8051 - Arithmetic and Logic

EE4380 Fall 2001 Class 8

Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas

Signed Arithmetic - Concepts

- Representation of the sign
 - Allocate one bit of all numeric quantities for the sign
 - Usually MSB (most significant bit) is assigned for the sign
 - The remaining bits represent the magnitude
- 8051 has only 8-bit registers
 - Signed numbers can have only a 7 bit magnitude
 - Positive numbers in 8051 = 0 to +127 (7 bits)
 - Negative numbers ???

Signed Arith. – Negative Numbers

- Negative Number representation in signed arithmetic
 - The sign bit (MSB) is 1
 - Magnitude is in 2's complement form

• Examples

Represent –5	Represent –34H	Represent –128	-128 = 80H
5 = 0000 0101	34H = 0011 0100	128 = 1000 0000	-127 = 81H
Cpl = 1111 1010	Cpl = 1100 1011	Cpl = 0111 1111	-1 = FFH
+1 = 1111 1011	+1 = 1100 1100	$+1 = 1000\ 0000$	0 = 00H
Hex = FBH	Hex = CCH	Hex = 80H	1 = 01H
Hence $-5 = FBh$	Hence $-34H = CCH$	Hence $-128 = 80H$	+127 = 7FH

Range

Signed Numbers - Usage

- Application may require a specific quantity be represented as a signed number
 - Temperature measurement -20deg, +10deg etc
 - Water level measurement in a tank
 - Gas tank monitor
- Data is collected and stored as an array of signed numbers
 - Some of the array elements can be negative, while others are positive
 - Identify negative numbers by the MSB. If MSB=1, the number is negative
- Same arithmetic operations (add, sub, mul, div etc) may need to be performed on the array elements, and the result can be positive or negative.

8051 – Signed Arithmetic

- 8051 uses negative number representation in the sub instruction. Not useful.
- When signed numbers are needed, programmer has to take care of signed arithmetic
- Overflow has to be dealt with. Carry flag is not enough, because only 7 bits carry the magnitude in signed numbers
- The 8051 provides another flag OV (Overflow) for this purpose.

8051 - Signed Arithmetic (contd.)

• Addition

<u>A+B</u> A = 01H, B = FFH					
A = +1, B = -1					
A = 0000 0001					
B = 1111 1111					
$+ = 1\ 0000\ 0000$					
A+B = 0H					

A+B A = FEH, B = FFH A = -2, B = -1 A = 1111 1110 B = 1111 1111 + = 1 1111 1101 A+B = FDH = -3

Subtraction

A-B A = 01H, B = FFH A = +1, B = -1 $2's(B) = 0000 \ 0000 + 1 = 0000 \ 0001$ $A = 0000 \ 0001$ $2's(B) = 0000 \ 0001$ $+ = 0 \ 0000 \ 0010$ A-B = 02H

 $\underline{A-B} \quad A = FEH, B = 01H$ A = -2, B = +1

2's(B) = 1111 1110 +1 = 1111 1111

A = 1111 1110

2's(B) = 1111 1111

+ = 1 1111 1101

A-B = FDH = -3

8051 Signed Arith. - Overflow

- Overflow can occur from the magnitudes of the signed numbers, which can change the sign bit.
- Example A+B, A=+96 (60H), B=+70(46H) A = 0110 0000 B = 0100 0110 + = 1010 0110 = A6H = -90 (wrong) OV = 1, CY=0 96+70 = 166 > +127
- OV Flag is to be checked for error in signed arithmetic

8051 – OV Flag

- After arithmetic operations, OV is set if
 - Carry from D6 to D7 but no carry from D7
 - Carry from D7 but no carry from D6 to D7
 - These cases indicate a wrong result due to signed arithmetic
- After arithmetic operation involving signed numbers, check OV flag, for error detection
 - Use jb PSW.2 or jnb PSW.2
 - PSW.2 = OV

8051 Logic Instructions

• AND

- anl dest, source ; dest = dest AND source
- Commonly used to mask out (set to 0) a few bits in an operand
- OR
 - orl dest, source ; dest = dest OR source
 - Commonly used to set a few bits in an operand

• XOR

- xrl dest, source ; dest = dest XOR source
- Commonly used to clear a register, check if two registers have the same value and toggle a few bits
- Complement
 - cpl A ; A = A'
- None of these instructions affect any flags

8051 – Compare Instruction

• CJNE

- Cjne dest, source, rel address
- Compare dest and source and jump to relative address if not equal
- Basically a subtract operation which does not change the operands but affects the CY flag
 Cmp: cine R5, #80, NEO
- dest > source \rightarrow CY=0
- dest < source → CY=1</p>
- Example
 - Monitor P1 continuosly and
 - exit if P1=63H

Cmp:	cjne R5, #80, NEQ		
EQ:	••••	;R5=#80	
NEQ:	jnc GREAT	[
LESS:	•••	;R5<#80	
GREAT:	••••	;R5 > #80	

8051 – Rotate and Swap

- Bitwise rotation is required in many apps like serial comm., control etc.
- Rotate right
 - rr A ; rotate right A
 - mov A, #AAH, rr A ; A = 55H
- Rotate left
 - rl A ; rotate left A
 - Mov A, #55H, rl A; A = AAH
- Rotate right/left with Carry
 - Use CY in the rotate sequence (9 bit rotate)
 - rlc A and rrc A
- Swap nibbles
 - swap A ; swaps D7-D4 with D3-D0

8051 – Single Bit Instructions

- Set a bit
 - set bit ; bit = 1
- Clear a bit
 - clr bit ;bit = 0
- Complement a bit
 - cpl bit ;bit = bit'
- Conditional Jump on bit value
 - jb (jump if bit=1), jnb (jump if bit=0), jbc (jump if bit=1 and clear the bit)

Bit addressable Regs and Memory

- All I/O ports (P0 P3), B, PSW, IP, IE, ACC, SCON and TCON are bit addressable (BARs)
- The bits of BARs can be referred to as Register.bitnum (P0.1, PSW.2, IE.4 etc) or by their bit address
- Bit address is the base address of the register + the bit number
 - ACC Base address is E0H, hence ACC.1=E1H, ACC.7=E7H
 - P0, Base address is 80H, hence P0.0=80H, P0.5=84H and so on
- 16 bytes of the internal RAM is bit addressable
 - 20H to 2FH has a bit address of 00H to 7FH
 - clr 67H ; clear bit D7H of RAM location 2CH
 - setb 05H ; set bit 5 of RAM location 20H

Single Bit Opn with CY flag

- 8051 has special instructions that directly manipulate CY flag
 - setb C; clr C; cpl C; mov b,C; mov C,b; jnc, jc, anl
 C,b; anl C,/b; orl C,b; orl C,/b
 - anl C, /b ; C = CY AND b'
- Example: Turn ON fan (P2.2) and turn OFF light (P2.3)

	mov P2.3,C ;turn off light if not already OFF	
	anl C,P2.3 ;CY = CY AND P2.3	
Light_off:	clr C	
	mov P2.2, C ;turn on fan if not already ON	
	orl C,P2.2 ;CY = CY OR P2.2	
Fan_on:	setb C	