
Application of Microcontrollers
Labs

Part II - Intel 8051 and UMPS®
Version 2.0

Electronics Management
Department of Information Management Systems

Office of Off-Campus Academic Programs
College of Applied Sciences and Arts

Southern Illinois University Carbondale

Microcontroller Labs- Part II (V2.0)

2

Discussion For Our Non-SIU Users

The Application of Microcontrollers Manual and Labs were designed for off-
campus students at military bases. During a 16-week period, the students take 3
lecture courses, each presented over 3 weekends. The first 2 courses cover analog
and digital principles. The final course is on microcontrollers using the 8051 as an
example.

The students independently perform the first part of this manual and the labs
during the first 2 courses. Part I introduces controllers using the BASIC Stamp
from Parallax, Inc. The students are provided the equipment to program and
interface a microcontroller using a relatively simple language: BASIC. Part I is
intended to reinforce the lecture material on basic electronics principles using the
microcontroller. It may be downloaded from Parallax’s education website at:
http://www.stampsinclass.com

Part II, this material, is performed by the students while participating in their final
lecture course covering the 8051. In this part students learn principles of
programming a microcontroller using Assembler. UMPS from Virtual Micro
Design is used to simulate the 8051 allowing students to see how instructions
affect registers, memory and devices. A Virtual Activity Board with I/O was
designed with the UMPS resources. UMPS projects were designed for the material
allowing student to quickly load samples while reading about them.

We thank Philippe Techer for his generosity in allowing use to distribute UMPS
demo versions to our students, use of the logos in our documents, and for
developing such a wonderful development AND learning tool.

We hope you find the material developed useful. Please feel free to contact us.
We enjoy feedback and hearing how our material is being used.

Martin Hebel
Southern Illinois University Carbondale

Microcontroller Labs- Part II (V2.0)

3

Application of Microcontrollers

Copyright Notices
Copyright 1999, 2000, Board of Trustees, Southern Illinois University. The manual and labs may be
copied and distributed freely in its entirety in electronic format by individuals for educational non-profit
use. Distribution of printed material is authorized for educational non-profit use. Other distribution
venues, including mass electronic distribution via the Internet, require the written approval of the SIU
Board of Trustees.

BASIC Stamp® is a registered trademark of Parallax, Inc. Images and drawings are reproduced by
permission of Parallax, Inc.

UMPS® is a registered trademark of Virtual Micro Design. UMPS images are reproduced by permission
of Virtual Micro Design.

Disclaimer
Southern Illinois University, the manual developers, and approved distributors will not be held liable for
any damages or losses incurred through the use of the manual, labs and associated materials developed at
Southern Illinois University.

Contact Information
E-mail:
Primary developer of the manual and labs:
Martin Hebel ... mhebel@siu.edu

Contributing developer:
Will Devenport .. willd@siu.edu

Director, Off-Campus Academic Programs:
Dr. Terry Bowman... tbowman@siu.edu

Chair, Department of Information Management Systems:
Dr. Janice Schoen Henry.. jshenry@siu.edu

Mailing:
Electronics Management
College of Applied Sciences and Arts
Southern Illinois University, Carbondale
Carbondale, IL 62901-6614

The following people are thanked for their contributions: Ken Gracey and the gang at Parallax
for their work helping make this possible for our students; Philippe Techer at Virtual Micro
Design for designing a great simulation package and working with us; Myke Predko for his
feedback and recommendations; I. Scott MacKenzie for a concise text on the 8051; students on
campus and at Ft. Gordon, Cherry Point and New River for feedback; Cheri Barral for editing;
and finally Terry Bowman and Jan Henry for budgeting the endeavor and wanting the best
education for our students.

Microcontroller Labs- Part II (V2.0)

4

Key Web Sites:
Electronics Management Home Page: www.siu.edu/~imsasa/elm

Off-Campus Programs Home Page: http://131.230.64.6/

Parallax Incorporated Home Page: www.parallaxinc.com
 www.stampsinclass.com

Virtual Micro Design Home Page (UMPS): www.vmdesign.com

Distributors & Additional Information:
Digi-Key Electronics - Stamps, components www.digikey.com

Jameco Electronics - Stamps, components www.jameco.com

JDR Electronics - Stamps, components www.jdr.com

Wirz Electronics - UMPS U.S. Sales................................... www.wirz.com

Peter H. Anderson - General microcontroller information ... www.phanderson.com

SelmaWare Solutions - Specialized interfacing software www.selmaware.com

Texts:
The 8051 Microcontroller, 3rd ed. 1999, Scott MacKenzie. Prentice-Hall
ISBN: 0-13-780008-8

Handbook of Microcontrollers. 1999, Myke Predko. McGraw-Hill
ISBN: 0-07-913716-4

Programming and Customizing the 8051 Microcontroller. 1999, Myke Predko. McGraw-Hill.
ISBN: 0-07-134192-7

The Microcontroller Idea Book. 1994, Jan Axelson. Lakeview Research.
ISBN: 096508190-7

Microcontroller Labs- Part II (V2.0)

5

Table of Contents

INTRODUCTION: USING THE UMPS® SOFTWARE .. 6
UMPS Windows:... 7
UMPS Demonstration Version Limitations .. 8
UMPS Toolbar.. 8
Menu Items of Note ... 9
Running Project Files ... 10
Writing in CPU Code .. 11
Writing Assembler Code.. 12
Viewing a Register .. 13

LAB I: INTRODUCTION TO THE 8051 AND UMPS ... 14

LAB J: ASSEMBLER, OPCODES AND ADDRESSING.. 16

LAB K: INTERRUPTS- EXTERNAL, TIMERS AND COUNTERS .. 19

Microcontroller Labs- Part II (V2.0)

6

Introduction: Using the UMPS® Software
The 8051 can be a complex microcontroller to program. A simulation package, such as UMPS
from Virtual Micro Devices to simulate the 8051, and other controllers, can also be quite
complex. In this introduction we will discuss some of the key features of UMPS.

After installing UMPS from your CD-ROM (please see readme.txt on your CD for installation
instructions) or floppies, you will be able to execute the program from your Windows start bar:
Start à Programs àUMPS 1.77- Demo à UMPS 1.77- Demo.

Figure-1 below is a sample screenshot of the VABTest project with additional windows added.
Let's discuss the windows, tool bars and menus before you load your first project. Many of the
features discussed will be clearer as you read the manual and perform the labs.

Figure -1: UMPS Screenshot

Microcontroller Labs- Part II (V2.0)

7

UMPS Windows:
1. Note first that the main UMPS window reads UMPS <8031>. The 8031, for our purposes, is

functionally equivalent to the 8051. The text in this window is saved as a .txt or .asm.

2. The very top-left window titled C:\elm343\UMPS\vabtest.asm is an Assembler text window.
Programs written in Assembler are compiled into machine code. When this window is
highlighted, the contents may be saved as .txt or .asm.

3. The CPU Code window contains the assembled code from Assembler, or mnemonic code
may be directly entered. The contents of this window may be saved in numerous formats,
though for our purposes Intel HEX16 (.hex) will be used.

4. CPU Registers window shows selected special function registers of the microcontroller.
These can be used to monitor operation of the microcontroller to verify program
expectations. The contents of this file may be saves as a .REG file.

5. CPU ROM displays the contents of the 4K of internal ROM on the 8051 in hexadecimal and,
to the far right, ASCII (not shown). The demo version of UMPS does not allow the saving of
this window, but it would use the same formats as the CPU Code.

6. The Resources window shows input and output devices that can be simulated as connected to
the microcontroller. The demo version of UMPS does not allow saving of this window, but
resources produced for this manual are saved as .env (vab.env).

7. The Internal RAM window displays the contents in hexadecimal and ASCII of the 128 bytes
of RAM available to the programmer on the 8051. The demo version of UMPS does not
allow the saving of this window, but would use the same formats as the CPU Code.

8. The SFR Area window displays the contents in hexadecimal and ASCII of the 128 bytes of
Special Function Registers used to control the 8051. The demo version of UMPS does not
allow the saving of this window, but it would use the same formats as the CPU Code.

Furthermore, the entire collection of windows could be saved as project file (.PRJ), though this is
not functional on the demo version.

At the bottom of the UMPS window is a status bar that shows the current line (L) and character
(C) being executed in the Assembler Programming window. If the CPU code window is selected
the bar will show the current value of the Program Counter (PC). Also shown is current CPU
time (the simulated time elapse since the CPU was reset) and the number of instruction cycles
elapsed since a reset.

Microcontroller Labs- Part II (V2.0)

8

UMPS Demonstration Version Limitations
We've mentioned a few already, but let's list them all:
• 8031 (8051) ROM memory limited to 2K bytes.
• Limit of about 800,000 instruction cycles per reset.
• Inability to save projects, resource configurations and ROM/RAM contents. CPU code and

Assembler windows may be saved.
• Reduced CPU Description help files (the limited 8031 description help file should have been

replaced by the ELM 343 installation software by permission of Virtual Micro Design).
• Resources will be reset when performing a CPU reset.
• The demo version will operate for approximately 3 months.

None of these limitations should prevent you from using the projects designed for this manual, or
from creating your own projects. You will be limited to saving your CPU and/or Assembly files
separately and using our canned resources, such as the Virtual Activity Board (other resource
files may become available depending on the needs of the ELM-343 course).

UMPS Toolbar
Let's take a look at the functions of most of the buttons on the toolbar:

Help:
Used to request the help file for a given window.

Save & Open:
Save or open a file for a given type of window. Most of our work will be done with projects that
require the use of the File menu.

Go/Halt:
Instructs the microcontroller simulation to execute (go). When running, this button will change
to read HALT.

Reset:
This will perform a reset of the simulated microcontroller, (PC à 0000h, and various registers.)
In the demo version it will also reset all resources.

Stepping (Tracing):
This will allow single stepping through code to observe its flow and actions on registers. There
are three ways to step or trace:
• Step or trace over: The program stepping will exclude stepping through subroutines called

(F8 key).
• Step or trace into: The program stepping will include subroutines (F7 key).
• Step or trace out-of: The program stepping will cease until the current subroutine exits

(Alt-F8).

Microcontroller Labs- Part II (V2.0)

9

Toggle Breakpoint:
A breakpoint may be set/cleared on any Assembler or CPU code line to halt execution to allow
analysis of registers or single stepping for debugging.

Compile:
Compiles the specified Assembler file (.ASM or .TXT) for the current microcontroller.

Set Program Counter (PC):
Used in manipulating the Program Counter (PC):
• Set PC to the currently selected line address.
• Set the current line address to the PC.
• Set the PC to a specified address via a pop-up window.

Resource/Register Tools:
These are used when working with the Resource or CPU Register Windows to configure them:
• Add a resource or register.
• Connect a resource.
• Edit a resource or register.
• Delete a resource or register.
• Exit out of configuring.
(To enter into configuration mode, use Configure à Resources or
Configure à CPU_Registers.)

Menu Items of Note
We will look at a handful of menu functions which may not have toolbar equivalents and that
may be important to the completion of these labs.

File à
New - Creates a new window for Assembler programs.
Load - Used to load a file of any type: CPU (Hex), Assembler (.asm), register (.reg) and
resource (.env).
Load Project - Used to load a project files, such as the ones created for these labs and the
manual.

View à
Under view we are able to open windows to view the CPU code, resources, RAM, ROM, SFR's,
etc.

Microcontroller Labs- Part II (V2.0)

10

Configureà
Load CPU - Allows loading of a specific CPU for testing. While we will be working with only
the 8031 (8051), sometimes the simplest way to clear out the contents of a current project is to
select another CPU and then go back to the 8031.

Should another CPU be loaded and you attempt to load a project, you may be asked a couple
confusing questions:
CPU: 8031 is used in this project, continue? -- Click 'Yes', you understand you are loading
another CPU's project file.

Continue with current CPU ? or load CPU: 8031 (No). Click 'No' to load the 8031 (or required)
CPU.

Option à
Run Mode… - Here we can designate how fast to clock the CPU, whether to break on interrupt
calls, and how quickly to refresh the resources (this can dramatically affect your simulation
speed).

Miscellaneous à Preferences - For the notation preference we will be using Intel (h,b) instead
of Motorola ($,%) for base 16 and base 2 numbers.

Help
Under help we can view the general help files, or the current CPU Description help file. This
help file is a very good reference for programming!

Well, I think that's enough discussion for now, let's test-drive it! The projects for these labs were
designed to run in a screen resolution of 800x600.

Running Project Files
1) Run the UMPS Demo

2) Change the notation base to Intel (Options à Miscellaneous à Preferences)

3) Using File à Load project, locate and open testvab.prj in c:/elm_343/umps/testvab.
(Note that each project has its own folder.)

4) The UMPS environment should now have an Assembler window, resource window of the
Virtual Activity Board (VAB), CPU Code window and a CPU Register Window.

5) Click the "RESET" button on the toolbar. This will reset the simulated microcontroller and
the resources in the demo version.

Microcontroller Labs- Part II (V2.0)

11

6) Click the "GO" button. The CPU code will not begin executing. The devices on the VAB
will have the following effects:
• The Red/Yellow/Green (traffic) lights will sequence.
• Clicking the DIP switches in the upper left corner will cause to corresponding 8 LEDs to

change.
• Pressing PB1 will add the binary value of the DIPS to the 7-segment display.
• Pressing PB2 will increment the 7-segment display count by one.
• If SW1 is ON when the project is run following a reset, a short lamp test of all LEDs will

occur.
• If SW2 is ON, the 7-segment display will count rapidly.

7) Press the "HALT" button to stop execution.

8) Use the various stepping buttons or function-keys discussed previously to step through the
program. Notice the following differences:
• Using Step-over (F8) you can step through each line of code, but calls, such as the

ACALL LED_Display, will be processed without stepping.
• Using Step-into (F7) will step though ALL code including calls.
• Using Step-out of (ALT-F8) will exit a called routine.

OK, now that you have the hang of the VAB and projects, let's create a program of your own to
place the DIP switch data on the LEDs.

Writing in CPU Code
1) Clear out the CPU by using Configure à Load CPU and select 8031.cpl. When asked about

saving, click NO since you cannot save on the demo version.

2) Load up the VAB resource file using:
File à Load
Under format in the load window, select Resource.
In the c:/elm_343/umps directory, select vab.env.

3) View the CPU code by using View à CPU Code.

4) On the right side of the CPU Code window, replace the NOP code with the following. (After
each line is entered, move to the next line by pressing ENTER.)

SETB P2.4
Loop: MOV P1, P0
SJMP LOOP

• Notice that as each line is entered, the hexadecimal on the left is updated.
• If you make a syntax mistake, an error message will appear and the code will not be

assembled (try SET P2.4).

Microcontroller Labs- Part II (V2.0)

12

• If you make a mistake on a labeled line (Loop:), the label will be in memory and cannot be
re-used. You can select a different label name, or use Program à Clear Labels to reset the
labels.

5) Run the program and confirm that the LEDs follow the DIP settings.

6) Halt the program. With the CPU Code window selected, use File à Save file as to save
your file. Under format select Intel HEX16. Open the c:/elm_343/umps/student folder.
Under Filename type in test1 and click OK.

Now let's try writing code in Assembler that will move the DIP settings to the 7-segments.

Writing Assembler Code
1) With the VAB showing and a CPU Code window open, click File à New.

2) Reposition the window so it is out of the way of the others.

3) In the new window type the following code:

;Test of Assembler
DIPS equ P0
DispBus equ P1

org 0000h
 CLR P2.4 ;Disable '373 for LEDs

 CLR P2.3 ;Enable 4511's for 7 segments
Loop7: MOV DispBus, DIPS
 SJMP Loop7

4) Use File à Save file as to save the file as a test2 under the student folder.

5) Click the Compile button (lighting bolt) and select test2.asm that you just save. A window
should appear and the program should be compiled with no errors.

6) Note that the code in the CPU Code window has been replaced with the compiled code of
your program.

7) RESET and Run your program. (With some DIP settings, the 7-segment display may be
blank)

Microcontroller Labs- Part II (V2.0)

13

Viewing a Register
With the following program halted, perform the following:
1) Click Configure à CPU Registers. Resize the window.

2) Click the Add button on the toolbar.

3) Find and select P0. Click OK.

4) Perform an Add for P1.

5) Reposition the register boxes. Double-click the P0 register to see its options.

6) Click the Exit button on the toolbar to exit register editing.

7) Run the program and observe the registers changing as you change DIP settings.

On to your labs!

Microcontroller Labs- Part II (V2.0)

14

 Lab I: Introduction to the 8051 and UMPS
References:
A. Application of Microcontrollers Manual V2.0. 2000, Southern Illinois University.
B. MacKenzie, I.S., 1999. The 8051 microcontroller, 3rd ed. Prentice Hall.

Objectives:
1) Discuss the relationship between mnemonics and machine code.
2) List the features of the Intel 8051 including memory and ports.
3) Identify opcodes and operands for instructions.
4) Use the 8051 RAM memory map in programming.
5) Discuss key Special Function Registers including the Accumulator, Program Status Word,

Stack Pointer, Program Counter.
6) Use UMPS for CPU simulations, including device connections of the Virtual Activity Board.

• Read and perform the steps in the previous section, Introduction: Using the UMPS Software.
• Read Section I of Reference A and test applicable project files.
• Refer to Reference B as required for further information.

1. (2 pts) Machine code is typically represented in the ________________ number base. The
symbolic instructions that translate directly to machine code are called ________________.

2. (3 pts) The 8051 has ______ bytes of ROM and a total of _____ bytes of RAM. Of the total
amount of RAM ______ bytes are available for general use.

3. (1 pt) The last I/O bit on port 3 of the 8051 is denoted by the symbol ______.

4. (1 pt) SW3 of the Virtual Activity Board is connected to I/O ________.

5. (1 pt) Identify the opcode(s) _____________ and operand(s) ___________ in the following
code:

MOV A, #4Fh

6. (1 pt) 18h is a bit that is located within the Bit Addressable RAM. This bit would be located
in byte address _________.

7. (1 pt) When an add operation exceeds a value of +127, the ________ flag in the PSW would
be set.

8. (2 pts) The return memory locations for a subroutine call is held in the ____________. The
register that keeps track of where these locations are stored is known as the __________
__________.

9. (1 pt) In the PSW, if RS0 is 1, and RS1 is 1, R3 would refer to RAM address _______.

Microcontroller Labs- Part II (V2.0)

15

10. (1 pts) Load proj_i-2. Set a breakpoint at address 002Fh. Run the program. Record the
following values when the program halts at this breakpoint.

PC: ________ ACC: ______________ PSW:______________ SP:___________

11. (1 pt) Load project lab_i.prj in folder lab_i. JNC means to Jump to the specified address if
CY is not set (no carry). Set break points at memory locations 000Ch and 000Fh. Record
the number of times the microcontroller repeats the loop "LOOP" prior to continuing on to
000Fh: _____.

12. (3 pts) Why did it repeat this number of times (be specific)?

13. (2 pts) Clear the breakpoints and run lab_i. RAM memory location 08h changes rapidly.
Why (be specific)?

Microcontroller Labs- Part II (V2.0)

16

 Lab J: Assembler, Opcodes and Addressing.
References:
A. Application of Microcontrollers Manual V2.0. 2000, Southern Illinois University.
B. MacKenzie, I.S., 1999. The 8051 microcontroller, 3rd ed. Prentice Hall.

Objectives:
1) Discuss advantages and limitations of Assembler.
2) Write code in Assembler to use symbols, origin points, and macros.
3) Identify the differences between addressing modes.
4) Write code in Assembler to use various addressing modes.
.
• Read Section J of Reference A and test applicable project files.
• Refer to Reference B as required for further information.

1. (2 pts) Why can't an Assembly Language program be compiled for multiple processor
families?

2. (1 pt) To instruct the compiler to originate code beginning a memory location 0100h, the
instruction ______________ would be used.

3. (2 pts) The following is a macro that will place the values of PB1 - PB3 on the 'traffic light'
LEDs of the VAB. Write Assembler Code that will continually call this macro in a loop (use
an absolute address jump). Begin compiling at memory address 0000h.

MACRO PB_Traffic
 MOV C, P3.2
 MOV P2.5, C
 MOV C, P3.3
 MOV P2.6,C
 MOV C, P3.4
 MOV P2.7,C
ENDMAC

Microcontroller Labs- Part II (V2.0)

17

4. (5 pts) The following code is from Project Lab_J. For each line fill in the type of addressing
being used by the instruction for the source and destination data (if either is not applicable,
place an X.

Destination Source
org 0000h
Start: MOV R0, #41h __________________ _________________

 SETB P2.4 __________________ _________________

Loop:
 MOV A, R0 __________________ _________________

 MOV @R0, A __________________ _________________

 ACALL Sub __________________ _________________

 INC R0 __________________ _________________

 CJNE R0, #5Bh, Loop __________________ _________________

 LJMP Start __________________ _________________

Sub:
 MOV P1,R0 __________________ _________________

 RET

5. (2 pts) Load and run the project Lab_J.prj. What occurs in the Internal RAM window?

6. (2 pts) Discuss how the program accomplishes this.

7. (1 pt) How many bytes are required for the complete program for project Lab_J ?
_________.

8. (1 pt) Reset the project. How many cycles does it require to complete one entire evolution
(until it jumps back to Start, set a breakpoint at 0000h). _____________. How long does
this require running at the established clock speed of 12 MHz? __________.

9. (1 pt) How many times would this routine repeat in 1 second? ___________.

Microcontroller Labs- Part II (V2.0)

18

10. (3 pts) Write code for the following actions:

a. Load the accumulator immediately with the number 50h: ___________

b. Place the value of the DIP switches in the R1 register: ___________

c. Load the accumulator with the location pointed to by the R1 register: ___________

d. Jump to the absolute address of 0120h: ___________

e. Enable the '373 for the LEDs: ___________

f. Place the value of accumulator on the display bus: ___________

Microcontroller Labs- Part II (V2.0)

19

 Lab K: Interrupts- External, Timers and Counters
References:
A. Application of Microcontrollers Manual V2.0. 2000, Southern Illinois University.
B. MacKenzie, I.S., 1999. The 8051 microcontroller, 3rd ed. Prentice Hall.

Objectives:
1) Discuss the use of interrupts in microcontrollers.
2) Discuss key elements in interrupt programming, such as enables and interrupt vectors.
3) Discuss the differences between external, timer and counter interrupts.
4) Control 8051 registers for interrupt programming.

• Read Section J of Reference A and test applicable project files.
• Refer to Reference B as required for further information.

1. (1 pt) In general, what is the purpose of interrupts in microcontrollers?

2. (2 pts) What is the purpose of EA? What effect will it have if it is '0'?

3. (2 pts) What is the difference between a timer interrupt and a counter interrupt?

Microcontroller Labs- Part II (V2.0)

20

For questions 4 & 5: Using the VAB, PB2 will be used to interrupt the process light the
LEDs D0-D7, but not affect the7-segment LEDs. The interrupt will process as long as the
button is held down.

4. (6 pts) The following is an assortment of interrupt register bits. Place a 1 or 0 to set up the
applicable interrupt for operation. Use an 'X' if the state does not matter for this operation.
(Hint, you need to set/clear 3 bits).

EA _____ ES ____ ET1 ____ ET0 ____ EX1 _____ EX0 _____

IT0 _____ IT1 ____ IE0 ____ IE1 _____ TR0 _____ TF0 _____ TR1 _____ TF0 _____

(High Order) Gate ____ C/T ______ M1______ M0 _______

(Low Order) Gate ____ C/T ______ M1______ M0 _______

5. (1 pt) When the interrupt is called, the program counter will jump to memory location
_________.

For questions 6 & 7: Using the VAB, we need to read the data on SW3 and place it on LED
D10 every 100 µµS with the 8051 clock running at 12MHz. Use Timer 0.

6. (7 pts) The following is an assortment of interrupt register bits. Place a 1 or 0 to set up the
applicable interrupt for operation. Use an 'X' if the state does not matter for this operation.
(Hint: You need to set/clear 7 bits.)

EA _____ ES ____ ET1 ____ ET0 ____ EX1 _____ EX0 _____

IT0 _____ IT1 ____ IE0 ____ IE1 _____ TR0 _____ TF0 _____ TR1 _____ TF0 _____

(High Order) Gate ____ C/T ______ M1______ M0 _______

(Low Order) Gate ____ C/T ______ M1______ M0 _______

7. (1 pt) The initial value of the timer registers in decimal would be: TH0 ___________,
 TL0 _____________.

