
H8/300H Series

Programming Manual

HITACHI

ADE-602-053A

Major Revisions and Additions in this Version

Page Item Description

P27 Figure 1-12 Instruction Formats Figure (4) amended

P33 Table 1-6 Effective Address Calculation (8) Table amended

P51 2.2.6 BAND Notes added

P58 2.2.11 BIOR Operand Format and Number of Register direct 1st byte
States Required for Execution amended

P67 2.2.18 BSR Notes description added

P74 2.2.22 (3) CMP (L) Operand Format and Number of Operands amended
States Required for Execution

P86 2.2.26 (3) DIVXS Description amended

P87 DIVXS Example 2 Example 2 added

P106 2.2.33 JSR Cautions Description added

P108 2.2.34 (1) LDC (B) Description amended
/added

P110 2.2.34 (2) LDC (W) Operand Format and Number of Mnemonic amended
States Required for Execution

P114 2.2.35 (4) MOV (B) Description Description amended

P117 2.2.35 (5) MOV (W) Operand Format and Number of Table contents amended
States Required for Execution

P119 2.2.35 (6) MOV (L) Operand Format and Number of Table contents amended
States Required for Execution

P123 2.2.35 (8) MOV (W) Operand Format and Number of Table contents amended
States Required for Execution

P125 2.2.35 (9) MOV (L) Operand Format and Number of Table contents amended
States Required for Execution

P129 2.2.38 (2) MULXS (W) Figure amended

P144 2.2.45 (2) POP (L) Number of execution states
amended

P146 2.2.46 (2) PUSH (L) Number of execution states
amended

P160 2.2.52 RTS Figure amended

P174 2.2.58 (1) STC (B) Assembly-Language Format Assembler format amended

2.2.58 (1) STC (B) Operand Format and Number of Mnemonic amended
States Required for Execution

Page Item Description

P175 2.2.58 (2) STC (W) Instruction amended

2.2.58 (2) STC (W) Assembler Format Assembler format amended

P176 2.2.58 (2) STC (W) Operand Format and Number of Mnemonic amended
States Required for Execution

P180 2.2.60 SUBS Operation Operation amended

P189 (1) Data Transfer Instructions MOV.W @ERs+,Rd Operation amended

(1) Data Transfer Instructions MOV.W Rs,@ERd Operation amended

(1) Data Transfer Instructions MOV.W Rs,@(d:24,ERd) Number of execution states
amended

(1) Data Transfer Instructions MOV.L #xx:32,ERd Operation and number of
execution states amended

P190 (1) Data Transfer Instructions MOV.L @ERs+,ERd Operation amended

(1) Data Transfer Instructions POP.L ERn Number of execution states
amended

(1) Data Transfer Instructions PUSH.L ERn Number of execution states
amended

P191 (2) Arithmetic Operation Instructions DAA Rd Condition code amended

P192 (2) Arithmetic Operation Instructions CMP.L #xx:32,ERd Number of execution states
amended

P196 (5) Bit Manipulation Instructions Table amended

P197, (6) Branch Instructions Added
P198

P198 (7) System Control Instructions LDC @ERs,CCR Operation amended

(7) System Control Instructions LDC @(d:16,ERs),CCR Operation amended

(7) System Control Instructions LDC @(d:24,ERs),CCR Operation amended

(7) System Control Instructions LDC @ERs+,CCR Operation amended

P204 Table 2-3 Instruction Codes (4) MOV.B@aa:16,Rd Instruction format amended

P231 Table 2-8 Bus States BSR d:16 Execution order nos.2 to
5 amended

P234, Table 2-8 Bus States POP.W Rn to PUSH.L ERn Instruction added
P235

P240 Figure 3-2 State Transitions Figure amended

Contents

Section 1 CPU... 1
1.1 Overview... 1

1.1.1 Features... 1
1.1.2 Differences from H8/300 CPU ... 2

1.2 CPU Operating Modes.. 3
1.3 Address Space... 7
1.4 Register Configuration.. 8

1.4.1 Overview... 8
1.4.2 General Registers.. 9
1.4.3 Control Registers .. 10
1.4.4 Initial Register Values... 11

1.5 Data Formats... 12
1.5.1 General Register Data Formats... 12
1.5.2 Memory Data Formats.. 13

1.6 Instruction Set... 15
1.6.1 Overview... 15
1.6.2 Instructions and Addressing Modes.. 16
1.6.3 Tables of Instructions Classified by Function .. 18
1.6.4 Basic Instruction Formats ... 27
1.6.5 Addressing Modes and Effective Address Calculation 28

Section 2 Instruction Descriptions .. 35
2.1 Tables and Symbols .. 35

2.1.1 Assembler Format... 36
2.1.2 Operation .. 37
2.1.3 Condition Code... 38
2.1.4 Instruction Format .. 38
2.1.5 Register Specification... 39
2.1.6 Bit Data Access in Bit Manipulation Instructions .. 40

2.2 Instruction Descriptions.. 41
2.2.1 (1) ADD (B) .. 42
2.2.1 (2) ADD (W) ... 43
2.2.1 (3) ADD (L) .. 44
2.2.2 ADDS .. 45
2.2.3 ADDX.. 46
2.2.4 (1) AND (B) .. 47
2.2.4 (2) AND (W) ... 48
2.2.4 (3) AND (L) .. 49
2.2.5 ANDC.. 50

2.2.6 BAND.. 51
2.2.7 Bcc... 52
2.2.8 BCLR... 54
2.2.9 BIAND .. 56
2.2.10 BILD.. 57
2.2.11 BIOR.. 58
2.2.12 BIST .. 59
2.2.13 BIXOR... 60
2.2.14 BLD ... 61
2.2.15 BNOT .. 62
2.2.16 BOR... 64
2.2.17 BSET ... 65
2.2.18 BSR.. 67
2.2.19 BST.. 68
2.2.20 BTST ... 69
2.2.21 BXOR.. 71
2.2.22 (1) CMP (B) .. 72
2.2.22 (2) CMP (W) ... 73
2.2.22 (3) CMP (L)... 74
2.2.23 DAA .. 75
2.2.24 DAS ... 77
2.2.25 (1) DEC (B)... 79
2.2.25 (2) DEC (W).. 80
2.2.25 (3) DEC (L) ... 81
2.2.26 (1) DIVXS (B)... 82
2.2.26 (2) DIVXS (W) ... 84
2.2.26 (3) DIVXS .. 86
2.2.27 (1) DIVXU (B).. 90
2.2.27 (2) DIVXU (W)... 91
2.2.28 (1) EEPMOV (B) .. 95
2.2.28 (2) EEPMOV (W) ... 96
2.2.29 (1) EXTS (W).. 98
2.2.29 (2) EXTS (L) ... 99
2.2.30 (1) EXTU (W) ... 100
2.2.30 (2) EXTU (L) .. 101
2.2.31 (1) INC (B).. 102
2.2.31 (2) INC (W)... 103
2.2.31 (3) INC (L) .. 104
2.2.32 JMP.. 105
2.2.33 JSR... 106
2.2.34 (1) LDC (B)... 108

2.2.34 (2) LDC (W).. 109
2.2.35 (1) MOV (B) ... 111
2.2.35 (2) MOV (W) .. 112
2.2.35 (3) MOV (L).. 113
2.2.35 (4) MOV (B) ... 114
2.2.35 (5) MOV (W) .. 116
2.2.35 (6) MOV (L).. 118
2.2.35 (7) MOV (B) ... 120
2.2.35 (8) MOV (W) .. 122
2.2.35 (9) MOV (L).. 124
2.2.36 MOVFPE... 126
2.2.37 MOVTPE... 127
2.2.38 (1) MULXS (B)... 128
2.2.38 (2) MULXS (W).. 129
2.2.39 (1) MULXU (B) .. 130
2.2.39 (2) MULXU (W) ... 131
2.2.40 (1) NEG (B)... 132
2.2.40 (2) NEG (W) ... 133
2.2.40 (3) NEG (L)... 134
2.2.41 NOP ... 135
2.2.42 (1) NOT (B)... 136
2.2.42 (2) NOT (W) ... 137
2.2.42 (3) NOT (L)... 138
2.2.43 (1) OR (B) ... 139
2.2.43 (2) OR (W) .. 140
2.2.43 (3) OR (L) ... 141
2.2.44 ORC... 142
2.2.45 (1) POP (W) .. 143
2.2.45 (2) POP (L).. 144
2.2.46 (1) PUSH (W) ... 145
2.2.46 (2) PUSH (L)... 146
2.2.47 (1) ROTL (B) .. 147
2.2.47 (2) ROTL (W) ... 148
2.2.47 (3) ROTL (L)... 149
2.2.48 (1) ROTR (B) .. 150
2.2.48 (2) ROTR (W) ... 151
2.2.48 (3) ROTR (L) .. 152
2.2.49 (1) ROTXL (B) ... 153
2.2.49 (2) ROTXL (W) .. 154
2.2.49 (3) ROTXL (L).. 155
2.2.50 (1) ROTXR (B) ... 156

2.2.50 (2) ROTXR (W) .. 157
2.2.50 (3) ROTXR (L) ... 158
2.2.51 RTE.. 159
2.2.52 RTS .. 160
2.2.53 (1) SHAL (B) .. 161
2.2.53 (2) SHAL (W) ... 162
2.2.53 (3) SHAL (L)... 163
2.2.54 (1) SHAR (B) .. 164
2.2.54 (2) SHAR (W) ... 165
2.2.54 (3) SHAR (L) .. 166
2.2.55 (1) SHLL (B)... 167
2.2.55 (2) SHLL (W).. 168
2.2.55 (3) SHLL (L) ... 169
2.2.56 (1) SHLR (B)... 170
2.2.56 (2) SHLR (W) ... 171
2.2.56 (3) SHLR (L)... 172
2.2.57 SLEEP ... 173
2.2.58 (1) STC (B) ... 174
2.2.58 (2) STC (W) .. 175
2.2.59 (1) SUB (B) ... 177
2.2.59 (2) SUB (W).. 178
2.2.59 (3) SUB (L) ... 179
2.2.60 SUBS ... 180
2.2.61 SUBX .. 181
2.2.62 TRAPA .. 182
2.2.63 (1) XOR (B) .. 183
2.2.63 (2) XOR (W) ... 184
2.2.63 (3) XOR (L)... 185
2.2.64 XORC.. 186

2.3 Instruction Set Summary .. 187
2.4 Instruction Codes .. 200
2.5 Operation Code Map... 209
2.6 Number of States Required for Instruction Execution ... 212
2.7 Condition Code Modification ... 221
2.8 Bus cycles During Instruction Execution ... 226

Section 3 Processing States... 239
3.1 Overview... 239
3.2 Program Execution State .. 241
3.3 Exception-Handling State... 241

3.3.1 Types of Exception Handling and Their Priority.. 241

3.3.2 Exception-Handling Sequences .. 242
3.4 Bus-Released State ... 244
3.5 Reset State .. 244
3.6 Power-Down State .. 244

3.6.1 Sleep Mode ... 244
3.6.2 Software Standby Mode ... 244
3.6.3 Hardware Standby Mode .. 244

Section 4 Basic Timing .. 245
4.1 Overview... 245
4.2 On-Chip Memory (RAM, ROM).. 245
4.3 On-Chip Supporting Modules... 247
4.4 External Data Bus ... 248

Section 1 CPU

1.1 Overview

The H8/300H CPU is a high-speed central processing unit with an internal 32-bit architecture that
is upward-compatible with the H8/300 CPU. The H8/300H CPU has sixteen 16-bit general
registers, can address a 16-Mbyte linear address space, and is ideal for realtime control.

1.1.1 Features

The H8/300H CPU has the following features.

• Upward-compatible with H8/300 CPU

— Can execute H8/300 object programs

• General-register architecture

— Sixteen 16-bit general registers (also usable as sixteen 8-bit registers or eight 32-bit
registers)

• Sixty-two basic instructions

— 8/16/32-bit arithmetic and logic instructions
— Multiply and divide instructions
— Powerful bit-manipulation instructions

• Eight addressing modes

— Register direct [Rn]
— Register indirect [@ERn]
— Register indirect with displacement [@(d:16,ERn) or @(d:24,ERn)]
— Register indirect with post-increment or pre-decrement [@ERn+ or @–ERn]
— Absolute address [@aa:8, @aa:16, or @aa:24]
— Immediate [#xx:8, #xx:16, or #xx:32]
— Program-counter relative [@(d:8,PC) or @(d:16,PC)]
— Memory indirect [@@aa:8]

• 16-Mbyte address space

• High-speed operation

— All frequently-used instructions execute in two to four states
— Maximum clock frequency: 16 MHz
1

— 8/16/32-bit register-register add/subtract: 125 ns
— 8 × 8-bit register-register multiply: 875 ns
— 16 ÷ 8-bit register-register divide: 875 ns
— 16 × 16-bit register-register multiply: 1375 ns
— 32 ÷ 16-bit register-register divide: 1375 ns

• Two CPU operating modes

— Normal mode
— Advanced mode

• Low-power mode

— Transition to power-down state by SLEEP instruction

1.1.2 Differences from H8/300 CPU

In comparison to the H8/300 CPU, the H8/300H CPU has the following enhancements.

• More general registers

Eight 16-bit registers have been added.

• Expanded address space

Normal mode supports the same 64-kbyte address space as the H8/300 CPU.

Advanced mode supports a maximum 16-Mbyte address space.

• Enhanced addressing

The addressing modes have been enhanced to make effective use of the 16-Mbyte address
space.

• Enhanced instructions

Signed multiply/divide instructions and other instructions have been added.
2

1.2 CPU Operating Modes

The H8/300H CPU has two operating modes: normal and advanced. Normal mode supports a
maximum 64-kbyte address space. Advanced mode supports up to 16 Mbytes. The mode is
selected at the mode pins of the microcontroller. For further information, refer to the relevant
hardware manual.

Figure 1-1 CPU Operating Modes

(1) Normal Mode: The exception vector table and stack have the same structure as in the H8/300
CPU.

Address Space: A maximum address space of 64 kbytes can be accessed, as in the H8/300 CPU.

Extended Registers (En): The extended registers (E0 to E7) can be used as 16-bit data registers,
or they can be combined with the general registers (R0 to R7) for use as 32-bit data registers.
When En is used as a 16-bit register it can contain any value, even when the corresponding
general register (R0 to R7) is used as an address register. If the general register is referenced in the
register indirect addressing mode with pre-decrement (@–Rn) or post-increment (@Rn+) and a
carry or borrow occurs, however, the value in the corresponding extended register will be affected.

Instruction Set: All additional instructions and addressing modes of the H8/300 CPU can be
used. If a 24-bit effective address (EA) is specified, only the lower 16 bits are used.

Exception Vector Table and Memory Indirect Branch Addresses: In normal mode the top area
starting at H'0000 is allocated to the exception vector table. One branch address is stored per 16
bits (figure 1-2). The exception vector table differs depending on the microcontroller, so see the
microcontroller hardware manual for further information.

CPU operating modes

Normal mode

Advanced mode

Maximum 64 kbytes, program
and data areas combined

Maximum 16 Mbytes, program
and data areas combined
3

Figure 1-2 Exception Vector Table (normal mode)

The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instructions uses
an 8-bit absolute address to specify a memory operand that contains a branch address. In normal
mode the operand is a 16-bit word operand, providing a 16-bit branch address. Branch addresses
can be stored in the top area from H'0000 to H'00FF. Note that this area is also used for the
exception vector table.

Stack Structure: When the program counter (PC) is pushed on the stack in a subroutine call, and
the PC and condition-code register (CCR) are pushed on the stack in exception handling, they are
stored in the same way as in the H8/300 CPU. See figure 1-3.

Figure 1-3 Stack Structure (normal mode)

H'0000
H'0001
H'0002
H'0003
H'0004
H'0005
H'0006
H'0007
H'0008
H'0009

Reset exception vector

Reserved for system use

Exception vector 1

Exception vector 2

Exception
vector table

(a) Subroutine branch (b) Exception handling

PC
(16 bits)

CCR

CCR*

PC
(16 bits)

SP SP

Note: * Ignored at return.
4

(2) Advanced Mode: In advanced mode the exception vector table and stack structure differ from
the H8/300 CPU.

Address Space: Up to 16 Mbytes can be accessed linearly.

Extended Registers (En): The extended registers (E0 to E7) can be used as 16-bit data registers,
or they can be combined with the general registers (R0 to R7) for use as 32-bit data registers.
When a 32-bit register is used as an address register, the upper 8 bits are ignored.

Instruction Set: All additional instructions and addressing modes of the H8/300H can be used.

Exception Vector Table and Memory Indirect Branch Addresses: In advanced mode the top
area starting at H'000000 is allocated to the exception vector table in units of 32 bits. In each 32
bits, the upper 8 bits are ignored and a branch address is stored in the lower 24 bits (figure 1-4).
The exception vector table differs depending on the microcontroller, so see the relevant hardware
manual for further information.

Figure 1-4 Exception Vector Table (advanced mode)

H'000000

H'000003

H'000004

H'00000B

H'00000C

Exception vector table

Don’t care

Reset exception vector

Reserved for system use

Don’t care

Exception vector
5

The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instructions uses
an 8-bit absolute address to specify a memory operand that contains a branch address. In advanced
mode the operand is a 32-bit longword operand, of which the lower 24 bits are the branch address.
Branch addresses can be stored in the top area from H'000000 to H'0000FF. Note that this area is
also used for the exception vector table.

Stack Structure:When the program counter (PC) is pushed on the stack in a subroutine call, and
the PC and condition-code register (CCR) are pushed on the stack in exception handling, they are
stored as shown in figure 1-5.

Figure 1-5 Stack Structure (advanced mode)

PC
(24 bits)

CCR

PC
(24 bits)

(a) Subroutine branch (b) Exception handling

SP SPReserved
6

1.3 Address Space

Figure 1-6 shows a memory map of the H8/300H CPU.

Figure 1-6 Memory Map

(a) Normal mode (b) Advanced mode

H'0000

H'FFFF

H'000000

H'FFFFFF
7

1.4 Register Configuration

1.4.1 Overview

The H8/300H CPU has the internal registers shown in figure 1-7. There are two types of registers:
general and extended registers, and control registers.

Figure 1-7 CPU Registers

I U H U N Z V CCCR
7 6 5 4 3 2 1 0

PC
23 0

15 07 07 0

SP

E0

E1

E2

E3

E4

E5

E6

E7

R0H

R1H

R2H

R3H

R4H

R5H

R6H

R7H

R0L

R1L

R2L

R3L

R4L

R5L

R6L

R7L

General registers (Rn) and extended registers (En)

Control registers (CR)

Legend
Stack pointer
Program counter
Condition code register
Interrupt mask bit
User bit or interrupt mask bit
Half-carry flag
Negative flag
Zero flag
Overflow flag
Carry flag

SP:
PC:
CCR:
I:
U:
H:
N:
Z:
V:
C:
8

1.4.2 General Registers

The H8/300H CPU has eight 32-bit general registers. These general registers are all functionally
alike and can be used without distinction between data registers and address registers. When a
general register is used as a data register, it can be accessed as a 32-bit, 16-bit, or 8-bit register.
When the general registers are used as 32-bit registers or as address registers, they are designated
by the letters ER (ER0 to ER7).

The ER registers divide into 16-bit general registers designated by the letters E (E0 to E7) and R
(R0 to R7). These registers are functionally equivalent, providing a maximum sixteen 16-bit
registers. The E registers (E0 to E7) are also referred to as extended registers.

The R registers divide into 8-bit general registers designated by the letters RH (R0H to R7H) and
RL (R0L to R7L). These registers are functionally equivalent, providing a maximum sixteen 8-bit
registers.

Figure 1-8 illustrates the usage of the general registers. The usage of each register can be selected
independently.

Figure 1-8 Usage of General Registers

Address registers

• 32-bit registers • 16-bit registers • 8-bit registers

ER registers
(ER0 to ER7)

E registers (extended registers)
(E0 to E7)

R registers
 (R0 to R7)

RH registers
(R0H to R7H)

RL registers
(R0L to R7L)
9

General register ER7 has the function of stack pointer (SP) in addition to its general-register
function, and is used implicitly in exception handling and subroutine calls. Figure 1-9 shows the
stack.

Figure 1-9 Stack

1.4.3 Control Registers

The control registers are the 24-bit program counter (PC) and the 8-bit condition-code register
(CCR).

(1) Program Counter (PC): This 24-bit counter indicates the address of the next instruction the
CPU will execute. The length of all CPU instructions is 16 bits (one word) or a multiple of 16 bits,
so the least significant PC bit is ignored. When an instruction is fetched, the least significant PC
bit is regarded as 0.

(2) Condition Code Register (CCR): This 8-bit register contains internal CPU status
information, including the interrupt mask bit (I) and half-carry (H), negative (N), zero (Z),
overflow (V), and carry (C) flags.

Bit 7—Interrupt Mask Bit (I): Masks interrupts other than NMI when set to 1. (NMI is accepted
regardless of the I bit setting.) The I bit is set to 1 by hardware at the start of an exception-
handling sequence.

Bit 6—User Bit (U): Can be written and read by software using the LDC, STC, ANDC, ORC,
and XORC instructions. This bit can also be used as an interrupt mask bit. For details see the
relevant microcontroller hardware manual.

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

Free area

Stack area

SP (ER7)
10

Bit 5—Half-Carry Flag (H): When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B, or NEG.B
instruction is executed, this flag is set to 1 if there is a carry or borrow at bit 3, and cleared to 0
otherwise. When the ADD.W, SUB.W, CMP.W, or NEG.W instruction is executed, the H flag is
set to 1 if there is a carry or borrow at bit 11, and cleared to 0 otherwise. When the ADD.L,
SUB.L, CMP.L, or NEG.L instruction is executed, the H flag is set to 1 if there is a carry or
borrow at bit 27, and cleared to 0 otherwise.

Bit 4—User Bit (U): Can be written and read by software using the LDC, STC, ANDC, ORC,
and XORC instructions.

Bit 3—Negative Flag (N): Indicates the most significant bit (sign bit) of the result of an
instruction.

Bit 2—Zero Flag (Z): Set to 1 to indicate a zero result, and cleared to 0 to indicate a non-zero
result.

Bit 1—Overflow Flag (V): Set to 1 when an arithmetic overflow occurs, and cleared to 0 at other
times.

Bit 0—Carry Flag (C): Set to 1 when a carry occurs, and cleared to 0 otherwise. Used by:

• Add instructions, to indicate a carry
• Subtract instructions, to indicate a borrow
• Shift and rotate instructions, to store the value shifted out of the end bit

The carry flag is also used as a bit accumulator by bit manipulation instructions. Some
instructions leave some or all of the flag bits unchanged. For the action of each instruction on the
flag bits, refer to the detailed descriptions of the instructions starting in section 2.2.1.

Operations can be performed on the CCR bits by the LDC, STC, ANDC, ORC, and XORC
instructions. The N, Z, V, and C flags are used as branching conditions for conditional branch
(Bcc) instructions.

1.4.4 Initial Register Values

When the CPU is reset, the program counter (PC) is loaded from the vector table and the I bit in
the condition-code register (CCR) is set to 1. The other CCR bits and the general registers and
extended registers are not initialized. In particular, the stack pointer (extended register E7 and
general register R7) is not initialized. The stack pointer must therefore be initialized by an MOV.L
instruction executed immediately after a reset.
11

1.5 Data Formats

The H8/300H CPU can process 1-bit, 4-bit, 8-bit (byte), 16-bit (word), and 32-bit (longword)
data. Bit-manipulation instructions operate on 1-bit data by accessing bit n (n = 0, 1, 2, …, 7) of
byte operand data. The DAA and DAS decimal-adjust instructions treat byte data as two digits of
4-bit BCD data.

1.5.1 General Register Data Formats

Figure 1-10 shows the data formats in general registers.

Figure 1-10 General Register Data Formats

7 6 5 4 3 2 1 0 Don’t care
7 0

Don’t care 7 6 5 4 3 2 1 0

4 37 0

7 0

Don’t careUpper Lower

LSB

MSB LSB

Data type Register number Data format

1-bit data

1-bit data

4-bit BCD data

4-bit BCD data

Byte data

Byte data

RnH

RnL

RnH

RnL

RnH

RnL

MSB

Don’t care Upper Lower

4 37 0

Don’t care
7 0

Don’t care

7 0
12

Figure 1-10 General Register Data Formats (cont)

1.5.2 Memory Data Formats

Figure 1-11 shows the data formats on memory. The H8/300H CPU can access word data and
longword data on memory, but word or longword data must begin at an even address. If an
attempt is made to access word or longword data at an odd address, no address error occurs but
the least significant bit of the address is regarded as 0, so the access starts at the preceding
address. This also applies to instruction fetches.

0

MSB LSB

15
Word data

Word data

Rn

En

0

LSB

1516

MSB

31

En Rn

General register ER
General register E
General register R
General register RH
General register RL
Most significant bit
Least significant bit

Legend

ERn:
En:
Rn:
RnH:
RnL:
MSB:
LSB:

0

MSB LSB

15

Longword data ERn
13

Figure 1-11 Memory Data Formats

When ER7 is used as an address register to access the stack, the operand size should be word size
or longword size.

7 6 5 4 3 2 1 0

7 0

MSB LSB

MSB

LSB

MSB

LSB

Data type Data format

1-bit data

Byte data

Word data

Longword data

Address

Address L

Address L

Address 2M

Address 2M + 1

Address 2N

Address 2N + 1

Address 2N + 2

Address 2N + 3
14

1.6 Instruction Set

1.6.1 Overview

The H8/300H CPU has 62 types of instructions, which are classified by function in table 1-1. For
a detailed description of each instruction see section 2.2, Instruction Descriptions.

Table 1-1 Instruction Classification

Function Instructions Number

Data transfer MOV, PUSH*1, POP*2, MOVTPE, MOVFPE 3

Logic operations AND, OR, XOR, NOT 4

Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, 8
ROTXR

Bit manipulation BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR, BIOR, 14
BXOR, BIXOR, BLD, BILD, BST, BIST

Branch Bcc*2, JMP, BSR, JSR, RTS 5

Block data transfer EEPMOV 1

Total 62 types

Notes: The shaded instructions are not present in the H8/300 instruction set.
1. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV.W Rn, @–SP.

POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn and MOV.L ERn,
@–SP.

2. Bcc is the generic designation of a conditional branch instruction.

System control TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP 9

Arithmetic ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, DAA, 18
operations DAS, MULXU, MULXS, DIVXU, DIVXS, CMP, NEG, EXTS,

EXTU
15

1.6.2 Instructions and Addressing Modes

Table 1-2 indicates the instructions available in the H8/300H CPU.

Table 1-2 Instruction Set Overview

Addressing Modes

Function Instruction #xx Rn @ERn @(d:16,ERn) @(d:24,ERn) @ERn+/@–ERn @aa:8 @aa:16 @aa:24 @(d:8,PC) @(d:16,PC) @@aa:8 —

MOV

POP, PUSH

MOVFPE,

Data
transfer

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

Arithm
opera

Logic
opera

Shift

Bit ma
lation

BWL

—

—

BWL

—

—

BWL

—

—

BWL

—

—

BWL

—

—

BWL

—

—

B

—

—

BWL

—

B

BWL

—

—

—

WL

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

16

MOVTPE

ADD, CMP

SUB

ADDX,

SUBX

ADDS,

SUBS

INC, DEC

DAA, DAS

MULXU,

DIVXU

MULXS,

DIVXS

NEG

EXTU, EXTS

AND, OR,

XOR

NOT

etic
tions

tions

nipu-

BWL

WL

B

—

—

—

—

—

—

—

BWL

—

—

—

BWL

BWL

B

L*1

BWL

B

BW

BW

BWL

WL

BWL

BWL

BWL

B

—

—

—

—

—

—

—

—

—

—

—

—

—

B

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

B

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

Table 1-2 Instruction Set Overview (cont)

Legend
B: Byte
W: Word
L: Longword

: Newly added

Notes: 1. The op ged to longword size. (In the
H8/300

2. Becau r the JMP and JSR instructions.
(The H

Addressing Modes

Function Instruction #xx Rn @ERn @(d:16,ERn) @(d:24,ERn) @ERn+/@–ERn @aa:8 @aa:16 @aa:24 @(d:8,PC) @(d:16,PC) @@aa:8 —

Bcc, BSR

JMP, JSR

RTS

TRAPA

RTE

SLEEP

LDC

STC

ANDC,

ORC,

XORC

NOP

EEPMOV.B

EEPMOV.W

Branch

System
control

Block data
transfer

*2 —

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

B

—

—

—

—

—

—

B

—

—

—

—

—

W

—

—

—

—

—

—

W

—

—

—

—

—

—

W

—

—

—

—

—

—

W

—

—

—

—

—

—

—

—

—

—

—

—

—

W

—

—

—

—

—

W

—

—

—

—

—

 instruction in H8/300H CPU

erand size of the ADDS and SUBS instructions of the H8/300H CPU has been chan
 CPU it was word size.)
se of its larger address space, the H8/300H CPU uses a 24-bit absolute address fo
8/300 CPU used 16 bits.)

17

—

B

—

—

—

B

—

—

—

—

W

—

—

—

—

W

—

—

—

—

W

—

—

—

—

W

—

—

—

—

—

—

—

—

—

W

—

—

—

—

W

—

—

—

—

1.6.3 Tables of Instructions Classified by Function

Table 1-3 summarizes the instructions in each functional category. The notation used in table 1-3
is defined next.

Operation Notation

Rd General register (destination)*

Rs General register (source)*

Rn General register*

ERn General register (32-bit register)

(EAd) Destination operand

(EAs) Source operand

CCR Condition code register

N N (negative) bit of CCR

Z Z (zero) bit of CCR

V V (overflow) bit of CCR

C C (carry) bit of CCR

PC Program counter

SP Stack pointer

#IMM Immediate data

disp Displacement

+ Addition

– Subtraction

× Multiplication

÷ Division

∧ AND logical

∨ OR logical

⊕ Exclusive OR logical

→ Move

¬ Not

:3/:8/:16/:24 3-, 8-, 16-, or 24-bit length

Note: * General registers include 8-bit registers (R0H/R0L to R7H/R7L), 16-bit registers (R0 to
R7, E0 to E7), and 32-bit registers (ER0 to ER7).
18

Table 1-3 Instructions Classified by Function

Type Instruction Size* Function

Data transfer MOV B/W/L (EAs) → Rd, Rs → (EAd)
Moves data between two general registers or between
a general register and memory, or moves immediate
data to a general register.

MOVFPE B (EAs) → Rd
Moves external memory contents (addressed by
@aa:16) to a general register in synchronization with
an E clock.

MOVTPE B Rs → (EAd)
Moves general register contents to an external memory
location (addressed by @aa:16) in synchronization with
an E clock.

POP W/L @SP+ → Rn
Pops a register from the stack. POP.W Rn is identical to
MOV.W @SP+, Rn. POP.L ERn is identical to MOV.L
@SP+, ERn.

PUSH W/L Rn → @–SP
Pushes a register onto the stack. PUSH.W Rn is
identical to MOV.W Rn, @–SP. PUSH.L ERn is
identical to MOV.L ERn, @–SP.

Note: * Size refers to the operand size.
B: Byte
W: Word
L: Longword
19

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

B/W/L Rd ± Rs → Rd, Rd ± #IMM → Rd
Performs addition or subtraction on data in two general
registers, or on immediate data and data in a general
register. (Immediate byte data cannot be subtracted
from data in a general register. Use the SUBX or ADD
instruction.)

B Rd ± Rs ± C → Rd, Rd ± #IMM ± C → Rd
Performs addition or subtraction with carry or borrow
on byte data in two general registers, or on immediate
data and data in a general register.

B/W/L Rd ± 1 → Rd, Rd ± 2 → Rd
Increments or decrements a general register by 1 or 2.
(Byte operands can be incremented or decremented by
1 only.)

L Rd ± 1 → Rd, Rd ± 2 → Rd, Rd ± 4 → Rd
Adds or subtracts the value 1, 2, or 4 to or from data in
a 32-bit register.

B Rd decimal adjust → Rd
Decimal-adjusts an addition or subtraction result in a
general register by referring to the CCR to produce
4-bit BCD data.

MULXS B/W Rd × Rs → Rd
Performs signed multiplication on data in two general
registers: either 8 bits × 8 bits → 16 bits or 16 bits × 16
bits → 32 bits.

MULXU B/W Rd × Rs → Rd
Performs unsigned multiplication on data in two general
registers: either 8 bits × 8 bits → 16 bits or 16 bits × 16
bits → 32 bits.

DIVXS B/W Rd ÷ Rs → Rd
Performs signed division on data in two general
registers: either 16 bits ÷ 8 bits → 8-bit quotient and
8-bit remainder or 32 bits ÷ 16 bits → 16-bit quotient
and 16-bit remainder.

Note: * Size refers to the operand size.
B: Byte
W: Word
L: Longword

Arithmetic
operations

ADD
SUB

ADDX
SUBX

INC
DEC

ADDS
SUBS

DAA
DAS
20

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

DIVXU B/W Rd ÷ Rs → Rd
Performs unsigned division on data in two general
registers: either 16 bits ÷ 8 bits → 8-bit quotient and 8-
bit remainder or 32 bits ÷ 16 bits → 16-bit quotient and
16-bit remainder.

CMP B/W/L Rd – Rs, Rd – #IMM
Compares data in a general register with data in
another general register or with immediate data, and
sets the CCR according to the result.

NEG B/W/L 0 – Rd → Rd
Takes the two’s complement (arithmetic complement) of
data in a general register.

EXTS W/L Rd (sign extension) → Rd
Extends byte data in the lower 8 bits of a 16-bit register
to word data, or extends word data in the lower 16 bits
of a 32-bit register to longword data, by extending the
sign bit.

EXTU W/L Rd (zero extension) → Rd
Extends byte data in the lower 8 bits of a 16-bit register
to word data, or extends word data in the lower 16 bits
of a 32-bit register to longword data, by padding with
zeros.

Logic operations AND B/W/L Rd ∧ Rs → Rd, Rd ∧ #IMM → Rd
Performs a logical AND operation on a general register
and another general register or immediate data.

OR B/W/L Rd ∨ Rs → Rd, Rd ∨ #IMM → Rd
Performs a logical OR operation on a general register
and another general register or immediate data.

XOR B/W/L Rd ⊕ Rs → Rd, Rd ⊕ #IMM → Rd
Performs a logical exclusive OR operation on a general
register and another general register or immediate
data.

NOT B/W/L ¬ (Rd) → (Rd)
Takes the one’s complement of general register
contents.

Note: * Size refers to the operand size.
B: Byte
W: Word
L: Longword

Arithmetic
operations
21

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

Shift operations B/W/L Rd (shift) → Rd
Performs an arithmetic shift on general register
contents.

B/W/L Rd (shift) → Rd
Performs a logical shift on general register contents.

B/W/L Rd (rotate) → Rd
Rotates general register contents.

B/W/L Rd (rotate) → Rd
Rotates general register contents through the carry bit.

BSET B 1 → (<bit-No.> of <EAd>)
Sets a specified bit in a general register or memory
operand to 1. The bit number is specified by 3-bit
immediate data or the lower three bits of a general
register.

BCLR B 0 → (<bit-No.> of <EAd>)
Clears a specified bit in a general register or memory
operand to 0. The bit number is specified by 3-bit
immediate data or the lower three bits of a general
register.

BNOT B ¬ (<bit-No.> of <EAd>) → (<bit-No.> of <EAd>)
Inverts a specified bit in a general register or memory
operand. The bit number is specified by 3-bit
immediate data or the lower three bits of a general
register.

BTST B ¬ (<bit-No.> of <EAd>) → Z
Tests a specified bit in a general register or memory
operand and sets or clears the Z flag accordingly. The
bit number is specified by 3-bit immediate data or the
lower three bits of a general register.

BAND B C ∧ (<bit-No.> of <EAd>) → C
ANDs the carry flag with a specified bit in a general
register or memory operand and stores the result in the
carry flag.

BIAND B C ∧ ¬ (<bit-No.> of <EAd>) → C
ANDs the carry flag with the inverse of a specified bit in
a general register or memory operand and stores the
result in the carry flag.

The bit number is specified by 3-bit immediate data.

Note: * Size refers to the operand size.
B: Byte
W: Word
L: Longword

Bit-manipulation
instructions

SHAL
SHAR

SHLL
SHLR

ROTL
ROTR

ROTXL
ROTXR
22

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

BOR B C ∨ (<bit-No.> of <EAd>) → C
ORs the carry flag with a specified bit in a general
register or memory operand and stores the result in the
carry flag.

BIOR B C ∨ [¬ (<bit-No.> of <EAd>)] → C
ORs the carry flag with the inverse of a specified bit in a
general register or memory operand and stores the
result in the carry flag.

The bit number is specified by 3-bit immediate data.

BXOR B C ⊕ (<bit-No.> of <EAd>) → C
Exclusive-ORs the carry flag with a specified bit in a
general register or memory operand and stores the
result in the carry flag.

BIXOR B C ⊕ [¬ (<bit-No.> of <EAd>)] → C
Exclusive-ORs the carry flag with the inverse of a
specified bit in a general register or memory operand
and stores the result in the carry flag.

The bit number is specified by 3-bit immediate data.

BLD B (<bit-No.> of <EAd>) → C
Transfers a specified bit in a general register or
memory operand to the carry flag.

BILD B ¬ (<bit-No.> of <EAd>) → C
Transfers the inverse of a specified bit in a general
register or memory operand to the carry flag.

The bit number is specified by 3-bit immediate data.

BST B C → (<bit-No.> of <EAd>)
Transfers the carry flag value to a specified bit in a
general register or memory operand.

BIST B ¬ C → (<bit-No.> of <EAd>)
Transfers the inverse of the carry flag value to a
specified bit in a general register or memory operand.

The bit number is specified by 3-bit immediate data.

Note: * Size refers to the operand size.
B: Byte

Bit-manipulation
instructions
23

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

Branching Bcc — Branches to a specified address if a specified condition
instructions is true. The branching conditions are listed below.

Mnemonic Description Condition

BRA(BT) Always (true) Always

BRN(BF) Never (false) Never

BHI High C ∨ Z = 0

BLS Low or same C ∨ Z = 1

Bcc(BHS) Carry clear C = 0
(high or same)

BCS(BLO) Carry set (low) C = 1

BNE Not equal Z = 0

BEQ Equal Z = 1

BVC Overflow clear V = 0

BVS Overflow set V = 1

BPL Plus N = 0

BMI Minus N = 1

BGE Greater or equal N ⊕ V = 0

BLT Less than N ⊕ V = 1

BGT Greater than Z ∨ (N ⊕ V) = 0

BLE Less or equal Z ∨ (N ⊕ V) = 1

JMP — Branches unconditionally to a specified address.

BSR — Branches to a subroutine at a specified address.

JSR — Branches to a subroutine at a specified address.

RTS — Returns from a subroutine.

Note: * Size refers to the operand size.
24

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

TRAPA — Starts trap-instruction exception handling.

RTE — Returns from an exception-handling routine.

SLEEP — Causes a transition to the power-down state.

LDC B/W (EAs) → CCR
Moves the source operand contents to the condition
code register. Byte transfer is performed in the #xx:8,
Rs addressing mode and word transfer in other
addressing modes.

STC B/W CCR → (EAd)
Transfers the CCR contents to a destination location.
Byte transfer is performed in the Rd addressing mode
and word transfer in other addressing modes.

ANDC B CCR ∧ #IMM → CCR
Logically ANDs the condition code register with
immediate data.

ORC B CCR ∨ #IMM → CCR
Logically ORs the condition code register with
immediate data.

XORC B CCR ⊕ #IMM → CCR
Logically exclusive-ORs the condition code register
with immediate data.

NOP — PC + 2 → PC
Only increments the program counter.

Note: * Size refers to the operand size.
B: Byte
W: Word

System control
instructions
25

Table 1-3 Instructions Classified by Function (cont)

Type Instruction Size* Function

EEPMOV.B — if R4L ≠ 0 then
Repeat @ER5 +→ @ER6 +

R4L – 1→R4L
Until R4L = 0

else next;

EEPMOV.W — if R4 ≠ 0 then
Repeat @ER5 +→ @ER6 +

R4 – 1→R4L
Until R4 = 0

else next;

Transfers a data block according to parameters set in
general registers R4L or R4, ER5, and R6.

R4L or R4: size of block (bytes)
ER5: starting source address
R6: starting destination address

Execution of the next instruction begins as soon as the
transfer is completed.

Note: * Size refers to the operand size.

Block data
transfer
instruction
26

1.6.4 Basic Instruction Formats

The H8/300H instructions consist of 2-byte (1-word) units. An instruction consists of an operation
field (OP field), a register field (r field), an effective address extension (EA field), and a condition
field (cc).

Operation Field: Indicates the function of the instruction, the effective address, and the operation
to be carried out on the operand. The operation field always includes the first four bits of the
instruction. Some instructions have two operation fields.

Register Field: Specifies a general register. Address registers are specified by 3 bits, data
registers by 3 bits or 4 bits. Some instructions have two register fields. Some have no register
field.

Effective Address Extension: Eight, 16, or 32 bits specifying immediate data, an absolute
address, or a displacement. A 24-bit address or a displacement is treated as 32-bit data in which
the first 8 bits are 0.

Condition Field: Specifies the branching condition of Bcc instructions.

Figure 1-12 shows examples of instruction formats.

Figure 1-12 Instruction Formats

op

op rn rm

NOP, RTS, etc.

ADD. Rn, Rm, etc.

MOV @(d:16, Rn), Rm

(1) Operation field only

(2) Operation field and register fields

(3) Operation field, register fields, and effective address extension

rn rmop

EA (disp)

(4) Operation field, effective address extension, and condition field

op cc EA (disp)
BRA @(d:8, PC)
27

1.6.5 Addressing Modes and Effective Address Calculation

(1) Addressing Modes: The H8/300H CPU supports the eight addressing modes listed in table 1-
4. Each instruction uses a subset of these addressing modes. Arithmetic and logic instructions can
use the register direct and immediate modes. Data transfer instructions can use all addressing
modes except program-counter relative and memory indirect. Bit manipulation instructions use
register direct, register indirect, or absolute (8-bit) addressing mode to specify an operand, and
register direct (BSET, BCLR, BNOT, and BTST instructions) or immediate (3-bit) addressing
mode to specify a bit number in the operand.

Table 1-4 Addressing Modes

No. Addressing Mode Symbol

1 Register direct Rn

2 Register indirect @ERn

3 Register indirect with displacement @(d:16,ERn)/@(d:24,ERn)

4 Register indirect with post-increment @ERn+
Register indirect with pre-decrement @–ERn

5 Absolute address @aa:8/@aa:16/@aa:24

6 Immediate #xx:8/#xx:16/#xx:32

7 Program-counter relative @(d:8,PC)/@(d:16,PC)

8 Memory indirect @@aa:8

1 Register Direct—Rn: The register field of the instruction specifies an 8-, 16-, or 32-bit general
register containing the operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers.
R0 to R7 and E0 to E7 can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit
registers.

2 Register Indirect—@ERn: The register field of the instruction code specifies an address
register (ERn), the lower 24 bits of which contain the address of a memory operand.

3 Register Indirect with Displacement—@(d:16, ERn) or @(d:24, ERn): A 16-bit or 24-bit
displacement contained in the instruction is added to an address register (an extended register
paired with a general register) specified by the register field of the instruction, and the lower 24
bits of the sum specify the address of a memory operand. A 16-bit displacement is sign-extended
when added.
28

4 Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or @–ERn:

• Register indirect with post-increment—@ERn+

The register field of the instruction code specifies an address register (ERn), the lower 24 bits
of which contain the address of a memory operand. After the operand is accessed, 1, 2, or 4 is
added to the address register contents (32 bits) and the sum is stored in the address register.
The value added is 1 for byte access, 2 for word access, or 4 for longword access. For word or
longword access, the register value should be even.

• Register indirect with pre-decrement—@–ERn

The value 1, 2, or 4 is subtracted from an address register (ERn) specified by the register field
in the instruction code, and the lower 24 bits of the result becomes the address of a memory
operand. The result is also stored in the address register. The value subtracted is 1 for byte
access, 2 for word access, or 4 for longword access. For word or longword access, the
resulting register value should be even.

5 Absolute Address—@aa:8, @aa:16, or @aa:24: The instruction code contains the absolute
address of a memory operand. The absolute address may be 8 bits long (@aa:8), 16 bits long
(@aa:16), or 24 bits long (@aa:24). For an 8-bit absolute address, the upper 16 bits are all
assumed to be 1 (H'FFFF). For a 16-bit absolute address the upper 8 bits are a sign extension.
A 24-bit absolute address can access the entire address space. Table 1-5 indicates the accessible
address ranges.

Table 1-5 Absolute Address Access Ranges

Normal Mode Advanced Mode

8 bits H'FF00 to H'FFFF H'FFFF00 to H'FFFFF
(@aa:8) (65,280 to 65,535) (16,776,960 to 16,777,215)

16 bits H'0000 to H'FFFF H'000000 to H'007FFF, H'FF8000 to H'FFFFFF
(@aa:16) (0 to 65,535) (0 to 32,767, 16,744,448 to 16,777,215)

24 bits H'0000 to H'FFFF H'00000 to H'FFFFF
(@aa:24) (0 to 65,535) (0 to 16,777,215)

For further details on the accessible range, see the relevant microcontroller hardware manual.

6 Immediate—#xx:8, #xx:16, or #xx:32: The instruction contains 8-bit (#xx:8), 16-bit (#xx:16),
or 32-bit (#xx:32) immediate data as an operand.

The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some bit
manipulation instructions contain 3-bit immediate data in the second or fourth byte of the
instruction, specifying a bit number. The TRAPA instruction contains 2-bit immediate data in the
second byte of the instruction, specifying a vector address.
29

7 Program-Counter Relative—@(d:8, PC) or @(d:16, PC): This mode is used in the Bcc and
BSR instructions. An 8-bit or 16-bit displacement contained in the instruction is sign-extended
and added to the 24-bit program counter (PC) contents to generate a branch address. The PC value
to which the displacement is added is the address of the first byte of the next instruction, so the
possible branching range is –126 to +128 bytes (–63 to +64 words) or –32766 to +32768 bytes
(–16383 to +16384 words) from the branch instruction. The resulting value should be an even
number.

8 Memory Indirect—@@aa:8: This mode can be used by the JMP and JSR instructions. The
second byte of the instruction specifies a memory operand by an 8-bit absolute address. This
memory operand contains a branch address. The upper 8 bits of the absolute address are assumed
to be 0 (H'00), so the address range is 0 to 255 (H’0000 to H’00FF in normal mode, H'000000 to
H'0000FF in advanced mode). In normal mode the memory operand is a word operand and the
branch address is 16 bits long. In advanced mode the memory operand is a longword operand. The
first byte is ignored and the branch address is 24 bits long. Note that the first part of the address
range is also the exception vector area. For further details see the relevant microcontroller
hardware manual.

Figure 1-13 Branch Address Specification in Memory Indirect Mode

If an odd address is specified in word or longword memory access, or as a branch address, the
least significant bit is regarded as 0, causing access to be performed at the address preceding the
specified address. [See (2) Memory Data Formats in section 1.5.2 for further information.]

(2) Effective Address Calculation: Table 1-6 indicates how effective addresses are calculated in
each addressing mode. In normal mode the upper 8 bits of the effective address are ignored in
order to generate a 16-bit address.

(a) Normal mode (b) Advanced mode

Branch address
Specified
by @aa:8

Specified
by @aa:8

Reserved

Branch address
30

Table 1-6 Effective Address Calculation

No. Addressing Mode and Instruction Format Effective Address Calculation Effective Address (EA)

(1) Register direct Rn

op Regm Regn
Operands are contents of regm and regn

Register indirect @ERn(2)

op reg

Register contents

31 0 23 0

23 0

23 0

23 0
31

Register indirect with post-increment or pre-decrement
• Register indirect with post-increment
 @ERn+

Register indirect with displacement
@(d:16, ERn)

op reg disp

(3)

op reg

• Register indirect with pre-decrement
 @–ERn

op reg

(4)

Register contents

Sign extension disp

Register contents

1, 2, or 4

Register contents

1, 2, or 4

Byte
Word
Longword

1
2
4

Operand Size Added Value

31 0

31 0

31 0

31 0

Table 1-6 Effective Address Calculation (cont)

No. Addressing Mode and Instruction Format Effective Address Calculation Effective Address (EA)

(5)

@aa:8

op abs

Absolute address

(6)

23 08 7

H'FFFF

016 15

n

0

Operand is immediate data.
32

@aa:16

@aa:24

op abs

op

abs

Immediate #xx:8/#xx:16/#xx:32

23
Sign

extensio

23

op IMM

Table 1-6 Effective Address Calculation (cont)

Effective Address Calculation Effective Address (EA)No. Addressing Mode and Instruction Format

dispop

23 0

023

PC contents

Sign
extension disp

23 0

23 016 15

23 0

H'00

(7) Program-counter relative

@(d:8, PC)/@(d:16, PC)

(8)
33

absop

absop

31 0

023

023 8 7

8 7

H'0000 abs

Memory contents

H'0000 abs

Memory contents

Memory indirect @@aa:8

Normal mode

Advanced mode

15 0

Legend
reg, regm, regn: General registers
op: Operation field
disp: Displacement
abs: Absolute address
IMM: Immediate data
34

Section 2 Instruction Descriptions

2.1 Tables and Symbols

This section explains how to read the tables describing each instruction. Note that the descriptions
of some instructions extend over two pages or more.

Mnemonic (full name): Gives the full and mnemonic names of the instruction.

Type: Indicates the type of instruction.

Operation: Describes the instruction in symbolic notation. (See section 2.1.2, Operation.)

Assembly-Language Format: Indicates the assembly-language format of the instruction. (See
section 2.1.1, Assembler Format.)

Operand Size: Indicates the available operand sizes.

Condition Code: Indicates the effect of instruction execution on the flag bits in the CCR. (See
section 2.1.3, Condition Code.)

Description: Describes the operation of the instruction in detail.

Available Registers: Indicates which registers can be specified in the register field of the
instruction.

Operand Format and Number of States Required for Execution: Shows the addressing modes
and instruction format together with the number of states required for execution.

Notes: Gives notes concerning execution of the instruction.
35

2.1.1 Assembler Format

Example: ADD. B <EAs>, Rd

Destination operand

Source operand

Size

Mnemonic

The operand size is byte (B), word (W), or longword (L). Some instructions are restricted to a
limited set of operand sizes.

The symbol <EA> indicates that two or more addressing modes can be used. The H8/300H CPU
supports the eight addressing modes listed next. Effective address calculation is described in
section 1.7, Effective Address Calculation.

Symbol Addressing Mode

Rn Register direct

@ERn Register indirect

@(d:16, ERn)/@(d:24, ERn) Register indirect with displacement (16-bit or 24-bit)

@ERn+, @–ERn Register indirect with post-increment or pre-decrement

@aa:8/16/24 Absolute address (8-bit, 16-bit, or 24-bit)

#xx:8/16/32 Immediate (8-bit, 16-bit, or 32-bit)

@(d:8, PC)/@(d:16, PC) Program-counter relative (8-bit or 16-bit)

@@aa:8 Memory indirect
36

2.1.2 Operation

The symbols used in the operation descriptions are defined as follows.

Symbol Meaning

Rd General destination register*

Rs General source register*

Rn General register*

ERd General destination register (address register or 32-bit register)

ERs General source register (address register or 32-bit register)

ERn General register (32-bit register)

(EAd) Destination operand

(EAs) Source operand

PC Program counter

SP Stack pointer

CCR Condition-code register

N N (negative) flag in CCR

Z Z (zero) flag in CCR

V V (overflow) flag in CCR

C C (carry) flag in CCR

disp Displacement

→ Transfer from the operand on the left to the operand on the right, or transition
from the state on the left to the state on the right

+ Addition of the operands on both sides

– Subtraction of the operand on the right from the operand on the left

× Multiplication of the operands on both sides

÷ Division of the operand on the left by the operand on the right

∧ Logical AND of the operands on both sides

∨ Logical OR of the operands on both sides

⊕ Logical exclusive OR of the operands on both sides

¬ Logical NOT (logical complement)

() < > Contents of effective address of the operand

Note: * General registers include 8-bit registers (R0H to R7H and R0L to R7L), 16-bit registers
(R0 to R7 ad E0 to E7) and 32-bit registers.
37

2.1.3 Condition Code

The symbols used in the condition-code description are defined as follows.

2.1.4 Instruction Format

The symbols used in the instruction format descriptions are listed below.

Symbol Meaning

↕ Changes according to the result of the instruction

* Undetermined (no guaranteed value)

0 Always cleared to 0

– Not affected by execution of the instruction

∆ Varies depending on conditions; see the notes.

Symbol Meaning

IMM Immediate data (2, 3, 8, 16, or 32 bits)

abs Absolute address (8, 16, or 24 bits)

disp Displacement (8, 16, or 24 bits)

rs, rd, rn Register number (4 bits. The symbol rs corresponds to operand symbols such
as Rs. The symbol rd corresponds to operand symbols such as Rd. The symbol
rn corresponds to the operand symbol Rn.)

ers, erd, ern Register number (3 bits. The symbol ers corresponds to operand symbols such
as ERs. The symbol erd corresponds to operand symbols such as ERd and
@ERd. The symbol ern corresponds to the operand symbol ERn.)
38

2.1.5 Register Specification

Address Register Specification: When a general register is used as an address register [@ERn,
@(d:16, ERn), @(d:24, ERn), @ERn+, or @–ERn], the register is specified by a 3-bit register
field (ers or erd). The lower 24 bits of the register are valid.

Data Register Specification: A general register can be used as a 32-bit, 16-bit, or 8-bit data
register, which is specified by a 3-bit register number. When a 32-bit register (ERn) is used as a
longword data register, it is specified by a 3-bit register field (ers, erd, or ern). When a 16-bit
register is used as a word data register, it is specified by a 4-bit register field (rs, rd, or rn). The
lower 3 bits specify the register number. The upper bit is set to 1 to specify an extended register
(En) or cleared to 0 to specify a general register (Rn). When an 8-bit register is used as a byte data
register, it is specified by a 4-bit register field (rs, rd, or rn). The lower 3 bits specify the register
number. The upper bit is set to 1 to specify a low register (RnL) or cleared to 0 to specify a high
register (RnH). This is shown next.

Address Register
32-bit Register 16-bit Register 8-bit Register

Register General Register General Register General
Field Register Field Register Field Register

000 ER0 0000 R0 0000 R0H
001 ER1 0001 R1 0001 R1H

111 ER7 0111 R7 0111 R7H
1000 E0 1000 E0L
1001 E1 1001 E1L

1111 E7 1111 E7L
39

2.1.6 Bit Data Access in Bit Manipulation Instructions

Bit data is accessed as the n-th bit (n = 0, 1, 2, 3, …, 7) of a byte operand in a general register or
memory. The bit number is given by 3-bit immediate data, or by the lower 3 bits of a general
register value.

Example 1: To set bit 3 in R2H to 1

Example 2: To load bit 5 at address H'FFFF02 into the bit accumulator

The operand size and addressing mode are as indicated for register or memory operand data.

BSET R1L, R2H

R1L 0 1 1Don’t care

0 0 1R2H 10110

Bit number

Set to 1

BLD #5, @FFFF02

H'FF02 1 1 000101

#5

 Load

C

40

2.2 Instruction Descriptions

The instructions are described starting in section 2.2.1.
41

2.2.1 (1) ADD (B)

ADD (ADD binary) Add Binary

Operation

Rd + (EAs) → Rd

Assembly-Language Format

ADD.B <EAs>, Rd

Operand Size

Byte

Condition Code

H: Set to 1 if there is a carry at bit 3;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a carry at bit 7;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction adds the source operand to the contents of an 8-bit register Rd (destination
operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate ADD.B #xx:8, Rd 8 rd IMM 2

Register direct ADD.B Rs, Rd 0 8 rs rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
42

2.2.1 (2) ADD (W)

ADD (ADD binary) Add Binary

Operation

Rd + (EAs) → Rd

Assembly-Language Format

ADD.W <EAs>, Rd

Operand Size

Word

Condition Code

H: Set to 1 if there is a carry at bit 11;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a carry at bit 15;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction adds the source operand to the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate ADD.W #xx:16, Rd 7 9 1 rd IMM 4

Register direct ADD.W Rs, Rd 0 9 rs rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
43

2.2.1 (3) ADD (L)

ADD (ADD binary) Add Binary

Operation

ERd + (EAs) → ERd

Assembly-Language Format

ADD.L <EAs>, ERd

Operand Size

Longword

Condition Code

H: Set to 1 if there is a carry at bit 27;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a carry at bit 31;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction adds the source operand to the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7
ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte

Immediate ADD.L #xx:32, ERd 7 A 1 0 erd IMM 6

Register direct ADD.L Rs, ERd 0 A 1 ers 0 erd 2

No. of
States

Mnemonic OperandsAddressing
Mode
44

2.2.2 ADDS

ADDS (ADD with Sign extension) Add Binary Address Data

Operation

Rd + 1 → ERd
Rd + 2 → ERd
Rd + 4 → ERd

Assembly-Language Format

ADDS #1, ERd
ADDS #2, ERd
ADDS #4, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction adds the immediate value 1, 2, or 4 to the contents of a 32-bit register ERd.
Differing from the ADD instruction, it does not affect the condition code flags.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ADDS #1, ERd 0 B 0 0 erd 2

Register direct ADDS #2, ERd 0 B 8 0 erd 2

Register direct ADDS #4, ERd 0 B 9 0 erd 2

No. of
States

Addressing
Mode

Mnemonic Operands
45

2.2.3 ADDX

ADDX (ADD with eXtend carry) Add with Carry

Operation

Rd + (EAs) + C → Rd

Assembly-Language Format

ADDX <EAs>, Rd

Operand Size

Byte

Condition Code

H: Set to 1 if there is a carry at bit 3;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Previous value remains unchanged if the
result is zero; otherwise cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a carry at bit 7;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction adds the source operand and carry flag to the contents of an 8-bit register Rd
(destination register) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate ADDX #xx:8, Rd 9 rd IMM 2

Register direct ADDX Rs, Rd 0 E rs rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
46

2.2.4 (1) AND (B)

AND (AND logical) Logical AND

Operation

Rd ∧ (EAs) → Rd

Assembly-Language Format

AND.B <EAs>, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction ANDs the source operand with the contents of an 8-bit register Rd (destination
register) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate AND.B #xx:8, Rd E rd IMM 2

Register direct AND.B Rs, Rd 1 6 rs rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
47

2.2.4 (2) AND (W)

AND (AND logical) Logical AND

Operation

Rd ∧ (EAs) → Rd

Assembly-Language Format

AND.W <EAs>, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction ANDs the source operand with the contents of a 16-bit register Rd (destination
register) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate AND.W #xx:16, Rd 7 9 6 rd IMM 4

Register direct AND.W Rs, Rd 6 6 rs rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
48

2.2.4 (3) AND (L)

AND (AND logical) Logical AND

Operation

ERd ∧ (EAs) → ERd

Assembly-Language Format

AND.L <EAs>, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction ANDs the source operand with the contents of a 32-bit register ERd (destination
register) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7
ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte

Immediate AND.L #xx:32, ERd 7 A 6 0 erd IMM 6

Register direct AND.L Rs, ERd 0 1 F 0 6 6 0 ers 0 erd 4

No. of
States

Mnemonic OperandsAddressing
Mode
49

2.2.5 ANDC

ANDC (AND Control register) Logical AND with CCR

Operation

CCR ∧ #IMM → CCR

Assembly-Language Format

ANDC #xx:8, CCR

Operand Size

Byte

Condition Code

I: Stores the corresponding bit of the result.
UI: Stores the corresponding bit of the result
H: Stores the corresponding bit of the result.
U: Stores the corresponding bit of the result
N: Stores the corresponding bit of the result.
Z: Stores the corresponding bit of the result.
V: Stores the corresponding bit of the result.
C: Stores the corresponding bit of the result.

I UI H U N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Description

This instruction ANDs the contents of the condition-code register (CCR) with immediate data and
stores the result in the condition-code register. No interrupt requests, including NMI, are accepted
immediately after execution of this instruction.

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate ANDC #xx:8, CCR 0 6 IMM 2

No. of
States

Addressing
Mode

Mnemonic Operands
50

2.2.6 BAND

BAND (Bit AND) Bit Logical AND

Operation

C ∧ (<bit No.> of <EAd>) → C

Assembly-Language Format

BAND #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Stores the result of the operation.

I UI H U N Z V C

— — — — — — — ↕

Description

This instruction ANDs a specified bit in the destination operand with the carry bit and stores the
result in the carry bit. The bit number is specified by 3-bit immediate data. The destination
operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

See the corresponding LSI hardware manual for details on the access range for @aa : 8.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct BAND #xx:3.Rd 7 6 0 IMM rd 2

Register indirect BAND #xx:3.@ERd 7 C 0 erd 0 7 6 0 IMM 0 6

Absolute address BAND #xx:3.@aa:8 7 E abs 7 6 0 IMM 0 6

No. of
States

Addressing
Mode*

Mnemonic Operands

C ∧ C

7 0

Specified by #xx:3

Bit No.

<EAd>
51

2.2.7 Bcc

Bcc (Branch conditionally) Conditional Branch

Operation

If condition is true, then
PC + disp → PC

else next;

Assembly-Language Format

Bcc disp
→ Condition field

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

If the condition specified in the condition field (cc) is true, a displacement is added to the program
counter (PC) and execution branches to the resulting address. The PC value used in the address
calculation is the starting address of the instruction immediately following the Bcc instruction.
The displacement is a signed 8-bit or 16-bit value. The branch destination address can be located
in the range from –126 to +128 bytes or –32766 to +32768 bytes from the Bcc instruction.

Note: * If the immediately preceding instruction is a CMP instruction, X is the destination operand
and Y is the source operand.

Mnemonic Meaning cc Condition Signed/Unsigned*

BRA (BT) Always (true) 0000 True
BRn (BF) Never (false) 0001 False
BHI HIgh 0010 C∨ Z = 0 X > Y (unsigned)
BLS Low or Same 0011 C∨ Z = 1 X ≤ Y (unsigned)
BCC (BHS) Carry Clear (High or Same) 0100 C = 0 X ≥ Y (unsigned)
BCS (BLO) Carry Set (LOw) 0101 C = 1 X < Y (unsigned)
BNE Not Equal 0110 Z = 0 X ≠ Y (unsigned or signed)
BEQ EQual 0111 Z = 1 X > Y (unsigned or signed)
BVC oVerflow Clear 1000 V = 0
BVS oVerflow Set 1001 V = 1
BPL PLus 1010 N = 0
BMI Minus 1011 N = 1
BGE Greater or Equal 1100 N⊕ V = 0 X ≥ Y (signed)
BLT Less Than 1101 N⊕ V = 1 X < Y (signed)
BGT Greater Than 1110 Z∨ (N⊕ V) = 0 X > Y (signed)
BLE Less or Equal 1111 Z∨ (N⊕ V) = 1 X ≤ Y (signed)
52

Bcc (Branch conditionally) Conditional Branch

Operand Format and Number of States Required for Execution

Notes

1. The branch destination address must be even.
2. In machine language BRA, BRN, BCC, and BCS are identical to BT, BF, BHS, and BLO,

respectively. The number of execution states for BRn (BF) is the same as for two NOP
instructions.

Instruction Format
1st byte 2nd byte 3rd byte 4th byte

d:8 4 0 disp 4
d:16 5 8 0 0 disp 6
d:8 4 1 disp 4
d:16 5 8 1 0 disp 6
d:8 4 2 disp 4
d:16 5 8 2 0 disp 6
d:8 4 3 disp 4
d:16 5 8 3 0 disp 6
d:8 4 4 disp 4
d:16 5 8 4 0 disp 6
d:8 4 5 disp 4
d:16 5 8 5 0 disp 6
d:8 4 6 disp 4
d:16 5 8 6 0 disp 6
d:8 4 7 disp 4
d:16 5 8 7 0 disp 6
d:8 4 8 disp 4
d:16 5 8 8 0 disp 6
d:8 4 9 disp 4
d:16 5 8 9 0 disp 6
d:8 4 A disp 4
d:16 5 8 A 0 disp 6
d:8 4 B disp 4
d:16 5 8 B 0 disp 6
d:8 4 C disp 4
d:16 5 8 C 0 disp 6
d:8 4 D disp 4
d:16 5 8 D 0 disp 6
d:8 4 E disp 4
d:16 5 8 E 0 disp 6
d:8 4 F disp 4
d:16 5 8 F 0 disp 6

Addressing
Mode

Mnemonic Operands

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

Program-counter
relative

BRA (BT)

BRN (BF)

BHI

BLS

Bcc (BHS)

BCS (BLO)

BNE

BEQ

BVC

BVS

BPL

BMI

BGE

BLT

BGT

BLE

No. of
States
53

2.2.8 BCLR

BCLR (Bit CLeaR) Bit Clear

Operation

0 → (<bit No.> of <EAd>)

Assembly-Language Format

BCLR #xx:3, <EAd>
BCLR Rn, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction clears a specified bit in the destination operand to 0. The bit number can be
specified by 3-bit immediate data, or by the lower three bits of a general register (Rn). The
specified bit is not tested. The condition-code flags are not altered.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rn: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

7 0

Specified by #xx:3 or Rn

Bit No.

0

<EAd>
54

BCLR (Bit CLeaR) Bit Clear

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct BCLR #xx:3, Rd 7 2 0 IMM rd 2

Register indirect BCLR #xx:3, @ERd 7 D 0 erd 0 7 2 0 IMM 0 8

Absolute address BCLR #xx:3, @aa:8 7 F abs 7 2 0 IMM 0 8

Register direct BCLR Rn, Rd 6 2 rn rd 2

Register indirect BCLR Rn, @ERd 7 D 0 erd 0 6 2 rn 0 8

Absolute address BCLR Rn, @aa:8 7 F abs 6 2 rn 0 8

No. of
States

Addressing
Mode*

Mnemonic Operands
55

2.2.9 BIAND

BIAND (Bit Invert AND) Bit Logical AND

Operation

C ∧ [¬ (<bit No.> of <EAd>)] → C

Assembly-Language Format

BIAND #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Stores the result of the operation.

I UI H U N Z V C

— — — — — — — ↕

Description

This instruction ANDs the inverse of a specified bit in the destination operand with the carry bit
and stores the result in the carry bit. The bit number is specified by 3-bit immediate data. The
destination operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

C ∧ C

7 0

Specified by #xx:3

Bit No.

Invert

<EAd>

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct BIAND #xx:3.Rd 7 6 1 IMM rd 2

Register indirect BIAND #xx:3.@ERd 7 C 0 erd 0 7 6 1 IMM 0 6

Absolute address BIAND #xx:3.@aa:8 7 E abs 7 6 1 IMM 0 6

No. of
States

Addressing
Mode*

Mnemonic Operands
56

2.2.10 BILD

BILD (Bit Invert LoaD) Bit Load

Operation

¬ (<bit No.> of <EAd>) → C

Assembly-Language Format

BILD #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Loaded with the inverse of the specified bit.

I UI H U N Z V C

— — — — — — — ↕

Description

This instruction loads the inverse of a specified bit from the destination operand into the carry bit.
The bit number is specified by 3-bit immediate data. The destination operand contents remain
unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct BILD #xx:3.Rd 7 7 1 IMM rd 2

Register indirect BILD #xx:3.@ERd 7 C 0 erd 0 7 7 1 IMM 0 6

Absolute address BILD #xx:3.@aa:8 7 E abs 7 7 1 IMM 0 6

No. of
States

Addressing
Mode*

Mnemonic Operands

C

7 0

Specified by #xx:3

Bit No.

Invert

<EAd>
57

2.2.11 BIOR

BIOR (Bit Invert inclusive OR) Bit Logical OR

Operation

C ∨ [¬ (<bit No.> of <EAd>)] → C

Assembly-Language Format

BIOR #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Stores the result of the operation.

I UI H U N Z V C

— — — — — — — ↕

Description

This instruction ORs the inverse of a specified bit in the destination operand with the carry bit and
stores the result in the carry bit. The bit number is specified by 3-bit immediate data. The
destination operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

C ∨ C

7 0

Specified by #xx:3

Bit No.

Invert

<EAd>

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct BIOR #xx:3.Rd 7 4 1 IMM rd 2

Register indirect BIOR #xx:3.@ERd 7 C 0 erd 0 7 4 1 IMM 0 6

Absolute address BIOR #xx:3.@aa:8 7 E abs 7 4 1 IMM 0 6

No. of
States

Addressing
Mode*

Mnemonic Operands
58

2.2.12 BIST

BIST (Bit Invert STore) Bit Store

Operation

¬ C → (<bit No.> of <EAd>)

Assembly-Language Format

BIST #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction stores the inverse of the carry bit in a specified bit location in the destination
operand. The bit number is specified by 3-bit immediate data. Other bits in the destination
operand remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

C

7 0

Specified by #xx:3

Bit No.

Invert

<EAd>

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct BIST #xx:3,Rd 6 7 1 IMM rd 2

Register indirect BIST #xx:3,@ERd 7 D 0 erd 0 6 7 1 IMM 0 8

Absolute address BIST #xx:3,@aa:8 7 F abs 6 7 1 IMM 0 8

No. of
States

Addressing
Mode*

Mnemonic Operands
59

2.2.13 BIXOR

BIXOR (Bit Invert eXclusive OR) Bit Exclusive Logical OR

Operation

C ⊕ [¬ (<bit No.> of <EAd>)] → C

Assembly-Language Format

BIXOR #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Stores the result of the operation.

I UI H U N Z V C

— — — — — — — ↕

Description

This instruction exclusively ORs the inverse of a specified bit in the destination operand with the
carry bit and stores the result in the carry bit. The bit number is specified by 3-bit immediate data.
The destination operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

Specified by #xx:3

⊕

Invert

C

07

C

Bit No.

<EAd>

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct BIXOR #xx:3,Rd 7 5 1 IMM rd 2

Register indirect BIXOR #xx:3,@ERd 7 C 0 erd 0 7 5 1 IMM 0 6

Absolute address BIXOR #xx:3,@aa:8 7 E abs 7 5 1 IMM 0 6

No. of
States

Addressing
Mode*

Mnemonic Operands
60

2.2.14 BLD

BLD (Bit LoaD) Bit Load

Operation

(<Bit No.> of <EAd>) → C

Assembly-Language Format

BLD #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Loaded from the specified bit.

I UI H U N Z V C

— — — — — — — ↕

Description

This instruction loads a specified bit from the destination operand into the carry bit. The bit
number is specified by 3-bit immediate data. The destination operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

Specified by #xx:3

C

07Bit No.

<EAd>

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct BLD #xx:3,Rd 7 7 0 IMM rd 2

Register indirect BLD #xx:3,@ERd 7 C 0 erd 0 7 7 0 IMM 0 6

Absolute address BLD #xx:3,@aa:8 7 E abs 7 7 0 IMM 0 6

No. of
States

Addressing
Mode*

Mnemonic Operands
61

2.2.15 BNOT

BNOT (Bit NOT) Bit NOT

Operation

¬ (<bit No.> of <EAd>) → (<bit No.> of
<EAd>)

Assembly-Language Format

BNOT #xx:3, <EAd>
BNOT Rn, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction inverts a specified bit in the destination operand. The bit number is specified by
3-bit immediate data or by the lower 3 bits of a general register. The specified bit is not tested.
The condition code remains unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rn: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

7 0Bit No.

Specified by #xx:3 or Rn

Invert

<EAd>
62

BNOT (Bit NOT) Bit NOT

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct BNOT #xx:3, Rd 7 1 0 IMM rd 2

Register indirect BNOT #xx:3, @ERd 7 D 0 erd 0 7 1 0 IMM 0 8

Absolute address BNOT #xx:3, @aa:8 7 F abs 7 1 0 IMM 0 8

Register direct BNOT Rn, Rd 6 1 rn rd 2

Register indirect BNOT Rn, @ERd 7 D 0 erd 0 6 1 rn 0 8

Absolute address BNOT Rn, @aa:8 7 F abs 6 1 rn 0 8

No. of
States

Addressing
Mode*

Mnemonic Operands
63

2.2.16 BOR

BOR (bit inclusive OR) Bit Logical OR

Operation

C ∨ [(<bit No.> of <EAd>)] → C

Assembly-Language Format

BOR #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Stores the result of the operation.

I UI H U N Z V C

— — — — — — — ↕

Description

This instruction ORs a specified bit in the destination operand with the carry bit and stores the
result in the carry bit. The bit number is specified by 3-bit immediate data. The destination
operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

C C

7 0

Specified by #xx:3

Bit No.

∨

<EAd>

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct BOR #xx:3,Rd 7 4 0 IMM rd 2

Register indirect BOR #xx:3,@ERd 7 C 0 erd 0 7 4 0 IMM 0 6

Absolute address BOR #xx:3,@aa:8 7 E abs 7 4 0 IMM 0 6

No. of
States

Addressing
Mode*

Mnemonic Operands
64

2.2.17 BSET

BSET (Bit SET) Bit Set

Operation

1 → (<bit No.> of <EAd>)

Assembly-Language Format

BSET #xx:3, <EAd>
BSET Rn, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction sets a specified bit in the destination operand to 1. The bit number can be
specified by 3-bit immediate data, or by the lower three bits of a general register. The specified bit
is not tested. The condition code flags are not altered.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rn: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

7 0Bit No.

1

Specified by #xx:3 or Rn

<EAd>
65

BSET (Bit SET) Bit Set

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.
<EAd> is byte data in a register or on memory.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct BSET #xx:3, Rd 7 0 0 IMM rd 2

Register indirect BSET #xx:3, @ERd 7 D 0 erd 0 7 0 0 IMM 0 8

Absolute address BSET #xx:3, @aa:8 7 F abs 7 0 0 IMM 0 8

Register direct BSET Rn, Rd 6 0 rn rd 2

Register indirect BSET Rn, @ERd 7 D 0 erd 0 6 0 rn 0 8

Absolute address BSET Rn, @aa:8 7 F abs 6 0 rn 0 8

No. of
States

Addressing
Mode*

Mnemonic Operands
66

2.2.18 BSR

BSR (Branch to SubRoutine) Branch to Subroutine

Operation

PC → @–SP
PC + disp → PC

Assembly-Language Format

BSR disp

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction branches to a subroutine at a specified address. It pushes the program counter
(PC) value onto the stack as a restart address, then adds a specified displacement to the PC value
and branches to the resulting address. The PC value pushed onto the stack is the address of the
instruction following the BSR instruction. The displacement is a signed 8-bit or 16-bit value, so
the possible branching range is –126 to +128 bytes or –32766 to +32768 bytes from the address of
the BSR instruction.

Operand Format and Number of States Required for Execution

Notes

The stack structure differs between normal mode and advanced mode. In normal mode only the
lower 16 bits of the program counter are pushed on the stack.

The branch address must be even.

Instruction Format No. of States

1st byte 2nd byte 3rd byte 4th byte Normal Advanced

d:8 5 5 disp 6 8

d:16 5 C 0 0 disp 8 10

Addressing
Mode

Mnemonic Operands

Program-counter
relative

BSR

PC
23 16 15 8 7 0

Normal mode

PC
23 16 15 8 7 0

Advanced mode

Reserved
67

2.2.19 BST

BST (Bit STore) Bit Store

Operation

C → (<bit No.> of <EAd>)

Assembly-Language Format

BST #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction stores the carry bit in a specified bit location in the destination operand. The bit
number is specified by 3-bit immediate data. Other bits in the destination operand remain
unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

C

7 0

Specified by #xx:3

Bit No.

<EAd>

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct BST #xx:3,Rd 6 7 0 IMM rd 2

Register indirect BST #xx:3,@ERd 7 D 0 erd 0 6 7 0 IMM 0 8

Absolute address BST #xx:3,@aa:8 7 F abs 6 7 0 IMM 0 8

No. of
States

Addressing
Mode*

Mnemonic Operands
68

2.2.20 BTST

BTST (Bit TeST) Bit Test

Operation

¬ (<Bit No.> of <EAd>) → Z

Assembly-Language Format

BTST #xx:3, <EAd>
BTST Rn, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Set to 1 if the specified bit is zero;

otherwise cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — ↕ — —

Description

This instruction tests a specified bit in the destination operand and sets or clears the Z flag
according to the result. The bit number can be specified by 3-bit immediate data, or by the lower
three bits of a general register. The destination operand remains unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rn: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

7 0Bit No.

Test

Specified by #xx:3 or Rn

<EAd>
69

BTST (Bit TeST) Bit Test

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct BTST #xx:3, Rd 7 3 0 IMM rd 2

Register indirect BTST #xx:3, @ERd 7 C 0 erd 0 7 3 0 IMM 0 6

Absolute address BTST #xx:3, @aa:8 7 E abs 7 3 0 IMM 0 6

Register direct BTST Rn, Rd 6 3 rn rd 2

Register indirect BTST Rn, @ERd 7 C 0 erd 0 6 3 rn 0 6

Absolute address BTST Rn, @aa:8 7 E abs 6 3 rn 0 6

No. of
States

Addressing
Mode*

Mnemonic Operands
70

2.2.21 BXOR

BXOR (Bit eXclusive OR) Bit Exclusive Logical OR

Operation

C ⊕ (<bit No.> of <EAd>) → C

Assembly-Language Format

BXOR #xx:3, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Stores the result of the operation.

I UI H U N Z V C

— — — — — — — ↕

Description

This instruction exclusively ORs a specified bit in the destination operand with the carry bit and
stores the result in the carry bit. The bit number is specified by 3-bit immediate data. The
destination operand contents remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Note: * The addressing mode is the addressing mode of the destination operand <EAd>.

Notes

For the @aa:8 access range, refer to the relevant microcontroller hardware manual.

C C

7 0

Specified by #xx:3

Bit No.

⊕

<EAd>

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct BXOR #xx:3,Rd 7 5 0 IMM rd 2

Register indirect BXOR #xx:3,@ERd 7 C 0 erd 0 7 5 0 IMM 0 6

Absolute address BXOR #xx:3,@aa:8 7 E abs 7 5 0 IMM 0 6

No. of
States

Addressing
Mode*

Mnemonic Operands
71

2.2.22 (1) CMP (B)

CMP (CoMPare) Compare

Operation

Rd – (EAs), set or clear CCR

Assembly-Language Format

CMP.B <EAs>, Rd

Operand Size

Byte

Condition Code

H: Set to 1 if there is a borrow at bit 3;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 7;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction subtracts the source operand from the contents of an 8-bit register Rd (destination
register) and sets or clears the CCR bits according to the result. The destination register contents
remain unchanged.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate CMP.B #xx:8, Rd A rd IMM 2

Register direct CMP.B Rs, Rd 1 C rs rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
72

2.2.22 (2) CMP (W)

CMP (CoMPare) Compare

Operation

Rd – (EAs), set CCR

Assembly-Language Format

CMP.W <EAs>, Rd

Operand Size

Word

Condition Code

H: Set to 1 if there is a borrow at bit 11;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 15;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction subtracts the source operand from the contents of a 16-bit register Rd (destination
register) and sets or clears the CCR bits according to the result. The contents of the 16-bit register
Rd remain unchanged.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate CMP.W #xx:16, Rd 7 9 2 rd IMM 4

Register direct CMP.W Rs, Rd 1 D rs rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
73

2.2.22 (3) CMP (L)

CMP (CoMPare) Compare

Operation

ERd – (EAs), set CCR

Assembly-Language Format

CMP.L <EAs>, ERd

Operand Size

Longword

Condition Code

I: Previous value remains unchanged.
H: Set to 1 if there is a borrow at bit 27;

otherwise cleared to 0.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Set to 1 if there is a borrow at bit 31;

otherwise cleared to 0.

I H N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction subtracts the source operand from the contents of a 32-bit register ERd
(destination register) and sets or clears the CCR bits according to the result. The contents of the
32-bit register ERd remain unchanged.

Available Registers

ERd: ER0 to ER7
ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte

Immediate CMP.L #xx:32, ERd 7 A 2 0 erd IMM 6

Register direct CMP.L ERs, ERd 1 F 1 ers 0 erd 2

No. of
States

Mnemonic OperandsAddressing
Mode
74

2.2.23 DAA

DAA (Decimal Adjust Add) Decimal Adjust

Operation

Rd (decimal adjust) → Rd

Assembly-Language Format

DAA Rd

Operand Size

Byte

Condition Code

H: Undetermined (no guaranteed value).
N: Set to 1 if the adjusted result is negative;

otherwise cleared to 0.
Z: Set to 1 if the adjusted result is zero;

otherwise cleared to 0.
V: Undetermined (no guaranteed value).
C: Set to 1 if there is a carry at bit 7;

otherwise left unchanged.

I UI H U N Z V C

— — * — ↕ ↕ * ↕

Description

Given that the result of an addition operation performed by an ADD.B or ADDX instruction on
4-bit BCD data is contained in an 8-bit register Rd (destination register) and the carry and half-
carry flags, the DAA instruction adjusts the general register contents by adding H'00, H'06, H'60,
or H'66 according to the table below.

C Flag Upper 4 Bits H Flag Lower 4 Bits C Flag
before before before before after

Adjustment Adjustment Adjustment Adjustment Adjustment

0 0 to 9 0 0 to 9 00 0
0 0 to 8 0 A to F 06 0
0 0 to 9 1 0 to 3 06 0
0 A to F 0 0 to 9 60 1
0 9 to F 0 A to F 66 1
0 A to F 1 0 to 3 66 1
1 1 to 2 0 0 to 9 60 1
1 1 to 2 0 A to F 66 1
1 1 to 3 1 0 to 3 66 1

Value Added
(hexadecimal)
75

DAA (Decimal Adjust Add) Decimal Adjust

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Valid results (8-bit register Rd contents and C, V, Z, N, and H flags) are not assured if this
instruction is executed under conditions other than those described above.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DAA Rd 0 F 0 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
76

2.2.24 DAS

DAS (Decimal Adjust Subtract) Decimal Adjust

Description

Given that the result of a subtraction operation performed by a SUB.B, SUBX.B, or NEG.B
instruction on 4-bit BCD data is contained in an 8-bit register Rd (destination register) and the
carry and half-carry flags, the DAS instruction adjusts the general register contents by adding
H'00, H'FA, H'A0, or H'9A according to the table below.

Available Registers

Rd: R0L to R7L, R0H to R7H

C Flag Upper 4 Bits H Flag Lower 4 Bits C Flag
before before before before after

Adjustment Adjustment Adjustment Adjustment Adjustment

0 0 to 9 0 0 to 9 00 0
0 0 to 8 1 6 to F FA 0
1 7 to F 0 0 to 9 A0 1
1 6 to F 1 6 to F 9A 1

Value Added
(hexadecimal)

Operation

Rd (decimal adjust) → Rd

Assembly-Language Format

DAS Rd

Operand Size

Byte

Condition Code

H: Undetermined (no guaranteed value).
N: Set to 1 if the adjusted result is negative;

otherwise cleared to 0.
Z: Set to 1 if the adjusted result is zero;

otherwise cleared to 0.
V: Undetermined (no guaranteed value).
C: Previous value remains unchanged.

I UI H U N Z V C

— — * — ↕ ↕ * —
77

DAS (Decimal Adjust Subtract) Decimal Adjust

Operand Format and Number of States Required for Execution

Notes

Valid results (8-bit register Rd contents and C, V, Z, N, and H flags) are not assured if this
instruction is executed under conditions other than those described above.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DAS Rd 1 F 0 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
78

2.2.25 (1) DEC (B)

DEC (DECrement) Decrement

Operation

Rd – 1 → Rd

Assembly-Language Format

DEC.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs (the

previous value in Rd was H'80);
otherwise cleared to 0.

C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ ↕ —

Description

This instruction decrements an 8-bit register Rd (destination register) and stores the result in the
8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

An overflow is caused by the operation H'80 – 1 → H'7F.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DEC.B Rd 1 A 0 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
79

2.2.25 (2) DEC (W)

DEC (DECrement) Decrement

Operation

Rd – 1 → Rd
Rd – 2 → Rd

Assembly-Language Format

DEC.W #1, Rd
DEC.W #2, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs (the

previous value in Rd was H'8000);
otherwise cleared to 0.

C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ ↕ —

Description

This instruction subtracts the immediate value 1 or 2 from the contents of a 16-bit register Rd
(destination register) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

An overflow is caused by the operations H'8000 – 1 → H'7FFF, H'8000 – 2 → H'7FFE, and
H'8001 – 2 → H'7FFF.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DEC.W #1, Rd 1 B 5 rd I 2

Register direct DEC.W #2, Rd 1 B D rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
80

2.2.25 (3) DEC (L)

DEC (DECrement) Decrement

Operation

ERd – 1 → ERd
ERd – 2 → ERd

Assembly-Language Format

DEC.L #1, ERd
DEC.L #2, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ ↕ —

Description

This instruction subtracts the immediate value 1 or 2 from the contents of a 32-bit register ERd
(destination register) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

An overflow is caused by the operations H'80000000 – 1 → H'7FFFFFFF, H'80000000 – 2 →
H'7FFFFFFE, and H'80000001 – 2 → H'7FFFFFFF.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DEC.L #1, ERd 1 B 7 0 erd 2

Register direct DEC.L #2, ERd 1 B F 0 erd 2

No. of
States

Addressing
Mode*

Mnemonic Operands
81

2.2.26 (1) DIVXS (B)

DIVXS (DIVide eXtend as Signed) Divide Signed

Description

This instruction divides the contents of a 16-bit register Rd (destination register) by the contents
of an 8-bit register Rs (source register) and stores the result in the 16-bit register Rd. The division
is signed. The operation performed is 16 bits ÷ 8 bits → 8-bit quotient and 8-bit remainder. The
quotient is placed in the lower 8 bits of Rd. The remainder is placed in the upper 8 bits of Rd.

Valid results are not assured if division by zero is attempted or an overflow occurs. For
information on avoiding overflow, see DIVXS Instruction, Zero Divide, and Overflow.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0L to R7L, R0H to R7H

Rd Rs Rd

Dividend ÷ Divisor → Remainder Quotient

16 bits 8 bits 8 bits 8 bits

Operation

Rd ÷ Rs → Rd

Assembly-Language Format

DIVXS.B Rs, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the quotient is negative;

otherwise cleared to 0.
Z: Set to 1 if the divisor is zero; otherwise

cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ — —
82

DIVXS (B)

DIVXS (DIVide eXtend as Signed) Divide Signed

Operand Format and Number of States Required for Execution

Notes

The N flag is set to 1 if the dividend and divisor have different signs, and cleared to 0 if they have
the same sign. The N flag may therefore be set to 1 when the quotient is zero.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DIVXS.B Rs, Rd 0 1 D 0 5 1 rs rd 16

No. of
States

Addressing
Mode

Mnemonic Operands
83

2.2.26 (2) DIVXS (W)

DIVXS (DIVide eXtend as Signed) Divide Signed

Description

This instruction divides the contents of a 32-bit register ERd (destination register) by the contents
of a 16-bit register Rs (source register) and stores the result in the 32-bit register ERd. The
division is signed. The operation performed is 32 bits ÷ 16 bits → 16-bit quotient and 16-bit
remainder. The quotient is placed in the lower 16 bits (Rd) of the 32-bit register ERd. The
remainder is placed in the upper 16 bits (Ed).

Valid results are not assured if division by zero is attempted or an overflow occurs. For
information on avoiding overflow, see DIVXS Instruction, Zero Divide, and Overflow.

Available Registers

ERd: ER0 to ER7
Rs: R0 to R7, E0 to E7

ERd Rs ERd

Dividend ÷ Divisor → Remainder Quotient

32 bits 16 bits 16 bits 16 bits

Operation

ERd ÷ Rs → ERd

Assembly-Language Format

DIVXS.W Rs, ERd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the quotient is negative;

otherwise cleared to 0.
Z: Set to 1 if the divisor is zero; otherwise

cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ — —
84

DIVXS (W)

DIVXS (DIVide eXtend as Signed) Divide Signed

Operand Format and Number of States Required for Execution

Notes

The N flag is set to 1 if the dividend and divisor have different signs, and cleared to 0 if they have
the same sign. The N flag may therefore be set to 1 when the quotient is zero.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DIVXS.W Rs, ERd 0 1 D 0 5 3 rs 0 erd 24

No. of
States

Addressing
Mode

Mnemonic Operands
85

2.2.26 (3) DIVXS

DIVXS (DIVide eXtend as Signed) Divide Signed

DIVXS instruction, Division by Zero, and Overflow

Since the DIVXS instruction does not detect division by zero or overflow, applications should
detect and handle division by zero and overflow using techniques similar to those used in the
following program.

1. Programming solution for DIVXS.B R0L, R1

Example 1: Convert dividend and divisor to non-negative numbers, then use DIVXU
programming solution for zero divide and overflow

MOV.B R0L, R0L ; Test divisor
BEQ ZERODIV ; Branch to ZERODIV if R0L = 0
ANDC #AF, CCR ; Clear CCR user bits (bits 6 and 4) to 0
BPL L1 ; Branch to L1 if N flag = 0 (positive divisor)
NEG.B R0L ; Take 2’s complement of R0L to make sign positive
ORC #10, CCR ; Set CCR bit 4 to 1

L1: MOV.W R1.R1 ; Test dividend
BPL L2 ; Branch to L2 if N flag = 0 (positive dividend)
NEG.W R1 ; Take 2’s complement of R1 to make sign positive
XORC #50, CCR ; Invert CCR bits 6 and 4

L2: MOV.B R1H, R2L ;
EXTU.W R2 ;
DIVXU.B R0L, R2 ; Use DIVXU.B instruction to divide non-negative dividend
MOV.B R2H, R1H ; by positive divisor
DIVXU.B R0L, R1 ; 16 bits ÷ 8 bits → quotient (16 bits) and remainder (8 bits)
MOV.B R2L, R2H ; (See DIVXU Instruction, Zero Divide, and Overflow)
MOV.B R1L, R2L ;

STC CCR, R1L ; Copy CCR contents to R1L
BTST #6, R1L ; Test CCR bit 6
BEQ L3 ; Branch to L3 if bit 6 = 1
NEG.B R1H ; Take 2’s complement of R1H to make sign of remainder negative

L3: BTST #4, R1L ; Test CCR bit 4
BEQ L4 ; Branch to L4 if bit 4 = 1
NEG.W R2 ; Take 2’s complement of R2 to make sign of quotient negative

L4: RTS

ZERODIV: ; Zero-divide handling routine

This program leaves a 16-bit quotient in R2 and an 8-bit remainder in R1H.

R1

R1H

R2

R0L Divisor

Dividend

Remainder

Quotient
86

DIVXS

DIVXS (DIVide eXtend as Signed) Divide Signed

Example 2: Sign extend the 8-bit divisor to 16 bits, sign extend the 16-bit dividend to 32 bits, and
then use DIVXS to divide

EXTS.W R0
BEQ ZERODIV
EXTS.L ER1
DIVXS.L R0,ER1
RTS

ZERODIV:

This program leaves the 16-bit quotient in R1 and the 8-bit remainder in E1 (in a 16-bit sign
extended format).

R1

ROL

ER1

ER1

R0L

Dividend

DivisorSign extension

Divisor

DividendSign extension

QuotientRemainder
87

DIVXS

DIVXS (DIVide eXtend as Signed) Divide Signed

2. Programming solution for DIVXS.W R0, ER1
Example: Convert dividend and divisor to non-negative numbers, then use DIVXU programming
solution for zero divide and overflow

MOV.W R0, R0 ; Test divisor
BEQ ZERODIV ; Branch to ZERODIV if R0 = 0
ANDC #AF, CCR ; Clear CCR user bits (bits 6 and 4) to 0
BPL L1 ; Branch to L1 if N flag = 0 (positive divisor)
NEG.W R0 ; Take 2’s complement of R0 to make sign positive
ORC #10, CCR ; Set CCR bit 4 to 1

L1: MOV.L ER1,ER1 ; Test dividend
BPL L2 ; Branch to L2 if N flag = 0 (positive dividend)
NEG.L ER1 ; Take 2’s complement of ER1 to make sign positive
XORC #50,CCR ; Invert CCR bits 6 and 4

L2: MOV.W E1, R2 ;
EXTU.L ER2 ;
DIVXU.W R0, E2 ; Use DIVXU.W instruction to divide non-negative dividend
MOV.W E2, R1 ; by positive divisor
DIVXU.W R0, ER1 ; 32 bits ÷ 16 bits → quotient (32 bits) and remainder
MOV.W R2, E2 (16 bits)
MOV.W R1, R2 (See DIVXU Instruction, Zero Divide, and Overflow)

STC CCR, R1L ; Copy CCR contents to R1L
BTST #6, R1L ; Test CCR bit 6
BEQ L3 ; Branch to L3 if bit 6 = 1
NEG.W E1 ; Take 2’s complement of E1 to make sign of remainder negative

L3: BTST #4, R1L ; Test CCR bit 4
BEQ L4 ; Branch to L4 if bit 4 = 1
NEG.L ER2 ; Take 2’s complement of ER2 to make sign of quotient negative

L4: RTS

ZERODIV: ; Zero-divide handling routine

This program leaves a 32-bit quotient in ER2 and a 16-bit remainder in E1.

ER1

E1

ER2

R0 Divisor

Dividend

Remainder

Quotient
88

DIVXS (W)

DIVXS (DIVide eXtend as Signed) Divide Signed

The preceding two examples flag the status of the divisor and dividend in the UI and U bits in the
CCR, and modify the sign of the quotient and remainder in the unsigned division result of the
DIVXU instruction as shown next.

UI U Divisor Dividend Remainder Quotient Sign Modification

0 0 Positive Positive Positive Positive No sign modification

0 1 Negative Positive Positive Negative Sign of quotient is reversed

1 0 Negative Negative Negative Positive Sign of remainder is reversed

1 1 Positive Negative Negative Negative Signs of quotient and remainder
are both reversed
89

2.2.27 (1) DIVXU (B)

DIVXU (DIVide eXtend as Unsigned) Divide

Operation

Rd ÷ Rs → Rd

Assembly-Language Format

DIVXU.B Rs, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the divisor is negative;

otherwise cleared to 0.
Z: Set to 1 if the divisor is zero; otherwise

cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ — —

Description

This instruction divides the contents of a 16-bit register Rd (destination register) by the contents
of an 8-bit register Rs (source register) and stores the result in the 16-bit register Rd. The division
is unsigned. The operation performed is 16 bits ÷ 8 bits → 8-bit quotient and 8-bit remainder. The
quotient is placed in the lower 8 bits of Rd. The remainder is placed in the upper 8 bits of Rd.

Valid results are not assured if division by zero is attempted or an overflow occurs. For
information on avoiding overflow, see DIVXU Instruction, Zero Divide, and Overflow.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Rd Rs Rd

Dividend ÷ Divisor → Remainder Quotient

16 bits 8 bits 8 bits 8 bits

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DIVXU.B Rs, Rd 5 1 rs rd 14

No. of
States

Addressing
Mode

Mnemonic Operands
90

2.2.27 (2) DIVXU (W)

DIVXU (DIVide eXtend as Unsigned) Divide

Operation

ERd ÷ Rs → ERd

Assembly-Language Format

DIVXU.W Rs, ERd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the divisor is negative;

otherwise cleared to 0.
Z: Set to 1 if the divisor is zero; otherwise

cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ — —

Description

This instruction divides the contents of a 32-bit register ERd (destination register) by the contents
of a 16-bit register Rs (source register) and stores the result in the 32-bit register ERd. The
division is unsigned. The operation performed is 32 bits ÷ 16 bits → 16-bit quotient and 16-bit
remainder. The quotient is placed in the lower 16 bits (Rd) of the 32-bit register ERd. The
remainder is placed in the upper 8 bits of (Ed).

Valid results are not assured if division by zero is attempted or an overflow occurs. For
information on avoiding overflow, see DIVXU Instruction, Zero Divide, and Overflow.

Available Registers

ERd: ER0 to ER7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

ERd Rs ERd

Dividend ÷ Divisor → Remainder Quotient

32 bits 16 bits 16 bits 16 bits

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct DIVXU.W Rs, ERd 5 3 rs 0 ERd 22

No. of
States

Addressing
Mode

Mnemonic Operands
91

DIVXU

DIVXU (DIVide eXtend as Unsigned) Divide

DIVXU Instruction, Zero Divide, and Overflow

Zero divide and overflow are not detected in the DIVXU instruction. A program like the following
can detect zero divisors and avoid overflow.

1. Programming solutions for DIVXU.B R0L, R1

Example 1: Divide upper 8 bits and lower 8 bits of 16-bit dividend separately and obtain 16-bit
quotient

CMP.B #0, R0L ; R0L = 0? (Zero divisor?)
BEQ ZERODIV ; Branch to ZERODIV if R0L = 0
MOV.B R1H,R2L ; Copy upper 8 bits of dividend to R2L and
EXTU.W R2 (*1) . ; zero-extend to 16 bits
DIVXU.B R0L, R2 (*2) ; Divide upper 8 bits of dividend
MOV.B R2H, R1H (*3) ; R2H → R1H (store partial remainder in R1H)
DIVXU.B R0L, R1 (*4) ; Divide lower 8 bits of dividend (including repeated division of

upper 8 bits)
MOV.B R2L, R2H ; Store upper part of quotient in R2H
MOV.B R1L, R2L (*5) ; Store lower part of quotient in R2L
RTS

ZERODIV: ; Zero-divide handling routine

The resulting operation is 16 bits ÷ 8 bits → quotient (16 bits) and remainder (8 bits), and no
overflow occurs. The 16-bit quotient is stored in R2, the 8-bit remainder in R1H.

Remainder Quotient (low)

Remainder Quotient (low)

Quotient

R1

R2

R2

R1

R1

R1

R2

R0L

(1)*

(2)*

(3)*

(4)*

(5)*

Divisor

Dividend

Sign extension Dividend (high)

Remainder (part) Quotient (high)

Remainder (part) Dividend (low)
92

DIVXU

DIVXU (DIVide eXtend as Unsigned) Divide

Example 2: Zero-extend divisor from 8 to 16 bits and dividend from 16 to 32 bits before dividing

EXTU.W R0 ; Zero-extend 8-bit divisor to 16 bits
BEQ ZERODIV ; Branch to ZERODIV if R0 = 0
EXTU.L ER1 ; Zero-extend 16-bit dividend to 32 bits
EXTU.W R0, ER1 ; Divide using DIVXU.W
RTS

ZERODIV: ; Zero-divide handling routine

Instead of 16 bits ÷ 8 bits, the operation performed is 32 bits ÷ 16 bits → quotient (16 bits) and
remainder (16 bits), and no overflow occurs. The 16-bit quotient is stored in R1 and the 8-bit
remainder in the lower 8 bits of E1. The upper 8 bits of E1 are all 0.

ER1

R0L

R1

ER1

Divisor

Dividend

Sign extension

Sign extension Dividend

Remainder Quotient

DivisorR0L
93

DIVXU

DIVXU (DIVide eXtend as Unsigned) Divide

2. Programming solution for DIVXU.W R0, ER1

Example 1: Divide upper 16 bits and lower 16 bits of 32-bit dividend separately and obtain 32-bit
quotient

MOV.W R0, R0 ; R0 = 0? (Zero divisor?)
BEQ ZERODIV ; Branch to ZERODIV if R0 = 0
MOV.W E1,E2 ; Copy upper 16 bits of dividend to R2 and
EXTU.L ER2 (*1) ; zero-extend to 32 bits
DIVXU.W R0, ER2 (*2) ; Divide upper 16 bits of dividend
MOV.W E2, E1 (*3) ; E2 → E1 (store partial remainder in E1)
DIVXU.W R0, ER1 (*4) ; Divide lower 16 bits of dividend (including repeated division of

upper 16 bits)
MOV.W R2, E2 ; Store upper part of quotient in E2
MOV.W R1, R2 (*5) ; Store lower part of quotient in R2
RTS

ZERODIV: ; Zero-divide handling routine

The resulting operation is 32 bits ÷ 16 bits → quotient (32 bits) and remainder (16 bits), and no
overflow occurs. The 32-bit quotient is stored in ER2, the 16-bit remainder in E1.

Remainder Quotient (low)

Remainder Quotient (low)

Quotient

ER1

ER2

ER2

ER1

ER1

ER1

ER2

R0 Divisor

Dividend

Sign extension Dividend (high)

Remainder (part) Quotient (high)

Remainder (part) Dividend (low)

(1)*

(2)*

(3)*

(4)*

(5)*
94

2.2.28 (1) EEPMOV (B)

EEPMOV (MOVe data to EEPROM) Block Data Transfer

Operation

if R4L ≠ 0 then
repeat @ER5+ → @ER6+

R4L – 1 → R4L
until R4L = 0

else next;

Assembly-Language Format

EEPMOV.B

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction performs a block memory transfer. It moves data from the memory location
specified in ER5 to the memory location specified in ER6, increments ER5 and ER6, decrements
R4L, and repeats these operations until R4L reaches zero. Execution then proceeds to the next
instruction. No interrupts are detected while the block transfer is in progress. When the EEPMOV
instruction ends, R4L contains 0, and ER5 and ER6 contain the last transfer address + 1. The data
transfer is performed a byte at a time, with R4L indicating the number of bytes to be transferred.
The byte symbol in the assembly-language format designates the size of R4L (and limits the
maximum number of bytes that can be transferred to 255).

Operand Format and Number of States Required for Execution

Note: * n is the initial value of R4L. Although n bytes of data are transferred, memory is accessed
2(n + 1) times, requiring 4(n + 1) states. (n = 0, 1, 2, …, 255).

Notes

This instruction first reads the memory locations indicated by ER5 and ER6, then performs the
data transfer. The number of states required for execution differs from the H8/300 CPU.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— EEPMOV.B 7 B 5 C 5 9 8 F 8+4n*

No. of
States

Addressing
Mode

Mnemonic Operands
95

2.2.28 (2) EEPMOV (W)

EEPMOV (MOVe data to EEPROM) Block Data Transfer

Operation

if R4 ≠ 0 then
repeat @ER5+ → @ER6+

R4 – 1 → R4
until R4 = 0

else next;

Assembly-Language Format

EEPMOV.W

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction performs a block memory transfer. It moves data from the memory location
specified in ER5 to the memory location specified in ER6, increments ER5 and ER6, decrements
R4, and repeats these operations until R4 reaches zero. Execution then proceeds to the next
instruction. No interrupts except NMI are detected while the block transfer is in progress. When
the EEPMOV instruction ends, R4 contains 0, and ER5 and ER6 contain the last transfer address
+ 1. The data transfer is performed a byte at a time, with R4 indicating the number of bytes to be
transferred. The word symbol in the assembly-language format designates the size of R4
(allowing a maximum 65535 bytes to be transferred).

Operand Format and Number of States Required for Execution

Note: n is the initial value of R4. Although n bytes of data are transferred, memory is accessed
2(n + 1) times, requiring 4(n + 1) states. (n = 0, 1, 2, …, 65535).

Notes

This instruction first reads memory at the addresses indicated by ER5 and ER6, then carries out
the block data transfer.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— EEPMOV.W 7 B D 4 5 9 8 F 8+4n

No. of
States

Addressing
Mode

Mnemonic Operands
96

EEPMOV (W)

EEPMOV (MOVe data to EEPROM) Block Data Transfer

EEPMOV.W Instruction and NMI Interrupt

If an NMI request occurs while the EEPMOV.W instruction is being executed, NMI interrupt
exception handling is carried out at the end of the current read-write cycle. Register contents are
then as follows:

ER5: address of the next byte to be transferred
ER6: destination address of the next byte
R4: number of bytes remaining to be transferred

The program counter value pushed on the stack in NMI interrupt exception handling is the
address of the next instruction after the EEPMOV.W instruction. Programs should be coded as
follows to allow for NMI interrupts during execution of the EEPMOV.W instruction.

Example:

L1: EEPMOV.W
MOV.W R4, R4
BNE L1

During execution of the EEPMOV.B instruction no interrupts are accepted, including NMI.
97

2.2.29 (1) EXTS (W)

EXTS (EXTend as Signed) Sign Extension

Operation

(<Bit 7> of Rd) → (<bits 15 to 8> of Rd>

Assembly-Language Format

EXTS.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction copies the sign of the lower 8 bits in a 16-bit register Rd in the upward direction
(copies Rd bit 7 to bits 15 to 8) to extend the data to signed word data.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Don’t care

Rd

8 bits

Sign bit

8 bits

Sign extension

Rd

8 bits 8 bits

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct EXTS.W Rd 1 7 D rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
98

2.2.29 (2) EXTS (L)

EXTS (EXTend as Signed) Sign Extension

Operation

(<Bit 15> of ERd) → (<bits 31 to 16> of ERd>)

Assembly-Language Format

EXTS.L ERd

Operand Size

Longword

Condition Code

I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction copies the sign of the lower 16 bits (general register Rd) in a 32-bit register ERd
in the upward direction (copies ERd bit 15 to bits 31 to 16) to extend the data to signed longword
data.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Don’t care

ERd

16 bits

Sign bit

16 bits

Sign extension

ERd

16 bits 16 bits

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct EXTS.L ERd 1 7 F 0 erd 2

No. of
States

Addressing
Mode

Mnemonic Operands
99

2.2.30 (1) EXTU (W)

EXTU (EXTend as Unsigned) Zero Extension

Operation

0 → (<bits 15 to 8> of Rd>)
Zero extend

Assembly-Language Format

EXTU.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Always cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — 0 ↕ 0 —

Description

This instruction extends the lower 8 bits in a 16-bit register Rd to word data by padding with
zeros. That is, it clears the upper 8 bits of Rd (bits 15 to 8) to 0.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Don’t care

Rd

8 bits 8 bits

Zero extension

Rd

8 bits 8 bits

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct EXTU.W Rd 1 7 5 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
100

2.2.30 (2) EXTU (L)

EXTU (EXTend as Unsigned) Zero Extension

Operation

0 → (<bits 31 to 16> of ERd>)
Zero extend

Assembly-Language Format

EXTU.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Always cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — 0 ↕ 0 —

Description

This instruction extends the lower 16 bits (general register Rd) in a 32-bit register ERd to
longword data by padding with zeros. That is, it clears the upper 16 bits of ERd (bits 31 to 16) to
0.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Don’t care

ERd

16 bits 16 bits

Zero extension

ERd

16 bits 16 bits

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct EXTU.L ERd 1 7 7 0 erd 2

No. of
States

Addressing
Mode

Mnemonic Operands
101

2.2.31 (1) INC (B)

INC (INCrement) Increment

Operation

Rd + 1 → Rd

Assembly-Language Format

INC.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ ↕ —

Description

This instruction increments an 8-bit register Rd (destination register) and stores the result in the
8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

An overflow is caused by the operation H'7F + 1 → H'80.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct INC.B Rd 0 A 0 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
102

2.2.31 (2) INC (W)

INC (INCrement) Increment

Description

This instruction adds the immediate value 1 or 2 to the contents of a 16-bit register Rd
(destination register) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

An overflow is caused by the operations H'7FFF + 1 → H'8000, H'7FFF + 2 → H'8001, and
H'7FFE + 2 → H'8000.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct INC.W #1, Rd 0 B 5 rd 2

Register direct INC.W #2, Rd 0 B D rd 2

No. of
States

Addressing
Mode

Mnemonic Operands

Operation

Rd + 1 → Rd
Rd + 2 → Rd

Assembly-Language Format

INC.W #1, Rd
INC.W #2, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ ↕ —
103

2.2.31 (3) INC (L)

INC (INCrement) Increment

Operation

ERd + 1 → ERd
ERd + 2 → ERd

Assembly-Language Format

INC.L #1, ERd
INC.L #2, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ ↕ —

Description

This instruction adds the immediate value 1 or 2 to the contents of a 32-bit register ERd
(destination register) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

An overflow is caused by the operations H'7FFFFFFF + 1 → H'80000000, H'7FFFFFFF + 2 →
H'80000001, and H'7FFFFFFE + 2 → H'80000000.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct INC.L #1, ERd 0 B 7 0 erd 2

Register direct INC.L #2, ERd 0 B F 0 erd 2

No. of
States

Addressing
Mode

Mnemonic Operands
104

2.2.32 JMP

JMP (JuMP) Unconditional Branch

Operation

Effective address → PC

Assembly-Language Format

JMP <EA>

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction branches unconditionally to a specified address

Available Registers

ERn: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

The structure of the branch address and the number of states required for execution differ between
normal mode and advanced mode.

The branch address must be even.

Instruction Format No. of State

1st byte 2nd byte 3rd byte 4th byte Normal Advanced

Register indirect JMP @ERn 5 9 0 ern 0 4

Absolute JMP @aa:24 5 A abs 6
address

Memory indirect JMP @@aa:8 5 B abs 8 10

Mnemonic OperandsAddressing
Mode
105

2.2.33 JSR

JSR (Jump to SubRoutine) Jump to Subroutine

Operation

PC → @–SP
Effective address → PC

Assembly-Language Format

JSR <EA>

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction pushes the program counter on the stack as a return address, then branches to a
specified effective address. The program counter value pushed on the stack is the address of the
instruction following the JSR instruction.

Available Registers

ERn: ER0 to ER7

Operand Format and Number of States Required for Execution

Instruction Format No. of State

1st byte 2nd byte 3rd byte 4th byte Normal Advanced

Register indirect JSR @ERn 5 D 0 ern 0 6 8

Absolute JSR @aa:24 5 E abs 8 10
address

Memory indirect JSR @@aa:8 5 F abs 8 12

Mnemonic OperandsAddressing
Mode
106

JSR

JSR (Jump to SubRoutine) Jump to Subroutine

Notes

Note that the structures of the stack and branch addresses differ between normal and advanced
mode. Only the lower 16 bits of the PC are saved in normal mode.

The branch address must be even.

PC
23 16 15 8 7 0

Normal mode

PC
23 16 15 8 7 0

Advanced mode

Reserved
107

2.2.34 (1) LDC (B)

LDC (LoaD to Control register) Load CCR

Operation

(EAs) → CCR

Assembly-Language Format

LDC.B <EAs>, CCR

Operand Size

Byte

Condition Code

I: Loaded from the corresponding bit in the
source operand.

H: Loaded from the corresponding bit in the
source operand.

N: Loaded from the corresponding bit in the
source operand.

Z: Loaded from the corresponding bit in the
source operand.

V: Loaded from the corresponding bit in the
source operand.

C: Loaded from the corresponding bit in the
source operand.

I UI H U N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Description

This instruction loads the source operand into the CCR.

Note that no interrupts, even NMI interrupts, will be accepted at the point that this instruction
completes.

Available Registers

Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate LDC.B #xx:8, CCR 0 7 IMM 2

Register direct LDC.B Rs, CCR 0 3 0 rs 2

No. of
States

Addressing
Mode

Mnemonic Operands
108

2.2.34 (2) LDC (W)

LDC (LoaD to Control register) Load CCR

Operation

(EAs) → CCR

Assembly-Language Format

LDC.W <EAs>, CCR

Operand Size

Word

Condition Code

I: Loaded from the corresponding bit in the
source operand.

H: Loaded from the corresponding bit in the
source operand.

N: Loaded from the corresponding bit in the
source operand.

Z: Loaded from the corresponding bit in the
source operand.

V: Loaded from the corresponding bit in the
source operand.

C: Loaded from the corresponding bit in the
source operand.

I UI H U N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Description

This instruction loads the source operand contents into the condition-code register (CCR).
Although CCR is a byte register, the source operand is word size. The contents of the even
address are loaded into CCR.

No interrupt requests, including NMI, are accepted immediately after execution of this
instruction.

Available Registers

ERs: ER0 to ER7
109

Operand Format and Number of States Required for Execution

Notes

No. of
StatesMnemonic OperandsAddressing

Mode

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

Register
indirect

Register
indirect with
displacement

Register
indirect with
post-increment

LDC.W

LDC.W

LDC.W

LDC.W

LDC.W

LDC.W

@ERs,CCR

@(d:16,ERs),CCR

@(d:24,ERs),CCR

@ERs+,CCR

@aa:16,CCR

@aa:24,CCR

Absolute
address

0

0

0

0

0

0

1 4 0 6 9 ers0 0

disp

6

8

12

8

8

10

2.2.34(2)
110

1

1

1

1

1

4

4

4

4

4

0

0

0

0

0

6

7

6

6

6

F

8

D

B

B

ers

ers

ers

0

0

0

0

0

0

0

0

6 B 2 0 0

abs

abs

0 0

0

2

disp

0

2.2.35 (1) MOV (B)

MOV (MOVe data) Move

Operation

Rs → Rd

Assembly-Language Format

MOV.B Rs, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the data value is negative;

otherwise cleared to 0.
Z: Set to 1 if the data value is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers one byte of data from an 8-bit register Rs to an 8-bit register Rd, tests
the transferred data, and sets condition-code flags according to the result.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct MOV.B Rs, Rd 0 C rs rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
111

2.2.35 (2) MOV (W)

MOV (MOVe data) Move

Operation

Rs → Rd

Assembly-Language Format

MOV.W Rs, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the data value is negative;

otherwise cleared to 0.
Z: Set to 1 if the data value is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers one word of data from a 16-bit register Rs to a 16-bit register Rd, tests
the transferred data, and sets condition-code flags according to the result.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct MOV.W Rs, Rd 0 D rs rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
112

2.2.35 (3) MOV (L)

MOV (MOVe data) Move

Operation

ERs → ERd

Assembly-Language Format

MOV.L ERs, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the data value is negative;

otherwise cleared to 0.
Z: Set to 1 if the data value is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers one longword of data from a 32-bit register ERs to a 32-bit register ERd,
tests the transferred data, and sets condition-code flags according to the result.

Available Registers

ERd: ER0 to ER7
ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct MOV.L ERs, ERd 0 F 1 ers 0 erd 2

No. of
States

Addressing
Mode

Mnemonic Operands
113

2.2.35 (4) MOV (B)

MOV (MOVe data) Move

Operation

(EAs) → Rd

Assembly-Language Format

MOV.B <EAs>, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the data value is negative;

otherwise cleared to 0.
Z: Set to 1 if the data value is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers the source operand contents to an 8-bit register Rs, tests the transferred
data, and sets condition-code flags according to the result.

Available Registers

Rd: R0L to R7L, R0H to R7H
ERs: ER0 to ER7
114

Operand Format and Number of States Required for Execution

Notes

The MOV ck pointer (ER7).
For detail

For the @

No. of
StatesMnemonic OperandsAddressing

Mode

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte

Immediate

R
in
di

R
in
po

MOV.B #xx:8,Rd

A
ad

F rd 2

4

6

10

6

4

6

8

R
in

IMM

2.2.35(4)
115

.B @ER7+, Rd instruction should never be used, because it leaves an odd value in the sta
s refer to section 3.3.2, Exception Processing, or to the hardware manual.

aa:8 access range, refer to the relevant microcontroller hardware manual.

egister
direct with
splacement

egister
direct with
st-increment

MOV.B

MOV.B

MOV.B

MOV.B

MOV.B

@(d:16,ERs),Rd

@(d:24,ERs),Rd

@ERs+,Rd

@aa:8,Rd

@aa:16,Rd
bsolute
dress

6

6

7

6

2

6

6

8

E

8

C

rd

A

A

ers

ers

ers

ers

0

0

0

0

6 A 2 0 0 disp

abs

abs

0 0

abs

disp

MOV.B @aa:24,Rd

rd

rd

rd

0

rd

0

2

rd

rd

egister
direct

MOV.B @ERs,Rd

2.2.35 (5) MOV (W)

MOV (MOVe data) Move

Operation

(EAs) → Rd

Assembly-Language Format

MOV.W <EAs>, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the data value is negative;

otherwise cleared to 0.
Z: Set to 1 if the data value is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers the source operand contents to a 16-bit register Rd, tests the transferred
data, and sets condition-code flags according to the result.

Available Registers

Rd: R0 to R7, E0 to E7
ERs: ER0 to ER7
116

Operand Format and Number of States Required for Execution

Notes

1. The source opera
2. In machine langu

No. of

StatesMnemonic OperandsAddressing

Mode

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte

Immediate

Register

indirect with

displacement

Register

indirect with

post-increment

MOV.W #xx:16,Rd

Absolute

address

7
 9
 0
 rd

 4

4

6

10

6

6

8

Register

indirect

IMM

2.2.35(5)
117

nd <EAs> must be located at an even address.
age, MOV.W @R7+, Rd is identical to POP.W Rd.

MOV.W

MOV.W

MOV.W

MOV.W

MOV.W

@(d:16,ERs),Rd

@(d:24,ERs),Rd

@ERs+,Rd

@aa:16,Rd abs

@aa:24,Rd abs

6

6

7

6

6

6

9

F

8

D

B

B

2 0 0 disp

0

2

rd

rd

0

rd

rd

rd

6

0

B

0

disp

rd

MOV.W @ERs,Rd ers

ers

ers

ers

0

0

0

0

2.2.35 (6) MOV (L)

MOV (MOVe data) Move

Operation

(EAs) → ERd

Assembly-Language Format

MOV.L <EAs>, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the data value is negative;

otherwise cleared to 0.
Z: Set to 1 if the data value is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers the source operand contents to a specified 32-bit register (ERd), tests the
transferred data, and sets condition-code flags according to the result. The first memory word
located at the effective address is stored in extended register Ed. The next word is stored in
general register Rd.

Available Registers

ERd: ER0 to ER7
ERs: ER0 to ER7

ERd Ed RdH RdL

MSB

LSB

EA
118

Operand Format and Number of States Required for Execution

Notes

1. The source opera
2. In machine langu

No. of

StatesMnemonic OperandsAddressing

Mode

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

MOV.L

MOV.L

MOV.L

MOV.L disp

MOV.L

MOV.L

MOV.L

#xx:32,Rd IMM

@(

@(

7
 A
 0

ers0 6

8

10

14

10

10

12

Immediate

Register

indirect with

displacement

Register

indirect with

post-increment

Absolute

address

Register

indirect

2.2.35(6)
119

nd <EAs> must be located at an even address.
age, MOV.L @ER7+, ERd is identical to POP.L ERd.

@aa:24,ERd

@ERs,ERd

d:16,ERs),ERd

d:24,ERs),ERd

@ERs+,ERd

@aa:16,ERd

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

6

6

7

6

6

6

9

F

8

D

B

B

ers

ers

ers

ers

0

0

0

0

0

0

0

0

0

erd

erd

erd

erd

erd

6

0

B

0

2

0 0

abs

erd0

abs

0

2

0

disp

2.2.35 (7) MOV (B)

MOV (MOVe data) Move

Operation

Rs → (EAd)

Assembly-Language Format

MOV.B Rs, <EAd>

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the data value is negative;

otherwise cleared to 0.
Z: Set to 1 if the data value is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers the contents of an 8-bit register Rs (source operand) to a destination
location, tests the transferred data, and sets condition-code flags according to the result.

Available Registers

Rs: R0L to R7L, R0H to R7H
ERd: ER0 to ER7
120

Operand Format and Number of States Required for Execution

Notes

1. The MOV e stack pointer (ER7).
For details

2. Execution n transfers the
designated

No. of
StatesMnemonic OperandsAddressing

Mode

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte

Register
indirect

Register
indirect wi
displacem

Register
indirect wi
pre-decre

MOV.B Rs,@ERd

Absolute
address

6 8 erd1 4

6

10

6

4

6

8

rs

2.2.35(7)
121

.B Rs, @–ER7 instruction should never be used, because it leaves an odd value in th
 refer to section 3.3.2, Exception Processing, or to the hardware manual.
 of MOV.B RnL, @–ERn or MOV.B RnH, @–ERn first decrements ERn by one, the
 part (RnL or RnH) of the resulting ERn value.

th
ent

th
ment

MOV.B

MOV.B

MOV.B

MOV.B

MOV.B

Rs,@(d:16,ERd)

Rs,@(d:24,ERd)

Rs,@–ERd

Rs,@aa:8

Rs,@aa:16

6

7

6

3

6

6

E

8

C

rs

A

A

erd

erd

erd

1

0

1

6 A A 0 0 disp

abs

abs

0 0

abs

disp

MOV.B Rs,@aa:24

rs

rs

0

rs

8

A

rs

rs

2.2.35 (8) MOV (W)

MOV (MOVe data) Move

Operation

Rs → (EAd)

Assembly-Language Format

MOV.W Rs, <EAd>

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the data value is negative;

otherwise cleared to 0.
Z: Set to 1 if the data value is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers the contents of a 16-bit register Rs (source operand) to a destination
location, tests the transferred data, and sets condition-code flags according to the result.

Available Registers

Rs: R0 to R7, E0 to E7
ERd: ER0 to ER7
122

Operand Format and Number of States Required for Execution

Notes

1. The destination oper
2. In machine language
3. Execution of MOV.W e.

No. of
StatesMnemonic OperandsAddressing

Mode

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte

Register
indirect

Register
indirect with
displacement

Register
indirect with
post-increment

MOV.W

MOV.W

MOV.W

MOV.W

MOV.W

Rs,@ERd 6 9 erd1 4

6

10

6

6

8MOV.W

rs

Absolute
address

2.2.35(8)
123

and <EAd> must be located at an even address.
, MOV.W Rs, @–R7 is identical to PUSH.W Rs.
 Rn, @–ERn first decrements ERn by 2, then transfers the resulting valu

Rs,@(d:16,ERd)

Rs,@(d:24,ERd)

Rs,@–ERd

Rs,@aa:16

6

7

6

6

6

F

8

D

B

B

erd

erd

erd

1

0

1

6 B A 0 0 disp

abs

abs

0 0

disp

Rs,@aa:24

rs

rs

0

rs

8

A

rs

rs

2.2.35 (9) MOV (L)

MOV (MOVe data) Move

Operation

ERs → (EAd)

Assembly-Language Format

MOV.L ERs, <EAd>

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the data value is negative;

otherwise cleared to 0.
Z: Set to 1 if the data value is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers the contents of a 32-bit register ERs (source operand) to a destination
location, tests the transferred data, and sets condition-code flags according to the result. The
extended register (Es) contents are stored at the first word indicated by the effective address. The
general register (Rs) contents are stored at the next word.

Available Registers

ERs: ER0 to ER7
ERd: ER0 to ER7

ERs Es RsH RsL

MSB

LSB

EA
124

Operand Format and Number of States Required for Execution

Notes

1. The destination ope
2. In machine languag
3. Execution of MOV. e.

No. of
StatesMnemonic OperandsAddressing

Mode

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

Register
indirect

Register
indirect with
displacement

Register
indirect with
pre-decrement

MOV.L

MOV.L

MOV.L

MOV.L

MOV.L

MOV.L

ERs,@ERd

ERs,@

ERs,@

ERs

ERs

ERs

Absolute
address

0 1 0 0 6 9 erd1 0 ers

disp

8

10

14

10

10

12

2.2.35(9)
125

rand <EAd> must be located at an even address.
e, MOV.L ERs, @–ER7 is identical to PUSH.L ERs.
L ERn, @–ERn first decrements ERn by 4, then transfers the resulting valu

(d:16,ERd)

(d:24,ERd)

,@–ERd

,@aa:16

,@aa:24

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

6

7

6

6

6

F

8

D

B

B

erd

erd

erd

1

1

1

0 ers

0 6 B A 0 0

abs

ers0

abs

0 0

0

0

0

ers

ers

ers

8

A

disp

2.2.36 MOVFPE

MOVFPE (MOVe From Peripheral with E clock) Move Data with E Clock

Operation

(EAs) → Rd
Synchronized with E clock

Assembly-Language Format

MOVFPE @aa:16, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the data value is negative;

otherwise cleared to 0.
Z: Set to 1 if the data value is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers memory contents specified by a 16-bit absolute address to a general
register Rd in synchronization with an E clock, tests the transferred data, and sets condition-code
flags according to the result.

Note: Avoid using this instruction in microcontrollers not having an E clock output pin, or in
single-chip mode.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

1. This instruction cannot be used with addressing modes other than the above, and cannot
transfer word data or longword data.

2. Data transfer by this instruction requires 9 to 16 states, so the execution time is variable. For
details, refer to the relevant microcontroller hardware manual.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Absolute MOVFPE @aa:16, Rd 6 A 4 rd abs *
address

No. of
States

Addressing
Mode

Mnemonic Operands
126

2.2.37 MOVTPE

MOVTPE (MOVe To Peripheral with E clock) Move Data with E Clock

Operation

Rs → (EAd)
Synchronized with E clock

Assembly-Language Format

MOVTPE Rs, @aa:16

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the data value is negative;

otherwise cleared to 0.
Z: Set to 1 if the data value is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction transfers the contents of a general register Rs (source operand) to a destination
location specified by a 16-bit absolute address in synchronization with an E clock, tests the
transferred data, and sets condition-code flags according to the result.

Note: Avoid using this instruction in microcontrollers not having an E clock output pin, or in
single-chip mode.

Available Registers

Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

1. This instruction cannot be used with addressing modes other than the above, and cannot
transfer word data or longword data.

2. Data transfer by this instruction requires 9 to 16 states, so the execution time is variable. For
details, refer to the relevant microcontroller hardware manual.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Absolute MOVTPE Rs, @aa:16 6 A C rs abs *
address

No. of
States

Addressing
Mode

Mnemonic Operands
127

2.2.38 (1) MULXS (B)

MULXS (MULtiply eXtend as Signed) Multiply Signed

Operation

Rd × Rs → Rd

Assembly-Language Format

MULXS.B Rs, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ — —

Description

This instruction multiplies the lower 8 bits of a 16-bit register Rd (destination operand) by the
contents of an 8-bit register Rs (source operand) as signed data and stores the result in the 16-bit
register Rd. If Rd is a general register, Rs can be the upper part (RdH) or lower part (RdL) of Rd.
The operation performed is 8-bit × 8-bit → 16-bit signed multiplication.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Rd Rs Rd

Don’t care Multiplicand × Multiplier → Product

8 bits 8 bits 16 bits

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct MULXS.B Rs, Rd 0 1 C 0 5 0 rs rd 16

No. of
States

Addressing
Mode

Mnemonic Operands
128

2.2.38 (2) MULXS (W)

MULXS (MULtiply eXtend as Signed) Multiply Signed

Operation

ERd × Rs → ERd

Assembly-Language Format

MULXS.W Rs, ERd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ — —

Description

This instruction multiplies the lower 16 bits of a 32-bit register ERd (destination operand) by the
contents of a 16-bit register Rs (source operand) as signed data and stores the result in the 32-bit
register ERd. Rs can be the upper part (Ed) or lower part (Rd) of ERd. The operation performed is
16-bit × 16-bit → 32-bit signed multiplication.

Available Registers

ERd: ER0 to ER7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

ERd Rs ERd

Don’t care Multiplicand × Multiplier → Product

16 bits 16 bits 32 bits

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct MULXS.W Rs, ERd 0 1 C 0 5 2 rs 0 erd 24

No. of
States

Addressing
Mode

Mnemonic Operands
129

2.2.39 (1) MULXU (B)

MULXU (MULtiply eXtend as Unsigned) Multiply

Operation

Rd × Rs → Rd

Assembly-Language Format

MULXU.B Rs, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction multiplies the lower 8 bits of a 16-bit register Rd (destination operand) by the
contents of an 8-bit register Rs (source operand) and stores the result in the 16-bit register Rd. If
Rd is a general register, Rs can be the upper part (RdH) or lower part (RdL) of Rd. The operation
performed is 8-bit × 8-bit → 16-bit multiplication.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Rd Rs Rd

Don’t care Multiplicand × Multiplier → Product

8 bits 8 bits 16 bits

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct MULXU.B Rs, Rd 5 0 rs rd 14

No. of
States

Addressing
Mode

Mnemonic Operands
130

2.2.39 (2) MULXU (W)

MULXU (MULtiply eXtend as Unsigned) Multiply

Operation

ERd × Rs → ERd

Assembly-Language Format

MULXU.W Rs, ERd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction multiplies the lower 16 bits of a 32-bit register ERd (destination operand) by the
contents of a 16-bit register Rs (source operand) and stores the result in the 32-bit register ERd. Rs
can be the upper part (Ed) or lower part (Rd) of ERd. The operation performed is 16-bit × 16-bit
→ 32-bit multiplication.

Available Registers

ERd: ER0 to ER7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

ERd Rs ERd

Don’t care Multiplicand × Multiplier → Product

16 bits 16 bits 32 bits

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct MULXU.W Rs, ERd 5 2 rs 0 erd 22

No. of
States

Addressing
Mode

Mnemonic Operands
131

2.2.40 (1) NEG (B)

NEG (NEGate) Negate Binary Signed

Operation

0 – Rd → Rd

Assembly-Language Format

NEG.B Rd

Operand Size

Byte

Condition Code

H: Set to 1 if there is a borrow at bit 3;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 7;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction takes the two’s complement of the contents of an 8-bit register Rd (destination
operand) and stores the result in the 8-bit register Rd (subtracting the register contents from H'00).
If the original contents of Rd was H'80, however, the result remains H'80.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

An overflow occurs if the previous contents of Rd was H'80.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct NEG.B Rd 1 7 8 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
132

2.2.40 (2) NEG (W)

NEG (NEGate) Negate Binary Signed

Operation

0 – Rd → Rd

Assembly-Language Format

NEG.W Rd

Operand Size

Word

Condition Code

H: Set to 1 if there is a borrow at bit 11;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 15;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction takes the two’s complement of the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd (subtracting the register contents from
H'0000). If the original contents of Rd was H'8000, however, the result remains H'8000.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

An overflow occurs if the previous contents of Rd was H'8000.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct NEG.W Rd 1 7 9 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
133

2.2.40 (3) NEG (L)

NEG (NEGate) Negate Binary Signed

Operation

0 – ERd → ERd

Assembly-Language Format

NEG.L ERd

Operand Size

Longword

Condition Code

H: Set to 1 if there is a borrow at bit 27;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 31;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction takes the two’s complement of the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd (subtracting the register contents from
H'00000000). If the original contents of ERd was H'80000000, however, the result remains
H'80000000.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

An overflow occurs if the previous contents of ERd was H'80000000.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct NEG.L ERd 1 7 B 0 erd 2

No. of
States

Addressing
Mode

Mnemonic Operands
134

2.2.41 NOP

NOP (No OPeration) No Operation

Operation

PC + 2 → PC

Assembly-Language Format

NOP

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction only increments the program counter, causing the next instruction to be executed.
The internal state of the CPU does not change.

Available Registers

—

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— NOP 0 0 0 0 2

No. of
States

Addressing
Mode

Mnemonic Operands
135

2.2.42 (1) NOT (B)

NOT (NOT = logical complement) Logical Complement

Operation

¬ Rd → Rd

Assembly-Language Format

NOT.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction takes the one’s complement of the contents of an 8-bit register Rd (destination
operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct NOT.B Rd 1 7 0 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
136

2.2.42 (2) NOT (W)

NOT (NOT = logical complement) Logical Complement

Operation

¬ Rd → Rd

Assembly-Language Format

NOT.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero (the previous

Rd value was H'FFFF); otherwise cleared
to 0.

V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction takes the one’s complement of the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct NOT.W Rd 1 7 1 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
137

2.2.42 (3) NOT (L)

NOT (NOT = logical complement) Logical Complement

Operation

¬ ERd → ERd

Assembly-Language Format

NOT.L ERd

Operand Size

Longword

Condition Code

I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction takes the one’s complement of the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct NOT.L ERd 1 7 3 0 erd 2

No. of
States

Addressing
Mode

Mnemonic Operands
138

2.2.43 (1) OR (B)

OR (inclusive OR logical) Logical OR

Operation

Rd ∨ (EAs) → Rd

Assembly-Language Format

OR.B <EAs>, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction ORs the source operand with the contents of an 8-bit register Rd (destination
register) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate OR.B #xx:8, Rd C rd IMM 2

Register direct OR.B Rs, Rd 1 4 rs rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
139

2.2.43 (2) OR (W)

OR (inclusive OR logical) Logical OR

Operation

Rd ∨ (EAs) → Rd

Assembly-Language Format

OR.W <EAs>, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction ORs the source operand with the contents of a 16-bit register Rd (destination
register) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate OR.W #xx:16, Rd 7 9 4 rd IMM 4

Register direct OR.W Rs, Rd 6 4 rs rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
140

2.2.43 (3) OR (L)

OR (inclusive OR logical) Logical OR

Operation

ERd ∨ (EAs) → ERd

Assembly-Language Format

OR.L <EAs>, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction ORs the source operand with the contents of a 32-bit register ERd (destination
register) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7
ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte

Immediate OR.L #xx:32,ERd 7 A 4 0 erd IMM 6

Register direct OR.L ERs, ERd 0 1 F 0 6 4 0 ers 0 erd 4

No. of
States

Mnemonic OperandsAddressing
Mode
141

2.2.44 ORC

ORC (inclusive OR Control register) Logical OR with CCR

Operation

CCR ∨ #IMM → CCR

Assembly-Language Format

ORC #xx:8, CCR

Operand Size

Byte

Condition Code

I: Stores the corresponding bit of the result.
UI: Stores the corresponding bit of the result.
H: Stores the corresponding bit of the result.
U: Stores the corresponding bit of the result.
N: Stores the corresponding bit of the result.
Z: Stores the corresponding bit of the result.
V: Stores the corresponding bit of the result.
C: Stores the corresponding bit of the result.

I UI H U N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Description

This instruction ORs the contents of the condition-code register (CCR) with immediate data and
stores the result in the condition-code register. No interrupt requests, including NMI, are accepted
immediately after execution of this instruction.

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate ORC #xx:8, CCR 0 4 IMM 2

No. of
States

Addressing
Mode

Mnemonic Operands
142

2.2.45 (1) POP (W)

POP (POP data) Pop Data from Stack

Operation

@SP+ → Rn

Assembly-Language Format

POP.W Rn

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the data value is negative;

otherwise cleared to 0.
Z: Set to 1 if the data value is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction restores data from the stack to a 16-bit general register Rn, tests the restored data,
and sets condition-code flags according to the result.

Available Registers

Rn: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

POP.W Rn is identical to MOV.W @SP+, Rn.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— POP.W Rn 6 D 7 rn 6

No. of
States

Addressing
Mode

Mnemonic Operands
143

2.2.45 (2) POP (L)

POP (POP data) Pop Data from Stack

Operation

@SP+ → ERn

Assembly-Language Format

POP.L ERn

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the data value is negative;

otherwise cleared to 0.
Z: Set to 1 if the data value is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction restores data from the stack to a 32-bit general register ERn, tests the restored
data, and sets condition-code flags according to the result.

Available Registers

ERn: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

POP.L ERn is identical to MOV.L @SP+, ERn.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— POP.L ERn 0 1 0 0 6 D 7 0 ern 10

No. of
States

Addressing
Mode

Mnemonic Operands
144

2.2.46 (1) PUSH (W)

PUSH (PUSH data) Push Data on Stack

Operation

Rn → @–SP

Assembly-Language Format

PUSH.W Rn

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the data value is negative;

otherwise cleared to 0.
Z: Set to 1 if the data value is zero;

otherwise cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction saves data from a 16-bit register Rn onto the stack, tests the saved data, and sets
condition-code flags according to the result.

Available Registers

Rn: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

1. PUSH.W Rn is identical to MOV.W Rn, @–SP.
2. When PUSH.W R7 or PUSH.W E7 is executed, the value saved on the stack is the lower part

(R7) or upper part (E7) of the value of ER7 before execution minus two.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— PUSH.W Rn 6 D F rn 6

No. of
States

Addressing
Mode

Mnemonic Operands
145

2.2.46 (2) PUSH (L)

PUSH (PUSH data) Push Data on Stack

Operation

ERn → @–SP

Assembly-Language Format

PUSH.L ERn

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the data value is negative;

otherwise cleared to 0.
Z: Set to 1 if the data value is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction pushes data from a 32-bit register ERn onto the stack, tests the saved data, and
sets condition-code flags according to the result.

Available Registers

ERn: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

1. PUSH.L ERn is identical to MOV.L ERn, @–SP.
2. When PUSH.L ER7 is executed, the value saved on the stack is the value of ER7 before

execution minus four.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— PUSH.L ERn 0 1 0 0 6 D F 0 ern 10

No. of
States

Addressing
Mode

Mnemonic Operands
146

2.2.47 (1) ROTL (B)

ROTL (ROTate Left) Rotate

Operation

Rd (left rotation) → Rd

Assembly-Language Format

ROTL.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 7.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in an 8-bit register Rd (destination register) one bit to the left. The
most significant bit is rotated to the least significant bit (bit 0), and also copied to the carry flag.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b7 b0

.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTL.B Rd 1 2 8 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
147

2.2.47 (2) ROTL (W)

ROTL (ROTate Left) Rotate

Operation

Rd (left rotation) → Rd

Assembly-Language Format

ROTL.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 15.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 16-bit register Rd (destination register) one bit to the left. The
most significant bit is rotated to the least significant bit (bit 0), and also copied to the carry flag.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b15 b0

.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTL.W Rd 1 2 9 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
148

2.2.47 (3) ROTL (L)

ROTL (ROTate Left) Rotate

Operation

ERd (left rotation) → ERd

Assembly-Language Format

ROTL.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 31.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction rotates the bits in a 32-bit register ERd (destination register) one bit to the left.
The most significant bit is rotated to the least significant bit (bit 0), and also copied to the carry
flag.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b31 b0

.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTL.L ERd 1 2 B 0 erd 2

No. of
States

Addressing
Mode

Mnemonic Operands
149

2.2.48 (1) ROTR (B)

ROTR (ROTate Right) Rotate

Operation

Rd (right rotation) → Rd

Assembly-Language Format

ROTR.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in an 8-bit register Rd (destination register) one bit to the right.
The least significant bit is rotated to the most significant bit (bit 7), and also copied to the carry
flag.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

MSB LSB

b7 b0

.

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTR.B Rd 1 3 8 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
150

2.2.48 (2) ROTR (W)

ROTR (ROTate Right) Rotate

Operation

Rd (right rotation) → Rd

Assembly-Language Format

ROTR.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 16-bit register Rd (destination register) one bit to the right.
The least significant bit is rotated to the most significant bit (bit 15), and also copied to the carry
flag.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

b15 b0

.

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTR.W Rd 1 3 9 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
151

2.2.48 (3) ROTR (L)

ROTR (ROTate Right) Rotate

Operation

ERd (right rotation) → ERd

Assembly-Language Format

ROTR.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 32-bit register ERd (destination register) one bit to the right.
The least significant bit is rotated to the most significant bit (bit 31), and also copied to the carry
flag.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

b31 b0

.

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTR.L ERd 1 3 B 0 erd 2

No. of
States

Addressing
Mode

Mnemonic Operands
152

2.2.49 (1) ROTXL (B)

ROTXL (ROTate with eXtend carry Left) Rotate through Carry

Operation

Rd (left rotation through carry bit) → Rd

Assembly-Language Format

ROTXL.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 7.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in an 8-bit register Rd (destination register) one bit to the left
through the carry flag. The carry flag is rotated into the least significant bit (bit 0). The most
significant bit rotates into the carry flag.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b7 b0

.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXL.B Rd 1 2 0 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
153

2.2.49 (2) ROTXL (W)

ROTXL (ROTate with eXtend carry Left) Rotate through Carry

Operation

Rd (left rotation through carry bit) → Rd

Assembly-Language Format

ROTXL.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 15.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 16-bit register Rd (destination register) one bit to the left
through the carry flag. The carry flag is rotated into the least significant bit (bit 0). The most
significant bit rotates into the carry flag.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b15 b0

.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXL.W Rd 1 2 1 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
154

2.2.49 (3) ROTXL (L)

ROTXL (ROTate with eXtend carry Left) Rotate through Carry

Operation

ERd (left rotation through carry bit) → ERd

Assembly-Language Format

ROTXL.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 31.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 32-bit register ERd (destination register) one bit to the left
through the carry flag. The carry flag is rotated into the least significant bit (bit 0). The most
significant bit rotates into the carry flag.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

MSB LSB

C b31 b0

.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXL.L ERd 1 2 3 0 erd 2

No. of
States

Addressing
Mode

Mnemonic Operands
155

2.2.50 (1) ROTXR (B)

ROTXR (ROTate with eXtend carry Right) Rotate through Carry

Operation

Rd (right rotation through carry bit) → Rd

Assembly-Language Format

ROTXR.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in an 8-bit register Rd (destination register) one bit to the right
through the carry flag. The carry flag is rotated into the most significant bit (bit 7). The least
significant bit rotates into the carry flag.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

LSBMSB

b7 b0

.

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXR.B Rd 1 3 0 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
156

2.2.50 (2) ROTXR (W)

ROTXR (ROTate with eXtend carry Right) Rotate through Carry

Operation

Rd (right rotation through carry bit) → Rd

Assembly-Language Format

ROTXR.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 16-bit register Rd (destination register) one bit to the right
through the carry flag. The carry flag is rotated into the most significant bit (bit 15). The least
significant bit rotates into the carry flag.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

LSBMSB

b15 b0

.

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXR.W Rd 1 3 1 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
157

2.2.50 (3) ROTXR (L)

ROTXR (ROTate with eXtend carry Right) Rotate through Carry

Operation

ERd (right rotation through carry bit) → ERd

Assembly-Language Format

ROTXR.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction rotates the bits in a 32-bit register ERd (destination register) one bit to the right
through the carry flag. The carry flag is rotated into the most significant bit (bit 31). The least
significant bit rotates into the carry flag.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

LSBMSB

b31 b0

.

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct ROTXR.L ERd 1 3 3 0 erd 2

No. of
States

Addressing
Mode

Mnemonic Operands
158

2.2.51 RTE

RTE (ReTurn from Exception) Return from Exception Handling

Operation

@SP+ → CCR
@SP+ → PC

Assembly-Language Format

RTE

Operand Size

—

Condition Code

I: Restored from the corresponding bit on
the stack.

UI: Restored from the corresponding bit on
the stack.

H: Restored from the corresponding bit on
the stack.

U: Restored from the corresponding bit on
the stack.

N: Restored from the corresponding bit on
the stack.

Z: Restored from the corresponding bit on
the stack.

V: Restored from the corresponding bit on
the stack.

C: Restored from the corresponding bit on
the stack.

I UI H U N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Description

This instruction returns from an exception-handling routine by restoring the condition-code
register (CCR) and program counter (PC) from the stack. Program execution continues from the
address restored to the program counter. The CCR and PC contents at the time of execution of this
instruction are lost.

Operand Format and Number of States Required for Execution

Notes

The stack structure differs between normal mode and advanced mode.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— RTE 5 6 7 0 10

No. of
States

Addressing
Mode

Mnemonic Operands

PC
23 16 15 8 7 0Normal mode

Don’t care
CCR

PC
23 16 15 8 7 0Advanced mode

CCR

Undet.
159

2.2.52 RTS

RTS (ReTurn from Subroutine) Return from Subroutine

Operation

@SP+ → PC

Assembly-Language Format

RTS

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction returns from a subroutine by restoring the program counter (PC) from the stack.
Program execution continues from the address restored to the program counter. The PC contents
at the time of execution of this instruction are lost.

Available Registers

—

Operand Format and Number of States Required for Execution

Notes

The stack structure and number of states required for execution differ between normal mode and
advanced mode.
In normal mode, only the lower 16 bits of the program counter are restored.

Instruction Format No. of States

1st Byte 2nd Byte 3rd Byte 4th Byte Normal Advanced

— RTS 5 4 7 0 8 10

Addressing
Mode

Mnemonic Operands

PC
23 16 15 8 7 0Normal mode

PC
23 16 15 8 7 0Advanced mode

Undet.

Don’t care
160

2.2.53 (1) SHAL (B)

SHAL (SHift Arithmetic Left) Shift Arithmetic

Operation

Rd (left arithmetic shift) → Rd

Assembly-Language Format

SHAL.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Receives the previous value in bit 7.

I UI H U N Z V C

— — — — ↕ ↕ ↕ ↕

Description

This instruction shifts the bits in an 8-bit register Rd (destination operand) one bit to the left. The
most significant bit shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

LSBMSB

b7 b0

.

C

0

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAL.B Rd 1 0 8 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
161

2.2.53 (2) SHAL (W)

SHAL (SHift Arithmetic Left) Shift Arithmetic

Operation

Rd (left arithmetic shift) → Rd

Assembly-Language Format

SHAL.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Receives the previous value in bit 15.

I UI H U N Z V C

— — — — ↕ ↕ ↕ ↕

Description

This instruction shifts the bits in a 16-bit register Rd (destination operand) one bit to the left. The
most significant bit shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

LSBMSB

b15 b0

.

C

0

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAL.W Rd 1 0 9 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
162

2.2.53 (3) SHAL (L)

SHAL (SHift Arithmetic Left) Shift Arithmetic

Operation

ERd (left arithmetic shift) → ERd

Assembly-Language Format

SHAL.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Receives the previous value in bit 31.

I UI H U N Z V C

— — — — ↕ ↕ ↕ ↕

Description

This instruction shifts the bits in a 32-bit register ERd (destination operand) one bit to the left. The
most significant bit shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

The SHAL instruction differs from the SHLL instruction in its effect on the overflow flag.

LSBMSB

b31 b0

.

C

0

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAL.L ERd 1 0 B 0 erd 2

No. of
States

Addressing
Mode

Mnemonic Operands
163

2.2.54 (1) SHAR (B)

SHAR (SHift Arithmetic Right) Shift Arithmetic

Operation

Rd (right arithmetic shift) → Rd

Assembly-Language Format

SHAR.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction shifts the bits in an 8-bit register Rd (destination operand) one bit to the right. Bit
0 shifts into the carry flag. Bit 7 shifts into itself. Since bit 7 remains unaltered, the sign does not
change.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

LSB

b7 b0

.

C

MSB

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAR.B Rd 1 1 8 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
164

2.2.54 (2) SHAR (W)

SHAR (SHift Arithmetic Right) Shift Arithmetic

Operation

Rd (right arithmetic shift) → Rd

Assembly-Language Format

SHAR.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction shifts the bits in a 16-bit register Rd (destination operand) one bit to the right. Bit
0 shifts into the carry flag. Bit 15 shifts into itself. Since bit 15 remains unaltered, the sign does
not change.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

LSB

b15 b0

.

C

MSB

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAR.W Rd 1 1 9 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
165

2.2.54 (3) SHAR (L)

SHAR (SHift Arithmetic Right) Shift Arithmetic

Operation

ERd (right arithmetic shift) → ERd

Assembly-Language Format

SHAR.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Set to 1 if an overflow occurs; otherwise

cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction shifts the bits in a 32-bit register ERd (destination operand) one bit to the right.
Bit 0 shifts into the carry flag. Bit 31 shifts into itself. Since bit 31 remains unaltered, the sign
does not change.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

LSB

b31 b0

.

C

MSB

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHAR.L ERd 1 1 B 0 erd 2

No. of
States

Addressing
Mode

Mnemonic Operands
166

2.2.55 (1) SHLL (B)

SHLL (SHift Logical Left) Shift Logical

Operation

Rd (left logical shift) → Rd

Assembly-Language Format

SHLL.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 7.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction shifts the bits in an 8-bit register Rd (destination operand) one bit to the left. The
most significant bit shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

LSBMSB

b7 b0

.

C

0

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLL.B Rd 1 0 0 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
167

2.2.55 (2) SHLL (W)

SHLL (SHift Logical Left) Shift Logical

Operation

Rd (left logical shift) → Rd

Assembly-Language Format

SHLL.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 15.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction shifts the bits in a 16-bit register Rd (destination operand) one bit to the left. The
most significant bit shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

LSBMSB

b15 b0

.

C

0

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLL.W Rd 1 0 1 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
168

2.2.55 (3) SHLL (L)

SHLL (SHift Logical Left) Shift Logical

Operation

ERd (left logical shift) → ERd

Assembly-Language Format

SHLL.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 31.

I UI H U N Z V C

— — — — ↕ ↕ 0 ↕

Description

This instruction shifts the bits in a 32-bit register ERd (destination operand) one bit to the left. The
most significant bit shifts into the carry flag. The least significant bit (bit 0) is cleared to 0.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

The SHLL instruction differs from the SHAL instruction in its effect on the overflow flag.

LSBMSB

b31 b0

.

C

0

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLL.L ERd 1 0 3 0 erd 2

No. of
States

Addressing
Mode

Mnemonic Operands
169

2.2.56 (1) SHLR (B)

SHLR (SHift Logical Right) Shift Logical

Operation

Rd (right logical shift) → Rd

Assembly-Language Format

SHLR.B Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — 0 ↕ 0 ↕

Description

This instruction shifts the bits in an 8-bit register Rd (destination operand) one bit to the right. The
least significant bit shifts into the carry flag. The most significant bit (bit 7) is cleared to 0.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

LSBMSB

b7 b0

. 0

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLR.B Rd 1 1 0 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
170

2.2.56 (2) SHLR (W)

SHLR (SHift Logical Right) Shift Logical

Operation

Rd (right logical shift) → Rd

Assembly-Language Format

SHLR.W Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Always cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — 0 ↕ 0 ↕

Description

This instruction shifts the bits in a 16-bit register Rd (destination operand) one bit to the right. The
least significant bit shifts into the carry flag. The most significant bit (bit 15) is cleared to 0.

Available Registers

Rd: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

LSBMSB

b15 b0

. 0

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLR.W Rd 1 1 1 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
171

2.2.56 (3) SHLR (L)

SHLR (SHift Logical Right) Shift Logical

Operation

ERd (right logical shift) → ERd

Assembly-Language Format

SHLR.L ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Always cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Receives the previous value in bit 0.

I UI H U N Z V C

— — — — 0 ↕ 0 ↕

Description

This instruction shifts the bits in a 32-bit register ERd (destination operand) one bit to the right.
The least significant bit shifts into the carry flag. The most significant bit (bit 31) is cleared to 0.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

LSBMSB

b31 b0

. 0

C

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SHLR.L ERd 1 1 3 0 erd 2

No. of
States

Addressing
Mode

Mnemonic Operands
172

2.2.57 SLEEP

SLEEP (SLEEP) Power-Down Mode

Operation

Program execution state → power-down mode

Assembly-Language Format

SLEEP

Operand Size

—

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

When the SLEEP instruction is executed, the CPU enters a power-down state. Its internal state
remains unchanged, but the CPU stops executing instructions and waits for an exception-handling
request. When it receives an exception-handling request, the CPU exits the power-down state and
begins the exception-handling sequence. Interrupt requests other than NMI cannot end the power-
down state if they are masked in the CPU.

Available Registers

—

Operand Format and Number of States Required for Execution

Notes

For information about the power-down state, see the relevant microcontroller hardware manual.

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

— SLEEP 0 1 8 0 2

No. of
States

Addressing
Mode

Mnemonic Operands
173

2.2.58 (1) STC (B)

STC (STore from Control register) Store CCR

Operation

CCR → Rd

Assembly-Language Format

STC.B CCR, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U Z V C

— — — — — — — —

Description

This instruction copies the CCR contents to an 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct STC.B CCR, Rd 0 2 0 rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
174

2.2.58 (2) STC (W)

STC (STore from Control register) Store CCR

Operation

CCR → (EAd)

Assembly-Language Format

STC.W CCR, <EAd>

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction copies the CCR contents to a destination location. Although CCR is a byte
register, the destination operand is a word operand. The CCR contents are stored at the even
address.

Available Registers

ERd: ER0 to ER7
175

Operand Format and Number of States Required for Execution

Notes

No. of
StatesMnemonic OperandsAddressing

Mode

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

Register
indirect

Register
indirect with
displacement

Register
indirect with
pre-decrement

STC.W

STC.W

STC.W

STC.W

STC.W

STC.W

CCR,@ERd

CCR,@(d:16,ERd)

CCR,@(d:24,ERd)

CCR,@–ERd

CCR,@aa:16

CCR,@aa:24

Absolute
address

0

0

0

0

0

0

1 4 0 6 9 erd1 0

disp

6

8

12

8

8

10

2.2.58(2)
176

1

1

1

1

1

4

4

4

4

4

0

0

0

0

0

6

7

6

6

6

F

8

D

B

B

erd

erd

erd

1

0

1

0

0

0

0

0

6 B A 0 0

abs

abs

0 0

8

A

disp

0

2.2.59 (1) SUB (B)

SUB (SUBtract binary) Subtract Binary

Operation

Rd – Rs → Rd

Assembly-Language Format

SUB.B Rs, Rd

Operand Size

Byte

Condition Code

H: Set to 1 if there is a borrow at bit 3;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 7;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction subtracts the contents of an 8-bit register Rs (source operand) from the contents
of an 8-bit register Rd (destination operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

The SUB.B instruction can operate only on general registers. Immediate data can be subtracted
from general register contents by using the SUBX instruction. Before executing SUBX #xx:8, Rd,
first set the Z flag to 1 and clear the C flag to 0. The following coding examples can also be used
to subtract nonzero immediate data #IMM.

(1) ORC #H'05, CCR
SUBX #(IMMÐ1), Rd

(2) ADD #(0ÐIMM), Rd
XORC #H'01, CCR

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SUB.B Rs, Rd 1 8 rs rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
177

2.2.59 (2) SUB (W)

SUB (SUBtract binary) Subtract Binary

Operation

Rd – (EAs) → Rd

Assembly-Language Format

SUB.W <EAs>, Rd

Operand Size

Word

Condition Code

H: Set to 1 if there is a borrow at bit 11;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 15;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction subtracts a source operand from the contents of a 16-bit register Rd (destination
operand) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate SUB.W #xx:16, Rd 7 9 3 rd IMM 4

Register direct SUB.W Rs, Rd 1 9 rs rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
178

2.2.59 (3) SUB (L)

SUB (SUBtract binary) Subtract Binary

Operation

ERd – <EAs> → ERd

Assembly-Language Format

SUB.L <EAs>, ERd

Operand Size

Longword

Condition Code

H: Set to 1 if there is a borrow at bit 27;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow at bit 31;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction subtracts a source operand from the contents of a 32-bit register ERd (destination
operand) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7
ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte

Immediate SUB.L #xx:32, ERd 7 A 3 0 erd IMM 6

Register direct SUB.L ERs, ERd 1 A 1 ers 0 erd 2

No. of
States

Mnemonic OperandsAddressing
Mode
179

2.2.60 SUBS

SUBS (SUBtract with Sign extension) Subtract Binary Address Data

Operation

ERd – 1 → ERd
ERd – 2 → ERd
ERd – 4 → ERd

Assembly-Language Format

SUBS #1, ERd
SUBS #2, ERd
SUBS #4, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — — — — —

Description

This instruction subtracts the immediate value 1, 2, or 4 from the contents of a 32-bit register ERd
(destination register). Differing from the SUB instruction, it does not affect the condition-code
flags.

Available Registers

ERd: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct SUBS #1, ERd 1 B 0 0 erd 2

Register direct SUBS #2, ERd 1 B 8 0 erd 2

Register direct SUBS #4, ERd 1 B 9 0 erd 2

No. of
States

Addressing
Mode*

Mnemonic Operands
180

2.2.61 SUBX

SUBX (SUBtract with eXtend carry) Subtract with Borrow

Operation

Rd – (EAs) – C → Rd

Assembly-Language Format

SUBX <EAs>, Rd

Operand Size

Byte

Condition Code

H: Set to 1 if there is a borrow from bit 3;
otherwise cleared to 0.

N: Set to 1 if the result is negative; otherwise
cleared to 0.

Z: Set to 1 if the result is zero; otherwise
cleared to 0.

V: Set to 1 if an overflow occurs; otherwise
cleared to 0.

C: Set to 1 if there is a borrow from bit 7;
otherwise cleared to 0.

I UI H U N Z V C

— — ↕ — ↕ ↕ ↕ ↕

Description

This instruction subtracts the source operand and carry flag from the contents of an 8-bit register
Rd (destination operand) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate SUBX #xx:8, Rd B rd IMM 2

Register direct SUBX Rs, Rd 1 E rs rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
181

2.2.62 TRAPA

TRAPA (TRAP Always) Trap Unconditionally

Operation

PC → @–SP
CCR → @–SP
<Vector> → PC

Assembly-Language Format

TRAPA #x:2

Operand Size

—

Condition Code

I: Always set to 1.
U: See notes.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

I UI H U N Z V C

1 ∆*1 — — — — — —

Description

This instruction pushes the program counter (PC) and condition-code register (CCR) on the stack,
then sets the I bit to 1 and branches to a new address. The new address is the contents of the vector
address corresponding to the specified vector number. The PC value pushed on the stack is the
starting address of the next instruction after the TRAPA instruction.

Operand Format and Number of States Required for Execution

Notes

1. CCR bit 6 is set to 1 when used as an interrupt mask bit, but retains its previous value when
used as a user bit.

2. The stack and vector structure differ between normal mode and advanced mode.

Vector Address

Normal Mode Advanced Mode

0 H'0010 to H'0011 H'000020 to H'000023

1 H'0012 to H'0013 H'000024 to H'000027

2 H'0014 to H'0015 H'000028 to H'00002B

3 H'0016 to H'0017 H'00002C to H'00002F

#x

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Register direct TRAPA #x:2 5 7 00 IMM 0 14

No. of
States

Addressing
Mode

Mnemonic Operands
182

2.2.63 (1) XOR (B)

XOR (eXclusive OR logical) Exclusive Logical OR

Operation

Rd ⊕ (EAs) → Rd

Assembly-Language Format

XOR.B <EAs>, Rd

Operand Size

Byte

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction exclusively ORs the source operand with the contents of an 8-bit register Rd
(destination register) and stores the result in the 8-bit register Rd.

Available Registers

Rd: R0L to R7L, R0H to R7H
Rs: R0L to R7L, R0H to R7H

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate XOR.B #xx:8, Rd D rd IMM 2

Register direct XOR.B Rs, Rd 1 5 rs rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
183

2.2.63 (2) XOR (W)

XOR (eXclusive OR logical) Exclusive Logical OR

Operation

Rd ⊕ (EAs) → Rd

Assembly-Language Format

XOR.W <EAs>, Rd

Operand Size

Word

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction exclusively ORs the source operand with the contents of a 16-bit register Rd
(destination register) and stores the result in the 16-bit register Rd.

Available Registers

Rd: R0 to R7, E0 to E7
Rs: R0 to R7, E0 to E7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate XOR.W #xx:16, Rd 7 9 5 rd IMM 4

Register direct XOR.W Rs, Rd 6 5 rs rd 2

No. of
States

Addressing
Mode

Mnemonic Operands
184

2.2.63 (3) XOR (L)

XOR (eXclusive OR logical) Exclusive Logical OR

Operation

ERd ⊕ (EAs) → ERd

Assembly-Language Format

XOR.L <EAs>, ERd

Operand Size

Longword

Condition Code

H: Previous value remains unchanged.
N: Set to 1 if the result is negative; otherwise

cleared to 0.
Z: Set to 1 if the result is zero; otherwise

cleared to 0.
V: Always cleared to 0.
C: Previous value remains unchanged.

I UI H U N Z V C

— — — — ↕ ↕ 0 —

Description

This instruction exclusively ORs the source operand with the contents of a 32-bit register ERd
(destination register) and stores the result in the 32-bit register ERd.

Available Registers

ERd: ER0 to ER7
ERs: ER0 to ER7

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte

Immediate XOR.L #xx:32, ERd 7 A 5 0 erd IMM 6

Register direct XOR.L ERs, ERd 0 1 F 0 6 5 0 ers 0 erd 4

No. of
States

Mnemonic OperandsAddressing
Mode
185

2.2.64 XORC

XORC (eXclusive OR Control register) Exclusive Logical OR with CCR

Operation

CCR ⊕ #IMM → CCR

Assembly-Language Format

XORC #xx:8, CCR

Operand Size

Byte

Condition Code

I: Stores the corresponding bit of the result.
UI: Stores the corresponding bit of the result.
H: Stores the corresponding bit of the result.
U: Stores the corresponding bit of the result.
N: Stores the corresponding bit of the result.
Z: Stores the corresponding bit of the result.
V: Stores the corresponding bit of the result.
C: Stores the corresponding bit of the result.

I UI H U N Z V C

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Description

This instruction exclusively ORs the contents of the condition-code register (CCR) with
immediate data and stores the result in the condition-code register. No interrupt requests,
including NMI, are accepted immediately after execution of this instruction.

Operand Format and Number of States Required for Execution

Notes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte

Immediate XORC #xx:8, CCR 0 5 IMM 2

No. of
States

Addressing
Mode

Mnemonic Operands
186

2.3 Instruction Set Summary

Table 2-1 Instruction Set Summary

Addressing Mode

Function Instruction #xx Rn @ERn @(d:16,ERn) @(d:24,ERn) @ERn+/@–ERn @aa:8 @aa:16 @aa:24 @(d:8,PC) @(d:16,PC) @@aa:8 —

MOV BWL BWL BWL BWL BWL BWL B BWL BWL — — — —

POP, PUSH — — — — — — — — — — — — WL

MOVEPE, — — — — — — — B — — — — —

MOVTPE

— — — —

— — — —

— — — —

— — — —

— — — —

— — — —

— — — —

— — — —

— — — —

— — — —

— — — —

Shift oper — — — —

Bit manipu — — — —

Data
transfer

Arithmetic
operations

Logic
operations
ADD, CMP BWL BWL — — — — — — —

SUB WL BWL — — — — — — —

ADDX, B B — — — — — — —

SUBX

ADDS, — L — — — — — — —

SUBS

INC, DEC — BWL — — — — — — —

DAA, DAS — B — — — — — — —

MULXU, — BW — — — — — — —

DIVXU,

MULXS,

DIVXS,

NEG — BWL — — — — — — —

EXTU, — WL — — — — — — —

EXTS

AND, OR, BWL BWL — — — — — — —

XOR

NOT — BWL — — — — — — —

ations — BWL — — — — — — —

lation — B B — — — B — —

187

Table 2-1 Instruction Set Summary (cont)

Addressing Mode

Function Instruction #xx Rn @ERn @(d:16,ERn) @(d:24,ERn) @ERn+/@–ERn @aa:8 @aa:16 @aa:24 @(d:8,PC) @(d:16,PC) @@aa:8 —

Branch Bcc, BSR — — — — — — — — — ❍ ❍ — —

JMP, JSR — — ❍ — — — — — ❍ — — ❍ —

RTS — — — — — — — — — — — — ❍

TRAPA, — — — — — — — — — — — — ❍

RTE,

SLEEP

LDC B B W — — — —

STC — B W — — — —

ANDC, B — — — — — —

ORC,

XORC

NOP — — — — — — ❍

— — — — — — B

Legend
B: Byte
W: Word
L: Longword

System
control

Block data
transfer
W W W — W W

W W W — W W

— — — — — —

— — — — — —

— — — — — —

188

Table 2-2 Instruction Set

(1) Data Transfer Instructions

Addressing Mode and Instruction Length (bytes) Condition Code No. of States

Ad-
Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@–ERn @aa @(d,PC) @@aa — Operation I H N Z V C Normal vanced

MOV MOV.B #xx:8,Rd B 2 #xx:8→Rd8 — — ↕ ↕ 0 — 2 2

MOV.B Rs,Rd B 2 Rs8→Rd8 — — ↕ ↕ 0 — 2 2

MOV.B @ERs,Rd B 2 @ERs→Rd8 — — ↕ ↕ 0 — 4 4

MOV.B @(d:16, ERs), Rd B 4 @(d:16,ERs)→Rd8 — — ↕ ↕ 0 — 6 6

MOV.B @(d:24,ERs),Rd B 8 @(d24:,ERs24)→Rd8 — — ↕ ↕ 0 — 10 10

MOV.B @ERs+,Rd B 2 @ERs→Rd8,ERs32+1→ERs32 — — ↕ ↕ 0 — 6 6

— — ↕ ↕ 0 — 4 4

— — ↕ ↕ 0 — 6 6

— — ↕ ↕ 0 — 8 8

— — ↕ ↕ 0 — 4 4

— — ↕ ↕ 0 — 6 6

— — ↕ ↕ 0 — 10 10

— — ↕ ↕ 0 — 6 6

— — ↕ ↕ 0 — 4 4

— — ↕ ↕ 0 — 6 6

— — ↕ ↕ 0 — 8 8

— — ↕ ↕ 0 — 4 4

— — ↕ ↕ 0 — 2 2

— — ↕ ↕ 0 — 4 4

— — ↕ ↕ 0 — 6 6

— — ↕ ↕ 0 — 10 10

d — — ↕ ↕ 0 — 6 6

— — ↕ ↕ 0 — 6 6

— — ↕ ↕ 0 — 8 8

— — ↕ ↕ 0 — 4 4

— — ↕ ↕ 0 — 6 6

— — ↕ ↕ 0 — 8 10

d24 — — ↕ ↕ 0 — 6 6

— — ↕ ↕ 0 — 6 6

— — ↕ ↕ 0 — 8 8

— — ↕ ↕ 0 — 8 6

— — ↕ ↕ 0 — 2 2

— — ↕ ↕ 0 — 8 8
MOV.B @aa:8,Rd B 2 @aa:8→Rd8

MOV.B @aa:16,Rd B 4 @aa:16→Rd8

MOV.B @aa:24,Rd B 6 @aa:24→Rd8

MOV.B Rs,@ERd B 2 Rs8→@ERd24

MOV.B Rs,@(d:16,ERd) B 4 Rd8→@(d:16,ERd)

MOV.B Rs,@(d:24,ERd) B 8 Rd8→@(d:24,ERd)

MOV.B Rs,@–ERd B 2 ERd32-1→ERd32,Rs8→@ERd

MOV.B Rs,@aa:8 B 2 Rs8→@aa:8

MOV.B Rs,@aa:16 B 4 Rs8→@aa:16

MOV.B Rs,@aa:24 B 6 Rs8→@aa:24

MOV.W #xx:16,Rd W 4 #xx:16→Rd16

MOV.W Rs,Rd W 2 Rs16→Rd16

MOV.W @ERs,Rd W 2 @ERs24→Rd16

MOV.W @(d:16,ERs),Rd W 4 @(d:16,ERs)→Rd16

MOV.W @(d:24,ERs),Rd W 8 @(d:24,ERs)→Rd16

MOV.W @ERs+,Rd W 2 @ERs→Rd16,ERs32+2→@ER

MOV.W @aa:16,Rd W 4 @aa:16→Rd16

MOV.W @aa:24,Rd W 6 @aa:24→Rd16

MOV.W Rs,@ERd W 2 Rs16→@ERd

MOV.W Rs,@(d:16,ERd) W 4 Rs16→@(d:16,ERd)

MOV.W Rs,@(d:24,ERd) W 8 Rs16→@(d:24,ERd)

MOV.W Rs,@–ERd W 2 ERd32-2→ERd32,Rs16→@ER

MOV.W Rs,@aa:16 W 4 Rs16→@aa:16

MOV.W Rs,@aa:24 W 6 Rs16→@aa:24

MOV.L #xx:32,ERd L 6 #xx:32→ERd32

MOV.L ERs,ERd L 2 ERs32→ERd32

MOV.L @ERs,ERd L 4 @ERs→ERd32

189

Table 2-2 Instruction Set (cont)

(1) Data Transfer Instructions

Addressing Mode and Instruction Length (bytes) Condition Code No. of States

Ad-
Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@–ERn @aa @(d,PC) @@aa — Operation I H N Z V C Normal vanced

MOV MOV.L @(d:16,ERs),ERd L 6 @(d:16,ERs)→ERd32 — — ↕ ↕ 0 — 10 10

MOV.L @(d:24,ERs),ERd L 10 @(d:24,ERs)→ERd32 — — ↕ ↕ 0 — 14 14

MOV.L @ERs+,ERd L 4 ERs→ERd32,ERs32+4→@ERs32 — — ↕ ↕ 0 — 10 10

MOV.L @aa:16,ERd L 6 @aa:16→ERd32 — — ↕ ↕ 0 — 10 10

MOV.L @aa:24,ERd L 8 @aa:24→ERd32 — — ↕ ↕ 0 — 12 12

MOV.L ERs,@ERd L 4 ERs32→@ERd24 — — ↕ ↕ 0 — 8 8

— — ↕ ↕ 0 — 10 10

— — ↕ ↕ 0 — 14 14

Rd — — ↕ ↕ 0 — 10 10

— — ↕ ↕ 0 — 10 10

— — ↕ ↕ 0 — 12 12

P — — ↕ ↕ 0 — 6 6

— — ↕ ↕ 0 — 8 10

P — — ↕ ↕ 0 — 6 6

— — ↕ ↕ 0 — 8 10

M — — ↕ ↕ 0 — 6 6

M — — ↕ ↕ 0 — 6 6

(

Condition Code No. of States

Ad-
M I H N Z V C Normal vanced

A — ↕ ↕ ↕ ↕ ↕ 2 2

— ↕ ↕ ↕ ↕ ↕ 2 2

— 1 ↕ ↕ ↕ ↕ 4 4

— 1 ↕ ↕ ↕ ↕ 2 2

— 2 ↕ ↕ ↕ ↕ 6 6

— 2 ↕ ↕ ↕ ↕ 2 2

A — ↕ ↕ 3 ↕ ↕ 2 2

— ↕ ↕ 3 ↕ ↕ 2 2
MOV.L ERs,@(d:16,ERd) L 6 ERs32→@(d:16,ERd)

MOV.L ERs,@(d:24,ERd) L 10 ERs32→@(d:24,ERd)

MOV.L ERs,@–ERd L 4 ERd32-4→ERd32,ERs32→@E

MOV.L ERs,@aa:16 L 6 ERs32→@aa:16

MOV.L ERs,@aa:24 L 8 ERs32→@aa:24

OP POP.W Rn W 2 @SP→Rn16,SP+2→SP

POP.L ERn L 4 @SP→ERn32,SP+4→SP

USH PUSH.W Rn W 2 SP-2→SP,Rn16→@SP

PUSH.L ERn L 4 SP-4→SP,ERn32→@SP

OVFPE MOVFPE@aa:16,Rd B 4 @aa:16→Rd (synchronized with
E clock)

OVTPE MOVTPE Rs,@aa:16 B 4 Rs→@aa:16 (synchronized with
E clock)R

2) Arithmetic Operation Instructions

Addressing Mode and Instruction Length (bytes)

nemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@–ERn @aa @(d,PC) @@aa — Operation

DD ADD.B #xx:8,Rd B 2 Rd8+#xx:8→Rd8

ADD.B Rs,Rd B 2 Rd8+Rs8→Rd8

ADD.W #xx:16,Rd W 4 Rd16+#xx:16→Rd16

ADD.W Rs,Rd W 2 Rd16+Rs16→Rd16

ADD.L #xx:32,ERd L 6 ERd32+#xx:32→ERd32

ADD.L ERs,ERd L 2 ERd32+ERs32→ERd32

DDX ADDX #xx:8,Rd B 2 Rd8+#xx:8+C→Rd8

ADDX Rs,Rd B 2 Rd8+Rs8+C→Rd8

190

Table 2-2 Instruction Set (cont)

(2) Arithmetic Operation Instructions

Addressing Mode and Instruction Length (bytes) Condition Code No. of States

Ad-
Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@–ERn @aa @(d,PC) @@aa — Operation I H N Z V C Normal vanced

ADDS ADDS.L #1,ERd L 2 ERd32+1→ERd32 — — — — — — 2 2

ADDS.L #2,ERd L 2 ERd32+2→ERd32 — — — — — — 2 2

ADDS.L #4,ERd L 2 ERd32+4→ERd32 — — — — — — 2 2

INC INC.B Rd B 2 Rd8+1→Rd8 — — ↕ ↕ ↕ — 2 2

INC.W #1,Rd W 2 Rd16+1→Rd16 — — ↕ ↕ ↕ — 2 2

INC.W #2,Rd W 2 Rd16+2→Rd16 — — ↕ ↕ ↕ — 2 2

INC.L — — ↕ ↕ ↕ — 2 2

INC.L — — ↕ ↕ ↕ — 2 2

DAA DAA R — * ↕ ↕ * ↕ 2 2

SUB SUB.B — ↕ ↕ ↕ ↕ ↕ 2 2

SUB.W — 1 ↕ ↕ ↕ ↕ 4 4

SUB.W — 1 ↕ ↕ ↕ ↕ 2 2

SUB.L — 2 ↕ ↕ ↕ ↕ 6 6

SUB.L — 2 ↕ ↕ ↕ ↕ 2 2

SUBX SUBX — ↕ ↕ 3 ↕ ↕ 2 2

SUBX — ↕ ↕ 3 ↕ ↕ 2 2

SUBS SUBS — — — — — — 2 2

SUBS — — — — — — 2 2

SUBS — — — — — — 2 2

DEC DEC.B — — ↕ ↕ ↕ — 2 2

DEC.W — — ↕ ↕ ↕ — 2 2

DEC.W — — ↕ ↕ ↕ — 2 2

DEC.L — — ↕ ↕ ↕ — 2 2

DEC.L — — ↕ ↕ ↕ — 2 2

DAS DAS R — * ↕ ↕ * — 2 2

NEG NEG.B — ↕ ↕ ↕ ↕ ↕ 2 2

NEG.W — ↕ ↕ ↕ ↕ ↕ 2 2

NEG.L — ↕ ↕ ↕ ↕ ↕ 2 2
#1,ERd L 2 ERd32+1→ERd32

#2,ERd L 2 ERd32+2→ERd32

d B 2 Rd8 decimal adjust →Rd8

 Rs,Rd B 2 Rd8–Rs8→Rd8

 #xx:16,Rd W 4 Rd16–#xx:16→Rd16

 Rs,Rd W 2 Rd16–Rs16→Rd16

 #xx:32,ERd L 6 ERd32–#xx:32→ERd32

 ERs,ERd L 2 ERd32–ERs32→ERd32

.B #xx:8,Rd B 2 Rd8–#xx:8–C→Rd8

.B Rs,Rd B 2 Rd8–Rs8–C→Rd8

.L #1,ERd L 2 Erd32–1→ERd32

.L #2,ERd L 2 ERd32–2→ERd32

.L #4,ERd L 2 ERd32–4→ERd32

 Rd B 2 Rd8–1→Rd8

 #1,Rd W 2 Rd16–1→Rd16

 #2,Rd W 2 Rd16–2→Rd16

 #1,ERd L 2 ERd32–1→ERd32

 #2,ERd L 2 ERd32–2→ERd32

d B 2 Rd8 decimal adjust →Rd8

 Rd B 2 0–Rd8→Rd8

 Rd W 2 0–Rd16→Rd16

 ERd L 2 0–ERd32-ERd32

191

Table 2-2 Instruction Set (cont)

(2) Arithmetic Operation Instructions

Addressing Mode and Instruction Length (bytes) Condition Code No. of States

Ad-
Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@–ERn @aa @(d,PC) @@aa — Operation I H N Z V C Normal vanced

CMP CMP.B #xx:8,Rd B 2 Rd8–#xx:8 — ↕ ↕ ↕ ↕ ↕ 2 2

CMP.B Rs,Rd B 2 Rd8–Rs8 — ↕ ↕ ↕ ↕ ↕ 2 2

CMP.W #xx:16,Rd W 4 Rd16–#xx:16 — 1 ↕ ↕ ↕ ↕ 4 4

CMP.W Rs,Rd W 2 Rd16–Rs16 — 1 ↕ ↕ ↕ ↕ 2 2

CMP.L #xx:32,ERd L 6 ERd32–#xx:32 — 2 ↕ ↕ ↕ ↕ 4 6

CMP.L ERs,ERd L 2 ERd32–ERs32 — 2 ↕ ↕ ↕ ↕ 2 2

MULXU MULXU.B Rs,Rd — — — — — — 14 14

MULXU.W Rs,ER — — — — — — 22 22

MULXS MULXS.B Rs,Rd — — ↕ ↕ — — 16 16

MULXS.W Rs,ER — — ↕ ↕ — — 24 24

DIVXU DIVXU.B Rs,Rd ainder, — — 6 7 — — 14 14
tion)

DIVXU.W Rs,ERd ainder, — — 6 7 — — 22 22
n)

DIVXS DIVXS.B Rs,Rd ainder, — — 8 7 — — 16 16
)

DIVXS.W Rs,ERd ainder, — — 8 7 — — 24 24

EXTU EXTU.W Rd — — 0 ↕ 0 — 2 2

EXTU.L ERd — — 0 ↕ 0 — 2 2

EXTS EXTS.W Rd — — ↕ ↕ 0 — 2 2

EXTS.L ERd to 16> — — ↕ ↕ 0 — 2 2
B 2 Rd8 × Rs8→Rd16
(unsigned operation)

d W 2 Rd16 × Rs16→ERd32
(unsigned operation)

B 4 Rd8 × Rs8 → Rd16
(signed operation)

d W 4 Rd16 × Rs16 → ERd32
(signed operation)

B 2 Rd16 ÷ Rs8 → Rd16 (RdH: rem
RdL: quotient) (unsigned opera

W 2 ERd32 ÷ Rs16 → ERd32 (Ed: rem
Rd: quotient) (unsigned operatio

B 4 Rd16 ÷ Rs8 → Rd16 (RdH: rem
RdL: quotient) (signed operation

W 4 ERd32 ÷ Rs16 → ERd32 (Ed: rem
Rd: quotient) (signed operation)

W 2 0 → (<bits 15 to 8> of Rd16)

L 2 0 → (<bits 31 to 16> of ERd32)

W 2 (<bit 7> of Rd16) → (<bits 15 to
8> of Rd16)

L 2 (<bit 15> of ERd32) → (<bits 31
of ERd32)

192

Table 2-2 Instruction Set (cont)

(3) Logic Operation Instructions

Addressing Mode and Instruction Length (bytes) Condition Code No. of States

Ad-
Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@–ERn @aa @(d,PC) @@aa — Operation I H N Z V C Normal vanced

AND AND.B #xx:8,Rd B 2 Rd8 Λ #xx:8→Rd8 — — ↕ ↕ 0 — 2 2

AND.B Rs,Rd B 2 Rd8 Λ Rs8→Rd8 — — ↕ ↕ 0 — 2 2

AND.W #xx:16,Rd W 4 Rd16 Λ #xx:16→Rd16 — — ↕ ↕ 0 — 4 4

AND.W Rs,Rd W 2 Rd16 Λ Rs16→Rd16 — — ↕ ↕ 0 — 2 2

AND.L #xx:32,ERd L 6 ERd32 Λ #xx:32→ERd32 — — ↕ ↕ 0 — 6 6

AND.L ERs,ERd L 4 ERd32 Λ ERs32→ERd32 — — ↕ ↕ 0 — 4 4

OR OR.B #xx:8,Rd B — — ↕ ↕ 0 — 2 2

OR.B Rs,Rd B — — ↕ ↕ 0 — 2 2

OR.W #xx:16,Rd W — — ↕ ↕ 0 — 4 4

OR.W Rs,Rd W — — ↕ ↕ 0 — 2 2

OR.L #xx:32,ERd L — — ↕ ↕ 0 — 6 6

OR.L ERs,ERd L — — ↕ ↕ 0 — 4 4

XOR XOR.B #xx:8,Rd B — — ↕ ↕ 0 — 2 2

XOR.B Rs,Rd B — — ↕ ↕ 0 — 2 2

XOR.W #xx:16,Rd W — — ↕ ↕ 0 — 4 4

XOR.W Rs,Rd W — — ↕ ↕ 0 — 2 2

XOR.L #xx:32,ERd L — — ↕ ↕ 0 — 6 6

XOR.L ERs,ERd L — — ↕ ↕ 0 — 4 4

NOT NOT.B Rd B — — ↕ ↕ 0 — 2 2

NOT.W Rd W — — ↕ ↕ 0 — 2 2

NOT.L ERd L — — ↕ ↕ 0 — 2 2
2 Rd8 V #xx:8→Rd8

2 Rd8 V Rs8→Rd8

4 Rd16 V #xx:16→Rd16

2 Rd16 V Rs16→Rd16

6 ERd32 V #xx:32→ERd32

4 ERd32 V ERs32→ERd32

2 Rd8⊕ #xx:8→Rd8

2 Rd8⊕ Rs8→Rd8

4 Rd16⊕ #xx:16→Rd16

2 Rd16⊕ Rs16→Rd16

6 ERd32⊕ #xx:32→ERd32

4 ERd32⊕ ERs32→ERd32

2 ¬ Rd8→Rd8

2 ¬ Rd16→Rd16

2 ¬ Rd32→Rd32

193

Table 2-2 Instruction Set (cont)

(4) Shift Instructions

Addressing Mode and Instruction Length (bytes) Condition Code No. of States

Ad-
Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@–ERn @aa @(d,PC) @@aa — Operation I H N Z V C Normal vanced

SHAL SHAL.B Rd B 2 — — ↕ ↕ ↕ ↕ 2 2

SHAL.W Rd W 2 — — ↕ ↕ ↕ ↕ 2 2

SHAL.L ERd L 2 — — ↕ ↕ ↕ ↕ 2 2

SHAR SHAR.B Rd B 2 — — ↕ ↕ 0 ↕ 2 2

SHAR.W Rd W 2 — — ↕ ↕ 0 ↕ 2 2

SHAR.L ERd L 2 — — ↕ ↕ 0 ↕ 2 2

SHLL SHLL.B Rd — — ↕ ↕ 0 ↕ 2 2

SHLL.W Rd — — ↕ ↕ 0 ↕ 2 2

SHLL.L ERd — — ↕ ↕ 0 ↕ 2 2

SHLR SHLR.B Rd — — ↕ ↕ 0 ↕ 2 2

SHLR.W Rd — — ↕ ↕ 0 ↕ 2 2

SHLR.L ERd — — ↕ ↕ 0 ↕ 2 2

ROTXL ROTXL.B Rd — — ↕ ↕ 0 ↕ 2 2

ROTXL.W Rd — — ↕ ↕ 0 ↕ 2 2

ROTXL.L ERd — — ↕ ↕ 0 ↕ 2 2

ROTXR ROTXR.B Rd — — ↕ ↕ 0 ↕ 2 2

ROTXR.W Rd — — ↕ ↕ 0 ↕ 2 2

ROTXR.L ERd — — ↕ ↕ 0 ↕ 2 2

ROTL ROTL.B Rd — — ↕ ↕ 0 ↕ 2 2

ROTL.W Rd — — ↕ ↕ 0 ↕ 2 2

ROTL.L ERd — — ↕ ↕ 0 ↕ 2 2

ROTR ROTR.B Rd — — ↕ ↕ 0 ↕ 2 2

ROTR.W Rd — — ↕ ↕ 0 ↕ 2 2

ROTR.L ERd — — ↕ ↕ 0 ↕ 2 2

MSB LSB

0

C

MSB LSB C

0

C

C

C

B 2

W 2

L 2

B 2

W 2

L 2

B 2

W 2

L 2

B 2

W 2

L 2

B 2

W 2

L 2

B 2

W 2

L 2

MSB LSBC

MSB LSB

0

MSB LSBC

MSB LSB

MSB LSBC

MSB LSB

194

Table 2-2 Instruction Set (cont)

(5) Bit Manipulation Instructions

Addressing Mode and Instruction Length (bytes) Condition Code No. of States

Ad-
Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@–ERn @aa @(d,PC) @@aa — Operation I H N Z V C Normal vanced

BSET BSET #xx:3,Rd B 2 (#xx:3 of Rd8)←1 — — — — — — 2 2

BSET #xx:3,@ERd B 4 (#xx:3 of @ERd)←1 — — — — — — 8 8

BSET #xx:3,@aa:8 B 4 (#xx:3 of @aa:8)←1 — — — — — — 8 8

BSET Rn,Rd B 2 (Rn8 of Rd8)←1 — — — — — — 2 2

BSET Rn,@ERd B 4 (Rn8 of @ERd)←1 — — — — — — 8 8

BSET Rn,@aa:8 B 4 (Rn8 of @aa:8)←1 — — — — — — 8 8

BCLR — — — — — — 2 2

— — — — — — 8 8

— — — — — — 8 8

— — — — — — 2 2

— — — — — — 8 8

— — — — — — 8 8

BNOT d8) — — — — — — 2 2

 — — — — — — 8 8

 @aa:8) — — — — — — 8 8

) — — — — — — 2 2

ERd) — — — — — — 8 8

aa:8) — — — — — — 8 8

BTST — — — ↕ — — 2 2

— — — ↕ — — 6 6

— — — ↕ — — 6 6

— — — ↕ — — 2 2

— — — ↕ — — 6 6

— — — ↕ — — 6 6

BLD — — — — — ↕ 2 2

— — — — — ↕ 6 6

— — — — — ↕ 6 6

BILD — — — — — ↕ 2 2

— — — — — ↕ 6 6

— — — — — ↕ 6 6
BCLR #xx:3,Rd B 2 (#xx:3 of Rd8)←0

BCLR #xx:3,@ERd B 4 (#xx:3 of @ERd)←0

BCLR #xx:3,@aa:8 B 4 (#xx:3 of @aa:8)←0

BCLR Rn,Rd B 2 (Rn8 of Rd8)←0

BCLR Rn,@ERd B 4 (Rn8 of @ERd)←0

BCLR Rn,@aa:8 B 4 (Rn8 of @aa:8)←0

BNOT #xx:3,Rd B 2 (#xx:3 of Rd8)←¬ (#xx:3 of R

BNOT #xx:3,@ERd B 4 (#xx:3 of @ERd)←¬ (#xx:3 of
@ERd)

BNOT #xx:3,@aa:8 B 4 (#xx:3 of @aa:8)←¬ (#xx:3 of

BNOT Rn,Rd B 2 (Rn8 of Rd8)←¬ (Rn8 of Rd8

BNOT Rn,@ERd B 4 (Rn8 of @ERd)←¬ (Rn8 of @

BNOT Rn,@aa:8 B 4 (Rn8 of @aa:8)←¬ (Rn8 of @

BTST #xx:3,Rd B 2 (#xx:3 of Rd8)→Z

BTST #xx:3,@ERd B 4 (#xx:3 of @ERd)→Z

BTST #xx:3,@aa:8 B 4 (#xx:3 of @aa:8)→Z

BTST Rn,Rd B 2 (Rn8 of Rd8)→Z

BTST Rn,@ERd B 4 (Rn8 of @ERd)→Z

BTST Rn,@aa:8 B 4 (Rn8 of @aa:8)→Z

BLD #xx:3,Rd B 2 (#xx:3 of Rd8)→C

BLD #xx:3,@ERd B 4 (#xx:3 of @ERd)→C

BLD #xx:3,@aa:8 B 4 (#xx:3 of @aa:8)→C

BILD #xx:3,Rd B 2 ¬ (#xx:3 of Rd8)→C

BILD #xx:3,@ERd B 4 ¬ (#xx:3 of @ERd24)→C

BILD #xx:3,@aa:8 B 4 ¬ (#xx:3 of @aa:8)→C

195

Table 2-2 Instruction Set (cont)

(5) Bit Manipulation Instructions

Addressing Mode and Instruction Length (bytes) Condition Code No. of States

Ad-
Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@–ERn @aa @(d,PC) @@aa — Operation I H N Z V C Normal vanced

BST BST #xx:3,Rd B 2 C→(#xx:3 of Rd8) — — — — — — 2 2

BST #xx:3,@ERd B 4 C→(#xx:3 of @ERd24) — — — — — — 8 8

BST #xx:3,@aa:8 B 4 C→(#xx:3 of @aa:8) — — — — — — 8 8

BIST BIST #xx:3,Rd B 2 /C→(#xx:3 of Rd8) — — — — — — 2 2

BIST #xx:3,@ERd B 4 /C→(#xx:3 of @ERd24) — — — — — — 8 8

BIST #xx:3,@aa:8 B 4 /C→(#xx:3 of @aa:8) — — — — — — 8 8

BAND BAND #xx:3,Rd — — — — — ↕ 2 2

BAND #xx:3,@ERd — — — — — ↕ 6 6

BAND #xx:3,@aa:8 — — — — — ↕ 6 6

BIAND BIAND #xx:3,Rd — — — — — ↕ 2 2

BIAND #xx:3,@ERd — — — — — ↕ 6 6

BIAND #xx:3,@aa:8 — — — — — ↕ 6 6

BOR BOR #xx:3,Rd — — — — — ↕ 2 2

BOR #xx:3,@ERd — — — — — ↕ 6 6

BOR #xx:3,@aa:8 — — — — — ↕ 6 6

BIOR BIOR #xx:3,Rd — — — — — ↕ 2 2

BIOR #xx:3,@ERd — — — — — ↕ 6 6

BIOR #xx:3,@aa:8 — — — — — ↕ 6 6

BXOR BXOR #xx:3,Rd — — — — — ↕ 2 2

BXOR #xx:3,@ERd — — — — — ↕ 6 6

BXOR #xx:3,@aa:8 — — — — — ↕ 6 6

BIXOR BIXOR #xx:3,Rd — — — — — ↕ 2 2

BIXOR #xx:3,@ERd — — — — — ↕ 6 6

BIXOR #xx:3,@aa:8 — — — — — ↕ 6 6
B 2 CΛ(#xx:3 of Rd8)→C

B 4 CΛ(#xx:3 of @ERd24)→C

B 4 CΛ(#xx:3 of @aa:8)→C

B 2 CΛ¬ (/#xx:3 of Rd8)→C

B 4 CΛ¬ (/#xx:3 of @ERd24)→C

B 4 CΛ¬ (/#xx:3 of @aa:8)→C

B 2 C V (#xx:3 of Rd8)→C

B 4 C V (#xx:3 of @ERd24)→C

B 4 C V (#xx:3 of @aa:8)→C

B 2 C V ~(#xx:3 of Rd8)→C

B 4 C V ~(#xx:3 of @ERd24)→C

B 4 C V ~(#xx:3 of @aa:8)→C

B 2 C ⊕ (#xx:3 of Rd8)→C

B 4 C ⊕ (#xx:3 of @ERd24)→C

B 4 C ⊕ (#xx:3 of @aa:8)→C

B 2 C ⊕ ~(#xx:3 of Rd8)→C

B 4 C ⊕ ~(#xx:3 of @ERd24)→C

B 4 C ⊕ ~(#xx:3 of @aa:8)→C

196

(6) Branch Instructions

Addressing Mode and Instruction Length (bytes) Condition Code No. of States

Branch Ad-
Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@–ERn @aa @(d,PC) @@aa — Operation condition I H N Z V C Normal vanced

Bcc BRA d:8(BTd:8) — 2 if condition is true then Always — — — — — — 4

BRA d:16(BTd:16) — 4 PC←PC+d — — — — — — 6

BRN d:8(BFd:8) — 2 else next; Never — — — — — — 4

BRN d:16(BFd:16) — 4 — — — — — — 6

BHI d:8 — 2 C V Z = 0 — — — — — — 4

BHI d:16 — 4 — — — — — — 6

BLS d:8 — 2 C V Z = 1 — — — — — — 4

BLS d:16 — 4 — — — — — — 6

— — — — — — 4

— — — — — — 6

— — — — — — 4

— — — — — — 6

— — — — — — 4

— — — — — — 6

— — — — — — 4

— — — — — — 6

— — — — — — 4

— — — — — — 6

— — — — — — 4

— — — — — — 6

— — — — — — 4

— — — — — — 6

— — — — — — 4

— — — — — — 6

 = 0 — — — — — — 4

— — — — — — 6

 = 1 — — — — — — 4

— — — — — — 6

 ⊕ V) = 0 — — — — — — 4

— — — — — — 6

 ⊕ V) = 1 — — — — — — 4

— — — — — — 6

— — — — — — 4

— — — — — — 6

— — — — — — 8 10

4

6

4

6

4

6

4

6

4

6

4

6

4

6

4

6

4

6

4

6

4

6

4

6

4

6

4

6

4

6

4

6

4

6

BCC d:8(BHS d:8) — 2 C = 0

BCC d:16(BHS d:16) — 4

BCS d:8(BLO d:8) — 2 C = 1

BCS d:16(BLO d:16) — 4

BNE d:8 — 2 Z = 0

BNE d:16 — 4

BEQ d:8 — 2 Z = 1

BEQ d:16 — 4

BVC d:8 — 2 V = 0

BVC d:16 — 4

BVS d:8 — 2 V = 1

BVS d:16 — 4

BPL d:8 — 2 N = 0

BPL d:16 — 4

BMI d:8 — 2 N = 1

BMI d:16 — 4

BGE d:8 — 2 N ⊕ V

BGE d:16 — 4

BLT d:8 — 2 N ⊕ V

BLT d:16 — 4

BGT d:8 — 2 Z V (N

BGT d:16 — 4

BLE d:8 — 2 Z V (N

BLE d:16 — 4

JMP JMP @ERn — 2 PC←ERn

JMP @aa:24 — 4 PC←aa:24

JMP @@aa:8 — 2 PC←@aa:8

197

Table 2-2 Instruction Set (cont)

(6) Branch Instructions

Addressing Mode and Instruction Length (bytes) Condition Code No. of States

Branch Ad-
Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@–ERn @aa @(d,PC) @@aa — Operation condition I H N Z V C Normal vanced

BSR BSR d:8 — 2 PC→@-SP,PC←PC+d:8 — — — — — — 6 8

BSR d:16 — 4 PC→@-SP,PC←PC+d:16 — — — — — — 8 10

JSR JSR @ERn — 2 PC→@-SP,PC←ERn — — — — — — 6 8

JSR @aa:24 — 4 PC→@-SP,PC←aa:24 — — — — — — 8 10

JSR @@aa:8 — 2 PC→@-SP,PC←@aa:8 — — — — — — 8 12

RTS RTS — 2 PC←@SP+ — — — — — — 8 10

(7

Condition Code No. of States

Ad-
M I H N Z V C Normal vanced

T 1 — — — — — 14 14

R ↕ ↕ ↕ ↕ ↕ ↕ 10 10

S — — — — — — 2 2

LD ↕ ↕ ↕ ↕ ↕ ↕ 2 2

↕ ↕ ↕ ↕ ↕ ↕ 2 2

↕ ↕ ↕ ↕ ↕ ↕ 6 6

↕ ↕ ↕ ↕ ↕ ↕ 8 8

↕ ↕ ↕ ↕ ↕ ↕ 12 12

↕ ↕ ↕ ↕ ↕ ↕ 8 8

↕ ↕ ↕ ↕ ↕ ↕ 8 8

↕ ↕ ↕ ↕ ↕ ↕ 10 10

S — — — — — — 2 2

— — — — — — 6 6

— — — — — — 8 8

— — — — — — 12 12

— — — — — — 8 8

— — — — — — 8 8

— — — — — — 10 10

A ↕ ↕ ↕ ↕ ↕ ↕ 2 2

O ↕ ↕ ↕ ↕ ↕ ↕ 2 2

X ↕ ↕ ↕ ↕ ↕ ↕ 2 2

N — ↕ — — — — 2 2
) System Control Instructions

Addressing Mode and Instruction Length (bytes)

nemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@–ERn @aa @(d,PC) @@aa — Operation

RAPA TRAPA #x:2 — 2 PC→ @–SP, CCR→@–SP,
<vector> → PC

TE RTE — CCR←@SP+,PC←@SP+

LEEP SLEEP — Transition to power-down state

C LDC #xx:8,CCR B 2 #xx:8→CCR

LDC Rs,CCR B 2 Rs8→CCR

LDC @ERs,CCR W 4 @ERs→CCR

LDC @(d:16,ERs),CCR W 6 @(d:16,ERs)→CCR

LDC @(d:16,ERs),CCR W 10 @(d:24,ERs)→CCR

LDC @ERs+,CCR W 4 @ERs→CCR,ERs32+2→ERs32

LDC @aa:16,CCR W 6 @aa:16→CCR

LDC @aa:24,CCR W 8 @aa:24→CCR

TC STC CCR,Rd B 2 CCR→Rd8

STC CCR,@ERd W 4 CCR→@ERd

STC CCR,@(d:16,ERs) W 6 CCR→@(d:16,ERs24)

STC CCR,@(d:24,ERs) W 10 CCR→@(d:24,ERs24)

STC CCR,@–ERs W 4 ERd32-2→ERd24,CCR→@ERd24

STC CCR,@aa:16 W 6 CCR→@aa:16

STC CCR,@aa:24 W 8 CCR→@aa:24

NDC ANDC #xx:8,CCR B 2 CCR Λ#xx:8→CCR

RC ORC #xx:8,CCR B 2 CCR V#xx:8→CCR

ORC XORC #xx:8,CCR B 2 CCR⊕ #xx:8→CCR

OP NOP — 2 PC←PC+2

198

Table 2-2 Instruction Set (cont)

(8) Block Transfer Instructions

Addressing Mode and Instruction Length (bytes) Condition Code No. of States

Ad-
Mnemonic Size #xx Rn @ERn @(d,ERn) @ERn+/@–ERn @aa @(d,PC) @@aa — Operation I H N Z V C Normal vanced

EEPMOV EEPMOV.B — 4 if R4L ≠ 0 — — — — — — 8+4n*2 8+4n*2

Repeat @R5→@R6
R5+1→R5
R6+1→R6
R4L–1→R4L

Until R4L = 0
else next;

EEPMOV.W — 4 if R4 ≠ 0 — — — — — — 8+4n*2 8+4n*2

Notes: *1 The num its operands are located in
on-chip m

*2 n is the v

1 Set to 1 w
2 Set to 1 w
3 Retains it
4 Set to 1 w
5 The numb ation with the E clock is

variable.
6 Set to 1 w
7 Set to 1 w
8 Set to 1 w
Repeat @R5→@R6
R5+1→R5
R6+1→R6
R4L–1→R4L

Until R4 = 0
else next;

ber of states is the number of states required for execution when the instruction and
emory. For other cases see section 2.6, Number of States Required for Execution.

alue set in register R4L or R4.

hen a carry or borrow occurs at bit 11; otherwise cleared to 0.
hen a carry or borrow occurs at bit 27; otherwise cleared to 0.

s previous value when the result is zero; otherwise cleared to 0.
hen the adjustment produces a carry; otherwise retains its previous value.
er of states required for execution of an instruction that transfers data in synchroniz

hen the divisor is negative; otherwise cleared to 0.
hen the divisor is zero; otherwise cleared to 0.
hen the quotient is negative; otherwise cleared to 0.

199

2.4 Instruction Codes

Table 2-3 Instruction Codes

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

ADD ADD.B #xx:8,Rd B 8 rd IMM

ADD.B Rs,Rd B 0 8 rs rd

ADD.W #xx:16,Rd W 7 9 1 rd IMM

ADD.W Rs,Rd W 0 9 rs rd

ADD.L #xx:32,ERd L 7 A 1 0 erd IMM

ADD

ADD

AND

AND

BAN

Bcc

Instruction Mnemonic Size
200

ADD.L ERs,ERd L 0 A 1 ers 0 erd

S ADDS #1,ERd L 0 B 0 0 erd

ADDS #2,ERd L 0 B 8 0 erd

ADDS #4,ERd L 0 B 9 0 erd

X ADDX #xx:8,Rd B 9 rd IMM

ADDX Rs,Rd B 0 E rs rd

AND.B #xx:8,Rd B E rd IMM

AND.B Rs,Rd B 1 6 rs rd

AND.W #xx:16,Rd W 7 9 6 rd IMM

AND.W Rs,Rd W 6 6 rs rd

AND.L #xx:32,ERd L 7 A 6 0 erd IMM

AND.L ERs,ERd L 0 1 F 0 6 6 0 ers 0 erd

C ANDC #xx:8,CCR B 0 6 IMM

D BAND #xx:3,Rd B 7 6 0 IMM rd

BAND #xx:3,@ERd B 7 C 0 erd 0 7 6 0 IMM 0

BAND #xx:3,@aa:8 B 7 E abs 7 6 0 IMM 0

BRA d:8 (BT d:8) — 4 0 disp

BRA d:16 (BT d:16) — 5 8 0 0 disp

BRN d:8 (BF d:8) — 4 1 disp

BRN d:16 (BF d:16) — 5 8 1 0 disp

BHI d:8 — 4 2 disp

BHI d:16 — 5 8 2 0 disp

BLS d:8 — 4 3 disp

BLS d:16 — 5 8 3 0 disp

BCC d:8 (BHS d:8) — 4 4 disp

BCC d:16 (BHS d:16) — 5 8 4 0 disp

BCS d:8 (BLO d:8) — 4 5 disp

Table 2-3 Instruction Codes (cont)

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

Bcc BCS d:16 (BLO d:16) — 5 8 5 0 disp

BNE d:8 — 4 6 disp

BNE d:16 — 5 8 6 0 disp

BEQ d:8 — 4 7 disp

BEQ d:16 — 5 8 7 0 disp

BVC d:8 — 4 8 disp

BVC d:16 — 5 8 8 0 disp

BVS d:8 — 4 9 disp

BCLR

BIAND

BILD

Instruction Mnemonic Size
201

BVS d:16 — 5 8 9 0 disp

BPL d:8 — 4 A disp

BPL d:16 — 5 8 A 0 disp

BMI d:8 — 4 B disp

BMI d:16 — 5 8 B 0 disp

BGE d:8 — 4 C disp

BGE d:16 — 5 8 C 0 disp

BLT d:8 — 4 D disp

BLT d:16 — 5 8 D 0 disp

BGT d:8 — 4 E disp

BGT d:16 — 5 8 E 0 disp

BLE d:8 — 4 F disp

BLE d:16 — 5 8 F 0 disp

BCLR #xx:3,Rd B 7 2 0 IMM rd

BCLR #xx:3,@ERd B 7 D 0 erd 0 7 2 0 IMM 0

BCLR #xx:3,@aa:8 B 7 F abs 7 2 0 IMM 0

BCLR Rn,Rd B 6 2 rn rd

BCLR Rn,@ERd B 7 D 0 erd 0 6 2 rn 0

BCLR Rn,@aa:8 B 7 F abs 6 2 rn 0

BIAND #xx:3,Rd B 7 6 1 IMM rd

BIAND #xx:3,@ERd B 7 C 0 erd 0 7 6 1 IMM 0

BIAND #xx:3,@aa:8 B 7 E abs 7 6 1 IMM 0

BILD #xx:3,Rd B 7 7 1 IMM rd

BILD #xx:3,@ERd B 7 C 0 erd 0 7 7 1 IMM 0

BILD #xx:3,@aa:8 B 7 E abs 7 7 1 IMM 0

Table 2-3 Instruction Codes (cont)

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

BIOR BIOR #xx:3,Rd B 7 4 1 IMM rd

BIOR #xx:3,@ERd B 7 C 0 erd 0 7 4 1 IMM 0

BIOR #xx:3,@aa:8 B 7 E abs 7 4 1 IMM 0

BIST BIST #xx:3,Rd B 6 7 1 IMM rd

BIST #xx:3,@ERd B 7 D 0 erd 0 6 7 1 IMM 0

BIST #xx:3,@aa:8 B 7 F abs 6 7 1 IMM 0

BIXOR BIXOR #xx:3,Rd B 7 5 1 IMM rd

BIXOR #xx:3,@ERd B 7 C 0 erd 0 7 5 1 IMM 0

BLD

BNOT

BOR

BSET

BSR

BST

Instruction Mnemonic Size
202

BIXOR #xx:3,@aa:8 B 7 E abs 7 5 1 IMM 0

BLD #xx:3,Rd B 7 7 0 IMM rd

BLD #xx:3,@ERd B 7 C 0 erd 0 7 7 0 IMM 0

BLD #xx:3,@aa:8 B 7 E abs 7 7 0 IMM 0

BNOT #xx:3,Rd B 7 1 0 IMM rd

BNOT #xx:3,@ERd B 7 D 0 erd 0 7 1 0 IMM 0

BNOT #xx:3,@aa:8 B 7 F abs 7 1 0 IMM 0

BNOT Rn,Rd B 6 1 rn rd

BNOT Rn,@ERd B 7 D 0 erd 0 6 1 rn 0

BNOT Rn,@aa:8 B 7 F abs 6 1 rn 0

BOR #xx:3,Rd B 7 4 0 IMM rd

BOR #xx:3,@ERd B 7 C 0 erd 0 7 4 0 IMM 0

BOR #xx:3,@aa:8 B 7 E abs 7 4 0 IMM 0

BSET #xx:3,Rd B 7 0 0 IMM rd

BSET #xx:3,@ERd B 7 D 0 erd 0 7 0 0 IMM 0

BSET #xx:3,@aa:8 B 7 F abs 7 0 0 IMM 0

BSET Rn,Rd B 6 0 rn rd

BSET Rn,@ERd B 7 D 0 erd 0 6 0 rn 0

BSET Rn,@aa:8 B 7 F abs 6 0 rn 0

BSR d:8 — 5 5 disp

BSR d:16 — 5 C 0 0 disp

BST #xx:3,Rd B 6 7 0 IMM rd

BST #xx:3,@ERd B 7 D 0 erd 0 6 7 0 IMM 0

BST #xx:3,@aa:8 B 7 F abs 6 7 0 IMM 0

Table 2-3 Instruction Codes (cont)

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

BTST BTST #xx:3,Rd B 7 3 0 IMM rd

BTST #xx:3,@ERd B 7 C 0 erd 0 7 3 0 IMM 0

BTST #xx:3,@aa:8 B 7 E abs 7 3 0 IMM 0

BTST Rn,Rd B 6 3 rn rd

BTST Rn,@ERd B 7 C 0 erd 0 6 3 rn 0

BTST Rn,@aa:8 B 7 E abs 6 3 rn 0

BXOR BXOR #xx:3,Rd B 7 5 0 IMM rd

BXOR #xx:3,@ERd B 7 C 0 erd 0 7 5 0 IMM 0

CM

DA

DA

DE

DI

DI

EE

EX

EX

IN

Instruction Mnemonic Size
203

BXOR #xx:3,@aa:8 B 7 E abs 7 5 0 IMM 0

P CMP.B #xx:8,Rd B A rd IMM

CMP.B Rs,Rd B 1 C rs rd

CMP.W #xx:16,Rd W 7 9 2 rd IMM

CMP.W Rs,Rd W 1 D rs rd

CMP.L #xx:32,ERd L 7 A 2 0 erd IMM

CMP.L ERs,ERd L 1 F 1 ers 0 erd

A DAA Rd B 0 F 0 rd

S DAS Rd B 1 F 0 rd

C DEC.B Rd B 1 A 0 rd

DEC.W #1,Rd W 1 B 5 rd

DEC.W #2,Rd W 1 B D rd

DEC.L #1,ERd L 1 B 7 0 erd

DEC.L #2,ERd L 1 B F 0 erd

VXS DIVXS.B Rs,Rd B 0 1 D 0 5 1 rs rd

DIVXS.W Rs,ERd W 0 1 D 0 5 3 rs 0 erd

VXU DIVXU.B Rs,Rd B 5 1 rs rd

DIVXU.W Rs,ERd W 5 3 rs 0 erd

PMOV EEPMOV.B — 7 B 5 C 5 9 8 F

EEPMOV.W — 7 B D 4 5 9 8 F

TS EXTS.W Rd W 1 7 D rd

EXTS.L ERd L 1 7 F 0 erd

TU EXTU.W Rd W 1 7 5 rd

EXTU.L ERd L 1 7 7 0 erd

C INC.B Rd B 0 A 0 rd

INC.W #1,Rd W 0 B 5 rd

INC.W #2,Rd W 0 B D rd

Table 2-3 Instruction Codes (cont)

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

INC INC.L #1,ERd L 0 B 7 0 erd

INC.L #2,ERd L 0 B F 0 erd

JMP JMP @ERn — 5 9 0 ern 0

JMP @aa:24 — 5 A abs

JMP @@aa:8 — 5 B abs

JSR JSR @ERn — 5 D 0 ern 0

JSR @aa:24 — 5 E abs

JSR @@aa:8 — 5 F abs

L

 0 disp

M

Instruction Mnemonic Size
204

DC LDC #xx:8,CCR B 0 7 IMM

LDC Rs,CCR B 0 3 0 rs

LDC @ERs,CCR W 0 1 4 0 6 9 0 ers 0

LDC @(d:16,ERs),CCR W 0 1 4 0 6 F 0 ers 0 disp

LDC @(d:24,ERs),CCR W 0 1 4 0 7 8 0 ers 0 6 B 2 0 0

LDC @ERs+,CCR W 0 1 4 0 6 D 0 ers 0

LDC @aa:16,CCR W 0 1 4 0 6 B 0 0 abs

LDC @aa:24,CCR W 0 1 4 0 6 B 2 0 0 0 abs

OV MOV.B #xx:8,Rd B F rd IMM

MOV.B Rs,Rd B 0 C rs rd

MOV.B @ERs,Rd B 6 8 0 ers rd

MOV.B @(d:16,ERs),Rd B 6 E 0 ers rd disp

MOV.B @(d:24,ERs),Rd B 7 8 0 ers 0 6 A 2 rd 0 0 disp

MOV.B @ERs+,Rd B 6 C 0 ers rd

MOV.B @aa:8,Rd B 2 rd abs

MOV.B @aa:16,Rd B 6 A 0 rd abs

MOV.B @aa:24,Rd B 6 A 2 rd 0 0 abs

MOV.B Rs,@ERd B 6 8 1 erd rs

MOV.B Rs,@(d:16,ERd) B 6 E 1 erd rs disp

MOV.B Rs,@(d:24,ERd) B 7 8 0 erd 0 6 A A rs 0 0 disp

MOV.B Rs,@–ERd B 6 C 1 erd rs

MOV.B Rs,@aa:8 B 3 rs abs

MOV.B Rs,@aa:16 B 6 A 8 rs abs

MOV.B Rs,@aa:24 B 6 A A rs 0 0 abs

MOV.W #xx:16,Rd W 7 9 0 rd IMM

MOV.W Rs,Rd W 0 D rs rd

MOV.W @ERs,Rd W 6 9 0 ers rd

Table 2-3 Instruction Codes (cont)

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

MOV MOV.W @(d:16,ERs),Rd W 6 F 0 ers rd disp

MOV.W @(d:24,ERs),Rd W 7 8 0 ers 0 6 B 2 rd 0 0 disp

MOV.W @ERs+,Rd W 6 D 0 ers rd

MOV.W @aa:16,Rd W 6 B 0 rd abs

MOV.W @aa:24,Rd W 6 B 2 rd 0 0 abs

MOV.W Rs,@ERd W 6 9 1 erd rs

MOV.W Rs,@(d:16,ERd) W 6 F 1 erd rs disp

MOV.W Rs,@(d:24,ERd) W 7 8 1 erd 0 6 B A rs 0 0 disp

0 disp

0 disp

M

M

M

M

N

N

Instruction Mnemonic Size
205

MOV.W Rs,@–ERd W 6 D 1 erd rs

MOV.W Rs,@aa:16 W 6 B 8 rs abs

MOV.W Rs,@aa:24 W 6 B A rs 0 0 abs

MOV.L #xx:32,Rd L 7 A 0 0 erd IMM

MOV.L ERs,ERd L 0 F 1 ers 0 erd

MOV.L @ERs,ERd L 0 1 0 0 6 9 0 ers 0 erd

MOV.L @(d:16,ERs),ERd L 0 1 0 0 6 F 0 ers 0 erd disp

MOV.L @(d:24,ERs),ERd L 0 1 0 0 7 8 0 ers 0 6 B 2 0 erd 0

MOV.L @ERs+,ERd L 0 1 0 0 6 D 0 ers 0 erd

MOV.L @aa:16,ERd L 0 1 0 0 6 B 0 0 erd abs

MOV.L @aa:24,ERd L 0 1 0 0 6 B 2 0 erd 0 0 abs

MOV.L ERs,@ERd L 0 1 0 0 6 9 1 erd 0 ers

MOV.L ERs,@(d:16,ERd) L 0 1 0 0 6 F 1 erd 0 ers disp

MOV.L ERs,@(d:24,ERd) L 0 1 0 0 7 8 0 erd 0 6 B A 0 ers 0

MOV.L ERs,@–ERd L 0 1 0 0 6 D 1 erd 0 ers

MOV.L ERs,@aa:16 L 0 1 0 0 6 B 8 0 ers abs

MOV.L ERs,@aa:24 L 0 1 0 0 6 B A 0 ers 0 0 abs

OVFPE MOVFPE @aa:16,Rd B 6 A 4 rd abs

OVTPE MOVTPE Rs,@aa:16 B 6 A C rs abs

ULXS MULXS.B Rs,Rd B 0 1 C 0 5 0 rs rd

MULXS.W Rs,ERd W 0 1 C 0 5 2 rs 0 erd

ULXU MULXU.B Rs,Rd B 5 0 rs rd

MULXU.W Rs,ERd W 5 2 rs 0 erd

EG NEG.B Rd B 1 7 8 rd

NEG.W Rd W 1 7 9 rd

NEG.L ERd L 1 7 B 0 erd

OP NOP — 0 0 0 0

Table 2-3 Instruction Codes (cont)

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

NOT NOT.B Rd B 1 7 0 rd

NOT.W Rd W 1 7 1 rd

NOT.L ERd L 1 7 3 0 erd

OR OR.B #xx:8,Rd B C rd IMM

OR.B Rs,Rd B 1 4 rs rd

OR.W #xx:16,Rd W 7 9 4 rd IMM

OR.W Rs,Rd W 6 4 rs rd

OR.L #xx:32,ERd L 7 A 4 0 erd IMM

ORC

POP

PUSH

ROTL

ROTR

ROTX

ROTX

RTE

RTS

SHAL

SHAR

Instruction Mnemonic Size
206

OR.L ERs,ERd L 0 1 F 0 6 4 0 ers 0 ers

ORC #xx:8,CCR B 0 4 IMM

POP.W Rn W 6 D 7 rn

POP.L ERn L 0 1 0 0 6 D 7 0 ern

PUSH.W Rn W 6 D F rn

PUSH.L ERn L 0 1 0 0 6 D F 0 ern

ROTL.B Rd B 1 2 8 rd

ROTL.W Rd W 1 2 9 rd

ROTL.L ERd L 1 2 B 0 erd

ROTR.B Rd B 1 3 8 rd

ROTR.W Rd W 1 3 9 rd

ROTR.L ERd L 1 3 B 0 erd

L ROTXL.B Rd B 1 2 0 rd

ROTXL.W Rd W 1 2 1 rd

ROTXL.L ERd L 1 2 3 0 erd

R ROTXR.B Rd B 1 3 0 rd

ROTXR.W Rd W 1 3 1 rd

ROTXR.L ERd L 1 3 3 0 erd

RTE — 5 6 7 0

RTS — 5 4 7 0

SHAL.B Rd B 1 0 8 rd

SHAL.W Rd W 1 0 9 rd

SHAL.L ERd L 1 0 B 0 erd

SHAR.B Rd B 1 1 8 rd

SHAR.W Rd W 1 1 9 rd

SHAR.L ERd L 1 1 B 0 erd

Table 2-3 Instruction Codes (cont)

Instruction Format

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

SHLL SHLL.B Rd B 1 0 0 rd

SHLL.W Rd W 1 0 1 rd

SHLL.L ERd L 1 0 3 0 erd

SHLR SHLR.B Rd B 1 1 0 rd

SHLR.W Rd W 1 1 1 rd

SHLR.L ERd L 1 1 3 0 erd

SLEEP SLEEP — 0 1 8 0

STC STC CCR,Rd B 0 2 0 rd

 0 disp

abs

SUB

SUBS

SUBX

TRAPA

XOR

XORC

Instruction Mnemonic Size
207

STC CCR,@ERd W 0 1 4 0 6 9 1 erd 0

STC CCR,@(d:16,ERd) W 0 1 4 0 6 F 1 erd 0 disp

STC CCR,@(d:24,ERd) W 0 1 4 0 7 8 0 erd 0 6 B A 0 0

STC CCR,@–ERd W 0 1 4 0 6 D 1 erd 0

STC CCR,@aa:16 W 0 1 4 0 6 B 8 0 abs

STC CCR,@aa:24R W 0 1 4 0 6 B A 0 0 0

SUB.B Rs,Rd B 1 8 rs rd

SUB.W #xx:16,Rd W 7 9 3 rd IMM

SUB.W Rs,Rd W 1 9 rs rd

SUB.L #xx:32,ERd L 7 A 3 0 erd IMM

SUB.L ERs,ERd L 1 A 1 ers 0 erd

SUBS #1,ERd L 1 B 0 0 erd

SUBS #2,ERd L 1 B 8 0 erd

SUBS #4,ERd L 1 B 9 0 erd

SUBX #xx:8,Rd B B rd IMM

SUBX Rs,Rd B 1 E rs rd

TRAPA #x:2 — 5 7 00 IMM 0

XOR.B #xx:8,Rd B D rd IMM

XOR.B Rs,Rd B 1 5 rs rd

XOR.W #xx:16,Rd W 7 9 5 rd IMM

XOR.W Rs,Rd W 6 5 rs rd

XOR.L #xx:32,ERd L 7 A 4 0 erd IMM

XOR.L ERs,ERd L 0 1 F 0 6 5 0 ers 0 erd

XORC #xx:8,CCR B 0 5 IMM

Legend

IMM: Immediate data (2, 3, 8, 16, or 32 bits)

abs: Absolute address (8, 16, or 24 bits)

disp: Displacement (8, 16, or 24 bits)

rs, rd, rn: Register field (4 bits specifying an 8-bit or 16-bit register. rs corresponds to operand
symbols such as Rs, rd corresponds to operand symbols such as Rd, and rn
corresponds to the operand symbol Rn.)

ers, erd, ern: Register field (3 bits specifying a 32-bit register. ers corresponds to operand
symbols such as ERs, erd corresponds to operand symbols such as ERd, and ern
corresponds to the operand symbol ERn.)

The register fields specify general registers as follows.

Address Register
32-bit Register 16-bit Register 8-bit Register

Register General Register General Register General
Field Register Field Register Field Register

000 ER0 0000 R0 0000 R0H
001 ER1 0001 R1 0001 R1H

111 ER7 0111 R7 0111 R7H
1000 E0 1000 R0L
1001 E1 1001 R1L

1111 E7 1111 R7L
208

2.5 Operation Code Map

Tables 2-4 to 2-6 show an operation code map.

Table 2-4 Operation Code Map (1)

C

MOV

CMP

BGE

BSR

OV

D

BLT

E

ADDX

SUBX

BGT

JSR

F

Table 2-5

Table 2-5

BLE

Table 2-6

Operation Code:
1st byte 2nd byte

AH AL BH BL

Instruction when most significant bit of BH is 0.

Instruction when most significant bit of BH is 1.
209

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

NOP

Table 2-5

BRA

MULXU

BSET

1

Table 2-5

Table 2-5

BRN

DIVXU

BNOT

2

STC

Table 2-5

BHI

MULXU

BCLR

3

LDC

Table 2-5

BLS

DIVXU

BTST

4

ORG

OR.B

BCC

RTS

OR.W

5

XORG

XOR.B

BCS

BSR

XOR.W

6

ANDC

AND.B

BNE

RTE

AND.W

7

LDC

Table 2-5

BEQ

TRAPA

8

SUB.B

BVC

Table 2-5

MOV

9

SUB.W

BVS

Table 2-5

A

Table 2-5

Table 2-5

BPL

JMP

Table 2-5

B

Table 2-5

Table 2-5

BMI

EEPMOV

M

BOR
BIOR

BXOR
BIXOR

BAND
BIAND

BST
BIST

BLD
BILD

ADD

ADDX

CMP

SUBX

OR

XOR

AND

MOV

AH
AL

ADD

MOV.B

Table 2-5 Operation Code Map (2)

9

01

0A

0B

0F

10

11

12

13

17

1A

1B

1F

58

79

7A

Operation Code:
1st byte 2nd byte

AH AL BH BL

AH AL
BH 0

MOV

INC

ADDS

DAA

DEC

SUBS

DAS

BRA

MOV

MOV

1 2 3 4 5 6 7 8

SLEEP

A B C

Table 2-6

BGE

D

Table 2-6

INC

EXTS

DEC

BLT

E

BGT

F

Table 2-6

INC

EXTS

DEC

BLE

ADD

MOV

SUB

CMP

S

S

R

RO

N

LDC
STC
210

ADDS

BVSBRN

ADD

ADD

BHI

CMP

CMP

SHLL

SHLR

ROTXL

ROTXR

NOT

BLS

SUB

SUB

BCC

OR

OR

INC

EXTU

DEC

BCS

XOR

XOR

BNE

AND

AND

INC

EXTU

DEC

BEQ

ADDS

BVC BPL

SHAL

SHAR

ROTL

ROTR

NEG

BMI

HLL

HLR

OTXL

TXR

OT

SHAL

SHAR

ROTL

ROTR

NEG

SUB

Table 2-6 Operation Code Map (3)

Operation Code:
1st byte 2nd byte

AH AL BH BL

3rd byte 4th byte

CH CL DH DL

01C05

01D05

01F06

7Cr06*1

7Cr07

7Dr06

7Dr07

7Eaa6

7Eaa7

7Faa6

7Faa7

AHALBHBLCH
CL 0

MULXS

BSET

BSET

BSET

BSET

1

DIVXS

BNOT

BNOT

BNOT

BNOT

2

MULXS

3

DIVXS

4 5 6 7 8 9 A B C D E F

r is a register field.
aa is an absolute addr

Instruction when most significant bit of DH is 0.
Instruction when most significant bit of DH is 1.

Notes: 1.
2.

*1

*1

*1

*2

*2

*2

*2
211

BCLR

BCLR

BCLR

BCLR

BTST

BTST

BTST

BTST

OR XOR AND

BOR
BIOR

BXOR
BIXOR

BAND
BIAND

BID
BILD

BST
BIST

BOR
BIOR

BXOR
BIXOR

BAND
BIAND

BID
BILD

BST
BIST

ess field.

2.6 Number of States Required for Instruction Execution

The tables in this section can be used to calculate the number of states required for instruction
execution by the H8/300H CPU. Table 2-8 indicates the number of instruction fetch, data
read/write, and other cycles occurring in each instruction. Table 2-7 indicates the number of states
required for each size. The number of states required for execution of an instruction can be
calculated from these two tables as follows:

Execution states = I × SI + J × SJ + K × SK + L × SK + M × SM + N × SN

Examples: Advanced mode, stack located in external memory, on-chip supporting modules
accessed with 8-bit bus width, external devices accessed in three states with one wait state and 16-
bit bus width.

1. BSET #0, @FFFFC7:8

From table 2-8:

I = L = 2, J = K = M = N= 0

From table 2-7:

SI = 4, SL = 3

Number of states required for execution = 2 × 4 + 2 × 3 = 14

2. JSR @@30

From table 2-8:

I = J = K = 2, L = M = N = 0

From table 2-7:

SI = SJ = SK = 4

Number of states required for execution = 2 × 4 + 2 × 4 + 2 × 4 = 24
212

Table 2-7 Number of States per Cycle

Access Conditions

On-Chip Supporting
Module 8-Bit Bus 16-Bit Bus

On-Chip 8-Bit 16-Bit 2-State 3-State 2-State 3-State
Cycle Memory Bus Bus Access Access Access Access

Instruction fetch SI 2 6 3 4 6 + 2 m 2 3 + m*

Branch address read SJ

Stack operation SK

Byte data access SL 3 2 3 + m

Word data access SM 6 4 6 + 2 m

Internal operation SN 1 1 1 1 1 1 1

Note: * For the MOVFPE and MOVTPE instructions, refer to the relevant microcontroller hardware manual.

Legend

m: Number of wait states inserted into external device access

External Device
213

Table 2-8 Number of Cycles in Instruction Execution

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic I J K L M N

ADD ADD.B #xx:8,Rd 1

ADD.B Rs,Rd 1

ADD.W #xx:16,Rd 2

ADD.W Rs,Rd 1

ADD.L #xx:32,ERd 3

ADD.L ERs,ERd 1

ADDS ADDS #1/2/4,ERd 1

ADDX ADDX #xx:8,Rd 1

ADDX Rs,Rd 1

AND AND.B #xx:8,Rd 1

AND.B Rs,Rd 1

AND.W #xx:16,Rd 2

AND.W Rs,Rd 1

AND.L #xx:32,ERd 3

AND.L ERs,ERd 2

ANDC ANDC #xx:8,CCR 1

BAND BAND #xx:3,Rd 1

BAND #xx:3,@ERd 2 1

BAND #xx:3,@aa:8 2 1

Bcc BRA d:8 (BT d:8) 2

BRN d:8 (BF d:8) 2

BHI d:8 2

BLS d:8 2

BCC d:8 (BHS d:8) 2

BCS d:8 (BLO d:8) 2

BNE d:8 2

BEQ d:8 2

BVC d:8 2

BVS d:8 2

BPL d:8 2

BMI d:8 2

BGE d:8 2

BLT d:8 2

BGT d:8 2

BLE d:8 2

BRA d:16 (BT d:16) 2 2

BRN d:16 (BF d:16) 2 2

BHI d:16 2 2

BLS d:16 2 2

BCC d:16 (BHS d:16) 2 2
214

Table 2-8 Number of Cycles in Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic I J K L M N

Bcc BCS d:16 (BLO d:16) 2 2

BNE d:16 2 2

BEQ d:16 2 2

BVC d:16 2 2

BVS d:16 2 2

BPL d:16 2 2

BMI d:16 2 2

BGE d:16 2 2

BLT d:16 2 2

BGT d:16 2 2

BLE d:16 2 2

BCLR BCLR #xx:3,Rd 1

BCLR #xx:3,@ERd 2 2

BCLR #xx:3,@aa:8 2 2

BCLR Rn,Rd 1

BCLR Rn,@ERd 2 2

BCLR Rn,@aa:8 2 2

BIAND BIAND #xx:3,Rd 1

BIAND #xx:3,@ERd 2 1

BIAND #xx:3,@aa:8 2 1

BILD BILD #xx:3,Rd 1

BILD #xx:3,@ERd 2 1

BILD #xx:3,@aa:8 2 1

BIOR BIOR #xx:8,Rd 1

BIOR #xx:8,@ERd 2 1

BIOR #xx:8,@aa:8 2 1

BIST BIST #xx:3,Rd 1

BIST #xx:3,@ERd 2 2

BIST #xx:3,@aa:8 2 2

BIXOR BIXOR #xx:3,Rd 1

BIXOR #xx:3,@ERd 2 1

BIXOR #xx:3,@aa:8 2 1

BLD BLD #xx:3,Rd 1

BLD #xx:3,@ERd 2 1

BLD #xx:3,@aa:8 2 1

BNOT BNOT #xx:3,Rd 1

BNOT #xx:3,@ERd 2 2

BNOT #xx:3,@aa:8 2 2

BNOT Rn,Rd 1

BNOT Rn,@ERd 2 2
215

Table 2-8 Number of Cycles in Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic I J K L M N

BNOT BNOT Rn,@aa:8 2 2

BOR BOR #xx:3,Rd 1

BOR #xx:3,@ERd 2 1

BOR #xx:3,@aa:8 2 1

BSET BSET #xx:3,Rd 1

BSET #xx:3,@ERd 2 2

BSET #xx:3,@aa:8 2 2

BSET Rn,Rd 1

BSET Rn,@ERd 2 2

BSET Rn,@aa:8 2 2

BSR BSR d:8 Advanced 2 2

Normal 2 1

BSR d:16 Advanced 2 2 2

Normal 2 1 2

BST BST #xx:3,Rd 1

BST #xx:3,@ERd 2 2

BST #xx:3,@aa:8 2 2

BTST BTST #xx:3,Rd 1

BTST #xx:3,@ERd 2 1

BTST #xx:3,@aa:8 2 1

BTST Rn,Rd 1

BTST Rn,@ERd 2 1

BTST Rn,@aa:8 2 1

BXOR BXOR #xx:3,Rd 1

BXOR #xx:3,@ERd 2 1

BXOR #xx:3,@aa:8 2 1

CMP CMP.B #xx:8,Rd 1

CMP.B Rs,Rd 1

CMP.W #xx:16,Rd 2

CMP.W Rs,Rd 1

CMP.L #xx:32,ERd 3

CMP.L ERs,ERd 1

DAA DAA Rd 1

DAS DAS Rd 1

DEC DEC.B Rd 1

DEC.W #1/2,Rd 1

DEC.L #1/2,ERd 1

DIVXS DIVXS.B Rs,Rd 2 12

DIVXS.W Rs,ERd 2 20
216

Table 2-8 Number of Cycles in Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic I J K L M N

DIVXU DIVXU.B Rs,Rd 1 12

DIVXU.W Rs,ERd 1 20

EEPMOV EEPMOV.B 2 2n + 2 *1

EEPMOV.W 2 2n + 2 *1

EXTS EXTS.W Rd 1

EXTS.L ERd 1

EXTU EXTU.W Rd 1

EXTU.L ERd 1

INC INC.B Rd 1

INC.W #1/2,Rd 1

INC.L #1/2,ERd 1

JMP JMP @ERn 2

JMP @aa:24 2 2

JMP @@aa:8 Advanced 2 2 2

Normal 2 1 2

JSR JSR @ERn Advanced 2 2

Normal 2 1

JSR @aa:24 Advanced 2 2 2

Normal 2 1 2

JSR @@aa:8 Advanced 2 2 2

Normal 2 1 1

LDC LDC #xx:8,CCR 1

LDC Rs,CCR 1

LDC @ERs,CCR 2 1

LDC @(d:16,ERs),CCR 3 1

LDC @(d:24,ERs),CCR 5 1

LDC @ERs+,CCR 2 1 2

LDC @aa:16,CCR 3 1

LDC @aa:24,CCR 4 1

MOV MOV.B #xx:8,Rd 1

MOV.B Rs,Rd 1

MOV.B @ERs,Rd 1 1

MOV.B @(d:16,ERs),Rd 2 1

MOV.B @(d:24,ERs),Rd 4 1

MOV.B @ERs+,Rd 1 1 2

MOV.B @aa:8,Rd 1 1

MOV.B @aa:16,Rd 2 1

MOV.B @aa:24,Rd 3 1

MOV.B Rs,@ERd 1 1

MOV.B Rs,@(d:16,ERd) 2 1
217

Table 2-8 Number of Cycles in Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic I J K L M N

MOV MOV.B Rs,@(d:24,ERd) 4 1

MOV.B Rs,@–ERd 1 1 2

MOV.B Rs,@aa:8 1 1

MOV.B Rs,@aa:16 2 1

MOV.B Rs,@aa:24 3 1

MOV.W #xx:16,Rd 2

MOV.W Rs,Rd 1

MOV.W @ERs,Rd 1 1

MOV.W @(d:16,ERs),Rd 2 1

MOV.W @(d:24,ERs),Rd 4 1

MOV.W @ERs+,Rd 1 1 2

MOV.W @aa:16,Rd 2 1

MOV.W @aa:24,Rd 3 1

MOV.W Rs,@ERd 1 1

MOV.W Rs,@(d:16,ERd) 2 1

MOV.W Rs,@(d:24,ERd) 4 1

MOV.W Rs,@–ERd 1 1 2

MOV.W Rs,@aa:16 2 1

MOV.W Rs,@aa:24 3 1

MOV.L #xx:32,ERd 3

MOV.L ERs,ERd 1

MOV.L @ERs,ERd 2 2

MOV.L @(d:16,ERs),ERd 3 2

MOV.L @(d:24,ERs),ERd 5 2

MOV.L @ERs+,ERd 2 2 2

MOV.L @aa:16,ERd 3 2

MOV.L @aa:24,ERd 4 2

MOV.L ERs,@ERd 2 2

MOV.L ERs,@(d:16,ERd) 3 2

MOV.L ERs,@(d:24,ERd) 5 2

MOV.L ERs,@–ERd 2 2 2

MOV.L ERs,@aa:16 3 2

MOV.L ERs,@aa:24 4 2

MOVFPE MOVFPE @:aa:16,Rd 2 1 *2

MOVTPE MOVTPE Rs,@:aa:16 2 1 *2

MULXS MULXS.B Rs,Rd 2 12

MULXS.W Rs,ERd 2 20

MULXU MULXU.B Rs,Rd 1 12

MULXU.W Rs,ERd 1 20
218

Table 2-8 Number of Cycles in Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic I J K L M N

NEG NEG.B Rd 1

NEG.W Rd 1

NEG.L ERd 1

NOP NOP 1

NOT NOT.B Rd 1

NOT.W Rd 1

NOT.L ERd 1

OR OR.B #xx:8,Rd 1

OR.B Rs,Rd 1

OR.W #xx:16,Rd 2

OR.W Rs,Rd 1

OR.L #xx:32,ERd 3

OR.L ERs,ERd 2

ORC ORC #xx:8,CCR 1

POP POP.W Rn 1 1 2

POP.L ERn 2 2 2

PUSH PUSH.W Rn 1 1 2

PUSH.L ERn 1 2 2

ROTL ROTL.B Rd 1

ROTL.W Rd 1

ROTL.L ERd 1

ROTR ROTR.B Rd 1

ROTR.W Rd 1

ROTR.L ERd 1

ROTXL ROTXL.B Rd 1

ROTXL.W Rd 1

ROTXL.L ERd 1

ROTXR ROTXR.B Rd 1

ROTXR.W Rd 1

ROTXR.L ERd 1

RTE RTE 2 2 2

RTS RTS Advanced 2 2 2

Normal 2 1 2

SHAL SHAL.B Rd 1

SHAL.W Rd 1

SHAL.L ERd 1

SHAR SHAR.B Rd 1

SHAR.W Rd 1

SHAR.L ERd 1
219

Table 2-8 Number of Cycles in Instruction Execution (cont)

Branch
Instruction Address Stack Byte Data Word Data Internal
Fetch Read Operation Access Access Operation

Instruction Mnemonic I J K L M N

SHLL SHLL.B Rd 1

SHLL.W Rd 1

SHLL.L ERd 1

SHLR SHLR.B Rd 1

SHLR.W Rd 1

SHLR.L ERd 1

SLEEP SLEEP 1

STC STC CCR,Rd 1

STC CCR,@ERd 2 1

STC CCR,@(d:16,ERd) 3 1

STC CCR,@(d:24,ERd) 5 1

STC CCR,@–ERd 2 1 2

STC CCR,@aa:16 3 1

STC CCR,@aa:24 4 1

SUB SUB.B Rs,Rd 1

SUB.W #xx:16,Rd 2

SUB.W Rs,Rd 1

SUB.L #xx:32,ERd 3

SUB.L ERs,ERd 1

SUBS SUBS #1/2/4,ERd 1

SUBX SUBX #xx:8,Rd 1

SUBX Rs,Rd 1

TRAPA TRAPA #x:2 Advanced 2 2 2 4

Normal 2 1 2 4

XOR XOR.B #xx:8,Rd 1

XOR.B Rs,Rd 1

XOR.W #xx:16,Rd 2

XOR.W Rs,Rd 1

XOR.L #xx:32,ERd 3

XOR.L ERs,ERd 2

XORC XORC #xx:8,CCR 1
220

2.7 Condition Code Modification

This section indicates the effect of each CPU instruction on the condition code. The notation used
in the table is defined below.

m: 31 for longword operands, 15 for word operands, 7 for byte operands

Si: The i-th bit of the source operand

Di: The i-th bit of the destination operand

Ri: The i-th bit of the result

Dn: The specified bit in the destination operand

—: Not affected

↕: Modified according to the result of the instruction (see definition)

0: Always cleared to 0

1: Always set to 1

*: Undetermined (no guaranteed value)

Z': Z flag before instruction execution

C': C flag before instruction execution
221

Table 2-7 Condition Code Modification

Instruction H N Z V C Definition

ADD ↕ ↕ ↕ ↕ ↕ H = S m – 4 · D m – 4 + D m – 4 · / R m – 4 + S m – 4 · / R m – 4

N = R m

Z = / R m · / R m – 1 · ... · / R 0

V = S m · D m · / R m + / S m · / D m · R m

C = S m · D m + D m · / R m + S m · / R m

ADDS — — — — —

ADDX ↕ ↕ ↕ ↕ ↕ H = S m – 4 · D m – 4 + D m – 4 · / R m – 4 + S m – 4 · / R m – 4

N = R m

Z = Z ' · / R m · ... · / R 0

V = S m · D m · / R m + / S m · / D m · R m

C = S m · D m + D m · / R m + S m · / R m

AND — ↕ ↕ O — N = R m

Z = / R m · / R m – 1 · ... · / R 0

ANDC ↕ ↕ ↕ ↕ ↕ Stores the corresponding bits of the result

BAND — — — — ↕ C = C ' · D n

Bcc — — — — —

BCLR — — — — —

BIAND — — — — ↕ C = C ' · / D n

BILD — — — — ↕ C = / D n

BIOR — — — — ↕ C = C ' + / D n

BIST — — — — —

BIXOR — — — — ↕ C = C ' · / D n + / C ' · / D n

BLD — — — — ↕ C = D n

BNOT — — — — —

BOR — — — — ↕ C = C ' + D n

BSET — — — — —

BSR — — — — —

BST — — — — —

BTST — — ↕ — — Z = / D n

BXOR — — — — ↕ C = C ' · / D n + / C ' · D n

CMP ↕ ↕ ↕ ↕ ↕ H = S m – 4 · / D m – 4 + / D m – 4 · R m – 4 + S m – 4 · R m – 4

N = R m

Z = / R m · / R m – 1 · ... · / R 0

V = / S m · D m · / R m + S m · / D m · R m

C = S m · / D m + / D m · R m + S m · R m
222

Table 2-7 Condition Code Modification (cont)

Instruction H N Z V C Definition

DAA * ↕ ↕ * ↕ N = R m

Z = / R m · / R m – 1 · ... · / R 0

C: decimal arithmetic carry

DAS * ↕ ↕ * ↕ N = R m

Z = / R m · / R m – 1 · ... · / R 0

C: decimal arithmetic borrow

DEC — ↕ ↕ ↕ — N = R m

Z = / R m· / R m – 1 · ... · / R 0

V = D m · / R m

DIVXS — ↕ ↕ — — N = S m · / D m + / S m · D m

Z = / S m · / S m – 1 · ... · / S 0

DIVXU — ↕ ↕ — — N = S m

Z = / S m · / S m – 1 · ... · / S 0

EEPMOV — — — — —

EXTS — ↕ ↕ O — N = R m

Z = / R m · / R m – 1 · ... · / R 0

EXTU — O ↕ O — Z = / R m · / R m – 1 · ... · / R 0

INC — ↕ ↕ ↕ — N = R m

Z = / R m · / R m – 1 · ... · / R 0

V = D m · / R m

JMP — — — — —

JSR — — — — —

LDC ↕ ↕ ↕ ↕ ↕ Stores the corresponding bits of the result

MOV — ↕ ↕ O — N = R m

Z = / R m · / R m – 1 · ... · / R 0

MOVFPE — ↕ ↕ O — N = R m

Z = / R m · / R m – 1 · ... · / R 0

MOVTPE — ↕ ↕ O — N = R m

Z = / R m · / R m – 1 · ... · / R 0

MULXS — ↕ ↕ — — N = R 2 m

Z = R 2 m · R 2 m – 1 · ... · / R 0

MULXU — — — — —

NEG ↕ ↕ ↕ ↕ ↕ H = D m – 4 + R m – 4

N = R m

Z = / R m · / R m – 1 · ... · R 0

V = D m · R m

C = D m + R m
223

Table 2-7 Condition Code Modification (cont)

Instruction H N Z V C Definition

NOP — — — — —

NOT — ↕ ↕ O — N = R m

Z = / R m · / R m – 1 · ... · / R 0

OR — ↕ ↕ O — N = R m

Z = / R m · / R m – 1 · · / R 0

ORC ↕ ↕ ↕ ↕ ↕ Stores the corresponding bits of the result

POP — ↕ ↕ O — N = R m

Z = / R m · / R m – 1 · ... · / R 0

PUSH — ↕ ↕ O — N = R m

Z = / R m · / R m – 1 · ... · / R 0

ROTL — ↕ ↕ O ↕ N = R m

Z = / R m · / R m – 1 · ... · / R 0

C = D m

ROTR — ↕ ↕ O ↕ N = R m

Z = / R m · / R m – 1 · ... · / R 0

C = D 0

ROTXL — ↕ ↕ O ↕ N = R m

Z = / R m · / R m – 1 · ... · / R 0

C = D m

ROTXR — ↕ ↕ O ↕ N = R m

Z = / R m · / R m – 1 · ... · / R 0

C = D 0

RTS — — — — —

RTE ↕ ↕ ↕ ↕ ↕ Stores the corresponding bits of the result

SHAL — ↕ ↕ ↕ ↕ N = R m

Z = / R m · / R m – 1 · ... · / R 0

V = D m · / D m – 1 + / D m · D m – 1

C = D m

SHAR — ↕ ↕ O ↕ N = R m

Z = / R m · / R m – 1 · ... · / R 0

C = D 0

SHLL — ↕ ↕ O ↕ N = R m

Z = / R m · / R m – 1 · ... · / R 0

C = D m
224

Table 2-7 Condition Code Modification (cont)

Instruction H N Z V C Definition

SHLR — ↕ ↕ O ↕ N = R m

Z = / R m · / R m – 1 · ... · / R 0

C = D 0

SLEEP — — — — —

STC — — — — —

SUB ↕ ↕ ↕ ↕ ↕ H = S m – 4 · / D m – 4 + / D m – 4 · R m – 4 + S m – 4 · R m – 4

N = R m

Z = / R m · / R m – 1 · ... · / R 0

V = / S m · D m · / R m + S m · / D m · R m

C = S m · / D m + / D m · R m + S m · R m

SUBS — — — — —

SUBX ↕ ↕ ↕ ↕ ↕ H = S m – 4 · / D m – 4 + / D m – 4 · R m – 4 + S m – 4 · R m – 4

N = R m

Z = Z ' · / R m · ... · / R 0

V = / S m · D m · / R m + S m · / D m · R m

C = S m · / D m + / D m · R m + S m · R m

TRAPA — — — — —

XOR — ↕ ↕ O — N = R m

Z = / R m · / R m – 1 · ... · / R 0

XORC ↕ ↕ ↕ ↕ ↕ Stores the corresponding bits of the result
225

2.8 Bus Cycles During Instruction Execution

Table 2-8 indicates the bus cycles during instruction execution by the H8/300H CPU. For the
number of states per bus cycle, see table 2-7, Number of States per Cycle.

How to read the table:

Legend

R:B Byte-size read

R:W Word-size read

W:B Byte-size write

W:W Word-size write

2nd Address of 2nd word (3rd and 4th bytes)

3rd Address of 3rd word (5th and 6th bytes)

4th Address of 4th word (7th and 8th bytes)

5th Address of 5th word (9th and 10th bytes)

NEXT Address of next instruction

EA Effective address

VEC Vector address

Internal operation
(2 states)

Order of bus cycles

End of instruction

Read effective address (word-size read)

No read or write

Instruction 1 2 3 4 5 6 7 8

JMP @aa:24 R:W 2nd R:W EA

Read 2nd word of current instruction
(word-size read)
226

Figure 2-1 shows timing waveforms for the address bus and the RD and WR (HWR or LWR)
signals during execution of the above instruction with an 8-bit bus, using 3-state access with no
wait states.

Figure 2-1 Address Bus, RD, and WR (HWR or LWR) Timing
(8-bit bus, 3-state access, no wait states)

ø

Address bus

RD

WR
(HWR or LWR) High level

Internal
operation

Fetching
3rd byte

of instruction

Fetching
4th byte

of instruction

Fetching
1st byte of

jump address

Fetching
2nd byte of

jump address

R:W EAR:W 2nd
227

Table 2-8 Bus States

Instruction 1 2 3 4 5 6 7 8

ADD.B #xx:8,Rd R:W NEXT

ADD.B Rs,Rd R:W NEXT

ADD.W #xx:16,Rd R:W 2nd R:W NEXT

ADD.W Rs,Rd R:W NEXT

ADD.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT

ADD.L ERs,ERd R:W NEXT

ADDS #1/2/4,ERd R:W NEXT

ADDX #xx:8,Rd R:W NEXT

ADDX Rs,Rd R:W NEXT

AND.B #xx:8,R

AND.B Rs,Rd

AND.W #xx:16

AND.W Rs,Rd

AND.L #xx:32

AND.L ERs,E

ANDC #xx:8,C

BAND #xx:3,R

BAND #xx:3,@

BAND #xx:3,@

BRA d:8 (BT d

BRN d:8 (BF d

BHI d:8

BLS d:8

BCC d:8 (BHS

BCS d:8 (BLO

BNE d:8

BEQ d:8

BVC d:8

BVS d:8

BPL d:8

BMI d:8
228

d R:W NEXT

R:W NEXT

,Rd R:W 2nd R:W NEXT

R:W NEXT

,ERd R:W 2nd R:W 3rd R:W NEXT

Rd R:W 2nd R:W NEXT

CR R:W NEXT

d R:W NEXT

ERd R:W 2nd R:B EA R:W NEXT

aa:8 R:W 2nd R:B EA R:W NEXT

;8) R:W NEXT R:W EA

;8) R:W NEXT R:W EA

R:W NEXT R:W EA

R:W NEXT R:W EA

 d;8) R:W NEXT R:W EA

 d;8) R:W NEXT R:W EA

R:W NEXT R:W EA

R:W NEXT R:W EA

R:W NEXT R:W EA

R:W NEXT R:W EA

R:W NEXT R:W EA

R:W NEXT R:W EA

Table 2-8 Bus States (cont)

Instruction 1 2 3 4 5 6 7 8

BGE d:8 R:W NEXT R:W EA

BLT d:8 R:W NEXT R:W EA

BGT d:8 R:W NEXT R:W EA

BLE d:8 R:W NEXT R:W EA

BRA d:16 (BT d;16) R:W 2nd Internal operation, R:W EA
2 states

BRN d:16 (BF d;16) R:W 2nd Internal operation, R:W EA
2 states

BHI d:16 R:W 2nd Internal operation, R:W EA
229

2 states

BLS d:16 R:W 2nd Internal operation, R:W EA
2 states

BCC d:16 (BHS d;16) R:W 2nd Internal operation, R:W EA
2 states

BCS d:16 (BLO d;16) R:W 2nd Internal operation, R:W EA
2 states

BNE d:16 R:W 2nd Internal operation, R:W EA
2 states

BEQ d:16 R:W 2nd Internal operation, R:W EA
2 states

BVC d:16 R:W 2nd Internal operation, R:W EA
2 states

BVS d:16 R:W 2nd Internal operation, R:W EA
2 states

BPL d:16 R:W 2nd Internal operation, R:W EA
2 states

BMI d:16 R:W 2nd Internal operation, R:W EA
2 states

BGE d:16 R:W 2nd Internal operation, R:W EA
2 states

BLT d:16 R:W 2nd Internal operation, R:W EA
2 states

BGT d:16 R:W 2nd Internal operation, R:W EA
2 states

BLE d:16 R:W 2nd Internal operation, R:W EA
2 states

Table 2-8 Bus States (cont)

Instruction 1 2 3 4 5 6 7 8

BCLR #xx:3,Rd R:W NEXT

BCLR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA

BCLR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA

BCLR Rn,Rd R:W NEXT

BCLR Rn,@ERd R:W 2nd R:B EA R:W NEXT W:B EA

BCLR Rn,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA

BIAND #xx:3,Rd R:W NEXT

BIAND #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BIAND #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT
230

BILD #xx:3,Rd R:W NEXT

BILD #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BILD #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BIOR #xx:8,Rd R:W NEXT

BIOR #xx:8,@ERd R:W 2nd R:B EA R:W NEXT

BIOR #xx:8,@aa:8 R:W 2nd R:B EA R:W NEXT

BIST #xx:3,Rd R:W NEXT

BIST #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA

BIST #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA

BIXOR #xx:3,Rd R:W NEXT

BIXOR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BIXOR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BLD #xx:3,Rd R:W NEXT

BLD #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BLD #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BNOT #xx:3,Rd R:W NEXT

BNOT #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA

BNOT #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA

BNOT Rn,Rd R:W NEXT

BNOT Rn,@ERd R:W 2nd R:B EA R:W NEXT W:B EA

BNOT Rn,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA

BOR #xx:3,Rd R:W NEXT

BOR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BOR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BSET #xx:3,Rd R:W NEXT

BSET #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA

BSET #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA

Table 2-8 Bus States (cont)

Instruction 1 2 3 4 5 6 7 8

BSET Rn,Rd R:W NEXT

BSET Rn,@ERd R:W 2nd R:B EA R:W NEXT W:B EA

BSET Rn,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA

BRS d:8 Normal R:W NEXT R:W EA W:W Stack

Advanced R:W NEXT R:W EA W:W Stack (H) W:W Stack (L)

BRS d:16 Normal R:W 2nd R:W EA W:W Stack

Advanced R:W 2nd R:W EA W:W Stack (H) W:W Stack (L)

BST #xx:3,Rd R:W NEXT

BST #xx:3,@ERd R:W 2nd R:B EA R:W NEXT W:B EA

Internal operation, 2 states

Internal operation, 2 states
231

BST #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT W:B EA

BTST #xx:3,Rd R:W NEXT

BTST #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BTST #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

BTST Rn,Rd R:W NEXT

BTST Rn,@ERd R:W 2nd R:B EA R:W NEXT

BTST Rn,@aa:8 R:W 2nd R:B EA R:W NEXT

BXOR #xx:3,Rd R:W NEXT

BXOR #xx:3,@ERd R:W 2nd R:B EA R:W NEXT

BXOR #xx:3,@aa:8 R:W 2nd R:B EA R:W NEXT

CMP.B #xx:8,Rd R:W NEXT

CMP.B Rs,Rd R:W NEXT

CMP.W #xx:16,Rd R:W 2nd R:W NEXT

CMP.W Rs,Rd R:W NEXT

CMP.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT

CMP.L ERs,ERd R:W NEXT

DAA Rd R:W NEXT

DAS Rd R:W NEXT

DEC.B Rd R:W NEXT

DEC.W #1/2,Rd R:W NEXT

DEC.L #1/2,ERd R:W NEXT

DIVXS.B Rs,Rd R:W 2nd R:W NEXT Internal operation, 12 states

DIVXS.W Rs,ERd R:W 2nd R:W NEXT Internal operation, 20 states

DIVXU.B Rs,Rd R:W NEXT Internal operation, 12 states

DIVXU.W Rs,ERd R:W NEXT Internal operation, 20 states

EEPMOV.B R:W 2nd R:B EAs *1 R:B EAd *1 R:B EAs *2 W:B EAd *2 R:W NEXT

EEPMOV.W R:W 2nd R:B EAs *1 R:B EAd *1 R:B EAs *2 W:B EAd *2 R:W NEXT

Table 2-8 Bus States (cont)

Instruction 1 2 3 4 5 6 7 8

EXTS.W Rd R:W NEXT

EXTS.L ERd R:W NEXT

EXTU.W Rd R:W NEXT

EXTU.L ERd R:W NEXT

INC.B Rd R:W NEXT

INC.W #1/2,Rd R:W NEXT

INC.L #1/2,ERd R:W NEXT

JMP @ERn R:W NEXT R:W EA

JMP @aa:24 R:W 2nd Internal operation, R:W EA
232

2 states

JMP @@aa:8 Normal R:W NEXT R:W aa:8 Internal operation, R:W EA
2 states

Advanced R:W NEXT R:W aa:8 R:W aa:8 Internal operation, R:W EA
2 states

JSR @ERn Normal R:W NEXT R:W EA W:W Stack

Advanced R:W NEXT R:W EA W:W Stack (H) W:W Stack (L)

JSR @aa:24 Normal R:W 2nd Internal operation, R:W EA W:W Stack
2 states

Advanced R:W 2nd Internal operation, R:W EA W:W Stack (H) W:W Stack (L)
2 states

JSR @@aa:8 Normal R:W NEXT R:W aa:8 W:W Stack R:W EA

Advanced R:W NEXT R:W aa:8 R:W aa:8 W:W Stack (H) W:W Stack (L) R:W EA

LDC #xx:8,CCR R:W NEXT

LDC Rs,CCR R:W NEXT

LDC @ERs,CCR R:W 2nd R:W NEXT R:W EA

LDC @(d:16,ERs),CCR R:W 2nd R:W 3rd R:W NEXT R:W EA

LDC @(d:24,ERs),CCR R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT R:W EA

LDC @ERs+,CCR R:W 2nd R:W NEXT Internal operation, R:W EA
2 states

LDC @aa:16,CCR R:W 2nd R:W 3rd R:W NEXT R:W EA

LDC @aa:24,CCR R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W EA

MOV.B #xx:8,Rd R:W NEXT

MOV.B Rs,Rd R:W NEXT

MOV.B @ERs,Rd R:W NEXT R:B EA

MOV.B @(d:16,ERs),Rd R:W 2nd R:W NEXT R:B EA

MOV.B @(d:24,ERs),Rd R:W 2nd R:W 3rd R:W 4th R:W NEXT R:B EA

Table 2-8 Bus States (cont)

Instruction 1 2 3 4 5 6 7 8

MOV.B @ERs+,Rd R:W NEXT Internal operation, R:B EA
2 states

MOV.B @aa:8,Rd R:W NEXT R:B EA

MOV.B @aa:16,Rd R:W 2nd R:W NEXT R:B EA

MOV.B @aa:24,Rd R:W 2nd R:W 3rd R:W NEXT R:B EA

MOV.B Rs,@ERd R:W NEXT W:B EA

MOV.B Rs,@(d:16,ERd) R:W 2nd R:W NEXT W:B EA

MOV.B Rs,@(d:24,ERd) R:W 2nd R:W 3rd R:W 4th R:W NEXT W:B EA

MOV.B Rs,@–ERd R:W NEXT Internal operation, W:B EA

R:W EA+2
233

2 states

MOV.B Rs,@aa:8 R:W NEXT W:B EA

MOV.B Rs,@aa:16 R:W 2nd R:W NEXT W:B EA

MOV.B Rs,@aa:24 R:W 2nd R:W 3rd R:W NEXT W:B EA

MOV.W #xx:16,Rd R:W 2nd R:W NEXT

MOV.W Rs,Rd R:W NEXT

MOV.W @ERs,Rd R:W NEXT R:W EA

MOV.W @(d:16,ERs),Rd R:W 2nd R:W NEXT R:W EA

MOV.W @(d:24,ERs),Rd R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W EA

MOV.W @ERs+,Rd R:W NEXT Internal operation, R:W EA
2 states

MOV.W @aa:16,Rd R:W 2nd R:W NEXT R:W EA

MOV.W @aa:24,Rd R:W 2nd R:W 3rd R:W NEXT R:B EA

MOV.W Rs,@ERd R:W NEXT W:W EA

MOV.W Rs,@(d:16,ERd) R:W 2nd R:W NEXT W:W EA

MOV.W Rs,@(d:24,ERd) R:W 2nd R:W 3rd R:E 4th R:W NEXT W:W EA

MOV.W Rs,@–ERd R:W NEXT Internal operation, W:W EA
2 states

MOV.W Rs,@aa:16 R:W 2nd R:W NEXT W:W EA

MOV.W Rs,@aa:24 R:W 2nd R:W 3rd R:W NEXT W:W EA

MOV.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT

MOV.L ERs,ERd R:W NEXT

MOV.L @ERs,ERd R:W 2nd R:W NEXT R:W EA R:W EA+2

MOV.L @(d:16,ERs),ERd R:W 2nd R:W 3rd R:W NEXT R:W EA R:W EA+2

MOV.L @(d:24,ERs),ERd R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT R:W EA

MOV.L @ERs+,ERd R:W 2nd R:W NEXT Internal operation, R:W EA R:W EA+2
2 states

Table 2-8 Bus States (cont)

Instruction 1 2 3 4 5 6 7 8

MOV.L @aa:16,ERd R:W 2nd R:W 3rd R:W NEXT R:W EA R:W EA+2

MOV.L @aa:24,ERd R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W EA R:W EA+2

MOV.L ERs,@ERd R:W 2nd R:W NEXT W:W EA W:W EA+2

MOV.L ERs,@(d:16,ERd) R:W 2nd R:W 3rd R:W NEXT W:W EA W:W EA+2

MOV.L ERs,@(d:24,ERd) R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT W:W EA W:W EA+2

MOV.L ERs,@–ERd R:W 2nd R:W NEXT Internal operation, W:W EA W:W EA+2
2 states

MOV.L ERs,@aa:16 R:W 2nd R:W 3rd R:W NEXT W:W EA W:W EA+2

MOV.L ERs,@aa:24 R:W 2nd R:W 3rd R:W 4th R:W NEXT W:W EA W:W EA+2

M

M

M

M

M

M

N

N

N

N

N

N

N

O

O

O

O

O

O

O

P

P

234

OVFPE @aa:16,Rd R:W 2nd Internal operation, R:W *3 EA
2 states

OVTPE Rs,@aa:16 R:W 2nd Internal operation, W:B *3 EA
2 states

ULXS.B Rs,Rd R:W 2nd R:W NEXT Internal operation, 12 states

ULXS.W Rs,ERd R:W 2nd R:W NEXT Internal operation, 20 states

ULXU.B Rs,Rd R:W NEXT Internal operation, 12 states

ULXU.W Rs,ERd R:W NEXT Internal operation, 20 states

EG.B Rd R:W NEXT

EG.W Rd R:W NEXT

EG.L ERd R:W NEXT

OP R:W NEXT

OT.B Rd R:W NEXT

OT.W Rd R:W NEXT

OT.L ERd R:W NEXT

R.B #xx:8,Rd R:W NEXT

R.B Rs,Rd R:W NEXT

R.W #xx:16,Rd R:W 2nd R:W NEXT

R.W Rs,Rd R:W NEXT

R.L #xx:32,ERd R:W 2nd R:W rd R:W NEXT

R.L ERs,ERd R:W 2nd R:W NEXT

RC #xx:8,CCR R:W NEXT

OP.W Rn R:W NEXT Internal operation, R:W Stack
2 states

OP.L ERn R:W 2nd R:W NEXT Internal operation, R:W Stack (H) R:W Stack (L)
2 states

Table 2-8 Bus States (cont)

Instruction 1 2 3 4 5 6 7 8

PUSH.W Rn R:W NEXT Internal operation, W:W Stack
2 states

PUSH.L ERn R:W 2nd R:W NEXT Internal operation, W:W Stack (L) W:W Stack (H)
2 states

ROTL.B Rd R:W NEXT

ROTL.W Rd R:W NEXT

ROTL.L ERd R:W NEXT

ROTR.B Rd R:W NEXT

ROTR.W Rd R:W NEXT
235

ROTR.L ERd R:W NEXT

ROTXL.B Rd R:W NEXT

ROTXL.W Rd R:W NEXT

ROTXL.L ERd R:W NEXT

ROTXR.B Rd R:W NEXT

ROTXR.W Rd R:W NEXT

ROTXR.L ERd R:W NEXT

RTE R:W NEXT R:W Stack (H) R:W Stack (L) Internal operation, R:W (*4)
2 states

RTS Normal R:W NEXT R:W Stack Internal operation, R:W (*4)
2 states

Advanced R:W NEXT R:W Stack (H) R:W Stack (L) Internal operation, R:W (*4)
2 states

SHAL.B Rd R:W NEXT

SHAL.W Rd R:W NEXT

SHAL.L ERd R:W NEXT

SHAR.B Rd R:W NEXT

SHAR.W Rd R:W NEXT

SHAR.L ERd R:W NEXT

SHLL.B Rd R:W NEXT

SHLL.W Rd R:W NEXT

SHLL.L ERd R:W NEXT

SHLR.B Rd R:W NEXT

SHLR.W Rd R:W NEXT

SHLR.L ERd R:W NEXT

SLEEP R:W NEXT

STC CCR,Rd R:W NEXT

Table 2-8 Bus States (cont)

Instruction 1 2 3 4 5 6 7 8

STC CCR,@ERd R:W 2nd R:W NEXT W:W EA

STC CCR,@(d:16,ERd) R:W 2nd R:W 3rd R:W NEXT W:W EA

STC CCR,@(d:24,ERd) R:W 2nd R:W 3rd R:W 4th R:W 5th R:W NEXT W:W EA

STC CCR,@–ERd R:W 2nd R:W NEXT Internal operation, W:W EA
2 states

STC CCR,@aa:16 R:W 2nd R:W 3rd R:W NEXT W:W EA

STC CCR,@aa:24 R:W 2nd R:W 3rd R:W 4th R:W NEXT W:W EA

SUB.B Rs,Rd R:W NEXT

SUB.W #xx:16,Rd R:W 2nd R:W NEXT

SU

SU

SU

SU

SU

SU

TRA eration, R:W (*7)

+2 Internal operation, R:W (*7)
2 states

XO

XO

XO

XO

XO

XO

XO

Res
han

Inte eration, R:W (*7)
han

+2 Internal operation, R:W (*7)
2 states
236

B.W Rs,Rd R:W NEXT

B.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT

B.L ERs,ERd R:W NEXT

BS #1/2/4,ERd R:W NEXT

BX #xx:8,Rd R:W NEXT

BX Rs,Rd R:W NEXT

PA #x:2 Normal R:W NEXT Internal operation, W:W Stack (L) W:W Stack (H) R:W VEC Internal op
2 states 2 states

Advanced R:W NEXT Internal operation, W:W Stack (L) W:W Stack (H) R:W VEC R:W VEC
2 states

R.B #xx8,Rd R:W NEXT

R.B Rs,Rd R:W NEXT

R.W #xx:16,Rd R:W 2nd R:W NEXT

R.W Rs,Rd R:W NEXT

R.L #xx:32,ERd R:W 2nd R:W 3rd R:W NEXT

R.L ERs,ERd R:W 2nd R:W NEXT

RC #xx:8,CCR R:W NEXT

et exception Normal R:W VEC Internal operation, R:W (*5)
dling 2 states

Advanced R:W VEC R:W VEC+2 Internal operation, R:W (*5)
2 states

rrupt exception Normal R:W (*6) Internal operation, W:W stack (L) W:W stack (H) R:W VEC Internal op
dling 2 states 2 states

Advanced R:W (*6) Internal operation, W:W stack (L) W:W stack (H) R:W VEC R:W VEC
2 states

Notes: 1. EAs is the contents of ER5. EAd is the contents of R6.

2. EAs is the contents of ER5. EAd is the contents of R6. Both registers are incremented by 1 after execution of the
instruction. n is the initial value of R4L or R4. If n = 0, these bus cycles are not executed.

3. The number of states required for byte read or write varies from 9 to 16.

4. Starting address after return.

5. Starting address of the program.

6. Prefetch address, equal to two plus the PC value pushed on the stack. In recovery from sleep mode or software standby
mode the read operation is replaced by an internal operation.

7. Starting address of the interrupt-handling routine.

8. NEXT: Next address after the curre
2nd: Address of the second word
3rd: Address of the third word of
4th: Address of the fourth word o
5th: Address of the fifth word of t
EA: Effective address.
VEC: Vector address.
237

nt instruction.
 of the current instruction.
 the current instruction.
f the current instruction.
he current instruction.

Section 3 Processing States

3.1 Overview

The CPU has five main processing states: the program execution state, exception handling state,
power-down state, reset state, and bus-released state. The power-down state includes sleep mode,
software standby mode, and hardware standby mode. Figure 3-1 shows a diagram of the
processing states. Figure 3-2 indicates the state transitions. For details, refer to the relevant
microcontroller hardware manual.

Figure 3-1 Processing States

Program execution
state

The CPU executes program instructions in sequence.

Exception-handling
state

A transient state in which the CPU executes a hardware
sequence (saving the program counter and condition-code
register, fetching a vector, etc.) in response to a reset,
interrupt, or other exception.

Bus-released state

The external bus has been released in response to an external
or internal bus request signal.

Reset state

The CPU and all on-chip supporting modules have been
initialized and are stopped.

Power-down state

Some or all clock signals are
stopped to conserve power.

Sleep mode

Software standby
mode

Hardware standby
mode

Processing
states
239

Figure 3-2 State Transitions

End of bus-released state

Bus request

Program execution
state

End
 o

f b
us

-

re
le

as
ed

 s
ta

te
Bus

 re
qu

es
t

Bus-released state

En
d

of
 e

xc
ep

tio
n

ha
nd

lin
g

R
eq

ue
st

 fo
r e

xc
ep

tio
n

ha
nd

lin
g

Interrupt re
quest

Sleep mode

Exception-handling state
External interrupt

Software standby mode

R
E

S
 h

ig
h

B
us

 r
eq

ue
st

co
m

pl
et

io
n

B
us

re
qu

es
t

Reset state
STBY high, RES low

Hardware standby mode

Power-down state

S
LE

E
P

 instruction w
ith S

S
B

Y
 = 1

SLEEP

instruction w
ith

SSBY = 0

*1

Notes: 1. From any state except hardware standby mode, a transition to the reset state occurs whenever RES
goes low.

2. From any state, a transition to hardware standby mode occurs when STBY goes low.
240

3.2 Program Execution State

In this state the CPU executes program instructions in normal sequence.

3.3 Exception-Handling State

The exception-handling state is a transient state that occurs when the CPU alters the normal
program flow due to a reset, interrupt, or trap instruction. The CPU fetches a starting address from
the exception vector table and branches to that address. In interrupt exception handling the CPU
references the stack pointer (ER7) and saves the program counter and condition-code register.

3.3.1 Types of Exception Handling and Their Priority

Exception handling is performed for resets, interrupts, and trap instructions. Table 3-1 indicates
the types of exception handling and their priority.

Table 3-1 Exception Handling Types and Priority

Priority Type of Exception Detection Timing Start of Exception Handling

High Reset Synchronized with Exception handling starts
clock immediately when RES changes

from low to high

Interrupt End of instruction When an interrupt is requested,
execution (see note) exception handling starts at the end

of the current instruction or current
exception-handling sequence

Trap instruction When TRAPA Exception handling starts when a
Low instruction is executed trap (TRAPA) instruction is executed

Note: Interrupts are not detected at the end of the ANDC, ORC, XORC, and LDC instructions, or
immediately after reset exception handling.

Figure 3-3 classifies the exception sources. For further details about exception sources, vector
numbers, and vector addresses refer to the relevant microcontroller hardware manual.

Figure 3-3 Classification of Exception Sources

Exception sources

Reset

Interrupt

Trap instruction

External interrupts

Internal interrupts (from on-chip supporting modules)
241

3.3.2 Exception-Handling Sequences

Reset Exception Handling: Reset exception handling has the highest priority. The reset state is
entered when the RES signal goes low. Then, if RES goes high again, reset exception handling
starts when the reset condition is satisfied. Refer to the relevant microcontroller hardware manual
for details about the reset condition. When reset exception handling starts the CPU fetches a start
address from the exception vector table and starts program execution from that address. All
interrupts, including NMI, are disabled during the reset exception-handling sequence and
immediately after it ends.

Interrupt Exception Handling and Trap Instruction Exception Handling: When these
exception-handling sequences begin, the CPU references the stack pointer (ER7) and pushes the
program counter and condition-code register on the stack. Next, if the UE bit in the system control
register (SYSCR) is set to 1, the CPU sets the I bit in the condition-code register to 1. If the UE bit
is cleared to 0, the CPU sets both the I bit and the UI bit in the condition-code register to 1. Then
the CPU fetches a start address from the exception vector table and execution branches to that
address.

The program-counter value pushed on the stack and the start address fetched from the vector table
are 16 bits long in normal mode and 24 bits long in advanced mode. Figure 3-4 shows the stack
after the exception-handling sequence.
242

Figure 3-4 Stack Structure after Exception Handling

Even address

SP (ER7)
SP + 1
SP + 2
SP + 3
SP + 4

SP – 4
SP – 3
SP – 2
SP – 1
SP (ER7)

Before exception
handling starts

After exception
handling ends

(a) Stack structure in normal mode

Even address

SP (ER7)
SP + 1
SP + 2
SP + 3
SP + 4

SP – 4
SP – 3
SP – 2
SP – 1
SP (ER7)

Before exception
handling starts

After exception
handling ends

(b) Stack structure in advanced mode

Pushed on stack

Pushed on stack

Legend
Program counter (PC) bits 23 to 16
Program counter (PC) bits 15 to 8
Program counter (PC) bits 7 to 0
Condition code register
Stack pointer

PCE:
PCH:
PCL:
CCR:
SP:

 Ignored at return.
 1. PC is the address of the first instruction executed after the return from the exception-handling
 routine.
 2. Registers must be saved and restored by word access or longword access, starting at
 an even address.

Notes:

Stack area

Stack area

*

PC

CCR
CCR

H

PCL

CCR
PCE

PCH

PCL

*

243

3.4 Bus-Released State

This is a state in which the bus has been released in response to a bus request from a bus master
other than the CPU. While the bus is released, the CPU halts except for internal operations. For
further details, refer to the relevant microcontroller hardware manual.

For further details, refer to the relevant microcontroller hardware manual.

3.5 Reset State

When the RES input goes low all current processing stops and the CPU enters the reset state. The
I bit in the condition-code register is set to 1 by a reset. All interrupts are masked in the reset state.
Reset exception handling starts when the RES signal changes from low to high.

3.6 Power-Down State

In the power-down state the CPU stops operating to conserve power. There are three modes: sleep
mode, software standby mode, and hardware standby mode. For details, refer to the relevant
microcontroller hardware manual.

3.6.1 Sleep Mode

A transition to sleep mode is made if the SLEEP instruction is executed while the software
standby bit (SSBY) is cleared to 0.

CPU operations stop immediately after execution of the SLEEP instruction. The contents of CPU
registers are retained.

3.6.2 Software Standby Mode

A transition to software standby mode is made if the SLEEP instruction is executed while the
SSBY bit is set to 1.

The CPU and clock halt and all on-chip supporting modules stop operating. The on-chip
supporting modules are reset, but as long as a specified voltage is supplied the contents of CPU
registers and on-chip RAM are retained. The I/O ports also remain in their existing states.

3.6.3 Hardware Standby Mode

A transition to hardware standby mode is made when the STBY input goes low.

As in software standby mode, the CPU and clock halt and the on-chip supporting modules are
reset, but as long as a specified voltage is supplied, on-chip RAM contents are retained.
244

Section 4 Basic Timing

4.1 Overview

The CPU is driven by a clock, denoted by the symbol ø. One cycle of the clock is referred to as a
“state.” The memory cycle or bus cycle consists of two or three states. Different methods are used
to access on-chip memory, on-chip supporting modules, and external devices. Refer to the relevant
microcontroller hardware manual for details.

4.2 On-Chip Memory (RAM, ROM)

For high-speed processing, on-chip memory is accessed in two states. The data bus is 16 bits
wide, permitting both byte and word access. Figure 4-1 shows the on-chip memory access cycle.
Figure 4-2 shows the pin states.

Figure 4-1 On-Chip Memory Access Cycle

Internal address bus

Internal read signal

Internal data bus
(read access)

Internal write signal

Internal data bus
(write access)

ø

Bus cycle

T1 state T2 state

Address

Read data

Write data
245

Figure 4-2 Pin States during On-Chip Memory Access

Bus cycle

T1 state T2 state

AddressAddress bus

AS
High

RD
High

WR (HWR or LWR)
High

Data bus
high-impedance state

ø

246

4.3 On-Chip Supporting Modules

The on-chip supporting modules are accessed in three states. The data bus is 8 bits or 16 bits wide.
Figure 4-3 shows the access timing for the on-chip supporting modules. Figure 4-4 shows the pin
states.

Figure 4-3 On-Chip Supporting Module Access Cycle

Bus cycle

T1 state T2 state

Address

Read data

Write data

T3 state

Internal address
bus

Internal read
signal

Internal data bus
(read access)

Internal write
signal

Internal data bus
(write access)

ø

247

Figure 4-4 Pin States during On-Chip Supporting Module Access

4.4 External Data Bus

The external data bus is accessed with 8-bit or 16-bit bus width in two or three states. Figure 4-5
shows the read timing for two-state or three-state access. Figure 4-6 shows the write timing for
two-state or three-state access. In three-state access, wait states can be inserted by the wait-state
controller or other means. For further details refer to the relevant microcontroller hardware
manual.

Bus cycle

T1 state T2 state

AddressAddress bus

AS
High

RD
High

WR (HWR or LWR)
High

Data bus
high-impedance
state

ø

T3 state
248

Figure 4-5 External Device Access Timing (1) Read Timing

Read cycle

T1 state T2 state

Address

Read data

(two-state access)

Address bus

AS

RD

Data bus

ø

Read cycle

T1 state T2 state

Address

Read data

(three-state access)

T3 state

Address bus

AS

RD

Data bus

ø

249

Figure 4-6 External Device Access Timing (2) Write Timing

Write cycle

T1 state T2 state

Address

(a) Two-state access

Address bus

AS

WR
(HWR or LWR)

Data bus

ø

Write data

Write cycle

T1 state T2 state

Address

Write data

(b) Three-state access

T3 state

Address bus

AS

WR
(HWR or LWR)

Data bus

ø

250

	Contents H8/300H Series
	Section 1 CPU
	Section 2 Instruction Descriptions
	Section 3 Processing States
	Section 4 Basic Timing

