8051 I/O and 8255

Class 6 EE4380 Fall 2001

Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas

Why I/O Ports

- Controllers need to get external inputs and produce external outputs
- I/O ports serve the purpose
- 8051 has 4 built-in I/O ports
- If needed additional ports can be added by interfacing it with special devices at additional cost
- Too many ports increase pin-count and device cost.
 Too few makes it inadequate for complex control needs
- Generally, Ports are scarce and Port usage/allotment is an engineering decision

8051 I/O Ports

- 32 pins are allotted for 4 eight bit I/O ports
 P0, P1, P2, P3
- At power-on all are output ports by default
- To configure any port for input, write all 1's (0xFF) to the port (source of confusion)
- Ports can be read and written to like normal registers

mov A, #55H	; can use A
mov P0, A	; write A to P0
mov P1, A	
mov P2, #0AAH	; can use immediate mode
xlr P1, #0FFH	; read-modify-write (ex-or)
mov P0, #0FFH	; configure P0 for input

 Ports can be bit manipulated (single bit addressable) using cpl and setb instructions

8051 I/O Ports – Pin Muxing

- Port pins are muxed with other signals
 - P0 : Also carry A0:A7 and D0:D7
 - P1 : dedicated
 - P2 : Also carry A8:A15
 - P3 : Also carry serial I/O (TxD, RxD), Timer inputs (T0, T1), external interrupts (INT0, INT1) and read write signals (RD, WR)
- For 8051 or DS5000, with no external memory, P0, P1 and P2 are available. For 8031, only P2 is available
- To increase the number of ports, use a parallel port interface chip like 8255

8051 I/O Programming

• Simple read and write 8bits at a time

mov A, #0FFH	; configure P1 for input
mov P1, A	;
mov A, P1	; read from P1
mov P0, A	; write that to P0

• Bit manipulation

cpl P1.2	; complement bit 2 of Port1
setb P1.3	; set bit 3 for Port1 to 1
clr P0.0	; clear bit 0 of Port0

8051 I/O Ports : Hardware Specs

- P0 is open drain.
 - Has to be pulled high by external 10K resistors.
 - Not needed if P0 is used for address lines
- P1, P2, P3 have internal pull-ups
- Some 8051 clones are available in 20 pin packages. They use a different muxing scheme
- Port fan-out (number of devices it can drive) is limited. Use buffers (74LS244, 74LS245, etc)
- P1, P2, P3 can drive up to 4 LS-TTL inputs
- P0 fan-out is dependent on the pull-up resistor value, limited by the max current it can sink on the output stage.

8051 I/O Ports : Input Quirks

• Port read instructions either

- Read from the 8051 pins ("voltage" levels on the pins)
- Read from an internal latch on the ports
- Writing 1 to the latch
 - Q=1, QB=0
 - M1 off
 - P1.x is available at tristate buffer
- Writing 0 to the latch
 - Q=0, QB=1
 - M1 ON
 - Input always gets 0
 - Can damage the port (M1) if P1.x is Vcc
 - Use 10K resistance between switch on P1.x and Vcc
 - Or use a SPST switch connected to GND

Input Quirks (contd.)

- Instructions that read the pins (READ_PIN is asserted)
 - mov A, Px
 - jnb Px.y ...
 - jb Px.y ...
 - mov C, Px.y
- Instructions that read the latch (READ_LATCH is asserted)
 - They read the last output value and not the value on the pins
 - [anl, orl, xrl] Px
 - [jbc, djnz] Px.y, target
 - [cpl, clr, setb] Px.y
 - [inc, dec] Px
 - mov Px.y, C

More ports on 8051 : The 8255

- Widely used I/O chip
 - 40 pins
 - Provides 3 eight bit ports PA, PB and PC
 - Port PC can be used as two 4 bit ports PCL and PCU
 - Ports have handshaking ability
 - Two address lines A0 and A1 and a Chip select CS
 - Address space of 4 bytes
 - 00b selects Port A
 - 01b selects Port B
 - 10b selects Port C
 - 11b selects a control register

8255 Functional Diagram

- CS is used to interface with 8051
- If CS is generated from lets say Address lines A15:A12 as follows,

A15:A12 = 1000

- Base address of 8255 is
 - 1000 xxxx xxxx xx00b
 - 8000H
- Address of the registers
 - PA = 8000H
 - PB = 8001H
 - PC = 8002H
 - CR = 8003H

8255 Operating Modes

- Mode 0 : Simple I/O
 - Any of A, B, CL and CU can be programmed as input or output
- Mode 1: I/O with Handshake
 - A and B can be used for I/O
 - C provides the handshake signals
- Mode 2: Bi-directional with handshake
 - A is bi-directional with C providing handshake signals
 - B is simple I/O (mode-0) or handshake I/O (mode-1)
- BSR (Bit Set Reset) Mode
 - C alone is available for bit mode access

8255 Configuration

- Configured by writing a control-word in the CR register
- CR definition
 - D7 : 1→I/O mode, 0→BSR
 - D6,D5 : Mode selection for A and CU
 - 00→Mode0, 01→Mode1, 1x→Mode2
 - D4 : Port A control
 - $1 \rightarrow A$ input, $0 \rightarrow A$ output
 - D3 : Port CU control
 - $1 \rightarrow CU$ input, $0 \rightarrow CU$ output
 - D2 : Port B Mode selection
 - $0 \rightarrow B$ is in mode 0, $1 \rightarrow B$ is in mode 1
 - D1 : Port B control
 - $1 \rightarrow B$ input, $0 \rightarrow B$ output
 - D0 : Port CL control
 - $1 \rightarrow CL$ input, $0 \rightarrow CL$ output
- Refer to 8255 datasheet for additional options

8255 Usage: Simple Example

- 8255 memory mapped to 8051 at address 8000H base
 - PA = 8000H, PB = 8001H, PC = 8002H, CR = 8003H
- Control word for all ports as outputs in mode0
 - CR : 1000 0000b = 80H
- Code snippet

test:	mov A, #80H	; control word
	mov DPTR, #8003H	; address of CR
	movx @DPTR, A	; write control word
	mov A, #55h	; will try to write 55 and AA alternatively
repeat:	mov DPTR, #8000H	; address of PA
	movx @DPTR, A	; write 55H to PA
	inc DPTR	; now DPTR points to PB
	movx @DPTR, A	; write 55H to PB
	inc DPTR	; now DPTR points to PC
	movx @DPTR, A	; write 55H to PC
	cpl A	; toggle A (55→AA, AA→55)
	acall MY_DELAY	; small delay subroutine
	sjmp repeat	; for (1)

