8051 - Interrupts

EE4380 Fall 2001
Class 9

Pari vallal Kannan
Center for Integrated Circuits and Systems
University of Texas at Dallas

Polling Vs Interrupts

e Polling:
- MCU monitors all served devices continuously, looking for a
“service request flag”
- Whenever it sees a request, it serves the device and then
keeps polling
- MCU is always “busy” with polling doing the “while any
request” loop

e [nterrupts

- If and when a device is ready and needs attention, it informs
the MCU

- MCU drops whatever it was doing and serves the device
- MCU is always “free”, when not serving any interrupts

urt b

11-Oct-01 2

Interrupt Service Routine

e MCUs have fixed number of interrupts

e Every interrupt has to be associated with a piece of
code called “Interrupt Service Routine”, or ISR.
— If interrupt-x is received by MCU, the ISR-x is executed

e MCU architecture defines a specific “code address” for
each ISR, which is stored in the,
— “Interrupt vector Table IVT”

e ISRs are basically “subroutines”, but they end with the
RET]I, instruction instead of RET

e \When an interrupt occurs, the MCU fetches its ISR
code address from the IVT and executes it.

ut b

11-Oct-01 3

Interrupt Execution

1. MCU finishes the instruction it is currently executing
and stores the PC on the stack

2. MCU saves the current status of all interrupts
Internally

3. Fetches the ISR address for the interrupt from IVT
and jumps to that address

4. Executes the ISR untlil it reaches the RETI instruction

5. Upon RETI, the MCU pops back the old PC from the
stack and continues with whatever it was doiing
before the interrupt occurred

ut b

11-Oct-01 4

8051 Interrupts

e Vendors claim 6 hardware interrupts. One of them is

the reset. So only 5 real interrupts in the 8051. Clones
may differ.

e Two external interrupts — INTO and INT1, two timer
Interrupts — TFO and TF1 and one serial port interrupt —
SO

e Interrupts can be individually enabled or disabled. This
Is done in the IE (Interrupt Enable Register)

e External interrupts (INTO and INT1) can be configured
to be either level or edge triggered.

ut b

11-Oct-01 5

8051 - IVT

e Each Interrupt has 8 bytes for its ISR.
e If ISR Is too big to fit in 8bytes, then use a ljmp

ORGO

rom start: LJIJMP main_code
ORG 13H

intl vec: LIMPIintl isr
ORG 30H

main_code: ‘blabla

intl isr: ;blabla

Interrupt | ROM Location Pin
Reset O000H 9
INTO O003H P3.2
TFO 000OBH

INT1 0013H P3.3
TF1 001BH

SO 0023H

ut b

11-Oct-01

IE Register

e EA =0, disable all interrupts

EA - ET2 |ES | ET1 | EX1 | ETO | EXO

Other bits if set to 1, enable the corresponding interrupt, if set to 0,
disable it.

EXO = enable INTO

ETO = enable TimerO

EX1 =enable INT1

ET1 = enable Timerl

ES = enable serial port interrupt

ET2 = (for 8052 clones only) enable Timer2

Interrupts can be triggered by software by setting the bits in IE
~- setb IE.1

urt b

11-Oct-01 7

Simple Example

INT1 pin is connected to a switch that is normally high. Whenever it goes low, an
LED should be turned on. LED is connected to port pin P1.3 and is normally OFF

INT1 ISR:

BACK:

MAIN:
HERE:

org OH

ljmp MAIN
org 13H

setb P1.3

mov I3, #255
dinzr3, BACK
clr P1.3

RETI

org 30H

mov |E, #1000 0100B
gmp HERE

end

ANT1 ISR
‘turn on LED

;keep the led ON for awhile
:turn OFF the LED
:use RETI, ***NOT RET***

;enable INT1, EA=1, EX1=1
;stay here until interrupted

11-Oct-01

Ut b

External Interrupts

e INTO and INT1

~ Level triggered : a low level on the pin causes interrupt —
Default mode

- Edge triggered : a high-to-low transition on the pin causes
Interrupt

e Configuration in TCON register
- (IT1) TCON.2 =1 =>» INT1 is edge triggered
- (ITO) TCON.O =1 =>» INTO is edge triggered

e IEQ (TCON.1) and IE1 (TCON.3)

- In edge triggered mode, if interrupt INTX occurs, the MCU sets
the IEx bit, which is cleared only aftera RETI is executed

— Prevents interrupt within interrupt

e Setup and Hold times for Edge triggered external
Interrupts
— One machine cycle each

ut b

11-Oct-01 9

Interrupt Priority

e Default Priority
— INTO>TFO>INT1>TF1> S0

e The ISR of an interrupt can be “interrupted” by a higher
priority interrupt.

e The Default Priority can be changed by programming
the IP reqister

PT2 | PS PT1 | PX1 | PTO | PXO

e To set higher priority to an interrupt, setits bitinIP to 1

e If more than one 1 in IP, the default priority is used for
all the interrupts that have 1 in IP

ut b

11-Oct-01 10

8051 - Timers

e Two 16-bittimers TO and T1

— Timer - calculate timing, time etc
- Event counter — Count the occurrence of an event

e TO=THO:TLO
e [1=THIL:TL1

e Timer mode is controlled by TMOD reqgister
- Gate, C/T, MO, M1

e Timers are controlled by TCON register (upper 4 bits)
- TRO, TR1, TFO, TF1

urt b

11-Oct-01 11

8051 Timer : TMOD Register

Gatel | C/T1 M1 MO GateO | C/TO M1 MO

Gate = 0, software gate of Timer (TRx bit in TCON)
Gate = 1, hardware gate of Timer (INTX) pin

C/T = 0 = Timer operation

C/T =1 = Counter operation

M1:MO = 00 - Mode 0 (13bit timer)

M1:MO = 01 - Mode 1 (16 bit timer)

M1:MO = 10 - Mode 2 (8 bit timer, with auto-reload)
M1:MO = 11 - Mode 3 (split timer)

Clock source for the timer is sys_clk/12

ut b

11-Oct-01 12

Timer — Mode 1

e 16 bhit timer

e Operation

Load TMOD register to set mode

Load TLx and THx with the initial count values
Start timer (setb TRX)

Keep monitoring TFx flag (jnb TFX, target)
Stop timer (clrb TRX) and clear TFx flag

Go back to step 2 to load again

e Time spent
- Telapsed = (65536 - intial_value)*cycle time
e Instead of polling for TFx flag, an ISR could be used

o o ~ W nhoPRF

urt b

11-Oct-01 13

Timer : Mode —1 Example

e Generate a 50% duty cycle square wave on
P1.5, with TimerO

mov TMOD, #01 ;Timer 0, mode 1
TimerO sequence Here: mov TLO, #0F2H
FFF2 TF=0 mov THO, #0FFH ;Initial Vaue = FFF2H
FFF3 TF=0 cpl P1.5
FFF4 TF=0 acall delay

gmp Here

Delay: setb TRO ;start TimerO

FFFETF=0 Agan: jnb TFO, Again ;poll for TFO (timer overflow)
FFFF TF=1 clr TRO ;stop timer

clr TFO .clear TFO flag

RET

urt b

11-Oct-01 14

