
Pari vallal Kannan
Center for Integrated Circuits and Systems
University of Texas at Dallas

8051 Programming

Class 5
EE4380 Fall 2001

18-Sep-01 2

Topics

l 8051 Addressing Modes
l Jump, Loop and Call instructions
l Subroutines
l Simple delay loops

18-Sep-01 3

8051 Addressing Modes

l CPU can access data in various ways
l Specify data directly in the instruction
l Use different Addressing modes for data in

code and data memory
l Five modes

– Immediate
– Register
– Direct
– Register Indirect
– Indexed

18-Sep-01 4

Immediate Addressing Mode

l Operand (data) directly specified in the
instruction (opcode)

l Operand is a constant, known during assemble
time

l Immediate data has to be preceded by “#” sign
l Eg.

mov A, #25H
mov DPTR, #1FFFH
temp EQU 40
mov R1, #temp ;R1 ß 28H (40 decimal)

18-Sep-01 5

Register Addressing Mode

l Involves the use of registers to hold data
l Put the operand in a register and manipulate it by

referring to the register in the instruction
mov A, R0
mov R2, A
ADD A, R1

l Source and destination registers must match in size
l There may not be instructions for moving any register

to any
– mov R4, R7 ; invalid
– Check with the instruction list before using
– Assembly will fail in these cases

18-Sep-01 6

Direct Addressing Mode

l For data stored in RAM and Registers
– All memory locations accessible by addresses
– Same with all registers, ports, peripherals (SFRs) in 8051

l Use the address of the operand directly in the
instruction

– mov A, 40H ; copy data in mem[40H] to A

l Register addressing as Direct addressing
– mov A, 4H ; 4H is the address for R4
– mov A, R4 ; same as above. Both do the same

; but may have different op codes

l All registers and SFRs have addresses
l Stack in 8051 uses only direct addressing modes

18-Sep-01 7

Register Indirect Addressing Mode

l A register is used as a pointer
– Register stores the address of the data

l Only R0, R1 and DPTR can be used for this purpose in
8051

l R0 and R1 can be used for internal memory (256 bytes
incl. SFRs) or from 00H to FFH of external memory

– mov A, @R0 ;copy internal_mem[R0] to A
– mov @R1, A ;copy A to internal_mem[R1]
– movx A, @R0 ; copy external_mem[R0] to A

l DPTR can be used for external data memory
– movx A, @DPTR ;copy ext_data_mem[DPTR] to A
– movx @DPTR, A ;vice versa

18-Sep-01 8

Indexed Addressing Mode

l Use a register for storing the pointer and another
register for an offset

l Effective address is the sum base+offset
– Move code byte relative to DPTR to A. Effective address is

DPTR + A
l movc A, @A+DPTR

– Move code byte relative to PC to A. Effective address is
PC + A
l movc A, @A+PC

l Widely used for implementing look-up tables, data
arrays, character generators etc in code memory
(ROM)

18-Sep-01 9

Indexed Addressing Mode - Example

l Program to read a value x from P1 and send x2

to P2
ORG 0
mov DPTR, #LUT ; 300H is the LUT address
mov A, #0FFH
mov P1, A ; program the port P1 to input data

back: mov A, P1 ; read x
movc A, @A+DPTR ; get x2 from LUT
mov P2, A ; output x2 to P2
sjmp back ; for (1) loop

ORG 300H
LUT: DB 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

18-Sep-01 10

Program Control Instructions
l Unconditional Branch

– ajmp addr11 ; absolute jump
– ljmp addr16 ; long jump
– sjmp rel ; short jump to relative address
– jmp @A+DPTR ; jump indirect

l Conditional branch
– jz, jnz rel ; short conditional jump to rel. addr
– djnz rel ; decrement and jump if not zero
– cjne rel ; compare and jump if not equal

l Subroutine Call
– acall addr11 ; absolute subroutine call
– lcall addr16 ; long subroutine call
– ret ; return from subroutine call
– reti ; return from ISV

18-Sep-01 11

Loop using djnz

l Add 3 to A ten times
mov A, #0 ; clear A
mov R2, #10 ; R2 ß 10, can also say 0AH

AGAIN: add A, #03 ; add 3 to A
djnz R2, AGAIN ; repeat until R2==0
mov R5, A ; save the result in R5

l Loop within loop using djnz
mov R3, #100

loop1: mov R2, #10 ; trying for 1000 loop iterations
loop2: nop ; no operation

djnz R2, loop2 ; repeat loop2 until R2==0
djnz R3, loop1 ; repeat loop1 until R3==0

18-Sep-01 12

Conditional Jumps
l jz, jnz : Conditional on A==0

– Checks to see if A is zero
– jz jumps if A is zero and jnz jumps is A not zero
– No arithmetic op need be performed (as opposed to 8086)

l djnz : dec and jump if A not equal to zero
– djnz Rn, rel
– djnz direct, rel

l jnc : Conditional on carry CY flag
– jc rel
– jnc rel

l Cjne : compare and jump if not equal
– cjne A, direct, rel
– cjne ARn, #data, rel
– cjne @Rn, #data, rel

18-Sep-01 13

Unconditional Jumps

l LJMP addr16
– Long jump. Jump to a 2byte target address
– 3 byte instruction

l SJMP rel
– Jump to a relative address from PC+127 to PC-128
– Jump to PC + 127 (00H – 7FH)
– Jump to PC – 128 (80H – FFH)

l Target address calculation
– PC of next instruction + rel address
– For jump backwards, drop the carry

l PC = 15H, SJMP 0FEH
l Address is 15H + FEH = 13H
l Basically jump to next instruction minus two (current instruction)

18-Sep-01 14

Call Instructions

l LCALL addr16
– Long call. 3 byte instruction.
– Call any subroutine in entire 64k code space
– PC is stored on the stack

l ACALL addr11
– 2 byte instruction
– Call any subroutine within 2k of code space
– Other than this, same behavior as LCALL
– Saves code ROM for devices with less than 64K ROM

l RET
– Return from a subroutine call
– Pops PC from stack

18-Sep-01 15

Machine Cycle

l Number of clock cycles used to perform one instruction
l Varies with instruction
l Usually the lowest is quoted as the machine cycle
l For 8051, 12 clock cycles are minimum needed per

instruction
l Time per machine cycle

– Tmc = Clocks per machine cycle / Clock frequency
– For 8051 clocked at 11.0592MHz,

l Tmc = 12 / 11.0592M = 1.085 micro seconds

l Time spent executing an instruction
– Tinstr = machine cycles for the instruction * Tmc

– For the nop instruction, machine cycles = 1. So
l Tinstr = 1 * 1.085 = 1.085 micro seconds

18-Sep-01 16

Simple delay loops

l Find the time delay for the subroutine
DELAY: mov R3, #200 ; 1 machine cycle
HERE: djnz R3, HERE ; 2 machine cycles

RET ; 1 machine cycle

l Calculation
– Total machine cycles = 200*2 + 1 + 1 = 402
– Time = 402 * 1.085us (assuming 11.0592 MHz clk)

= 436.17us

l Similarly any delay can be obtained by loop
within loop technique

l For much longer delays, use timers

