Rd) - (<bits 15 to 8> of Rd>

Condition Code

I UU HUN Z V C

Assembly-L anguage For mat |—‘—‘—‘—‘ ! ‘ ! ‘ 0 ‘—|
EXTS.W Rd . .

Previous value remains unchanged.
Operand Size Set to 1 if the result is negative; otherwise
Word cleared t.o 0. . .

Set to 1if theresult is zero; otherwise

cleared to O.

Always cleared to 0.

Previous value remains unchanged.
Description

Thisinstruction copies the sign of the lower 8 bitsin a 16-bit register Rd in the upward direction
(copies Rd bit 7 to bits 15 to 8) to extend the data to signed word data.

Rd Rd
| Don't care | | — | Sign extension
8 bits T 8 bits 8 bits 8 bits
Sign bit

Available Registers
Rd: ROtoR7,EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct EXTS.W Rd 17 D :rd 2

Notes

98

2.2.29 (2) EXTS(L)

EXTS (EXTend as Signed) Sign Extension
Operation Condition Code
(<Bit 15> of ERd) - (<bits 31 to 16> of ERd>) | U HUNZ V C
Assembly-L anguage For mat |_‘_‘_‘_‘ ! ‘ ! ‘ 0 ‘_|
EXTS.L ERd I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.

N: Setto1if theresult isnegative; otherwise
L ongword cleared to O.

Z: Settolif theresultis zero; otherwise

cleared to O.

V: Alwayscleared to 0.

C: Previous value remains unchanged.
Description

Thisinstruction copies the sign of the lower 16 bits (general register Rd) in a 32-bit register ERd
in the upward direction (copies ERd bit 15 to bits 31 to 16) to extend the data to signed longword
data.

ERd ERd
Don't care | — | Sign extension |
16 bits T 16 bits 16 bits 16 bits
Sign bit

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct EXTS.L ERd 17 F :0O:erd 2
Notes

99

2.2.30 (1) EXTU (W)

EXTU (EXTend as Unsigned) Zero Extension
Operation Condition Code
Z

o edend (= ——[-lof[:lo]-]

Assembly-L anguage For mat))
H: Previous value remains unchanged.

EXTU.W Rd N: Always cleared to 0.
Operand Size Z: Settolif theresult is zero; otherwise
cleared to 0.
Word V: Always cleared to 0.
C: Previous value remains unchanged.
Description

This instruction extends the lower 8 bitsin a 16-bit register Rd to word data by padding with
zeros. That is, it clears the upper 8 bits of Rd (bits 15to 8) to 0.

Rd Rd

Don'tcare | | — | Zero extension !
8 bits 8 hits 8 bits 8 bits

Available Registers
Rd: ROtoR7,EQOto E7

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct EXTU.W Rd 17 5 : rd 2
Notes

100

2230 (2) EXTU (L)

EXTU (EXTend as Unsigned) Zero Extension
Operation Condition Code

0 - (<bits 31 to 16> of ERd>) | U HUN Z V C
Zero et [=[=[=[-fof:[o]-]

Assembly-L anguage For mat])
H: Previous value remains unchanged.

EXTU.L ERd N: Always cleared to 0.
Operand Size Z: Settolif theresult is zero; otherwise
cleared to O.
Longword V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

This instruction extends the lower 16 bits (general register Rd) in a 32-bit register ERd to
longword data by padding with zeros. That is, it clears the upper 16 bits of ERd (bits 31 to 16) to
0.

ERd ERd
Don'tcare | | —> | Zero extension ! |
16 bits 16 bits 16 bits 16 bits

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct EXTU.L ERd 17 7 :0ierd 2
Notes

101

2.2.31(1) INC (B)

INC (INCrement) Increment
Operation Condition Code
+ —
Rd+1 - Rd I U HUN Z V C
Assembly-L anguage For mat |—‘—‘—‘—‘ ! ‘ ! ‘ ! ‘—|
INC.B Rd])
H: Previous value remains unchanged.
Operand Size N: Setto 1if theresult is negative; otherwise
Byte clearedt.oo. . .
Z: Settolif theresult iszero; otherwise
cleared to 0.
V: Setto 1if an overflow occurs; otherwise
cleared to O.

C: Previous value remains unchanged.

Description

This instruction increments an 8-hit register Rd (destination register) and stores the result in the
8-bit register Rd.

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rdbyte | 4thbyte | States
Register direct INC.B Rd 0 : A 0 :rd 2
Notes

An overflow is caused by the operation H'7F + 1 - H'80.

102

2.2.31(2) INC (W)

INC (INCrement)

Increment

Operation

Rd+1 - Rd
Rd+2 - Rd

Assembly-L anguage For mat

Condition Code

H: Previous value remains unchanged.

INC.W#1, Rd N: Setto 1if theresult isnegative; otherwise
INCW#2, Rd
cleared to 0.
Operand Size Z: Settolif theresult iszero; otherwise
cleared to 0.
Word V: Setto 1if an overflow occurs; otherwise
cleared to 0.
C: Previous value remains unchanged.
Description

This instruction adds the immediate value 1 or 2 to the contents of a 16-bit register Rd
(destination register) and stores the result in the 16-bit register Rd.

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct INC.W 0 : B 5 i rd 2
Register direct INC.W 0 B D rd 2
Notes

An overflow is caused by the operations H'7FFF + 1 . H'8000, H'7FFF + 2 - H'8001, and

H'7FFE + 2 - H'8000.

103

2.2.31(3) INC (L)

INC (INCrement) Increment
Operation Condition Code

ERd+1 - ERd |l U HUN Z V C
e B === =[] [s]-]

Assembly-L anguage For mat

INC.L #1, ERd
INC.L #2, ERd

H: Previous value remains unchanged.
N: Setto 1if theresult is negative; otherwise

cleared to 0.
Operand Size Z: Settolif theresult iszero; otherwise
cleared to O.
Longword V: Setto 1if an overflow occurs; otherwise
cleared to O.
C: Previous value remains unchanged.
Description

This instruction adds the immediate value 1 or 2 to the contents of a 32-bit register ERd
(destination register) and stores the result in the 32-bit register ERd.

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct INC.L #1, ERd 0 B 7 i0ierd 2
Register direct INC.L #2, ERd 0 B F %O%erd 2
Notes

An overflow is caused by the operations H'7FFFFFFF + 1 — H'80000000, H'7FFFFFFF + 2 -
H'80000001, and H'7FFFFFFE + 2 - H'80000000.

104

2.2.32 IMP

JMP (JuMP) Unconditional Branch
Operation Condition Code

Assembly-L anguage For mat

IMP <EA> H: Previous value remains unchanged.
Operand Size N: Prev!ous value rema! ns unchanged.
Z: Previous value remains unchanged.
_ V: Previous vaue remains unchanged.
C: Previous value remains unchanged.
Description

This instruction branches unconditionally to a specified address

Available Registers
ERn: EROto ER7

Operand Format and Number of States Required for Execution

Addressing Mnemonic | Operands Instruction Format No. of State
Mode 1st byte | 2nd byte | 3rd byte | 4th byte Normal ‘ Advanced
Register indirect JMP @ERN 5 : 9 |0em: 0 4
Absolute JMP @aa:24 5 A abs 6
address :
Memory indirect JMP @@aa:8 5 B abs 8 10
Notes

The structure of the branch address and the number of states required for execution differ between
norma mode and advanced mode.

The branch address must be even.

105

2.2.33 JSR

JSR (Jump to SubRoutine)

Jump to Subroutine

Operation

PC - @-SP
Effective address — PC

Condition Code

Assembly-L anguage For mat

H: Previous value remains unchanged.
JSR <BA> N: Previous value remains unchanged.
Operand Size Z: Prev!ousvalue rema!ns unchanged.

V: Previous value remains unchanged.
- C: Previous value remains unchanged.
Description

Thisinstruction pushes the program counter on the stack as a return address, then branchesto a
specified effective address. The program counter value pushed on the stack is the address of the
instruction following the JSR instruction.

Available Registers
ERn: EROto ER7

Operand Format and Number of States Required for Execution

Addressing Mnemonic | Operands Instruction Format No. of State
Mode 1st byte | 2nd byte | 3rd byte | 4th byte Normal Advanced
Register indirect JSR @ERN 5 : D [0em: O 6 8
Absolute JSR @aa:24 5 E abs 8 10
address :
Memory indirect JSR @@aa:8 5 F abs 8 12

106

JSR

JSR (Jump to SubRoutine) Jump to Subroutine

Notes

Note that the structures of the stack and branch addresses differ between normal and advanced
mode. Only the lower 16 hits of the PC are saved in normal mode.

The branch address must be even.

N
TN Reserved
PC ! ! | = PC ! ! .
23 16 15 87 0 23 16 15 87 0
Normal mode Advanced mode

107

2.2.34 (1) LDC (B)

LDC (LoaD to Control register) Load CCR
Operation Condition Code
(EAs) — CCR Il Ul H UN Z V C

Assembly-L anguage For mat | ! ‘ ! ‘ ! ‘ I ‘ ! ‘ ¢ ‘ I ‘ i |

LDC.B <EAs>, CCR

I: Loaded from the corresponding bit in the

Operand Size source operand. . N
H: Loaded from the corresponding bit in the
Byte source operand.
N: Loaded from the corresponding bit in the
source operand.
Z: Loaded from the corresponding bit in the
source operand.
V: Loaded from the corresponding bit in the
source operand.
C: Loaded from the corresponding bit in the
source operand.
Description

This instruction loads the source operand into the CCR.

Note that no interrupts, even NMI interrupts, will be accepted at the point that this instruction
completes.

Available Registers
Rs. ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Immediate LDC.B #xx:8,CCR| 0 @ 7 IMM 2
Register direct LDC.B Rs, CCR 0 3 0 :rs 2
Notes

108

2.2.34(2) LDC (W)

LDC (LoaD to Control register)

Load CCR

Operation
(EAs) - CCR

Assembly-L anguage For mat
LDC.W <EAs>, CCR

Condition Code

| U HUN Z V C
ERENEAERRSEREREY

I: Loaded from the corresponding bit in the

Operand Size source operand. . N
H: Loaded from the corresponding bit in the
Word source operand.
N: Loaded from the corresponding bit in the
source operand.
Z: Loaded from the corresponding bit in the
source operand.
V: Loaded from the corresponding bit in the
source operand.
C: Loaded from the corresponding bit in the
source operand.
Description

This instruction loads the source operand contents into the condition-code register (CCR).
Although CCR is a byte register, the source operand is word size. The contents of the even

address are loaded into CCR.

No interrupt requests, including NMI, are accepted immediately after execution of this

instruction.

Available Registers
ERs. EROto ER7

109

Operand Format and Number of States Required for Execution
; Instruction Format
Addressing Mnemonic Operands g:’a{tg;
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | 5thbyte | 6thbyte | 7th byte | 8thbyte | 9th byte | 10th byte
Register LDCW | @ERs,CCR 0 1|4 : 01| 6 @ 9 |oers 0 6
indirect : T
LDC.W |@(d:16,ERs),CCR| 0 1 4 0 6 F |Oers: O disp 8
Register
indirect with
displacement : Lo
LDC.W |@(d:24,ERs),CCR| O 1 4 0 7 8 |Oers: O 6 B 2 0 0 0 disp 12
Register
indirect with LDC.W @ERs+,CCR 0 1 4 .0 6 D |Oers: O 8
post-increment
LDC.W @aa:16,CCR 0 1 4 .0 6 B 0 0 abs 8
Absolute
address
LDC.W @aa:24,CCR 0 1 4 0 6 B 2 0 0 0 abs 10
Notes

110

2.2.35(1) MOV (B)

MOV (MOVedata)

Move

Operation Condition Code
Rs - Rd | U HUN Z V C
Assembly-L anguage For mat |_‘_‘_‘_‘ ! ‘ ! ‘ 0 ‘_|
MOV.B Rs, Rd H: Previous value remains unchanged.
Operand Size N: Setto 1 if the datavalueis negative;
otherwise cleared to 0.
Byte Z: Settolif the datavalueis zero; otherwise
cleared to O.
V: Alwayscleared to O.
C: Previous value remains unchanged.
Description

Thisinstruction transfers one byte of datafrom an 8-bit register Rsto an 8-bit register Rd, tests
the transferred data, and sets condition-code flags according to the result.

Available Registers

Rd: ROL to R7L, ROH to R7H
Rs: ROL toR7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rdbyte | 4thbyte | States
Register direct MOV.B Rs, Rd 0 : C rs :rd 2

Notes

111

2.2.35(2) MOV (W)

MOV (MOVe data)

Move

Operation Condition Code
Rs - Rd | U HUN Z V C
Assembly-L anguage For mat |_‘_‘_‘_‘ ! ‘ ! ‘ 0 ‘_|
MOV.WRs, Rd H: Previous value remains unchanged.
Operand Size N: Setto 1 if the data valueis negative;
otherwise cleared to O.
Word Z: Setto 1if thedatavalueis zero;
otherwise cleared to 0.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

Thisinstruction transfers one word of data from a 16-bit register Rs to a 16-bit register Rd, tests
the transferred data, and sets condition-code flags according to the result.

Available Registers

Rd: ROto R7, EOto E7
Rs: ROto R7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct MOV.W Rs, Rd 0 : D s rd 2

Notes

112

2.2.35(3) MOV (L)

MOV (MOVedata)

Move

Operation
ERs - ERd

Assembly-L anguage For mat
MOV.L ERs, ERd

Operand Size
Longword

Condition Code

[Ul

H UN Z V C

il Bl el I R I

H: Previous value remains unchanged.

N: Setto 1if the datavalueis negative;

otherwise cleared to 0.

Z: Settolif thedatavalueis zero; otherwise
cleared to O.

V: Alwayscleared to 0.
C: Previous value remains unchanged.

Description

Thisinstruction transfers one longword of data from a 32-bit register ERs to a 32-bit register ERd,

tests the transferred data, and sets condition-code flags according to the result.

Available Registers

ERd: EROto ER7
ERs. EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct MOV.L ERs, ERd 0 : F |1l:ers: Oferd 2
Notes

113

2.2.35(4) MOV (B)

MOV (MOVe data) Move

Operation Condition Code
(EAS) - Rd

Assembly-L anguage For mat |—‘—‘—‘—‘ ! ‘ ! ‘ 0 ‘_|
MOV.B <EAs>, Rd

H: Previous value remains unchanged.
Operand Size N: Setto 1if the datavalueis negative;
otherwise cleared to 0.

Byte . .
Z: Settolif thedatavaueiszero;
otherwise cleared to 0.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

This instruction transfers the source operand contents to an 8-bit register Rs, tests the transferred
data, and sets condition-code flags according to the resullt.

Available Registers

Rd: ROL to R7L, ROH to R7H
ERs. EROto ER7

114

Operand Format and Number of States Required for Execution

. Instruction Format
Addressing Mnemonic Operands gtoa'tg;
Mode 1st byte | 2nd byte | 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte

Immediate MOV.B #xx:8,Rd F rd IMM 2
Register MOV.B @ERs,Rd 6 ' 8 |oers! rd 4
indirect T

MOV.B | @(d:16,ERs),Rd | 6 " E |oers’ rd disp 6
Register I
indirect with
displacement Lo

MOV.B | @d:24ERs)Rd| 7 : 8 |Oers: 0 | 6 : A | 2 ird| O @ O disp 10
Register
indirect with MOV.B @ERs+,Rd 6 : C |Oers: rd 6
post-increment

MOV.B @aa:8,Rd 2 abs 4
Absolute . :
address MOV.B @aa:16,Rd 6 A 0 : rd abs 6

MOV.B @aa:24,Rd 6 A 2 rd 0 0 abs 8

Notes

The MOV.B @ER7+, Rd instruction should never be used, because it leaves an odd value in the stack pointer (ER7).
For details refer to section 3.3.2, Exception Processing, or to the hardware manual.

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

115

2.2.35(5) MOV (W)

MOV (MOVedata)

Move

Operation
(EAs) - Rd

Condition Code

Assembly-L anguage For mat
MOV.W<EAs>, Rd

H: Previous value remains unchanged.

Operand Size N: Setto 1if the datavaueis negative;
Word otherwise cleared to O.
Z: Settolif thedatavalueiszero; otherwise
cleared to 0.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

This instruction transfers the source operand contents to a 16-hit register Rd, tests the transferred
data, and sets condition-code flags according to the result.

Available Registers

Rd: ROtoR7,EOtoE7
ERs. EROto ER7

116

Operand Format and Number of States Required for Execution

Instruction Format

Addreﬁsing Mnemonic Operands gtoa{tgg
Mode 1st byte | 2nd byte | 3rd byte ‘ 4th byte | 5th byte | 6th byte | 7th byte | 8th byte
Immediate MOV.W #xx:16,Rd 7 9 0 rd IMM 4
Register MOV.W | @ERs,Rd 6 9 |oers' rd 4
indirect .

MOV.W | @(d:16ERs)Rd| 6 : F |O‘ers: rd disp 6
Register
indirect with
displacement :

MOV.W | @(d:24,ERs),Rd | 7 8 |Oers: O 6 B 2 rd 0 0 disp 10
Register
indirect with MOV.W @ERs+,Rd 6 D |Oers: rd 6
post-increment

MOV.W @aa:16,Rd 6 B 0 rd abs 6
Absolute
address

MOV.W @aa:24,Rd 6 B 2 rd 0 0 abs 8

Notes

1. Thesource operand <EAs> must be located at an even address.
2. Inmachine language, MOV.W @R7+, Rd isidentical to POPW Rd.

117

2.2.35(6) MOV (L)

MOV (MOVedata)

Move

Operation
(EAs) - ERd

Assembly-L anguage For mat
MOV.L <EAs>, ERd

Condition Code

H: Previous value remains unchanged.
N: Setto 1if thedatavaueis negative;

Operand Size otherwise cleared to O.
Longword Z: Setto1if the datavalueis zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

This instruction transfers the source operand contents to a specified 32-hit register (ERd), tests the
transferred data, and sets condition-code flags according to the result. The first memory word
located at the effective address is stored in extended register Ed. The next word is stored in

general register Rd.

o~

MSB

LSB

ERd | Ed

RAH |

RdL |

—EA

Available Registers

ERd: EROto ER7
ERs. EROto ER7

118

Operand Format and Number of States Required for Execution
. Instruction Format
Addrezsmg Mnemonic Operands g?a'tgi
Mode 1stbyte | 2nd byte | 3rd byte ‘ 4th byte ‘ 5th byte ‘ 6th byte | 7th byte | 8th byte | 9th byte | 10th byte

Immediate MOV.L #xx:32,Rd 7 A 0 :Oers IMM 6
Register MOV.L | @ERSERd | O ' 1 | 0 S 0 | 6 : 9 |0ersi0erd 8
indirect : T

MOV.L |@(d:16ERs)ERd| 0 : 1 | 0 © 0 | 6 | F |0ersOerd disp 10
Register
indirect with
displacement [

MOV.L |@(d:24,ERs),ERd| 0 : 1 0 : 0 7 8 |Oers: 0 6 2 0erd| O 0 disp 14
Register
indirect with MOV.L @ERs+,ERd 0 1 0o : 0 6 : D |0:ers:0erd 10
post-increment P

MOV.L | @aal6ERd | O © 1 | 0 i 0 | 6 | B | 0 ‘Oerd abs 10
Absolute :
address

MOV.L @aa:24,ERd 01 0: 0 6 B 2 Oerd| 0 abs 12
Notes

1. The source operand <EAs> must be located at an even address.
2. Inmachine language, MOV.L @ER7+, ERd isidentical to POPL ERd.

119

2.2.35(7) MOV (B)

MOV (MOVedata)

Move

Operation
Rs - (EAd)

Condition Code

Assembly-L anguage For mat
MOV.B Rs, <EAd>

H: Previous value remains unchanged.

Operand Size N: Setto 1if the datavaueis negative;
Byte otherwise cleared to O.
Z: Settolif thedatavalueiszero; otherwise
cleared to 0.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

Thisinstruction transfers the contents of an 8-bit register Rs (source operand) to a destination
location, tests the transferred data, and sets condition-code flags according to the result.

Available Registers

Rs. ROL to R7L, ROH to R7H

ERd: EROto ER7

120

Operand Format and Number of States Required for Execution

. Instruction Format
Addressing Mnemonic Operands gtoa'tg;
Mode 1st byte | 2nd byte | 3rd byte | 4th byte | 5th byte 6th byte | 7th byte | 8th byte

Register MOV.B Rs,@ERd 6 8 |lerd rs 4
indirect : S

MOV.B Rs,@(d:16,ERd) 6 E |l:erd: rs disp 6
Register o
indirect with
displacement : [

MOV.B | Rs,@(d:24,ERd) | 7 8 |0erd: O 6 A| A rs| o0 0 disp 10
Register
indirect with MOV.B Rs,@-ERd 6 : C |lerd: rs 6
pre-decrement

MOV.B Rs,@aa:8 3 s abs 4
Absolute . :
address MOV.B Rs,@aa:16 6 : A 8 LTS abs 6

MOV.B Rs,@aa:24 6 . A A s 0 0 abs 8

Notes

1. TheMOV.B Rs, @-ER?7 instruction should never be used, because it leaves an odd value in the stack pointer (ER7).
For details refer to section 3.3.2, Exception Processing, or to the hardware manual.

2. Execution of MOV.B RnL, @—ERn or MOV.B RnH, @—ERn first decrements ERn by one, then transfers the
designated part (RnL or RnH) of the resulting ERn value.

121

2.2.35(8) MOV (W)

MOV (MOVedata)

Move

Operation
Rs - (EAd)

Assembly-L anguage For mat
MOV.WRs, <EAd>

Condition Code

H: Previous value remains unchanged.
N: Setto 1if thedatavaueis negative;

Operand Size otherwise cleared to O.
Word Z: Setto1if the datavalueis zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

Thisinstruction transfers the contents of a 16-bit register Rs (source operand) to a destination
location, tests the transferred data, and sets condition-code flags according to the result.

Available Registers

Rs. ROtoR7,EOtoE7
ERd: EROto ER7

122

Operand Format and Number of States Required for Execution

Instruction Format

Addre(sjsing Mnemonic Operands gtoa'tg;
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | 5thbyte | 6th byte | 7th byte | 8th byte
Register MOV.W | Rs@ERd 6 9 |lerd rs 4
indirect : S

MOV.W | Rs,@(d:16,ERd) | 6 F |lerd: rs disp 6
Register
indirect with
displacement Lo

MOV.W | Rs,@(d:24,ERd) | 7 8 |0erd 0 6 B | A rs| O 0 disp 10
Register
indirect with MOV.W Rs,@-ERd 6 . D |lerd: rs 6
post-increment

MOV.W Rs,@aa:16 6 B 8 rs abs 6
Absolute
address

MOV.W Rs,@aa:24 6 B A rs 0 0 abs 8

Notes

1. Thedestination operand <EAd> must be located at an even address.

2. In machine language, MOV.W Rs, @-R7 isidentical to PUSH.W Rs.
3. Execution of MOV.W Rn, @-ERn first decrements ERn by 2, then transfers the resulting value.

123

2.2.35(9) MOV (L)

MOV (MOVe data)

Move

Operation
ERs - (EAd)

Assembly-L anguage For mat
MOV.L ERs, <EAd>

Condition Code

H: Previous value remains unchanged.
N: Setto 1if the datavaueis negative;

Operand Size otherwise cleared to O.
Longword Z: Setto 1if the datavalue s zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

Thisinstruction transfers the contents of a 32-bit register ERs (source operand) to a destination
location, tests the transferred data, and sets condition-code flags according to the result. The
extended register (ES) contents are stored at the first word indicated by the effective address. The
general register (Rs) contents are stored at the next word.

T~

MSB —EA

A 4

F“““’ LSB
L

ERs ‘ Es

RsH

RsL |

Available Registers

ERs: EROto ER7
ERd: EROto ER7

124

Operand Format and Number of States Required for Execution
. Instruction Format
Addressing Mnemonic Operands .’;&'tgl
Mode 1st byte | 2nd byte | 3rd byte | 4th byte | 5th byte | 6th byte 7th byte | 8th byte | 9th byte | 10th byte
Register MOV.L | ERS@ERd | O | 1 | 0 0 | 6 : 9 |lerdOiers 8
indirect T
MOV.L |ERs,@(d:16,ERd)| O 1 0 0 6 F |l:erd:0:ers disp 10
Register
indirect with
displacement [
MOV.L |ERs,@(d:24,ERd)| 0 1 0 0 7 8 |lerd: O 6 B A Oers| O 0 disp 14
Register
indirect with MOV.L ERs,@-ERd 0 1 0 0 6 : D [l:erd:0ers 10
pre-decrement .
MOV.L ERs,@aa:16 0 1 0 0 6 B 8 :0:ers abs 10
Absolute :
address :
MOV.L ERs,@aa:24 0 1 0 0 6 B A Oers| 0 0 abs 12
Notes

1. Thedestination operand <EAd> must be located at an even address.
2. Inmachinelanguage, MOV.L ERs, @-ER7 isidentica to PUSH.L ERs.

3. Execution of MOV.L ERn, @-ERn first decrements ERn by 4, then transfers the resulting value.

125

2.2.36 MOVFPE

MOVFPE (MOVe From Peripheral with E clock) Move Data with E Clock
Operation Condition Code

(EAs) -~ Rd | U H UN Z V C
Synchronized with E clock |_‘_‘_‘_‘ : ‘ : ‘ 0 ‘_|

Assembly-L anguage For mat

H: Previous value remains unchanged.
MOVFPE@aa 16, Rd

N: Setto 1if thedatavaueis negative;

otherwise cleared to O.
Z: Settolif thedatavaueiszero; otherwise
Byte cleared to 0.
V: Alwayscleared to 0.
C: Previous value remains unchanged.

Operand Size

Description

This instruction transfers memory contents specified by a 16-bit absolute address to a general
register Rd in synchronization with an E clock, tests the transferred data, and sets condition-code
flags according to the result.

Note: Avoid using thisinstruction in microcontrollers not having an E clock output pin, or in
single-chip mode.

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rdbyte | 4thbyte | States
Absolute MOVFPE |@aa:16,Rd| 6 @ A 4 rd abs *
address : :
Notes

1. Thisinstruction cannot be used with addressing modes other than the above, and cannot
transfer word data or longword data.

2. Datatransfer by thisinstruction requires 9 to 16 states, so the execution timeis variable. For
details, refer to the relevant microcontroller hardware manual.

126

2.2.37 MOVTPE

MOVTPE (MOVe To Peripheral with E clock) Move Data with E Clock
Operation Condition Code
Rs - (EAd) | U H UN Z V C

Synchronized with E clock |_‘_‘_‘_‘ A ‘ ; ‘ 0 ‘_|

Assembly-L anguage For mat

H: Previous value remains unchanged.
MOVTPERSs, @aa:16

N: Setto 1if thedatavalueisnegative;

otherwise cleared to 0.
Z. Settolif thedatavaueiszero; otherwise
Byte cleared to 0.
V: Alwayscleared to O.
C: Previous value remains unchanged.

Operand Size

Description

Thisinstruction transfers the contents of ageneral register Rs (source operand) to a destination
location specified by a 16-bit absolute address in synchronization with an E clock, tests the
transferred data, and sets condition-code flags according to the result.

Note: Avoid using thisinstruction in microcontrollers not having an E clock output pin, or in
single-chip mode.

Available Registers
Rs: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
Absolute MOVTPE |Rs, @aa:l6| 6 @ A C irs abs *
address : :
Notes

1. Thisinstruction cannot be used with addressing modes other than the above, and cannot
transfer word data or longword data.

2. Datatransfer by thisinstruction requires 9 to 16 states, so the execution timeis variable. For
details, refer to the relevant microcontroller hardware manual.

127

2.2.38 (1) MULXS(B)

MULXS (MULtiply eXtend as Signed)

Multiply Signed

Operation Condition Code
RdxRs - Rd

Assembly-L anguage For mat

MULXS.B Rs, Rd

H: Previous value remains unchanged.

Operand Size N: Setto 1if theresult is negative; otherwise

Byte cleared to O.

Z: Settolif theresult iszero; otherwise

cleared to 0.

V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

Thisinstruction multiplies the lower 8 bits of a 16-bit register Rd (destination operand) by the
contents of an 8-hit register Rs (source operand) as signed data and stores the result in the 16-bit
register Rd. If Rd isageneral register, Rs can be the upper part (RdH) or lower part (RdL) of Rd.

The operation performed is 8-bit x 8-bit — 16-bit signed multiplication.

Rd Rs Rd
‘ Don'’t care ‘ Multiplicand ‘ X ‘ Multiplier ‘ - ‘ Product ‘
8 bits 8 bits 16 bits

Available Registers

Rd: ROtoR7, EOto E7
Rs: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct | MULXS.B Rs, Rd 0 : 1 c : 0 5 : 0 rs :rd 16
Notes

128

2.2.38(2) MULXS (W)

MULXS (MULtiply eXtend as Signed) Multiply Signed
Operation Condition Code
ERd x Rs - ERd | U HUN Z V C

Assembly-L anguage For mat
MULXS.WRs, ERd

H: Previous value remains unchanged.
N: Setto1if theresult isnegative; otherwise

Operand Size
cleared to O.
Word Z: Settolif theresult iszero; otherwise
cleared to O.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

Thisinstruction multiplies the lower 16 bits of a 32-hit register ERd (destination operand) by the
contents of a 16-hit register Rs (source operand) as signed data and stores the result in the 32-bit
register ERd. Rs can be the upper part (Ed) or lower part (Rd) of ERd. The operation performed is
16-bit x 16-bit - 32-bit signed multiplication.

ERd Rs ERd
Don’t care | Multiplicand ‘ X Multiplier - ‘ Product
16 bits 16 bits 32 bits

Available Registers

ERd: EROto ER7
Rss ROtoR7,EOQtoE7

Operand Format and Number of States Required for Execution

i Instruction Format
Addressing Mnemonic | Operands No. of

Mode 1st byte 2nd byte | 3rd byte 4th byte | States

Register direct MULXS.W | Rs, ERd 0o : 1 c: o0 5 2 rs :O:erd| 24

Notes

129

2.2.39 (1) MULXU (B)

MUL XU (MULtiply eXtend as Unsigned) Multiply
Operation Condition Code
RdxRs - Rd | UHUNZV C

Assembly-L anguage For mat
MULXU.B Rs, Rd

H: Previous value remains unchanged.
Operand Size N: Prev!ousval ue rema!ns unchanged.

Z: Previous value remains unchanged.
Byte V: Previous value remains unchanged.

C: Previous value remains unchanged.
Description

Thisinstruction multiplies the lower 8 bits of a 16-hit register Rd (destination operand) by the
contents of an 8-hit register Rs (source operand) and stores the result in the 16-bit register Rd. If
Rd is ageneral register, Rs can be the upper part (RdH) or lower part (RdL) of Rd. The operation
performed is 8-bit x 8-bit — 16-bit multiplication.

Rd Rs Rd
‘ Don'’t care ‘ Multiplicand ‘ X Multiplier - ‘ Product ‘
8 bits 8 bits 16 bits

Available Registers

Rd: ROtoR7,EOtoE7
Rs: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct | MULXU.B Rs, Rd 5 : 0 rs :rd 14
Notes

130

2.2.39(2) MULXU (W)

MULXU (M ULtiply eXtend as Unsigned) Multiply
Operation Condition Code
ERd xRs — ERd | UHUN Z V C

Assembly-L anguage For mat
MULXU.WRs, ERd

H: Previous value remains unchanged.
Operand Size N: Prev! ous value rema! ns unchanged.

Z: Previous value remains unchanged.
Word V: Previous value remains unchanged.

C: Previous value remains unchanged.
Description

Thisinstruction multiplies the lower 16 bits of a 32-bit register ERd (destination operand) by the
contents of a 16-bit register Rs (source operand) and stores the result in the 32-bit register ERd. Rs
can be the upper part (Ed) or lower part (Rd) of ERd. The operation performed is 16-bit x 16-bit

— 32-bit multiplication.

ERd Rs ERd
Don’t care‘ Multiplicand ‘ X Multiplier - ‘ Product
16 bits 16 bits 32 bits

Available Registers

ERd: EROto ER7
Rss ROtoR7,EOQOtoE7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct MULXU.W | Rs, ERd 5 2 rs :0:erd 22
Notes

131

2.2.40 (1) NEG (B)

NEG (NEGate)

Negate Binary Signed

Operation
0-Rd - Rd

Assembly-L anguage For mat

Condition Code

NEG.B Rd H: Setto 1if thereisaborrow at hit 3;
Operand Size otherwis_zecleared to.O. _ .
N: Setto 1if theresult is negative; otherwise
Byte cleared to 0.
Z. Settolif theresultiszero; otherwise
cleared to O.
V: Setto 1if anoverflow occurs; otherwise
cleared to O.
C. Settolif thereisaborrow at bit 7;
otherwise cleared to 0.
Description

This instruction takes the two’s complement of the contents of an 8-bit register Rd (destination
operand) and stores the result in the 8-bit register Rd (subtracting the register contents from H'00).
If the original contents of Rd was H'80, however, the result remains H'80.

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct NEG.B Rd 17 8 ' 2

Notes

An overflow occursif the previous contents of Rd was H'80.

132

2.2.40 (2) NEG (W)

NEG (NEGate) Negate Binary Signed
Operation Condition Code
0-Rd - Rd | U HUN Z V C

Assembly-L anguage For mat

NEG.WRd H: Settolif thereisaborrow at bit 11;
Operand Size otherwigecleared to-O. . .
N: Setto1if theresult isnegative; otherwise
Word cleared to 0.
Z:. Settolif theresultiszero; otherwise
cleared to O.
V. Setto 1if an overflow occurs; otherwise
cleared to 0.
C. Settolif thereisaborrow at bit 15;
otherwise cleared to 0.
Description

This instruction takes the two's complement of the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd (subtracting the register contents from
H'0000). If the original contents of Rd was H'8000, however, the result remains H'8000.

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode istbyte | 2ndbyte | 3rdbyte | 4thbyte | States
Register direct NEG.W Rd 17 9 :rd 2
Notes

An overflow occursif the previous contents of Rd was H'8000.

133

2.2.40 (3) NEG (L)

NEG (NEGate) Negate Binary Signed
Operation Condition Code
0-ERd - ERd l U HUN Z V C
Assembly-L anguage For mat |_‘_‘ ! ‘_‘ ! ‘ ! ‘ ! ‘ I |
NEG.L ERd H: Setto 1if thereisaborrow at bit 27,
Operand Size otherwm_zecleared to.O. _ .
N: Setto 1if theresult is negative; otherwise
L ongword cleared to 0.
Z: Settolif theresult iszero; otherwise
cleared to O.
V: Setto 1if anoverflow occurs; otherwise
cleared to O.
C. Settolif thereisaborrow at bit 31;
otherwise cleared to 0.
Description

This instruction takes the two’s complement of the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd (subtracting the register contents from
H'00000000). If the original contents of ERd was H'80000000, however, the result remains
H'80000000.

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct NEG.L ERd 1: 7 B :0:erd 2
Notes

An overflow occursif the previous contents of ERd was H'80000000.

134

2.2.41 NOP

NOP (No OPeration) No Operation
Operation Condition Code
PC+2 - PC | U HUN Z V C

Assembly-L anguage For mat

NOP
Operand Size H: Previous value remains unchanged.
P N: Previous value remains unchanged.
— Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction only increments the program counter, causing the next instruction to be executed.
Theinterna state of the CPU does not change.

Available Registers

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte States
— NOP 00| 0 O 2
Notes

135

2.2.42 (1) NOT (B)

NOT (NOT = logical complement)

L ogical Complement

Operation

Assembly-L anguage For mat
NOT.B Rd

Condition Code

H: Previous value remains unchanged.
N: Setto 1if theresult is negative; otherwise

Operand Size
cleared to 0.
Byte Z: Settolif theresult iszero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

This instruction takes the one’s complement of the contents of an 8-bit register Rd (destination
operand) and stores the result in the 8-bit register Rd.

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct NOT.B Rd 1 7 0 :rd 2
Notes

136

2.2.42 (2) NOT (W)

NOT (NOT = logical complement)

L ogical Complement

Operation

Assembly-L anguage For mat
NOT.W Rd

Condition Code

H: Previous value remains unchanged.
N: Setto 1if theresult is negative; otherwise

Operand Size
cleared to O.
Word
Z: Settolif theresultiszero (the previous
Rd value was H'FFFF); otherwise cleared
to 0.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

This instruction takes the one’s complement of the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2ndbyte | 3rd byte | 4thbyte | States
Register direct NOT.W Rd 17 1 :d 2
Notes

137

2.2.42 (3) NOT (L)

NOT (NOT = logical complement)

L ogical Complement

Operation Condition Code
~ERd -~ ERd | U HUNZ V C
Assembly-L anguage For mat |_‘_‘_‘_‘ ! ‘ ! ‘ 0 ‘_|
NOT.L ERd I: Previous value remains unchanged.
Operand Size H: Prewous_value remqns unchanged. .

N: Setto 1if theresult is negative; otherwise
Longword cleared to O.

Z: Settolif theresult iszero; otherwise

cleared to O.

V: Alwayscleared to 0.

C: Previous value remains unchanged.
Description

This instruction takes the one’s complement of the contents of a 32-hit register ERd (destination
operand) and stores the result in the 32-bit register ERd.

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct NOT.L ERd 1: 7 3 :0:erd 2

Notes

138

2.2.43 (1) OR (B)

OR (inclusive OR logical)

Logical OR

Operation
Rd O(EAS) - Rd

Assembly-L anguage For mat
OR.B <EAs>, Rd

Condition Code

H: Previous value remains unchanged.
N: Setto 1if theresult is negative; otherwise

Operand Size
cleared to 0.
Byte Z: Settolif theresultiszero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

This instruction ORs the source operand with the contents of an 8-hit register Rd (destination
register) and stores the result in the 8-bit register Rd.

Available Registers

Rd: ROL to R7L, ROH to R7H
Rs: ROL toR7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2ndbyte | 3rd byte | 4thbyte | States
Immediate OR.B #xx8 Rd | C | rd IMM 2
Register direct OR.B Rs, Rd 14 rs : rd 2
Notes

139

2.2.43(2) OR (W)

OR (inclusive OR logical)

Logical OR

Operation
Rd O(EAs) - Rd

Assembly-L anguage For mat
OR.W <EAs>, Rd

Condition Code

H: Previous value remains unchanged.
N: Setto 1if theresult is negative; otherwise

Operand Size
cleared to 0.
Word Z: Settolif theresult iszero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

This instruction ORs the source operand with the contents of a 16-bit register Rd (destination
register) and stores the result in the 16-bit register Rd.

Available Registers

Rd: ROtoR7,EOQto E7
Rs: ROtoR7,EO0to E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte ‘ 4th byte | States
Immediate ORW | #x:16,Rd | 7 @ 9 4 i IMM 4
Register direct OR.W Rs, Rd 6 4 | rs i ‘ 2

Notes

140

2.2.43(3) OR (L)

OR (inclusive OR logical)

Logical OR

Operation
ERd O(EAs) - ERd

Condition Code

Assembly-L anguage For mat
OR.L <EAs>, ERd

H: Previous value remains unchanged.

N: Setto 1if theresult is negative; otherwise

Operand Size
cleared to 0.
L.ongword Z: Settolif theresultiszero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

Thisinstruction ORs the source operand with the contents of a 32-hit register ERd (destination
register) and stores the result in the 32-bit register ERd.

Available Registers

ERd: EROto ER7
ERs: EROto ER7

Operand Format and Number of States Required for Execution

Addressing Mnemonic | Operands Instruction Format No. of
Mode States
1st byte | 2nd byte | 3rd byte | 4th byte | 5th byte | 6th byte
Immediate OR.L #xx:32,ERd| 7 : A | 4 Oerd IMM 6
Registerdirect | ORL | ERS,ERd | 0 . 1 | F . 0 | 6 . 4 [oers0erd| | 4
Notes

141

2.2.44 ORC

ORC (inclusive OR Control register)

Logical OR with CCR

Operation
CCRO#IMM - CCR

Assembly-L anguage For mat
ORC #xx:8, CCR

Operand Size
Byte

Condition Code

| U HUN Z V C
EIENEA RN EREREY

Stores the corresponding bit of the result.
: Stores the corresponding hit of the result.
Stores the corresponding bit of the result.
Stores the corresponding bit of the result.
Stores the corresponding bit of the result.
Stores the corresponding bit of the result.
Stores the corresponding bit of the result.
Stores the corresponding bit of the result.

OsSNzczTCc™

Description

This instruction ORs the contents of the condition-code register (CCR) with immediate data and
stores the result in the condition-code register. No interrupt requests, including NMI, are accepted
immediately after execution of thisinstruction.

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode Istbyte | 2ndbyte | 3rdbyte | 4thbyte | States
Immediate ORC #xx:8,CCR| 0 | 4 IMM 2
Notes

142

2.2.45 (1) POP (W)

POP (POP data) Pop Data from Stack
Operation Condition Code
@SP+ - Rn | U HUN Z V C
Assembly-L anguage For mat |—‘—‘—‘—‘ 0 ‘ ! ‘ 0 ‘—|
POP.W Rn ' '

H: Previous value remains unchanged.
Operand Size N: Setto lif the datavalueis negative;
Word otherwise cleared to 0.

Z: Settolif thedatavalueis zero;
otherwise cleared to 0.

V: Alwayscleared to 0.

C: Previous value remains unchanged.

Description

Thisinstruction restores data from the stack to a 16-bit general register Rn, tests the restored data,
and sets condition-code flags according to the result.

Available Registers
Rn: ROto R7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2ndbyte | 3rd byte | 4thbyte | States
— POP.W Rn 6 | D 7 :m 6
Notes

POPW Rnisidentical to MOV.W @SP+, Rn.

143

2.2.45(2) POP (L)

POP (POP data)

Pop Data from Stack

Operation
@SP+ - ERn

Assembly-L anguage For mat
POP.L ERn

Condition Code

H: Previous value remains unchanged.
N: Setto 1if the datavalueis negative;

Operand Size -
otherwise cleared to O.
L ongword Z. Settolif thedatavalueis zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

This instruction restores data from the stack to a 32-bit general register ERn, tests the restored
data, and sets condition-code flags according to the result.

Available Registers
ERn: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
— POP.L ERN 0 : 1 0 : 0 6 : D 7 EOEGI’I’\ 10
Notes

POPL ERnisidentica to MOV.L @SP+, ERn.

144

2.2.46 (1) PUSH (W)

PUSH (PUSH data)

Push Data on Stack

Operation
Rn - @-SP

Assembly-L anguage For mat
PUSH.W Rn

Condition Code

H: Previous value remains unchanged.
N: Setto lif thedatavalueis negative;

Operand Size otherwise cleared to 0.
Word Z: Setto1lif the datavalueis zero;
otherwise cleared to 0.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

Thisinstruction saves data from a 16-hit register Rn onto the stack, tests the saved data, and sets
condition-code flags according to the result.

Available Registers
Rn: ROto R7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
— PUSH.W Rn 6 : D | F im 6
Notes

1. PUSH.W Rnisidentica to MOV.W Rn, @-SP.

2. When PUSH.W R7 or PUSH.W E7 is executed, the value saved on the stack isthe lower part
(R7) or upper part (E7) of the value of ER7 before execution minus two.

145

2.2.46 (2) PUSH (L)

PUSH (PUSH data) Push Data on Stack
Operation Condition Code
ERn - @-SP | U HUN Z V C
Assembly-L anguage For mat |_‘_‘_‘_‘ ! ‘ ! ‘ 0 ‘_|
PUSH.L ERn H: Previous value remains unchanged.
Operand Size N: Setto1_|fthedatava|ue|snegat|ve;
otherwise cleared to O.
Longword Z: Setto1if the datavalueis zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

Thisinstruction pushes data from a 32-hit register ERn onto the stack, tests the saved data, and
sets condition-code flags according to the result.

Available Registers
ERn: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
— PUSH.L ERN 0 1 0 0 6 : D F i0iem| 10
Notes

1. PUSH.L ERnisidentical to MOV.L ERn, @-SP.
2. When PUSH.L ERY7 is executed, the value saved on the stack is the value of ER7 before
execution minus four.

146

2.2.47 (1) ROTL (B)

ROTL (ROTate L €ft) Rotate
Operation Condition Code
Rd (left rotation) - Rd | U H UN Z V C
Assembly-L anguage For mat |_ ‘ _ ‘ — ‘ _‘ ! ‘ ! ‘ 0 ‘ ! |
ROTL.B Rd H: Previous value remains unchanged.
Operand Size N: Setto 1if theresult is negative; otherwise
cleared to O.
Byte Z: Setto1if theresult is zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Receivesthe previousvauein bit 7.
Description

Thisinstruction rotates the bitsin an 8-bit register Rd (destination register) one bit to the left. The
most significant bit is rotated to the least significant bit (bit 0), and also copied to the carry flag.

MSB LSB

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2ndbyte | 3rd byte | 4thbyte | States
Register direct | ROTL.B Rd 12 |8 2
Notes

147

2.2.47 (2) ROTL (W)

ROTL (ROTate L eft)

Rotate

Operation
Rd (left rotation) — Rd

Assembly-L anguage Format
ROTL.W Rd

Condition Code

H: Previous value remains unchanged.
N: Setto1if theresult isnegative; otherwise

Operand Size dleared to 0.
Word Z: Setto 1if theresult is zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Receivesthe previousvaluein bit 15.
Description

Thisinstruction rotates the bitsin a 16-bit register Rd (destination register) one bit to the left. The
most significant bit is rotated to the least significant bit (bit 0), and also copied to the carry flag.

MSB

LSB

(3 bis

bo

Available Registers

Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode istbyte | 2ndbyte | 3rdbyte | 4thbyte | States
Register direct ROTL.W Rd 1 : 2 9 :rd 2
Notes

148

2.2.47 (3) ROTL (L)

ROTL (ROTate L eft)

Rotate

Operation

ERd (left rotation) — ERd

Condition Code

Assembly-L anguage For mat |_‘_‘_‘_‘ ! ‘ ! ‘ 0 ‘_|
ROTL.L ERd H: Previous value remains unchanged.
Operand Size N: Setto 1if theresult is negative; otherwise
cleared to O.
Longword Z: Setto1if theresult is zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C. Receivesthe previousvauein bit 31.
Description

This instruction rotates the bits in a 32-bit register ERd (destination register) one bit to the | eft.
The most significant bit is rotated to the least significant bit (bit 0), and also copied to the carry

flag.

MSB

LSB

b31

bo

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct ROTL.L ERd 1: 2 B :O:erd 2

Notes

149

2.2.48 (1) ROTR (B)

ROTR (ROTate Right)

Rotate

Operation

Rd (right rotation) — Rd

Condition Code

Assembly-L anguage For mat |_‘_‘_‘_‘ ! ‘ ! ‘ 0 ‘ ! |
ROTR.B Rd H: Previous value remains unchanged.
Operand Size N: Setto1if theresult is negative; otherwise
cleared to O.
Byte Z: Settolif theresultiszero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Receivesthe previousvaluein bit 0.
Description

This instruction rotates the bits in an 8-bit register Rd (destination register) one bit to the right.
The least significant bit is rotated to the most significant bit (bit 7), and also copied to the carry

flag.

MSB

LSB

b7

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte States
Register direct | ROTR.B Rd 13 8 i rd 2

Notes

150

2.2.48 (2) ROTR (W)

ROTR (ROTate Right) Rotate
Operation Condition Code
Rd (right rotation) — Rd | U H UN Z V C
Assembly-L anguage For mat |_‘_‘_‘_‘ ! ‘ ! ‘ 0 ‘ ! |
ROTR.WRd H: Previous value remains unchanged.
Operand Size N: Setto 1if theresult is negative; otherwise
cleared to O.
Word Z: Setto1if theresult is zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Receivesthe previousvauein bit 0.
Description

Thisinstruction rotates the bits in a 16-bit register Rd (destination register) one bit to the right.
Theleast significant bit is rotated to the most significant bit (bit 15), and also copied to the carry
flag.

MSB LSB

bis bo C

Available Registers
Rd: ROto R7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte States
Register direct | ROTR.W Rd 13 9 i 2
Notes

151

2.2.48 (3) ROTR (L)

ROTR (ROTate Right)

Rotate

Operation
ERd (right rotation) — ERd

Assembly-L anguage For mat
ROTR.L ERd

Condition Code

H: Previous value remains unchanged.
N: Setto1if theresult is negative; otherwise

Operand Size cleared 10 0.
Longword Z: Setto 1if theresult is zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Receivesthe previousvaluein bit 0.
Description

This instruction rotates the bits in a 32-bit register ERd (destination register) one bit to the right.
The least significant bit is rotated to the most significant bit (bit 31), and aso copied to the carry

flag.

MSB

LSB

b31

bo C

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct ROTR.L ERd 1 : 3 B :O:erd 2
Notes

152

2.2.49 (1) ROTXL (B)

ROTXL (ROTate with eXtend carry L eft) Rotatethrough Carry
Operation Condition Code
Rd (left rotation through carry bit) — Rd |l U H UN Z V C
Assembly-L anguage For mat | — ‘ — ‘ — ‘ — ‘ ! ‘ ! ‘ 0 ‘ ¢ |
ROTXL.B Rd H: Previous value remains unchanged.
Operand Size N: Setto lif theresultis negative; otherwise
cleared to O.
Byte Z: Setto1if theresult is zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Receivesthe previousvaluein bit 7.
Description

Thisinstruction rotates the bits in an 8-bit register Rd (destination register) one bit to the left
through the carry flag. The carry flag isrotated into the least significant bit (bit 0). The most
significant bit rotates into the carry flag.

MSB LSB

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2ndbyte | 3rd byte | 4thbyte | States
Register direct ROTXL.B Rd 1 2 0 :rd 2
Notes

153

2.2.49 (2) ROTXL (W)

ROTXL (ROTatewith eXtend carry L eft)

Rotatethrough Carry

Operation
Rd (left rotation through carry bit) -~ Rd

Condition Code

Assembly-L anguage For mat |_‘_‘_‘_‘ ! ‘ ! ‘ 0 ‘ ! |
ROTXL.W Rd Previous value remains unchanged.
Operand Size Set to 1 if the result is negative; otherwise
cleared to O.
Word Set to 1 if the result is zero; otherwise
cleared to O.
Always cleared to 0.
Receives the previous valuein bit 15.
Description

Thisinstruction rotates the bits in a 16-bit register Rd (destination register) one bit to the left
through the carry flag. The carry flag isrotated into the least significant bit (bit 0). The most

significant bit rotates into the carry flag.

MSB

LSB

C bis

bo

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct | ROTXL.W Rd 1 1 ' 2

Notes

2.2.49 (3) ROTXL (L)

ROTXL (ROTate with eXtend carry Left) Rotate through Carry
Operation Condition Code
ERd (l€ft rotation through carry bit) — ERd | U H UN Z V C

Assembly-L anguage For mat
ROTXL.L ERd H:

Previous value remains unchanged.
N: Setto1if theresult isnegative; otherwise

Operand Size cleared to O.
Longword Z: Setto 1if theresult is zero; otherwise
cleared to O.
V: Alwayscleared to O.
C: Receivesthe previousvauein bit 31.
Description

Thisinstruction rotates the bitsin a 32-bit register ERd (destination register) one bit to the left
through the carry flag. The carry flag isrotated into the least significant bit (bit 0). The most
significant bit rotates into the carry flag.

MSB LSB

(3 ba1 bo

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct ROTXL.L ERd 1 2 3 O:ierd 2
Notes

155

2.250 (1) ROTXR (B)

ROTXR (ROTatewith eXtend carry Right)

Rotatethrough Carry

Operation
Rd (right rotation through carry bit) - Rd

Assembly-L anguage For mat

Condition Code

ROTXR.B Rd H: Previous value remains unchanged.
Operand Size N: Setto1if theresult is negative; otherwise
cleared to O.
Byte Z: Settolif theresultiszero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Receivesthe previousvaluein bit 0.
Description

This instruction rotates the bits in an 8-bit register Rd (destination register) one hit to the right
through the carry flag. The carry flag is rotated into the most significant bit (bit 7). The least

significant bit rotates into the carry flag.

MSB

LSB

b7

bo C

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rdbyte | 4thbyte | States
Register direct | ROTXR.B Rd 1 : 3 0 : rd 2

Notes

156

2.250 (2) ROTXR (W)

ROTXR (ROTate with eXtend carry Right) Rotate through Carry

Operation Condition Code

Rd (right rotation through carry bit) - Rd | U H UN Z V C
[==[=[=[:[:]0]s]

Assembly-L anguage For mat

ROTXR.WRd H: Previous value remains unchanged.
N: Setto1if theresult isnegative; otherwise

Operand Size cleared to O.
Word Z: Setto1if theresult is zero; otherwise
cleared to 0.
V: Alwayscleared to O.
C: Receivesthe previousvauein bit 0.
Description

Thisinstruction rotates the bits in a 16-bit register Rd (destination register) one bit to the right
through the carry flag. The carry flag isrotated into the most significant bit (bit 15). The least
significant bit rotates into the carry flag.

MSB LSB

bis bo C

Available Registers
Rd: ROtoR7,EOQto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
Register direct | ROTXR.W Rd 1 : 3 1 : 2
Notes

157

2.250 (3) ROTXR (L)

ROTXR (ROTatewith eXtend carry Right)

Rotatethrough Carry

Operation Condition Code
ERd (right rotation through carry bit) -~ ERd | U H UN Z V C
Assembly-L anguage For mat |_ ‘ _ ‘ _ ‘ _‘ ! ‘ ! ‘ 0 ‘ ! |
ROTXR.L ERd H: Previous value remains unchanged.
Operand Size N: Setto1if theresult is negative; otherwise
cleared to O.
Longword Z: Setto1if theresult is zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Receivesthe previousvaluein bit 0.
Description

Thisinstruction rotates the bits in a 32-bit register ERd (destination register) one bit to the right
through the carry flag. The carry flag isrotated into the most significant bit (bit 31). The least

significant bit rotates into the carry flag.

MSB

LSB

b31

bo C

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte 4th byte | States
Register direct ROTXR.L ERd 1 : 3 3 :O:erd 2

Notes

158

2251 RTE

RTE (ReTurn from Exception) Return from Exception Handling

Operation Condition Code
@SP+ - CCR I Ul H UN Z V C
@sp+ - e Lelefefefofolels]

Assembly-L anguage For mat
RTE Ul

Restored from the corresponding bit on
the stack.

. Restored from the corresponding hit on
the stack.
Restored from the corresponding bit on
the stack.
Restored from the corresponding bit on
the stack.
Restored from the corresponding bit on
the stack.
Restored from the corresponding bit on
the stack.
Restored from the corresponding bit on
the stack.
Restored from the corresponding bit on
the stack.

Operand Size

0 < N 2 C© I

Description

Thisinstruction returns from an exception-handling routine by restoring the condition-code
register (CCR) and program counter (PC) from the stack. Program execution continues from the
address restored to the program counter. The CCR and PC contents at the time of execution of this
instruction are lost.

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode istbyte | 2nd byte | 3rd byte | 4th byte | States
— RTE 5 0 6 700 10
Notes
The stack structure differs between normal mode and advanced mode.
/\/ /_/
N v l N v v l
PC [undet. | 3 | PC | | | ‘
Normal mode 23 16 15 87 0 Advanced mode 23 16 15 87 0

159

2.2.52 RTS

RTS (ReTurn from Subroutine)

Return from Subroutine

Operation
@SP+ - PC

Assembly-L anguage For mat
RTS

Condition Code

H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.

Z: Previous value remains unchanged.
- V: Previous value remains unchanged.

C: Previous value remains unchanged.
Description

This instruction returns from a subroutine by restoring the program counter (PC) from the stack.
Program execution continues from the address restored to the program counter. The PC contents
at the time of execution of thisinstruction are lost.

Available Registers

Operand Format and Number of States Required for Execution

Addressing i Instruction Format No. of States
Mnemonic | Operands
Mode 1st Byte | 2nd Byte| 3rd Byte| 4th Byte| Normal | Advanced
— RTS 5.4/7:0 8 10
Notes

The stack structure and number of states required for execution differ between normal mode and

advanced mode.

In normal mode, only the lower 16 bits of the program counter are restored.

T~
T~ Don't care
. v TN v Y l

PC | Undet. | ; | PC | ; ; \
Normal mode 23 16 15 87 0 Advanced mode 23 16 15 87 0

160

2.253 (1) SHAL (B)

SHAL (SHift Arithmetic L eft) Shift Arithmetic
Operation Condition Code
Rd (left arithmetic shift) — Rd | U H U N Z V C

Assembly-L anguage For mat

SHALB Rd H: Previous value remains unchanged.
Operand Size N: Setto1if theresult isnegative; otherwise
cleared to 0.
Byte Z. Settolif theresult iszero; otherwise
cleared to 0.
V: Setto 1if an overflow occurs; otherwise
cleared to O.
C: Receivesthe previousvauein bit 7.
Description

Thisinstruction shifts the bitsin an 8-bit register Rd (destination operand) one bit to the left. The
most significant bit shiftsinto the carry flag. The least significant bit (bit 0) is cleared to O.

<
<%

MSB LSB

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rdbyte | 4thbyte | States
Register direct SHAL.B Rd 1 :0 8 : rd 2
Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

161

2.253(2) SHAL (W)

SHAL (SHift Arithmetic L eft) Shift Arithmetic
Operation Condition Code
Rd (left arithmetic shift) — Rd | U H UN Z V C
(=== [=Ts[afe]s]
Assembly-L anguage For mat
SHALW Rd H: Previous value remains unchanged.
Operand Size N: Setto1if theresult is negative; otherwise
cleared to O.
Word Z: Setto 1if theresult is zero; otherwise
cleared to O.
V: Setto 1if an overflow occurs; otherwise
cleared to 0.
C: Receivesthe previousvaluein bit 15.
Description

Thisinstruction shifts the bitsin a 16-bit register Rd (destination operand) one bit to the left. The
most significant bit shiftsinto the carry flag. The least significant bit (bit 0) is cleared to O.

<
<%

MSB LSB

C bis bo

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode Istbyte | 2ndbyte | 3rdbyte | 4thbyte | States
Register direct SHAL.W Rd 1 :0 9 ' 2
Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

162

2.253(3) SHAL (L)

SHAL (SHift Arithmetic L eft) Shift Arithmetic
Operation Condition Code
ERd (left arithmetic shift) - ERd | U H U N Z V C

Assembly-L anguage For mat

SHALL ERd H: Previous value remains unchanged.
Operand Size N: Setto1if theresult isnegative; otherwise
cleared to 0.
Longword Z: Setto1if theresult is zero; otherwise
cleared to 0.
V: Setto 1if an overflow occurs; otherwise
cleared to O.
C: Receivesthe previousvauein bit 31.
Description

This instruction shifts the bitsin a 32-bit register ERd (destination operand) one bit to the left. The
most significant bit shiftsinto the carry flag. The least significant bit (bit 0) is cleared to O.

<
<%

MSB LSB

C b31 bo

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct SHAL.L ERd 1: 0 B :0:erd 2
Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

163

2.254 (1) SHAR (B)

SHAR (SHift Arithmetic Right)

Shift Arithmetic

Operation Condition Code
Rd (right arithmetic shift) — Rd | U H UN Z V C
Assembly-L anguage For mat |_‘_‘_‘_‘ ! ‘ ! ‘ 0 ‘ ! |
SHAR.B Rd H: Previous value remains unchanged.
Operand Size N: Setto1if theresult is negative; otherwise
cleared to O.
Byte Z. Settolif theresultiszero; otherwise
cleared to 0.
V: Setto1if an overflow occurs; otherwise
cleared to O.
C: Receivesthe previousvaluein bit 0.
Description

Thisinstruction shifts the bitsin an 8-hit register Rd (destination operand) one bit to the right. Bit
0 shiftsinto the carry flag. Bit 7 shiftsinto itself. Since bit 7 remains unaltered, the sign does not

change.
MSB

LSB

»
»

b7

bo

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rdbyte | 4thbyte | States
Register direct SHAR.B Rd 1 : 1 8 :rd 2

Notes

164

2.254(2) SHAR (W)

SHAR (SHift Arithmetic Right)

Shift Arithmetic

Operation

Rd (right arithmetic shift) — Rd

Condition Code

I U HUN Z V C

Assembly-L anguage For mat |_‘_‘_‘_‘ ! ‘ ! ‘ 0 ‘_ |
SHARWRd H: Previous value remains unchanged.
Operand Size N: Setto 1if theresult is negative; otherwise
cleared to O.
Word Z: Setto 1if theresult is zero; otherwise
cleared to O.
V: Setto 1if an overflow occurs; otherwise
cleared to 0.
C: Receivesthe previousvauein bit 0.
Description

Thisinstruction shifts the bitsin a 16-bit register Rd (destination operand) one bhit to theright. Bit
0 shiftsinto the carry flag. Bit 15 shiftsinto itself. Since bit 15 remains unaltered, the sign does

not change.

MSB

LSB

»
»

bis

bo C

Available Registers
Rd: ROto R7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode istbyte | 2ndbyte | 3rdbyte | 4thbyte | States
Register direct SHAR.W Rd 1 : 1 9 ' 2

Notes

165

2.254 (3) SHAR (L)

SHAR (SHift Arithmetic Right) Shift Arithmetic
Operation Condition Code
ERd (right arithmetic shift) -~ ERd | U H U N Z V C

Assembly-L anguage For mat
SHAR.L ERd H:

Previous value remains unchanged.
N: Setto1if theresult is negative; otherwise

Operand Size dleared 10 0.
L ongword Z: Setto1lif theresult iszero; otherwise
cleared to 0.
V: Setto1if an overflow occurs; otherwise
cleared to O.
C: Receivesthe previousvaluein bit 0.
Description

This instruction shifts the bitsin a 32-bit register ERd (destination operand) one bit to the right.
Bit 0 shiftsinto the carry flag. Bit 31 shiftsinto itself. Since bit 31 remains unaltered, the sign
does not change.

MSB LSB

»
»

b31 bo C

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct SHAR.L ERd 1 1 B :O:erd 2
Notes

166

2.255 (1) SHLL (B)

SHLL (SHift Logical Left) Shift Logical
Operation Condition Code
Rd (left logical shift) —» Rd | U H UN Z V C
Assembly-L anguage For mat |_‘_‘_‘_‘ ! ‘ ! ‘ 0 ‘_|
SHLL.B Rd H: Previous value remains unchanged.
Operand Size N: Setto 1if theresult is negative; otherwise
cleared to O.
Byte Z: Setto1if theresult is zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Receivesthe previousvauein bit 7.
Description

This instruction shifts the bitsin an 8-hit register Rd (destination operand) one bit to the left. The
most significant bit shiftsinto the carry flag. The least significant bit (bit 0) is cleared to O.

A

MSB LSB

C b7 bo

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct SHLL.B Rd 1 :0 0 :rd 2
Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

167

2.255(2) SHLL (W)

SHLL (SHift Logical Left) Shift Logical

Operation Condition Code

Rd (left logical shift) -~ Rd | U H U N Z V C
(== [=[=[:]s]o]:]

Assembly-L anguage For mat

SHLL.W Rd H: Previous value remains unchanged.
Operand Size N: Setto1if theresult is negative; otherwise
cleared to O.
Word Z: Setto1if theresult is zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Receivesthe previousvaluein bit 15.
Description

This instruction shifts the bitsin a 16-hit register Rd (destination operand) one hit to the left. The
most significant bit shiftsinto the carry flag. The least significant bit (bit 0) is cleared to O.

<
<€

MSB LSB

C bis bo

Available Registers
Rd: ROtoR7,EQOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct SHLL.W Rd 1 :0 1 :d 2
Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

168

2.255(3) SHLL (L)

SHLL (SHift Logical Left) Shift Logical
Operation Condition Code
ERd (left logical shift) » ERd | U H UN Z V C
Assembly-L anguage For mat |_ ‘ _ ‘ — ‘ _‘ ! ‘ ! ‘ 0 ‘ ! |
SHLLL ERd H: Previous value remains unchanged.
Operand Size N: Setto 1if theresult is negative; otherwise
cleared to O.
Longword Z: Setto1if theresult is zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C. Receivesthe previousvauein bit 31.
Description

This instruction shifts the bitsin a 32-hit register ERd (destination operand) one bit to the left. The
most significant bit shiftsinto the carry flag. The least significant bit (bit 0) is cleared to O.

<
<€

MSB LSB

C b31 bo

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct SHLL.L ERd 1: 0 3 :O:erd 2
Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

169

2.256 (1) SHLR (B)

SHLR (SHift Logical Right)

Shift Logical

Operation Condition Code
Rd (right logical shift) -~ Rd

Assembly-L anguage For mat |— ‘ — ‘ — ‘ —‘ 0 ‘ ! ‘ 0 ‘ ! |
SHLR.B Rd))

H: Previous value remains unchanged.
Operand Size N: Setto1if theresult isnegative; otherwise
Byte clearedt.oo. . '

Z: Settolif theresultiszero; otherwise

cleared to O.

V: Alwayscleared to 0.

C: Receivesthe previousvaluein bit 0.
Description

This instruction shifts the bitsin an 8-bit register Rd (destination operand) one hit to theright. The

least significant bit shiftsinto the carry flag. The most significant bit (bit 7) is cleared to O.

»
»

MSB LSB

0—»

b7 bo C

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct SHLR.B Rd 1 1 0 i 2
Notes

170

2.2.56 (2) SHLR (W)

SHLR (SHift Logical Right) Shift Logical
Operation Condition Code
Rd (right logical shift) - Rd | U H UN Z V C
Assembly-L anguage For mat |_ ‘ _ ‘ — ‘ _‘ 0 ‘ ! ‘ 0 ‘ ! |
SHLR.W Rd H: Previous value remains unchanged.
. N: Alwaysclearedto 0.
O ds
perand ize Z: Settolif theresultiszero; otherwise
Word cleared to 0.
V: Alwayscleared to 0.
C. Receivesthe previousvauein bit 0.
Description

This instruction shifts the bitsin a 16-hit register Rd (destination operand) one hit to theright. The
least significant bit shiftsinto the carry flag. The most significant bit (bit 15) is cleared to O.

»
>

MSB LSB

0—»

bis bo C

Available Registers
Rd: ROtoR7, EOto E7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct SHLR.W Rd 11 1 :d 2
Notes

171

2.2.56 (3) SHLR (L)

SHLR (SHift Logical Right)

Shift Logical

Operation
ERd (right logical shift) » ERd

Assembly-L anguage For mat
SHLR.L ERd

Condition Code

| U HUN Z V C
[=[=[=[=fol:lo]:]

H: Previous value remains unchanged.
N: Alwayscleared to 0.

Operand Size . : .
P Z: Settolif theresult iszero; otherwise
Longword cleared to 0.
V: Alwayscleared to 0.
C: Receivesthe previousvaluein bit O.
Description

This instruction shifts the bitsin a 32-bit register ERd (destination operand) one bit to the right.
The least significant bit shiftsinto the carry flag. The most significant bit (bit 31) is cleared to O.

MSB

LSB

0—»

b31

bo C

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct SHLR.L ERd 1 : 1 3 :O:erd 2
Notes

172

2.2.57 SLEEP

SLEEP (SLEEP)

Power-Down Mode

Operation
Program execution state — power-down mode

Assembly-L anguage For mat

Condition Code

SLEEP H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
Z: Previous value remains unchanged.
— V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

When the SLEEP instruction is executed, the CPU enters a power-down state. Itsinternal state

remains unchanged, but the CPU stops executing instructions and waits for an exception-handling
request. When it receives an exception-handling request, the CPU exits the power-down state and
begins the exception-handling sequence. Interrupt requests other than NMI cannot end the power-

down state if they are masked in the CPU.

Available Registers

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
— SLEEP 0 8 0 2
Notes

For information about the power-down state, see the relevant microcontroller hardware manual.

2258 (1) STC (B)

STC (STorefrom Control register)

Store CCR

Operation
CCR - Rd

Assembly-L anguage For mat
STC.B CCR,Rd

Condition Code

H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.

Z: Previous value remains unchanged.
Byte V: Previous value remains unchanged.

C: Previous value remains unchanged.
Description

This instruction copies the CCR contents to an 8-bit register Rd.

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct STC.B CCR, Rd 0 : 2 0 :rd 2

Notes

174

2.258(2) STC (W)

STC (STorefrom Control register)

Store CCR

Operation
CCR - (EAd)

Assembly-L anguage For mat
STC.W CCR, <EAd>

Condition Code
I UU H UN Z V C

H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.

Z: Previous value remains unchanged.
Word V: Previous value remains unchanged.

C: Previous value remains unchanged.
Description

This instruction copies the CCR contents to a destination location. Although CCR is abyte
register, the destination operand is aword operand. The CCR contents are stored at the even

address.

Available Registers
ERd: EROto ER7

175

Operand Format and Number of States Required for Execution

Instruction Format

Addre(sjsing Mnemonic Operands gtoa'tg;
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | 5th byte | 6th byte | 7th byte | 8thbyte | 9th byte | 10th byte
Register STCW | CCR@ERd | 0 © 1 | 4 : 0 | 6 : 9 [lerd O 6
indirect : T

STC.W |CCR,@(d:16,ERd)| O 1 4 0 6 F |lerd: O disp 8
Register
indirect with
displacement : Lo

STC.W |CCR,@(d:24,ERd)| O 1 4 0 7 8 |Oerd: O 6 B A 0 0 0 disp 12
Register
indirect with STC.W CCR,@-ERd 0o 1 4 0 6 : D |lerd: O 8
pre-decrement

STC.W CCR,@aa:16 0 1 4 .0 6 B 8 0 abs 8
Absolute
address

STCW | CCR@aa24 | O - 1 | 4 0| 6 B |A:0/|O0: 50 abs 10
Notes

176

2.2.59 (1) SUB (B)

SUB (SUBtract binary) Subtract Binary
Operation Condition Code
Rd—Rs - Rd | U HUN Z V C

Assembly-L anguage For mat

SUB.B Rs,Rd H: Setto1if thereisaborrow at hit 3;
) otherwise cleared to 0.
Operand Size N: Setto 1if theresult is negative; otherwise
Byte cleared to O.
Z. Settolif theresult iszero; otherwise
cleared to 0.
V. Setto 1if anoverflow occurs; otherwise
cleared to 0.
C. Settolif thereisaborrow at bit 7;
otherwise cleared to 0.
Description

This instruction subtracts the contents of an 8-bit register Rs (source operand) from the contents
of an 8-hit register Rd (destination operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: ROL to R7L, ROH to R7H
Rs: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Register direct SUB.B Rs, Rd 1 : 8 rs : rd 2
Notes

The SUB.B instruction can operate only on general registers. Immediate data can be subtracted
from general register contents by using the SUBX instruction. Before executing SUBX #xx:8, Rd,
first set the Z flag to 1 and clear the C flag to 0. The following coding examples can aso be used
to subtract nonzero immediate data #/MM.

(1) ORC #H'05, CCR
SUBX #(IMMD1), Rd
(2) ADD #(0PIMM), Rd
XORC #H'01, CCR

177

2.2.59 (2) SUB (W)

SUB (SUBtract binary) Subtract Binary
Operation Condition Code
Rd - (EAs) ~ Rd | U HUN Z V C

Assembly-L anguage For mat

SUB.W <EAs>, Rd H: Setto1if thereisaborrow at bit 11;
Operand Size otherwise cleared to 0.
N: Setto 1if theresult is negative; otherwise
Word cleared to 0.
Z. Settolif theresult iszero; otherwise
cleared to O.
V: Setto 1if an overflow occurs; otherwise
cleared to 0.

C: Settolif thereisaborrow at bit 15;
otherwise cleared to 0.

Description

This instruction subtracts a source operand from the contents of a 16-hit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: ROtoR7, EOto E7
Rs. ROtoR7,EOtoE7

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte ‘ 4th byte | States
Immediate SUBW | #xx:16,Rd | 7 © 9 3 i IMM 4
Register direct SUB.W Rs, Rd 1 9 rs rd 2
Notes

178

2.2.59 (3) SUB (L)

SUB (SUBtract binary) Subtract Binary
Operation Condition Code
ERd -<EAs> - ERd | U HUN Z V C

Assembly-L anguage For mat
SUB.L <EAs>, ERd

H: Setto 1if thereisaborrow at bit 27;
otherwise cleared to 0.

Operand Size N: Setto 1if theresult is negative; otherwise
Longword cleared to 0.
Z. Settolif theresult iszero; otherwise
cleared to 0.
V: Settolif anoverflow occurs; otherwise
cleared to 0.
C. Settolif thereisaborrow at bit 31;
otherwise cleared to 0.
Description

This instruction subtracts a source operand from the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: EROto ER7
ERs. EROto ER7

Operand Format and Number of States Required for Execution

Addressing Mnemonic | Operands Instruction Format No. of
Mode 1stbyte | 2nd byte | 3rd byte | 4th byte | 5th byte | 6th byte |States
Immediate SUBL |#32,ERd| 7 | A | 3 iOerd IMM 6
Register direct SUB.L ERs, ERd 1 i A |liersiOierd ‘ ‘ ‘ 2
Notes

179

2.2.60 SUBS

SUBS (SUBtract with Sign extension)

Subtract Binary Address Data

Operation
ERd-1 - ERd

ERd-2 - ERd
ERd-4 - ERd

Condition Code

A bly-L anguage For mat H: Previousval ue remains unchanged.
q N: Previous value remains unchanged.

SUBS #1, ERd Z: Previous value remains unchanged.

SUBS #2, ER V: Previous value remains unchanged.

SUBS #4, ERd C: Previous value remains unchanged.

Operand Size

Longword

Description

This instruction subtracts the immediate value 1, 2, or 4 from the contents of a 32-bit register ERd
(destination register). Differing from the SUB instruction, it does not affect the condition-code

flags.

Available Registers
ERd: EROto ER7

Operand Format and Number of States Required for Execution

Addressing _ Instruction Format No. of
N Mnemonic | Operands
Mode 1st byte 2nd byte | 3rd byte 4th byte | States
Register direct SUBS #1, ERd 1: B 0 Oerd 2
Register direct SUBS #2,ERd | 1 : B | 8 :0erd 2
Register direct SUBS #4, ERd 1 B 9 ﬁogerd 2
Notes

180

2.2.61 SUBX

SUBX (SUBtract with eXtend carry)

Subtract with Borrow

Operation
Rd—(EAs)-C - Rd

Assembly-L anguage For mat
SUBX <EAs>, Rd

Condition Code

H: Setto 1if thereisaborrow from bit 3;
otherwise cleared to 0.

Operand Size N: Setto 1if theresult is negative; otherwise
Byte cleared to 0.
Z. Settolif theresult iszero; otherwise
cleared to 0.
V: Settolif anoverflow occurs; otherwise
cleared to 0.
C:. Settolif thereisaborrow from bit 7;
otherwise cleared to 0.
Description

This instruction subtracts the source operand and carry flag from the contents of an 8-bit register
Rd (destination operand) and stores the result in the 8-bit register Rd.

Available Registers
Rd: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing Instruction Format No. of
Mnemonic | Operands
Mode 1st byte | 2nd byte | 3rd byte 4th byte | States
Immediate SUBX #xx:8,Rd | B | rd IMM 2
Register direct SUBX Rs, Rd 1 E rs i ord 2
Notes

181

2.2.62 TRAPA

TRAPA (TRAP Always) Trap Unconditionally
Operation Condition Code

PC - @-SP | U HUN Z V C
CCR - @-SP *

1 A — | — | — | — | — | —
<Vector> - PC | ‘ ‘ ‘ ‘ ‘ |
Assembly-L anguage For mat Il Alwayssetto 1.

) U: Seenotes.
TRAPA #x:2 H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
Z: Previous value remains unchanged.
— V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction pushes the program counter (PC) and condition-code register (CCR) on the stack,
then setsthe | bit to 1 and branches to a new address. The new address is the contents of the vector
address corresponding to the specified vector number. The PC value pushed on the stack isthe
starting address of the next instruction after the TRAPA instruction.

Vector Address
x Normal Mode Advanced Mode
0 H'0010 to H'0011 H'000020 to H'000023
1 H'0012 to H'0013 H'000024 to H'000027
2 H'0014 to H'0015 H'000028 to H'00002B
3 H'0016 to H'0017 H'00002C to H'00002F

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1st byte 2nd byte 3rd byte 4th byte | States
Register direct TRAPA #x:2 5 ¢ 7 |0GIMM: O 14
Notes

1. CCR hit 6isset to 1 when used as an interrupt mask bit, but retains its previous value when
used as a user hit.
2. The stack and vector structure differ between norma mode and advanced mode.

182

2.2.63 (1) XOR (B)

XOR (eXclusive OR logical)

Exclusive Logical OR

Operation
Rd O (EAs) - Rd

Assembly-L anguage For mat
XOR.B <EAs>, Rd

Condition Code

H: Previous value remains unchanged.
N: Setto 1if theresult is negative; otherwise

Operand Size cleared to 0.
Byte Z: Setto1if theresult is zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

Thisinstruction exclusively ORs the source operand with the contents of an 8-bit register Rd
(destination register) and stores the result in the 8-bit register Rd.

Available Registers

Rd: ROL to R7L, ROH to R7H
Rs: ROL to R7L, ROH to R7H

Operand Format and Number of States Required for Execution

Addressing . Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte | 4thbyte | States
Immediate XOR.B #xx:8, Rd D :rd IMM 2
Register direct XOR.B Rs, Rd 1 5 rs i rd 2

Notes

183

2.2.63(2) XOR (W)

XOR (eXclusive OR logical)

Exclusive Logical OR

Operation
Rd O (EAs) - Rd

Assembly-L anguage For mat
XOR.W <EAs>, Rd

Condition Code

| U HUN Z V C
(===l e fo]-]

H: Previous value remains unchanged.
N: Setto 1if theresult is negative; otherwise

Operand Size cleared 1o 0.
Word Z: Setto1if theresult is zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

Thisinstruction exclusively ORs the source operand with the contents of a 16-bit register Rd
(destination register) and stores the result in the 16-bit register Rd.

Available Registers

Rd: ROtoR7,EOto E7
Rs: ROtoR7,EOto E7

Operand Format and Number of States Required for Execution

Addressing) Instruction Format No. of
Mnemonic | Operands
Mode 1stbyte | 2nd byte | 3rd byte ‘ 4th byte | States
Immediate XORW | #xx:16,Rd | 7 : 9 5 :rd IMM 4
Register direct XOR.W Rs, Rd 6 5 rs rd ‘ 2
Notes

184

2.2.63(3) XOR (L)

XOR (eXclusive OR logical)

Exclusive Logical OR

Operation

ERd O (EAs) - ERd

Condition Code

Assembly-L anguage For mat
XOR.L <EAs>, ERd

H: Previous value remains unchanged.
Operand Size N: Setto 1if theresult is negative; otherwise
cleared to O.
Longword Z: Setto1if theresult is zero; otherwise
cleared to O.
V: Alwayscleared to 0.
C: Previous value remains unchanged.
Description

Thisinstruction exclusively ORs the source operand with the contents of a 32-bit register ERd
(destination register) and stores the result in the 32-bit register ERd.

Available Registers

ERd: EROto ER7
ERs: EROto ER7

Operand Format and Number of States Required for Execution

Addressing Mnemonic | Operands Instruction Format No. of

Mode 1st byte | 2nd byte | 3rd byte ‘ 4th byte ‘ 5th byte ‘ 6th byte States
Immediate XOR.L #xx:32,ERd| 7 : A 5 :Oerd IMM 6
Register direct XOR.L ERs,ERd | 0 1 F 0 6 : 5 ‘O:ers:O:erd‘ ‘ 4

Notes

185

2.2.64 XORC

XORC (eXclusive OR Control register)

Exclusive L ogical OR with CCR

Operation
CCRO#IMM - CCR

Assembly-L anguage For mat
XORC#xx:8, CCR

Operand Size
Byte

Condition Code

OsSNzczITCc™

| U HUN Z V C
EIENEA RN EREREY

Stores the corresponding bit of the result.

: Stores the corresponding bit of the result.

Stores the corresponding bit of the result.
Stores the corresponding bit of the result.
Stores the corresponding bit of the result.
Stores the corresponding bit of the result.
Stores the corresponding bit of the result.
Stores the corresponding bit of the result.

Description

Thisinstruction exclusively ORs the contents of the condition-code register (CCR) with
immediate data and stores the result in the condition-code register. No interrupt regquests,
including NMI, are accepted immediately after execution of this instruction.

Operand Format and Number of States Required for Execution

Instruction Format

Addressing . No. of
Mnemonic | Operands
Mode istbyte | 2nd byte | 3rd byte | 4th byte | States
Immediate XORC #xx:8,CCR| O 5 IMM 2
Notes

186

2.3 Instruction Set Summary

Table2-1 Instruction Set Summary

Addressing Mode

Function Instruction #xx Rn @ERn @(d:16,ERn) @(d:24,ERn) @ERn+/@-ERn @aa:8 @aa:16 @aa:24 @(d:8,PC) @(d:16,PC) @@aa:8 —
Data MOV BWL BWL BWL BWL BWL BWL B BWL BWL — — — —
wansfer pop pusH — — — _ — _ — _ _ _ _ WL
MOVEPE, — — — — — — — B — — — — —
MOVTPE
Arithm_etic ADD,CMP BWL BWL — — — — — — — — — — —
operations ¢ ;5 WL BWL — — — — — — — — — — —
ADDX, B B — — — — — — — — — — —
SUBX
ADDS, — L — — — — — — — — — — —
SUBS
INC, DEC — BWL — — — — —_ — — — — — —
DAA, DAS — B — — — — — — — — — — —
MULXU, — BW — — — — — — — — — — —
DIVXU,
MULXS,
DIVXS,
NEG — BWL — — — — —_ — — — — — —
EXTU, — WL — — — — —_ — — — — — —
EXTS
Logic) AND, OR, BWL BWL — — — — — — — — — — —
operations y
NOT — BWL — — — — —_ — — — — — —
Shift operations — BWL — — — —_ — — — — — — —
Bit manipulation — B B — — —_ B — — — — _ _

187

Table2-1 Instruction Set Summary (cont)

Addressing Mode

Function Instruction #xx Rn @ERn @(d:16,ERn) @(d:24,ERn) @ERn+/@-ERn @aa:8 @aa:16 @aa:24 @(d:8,PC) @(d:16,PC) @@aa:8

Branch Bcc, BSR — — —_ — — — _ _ _ 0 0 _
JMP, JSR — — O — — —_ — — O — _ 0
RTS — — — — — — — — — — — —
System TRAPA, — — — — —_ — — — — — — _
control RTE,
SLEEP
LDC B B w W w w — W w — — —
STC — B w W w w — W w — — —
ANDC, B — — — — — — — — — — —
ORC,
XORC
NOP - - = — — — — — — — — —
Block data —_ — — — — — — — — — — _
transfer
Legend
B: Byte
W: Word
L: Longword

188

Table 2-2

Instruction Set

(1) Data Transfer Instructions

Addressing Mode and Instruction Length (bytes)

Condition Code

No. of States

Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@-ERn @aa @(d,PC) @@aa — Operation H N ZV Normal ée(ijnced

MoV MOV.B #xx:8,Rd B 2 #xx:8 - Rd8 —— 1 1t 0 2 2
MOV.B Rs,Rd B Rs8 - Rd8 — — t ¢t 0 2 2
MOV.B @ERs,Rd B @ERs - Rd8 — — 1t ¢t 0 4 4
MOV.B @(d:16, ERs), Rd B @(d:16,ERs) - Rd8 —— 1 10 6 6
MOV.B @(d:24,ERs),Rd B @(d24:,ERs24) - Rd8 — — 1 10 10 10
MOV.B @ERs+,Rd B @ERs - Rd8,ERs32+1 - ERs32 —— t 0 6 6
MOV.B @aa:8,Rd B @aa:8-Rd8 —— 1 1t 0 4 4
MOV.B @aa:16,Rd B @aa:16 - Rd8 —— 1t t 0 6 6
MOV.B @aa:24,Rd B @aa:24 - Rd8 — — 1t ¢t 0 8 8
MOV.B Rs,@ERd B Rs8 » @ERd24 — — t ¢t 0 4 4
MOV.B Rs,@(d:16,ERd) B Rd8 - @(d:16,ERd) —— 1t 1 0 6 6
MOV.B Rs,@(d:24,ERd) B Rd8 - @(d:24,ERd) —— 1 10 10 10
MOV.B Rs,@-ERd B ERd32-1- ERd32,Rs8 -~ @ERd — — t ¢t 0 6 6
MOV.B Rs,@aa:8 B Rs8 - @aa:8 —— 1t 1 0 4 4
MOV.B Rs,@aa:16 B Rs8- @aa:16 — — 1t 1t 0 6 6
MOV.B Rs,@aa:24 B Rs8 - @aa:24 —— 1t t 0 8 8
MOV.W #xx:16,Rd w 4 #xx:16 -~ Rd16 —— 1t 1t 0 4 4
MOV.W Rs,Rd w Rs16 -~ Rd16 —— 1t 1t 0 2 2
MOV.W @ERs,Rd w @ERs24 - Rd16 — — 1t 1t 0 4 4
MOV.W @(d:16,ERs),Rd W @(d:16,ERs) -~ Rd16 —— 1t 1t 0 6 6
MOV.W @(d:24,ERs),Rd W @(d:24,ERs) - Rd16 —— 1 10 10 10
MOV.W @ERs+,Rd W @ERs - Rd16,ERs32+2 -~ @ERd — — 1 1t 0 6 6
MOV.W @aa:16,Rd w @aa:16 - Rd16 —— 1t 1 0 6 6
MOV.W @aa:24,Rd w @aa:24 - Rd16 —— 1t 1t 0 8 8
MOV.W Rs,@ERd w Rs16 - @ERd — — 1 1t 0 4 4
MOV.W Rs,@(d:16,ERd) W Rs16 - @(d:16,ERd) —— 1t t 0 6 6
MOV.W Rs,@(d:24,ERd) W Rs16 - @(d:24,ERd) —— 1 10 8 10
MOV.W Rs,@-ERd W ERd32-2 - ERd32,Rs16 - @ERd24 — — 1t 1t 0 6 6
MOV.W Rs,@aa:16 w Rs16 - @aa:16 —— 1t 1 0 6 6
MOV.W Rs,@aa:24 w Rs16 - @aa:24 — — 1t 1 0 8 8
MOV.L #xx:32,ERd L 6 #xx:32 - ERd32 —— 1t 1t 0 8 6
MOV.L ERs,ERd L ERs32 - ERd32 —— 1t t 0 2 2
MOV.L @ERSs,ERd L @ERs - ERd32 — — 1t 1 0 8 8

189

Table 2-2 Instruction Set (cont)

(1) Data Transfer Instructions

Addressing Mode and Instruction Length (bytes)

Condition Code

No. of States

Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@-ERn @aa @(d,PC) @@aa — Operation I H N Z V C Normal ée(ijnced

MOV MOV.L @(d:16,ERs),ERd L 6 @(d:16,ERs) -~ ERd32 —— t ¢t 0 — 10 10
MOV.L @(d:24,ERs),ERd L 10 @(d:24,ERs) - ERd32 — — t t 0 — 14 14
MOV.L @ERs+,ERd L 4 ERs - ERd32,ERs32+4 - @ERs32 — — 1t ¢t 0 — 10 10
MOV.L @aa:16,ERd L 6 @aa:16 - ERd32 —— t ¢t 0 — 10 10
MOV.L @aa:24,ERd L 8 @aa:24 - ERd32 — — t t+ 0 — 12 12
MOV.L ERs,@ERd L 4 ERs32 - @ERd24 — — 1t + 0 — 8 8
MOV.L ERs,@(d:16,ERd) L 6 ERs32 - @(d:16,ERd) — — t 10 — 10 10
MOV.L ERs,@(d:24,ERd) L 10 ERs32 - @(d:24,ERd) — — t t 0 — 14 14
MOV.L ERs,@-ERd L 4 ERd32-4 - ERd32,ERs32 - @ERd —— t t 0 — 10 10
MOV.L ERs,@aa:16 L 6 ERs32 - @aa:16 — — 1t ¢t 0 — 10 10
MOV.L ERs,@aa:24 L 8 ERs32- @aa:24 — — 1t t 0 — 12 12

POP POP.W Rn W 2 @SP-Rn16,SP+2-SP —— t t 0 — 6 6
POP.L ERn L 4 @SP-ERnNn32,SP+4SP —— t ¢+ 0 — 8 10

PUSH PUSH.W Rn w 2 SP-2-SPRn16-@SP —— 1t t 0 — 6 6
PUSH.L ERn L 4 SP-4.SP,ERN32- @SP —— t t+ 0 — 8 10

MOVFPE MOVFPE@aa:16,Rd B 4 @aa:16 - Rd (synchronized with —— 1 1t 0 — ® ®

E clock)
MOVTPE MOVTPE Rs,@aa:16 B 4 Rs - @aa:16 (synchronized with —— 1t 1 0 — ® ®

E clock)R

(2) Arithmetic Operation Instructions

Addressing Mode and Instruction Length (bytes)

Condition Code

No. of States

Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@-ERn @aa @(d,PC) @@aa — Operation I H N Z VvV C Normal C:nced

ADD ADD.B #xx:8,Rd B 2 Rd8+#xx:8 —~ Rd8 — 1t ¢ttt ¢t 2 2
ADD.B Rs,Rd B Rd8+Rs8 - Rd8 — Tttt 2 2
ADD.W #xx:16,Rd W 4 Rd16+#xx:16 - Rd16 — Tttt 4 4
ADD.W Rs,Rd w Rd16+Rs16 - Rd16 — t ot oot 2 2
ADD.L #xx:32,ERd L 6 ERd32+#xx:32 -~ ERd32 — 1ttt 1t 6 6
ADD.L ERs,ERd L ERd32+ERs32 - ERd32 — @11 1t 2 2

ADDX ADDX #xx:8,Rd B 2 Rd8+#xx:8+C - Rd8 — 1t 1t @1 1t 2 2
ADDX Rs,Rd B Rd8+Rs8+C - Rd8 — 1t 1 @1 2 2

190

Table 2-2 Instruction Set (cont)

(2) Arithmetic Operation Instructions

Addressing Mode and Instruction Length (bytes)

Condition Code

No. of States

Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@-ERn @aa @(d,PC) @@aa — Operation I H N Z V C Normal ée(ijnced
ADDS ADDS.L #1,ERd 2 ERd32+1-ERd32 === — — — — — — 2 2
ADDS.L #2,ERd L 2 ERd32+2-.ERd32 === — — — — — — 2 2
ADDS.L #4,ERd L 2 ERd32+4-.ERd32 === @ — — — — — — 2 2
INC INC.B Rd B 2 Rd8+1 - Rd8 —— t t t — 2 2
INC.W #1,Rd W 2 Rd16+1 - Rd16 —— t t 1t — 2 2
INC.W #2,Rd W 2 Rd16+2 - Rd16 —— 1t t 1 — 2 2
INC.L #1,ERd L 2 ERd32+1 - ERd32 —— t t 1t — 2 2
INC.L #2,ERd L 2 ERd32+2 - ERd32 —— t t 1t — 2 2
DAA DAA Rd B 2 Rd8 decimal adjust —Rd8 —* ¢t * 1 2 2
SuB SUB.B Rs,Rd B 2 Rd8-Rs8 - Rd8 —t t t 1t 1 2 2
SUB.W #xx:16,Rd w Rd16—#xx:16 -~ Rd16 — D+ t 1 1 4 4
SUB.W Rs,Rd w 2 Rd16-Rs16 - Rd16 (Tt 2 2
SUB.L #xx:32,ERd L ERd32—#xx:32 - ERd32 — @11 t 1t 6 6
SUB.L ERs,ERd L 2 ERd32-ERs32 - ERd32 — @ 1t t 1 1 2 2
SUBX SUBX.B #xx:8,Rd B Rd8—#xx:8-C - Rd8 — 1t 1t Tt 2 2
SUBX.B Rs,Rd B 2 Rd8-Rs8-C - Rd8 —t 1 Tt 2 2
SUBS SUBS.L #1,ERd L 2 Erd32-1-ERd32 === — = — — — — 2 2
SUBS.L #2,ERd L 2 ERd32-2-.ERd32 === @ — — — — — — 2 2
SUBS.L #4,ERd L 2 ERd32-4-ERd32 === — — — — — — 2 2
DEC DEC.B Rd B 2 Rd8-1- Rd8 —— t ¢t 1t — 2 2
DEC.W #1,Rd W 2 Rd16-1- Rd16 —_— t t t — 2 2
DEC.W #2,Rd W 2 Rd16-2 - Rd16 —_— t t 1t — 2 2
DEC.L #1,ERd L 2 ERd32-1 - ERd32 —— t t 1t — 2 2
DEC.L #2,ERd L 2 ERd32-2 - ERd32 —_— t t t — 2 2
DAS DAS Rd B 2 Rd8 decimal adjust — Rd8 —* ¢ *r — 2 2
NEG NEG.B Rd B 2 0-Rd8 - Rd8 —t t t 1t 1 2 2
NEG.W Rd W 2 0-Rd16 -~ Rd16 — ! t t 1t 1 2 2
NEG.L ERd L 2 0-ERd32-ERd32 — 1t ¢ttt 2 2

Table 2-2 Instruction Set (cont)

(2) Arithmetic Operation Instructions

Addressing Mode and Instruction Length (bytes)

Condition Code

No. of States

Ad-
Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@-ERn @aa @(d,PC) @@aa — Operation I H N Z V C Normal vanced
CMP CMP.B #xx:8,Rd B 2 Rd8—#xx:8 —t t t t 1 2 2
CMP.B Rs,Rd B Rd8-Rs8 —t t t 1t t 2 2
CMP.W #xx:16,Rd W 4 Rd16—#xx:16 — Dt ¢t 1t 1 4 4
CMP.W Rs,Rd w Rd16-Rs16 —® 1+ 1t 2 2
CMP.L #xx:32,ERd L 6 ERd32—#xx:32 — @ 1t t 1 1 4 6
CMP.L ERs,ERd L ERd32-ERs32 — @1t t 1t 1 2 2
MULXU MULXU.B Rs,Rd B Rd8 xRs8-Rd16 === @ — — — — — — 14 14
(unsigned operation)
MULXU.W Rs,ERd W Rd16 xRs16 ~ERd32 == — — — — — — 22 22
(unsigned operation)
MULXS MULXS.B Rs,Rd B Rd8 x Rs8 - Rd16 —— t t — — 16 16
(signed operation)
MULXS.W Rs,ERd W Rd16 x Rs16 - ERd32 —_— t t — — 24 24
(signed operation)
DIVXU DIVXU.B Rs,Rd B Rd16 + Rs8 - Rd16 (RdH: remainder, — — © @ — — 14 14
RdL: quotient) (unsigned operation)
DIVXU.W Rs,ERd w ERd32 + Rs16 - ERd32 (Ed: remainder, — — © @ — — 22 22
Rd: quotient) (unsigned operation)
DIVXS DIVXS.B Rs,Rd B Rd16 + Rs8 — Rd16 (RdH: remainder, — — ® @ — — 16 16
RdL: quotient) (signed operation)
DIVXS.W Rs,ERd w ERd32 + Rs16 — ERd32 (Ed: remainder, — — ® @ — — 24 24
Rd: quotient) (signed operation)
EXTU EXTU.W Rd W 0 - (<bits 15 to 8> of Rd16) —— 0 ¢+t 0 — 2 2
EXTU.L ERd L 0 - (<bits 31 to 16> of ERd32) — — 0 ¢+t 0 — 2 2
EXTS EXTS.W Rd W (<bit 7> of Rd16) — (<bits 15 to —— t t 0 — 2 2
8> of Rd16)
EXTS.L ERd L (<bit 15> of ERd32) - (<bits31t016> — — ¢t 1t 0 — 2 2

of ERd32)

192

Table 2-2 Instruction Set (cont)

(3) Logic Operation Instructions

Mnemonic

Size #xx Rn @ERn @(d,ERn) @ERn+/@-ERn @aa @(d,PC) @@aa —

Addressing Mode and Instruction Length (bytes)

Operation

Condition Code

No. of States

Normal

Ad-
vanced

AND

AND.B #xx:8,Rd

2

Rd8 A #xx:8 -~ Rd8

AND.B Rs,Rd

Rd8 A Rs8 - Rd8

AND.W #xx:16,Rd

Rd16 A #xx:16 - Rd16

AND.W Rs,Rd

Rd16 A Rs16 - Rd16

AND.L #xx:32,ERd

ERd32 A #xx:32 - ERd32

AND.L ERs,ERd

ERd32 A ERs32 - ERd32

OR

OR.B #xx:8,Rd

Rd8 V #xx:8 - Rd8

OR.B Rs,Rd

Rd8 V Rs8 - Rd8

OR.W #xx:16,Rd

Rd16 V #xx:16 -~ Rd16

OR.W Rs,Rd

Rd16 V Rs16 - Rd16

OR.L #xx:32,ERd

ERd32 V #xx:32 -~ ERd32

OR.L ERs,ERd

ERd32 V ERs32 - ERd32

XOR

XOR.B #xx:8,Rd

Rd8[#xx:8 —~ Rd8

XOR.B Rs,Rd

Rd80Rs8 - Rd8

XOR.W #xx:16,Rd

Rd160#xx:16 - Rd16

XOR.W Rs,Rd

Rd1600Rs16 ~ Rd16

XOR.L #xx:32,ERd

ERd320#xx:32 - ERd32

XOR.L ERs,ERd

ERd320ERs32 - ERd32

NOT

NOT.B Rd

-Rd8 - Rd8

NOT.W Rd

- Rd16 -~ Rd16

NOT.L ERd

rls|lo|r|r|s|s|o|o|r|ris|s|o|lo|r|ris|s|o|lw

NN N B

- Rd32 - Rd32

o|lojlo|jlo|o|lo|lo|lo|o|0O|0O|l0O|lO|0O|O|0O|O|O|O|O|O|L

NININIBRIOINIBININIBRIOINIBININIAIDINIAININ

NININIBRIOINIBININIBRIOINIBININIAIDINIAININ

193

Table 2-2 Instruction Set (cont)

(4) Shift Instructions

Addressing Mode and Instruction Length (bytes)

Condition Code

No. of States

Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@-ERn @aa @(d,PC) @@aa — Operation H N ZV Normal ée(ijnced
SHAL SHALBRd 2 —— 1t 2 2
SHAL.W Rd w 2 @0 — — 1 ot 1 2 2
SHAL.L ERd L 2 ¢ MsB LSB — 1 2 2
SHAR SHAR.BRd B 2) 2 2
SHAR.W Rd w 2 ’—T F~[] ==+ o 2 2
SHAR.L ERd L 2 MSB LsB C _—_— 1 10 2 2
SHLL SHLL.BRd B 2 —— 110 2 2
SHLL.W Rd w 2 @0 —— 1 10 2 2
SHLL.L ERd L 2 C MsB LSB —— 1 10 2 2
SHLR SHLR.BRd B 2 —— 1t 0 2 2
SHLR.W Rd w 2 0@ —— 1 10 2 2
SHLR.L ERd L 2 MSB LB C 4 o0 2 2
ROTXL ROTXL.BRd B 2 —— 1 10 2 2
ROTXL.W Rd w 2 LD<—| |<J —— 110 2 2
ROTXL.L ERd L 2 C MsB LSB —— 1 10 2 2
ROTXR ROTXR.BRd B 2 —— 1 10 2 2
RoTXR W R TR T T R o S N
ROTXR.L ERd L 2 MsB Lkse ¢ _ _ 4y 10 2 2
ROTL ROTL.BRd B 2 —— 1 10 2 2
ROTL.W Rd w 2 D<J-| |<J —— 110 2 2
ROTL.L ERd L 2 c M™sB LSB —— 1 :0 2 2
ROTR ROTR.BRd B 2 —— 1 10 2 2
ROTR.W Rd w 2 L>| M —— 110 2 2
ROTR.L ERd L 2 mSB LsB € _ _ 1 10 2 2

194

Table 2-2 Instruction Set (cont)

(5) Bit Manipulation Instructions

Addressing Mode and Instruction Length (bytes)

Condition Code

No. of States

Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@-ERn @aa @(d,PC) @@aa — Operation I H N Z V C Normal ée(ijnced
BSET BSET #xx:3,Rd B 2 (#xx:3of R -2 = = — — — — 2 2
BSET #xx:3,@ERd B 4 #x3of @ERd) -1 0 = = — — — — 8 8
BSET #xx:3,@aa:8 B 4 (#xx:3 of @aa:8)-1 0 = = — — — — 8 8
BSET Rn,Rd B 2 (Rn8 of RA)~1 = = — — — — 2 2
BSET Rn,@ERd B 4 (Rn8 of @ERd) -1 — — — — — — 8 8
BSET Rn,@aa:8 B 4 (Rn8 of @aa:8)~1 = = — — — — 8 8
BCLR BCLR #xx:3,Rd B 2 (#xx:3of RdAB)~-0 - = — — — — 2 2
BCLR #xx:3,@ERd B 4 (#xx:3of @QERd)-0 = — — — — — 8 8
BCLR #xx:3,@aa:8 B 4 (#xx:3 of @aa:8)-0 000 = = — — — — 8 8
BCLR Rn,Rd B 2 (Rn8 of RAB)~0 — = — — — — 2 2
BCLR Rn,@ERd B 4 (Rn8 of @ERd)-0 = — — — — — — 8 8
BCLR Rn,@aa:8 B 4 (Rn8 of @aa:8)-0 0 = = — — — — 8 8
BNOT BNOT #xx:3,Rd B 2 (#xx:3 of Rd8) — = (#xx:30f RdAB) ~ @ — — — — — — 2 2
BNOT #xx:3, @ERd B 4 (#xx:3 of @ERd) - ~ (#xx:30f = — — — — — — 8 8
@ERd)
BNOT #xx:3,@aa:8 B 4 (#xx:3 of @aa:8) — - (#xx:3 of @aa:8) — — — — — — 8 8
BNOT Rn,Rd B 2 (Rn8 of Rd8) = (RN8 0f RA) = — — — — — — 2 2
BNOT Rn,@ERd B 4 (Rn8 of @ERd) - ~(Rn8 of @ERd) ~ — — — — — — 8 8
BNOT Rn,@aa:8 B 4 (Rn8 of @aa:8) — — (Rn8 of @aa:8) — — — — — — 8 8
BTST BTST #xx:3,Rd B 2 (#xx:3 of Rd8) ~Z _—_ =t — — 2 2
BTST #xx:3,@ERd B 4 (#xx:3 of @ERd) - Z —_— —1 — — 6 6
BTST #xx:3,@aa:8 B 4 (#xx:3 of @aa:8)~Z —— — 1t — — 6 6
BTST Rn,Rd B 2 (Rn8 of Rd8) - Z _—— — 1t —— 2 2
BTST Rn,@ERd B 4 (Rn8 of @ERd) ~Z —_— —t — — 6 6
BTST Rn,@aa:8 B 4 (Rn8 of @aa:8)-Z —— —t — — 6 6
BLD BLD #xx:3,Rd B 2 (#xx:3of RAB)-C = = = — — — 2 2
BLD #xx:3,@ERd B 4 (#xx:3 of @ERd)-C = — = — — — 1 6 6
BLD #xx:3,@aa:8 B 4 (#xx:3 of @aa:8)~.C = — = — — — 1 6 6
BILD BILD #xx:3,Rd B 2 - (#xx30fRdB)~-C = = = = — — H 2 2
BILD #xx:3,@ERd B 4 - (#xx:3 of @ERd24)-.C = o— — — — — 1 6 6
BILD #xx:3,@aa:8 B 4 - (#xx:3 of @aa:8)-C = — = — — — 16 6

195

Table 2-2 Instruction Set (cont)

(5) Bit Manipulation Instructions

Addressing Mode and Instruction Length (bytes)

Condition Code

No. of States

Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@-ERn @aa @(d,PC) @@aa — Operation I H N Z V C Normal ée(ijnced
BST BST #xx:3,Rd B 2 C-@#xx3ofRd® === @ — = — — — — 2 2
BST #xx:3,@ERd B 4 Co(#xx3of @ERd24) === — — — — — — 8 8
BST #xx:3,@aa:8 B 4 C-(#xx3of@aa8) == — = = = — — 8 8
BIST BIST #xx:3,Rd B 2 /IC~(#xx:30fRdB) = == = = — — 2 2
BIST #xx:3,@ERd B 4 /IC - (#xx:3 of @ERd24) == 00— — — — — — 8 8
BIST #xx:3,@aa:8 B 4 /IC-(#xx3of @aa8) == — — — — — — 8 8
BAND BAND #xx:3,Rd B 2 CA(#xx:3of RA)-C = — — — — — 2 2
BAND #xx:3,@ERd B 4 CA@#xx:3 of @ERd24)-.C = — — — — — b 6 6
BAND #xx:3,@aa:8 B 4 CA@#xx:3 of @aa:8)-C == — — — — — 1 6 6
BIAND BIAND #xx:3,Rd B 2 CA- (f##xx:3 of RdB)-C = — — — — — T2 2
BIAND #xx:3,@ERd B 4 CA- (/#xx:3 of @ERd24)-.C ~ — — — — — H 6 6
BIAND #xx:3,@aa:8 B 4 CA- (/#xx:3 of @aa:8)-C == — — — — — t 6 6
BOR BOR #xx:3,Rd B 2 CV (#xx:3of RdB)-.C = @ — — — — — T2 2
BOR #xx:3,@ERd B 4 CV (#xx:3 of @ERd24)-.C = — — — — — H 6 6
BOR #xx:3,@aa:8 B 4 CV (#xx:3 of @aa:8)-C = — — — — — 1t 6 6
BIOR BIOR #xx:3,Rd B 2 CV ~#xx30fRdB)-C == @ — — — — — 12 2
BIOR #xx:3,@ERd B 4 CV ~(#xx:3 of @ERd24).C = — — — — — H 6 6
BIOR #xx:3,@aa:8 B 4 CV ~(#xx:3 of @aa:8)-C = — — — — — 6 6
BXOR BXOR #xx:3,Rd B 2 CcO #xx30ofRdB)-C === — — — — — 12 2
BXOR #xx:3,@ERd B 4 C O (#xx:3 of @ERd24)~.C = — — — — — H 6 6
BXOR #xx:3,@aa:8 B 4 C O (#xx:3 of @aa:8)-C == @ — — — — — 1 6 6
BIXOR BIXOR #xx:3,Rd B 2 CO~#xx3ofRd8)-C = @ — — — — — 12 2
BIXOR #xx:3, @ERd B 4 C 0 ~(#xx:3 of @ERd24).C = — — — — — b 6 6
BIXOR #xx:3,@aa:8 B 4 C O ~#xx:3 of @aa:8)-C ~ — — — — — 1 6 6

196

(6) Branch Instructions

Addressing Mode and Instruction Length (bytes) Condition Code No. of States
Branch Ad-
Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@-ERn @aa @(d,PC) @@aa — Operation condition I H N Z V C Normal vanced
Bcce BRA d:8(BTd:8) — 2 if condition is true then Always ~ — — — — — — — 4 4
BRA d:16(BTd:16) — 4 PC-PC+d = = — — — — 6 6
BRN d:8(BFd:8) — 2 else next; Never ~ @o— — — — — — 4 4
BRN d:16(BFd:16) — 4 6 6
BHI d:8 — 2 cvz=0 — — — —— — 4 4
BHI d:16 — a 6 6
BLS d:8 — 2 cvz=1 — — — — — — 4 4
BLS d:16 — 4 6 6
BCC d:8(BHS d:8) — 2 c=0 - = — == — 4 4
BCC d:16(BHS d:16) — 4 6 6
BCS d:8(BLO d:8) — 2 c=1 | - = = == — 4 4
BCS d:16(BLO d:16) — 4 6 6
BNE d:8 — 2 zZ=0 @ —— = — — 4 4
BNE d:16 — 4 6 6
BEQ d:8 — 2 z=1 - _ 4 4
BEQ d:16 — 4 6 6
BVC d:8 — 2 v=0 | - = — —— — 4 4
BVC d:16 — a 6 6
BVS d:8 — 2 v=1 - - —— 4 4
BVS d:16 — 4 6 6
BPL d:8 — 2 N=O = - - — —— 4 4
BPL d:16 — 4 6 6
BMI d:8 — 2 N=1 = - - — — — 4 4
BMI d:16 — 4 6 6
BGE d:8 — 2 NOV=0 — — — — — — 4 4
BGE d:16 — 4 6 6
BLT d:8 — 2 NOV=1 — — — — — — 4 4
BLT d:16 — 4 6 6
BGT d:8 — 2 ZV(NOV)=0 — — — — — — 4 4
BGT d:16 — 4 6 6
BLE d:8 — 2 ZVNOV)=1 — — — — — — 4 4
BLE d:16 — 4 6 6
JMP JMP @ERnN — PC.ERRn 4 4
IMP @aa:24 — PCcaa2z4 = = = — — — 6 6
JMP @@aa:8 — PC-@aa8 = = — — — — 8 10

197

Table 2-2 Instruction Set (cont)

(6) Branch Instructions

Addressing Mode and Instruction Length (bytes)

Condition Code

No. of States

Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@-ERn @aa @(d,PC) @@aa — Operation CB(;iz(i:tri]on I H N Z V C Normal C:nced
BSR BSR d:8 — 2 PC-@-SPPC-PC+d8 = = — — — — — — 6 8
BSR d:16 — 4 PC- @-SPPC.-PC+d:16 ~ — — — — — — 8 10
JSR JSR @ERn — PC-@-SPPC-ERN === — — — — — — 6 8
JSR @aa:24 — PC-@-sPPC~aa24 === — — — — — — 8 10
JSR @@aa:8 — PC-@-SPPC-@aa8 = — — — — — — 8 12
RTS RTS — 2 PC-@SP+ = = — — — — 8 10
(7) System Control Instructions
Addressing Mode and Instruction Length (bytes) Condition Code No. of States
Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@-ERn @aa @(d,PC) @@aa — Operation I H N Z V C Normal C:nced
TRAPA TRAPA #x:2 — 2 PC- @-SP,CCR-@-SP, O - — —— — 14 14
<vector> —» PC
RTE RTE — CCR -~ @SP+,PC - @SP+ t 1t ottt 1 10 10
SLEEP SLEEP — Transition to power-down state =~~~ = — — — — — — 2 2
LDC LDC #xx:8,CCR B #xx:8 - CCR Tttt 2 2
LDC Rs,CCR B Rs8 - CCR Tt oottt 2 2
LDC @ERs,CCR w @ERs - CCR t 1t ottt t 6 6
LDC @(d:16,ERs),CCR W 6 @(d:16,ERs) - CCR t ot ottt ot 8 8
LDC @(d:16,ERs),CCR W 10 @(d:24,ERs) - CCR tot oot ot 12 12
LDC @ERs+,CCR W @ERs - CCR,ERs32+2 - ERs32 A T T 8 8
LDC @aa:16,CCR W @aa:16 - CCR t ottt ot 8 8
LDC @aa:24,CCR w @aa:24-CCR t ot ot ot ot ot 10 10
STC STC CCR,Rd B CCR-Rd8 = = = — — — 2 2
STC CCR,@ERd W CCR-@ERd = == = = — — 6 6
STC CCR,@(d:16,ERs) W 6 CCR-@(d:16,ERs24) = — — — — — — 8 8
STC CCR,@(d:24,ERs) W 10 CCR-@(d:24ERs24) === @ — — — — — — 12 12
STC CCR,@-ERs W ERd32-2 .ERd24,CCR-@ERd24 ~~ — — — — — — 8 8
STC CCR,@aa:16 W CCR-@aa:16 == = —— — 8 8
STC CCR,@aa:24 w CCR-@aa24 == == = —— — 10 10
ANDC ANDC #xx:8,CCR B CCR N#xx:8 - CCR I T T 2 2
ORC ORC #xx:8,CCR B CCR V#xx:8 -CCR Tt oottt 2 2
XORC XORC #xx:8,CCR B CCR[#xx:8 - CCR Tt ottt 2 2
NOP NOP — 2 PC-PC+2 —t - —— — 2 2

198

Table 2-2 Instruction Set (cont)

(8) Block Transfer Instructions

Addressing Mode and Instruction Length (bytes) Condition Code No. of States
Ad-
Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@-ERn @aa @(d,PC) @@aa — Operation I H N Z V C Normal vanced
EEPMOV EEPMOV.B — 4 ifR4L£0 == = = — — 8+4n*2 8+4n*2
Repeat @R5 - @R6
R5+1-R5
R6+1 - R6
R4L-1-RA4L
Until R4L =0
else next;
EEPMOV.W — 4 fR4#0 D - = 8+4n*2 8+4n*2
Repeat @R5 -~ @R6
R5+1-R5
R6+1-R6
R4L-1-R4L
UntilR4 =0

else next;

Notes: *1 The number of states is the number of states required for execution when the instruction and its operands are located in
on-chip memory. For other cases see section 2.6, Number of States Required for Execution.
n is the value set in register R4L or R4.

*
N

Set to 1 when a carry or borrow occurs at bit 11; otherwise cleared to 0.

Set to 1 when a carry or borrow occurs at bit 27; otherwise cleared to 0.

Retains its previous value when the result is zero; otherwise cleared to 0.

Set to 1 when the adjustment produces a carry; otherwise retains its previous value.

The number of states required for execution of an instruction that transfers data in synchronization with the E clock is
variable.

Set to 1 when the divisor is negative; otherwise cleared to 0.

Set to 1 when the divisor is zero; otherwise cleared to 0.

Set to 1 when the quotient is negative; otherwise cleared to 0.

®OO O®OOO

199

2.4 Instruction Codes

Table 2-3 Instruction Codes
Instruction Mnemonic Size Instruction Format
1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte
ADD ADD.B #xx:8,Rd B 8 rd IMM
ADD.B Rs,Rd B 0 8 rs rd
ADD.W #xx:16,Rd W 7 9 1 rd IMM
ADD.W Rs,Rd W 0 9 s rd
ADD.L #xx:32,ERd L 7 A 1 :0:erd IMM
ADD.L ERs,ERd L | 0 i A |tiers (0ierd
ADDS ADDS #1,ERd L 0 B 0 :0:erd
ADDS #2,ERd L | o:iB | 8 0erd
ADDS #4,ERd L 0 B 9 :0:erd
ADDX ADDX #xx:8,Rd B 9 rd IMM
ADDX Rs,Rd B 0 E rs rd
AND AND.B #xx:8,Rd B E rd IMM
AND.B Rs,Rd B 1 6 s rd
AND.W #xx:16,Rd w 7 9 6 rd IMM
AND.W Rs,Rd w 6 6 rs : rd
AND.L #xx:32,ERd L 7 A 6 :0:erd IMM
AND.L ERs,ERd L 0 1 F 0 6 6 |[O:ers :0:erd
ANDC ANDC #xx:8,CCR B | o 6 IMM -
BAND BAND #xx:3,Rd B 7 6 |0:IMM rd
BAND #xx:3,@ERd B 7 C |O:erd 0 7 6 0:IMM 0
BAND #xx:3,@aa:8 B 7 E abs 7 6 0:IMM 0
Bcc BRA d:8 (BT d:8) — 4 0 disp
BRA d:16 (BT d:16) — 5 8 0 0 disp
BRN d:8 (BF d:8) — a4 1 disp \
BRN d:16 (BF d:16) — 5 8 1 0 disp
BHI d:8 — 4 2 disp ‘
BHI d:16 — 5 8 2 0 disp
BLS d:8 — | 4 i3 disp \
BLS d:16 — 5 8 3 0 disp
BCC d:8 (BHS d:8) — a4 4 disp \
BCC d:16 (BHS d:16) — 5 8 4 0 disp
BCS d:8 (BLO d:8) — a5 disp ‘

200

Table 2-3 Instruction Codes (cont)

Instruction Format

Instruction Mnemonic Size
1st byte 2nd byte 3rd byte ‘ 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

Bcc BCS d:16 (BLO d:16) — 5 8 5 0 disp

BNE d:8 — a4 ts disp |

BNE d:16 — 5 8 6 0 disp

BEQ d:8 — |4 7 disp \

BEQ d:16 — s i8] 7 0 disp

BVC d:8 — |4 i disp \

BVC d:16 —_ s i8] s 0 disp

BVS d:8 — | 4 i o disp \

BVS d:16 — | s i8] o 0 disp

BPL d:8 — | 4 i A disp \

BPL d:16 — s i8] a 0 disp

BMI d:8 — |4 78 disp \

BMI d:16 — |5 i8] B 0 disp

BGE d:8 — |4 ¢ disp \

BGE d:16 — | s i8] c 0 disp

BLT d:8 — 4 D disp ‘

BLT d:16 — | s i8] D 0 disp

BGT d:8 — |4 i E disp \

BGT d:16 — 5 8 E 0 disp

BLE d:8 — |4 i F disp \

BLE d:16 — | s i8] F 0 disp
BCLR BCLR #xx:3,Rd B | 7 i 2 |oimMvm:

BCLR #xx:3,@ERd B | 7 : D |olerd: O 7 0 2 |oiMM: o0

BCLR #xx:3,@aa:8 B | 7 : F abs 7 i 2 |oiMM: 0

BCLR Rn,Rd B 6 2 m rd

BCLR Rn,@ERd B | 7 : D |oerd: O 6 . 2 m 0

BCLR Rn,@aa:8 B 7 F abs 6 2 m 0
BIAND BIAND #xx:3,Rd B | 7 : 6 |LiMM:

BIAND #xx:3, @ERd B | 7 : C |oerd: O 7 6 |LiIMM: 0

BIAND #xx:3,@aa:8 B | 7 : E abs 76 |LiIMM: 0
BILD BILD #xx:3,Rd B | 7 : 7 |[1imMm:

BILD #xx:3,@ERd B | 7 : C |oerd: O 7 07 |1iMMm: o

BILD #xx:3,@aa:8 B | 7 i E abs 7 57 |timmi o

201

Table 2-3 Instruction Codes (cont)

Instruction Format

Instruction Mnemonic Size
1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

BIOR BIOR #xx:3,Rd B 7 4 |1:IMM rd

BIOR #xx:3,@ERd B 7 C |O:erd 0 7 4 1:IMM 0

BIOR #xx:3,@aa:8 B 7 E abs 7 4 1:MM 0
BIST BIST #xx:3,Rd B 6 7 |1:IMM rd

BIST #xx:3,@ERd B 7 D |O:erd 0 6 7 1:IMM 0

BIST #xx:3,@aa:8 B 7 F abs 6 7 1:MM: 0
BIXOR BIXOR #xx:3,Rd B 7 5 [1:IMM rd

BIXOR #xx:3,@ERd B 7 C |O:erd 0 7 5 1:IMM 0

BIXOR #xx:3,@aa:8 B 7 E abs 7 5 1:iMM: 0
BLD BLD #xx:3,Rd B 7 7 |0:IMM rd

BLD #xx:3,@ERd B 7 C |O:erd 0 7 7 0:IMM 0

BLD #xx:3,@aa:8 B 7 E abs 7 7 |0:IMM: 0
BNOT BNOT #xx:3,Rd B 7 1 |0:IMM rd

BNOT #xx:3,@ERd B 7 D |O:erd 0 7 1 0:IMM 0

BNOT #xx:3,@aa:8 B 7 F abs 7 1 0:IMM 0

BNOT Rn,Rd B 6 1 m rd

BNOT Rn,@ERd B 7 D |O:erd 0 6 1 m 0

BNOT Rn,@aa:8 B 7 F abs 6 1 m 0
BOR BOR #xx:3,Rd B 7 4 |0:IMM rd

BOR #xx:3,@ERd B 7 C |O:erd 0 7 4 0:IMM 0

BOR #xx:3,@aa:8 B 7 E abs 7 4 0:IMM 0
BSET BSET #xx:3,Rd B 7 0 |0:IMM rd

BSET #xx:3,@ERd B 7 D |O:erd 0 7 0 0:IMM 0

BSET #xx:3,@aa:8 B 7 F abs 7 0 0:IMM 0

BSET Rn,Rd B 6 0 m rd

BSET Rn,@ERd B 7 D |0:erd 0 6 0 m 0

BSET Rn,@aa:8 B 7 F abs 6 0 m 0
BSR BSR d:8 — 5 5 disp

BSR d:16 — 5 C 0 : 0 disp
BST BST #xx:3,Rd B 6 7 |0:IMM rd

BST #xx:3,@ERd B 7 D |[O:erd 0 6 7 0:IMM 0

BST #xx:3,@aa:8 B 7 F abs 6 7 0:IMM 0

202

Table 2-3 Instruction Codes (cont)

Instruction Mnemonic Size Instruction Format
1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte
BTST BTST #xx:3,Rd B 7 3 |0:IMM rd
BTST #xx:3,@ERd B 7 C |O:erd 0 7 3 0:IMM 0
BTST #xx:3,@aa:8 B 7 E abs 7 3 0:IMM 0
BTST Rn,Rd B 6 3 m rd
BTST Rn,@ERd B 7 C |0:erd 0 6 3 m 0
BTST Rn,@aa:8 B 7 E abs 6 3 m 0
BXOR BXOR #xx:3,Rd B 7 5 |0:IMM rd
BXOR #xx:3,@ERd B 7 C |O:erd 0 7 5 0:IMM 0
BXOR #xx:3,@aa:8 B 7 E abs 7 5 [0:/IMM: O
CMP CMP.B #xx:8,Rd B A rd IMM
CMP.B Rs,Rd B 1 C s rd
CMP.W #xx:16,Rd W 7 9 2 rd IMM
CMP.W Rs,Rd w 1 D s rd
CMP.L #xx:32,ERd L 7 A 2 0:erd IMM
CMP.L ERs,ERd L 1 F |l:ers :0:erd
DAA DAA Rd B 0 F 0 rd
DAS DAS Rd B 1 F 0 rd
DEC DEC.B Rd B 1 A 0 rd
DEC.W #1,Rd w 1 B 5 rd
DEC.W #2,Rd W 1 B D rd
DEC.L #1,ERd L 1 B 7 :0:erd
DEC.L #2,ERd L 1 B F :0:erd
DIVXS DIVXS.B Rs,Rd B 0 1 D 0 5 s rd
DIVXS.W Rs,ERd w 0 1 D 0 5 3 rs :0:erd
DIVXU DIVXU.B Rs,Rd B 5 1 rs rd
DIVXU.W Rs,ERd W 5 3 s 0:erd
EEPMOV EEPMOV.B — 7 B 5 C 5 9 8 F
EEPMOV.W — 7 B D 4 5 9 8 F
EXTS EXTS.W Rd W 1 7 D rd
EXTS.L ERd L 1 7 F :O:erd
EXTU EXTU.W Rd w 1 7 5 rd
EXTU.L ERd L 1 7 7 :0:erd
INC INC.B Rd B 0 A 0 rd
INC.W #1,Rd w 0 B 5 rd
INC.W #2,Rd W 0 B D rd

203

Table 2-3 Instruction Codes (cont)

Instruction Format

Instruction Mnemonic Size
1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte
INC INC.L #1,ERd L 0 B 7 0'erd
INC.L #2,ERd L 0 B F 0:erd
IMP JMP @ERn — | 5 9 |oem i 0
JMP @aa:24 — 5 A abs
IJMP @@aa:8 — 5 B abs
JSR JSR @ERnN — 5 D |0:em 0
JSR @aa:24 — 5 E abs
JSR @@aa:8 — 5 F abs
LDC LDC #xx:8,CCR B 0 7 IMM
LDC Rs,CCR B 0 3 0 rs
LDC @ERSs,CCR W 0 1 4 0 6 9 0'ers . 0
LDC @(d:16,ERs),CCR W 0 1 4 0 6 F |O:ers 0 disp
LDC @(d:24,ERs),CCR W 0 1 4 0 7 8 O:ers: O 6 B 2 0 0 0 disp
LDC @ERs+,CCR W 0 1 4 0 6 D 0:ers 0
LDC @aa:16,CCR W 0 1 4 0 6 B 0 0 abs
LDC @aa:24,CCR W 0 1 4 0 6 B 2 0 0 0 abs
MOV MOV.B #xx:8,Rd B F rd IMM
MOV.B Rs,Rd B 0 c rs i ord
MOV.B @ERs Rd B | 6 : 8 |oers: rd
MOV.B @(d:16,ERs),Rd B 6 E |O‘ers : rd disp
MOV.B @(d:24,ERs),Rd B 7 8 [0ers i O 6 A 2 rd 0 0 disp
MOV.B @ERs+,Rd B 6 C |O:ers : rd
MOV.B @aa:8,Rd B 2 rd abs
MOV.B @aa:16,Rd B 6 A 0 rd abs
MOV.B @aa:24,Rd B 6 A 2 rd 0 0 abs
MOV.B Rs,@ERd B 6 8 |1erd : rs
MOV.B Rs,@(d:16,ERd) B 6 E |lierd i rs disp
MOV.B Rs,@(d:24,ERd) B 7 8 |0ierd i O 6 A A rs 0 0 disp
MOV.B Rs,@—-ERd B 6 C |l:erd i rs
MOV.B Rs,@aa:8 B 3 rs abs
MOV.B Rs,@aa:16 B 6 A 8 . rs abs
MOV.B Rs,@aa:24 B 6 A A s 0 0 abs
MOV.W #xx:16,Rd w 7 9 0 rd IMM
MOV.W Rs,Rd W 0 D s rd
MOV.W @ERs,Rd w 6 9 |0:ers rd

204

Table 2-3 Instruction Codes (cont)

Instruction Format

Instruction Mnemonic Size
1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte ' 7th byte 8th byte 9th byte 10th byte
MOV MOV.W @(d:16,ERs),Rd w 6 Oiers | rd disp ’
MOV.W @(d:24,ERs),Rd w 7 8 |oiers i 0 6 ' B 2 rd 0 : 0 disp
MOV.W @ERs+,Rd w | 6 D |0iers : rd
MOV.W @aa:16,Rd w 6 B 0 rd abs
MOV.W @aa:24,Rd w 6 B 2 rd 0 0 abs
MOV.W Rs,@ERd w 6 9 |lierd : rs
MOV.W Rs,@(d:16,ERd) w 6 F |1ierd DS disp
MOV.W Rs,@(d:24,ERd) w 7 8 |1ierd ;0 6 B A s 0 0 disp
MOV.W Rs,@-ERd w 6 D |lierd i rs
MOV.W Rs,@aa:16 W 6 B 8 rs abs
MOV.W Rs,@aa:24 w 6 B A s 0 0 abs
MOV.L #xx:32,Rd L 7 A 0 0:erd IMM
MOV.L ERs,ERd L 0 F |1:ers :0'‘erd
MOV.L @ERSs,ERd L 0 1 0 0 6 : 9 |0iersiO:erd
MOV.L @(d:16,ERs),ERd L 0 1 0 0 6 F |oiers :0:erd disp
MOV.L @(d:24,ERs),ERd L 0 1 0 0 7 8 |[0iers: 0O 6 B 2 :0:erd| O : O disp
MOV.L @ERs+,ERd L 0 1 0 0 6 : D |0iers:0:erd
MOV.L @aa:16,ERd Lo i1 0 0 6 | B 0 i0ierd abs
MOV.L @aa:24,ERd L 0 1 0 0 6 B 2 0ierd| O © O abs
MOV.L ERs,@ERd L 0 1 0 0 6 9 1lierd :0:ers
MOV.L ERs,@(d:16,ERd) L 0 1 0 0 6 F [1ierd :0: ers disp
MOV.L ERs,@(d:24,ERd) L 0 1 0 0 7 8 |0ierd 0 6 B A :0O:ers| 0 : O disp
MOV.L ERs,@—-ERd L 0 1 0 0 6 D |l:ierd:0:ers
MOV.L ERs,@aa:16 L 0 1 0 0 6 B 8 :0:ers abs
MOV.L ERs,@aa:24 L]oi1]o 0 6 I B A 0iers| 0 : 0 abs
MOVFPE MOVFPE @aa:16,Rd B 6 A 4 rd abs
MOVTPE MOVTPE Rs,@aa:16 B 6 A C rs abs
MULXS MULXS.B Rs,Rd B 0 1 C 0 5 0 rs rd
MULXS.W Rs,ERd W 0 1 C 0 5 2 rs 0:erd
MULXU MULXU.B Rs,Rd B 5 0 rs rd
MULXU.W Rs,ERd w 5 2 rs :0:erd
NEG NEG.B Rd B 1 7 8 rd
NEG.W Rd w 1 7 9
NEG.L ERd L 1 7 B :0:erd
NOP NOP — 0 0 0 0

205

Table 2-3 Instruction Codes (cont)

Instruction Mnemonic Size Instruction Format
1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte
NOT NOT.B Rd B 1 7 0 : rd
NOT.W Rd W 1 7 1 rd
NOT.L ERd L 1 7 3 i0lerd
OR OR.B #xx:8,Rd B C rd IMM
OR.B Rs,Rd B 1 4 s rd
OR.W #xx:16,Rd w 7 9 4 rd IMM
OR.W Rs,Rd w 6 4 rs : rd
OR.L #xx:32,ERd L 7 A 4 :0:erd IMM
OR.L ERs,ERd L 0 1 F : 0 6 4 |0:ers:0:ers
ORC ORC #xx:8,CCR B 0 4 IMM
POP POP.W Rn W 6 D 7 m
POP.L ERn L 0 1 0 0 6 D 7 :0:em
PUSH PUSH.W Rn W 6 D F m
PUSH.L ERn L 0 1 0 0 6 D F :0:em
ROTL ROTL.B Rd B 1 2 8 rd
ROTL.W Rd W 1 2 9 rd
ROTL.L ERd L 1 2 B 0:erd
ROTR ROTR.B Rd B 1 3 8 rd
ROTR.W Rd W 1 3 9 rd
ROTR.L ERd L 1 3 B 0:erd
ROTXL ROTXL.B Rd B 1 2 0 rd
ROTXL.W Rd W 1 2 1 rd
ROTXL.L ERd L 1 2 3 0:erd
ROTXR ROTXR.B Rd B 1 3 0 rd
ROTXR.W Rd w 1 3 1 rd
ROTXR.L ERd L 1 3 3 0:erd
RTE RTE — 5 6 7 0
RTS RTS — 5 4 7 0
SHAL SHAL.B Rd B 1 0 8 rd
SHAL.W Rd W 1 0 9 rd
SHAL.L ERd L 1 0 B 0:erd
SHAR SHAR.B Rd B 1 1 8 rd
SHAR.W Rd w 1 1 9 rd
SHAR.L ERd L 1 1 B 0:erd

206

Table 2-3 Instruction Codes (cont)

Instruction Format

Instruction Mnemonic Size
1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte
SHLL SHLL.B Rd B 1 0 0 rd
SHLL.W Rd W 1 0 1 rd
SHLL.L ERd L 1 0 3 0:erd
SHLR SHLR.B Rd B 1 1 0 rd
SHLR.W Rd w 1 1 1 rd
SHLR.L ERd L 1 1 3 0:erd
SLEEP SLEEP — 0 1 8 0
STC STC CCR,Rd B 0 2 0 rd
STC CCR,@ERd w 0 1 4 0 6 9 1ierd 0
STC CCR,@(d:16,ERd) W 0 1 4 0 6 F 1l:erd 0 disp
STC CCR,@(d:24,ERd) W 0 1 4 0 7 8 O:erd: O 6 B A 0 0 0 disp
STC CCR,@-ERd w 0 1 4 0 6 D |l:erd 0
STC CCR,@aa:16 W 0 1 4 0 6 B 8 0 abs
STC CCR,@aa:24R W 0 1 4 0 6 B A 0 0 0 abs
SuB SUB.B Rs,Rd B 1 8 rs rd
SUB.W #xx:16,Rd w 7 9 3 rd IMM
SUB.W Rs,Rd W 1 9 s rd
SUB.L #xx:32,ERd L 7 A 3 0ierd IMM
SUB.L ERs,ERd L | 1 A |1iers i0ierd
SUBS SUBS #1,ERd L 1 B 0 :0:erd
SUBS #2,ERd L 1 B 8 0:erd
SUBS #4,ERd L 1 B 9 :0:erd
SUBX SUBKX #xx:8,Rd B B rd IMM
SUBX Rs,Rd B 1 E rs rd
TRAPA TRAPA #x:2 — 5 7 |00 IMM 0
XOR XOR.B #xx:8,Rd B D rd IMM
XOR.B Rs,Rd B 1 5 rs o
XOR.W #xx:16,Rd W 7 9 5 rd IMM
XOR.W Rs,Rd Y 6 5 s rd
XOR.L #xx:32,ERd L 7 A 4 0:erd IMM
XOR.L ERs,ERd L 0 1 0 6 5 |0:ers :0: erd
XORC XORC #xx:8,CCR B 0 5 IMM

207

Legend

IMM: Immediate data (2, 3, 8, 16, or 32 hits)

abs: Absolute address (8, 16, or 24 bits)

disp: Displacement (8, 16, or 24 bits)

rs, rd, rn: Register field (4 bits specifying an 8-bit or 16-bit register. rs corresponds to operand

symbols such as Rs, rd corresponds to operand symbols such as Rd, and rn
corresponds to the operand symbol Rn.)

ers, erd, ern: Register field (3 bits specifying a 32-bit register. ers corresponds to operand
symbols such as ERs, erd corresponds to operand symbols such as ERd, and ern
corresponds to the operand symbol ERn.)

The register fields specify general registers as follows.

Address Register

32-bit Register 16-bit Register 8-bit Register

Register General Register General Register General

Field Register Field Register Field Register

000 ERO 0000 RO 0000 ROH

001 ER1 0001 R1 0001 R1H

111 ER7 0111 R7 0111 R7H
1000 EO 1000 ROL
1001 E1 1001 R1L
1111 E7 1111 R7L

208

2.5 Operation Code Map

Tables 2-4 to 2-6 show an operation code map.

Table2-4 Operation Code Map (1)

Operation Code:

. — Instruction when most significant bit of BH is 0.

1st byte 2nd byte
-a——— [nstruction when most significant bit of BH is 1.
AH AL BH ‘ BL
AL
0 1 2 3 4 5 6 7 8 9 A B C D E F
AH

0 NOP Table 2-5 STC LDC ORG XORG ANDC LDC ADD Table 2-5 | Table 2-5 MoV ADDX | Table 2-5
1 Table 2-5 | Table 2-5 | Table 2-5 | Table 2-5 OR.B XOR.B AND.B | Table2-5 | SUB.B ‘ SUB.W | Table 2-5 | Table 2-5 CMP SUBX Table 2-5
2

MOV.B
3
4 BRA BRN BHI BLS BCC BCS BNE BEQ BvVC BVS ‘ BPL ‘ BMI BGE BLT ‘ BGT ‘ BLE
5 MULXU DIVXU MULXU DIVXU RTS BSR RTE TRAPA | Table 2-5 JMP BSR JSR
6 ORW | xorw | Anow |BSToc MOV

BSET BNOT BCLR BTST
BOR BXOR BAND BLD

7 BIOR BIXOR BIAND BILD MOV ‘ Table 2-5 ‘ Table 2-5 ‘ EEPMOV ‘ Table 2-6
8 ADD
9 ADDX
A CMP
B SUBX
C OR
D XOR
E AND
F MOV

209

Table2-5 Operation Code Map (2)

Operation Code:
1st byte 2nd byte
AH ‘ AL BH ‘ BL
A i BHI ¢ 1 ‘ 2 ‘ 3 4 5 ‘ 6 ‘ 7 8 9 ‘ A ‘ B c D E F
01 MOV 1DC ¢ SLEEP Table 2-6 | Table 2-6 Table 2-6
0A INC ADD
0B ADDS ‘ INC ‘ ‘ INC ADDS ‘ ADDS ‘ ‘ INC ‘ ‘ INC
OF DAA MOV
10 SHLL SHLL SHAL SHAL
1 SHLR SHLR SHAR SHAR
12 ROTXL ROTXL ROTL ROTL
13 ROTXR ROTXR ROTR ROTR
1w NOT NOT ‘ EXTU ‘ ‘ EXTU NEG NEG ‘ EXTS ‘ ‘ EXTS
1A DEC SuB
1B SUBS ‘ DEC ‘ ‘ DEC SuB ‘ ‘ DEC ‘ ‘ DEC
1F DAS CMP
58 BRA BRN BHI BLS BCC BCS BNE BEQ BVC ‘ BVS ‘ BPL ‘ BMI ‘ BGE ‘ BLT ‘ BGT ‘ BLE
79 MoV ADD CMP SuB OR XOR AND
A MoV ADD CMP SuB OR XOR AND

210

Table2-6 Operation Code Map (3)

Operation Code:
1st byte 2nd byte 3rd byte 4th byte E:Instruction when most significant bit of DH is 0.
AH AL BH ‘ BL CH ‘ cL DH DL Instruction when most significant bit of DH is 1.
AHALBHBLCH 0 1 2 3 4 5 6 7 9 A B c D E F
01C05 MULXS MULXS
01D05 DIVXS DIVXS
01F06 OR XOR AND
7Cr06*1 BTST
1 BOR BXOR— |BAND— |BID
reor BIST BIOR BIXOR BIAND BILD
“ -
7Dr06 BSET BNOT BCLR BIST
D07 BSET | BNOT | BCLR
7Eaab BTST
2 BOR BXOR BAND BID
TEaal BTST BIOR BIXOR BIAND BILD
2 -
TFaab BSET BNOT BCLR BIST
7Faa7? BSET | BNOT | BCLR

Notes: 1. ris a register field.
2. aais an absolute address field.

211

2.6 Number of States Required for Instruction Execution

Thetables in this section can be used to calculate the number of states required for instruction
execution by the H8/300H CPU. Table 2-8 indicates the number of instruction fetch, data
read/write, and other cycles occurring in each instruction. Table 2-7 indicates the number of states
required for each size. The number of states required for execution of an instruction can be
calculated from these two tables as follows:

Execution states=1x § +JIx Sj+ KX S + L x S¢ + M x Sy + N x Sy

Examples: Advanced mode, stack located in external memory, on-chip supporting modules
accessed with 8-bit bus width, external devices accessed in three states with one wait state and 16-
bit bus width.

1. BSET #0, @FFFFC7:8
From table 2-8:
I=L=2, J=K=M=N=0
From table 2-7:
S =4, § =3
Number of states required for execution= 2x4+2x3=14
2. JSR @@30
From table 2-8:
I=J=K=2, L=M=N=0
From table 2-7:
S =5)=5=4

Number of statesrequired for execution= 2x4+2x4+2x4=24

212

Table2-7 Number of States per Cycle

Access Conditions

On-Chip Supporting External Device

Module 8-Bit Bus 16-Bit Bus

On-Chip 8-Bit 16-Bit 2-State 3-State 2-State 3-State
Cycle Memory Bus Bus Access Access Access Access
Instruction fetch S, 2 6 3 4 6+2m 2 3+m*
Branch address read S;
Stack operation Sk
Byte data access S, 3 2 3+m
Word data access Sy, 6 4 6+2m
Internal operation SN 1 1 1 1 1 1 1

Note: * For the MOVFPE and MOVTPE instructions, refer to the relevant microcontroller hardware manual.
Legend
m: Number of wait states inserted into external device access

213

Table 2-8 Number of Cyclesin Instruction Execution

Instruction

Mnemonic

Instruction
Fetch

Branch
Address Stack Byte Data Word Data Internal
Read Operation Access Access Operation

J K L M N

ADD

ADD.B #xx:8,Rd
ADD.B Rs,Rd
ADD.W #xx:16,Rd
ADD.W Rs,Rd
ADD.L #xx:32,ERd
ADD.L ERs,ERd

ADDS

ADDS #1/2/4,ERd

ADDX

ADDX #xx:8,Rd
ADDX Rs,Rd

AND

AND.B #xx:8,Rd
AND.B Rs,Rd
AND.W #xx:16,Rd
AND.W Rs,Rd
AND.L #xx:32,ERd
AND.L ERs,ERd

ANDC

ANDC #xx:8,CCR

BAND

BAND #xx:3,Rd
BAND #xx:3,@ERd
BAND #xx:3,@aa:8

Bcc

BRA d:8 (BT d:8)
BRN d:8 (BF d:8)
BHI d:8

BLS d:8

BCC d:8 (BHS d:8)
BCS d:8 (BLO d:8)
BNE d:8

BEQ d:8

BVC d:8

BVS d:8

BPL d:8

BMI d:8

BGE d:8

BLT d:8

BGT d:8

BLE d:8

BRA d:16 (BT d:16)
BRN d:16 (BF d:16)
BHI d:16

BLS d:16

BCC d:16 (BHS d:16)

NN NN DN NN RNDDNDDNDDNDNDNMNDDNDNDNDNDDNDNDNDNDNDNDDNDMNODDNDERRIN WOQRFRPDNPRPRPRP(P P[P WOPFPDNPR P

N NN NN

214

Table2-8 Number of Cyclesin Instruction Execution (cont)

Instruction

Mnemonic

Instruction
Fetch

Branch
Address
Read

Byte Data Word Data

Internal
Operation

J

N

Bcc

BCS d:16 (BLO d:16)
BNE d:16
BEQ d:16
BVC d:16
BVS d:16
BPL d:16
BMI d:16
BGE d:16
BLT d:16
BGT d:16
BLE d:16

N D NN NN DN DN DNDNDNDDN

BCLR

BCLR #xx:3,Rd
BCLR #xx:3,@ERd
BCLR #xx:3,@aa:8
BCLR Rn,Rd
BCLR Rn,@ERd
BCLR Rn,@aa:8

BIAND

BIAND #xx:3,Rd
BIAND #xx:3,@ERd
BIAND #xx:3,@aa:8

BILD

BILD #xx:3,Rd
BILD #xx:3,@ERd
BILD #xx:3,@aa:8

BIOR

BIOR #xx:8,Rd
BIOR #xx:8, @ERd
BIOR #xx:8,@aa:8

BIST

BIST #xx:3,Rd
BIST #xx:3,@ERd
BIST #xx:3,@aa:8

BIXOR

BIXOR #xx:3,Rd
BIXOR #xx:3,@ERd
BIXOR #xx:3,@aa:8

BLD

BLD #xx:3,Rd
BLD #xx:3,@ERd
BLD #xx:3,@aa:8

BNOT

BNOT #xx:3,Rd
BNOT #xx:3,@ERd
BNOT #xx:3,@aa:8
BNOT Rn,Rd
BNOT Rn,@ERd

N P NN EFPINDN PN EPRPINDNDNEPRPINDNEPRPINDNDNERPINDNDEREINDNDEDNDNDDNDEINDNDNDNDNDNDDNDNDDNDDNDNDN

215

Table2-8 Number of Cyclesin Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic J K L M N

BNOT BNOT Rn,@aa:8 2

BOR BOR #xx:3,Rd
BOR #xx:3,@ERd
BOR #xx:3,@aa:8

BSET BSET #xx:3,Rd
BSET #xx:3,@ERd
BSET #xx:3,@aa:8
BSET Rn,Rd
BSET Rn,@ERd
BSET Rn,@aa:8

BSR BSR d:8 Advanced

Normal

BSR d:16 Advanced

R IN|FP N

Normal

BST BST #xx:3,Rd
BST #xx:3,@ERd
BST #xx:3,@aa:8

BTST BTST #xx:3,Rd
BTST #xx:3,@ERd
BTST #xx:3,@aa:8
BTST Rn,Rd
BTST Rn,@ERd
BTST Rn,@aa:8

BXOR BXOR #xx:3,Rd
BXOR #xx:3,@ERd
BXOR #xx:3,@aa:8

CMP CMP.B #xx:8,Rd
CMP.B Rs,Rd
CMP.W #xx:16,Rd
CMP.W Rs,Rd
CMP.L #xx:32,ERd
CMP.L ERs,ERd

DAA DAA Rd

DAS DAS Rd

DEC DEC.BRd
DEC.W #1/2,Rd
DEC.L #1/2,ERd

DIVXS DIVXS.B Rs,Rd
DIVXS.W Rs,ERd

12
20

N NP P RPIRPIPIP ORP NRERINDNMPINNMENNRINMNNPRINININININNM P NMNRINND RN
=

216

Table2-8 Number of Cyclesin Instruction Execution (cont)

Instruction

Mnemonic

Instruction
Fetch

Branch
Address
Read

Stack
Operation

Byte Data Word Data
Access

Access

Internal
Operation

J

K

L

M

N

DIVXU

DIVXU.B Rs,Rd
DIVXU.W Rs,ERd

12
20

EEPMOV

EEPMOV.B
EEPMOV.W

2n+2*1
2n+2*1

EXTS

EXTS.W Rd
EXTS.L ERd

EXTU

EXTU.W Rd
EXTU.L ERd

INC

INC.B Rd
INC.W #1/2,Rd
INC.L #1/2,ERd

JMP

JMP @ERnN

JMP @aa:24

JMP @@aa:8

Advanced

Normal

JSR

JSR @ERn

Advanced

Normal

JSR @aa:24

Advanced

Normal

JSR @@aa:8

Advanced

Normal

P IN|FP NP |N

LDC

LDC #xx:8,CCR

LDC Rs,CCR

LDC @ERs,CCR

LDC @(d:16,ERs),CCR
LDC @(d:24,ERs),CCR
LDC @ERs+,CCR
LDC @aa:16,CCR
LDC @aa:24,CCR

[T = S S S

MoV

MOV.B #xx:8,Rd
MOV.B Rs,Rd

MOV.B @ERs,Rd
MOV.B @(d:16,ERs),Rd
MOV.B @(d:24,ERs),Rd
MOV.B @ERs+,Rd
MOV.B @aa:8,Rd
MOV.B @aa:16,Rd
MOV.B @aa:24,Rd
MOV.B Rs,@ERd
MOV.B Rs,@(d:16,ERd)

N P WO NP P BRADNPE R P ONOOODNDE RPRPINDDNDNNDNNININNNNERERPRIER PP EPRPIN NP P

PR R R R R R R R

217

Table2-8 Number of Cyclesin Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic | J K L M N

MOV MOV.B Rs,@(d:24,ERd)
MOV.B Rs,@-ERd
MOV.B Rs,@aa:8
MOV.B Rs,@aa:16
MOV.B Rs,@aa:24
MOV.W #xx:16,Rd
MOV.W Rs,Rd
MOV.W @ERs,Rd
MOV.W @(d:16,ERs),Rd
MOV.W @(d:24,ERs),Rd
MOV.W @ERs+,Rd
MOV.W @aa:16,Rd
MOV.W @aa:24,Rd
MOV.W Rs,@ERd
MOV.W Rs,@(d:16,ERd)
MOV.W Rs,@(d:24,ERd)
MOV.W Rs,@-ERd
MOV.W Rs,@aa:16
MOV.W Rs,@aa:24

N

L T S S e N N N T

MOV.L ERs,ERd

MOV.L @ERs,ERd
MOV.L @(d:16,ERs),ERd
MOV.L @(d:24,ERs),ERd
MOV.L @ERs+,ERd
MOV.L @aa:16,ERd
MOV.L @aa:24,ERd
MOV.L ERs,@ERd
MOV.L ERs,@(d:16,ERd)
MOV.L ERs,@(d:24,ERd)
MOV.L ERs,@-ERd
MOV.L ERs,@aa:16
MOV.L ERs,@aa:24

LASTN \C TR \C TR \ ST \C TR \C TR \C TR ST \C T \C T ST S

MOVFPE MOVFPE @:aa:16,Rd 1*2

MOVTPE MOVTPE Rs,@:aa:16 1*2

MULXS MULXS.B Rs,Rd
MULXS.W Rs,ERd

12
20

MULXU MULXU.B Rs,Rd
MULXU.W Rs,ERd

12

4
1
1
2
3
2
1
1
2
4
1
2
3
1
2
4
1
2
3

MOV.L #xx:32,ERd 3
1
2
3
5
2
3
4
2
3
5
2
3
4
2
2
2
2
1
1 20

218

Table2-8 Number of Cyclesin Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic | J K L M N

NEG NEG.B Rd
NEG.W Rd
NEG.L ERd

NOP NOP

NOT NOT.B Rd
NOT.W Rd
NOT.L ERd

OR OR.B #xx:8,Rd
OR.B Rs,Rd
OR.W #xx:16,Rd
OR.W Rs,Rd
OR.L #xx:32,ERd
OR.L ERs,ERd

ORC ORC #xx:8,CCR

POP POP.W Rn
POP.L ERn

PUSH PUSH.W Rn
PUSH.L ERn

N PN
N NN DN

ROTL ROTL.B Rd
ROTL.W Rd
ROTL.L ERd

ROTR ROTR.B Rd
ROTR.W Rd
ROTR.L ERd

ROTXL ROTXL.B Rd
ROTXL.W Rd
ROTXL.L ERd

ROTXR ROTXR.B Rd
ROTXR.W Rd
ROTXR.L ERd

RTE RTE

RTS RTS Advanced

Normal

SHAL SHAL.B Rd
SHAL.W Rd
SHAL.L ERd

SHAR SHAR.B Rd
SHAR.W Rd
SHAR.L ERd

B R R(RP R RINININP R RP R RRP R RIRP R RPRIEP RN RPIRPINORNR R R RIR|[R PR R

219

Table2-8 Number of Cyclesin Instruction Execution (cont)

Instruction

Mnemonic

Instruction
Fetch

Branch
Address
Read

Stack
Operation

Byte Data Word Data
Access Access

Internal
Operation

J

K

L M

N

SHLL

SHLL.B Rd
SHLL.W Rd
SHLL.L ERd

SHLR

SHLR.B Rd
SHLR.W Rd
SHLR.L ERd

SLEEP

SLEEP

STC

STC CCR,Rd

STC CCR,@ERd

STC CCR,@(d:16,ERd)
STC CCR,@(d:24,ERd)
STC CCR,@-ERd

STC CCR,@aa:16
STC CCR,@aa:24

[T T R =S S S

suB

SUB.B Rs,Rd
SUB.W #xx:16,Rd
SUB.W Rs,Rd
SUB.L #xx:32,ERd
SUB.L ERs,ERd

SUBS

SUBS #1/2/4,ERd

SUBX

SUBX #xx:8,Rd
SUBX Rs,Rd

TRAPA

TRAPA #x:2 Advanced

Normal

XOR

XOR.B #xx:8,Rd
XOR.B Rs,Rd
XOR.W #xx:16,Rd
XOR.W Rs,Rd
XOR.L #xx:32,ERd
XOR.L ERs,ERd

XORC

XORC #xx:8,CCR

RPN W R NP RININRPR RPRIRP[P O R NMRERAMONOO®ONR[RPIPR R RIR R R

220

2.7 Condition Code Modification

This section indicates the effect of each CPU instruction on the condition code. The notation used
in the table is defined bel ow.

m: 31 for longword operands, 15 for word operands, 7 for byte operands
Si: Thei-th bit of the source operand

Di: Thei-th bit of the destination operand

Ri: Thei-th bit of the result

D,: The specified bit in the destination operand

—: Not affected

t: Maodified according to the result of the instruction (see definition)
0: Alwaysclearedto O

1. Alwayssettol

*: Undetermined (no guaranteed value)

Z': Z flag before instruction execution

C: Cflag beforeinstruction execution

221

Table 2-7 Condition Code Modification

Instruction H N zZz VvV C Definition
ADD Tt T H=Sm-4-Dm-4+Dm-4-/Rm-4+Sm-4-/Rm-4
N=Rm

Z=/Rm-/Rm-1-...-/RO
V=Sm:-Dm:-/Rm+/Sm-/Dm-Rm
C=Sm-Dm+Dm:-/Rm+Sm-/Rm

ADDS —_ — = — —

ADDX ot e t ot H=Sm-4-Dm-4+Dm-4-/Rm-4+Sm-4-/Rm-4
N=Rm
Z=Z'-/IRm-...- /RO
V=Sm-Dm:-/Rm+/Sm-/Dm-Rm
C=Sm:-Dm+Dm:-/Rm+Sm-/Rm

AND — t t O — N=Rm
Z=/Rm-/Rm-1-...-/RO

ANDC ot 1 t ot Stores the corresponding bits of the result

BAND —_ - — — C=C'-Dn

Bcce _——_— = -

BCLR —_ = = = —

BIAND —_ - — — C=C'-/IDn

BILD —_— = — 1 C=/Dn

BIOR —_ - — — C=C'+/Dn

BIST —_ - = - —

BIXOR —_— = — 1 C=C'-/Dn+/C"'-/Dn

BLD —_ - — — C=Dn

BNOT —_ — = — —

BOR —_ = — — C=C'+Dn

BSET —_ = = = —

BSR —_ - = - —

BST —_ = = = —

BTST —_ - - — Z=/Dn

BXOR _ — — — C=C'-/Dn+/C"'-Dn

CMP t ottt H=Sm-4./Dm-4+/Dm-4-Rm-4+Sm-4-Rm-4
N=Rm

Z=/Rm-/Rm-1-...-/RO
V=/Sm-Dm-/Rm+Sm-/Dm-Rm
C=Sm:-/Dm+/Dm-Rm+Sm-Rm

222

Table2-7 Condition Code Modification (cont)

Instruction H N zZ V C Definition

DAA * ot * g N=Rm
Z=/Rm-/Rm-1-...-/RO
C: decimal arithmetic carry

DAS * 1 ? * ? N=Rm
Z=/Rm-/Rm-1-...-/RO
C: decimal arithmetic borrow

DEC -t t t — N=Rm
Z=/Rm-/Rm-1-...-/RO
V=Dm:-/Rm

DIVXS -t t - — N=Sm-/Dm+/Sm-Dm
Z=/Sm:-/Sm-1-...-/S0

DIVXU —t t - — N=Sm
Z=/Sm-/Sm-1-..-/S0

EEPMOV - - - - —

EXTS — t t O — N=Rm
Z=/Rm-/Rm-1-...-/RO

EXTU — O o — Z=/Rm-/Rm-1-...-/RO

INC — 1 . — N=Rm
Z=/Rm-/Rm-1-...-/RO
V=Dm:-/Rm

JMP I —

JSR _ - - - —

LDC Tttt Tt Stores the corresponding bits of the result

MOV — t t O — N=Rm
Z=/Rm-/Rm-1-...-/RO

MOVFPE — o — N=Rm
Z=/Rm-/Rm-1-...-/RO

MOVTPE — 1 o — N=Rm
Z=/Rm-/Rm-1-...-/RO

MULXS —t t - — N=R2m
Z=R2m-R2m-1-..-/RO

MULXU —_ = = = —

NEG ottt tt H=Dm-4+Rm-4
N=Rm
Z=/Rm-/Rm-1-...-RO
V=Dm:-Rm
C=Dm+Rm

223

Table2-7 Condition Code Modification (cont)

Instruction H N zZz VvV C Definition

NOP — — —

NOT — o — N=Rm
Z=/Rm-/Rm-1-..-/RO

OR — o — N=Rm
Z=/Rm:-/Rm-1-...-/RO

ORC t t Stores the corresponding bits of the result

POP — O — N=Rm
Z=/Rm:-/Rm-1-..-/RO

PUSH — o — N=Rm
Z=/Rm-/Rm-1-...-/RO

ROTL — O 1 N=Rm
Z=/Rm:-/Rm-1-...-/RO
C=Dm

ROTR — O 1 N=Rm
Z=/Rm:-/Rm-1-...-/RO
C=DO

ROTXL — O 1 N=Rm
Z=/Rm:-/Rm-1-...-/RO
C=Dm

ROTXR — O 1 N=Rm
Z=/Rm:-/Rm-1-...-/RO
C=DO

RTS — - —

RTE t t ot Stores the corresponding bits of the result

SHAL —_ t ot N=Rm
Z=/Rm:-/Rm-1-..-/RO
V=Dm:-/Dm-1+/Dm-Dm-1
C=Dm

SHAR — O 1 N=Rm
Z=/Rm-/Rm-1-..-/RO
C=DO

SHLL — O 1 N=Rm
Z=/Rm-/Rm-1-..-/RO

C=Dm

224

Table2-7 Condition Code Modification (cont)

Instruction H N zZz Vv C Definition

SHLR — 1t t O N=Rm
Z=/Rm-/Rm-1-...-/RO
C=DoO

SLEEP —_ = = = —

STC —_ = = = —

SuUB I H=Sm-4.-/Dm-4+/Dm-4-Rm-4+Sm-4-Rm-4
N=Rm

Z=/Rm-/Rm-1-...-/RO
V=/Sm-Dm-/Rm+Sm-/Dm-Rm
C=Sm:-/Dm+/Dm-Rm+Sm-Rm

SUBS —_ = = = —

SUBX I H=Sm-4.-/Dm-4+/Dm-4-Rm-4+Sm-4-Rm-4
N=Rm
Z=Z'-/Rm-...- /RO
V=/Sm-Dm:-/Rm+Sm-/Dm-Rm
C=Sm:-/Dm+/Dm-Rm+Sm-Rm

TRAPA _ = = - —

XOR — t t O — N=Rm
Z=/Rm-/Rm-1-...-/RO

XORC Tttt Tt Stores the corresponding bits of the result

225

2.8 Bus Cycles During Instruction Execution

Table 2-8 indicates the bus cycles during instruction execution by the H8/300H CPU. For the
number of states per bus cycle, see table 2-7, Number of States per Cycle.

How to read the table:

Order of bus cycles

Instruction 1 2 3 4 5 6 7 8
IMP @aa:24 R:W 2nd 'g‘:{g;';pera“‘)" R:W EA
T— End of instruction

Read effective address (word-size read)
No read or write
Read 2nd word of current instruction
(word-size read)

Legend

R:B Byte-size read

R:W Word-size read

W:B Byte-size write

wW:w Word-size write

2nd Address of 2nd word (3rd and 4th bytes)

3rd Address of 3rd word (5th and 6th bytes)
4th Address of 4th word (7th and 8th bytes)
5th Address of 5th word (9th and 10th bytes)
NEXT Address of next instruction

EA Effective address

VEC Vector address

226

Figure 2-1 shows timing waveforms for the address bus and the RD and WR (HWR or LWR)
signals during execution of the above instruction with an 8-bit bus, using 3-state access with no
wait states.

UL

Address bus :X X X X X
RD A [/ B [T\ /
WR - : — : : :
(HWR or LWR) | : 'High level ! !
| R:W 2nd - Intemal”| R:W EA |
; ; ' operation ! ; ;
- -
‘ Fetching ‘ Fetching ‘ ‘ Fetching ‘ Fetching ‘
3rd byte 4th byte 1st byte of 2nd byte of
of instruction of instruction jump address jump address

Figure2-1 AddressBus, RD, and WR (HWR or LWR) Timing
(8-bit bus, 3-state access, no wait states)

227

Table 2-8 Bus States

Instruction 1 2 3
ADD.B #xx:8,Rd R:W NEXT
ADD.B Rs,Rd R:W NEXT
ADD.W #xx:16,Rd R:W 2nd R:W NEXT
ADD.W Rs,Rd R:W NEXT
ADD.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT
ADD.L ERs,ERd R:W NEXT
ADDS #1/2/4,ERd R:W NEXT
ADDX #xx:8,Rd R:W NEXT
ADDX Rs,Rd R:W NEXT
AND.B #xx:8,Rd R:W NEXT
AND.B Rs,Rd R:W NEXT
AND.W #xx:16,Rd R:W 2nd R:W NEXT
AND.W Rs,Rd R:W NEXT
AND.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT
AND.L ERs,ERd R:W 2nd R:W NEXT
ANDC #xx:8,CCR R:W NEXT
BAND #xx:3,Rd R:W NEXT
BAND #xx:3,@ERd R:W 2nd R:B EA R:W NEXT
BAND #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT
BRA d:8 (BT d;8) R:W NEXT R:W EA
BRN d:8 (BF d;8) R:W NEXT R:W EA
BHI d:8 R:W NEXT R:W EA
BLS d:8 R:W NEXT R:W EA
BCC d:8 (BHS d;8) R:W NEXT R:W EA
BCS d:8 (BLO d;8) R:W NEXT R:W EA
BNE d:8 R:W NEXT R:W EA
BEQ d:8 R:W NEXT R:W EA
BVC d:8 R:W NEXT R:W EA
BVS d:8 R:W NEXT R:W EA
BPL d:8 R:W NEXT R:W EA
BMI d:8 R:W NEXT R:W EA

228

Table 2-8 Bus States (cont)

Instruction 1 2

BGE d:8 R:W NEXT R:W EA

BLT d:8 R:W NEXT R:W EA

BGT d:8 R:W NEXT R:W EA

BLE d:8 R:W NEXT R:W EA

BRA d:16 (BT d;16) R:W 2nd Internal operation, | R:W EA
2 states

BRN d:16 (BF d;16) R:W 2nd Internal operation, | R:W EA
2 states

BHI d:16 R:W 2nd Internal operation, | R:W EA
2 states

BLS d:16 R:W 2nd Internal operation, | R:W EA
2 states

BCC d:16 (BHS d;16) R:W 2nd Internal operation, | R:W EA
2 states

BCS d:16 (BLO d;16) R:W 2nd Internal operation, | R:W EA
2 states

BNE d:16 R:W 2nd Internal operation, | R:W EA
2 states

BEQ d:16 R:W 2nd Internal operation, | R:W EA
2 states

BVC d:16 R:W 2nd Internal operation, | R:W EA
2 states

BVS d:16 R:W 2nd Internal operation, | R:W EA
2 states

BPL d:16 R:W 2nd Internal operation, | R:W EA
2 states

BMI d:16 R:W 2nd Internal operation, | R:W EA
2 states

BGE d:16 R:W 2nd Internal operation, | R:W EA
2 states

BLT d:16 R:W 2nd Internal operation, | R:W EA
2 states

BGT d:16 R:W 2nd Internal operation, | R:W EA
2 states

BLE d:16 R:W 2nd Internal operation, | R:W EA

2 states

229

Table 2-8 Bus States (cont)

Instruction 1 3

BCLR #xx:3,Rd R:W NEXT

BCLR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA
BCLR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA
BCLR Rn,Rd R:W NEXT

BCLR Rn,@ERd R:W 2nd R:B EA R:W NEXT W:B EA
BCLR Rn,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA
BIAND #xx:3,Rd R:W NEXT

BIAND #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BIAND #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BILD #xx:3,Rd R:W NEXT

BILD #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BILD #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BIOR #xx:8,Rd R:W NEXT

BIOR #xx:8, @ERd R:W 2nd R:B EA R:W NEXT

BIOR #xx:8,@aa:8 R:W 2nd R:B EA R:W NEXT

BIST #xx:3,Rd R:W NEXT

BIST #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA
BIST #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA
BIXOR #xx:3,Rd R:W NEXT

BIXOR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BIXOR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BLD #xx:3,Rd R:W NEXT

BLD #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BLD #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BNOT #xx:3,Rd R:W NEXT

BNOT #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA
BNOT #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA
BNOT Rn,Rd R:W NEXT

BNOT Rn,@ERd R:W 2nd R:B EA R:W NEXT W:B EA
BNOT Rn,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA
BOR #xx:3,Rd R:W NEXT

BOR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BOR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BSET #xx:3,Rd R:W NEXT

BSET #xx:3, @ERd R:W 2nd R:B EA R:W NEXT W:B EA
BSET #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA

230

Table 2-8 Bus States (cont)

Instruction 1 2 3 4 5 6
BSET Rn,Rd R:W NEXT
BSET Rn,@ERd R:W 2nd R:B EA R:W NEXT W:B EA
BSET Rn,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA
BRS d:8 Normal R:W NEXT R:W EA W:W Stack
Advanced | R:W NEXT R:W EA W:W Stack (H) W:W Stack (L)
BRS d:16 Normal R:W 2nd Internal operation, 2 states| R:W EA W:W Stack
Advanced | R:W 2nd Internal operation, 2 states| R:W EA W:W Stack (H) W:W Stack (L)
BST #xx:3,Rd R:W NEXT
BST #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA
BST #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA
BTST #xx:3,Rd R:W NEXT
BTST #xx:3,@ERd R:W 2nd R:B EA R:W NEXT
BTST #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT
BTST Rn,Rd R:W NEXT
BTST Rn,@ERd R:W 2nd R:B EA R:W NEXT
BTST Rn,@aa:8 R:W 2nd R:B EA R:W NEXT
BXOR #xx:3,Rd R:W NEXT
BXOR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT
BXOR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT
CMP.B #xx:8,Rd R:W NEXT
CMP.B Rs,Rd R:W NEXT
CMP.W #xx:16,Rd R:W 2nd R:W NEXT
CMP.W Rs,Rd R:W NEXT
CMP.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT
CMP.L ERs,ERd R:W NEXT
DAA Rd R:W NEXT
DAS Rd R:W NEXT
DEC.B Rd R:W NEXT
DEC.W #1/2,Rd R:W NEXT
DEC.L #1/2,ERd R:W NEXT
DIVXS.B Rs,Rd R:W 2nd R:W NEXT Internal operation, 12 states
DIVXS.W Rs,ERd R:W 2nd R:W NEXT Internal operation, 20 states
DIVXU.B Rs,Rd R:W NEXT Internal operation, 12 states
DIVXU.W Rs,ERd R:W NEXT Internal operation, 20 states
EEPMOV.B R:W 2nd R:B EAs "1 R:B EAd *1 R:B EAs *2 W:B EAd *2 R:W NEXT
EEPMOV.W R:W 2nd R:B EAs "1 R:B EAd *1 R:B EAs *2 W:B EAd *2 R:W NEXT

231

Table 2-8 Bus States (cont)

Instruction 1 2 3 4 5 6
EXTS.W Rd R:W NEXT
EXTS.L ERd R:W NEXT
EXTU.W Rd R:W NEXT
EXTU.L ERd R:W NEXT
INC.B Rd R:W NEXT
INC.W #1/2,Rd R:W NEXT
INC.L #1/2,ERd R:W NEXT
JMP @ERnN R:W NEXT R:W EA
JMP @aa:24 R:W 2nd Internal operation, | R:W EA
2 states
JMP @@aa:8 Normal R:W NEXT R:W aa:8 Internal operation, | R:W EA
2 states
Advanced | R:W NEXT R:W aa:8 R:W aa:8 Internal operation, | R:W EA
2 states
JSR @ERn Normal R:W NEXT R:W EA W:W Stack
Advanced | R:W NEXT R:W EA W:W Stack (H) W:W Stack (L)
JSR @aa:24 Normal R:W 2nd Internal operation, | R:W EA W:W Stack
2 states
Advanced | R:W 2nd Internal operation, | R:W EA W:W Stack (H) W:W Stack (L)
2 states
JSR @@aa:8 Normal R:W NEXT R:W aa:8 W:W Stack R:W EA
Advanced | R:W NEXT R:W aa:8 R:W aa:8 W:W Stack (H) W:W Stack (L) R:W EA
LDC #xx:8,CCR R:W NEXT
LDC Rs,CCR R:W NEXT
LDC @ERs,CCR R:W 2nd R:W NEXT R:W EA
LDC @(d:16,ERs),CCR R:W 2nd R:W 3rd R:W NEXT R:W EA
LDC @(d:24,ERs),CCR R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT R:W EA
LDC @ERs+,CCR R:W 2nd R:W NEXT Internal operation, | R:W EA
2 states
LDC @aa:16,CCR R:W 2nd R:W 3rd R:W NEXT R:W EA
LDC @aa:24,CCR R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W EA
MOV.B #xx:8,Rd R:W NEXT
MOV.B Rs,Rd R:W NEXT
MOV.B @ERs,Rd R:W NEXT R:B EA
MOV.B @(d:16,ERs),Rd R:W 2nd R:W NEXT R:B EA
MOV.B @(d:24,ERs),Rd R:W 2nd R:W 3rd R:W 4th R:W NEXT R:B EA

232

Table 2-8 Bus States (cont)

Instruction 1 2 3 4 5 6 7
MOV.B @ERs+,Rd R:W NEXT Internal operation, | R:B EA
2 states
MOV.B @aa:8,Rd R:W NEXT R:B EA
MOV.B @aa:16,Rd R:W 2nd R:W NEXT R:B EA
MOV.B @aa:24,Rd R:W 2nd R:W 3rd R:W NEXT R:B EA
MOV.B Rs,@ERd R:W NEXT W:B EA
MOV.B Rs,@(d:16,ERd) R:W 2nd R:W NEXT W:B EA
MOV.B Rs,@(d:24,ERd) R:W 2nd R:W 3rd R:W 4th R:W NEXT W:B EA
MOV.B Rs,@-ERd R:W NEXT Internal operation, | W:B EA
2 states
MOV.B Rs,@aa:8 R:W NEXT W:B EA
MOV.B Rs,@aa:16 R:W 2nd R:W NEXT W:B EA
MOV.B Rs,@aa:24 R:W 2nd R:W 3rd R:W NEXT W:B EA
MOV.W #xx:16,Rd R:W 2nd R:W NEXT
MOV.W Rs,Rd R:W NEXT
MOV.W @ERs,Rd R:W NEXT R:W EA
MOV.W @(d:16,ERs),Rd R:W 2nd R:W NEXT R:W EA
MOV.W @(d:24,ERs),Rd R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W EA
MOV.W @ERs+,Rd R:W NEXT Internal operation, | R:W EA
2 states
MOV.W @aa:16,Rd R:W 2nd R:W NEXT R:W EA
MOV.W @aa:24,Rd R:W 2nd R:W 3rd R:W NEXT R:B EA
MOV.W Rs,@ERd R:W NEXT W:W EA
MOV.W Rs,@(d:16,ERd) R:W 2nd R:W NEXT W:W EA
MOV.W Rs,@(d:24,ERd) R:W 2nd R:W 3rd R:E 4th R:W NEXT W:W EA
MOV.W Rs,@-ERd R:W NEXT Internal operation, | W:W EA
2 states
MOV.W Rs,@aa:16 R:W 2nd R:W NEXT W:W EA
MOV.W Rs,@aa:24 R:W 2nd R:W 3rd R:W NEXT W:W EA
MOV.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT
MOV.L ERs,ERd R:W NEXT
MOV.L @ERs,ERd R:W 2nd R:W NEXT R:W EA R:W EA+2
MOV.L @(d:16,ERs),ERd R:W 2nd R:W 3rd R:W NEXT R:W EA R:W EA+2
MOV.L @(d:24,ERs),ERd R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT R:W EA R:W EA+2
MOV.L @ERs+,ERd R:W 2nd R:W NEXT Internal operation, | R:W EA R:W EA+2

2 states

233

Table 2-8 Bus States (cont)

Instruction 1 2 3 4 5 6 7
MOV.L @aa:16,ERd R:W 2nd R:W 3rd R:W NEXT R:W EA R:W EA+2
MOV.L @aa:24,ERd R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W EA R:W EA+2
MOV.L ERs,@ERd R:W 2nd R:W NEXT W:W EA W:W EA+2
MOV.L ERs,@(d:16,ERd) R:W 2nd R:W 3rd R:W NEXT W:W EA
MOV.L ERs,@(d:24,ERd) R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT W:W EA W:W EA+2
MOV.L ERs,@-ERd R:W 2nd R:W NEXT Internal operation, | W:W EA W:W EA+2
2 states

MOV.L ERs,@aa:16 R:W 2nd R:W 3rd R:W NEXT W:W EA W:W EA+2
MOV.L ERs,@aa:24 R:W 2nd R:W 3rd R:W 4th R:W NEXT W:W EA W:W EA+2
MOVFPE @aa:16,Rd R:W 2nd Internal operation, | R:W *3EA

2 states
MOVTPE Rs,@aa:16 R:W 2nd Internal operation, | W:B *3 EA

2 states
MULXS.B Rs,Rd R:W 2nd R:W NEXT Internal operation, 12 states
MULXS.W Rs,ERd R:W 2nd R:W NEXT Internal operation, 20 states
MULXU.B Rs,Rd R:W NEXT Internal operation, 12 states
MULXU.W Rs,ERd R:W NEXT Internal operation, 20 states
NEG.B Rd R:W NEXT
NEG.W Rd R:W NEXT
NEG.L ERd R:W NEXT
NOP R:W NEXT
NOT.B Rd R:W NEXT
NOT.W Rd R:W NEXT
NOT.L ERd R:W NEXT
OR.B #xx:8,Rd R:W NEXT
OR.B Rs,Rd R:W NEXT
OR.W #xx:16,Rd R:W 2nd R:W NEXT
OR.W Rs,Rd R:W NEXT
OR.L #xx:32,ERd R:W 2nd R:W rd R:W NEXT
OR.L ERs,ERd R:W 2nd R:W NEXT
ORC #xx:8,CCR R:W NEXT
POP.W Rn R:W NEXT Internal operation, | R:W Stack

2 states
POP.L ERn R:W 2nd R:W NEXT Internal operation, | R:W Stack (H) R:W Stack (L)

2 states

234

Table 2-8 Bus States (cont)

Instruction 1 2 3 4 5

PUSH.W Rn R:W NEXT Internal operation, | W:W Stack
2 states
PUSH.L ERNn R:W 2nd R:W NEXT Internal operation, | W:W Stack (L) W:W Stack (H)
2 states
ROTL.B Rd R:W NEXT
ROTL.W Rd R:W NEXT
ROTL.L ERd R:W NEXT
ROTR.B Rd R:W NEXT
ROTR.W Rd R:W NEXT
ROTR.L ERd R:W NEXT
ROTXL.B Rd R:W NEXT
ROTXL.W Rd R:W NEXT
ROTXL.L ERd R:W NEXT
ROTXR.B Rd R:W NEXT
ROTXR.W Rd R:W NEXT
ROTXR.L ERd R:W NEXT
RTE R:W NEXT R:W Stack (H) R:W Stack (L) Internal operation, | R:W (*4)
2 states
RTS Normal R:W NEXT R:W Stack Internal operation, | R:W (*4)
2 states
Advanced | R:W NEXT R:W Stack (H) R:W Stack (L) Internal operation, | R:W (*4)
2 states

SHAL.B Rd R:W NEXT
SHAL.W Rd R:W NEXT
SHAL.L ERd R:W NEXT
SHAR.B Rd R:W NEXT
SHAR.W Rd R:W NEXT
SHAR.L ERd R:W NEXT
SHLL.B Rd R:W NEXT
SHLL.W Rd R:W NEXT
SHLL.L ERd R:W NEXT
SHLR.B Rd R:W NEXT
SHLR.W Rd R:W NEXT
SHLR.L ERd R:W NEXT
SLEEP R:W NEXT
STC CCR,Rd R:W NEXT

235

Table 2-8 Bus States (cont)

Instruction 1 2 3 4 5 6 7 8
STC CCR,@ERd R:W 2nd R:W NEXT W:W EA
STC CCR,@(d:16,ERd) R:W 2nd R:W 3rd R:W NEXT W:W EA
STC CCR,@(d:24,ERd) R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT W:W EA
STC CCR,@-ERd R:W 2nd R:W NEXT Internal operation, | W:W EA
2 states
STC CCR,@aa:16 R:W 2nd R:W 3rd R:W NEXT W:W EA
STC CCR,@aa:24 R:W 2nd R:W 3rd R:W 4th R:W NEXT W:W EA
SUB.B Rs,Rd R:W NEXT
SUB.W #xx:16,Rd R:W 2nd R:W NEXT
SUB.W Rs,Rd R:W NEXT
SUB.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT
SUB.L ERs,ERd R:W NEXT
SUBS #1/2/4,ERd R:W NEXT
SUBX #xx:8,Rd R:W NEXT
SUBX Rs,Rd R:W NEXT
TRAPA #x:2 Normal R:W NEXT Internal operation, | W:W Stack (L) W:W Stack (H) R:W VEC Internal operation, | R:W (*7)
2 states 2 states
Advanced | R:W NEXT Internal operation, | W:W Stack (L) W:W Stack (H) R:W VEC R:W VEC+2 Internal operation, | R:W (*7)
2 states 2 states
XOR.B #xx8,Rd R:W NEXT
XOR.B Rs,Rd R:W NEXT
XOR.W #xx:16,Rd R:W 2nd R:W NEXT
XOR.W Rs,Rd R:W NEXT
XOR.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT
XOR.L ERs,ERd R:W 2nd R:W NEXT
XORC #xx:8,CCR R:W NEXT
Reset exception Normal R:W VEC Internal operation, | R:W (*5)
handling 2 states
Advanced | R:W VEC R:W VEC+2 Internal operation, | R:W (*5)
2 states
Interrupt exception | Normal R:W (*6) Internal operation, | W:W stack (L) W:W stack (H) R:W VEC Internal operation, | R:W (*7)
handling 2 states 2 states
Advanced | R:W (*6) Internal operation, | W:W stack (L) W:W stack (H) R:W VEC R:W VEC+2 Internal operation, | R:W (*7)
2 states 2 states

236

Notes: 1. EAs is the contents of ER5. EAd is the contents of R6.

2. EAs is the contents of ER5. EAd is the contents of R6. Both registers are incremented by 1 after execution of the
instruction. n is the initial value of R4L or R4. If n = 0, these bus cycles are not executed.

The number of states required for byte read or write varies from 9 to 16.
Starting address after return.

Starting address of the program.

I

Prefetch address, equal to two plus the PC value pushed on the stack. In recovery from sleep mode or software standby
mode the read operation is replaced by an internal operation.

~

Starting address of the interrupt-handling routine.

8. NEXT: Next address after the current instruction.
2nd: Address of the second word of the current instruction.
3rd: Address of the third word of the current instruction.
4th: Address of the fourth word of the current instruction.
5th: Address of the fifth word of the current instruction.
EA: Effective address.
VEC: Vector address.

237

Section 3 Processing States

3.1 Overview

The CPU has five main processing states: the program execution state, exception handling state,
power-down state, reset state, and bus-released state. The power-down state includes sleep mode,
software standby mode, and hardware standby mode. Figure 3-1 shows a diagram of the
processing states. Figure 3-2 indicates the state transitions. For details, refer to the relevant
microcontroller hardware manual.

Processing Program execution
states state

The CPU executes program instructions in sequence.

Exception-handling
state

A transient state in which the CPU executes a hardware
sequence (saving the program counter and condition-code
register, fetching a vector, etc.) in response to a reset,
interrupt, or other exception.

Bus-released state

The external bus has been released in response to an external
or internal bus request signal.

Reset state

The CPU and all on-chip supporting modules have been
initialized and are stopped.

Power-down state Sleep mode

Some or all clock signals are
stopped to conserve power. Software standby
mode

Hardware standby
mode

Figure3-1 Processing States

239

End of bus-released state

Bus request
Program execution
state
G0/ 6@
NS
S & ¢ \ oz
L S S) ORIV
S/ &Y & RIRVICAS
&) % \N4,
< < T N < i P)
\ SR 2 & Y
NS < L
N A
Bus-released state I _\552‘ 3 Sleep mode
S & <.
SR \ %

17] > e >
05 & & (80\\) ()
25| B & o o
oo o 5 e A
o oh =] QO <
wn e g g Qb < \
> o?
@8y < ‘g

External interrupt

Software standby mode

Exception-hw:

A

RES high

m STBY high, RES low
Reset state -t

-t

Hardware standby mode

Power-down state

Notes: 1. From any state except hardware standby mode, a transition to the reset state occurs whenever RES
goes low.
2. From any state, a transition to hardware standby mode occurs when STBY goes low.

Figure3-2 State Transitions

240

3.2 Program Execution State

In this state the CPU executes program instructions in normal sequence.

3.3 Exception-Handling State

The exception-handling state is a transient state that occurs when the CPU alters the normal
program flow due to areset, interrupt, or trap instruction. The CPU fetches a starting address from
the exception vector table and branches to that address. In interrupt exception handling the CPU
references the stack pointer (ER7) and saves the program counter and condition-code register.

3.3.1 Typesof Exception Handling and Their Priority

Exception handling is performed for resets, interrupts, and trap instructions. Table 3-1 indicates
the types of exception handling and their priority.

Table3-1 Exception Handling Typesand Priority

Priority Type of Exception Detection Timing Start of Exception Handling
High Reset Synchronized with Exception handling starts
clock immediately when RES changes
from low to high
Interrupt End of instruction When an interrupt is requested,
execution (see note) exception handling starts at the end

of the current instruction or current
exception-handling sequence

Trap instruction When TRAPA Exception handling starts when a
Low instruction is executed trap (TRAPA) instruction is executed

Note: Interrupts are not detected at the end of the ANDC, ORC, XORC, and LDC instructions, or
immediately after reset exception handling.

Figure 3-3 classifies the exception sources. For further details about exception sources, vector
numbers, and vector addresses refer to the relevant microcontroller hardware manual.

(" Reset

External interrupts
Exception sources Interrupt
Internal interrupts (from on-chip supporting modules)

L Trap instruction

Figure 3-3 Classification of Exception Sources

241

3.3.2 Exception-Handling Sequences

Reset Exception Handling: Reset exception handling has the highest priority. The reset stateis
entered when the RES signal goes low. Then, if RES goes high again, reset exception handling
starts when the reset condition is satisfied. Refer to the relevant microcontroller hardware manual
for details about the reset condition. When reset exception handling starts the CPU fetches a start
address from the exception vector table and starts program execution from that address. All
interrupts, including NMI, are disabled during the reset exception-handling sequence and
immediately after it ends.

Interrupt Exception Handling and Trap I nstruction Exception Handling: When these
exception-handling sequences begin, the CPU references the stack pointer (ER7) and pushes the
program counter and condition-code register on the stack. Next, if the UE bit in the system control
register (SYSCR) is set to 1, the CPU setsthe | bit in the condition-code register to 1. If the UE bit
is cleared to 0, the CPU sets both the | bit and the Ul bit in the condition-code register to 1. Then
the CPU fetches a start address from the exception vector table and execution branches to that
address.

The program-counter value pushed on the stack and the start address fetched from the vector table
are 16 hitslong in normal mode and 24 hits long in advanced mode. Figure 3-4 shows the stack
after the exception-handling sequence.

242

"

SP-4

SP -3

SP-2

SP-1

SP (ER7)

Stack area

SP-4
SP -3
SP-2
SP-1

SP (ER7)

Legend
PCE:
PCH:
PC.:
CCR:

SP: Stack

O

Before exception
handling starts

SP (ER7)—» CCR
SP+1 CCR*
SP+2 PCy
SP+3 PC,
SP+4

—_————————
Pushed on stack

O

After exception
handling ends

(a) Stack structure in normal mode

\/\

Stack area

\/\

Before exception
handling starts

\/\

SP (ER7)—» CCR
SP+1 PCe
SP+2 PCy
SP+3 PC,
SP+4

—_—————————————
Pushed on stack

\/\

After exception
handling ends

(b) Stack structure in advanced mode

Program counter (PC) bits 23 to 16
Program counter (PC) bits 15to 8
Program counter (PC) bits 7 to O
Condition code register

pointer

Notes: * Ignored at return.
1. PCis the address of the first instruction executed after the return from the exception-handling

routine.

2. Registers must be saved and restored by word access or longword access, starting at

a

n even address.

Even address

Even address

Figure 3-4 Stack Structure after Exception Handling

243

3.4 Bus-Released State

Thisisastate in which the bus has been released in response to a bus request from a bus master
other than the CPU. While the busis released, the CPU halts except for internal operations. For
further details, refer to the relevant microcontroller hardware manual.

For further details, refer to the relevant microcontroller hardware manual.

3.5 Reset State

When the RES input goes low all current processing stops and the CPU enters the reset state. The
| bit in the condition-code register is set to 1 by areset. All interrupts are masked in the reset state.
Reset exception handling starts when the RES signal changes from low to high.

3.6 Power-Down State

In the power-down state the CPU stops operating to conserve power. There are three modes: sleep
mode, software standby mode, and hardware standby mode. For details, refer to the relevant
microcontroller hardware manual.

3.6.1 Sleep Mode

A transition to sleep mode is made if the SLEEP instruction is executed while the software
standby bit (SSBY) iscleared to O.

CPU operations stop immediately after execution of the SLEEP instruction. The contents of CPU
registers are retained.

3.6.2 Software Standby Mode

A transition to software standby mode is made if the SLEEP instruction is executed while the
SSBY bitisset to 1.

The CPU and clock halt and all on-chip supporting modules stop operating. The on-chip
supporting modules are reset, but as long as a specified voltage is supplied the contents of CPU
registers and on-chip RAM are retained. The 1/0O ports al'so remain in their existing states.

3.6.3 Hardware Standby Mode
A transition to hardware standby mode is made when the STBY input goes low.

Asin software standby mode, the CPU and clock halt and the on-chip supporting modules are
reset, but as long as a specified voltage is supplied, on-chip RAM contents are retained.

244

Section 4 Basic Timing

4.1 Overview

The CPU isdriven by a clock, denoted by the symbol @. One cycle of the clock isreferred to as a
“state.” The memory cycle or bus cycle consists of two or three states. Different methods are used
to access on-chip memory, on-chip supporting modules, and external devices. Refer to the relevant
microcontroller hardware manual for details.

4.2 On-Chip Memory (RAM, ROM)

For high-speed processing, on-chip memory is accessed in two states. The databusis 16 bits
wide, permitting both byte and word access. Figure 4-1 shows the on-chip memory access cycle.
Figure 4-2 shows the pin states.

Bus cycle

1 T, state ! T, state |
- -

’ TN\

Address X
Internal data bus :
(read access) :>—< ‘ Read data)
Internal write signal \

>0

Internal address bus

Internal read signal

—

Internal data bus : -
; — Write data —
(write access) ‘

Figure4-1 On-Chip Memory Access Cycle

245

. A N A N

Bus cycle

A

T, state ! T, state

- - -

Address bus

AS

Address

R T SEE

High
RD

High
WR (HWR or LWR)

High

Data bus

high-impedance state

Figure4-2

Pin States during On-Chip Memory Access

246

4.3 On-Chip Supporting Modules

The on-chip supporting modules are accessed in three states. The data busis 8 bits or 16 bits wide.
Figure 4-3 shows the access timing for the on-chip supporting modules. Figure 4-4 shows the pin
states.

Bus cycle

| T, state ! T, state

Internal address ><
bus j

Internal read \ /
signal 1 : : |
Internal data b ! !
© ata bus :>—< Read data >—

(read access)

Internal write i \ i
signal : ! 3 / !
Internal data bus ‘ ‘ Write d ‘ :)
(write access) ‘ rite data 1

Figure4-3 On-Chip Supporting M odule Access Cycle

247

Bus cycle

3 T, state T, state

Address bus >< Address

AS |
High |

RD
High

WR (HWR or LWR)
High

high-impedance

Data bus 1
state !

Figure4-4 Pin Statesduring On-Chip Supporting Module Access

4.4 External Data Bus

The external data busis accessed with 8-bit or 16-bit bus width in two or three states. Figure 4-5
shows the read timing for two-state or three-state access. Figure 4-6 shows the write timing for
two-state or three-state access. In three-state access, wait states can be inserted by the wait-state
controller or other means. For further details refer to the relevant microcontroller hardware
manual.

248

Read cycle

Address

Address bus

Read data

Data bus

(two-state access)

A
]
o]
)
3]
—
)
ol g
o s
1
o| F
o
@
©
8
9]
—
T
\i

Address

Address bus

Read data

Data bus

(three-state access)

Figure4-5 External Device Access Timing (1) Read Timing

249

Write cycle

Address

Address bus

S

WR

(HWR or LWR)

>_

Write data

Data bus

(a) Two-state access

““““““““““ >
A
9
IS
<
%]
™
T
1))
Q © a
[§]
2 g s
o| @ 2
g o
=
NS SEDSRR RN B SRR I .
2
S
[%2]
=
IO S S I > o
£
)
2 2
@ IS
0] 2
g
S x |2
ke (%)} 7 7
S < < 'z

Write data

Data bus

(b) Three-state access

Figure4-6 External Device Access Timing (2) Write Timing

250

	Contents H8/300H Series
	Section 1 CPU
	Section 2 Instruction Descriptions
	Section 3 Processing States
	Section 4 Basic Timing

