8051 Programming

Class 5
EE4380 Fall 2001

Pari vallal Kannan
Center for Integrated Circuits and Systems
University of Texas at Dallas



Topics

e 8051 Addressing Modes

e Jump, Loop and Call instructions
e Subroutines

e Simple delay loops

Urt D

18-Sep-01 2



8051 Addressing Modes

e CPU can access data in various ways
e Specify data directly in the instruction

e Use different Addressing modes for data Iin
code and data memory

e Five modes
- Immediate
- Regqister
— Direct
- Register Indirect
- Indexed

urt b

18-Sep-01 3



Immediate Addressing Mode

e Operand (data) directly specified in the
Instruction (opcode)

e Operand is a constant, known during assemble
time
e Immediate data has to be preceded by “#” sign
e EQ.
mov A, #25H
mov DPTR, #1FFFH
temp EQU 40
mov R1, #temp ;R1 < 28H (40 decimal)

ut b

18-Sep-01 4



Register Addressing Mode

e Involves the use of registers to hold data

e Put the operand in a register and manipulate it by
referring to the register in the instruction
mov A, RO
mov R2, A
ADD A, R1

e Source and destination registers must match in size

e There may not be instructions for moving any register
to any
- mov R4, R7 ; Invalid
— Check with the instruction list before using
— Assembly will fail in these cases

ut b

18-Sep-01 5



Direct Addressing Mode

e For data stored in RAM and Registers
- All memory locations accessible by addresses
- Same with all registers, ports, peripherals (SFRs) in 8051

e Use the address of the operand directly in the
Instruction

- mov A, 40H ; copy data in mem[40H] to A
e Register addressing as Direct addressing
- mov A, 4H ; 4H is the address for R4
- mov A, R4 ; same as above. Both do the same

; but may have different op codes

e All registers and SFRs have addresses
e Stack in 8051 uses only direct addressing modes

ut b

18-Sep-01 6



Register Indirect Addressing Mode

A register is used as a pointer
- Regqister stores the address of the data

Only RO, R1 and DPTR can be used for this purpose in
8051

RO and R1 can be used for internal memory (256 bytes
Incl. SFRs) or from 0O0H to FFH of external memory

- mov A, @RO ;copy internal_mem|[RO] to A

- mov @R1, A ;copy A to internal_mem[R1]

- movx A, @RO ; copy external_mem[RO] to A

DPTR can be used for external data memory

- movx A, @DPTR ;copy ext_data_mem[DPTR] to A
- movx @DPTR, A vice versa

ut b

18-Sep-01 7



Indexed Addressing Mode

e Use a register for storing the pointer and another
register for an offset

e Effective address is the sum base+offset

— Move code byte relative to DPTR to A. Effective address is
DPTR + A
e movc A, @A+DPTR
-~ Move code byte relative to PC to A. Effective address is
PC+A
e movc A, @A+PC
Widely used for implementing look-up tables, data
arrays, character generators etc in code memory

(ROM)

ut b

18-Sep-01 8



Indexed Addressing Mode - Example

e Program to read a value x from P1 and send x°

to P2

back:

LUT:

ORGO

mov DPTR, #LUT
mov A, #0OFFH

mov P1, A

mov A, P1

movc A, @A+DPTR
mov P2, A

sjmp back

ORG 300H

: 300H is the LUT address

; program the port P1 to input data
; read X

. get x2 from LUT

; output X2 to P2

; for (1) loop

DB O, 1, 4, 9, 16, 25, 36, 49, 64, 81

18-Sep-01

urt b



Program Control Instructions

e Unconditional Branch

— ajmp addrll ; absolute jump
— ljmp addr16 ; long jump
— sjmp rel ; short jump to relative address

—- Jmp @A+DPTR ; jump indirect
e Conditional branch

~ Jz, nz rel ; short conditional jump to rel. addr
— djnz rel ; decrement and jump if not zero
- cjne rel ;, compare and jump if not equal
e Subroutine Call
— acall addrll ; absolute subroutine call
— Icall addrl6 ; long subroutine call
~ ret ; return from subroutine call
~ reti , return from ISV

ut b

18-Sep-01 10



Loop using djnz

e Add 3 to A ten times

AGAIN:

mov
mov
add

djnz
mov

A, #0 ; Clear A

R2, #10 ; R2 < 10, can also say OAH
A, #03 ;add 3to A

R2, AGAIN ; repeat until R2==0

R5, A ; save the result in R5

e Loop within loop using djnz

loop1:
loop2:

mov
mov
nop

djnz
djnz

R3, #100

R2, #10 ; trying for 1000 loop iterations
; N0 operation

R2, loop2 ; repeat loop2 until R2==0

R3, loopl ; repeat loopl until R3==

Ut b

18-Sep-01

11



Conditional Jumps

e |z, jnz : Conditional on A==0

— Checks to see if Ais zero

— Jz jumps if A'is zero and jnz jumps is A not zero

- No arithmetic op need be performed (as opposed to 8086)
e djnz : dec and jump if A not equal to zero

- djnz Rn, rel

— djnz direct, rel

e |nc : Conditional on carry CY flag
—- jc rel
- Jjnc rel
e Cjne : compare and jump if not equal
—- cjne A, direct, rel
- cjne ARN, #data, rel
—- Ccjne @RNn, #data, rel

urt b

18-Sep-01 12



Unconditional Jumps

e LIJMP addrl6

- Long jump. Jump to a 2byte target address
— 3 byte instruction

o SIMP rel
- Jump to a relative address from PC+127 to PC-128
— Jump to PC + 127 (O0OH — 7FH)
- Jump to PC — 128 (80H — FFH)

e Target address calculation
-~ PC of next instruction + rel address

- For jump backwards, drop the carry
e PC = 15H, SIJMP OFEH
e Addressis 15H + FEH = 13H
e Basically jump to next instruction minus two (current instruction)

urt b

18-Sep-01 13




Call Instructions

e LCALL addrl6

- Long call. 3 byte instruction.
— Call any subroutine in entire 64k code space
- PC is stored on the stack

e ACALL addrll
— 2 byte instruction
- Call any subroutine within 2k of code space
— Other than this, same behavior as LCALL
- Saves code ROM for devices with less than 64K ROM

e RET

— Return from a subroutine call
- Pops PC from stack

urt b

18-Sep-01 14




Machine Cycle

Number of clock cycles used to perform one instruction
Varies with instruction
Usually the lowest is quoted as the machine cycle

For 8051, 12 clock cycles are minimum needed per
Instruction

Time per machine cycle

- T, = Clocks per machine cycle / Clock frequency
— For 8051 clocked at 11.0592MHz,
o T .=12/11.0592M = 1.085 micro seconds

Time spent executing an instruction
- T, = Machine cycles for the instruction * T
- For the nop instruction, machine cycles = 1. So
e T . =1*1.085=1.085 micro seconds

Instr

ut b

18-Sep-01 15



Simple delay loops

e Find the time delay for the subroutine

DELAY: mov R3, #200 ; 1 machine cycle
HERE: djnz R3, HERE ; 2 machine cycles
RET ; 1 machine cycle

e Calculation
- Total machine cycles = 200*2 + 1 + 1 = 402

- Time =402 * 1.085us (assuming 11.0592 MHz clk)
= 436.17us

e Similarly any delay can be obtained by loop
within loop technique

e For much longer delays, use timers

ut b

18-Sep-01 16



