ADVANCE INFORMATION

intel

8*x*930A*x* UNIVERSAL SERIAL BUS MICROCONTROLLER

- Complete Universal Serial Bus Specification 1.0 Compatibility
 - Supports Isochronous and Non-isochronous Data
 - Bidirectional Half-duplex Link
- On-chip USB Transceiver
- Serial Bus Interface Engine (SIE)
 - Packet Decoding/Generation
 - CRC Generation and Checking
 - NRZI Encoding/Decoding and Bit-stuffing
- USB Reset Interrupt
- Four Transmit FIFOs
 - Three 16-byte FIFOs
 - One Configurable FIFO (up to 1 Kbyte)
- Four Receive FIFOs
 - Three 16-byte FIFOs
 - One Configurable FIFO (up to 1 Kbyte)
- Automatic Transmit/Receive FIFO Management
- Suspend/Resume Operation
- Three New USB Interrupt Vectors
 - USB Function Interrupt
 - Start of Frame
 - Suspend/Resume
- Phase-locked Loop
 - -12 Mbps or 1.5 Mbps Data Rate

- Low Clock Mode
- User-selectable Configurations
 - External Wait State
 - Address Range
 - Page Mode
- Real-time Wait Function
- 256-Kbyte External Code/Data Memory Space
- On-chip ROM Options — 0, 8, or 16 Kbytes
- 1 Kbyte On-chip Data RAM
- Four Input/Output Ports
 - -1 Open-drain port
 - 3 Quasi-bidirectional Ports
- Programmable Counter Array (PCA)
 - 5 Capture/Compare Modules
- Serial I/O Port (UART)
- Hardware Watchdog Timer
- Three Flexible 16-bit Timer/Counters
- Power-saving Idle and Powerdown Modes
- Register-based MCS[®] 251 Architecture — 40-byte Register File
 - Registers Accessible as Bytes, Words, or Doublewords
- Code Compatible with MCS 51 and MCS 251 Microcontrollers
- 6 or 12 MHz Crystal Operation

The 8x930Ax USB microcontroller is based on an 8xC251Sx microcontroller core. It consists of standard 8xC251Sx peripherals plus an added USB function. The 8x930Ax uses the standard instruction set of the MCS 251 architecture, which is binary code compatible with the MCS 51 architecture. The USB function integrates the USB transceiver, serial bus interface engine (SIE), function interface unit (FIU) and transmit/receive FIFOs. The USB function also supports full-speed/low-speed data rates, suspend/resume modes, isochronous/non-isochronous transfers, and is fully compliant with the USB rev 1.0 specification.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel retains the right to make changes to specifications and product descriptions at any time, without notice.

The product may contain design defects or errors known as errata. Current characterized errata are available on request.

*Third-party brands and names are the property of their respective owners.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation Literature Sales P.O. Box 7641 Mt. Prospect, IL 60056-7641

or call 1-800-548-4725

COPYRIGHT © INTEL CORPORATION, 1997

CONTENTS

1.0 Nomenclature Overview	3
2.0 Pinout	4
3.0 Signals	7
4.0 Address Map	10
5.0 Electrical Characteristics	11
5.1 Operating Frequencies	12
5.2 DC Characteristics	13
5.3 Definition of AC Symbols	15
5.4 AC Characteristics	16
5.4.1 System Bus AC Characteristics	16
5.4.2 System Bus Timing Diagrams, Nonpage Mode	18
5.4.3 System Bus Timing Diagrams, Page Mode	20
5.4.4 Definition of Real-time Wait Symbols	
5.4.5 Real-time Wait Function AC Characteristics	
5.4.6 Real-Time Wait Function Timing Diagrams	
5.5 AC Characteristics — Serial Port, Synchronous Mode 0	27
5.6 External Clock Drive	
5.7 Testing Waveforms	29
6.0 Thermal Characteristics	30
7.0 Product Reference	30
7.1 External Bus Timing and Peripheral Timing Affected by PLLSEL2:0 Se	lection 30
7.2 Low Clock Mode Frequency	30
7.3 Setting FFRC Bit Clears Only the Oldest Packet in the FIFO	30
7.4 Series Resistor Requirement for Impedance Matching	30
7.5 Pullup Requirement for Full Speed Device and Low Speed Device	30
7.6 Powerdown Mode Cannot Be Invoked Before USB Suspend	30
8.0 Specification Supplement for 8x930Ax3 and 8x930Ax4	
8.1 Six Endpoint Pairs Functionality	
8.2 DC Characteristics	
8.3 Extended Data Float (EDF) AC Timing Feature	
9.0 Device Errata	
10.0 Datasheet Revision History	

Figures

1.	8x930Ax Internal Block Diagram	1
2.	USB Module Block Diagram	2
3.	Product Nomenclature	3
4.	8x930Ax 68-pin PLCC Package	4
5.	Clock Circuit	
6.	8x930Ax Code Fetch, Nonpage Mode	
7.	8x930Ax Data Read, Nonpage Mode	19
8.	8x930Ax Data Write, Nonpage Mode	19
9.	8x930Ax Code Fetch, Page Mode	20
10.	8x930Ax Data Read, Page Mode	21
11.	8x930Ax Data write, Page Mode	21
12.	External Code Fetch/Data Read (Nonpage Mode, Real-time Wait State)	23
13.	External Data Write (Nonpage Mode, Real-time Wait State)	24
14.	External Data Read (Page Mode, Real-time Wait State)	25
15.	External Data Write (Page Mode, Real-time Wait State)	
16.	Serial Port Waveform — Synchronous Mode 0	27
17.	External Clock Drive Waveforms	
18.	AC Testing Input, Output Waveforms	29
19.	Float Waveforms	

Tables

 Proliferation Options	5 6 7
	6 7
	7
4. 68-pin PLCC Signal Assignments Arranged by Functional Category	
5. Signal Descriptions	10
6. Memory Signal Selections (RD1:0)	
7. 8x930Ax Address Map	10
8. Frequency Selection and Operating Frequency	12
9. DC Characteristics at Operating Conditions	13
10. AC Timing Symbol Definitions	15
11. AC Characteristics at Operating Conditions	16
12. Real-time Wait Timing Symbol Definitions	22
13. Real-time Wait AC Timing Specifications	22
14. Serial Port Timing — Synchronous Mode 0	27
15. External Clock Drive	
16. Thermal Characteristics	
17. SIx Endpoint Pair Feature	
18. Effect of "EDF#" on Wait States	
19. AC Characteristics for 8x930Ax3 and 8x930Ax4 in Compatibility Mode	32
20. 8x930Ax3 and 8x930Ax4 Default and Extended Data Float Timings	32
21. 8x930Ax3 and 8x930Ax4 Real-time Wait State AC Timing Specifications	

Figure 1. 8x930Ax Internal Block Diagram

Figure 2. USB Module Block Diagram

ADVANCE INFORMATION

1.0 NOMENCLATURE OVERVIEW

Figure 3. Product Nomenclature

Parameter	Options	Description
Temperature and Burn-in	no mark	Commercial operating temperature range (0°C to 70°C) with Intel standard burn-in.
Packaging Options	Ν	Plastic Leaded Chip Carrier (PLCC)
Program Memory Options	0	Without ROM
	3	With ROM
Process and Voltage Information	no mark	CHMOS
Product Family	930	Advanced 8-bit microcontroller architecture with on-chip Universal Serial Bus (USB) function peripherals
Device Speed	no mark	6 or 12 MHz crystal

Table 1. Description of Product Nomenclature

Table 2. Proliferation Options

Product Name	ROM Size	RAM Size
80930AD	0	1 Kbyte
83930AD	8 Kbytes	1 Kbyte
83930AE	16 Kbytes	1 Kbyte

2.0 PINOUT

Figure 4 illustrates the 8x930Ax PLCC package. Table 3 lists the pin assignments by pin number, and Table 4 lists the pin assignments by functional categories. Table 5 describes the signals.

Figure 4. 8x930Ax 68-pin PLCC Package

Pin	Name	Pin	Name
1	V _{SS}	24	P3.4/T0
2	A15/P2.7	25	P3.5/T1
3	A14/P2.6	26	P3.6/WR#
4	A13/P2.5	27	P3.7/RD#/A16
5	A12/P2.4	28	P1.0/T2
6	A11/P2.3	29	P1.1/T2EX
7	A10/P2.2	30	P1.2/ECI
8	A9/P2.1	31	P1.3/CEX0
9	A8/P2.0	32	P1.4/CEX1
10	AD7/P0.7	33	P1.5/CEX2
11	AD6/P0.6	34	P1.6/CEX3/WAIT#
12	AD5/P0.5	35	P1.7/CEX4/A17/WCLK
13	AD4/P0.4	36	V _{cc}
14	AD3/P0.3	37	V _{SS}
15	AD2/P0.2	38	XTAL1
16	AD1/P0.1	39	XTAL2
17	AD0/P0.0	40	AV _{CC}
18	V _{SSP}	41	RST
19	V _{CCP}	42	PLLSEL1
20	P3.0/RXD	43	PLLSEL2
21	P3.1/TXD	44	PLLSEL0
22	P3.2/INT0#	45	Reserved
23	P3.3/INT1#	46	Reserved

Table 3. 68-pin PLCC Pin Assignment

t	
Pin	Name
47	Reserved
48	Reserved
49	Reserved
50	SOF#
51	V _{CCP}
52	V_{SSP}
53	ECAP
54	D _{M0}
55	D _{P0}
56	Reserved
57	Reserved
58	Reserved
59	Reserved
60	Reserved
61	Reserved
62	Reserved
63	Reserved
64	Reserved
65	PSEN#
66	ALE
67	EA#
68	V _{cc}

Table 4. 68-pin PLCC Signal Assignments Arranged by Functional Category

Address & Data		
Name	Pin	
AD0/P0.0	17	
AD1/P0.1	16	
AD2/P0.2	15	
AD3/P0.3	14	
AD4/P0.4	13	
AD5/P0.5	12	
AD6/P0.6	11	
AD7/P0.7	10	
A8/P2.0	9	
A9/P2.1	8	
A10/P2.2	7	
A11/P2.3	6	
A12/P2.4	5	
A13/P2.5	4	
A14/P2.6	3	
A15/P2.7	2	
P3.7/RD#/A16	27	
P1.7/CEX4/A17/WCLK	35	

Input/Output		
Name	Pin	
P1.0/T2	28	
P1.1/T2EX	29	
P1.2/ECI	30	
P1.3/CEX0	31	
P1.4/CEX1	32	
P1.5/CEX2	33	
P1.6/CEX3/WAIT#	34	
P1.7/CEX4/A17/WCLK	35	
P3.0/RXD	20	
P3.1/TXD	21	
P3.4/T0	24	
P3.5/T1	25	

Bus Control & Status

Name

P3.6/WR#

ALE

PSEN#

P3.7/RD#/A16

Pin

26

27

66

65

USB		
Name	Pin	
PLLSEL0	44	
PLLSEL1	42	
PLLSEL2	43	
SOF#	50	
ECAP	53	
D _{M0}	54	
D _{P0}	55	

Processor Control		
Name	Pin	
P3.2/INT0#	22	
P3.3/INT1#	23	
EA#	67	
RST	41	
XTAL1	38	
XTAL2	39	

Power & Ground		
Name	Pin	
V _{cc}	36, 68	
V _{CCP}	19, 51	
AV _{cc}	40	
EA#	67	
V _{SS}	1, 37	
V _{SSP}	18, 52	

3.0 SIGNALS

Signal Name	Туре	Description	Alternate Function
A17	0	18th Address Bit (A17). Output to memory as 18th exter- nal address bit (A17) in extended bus applications, depend- ing on the values of bits RD0 and RD1 in configuration byte UCONFIG0. See also RD#, PSEN#.	P1.7/CEX4/WCLK
A16	0	Address Line 16. See RD#.	RD#
A15:8 [†]	0	Address Lines. Upper address lines for the external bus.	P2.7:0
AD7:0 [†]	I/O	Address/Data Lines. Multiplexed lower address lines and data lines for external memory.	P0.7:0
ALE	0	Address Latch Enable (ALE). ALE signals the start of an external bus cycle and indicates that valid address information is available on lines A15:8 and AD7:0. An external latch can use ALE to demultiplex the address from the address/data bus.	PROG#
AV_{CC}	PWR	Analog V _{cc} . A separate V_{cc} input for the phase-locked loop circuitry.	
CEX2:0 CEX3 CEX4	I/O	Programmable Counter Array (PCA) Input/Output Pins. These are input signals for the PCA capture mode and out- put signals for the PCA compare mode and PCA PWM mode.	P1.5:3 P1.6/WAIT# P1.7/A17/WCLK
D _{M0}	I/O	Data Minus. USB minus data line interface.	—
D _{P0}	I/O	Data Plus. USB plus data line interface.	—
EA#	I	External Access. Directs program memory accesses to on-chip or off-chip code memory. For EA# strapped to ground, all program memory accesses are off-chip. For EA# strapped to V_{CC} , program accesses on-chip ROM if the address is within the range of the on-chip ROM; otherwise, the access is off-chip. The value of EA# is latched at reset. For devices without on-chip ROM, EA# must be strapped to ground.	
ECAP	I	External Capacitor . Must be connected to a 1 μ F capacitor (or larger) to ensure proper operation of the differential line driver. The other lead of the capacitor must be connected to V_{SS} .	
ECI	I	PCA External Clock Input . External clock input to the 16- bit PCA timer.	P1.2
INT1:0#	I	External Interrupts 0 and 1. These inputs set bits IE1:0 in the TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0 are set by a falling edge on INT1#/INT0#. If bits INT1:0 are clear, bits IE1:0 are set by a low level on INT1:0#.	P3.3:2
P0.7:0	I/O	Port 0. This is an 8-bit, open-drain, bidirectional I/O port.	AD7:0

Table 5. Signal Descriptions

[†] The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage-mode chip configuration. If the chip is configured for page-mode operation, port 0 carries the lower address bits (A7:0), and port 2 carries the upper address bits (A15:8) and the data (D7:0).

Signal Name	Туре	Description	Alternate Function
P1.0 P1.1 P1.2 P1.5:3 P1.6 P1.7	I/O	Port 1 . This is an 8-bit, bidirectional I/O port with internal pullups.	T2 T2EX ECI CEX2:0 CEX3/WAIT# CEX4/A17/WCLK
P2.7:0	I/O	Port 2 . This is an 8-bit, bidirectional I/O port with internal pullups.	A15:8
P3.0 P3.1 P3.3:2 P3.5:4 P3.6 P3.7	I/O	Port 3 . This is an 8-bit, bidirectional I/O port with internal pullups.	RXD TXD INT1:0# T1:0 WR# RD#/A16
PLLSEL2:0	I	Phase-locked Loop Select. Three-bit code selects USB data rate (see Table 8 on page 12).	_
PSEN#	0	Program Store Enable . Read signal output. This output is asserted for a memory address range that depends on bits RD0 and RD1 in configuration byte UCONFIG0 (see RD#).	_
RD#	0	Read or 17th Address Bit (A16). Read signal output to external data memory or 17th external address bit (A16), depending on the values of bits RD0 and RD1 in configuration byte UCONFIG0 (See PSEN#).	P3.7/A16
RST	I	Reset . Reset input to the chip. Holding this pin high for 64 oscillator periods while the oscillator is running resets the device. The port pins are driven to their reset conditions when a voltage greater than V_{IH1} is applied, whether or not the oscillator is running. This pin has an internal pulldown resistor which allows the device to be reset by connecting a capacitor between this pin and V_{CC} . Asserting RST when the chip is in idle mode or powerdown mode returns the chip to normal operation.	—
RXD	I/O	Receive Serial Data . RXD sends and receives data in serial I/O mode 0 and receives data in serial I/O modes 1, 2, and 3.	P3.0
SOF#	0	Start of Frame . Start of Frame pulse. Active low, asserted for 8 states (see Table 8 on page 12 for state versus XTAL clock) when Frame Timer is locked to USB frame timing and SOF token or artificial SOF is detected.	_
T1:0	I	Timer 1:0 External Clock Inputs. When timer 1:0 operates as a counter, a falling edge on the T1:0 pin increments the count.	P3.5:4
T2	I/O	Timer 2 Clock Input/Output . For the timer 2 capture mode, this signal is the external clock input. For the clock-out mode, it is the timer 2 clock output.	P1.0

Table 5. Signal Descriptions (Continued)

[†] The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage-mode chip configuration. If the chip is configured for page-mode operation, port 0 carries the lower address bits (A7:0), and port 2 carries the upper address bits (A15:8) and the data (D7:0).

Signal Name	Туре	Description	Alternate Function
T2EX	Ι	Timer 2 External Input . In timer 2 capture mode, a falling edge initiates a capture of the timer 2 registers. In autoreload mode, a falling edge causes the timer 2 registers to be reloaded. In the up-down counter mode, this signal determines the count direction: $1 = up$, $0 = down$.	P1.1
TXD	0	Transmit Serial Data . TXD outputs the shift clock in serial I/O mode 0 and transmits serial data in serial I/O modes 1, 2, and 3.	P3.1
V _{cc}	PWR	Supply Voltage . Connect this pin to the +5V supply voltage.	—
V _{CCP}	PWR	Supply Voltage for I/O buffers. Connect this pin to the +5V supply voltage.	—
V _{SS}	GND	Circuit Ground. Connect this pin to ground.	—
V _{SSP}	GND	Circuit Ground for I/O buffers. Connect this pin to ground.	—
WAIT#	I	Real-time Wait State Input. The real-time WAIT# input is enabled by writing a logical '1' to the WCON.0 (RTWE) bit at S:A7H. During bus cycles, the external memory system can signal 'system ready' to the microcontroller in real time by controlling the WAIT# input signal on the port 1.6 input.	P1.6/CEX3
WCLK	0	Wait Clock Output. The real-time WCLK output is driven at port 1.7 (WCLK) by writing a logical '1' to the WCON.1 (RTWCE) bit at S:A7H. When enabled, the WCLK output produces a square wave signal with a period of T _{CLK} .	P1.7/CEX4/A17
WR#	0	Write. Write signal output to external memory.	P3.6
XTAL1	Ι	Input to the On-chip, Inverting, Oscillator Amplifier. To use the internal oscillator, a crystal/resonator circuit is con- nected to this pin. If an external oscillator is used, its output is connected to this pin. XTAL1 is the clock source for inter- nal timing.	_
XTAL2	0	Output of the On-chip, Inverting, Oscillator Amplifier. To use the internal oscillator, a crystal/resonator circuit is con- nected to this pin. If an external oscillator is used, leave XTAL2 unconnected.	_

Table 5. Signal Descriptions (Continued)

[†] The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage-mode chip configuration. If the chip is configured for page-mode operation, port 0 carries the lower address bits (A7:0), and port 2 carries the upper address bits (A15:8) and the data (D7:0).

RD1:0	A17/P1.7 /CEX4/WCLK	A16/P3.7/RD#	PSEN#	WR#	Features	
0 0	A17	A16	Asserted for all addresses	Asserted for writes to all memory locations	256-Kbyte external memory	
0 1	P1.7/CEX4/WCLK	A16	Asserted for all addresses	Asserted for writes to all memory locations	128-Kbyte external memory	
1 0	P1.7/CEX4/WCLK	P3.7 only	Asserted for all addresses	Asserted for writes to all memory locations	64-Kbyte external memory One additional port pin	
1 1	P1.7/CEX4/WCLK	RD# Asserted for addresses ≤ 7F:FFFH	Asserted for addresses ≥ 80:0000H	Asserted for all com- patible MCS 51 mem- ory locations	Compatible with MCS 51 microcon- trollers	

Table 6. Memory Signal Selections (RD1:0)

[†] RD1:0 are bits 3:2 of configuration byte UCONFIG0. Refer to figure 4-3 on page 4-5 in the *8x930Ax Universal Serial Bus Microcontroller User's Manual.*

4.0 ADDRESS MAP

Internal Address	Description	Notes
FF:FFFFH FF:0000H	External Memory: The last eight bytes of the external address range FF:XFF8H– FF:XFFFH contain configuration byte information.	1, 2, 3
FE:FFFFH FE:0000H	External Memory	2
FD:FFFFH 02:0000H	Reserved Addresses	4
01:FFFFH 01:0000H	External Memory	2
00:FFFFH 00:0420H	External Memory	5
00:041FH 00:0080H	On-chip RAM	5
00:007FH 00:0020H	On-chip RAM	6
00:001FH 00:0000H	Storage for R0–R7 of Register File	7, 8

Table 7. 8x930Ax Address Map

NOTES:

- 1. Eighteen address lines are bonded out (A15:0, A16:0, or A17:0 selected during chip configuration).
- 2. Data in this area is accessible by indirect addressing only.
- 3. Eight addresses at the top of all external memory maps are reserved for current and future device configuration byte information.
- 4. This reserved area returns unspecified values and writes no data.
- 5. Data is accessible by direct and indirect addressing.
- 6. Data is accessible by direct, indirect, and bit addressing.
- 7. The special function registers (SFRs) and the register file have separate internal address spaces.
- 8. Data is accessible by direct, indirect, and register addressing.

ADVANCE INFORMATION

INT

5.0 ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

Ambient Temperature Under Bias	40°C to +85°C
Storage Temperature	65°C to +150°C
Voltage on Any Pins to V _{ss}	0.5 V to +6.5 V
I _{ol} per I/O Pin	15 mA
Power Dissipation	1.5 W

OPERATING CONDITIONS[†]

T ₄ (Ambient Temperature Under Bia	ac).

A(·····	
Commercial	0°C to +70°C
V _{CC} /V _{CCP} (Digital Supply Voltage)	4.00 V to 5.25 V
V _{SS} / V _{SSP}	0 V
AV _{CC} (Analog Supply Voltage)	4.00 V to 5.25 V
F _{OSC}	6 MHz or 12 MHz

NOTE: Maximum power dissipation is based on package heat-transfer limitations, not device power consumption.

NOTICE: This document contains information on products in the sampling and initial production phases of development. The specifications are subject to change without notice. Verify with your local Intel sales office that you have the latest datasheet before finalizing a design.

[†] **WARNING**: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

5.1 Operating Frequencies

PLLSEL2 Pin 43	PLLSEL1 Pin 42	PLLSEL0 Pin 44	USB Rate (Low Speed or Full Speed)	8x930Ax Internal Frequency for CPU and Peripherals (F _{CLK}) (5)	XTAL1 External Frequency (F _{osc})	Number of XTAL1 Clocks (T _{osc}) in One StateTime (4)	Comments
0	0	1	1.5 Mbps (LS)	3 MHz	6 MHz	2 T _{osc} /state	PLL Off
1	0	0	1.5 Mbps (LS)	6 MHz (3)	12 MHz	2 T _{OSC} /state	PLL Off
1	1	0	12 Mbps (FS)	12 MHz (3)	12 MHz	1 T _{osc} /state	PLL On

Table 8. Frequency Selection and Operating Frequency

NOTES:

- 1. Other PLLSELx combinations are not valid.
- 2. The sampling rate is 4X the USB rate.
- 3. The 8x930Ax CPU and peripherals frequency is 3 MHz (low clock mode) until firmware disables the low clock mode.
- The number of XTAL clocks in one state depends on the PLLSELx selections. When the CPU is operating at low clock mode (3 MHz), there are four T_{OSC} per state for the PLLSEL2:1:0 = 100 and 110.
- 5. The AC timing specification (Table 11) defines the following symbol: CPU frequency = $F_{CLK} = 1/T_{CLK}$.

Figure 5. Clock Circuit

8x930Ax UNIVERSAL SERIAL BUS (USB) MICROCONTROLLER

5.2 DC Characteristics

Symbol	Parameter	Min	Typical (1)	Max	Units	Test Conditions
V _{IL}	Input Low Voltage (Except EA#)	-0.5		0.2 V _{CC} - 0.1	V	
V _{IL1}	Input Low Voltage (EA#)	0		$0.2 V_{CC} - 0.3$	V	
V _{IH}	Input High Voltage (Except XTAL1, RST)	0.2 V _{cc} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage (XTAL1, RST)	0.7 V _{cc}		V _{cc} + 0.5	V	
V _{OL}	Output Low Voltage (Port 1, 2, 3)			0.3 0.45 1.0	V	$I_{OL} = 100 \ \mu A (2, 3)$ $I_{OL} = 1.6 \ mA$ $I_{OL} = 3.5 \ mA$
V _{ol1}	Output Low Voltage (Port 0, ALE, PSEN#, SOF#)			0.3 0.45 1.0	v	$I_{OL} = 200 \ \mu A (2, 3)$ $I_{OL} = 3.2 \ m A$ $I_{OL} = 7.0 \ m A$
V _{OH}	Output High Voltage (Port 1, 2, 3,ALE, PSEN#, SOF#)	$V_{cc} - 0.3$ $V_{cc} - 0.7$ $V_{cc} - 1.5$			V	I _{OH} = -10 μA (4) I _{OH} = -30 μA I _{OH} = -60 μA
V _{OH1}	Output High Voltage (Port 0 in External Address)	$V_{cc} - 0.3$ $V_{cc} - 0.7$ $V_{cc} - 1.5$			v	I _{OH} = -200 μA (4) I _{OH} = -3.2 mA I _{OH} = -7.0 mA
I	Logical 0 Input Current (Port 1,2,3)			-150	μA	V _{IN} = 0.45 V
I _{LI}	Input Leakage Current (Port 0)			±10	μA	$0.45 < V_{IN} < V_{CC}$

Table 9. DC Characteristics at Operating Conditions

NOTE:

1. Typical values are obtained using $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$ and are not guaranteed.

- 2. Under steady state (non-transient) conditions, IoL must be externally limited as follows:
 - Maximum I_{OH} per port pin:10 mA

Maximum I_{OL} per 8-bit port: Port 0: 26 mA Po

Ports 1-3: 15 mA

Maximum Total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test conditions, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 3. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V on the low-level outputs of ALE and Ports 1, 2 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0. In applications where capacitive loading exceeds 100pF, the noise pulses on these signals may exceed 0.8 V. It may be desirable to qualify ALE or other signals with a Schmitt Trigger or CMOS-level input logic.
- Capacitive loading on Ports 0 and 2 cause the V_{OH} on ALE and PSEN to drop below the V_{CC} specifica-4. tion when the address lines are stabilizing.
- The abbreviations "LS" and "FS" indicate "Low Speed" and "Full Speed," respectively. 5.

Symbol	Parameter	Min	Typical (1)	Max	Units	Test Conditions
I _{TL}	Logical 1-to-0 Transition Current (Port 1, 2,3)			-650	μA	V _{IN} = 2.0 V
R _{RST}	RST Pulldown Resistor	40		225	KΩ	
C _{IO}			10		pF	F _{OSC} = 12 MHz T _A = 25°C
I _{PD}	Powerdown Current — Normal powerdown — USB suspend		25 145	50 175	μA	
I _{DL} (5)	Idle Mode I _{cc}			40		PLLSEL = 110 3MHz – FS (in low clock mode)
				100	mA	PLLSEL = 110 12MHz – FS (not in low clock mode)
				30		PLLSEL = 001 3MHz – LS
				55		PLLSEL = 100 6 MHz – LS

Table 9. DC Characteristics at Operating Conditions (Continued)

NOTE:

1. Typical values are obtained using V_{CC} = 5.0V, T_A = 25°C and are not guaranteed.

2. Under steady state (non-transient) conditions, In must be externally limited as follows:

Maximum I_{OH} per port pin:10 mA

Maximum IoL per 8-bit port:

Port 0: 26 mA Ports 1-3: 15 mA

Maximum Total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test conditions, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 3. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V on the low-level outputs of ALE and Ports 1, 2 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0. In applications where capacitive loading exceeds 100pF, the noise pulses on these signals may exceed 0.8 V. It may be desirable to qualify ALE or other signals with a Schmitt Trigger or CMOS-level input logic.
- Capacitive loading on Ports 0 and 2 cause the V_{OH} on ALE and PSEN to drop below the V_{CC} specification when the address lines are stabilizing.
- 5. The abbreviations "LS" and "FS" indicate "Low Speed" and "Full Speed," respectively.

Symbol	Parameter	Min	Typical (1)	Max	Units	Test Conditions
I _{CC} (5)	Active I _{cc}			60		PLLSEL = 110 3 MHz – FS (in low clock mode)
				150	mA	PLLSEL = 110 12 MHz – FS (not in low clock mode)
				45		PLLSEL = 001 3 MHz – LS
				75		PLLSEL = 100 6 MHz – LS

Table 9. DC Characteristics at Operating Conditions (Continued)

NOTE:

- 1. Typical values are obtained using V_{CC} = 5.0V, T_A = 25°C and are not guaranteed.
- 2. Under steady state (non-transient) conditions, $I_{\rm OL}$ must be externally limited as follows: Maximum $I_{\rm OH}$ per port pin:10 mA

Maximum I_{OL} per 8-bit port:

Port 0: 26 mA Ports 1-3: 15 mA

Maximum Total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test conditions, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 3. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses above 0.4 V on the low-level outputs of ALE and Ports 1, 2 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins change from 1 to 0. In applications where capacitive loading exceeds 100pF, the noise pulses on these signals may exceed 0.8 V. It may be desirable to qualify ALE or other signals with a Schmitt Trigger or CMOS-level input logic.
- Capacitive loading on Ports 0 and 2 cause the V_{OH} on ALE and PSEN to drop below the V_{CC} specification when the address lines are stabilizing.
- 5. The abbreviations "LS" and "FS" indicate "Low Speed" and "Full Speed," respectively.

5.3 Definition of AC Symbols

	Table 10. AC Ti	ming S
	Signals	
А	Address	
D	Data In	
L	ALE	
Q	Data Out	
R	RD#/PSEN#	
W	WR#	

	Conditions
Н	High
L	Low
V	Valid
Х	Hold
Ζ	Floating

Table 10. AC Timing Symbol Definitions

5.4 AC Characteristics

Test Conditions: Capacitive load on all pins = 50 pF, Rise and Fall times = 10 ns, F_{osc} = 6 MHz or 12 MHz

5.4.1 SYSTEM BUS AC CHARACTERISTICS

		CPU Frequency	CPU Frequency		
Symbol	Parameter	@ 12 MHz (M, N = 0)	Min	Max	Units
T _{CLK}	1/(CPU Frequency)	83.33 (Typical)			ns (1, 2)
T _{LHLL}	ALE Pulse Width	34.66	(0.5+M)T _{CLK} - 7		ns (3)
T _{AVLL}	Address Valid to ALE Low	26.66	(0.5+М)Т _{СLК} – 17		ns (3)
T _{LLAX}	Address Hold after ALE Low	4	4		ns (4)
T _{RLRH} (5)	RD# or PSEN# Pulse Width	73.33	(1+N)T _{CLK} – 10		ns (6)
T _{WLWH}	WR# Pulse Width	71.33	(1+N)T _{CLK} – 12		ns (6)
T _{LLRL} (5)	ALE Low to RD# or PSEN# Low	8	8		ns
T _{LHAX}	ALE High to Address Hold	40.33	(1+M)T _{CLK} – 43		ns (3)
T _{RLDV} (5)	RD# or PSEN# Low to Valid Data/Instruction In	50.33		(1+N)T _{CLK} – 33	ns (6)
T _{RHDX} (5)	Data/Instruct. Hold After RD# or PSEN# High	0	0		ns
T _{RLAZ} (5)	RD# or PSEN# Low to Address Float	0		0	ns
T _{RHDZ1} (5)	Instruct. Float After PSEN# High	10		10	ns
T _{RHDZ2} (5)	Data Float After RD# or PSEN# High	83.33		Т _{сlк}	ns
T _{RHLH1} (5)	PSEN# High to ALE High (Instruction)	10	10		ns
T _{RHLH2} (5)	RD# or PSEN# High to ALE High (Data)	83.33	T _{CLK}		ns
T _{WHLH}	WR# High to ALE High	88.33	Т _{ськ} + 5		ns
T _{AVDV1}	Address (P0) Valid to Valid Data/Instruction In	106.66		(2+M+N)T _{CLK} – 63	ns (3, 6)

Table 11. AC Characteristics at Operating Conditions

NOTES:

1. Refer to Table 8 on page 12 for CPU frequencies vs. XTAL1 frequencies.

2. XTAL1 frequency is $\pm 0.25\%$ for full speed and $\pm 1.5\%$ for low speed.

3. M= 0,1 is the extended ALE state.

4. At 50° C, $T_{LLAX} = 8 \text{ ns}$

- 5. Specifications for PSEN# are identical to those for RD#.
- 6. N= 0,1,2,3 is the RD#/PSEN#/WR# wait state.

0	Demonster	CPU Frequency	CPU Frequency		
Symbol	Parameter	@ 12 MHz (M, N = 0)	Min	Мах	Units
T _{AVDV2}	Address (P2) Valid to Valid Data/Instruction In	118.66		(2+M+N)T _{CLK} - 48	ns (3, 6)
T _{AVDV3}	Address (P2) Valid to Valid Instruction In	23.33		(1+N)T _{CLK} -60	ns (6)
T _{AVRL} (5)	Address Valid to RD# or PSEN# Low	40.33	(1+M)T _{CLK} – 46		ns (3)
T _{AVWL1}	Address (P0) Valid to WR# Low	40.33	(1+M)T _{CLK} – 46		ns (3)
T _{AVWL2}	Address (P2) Valid to WR# Low	66.33	(1+M)T _{CLK} – 17		ns (3)
T _{WHQX}	Data Hold after WR# High	28.66	0.5 T _{CLK} – 13		ns
T _{QVWH}	Data Valid to WR# High	68.33	(1+N)T _{CLK} -15		ns (6)
T _{WHAX}	WR# High to Address Hold	70.33	Т _{СLК} – 13		ns

Table 11. AC Characteristics at Operating Conditions (Continued)

NOTES:

1. Refer to Table 8 on page 12 for CPU frequencies vs. XTAL1 frequencies.

XTAL1 frequency is $\pm 0.25\%$ for full speed and $\pm 1.5\%$ for low speed. 2.

- 3. M= 0,1 is the extended ALE state.
- 4. At 50° C, $T_{LLAX} = 8$ ns 5. Specifications for PSEN# are identical to those for RD#.
- N= 0,1,2,3 is the RD#/PSEN#/WR# wait state. 6.

5.4.2 SYSTEM BUS TIMING DIAGRAMS, NONPAGE MODE

Figure 6. 8x930Ax Code Fetch, Nonpage Mode

Figure 7. 8x930Ax Data Read, Nonpage Mode

Figure 8. 8x930Ax Data Write, Nonpage Mode

5.4.3 SYSTEM BUS TIMING DIAGRAMS, PAGE MODE

Figure 9. 8x930Ax Code Fetch, Page Mode

Figure 10. 8x930Ax Data Read, Page Mode

Figure 11. 8x930Ax Data write, Page Mode

5.4.4 DEFINITION OF REAL-TIME WAIT SYMBOLS

Table 12. Real-time Wait Timing Symbol Definitions

	Signals			
А	Address			
D	Data			
С	WCLK			
Υ	WAIT#			
W	WR#			
R	RD#/PSEN#			

	Conditions	
L	Low	
Х	Hold	
V	Setup	

5.4.5 REAL-TIME WAIT FUNCTION AC CHARACTERISTICS

Symbol	Parameter	F _{cLK} Variable ^{(1) (2)}			Units
Symbol		Min	Тур	Мах	Units
T _{CLYV}	Wait Clock Low to Wait Setup	0		0.5 T _{CLK} – 13	ns
T _{CLYX}	Wait Hold after Wait Clock Low	(W)T _{CLK} + 5		(0.5+W)T _{CLK} – 13	ns
T _{RLYV}	PSEN# or RD# Low to Wait Setup	0		0.5 T _{CLK} – 13	ns
T _{RLYX}	Wait Hold after PSEN# or RD# Low	(W)T _{CLK} + 5		(0.5+W)T _{CLK} – 13	ns
T _{WLYV}	WR# Low to Wait Setup	0		0.5 T _{CLK} – 13	ns
T _{WLYX}	Wait Hold after WR# Low	(W)T _{CLK} + 5		(0.5+W)T _{CLK} – 13	ns

Table 13. Real-time Wait AC Timing Specifications

NOTES:

1. W = 0, 1, 2, ... is the number of real-time wait states.

2. Real-time Wait function has a critical timing for instruction read. It is not advisable to use this feature for instruction read during page mode.

5.4.6 REAL-TIME WAIT FUNCTION TIMING DIAGRAMS

Figure 12. External Code Fetch/Data Read (Nonpage Mode, Real-time Wait State)

Figure 13. External Data Write (Nonpage Mode, Real-time Wait State)

ADVANCE INFORMATION

Figure 14. External Data Read (Page Mode, Real-time Wait State)

Figure 15. External Data Write (Page Mode, Real-time Wait State)

ADVANCE INFORMATION

5.5 AC Characteristics — Serial Port, Synchronous Mode 0

Symbol	Parameter	Min	Max	Units
T _{XLXL}	Serial Port Clock Cycle Time	6 T _{osc}		ns
T _{QVSH}	Output Data Setup to Clock Rising Edge	5 T _{osc} – 133		ns
T _{SHQX}	Output Data hold after Clock Rising Edge	$T_{OSC} - 50$		ns
T _{XHDX}	Input Data Hold after Clock Rising Edge	0		ns
T _{XHDV}	Clock Rising Edge to Input Data Valid		5 T _{osc} – 133	ns

Figure 16. Serial Port Waveform — Synchronous Mode 0

5.6 External Clock Drive

Symbol	Parameter	Min	Max	Units
1/T _{osc}	Oscillator Frequency (F _{OSC})	6	12	MHz
T _{CHCX}	High Time	0.35 T _{osc}	0.65 T _{osc}	ns
T _{CLCX}	Low Time	0.35 T _{osc}	0.65 T _{osc}	ns
T _{CLCH}	Rise Time		10	ns
T _{CHCL}	Fall Time		10	ns

Figure 17. External Clock Drive Waveforms

5.7 Testing Waveforms

Figure 18. AC Testing Input, Output Waveforms

Figure 19. Float Waveforms

6.0 THERMAL CHARACTERISTICS

This microcontroller operates over the commercial temperature range from 0°C to 70°C. All thermal impedance data (Table 16) is approximate for static air conditions at 1 watt of power dissipation. Values change depending on operating conditions and application requirements. The Intel *Packaging Handbook* (order number 240800) describes Intel's thermal impedance test methodology. The *Components Quality and Reliability Handbook* (order number 210997) provides quality and reliability information.

Table 16. Thermal Characteristics

Package Type	θ_{JA}	οιθ
68-pin PLCC	N/A	N/A

7.0 PRODUCT REFERENCE

This section lists design considerations for the 8x930Ax Universal Serial Bus microcontroller.

7.1 External Bus Timing and Peripheral Timing Affected by PLLSEL2:0 Selection

PLLSEL2 (pin43), PLLSEL1 (pin 42), and PLLSEL0 (pin 44) determine the 8x930Ax internal CPU operating frequency. The selected CPU operating frequency also influences all the peripherals. If the PLLSEL2:0 pins of the 8x930Ax are set to 110, then the internal clock frequency is 12MHz, and one state time equals one clock time (please refer to Table 8 on page 12). Therefore, all internal and external instruction times for the timer, serial port, PCA, are two times faster than with other PLLSEL2:0 selections. Refer to the 8x930Ax, 8x930Hx Universal Serial Bus Microcontroller User's Manual for the new peripheral timing formulas.

7.2 Low Clock Mode Frequency

In low clock mode, the CPU and peripherals run at 3 MHz. All external bus accesses are affected, including instruction fetch, data read/write, and peripheral timing. Please refer to Table 8 on page 12 for the relationship of 3 MHz CPU and peripheral timing (T_{CLK}) to state times. One peripheral cycle is 6 state times.

7.3 Setting FFRC Bit Clears Only the Oldest Packet in the FIFO

If the receive FIFO is set as a dual packet mode, it can receive two packets. Setting FFRC to indicate FIFO Read Complete will not flush the entire FIFO, only the oldest packet will be flushed. The read marker will be advanced to the location of the read pointer.

7.4 Series Resistor Requirement for Impedance Matching

Per the USB 1.0 specification (page 111, section 7.1.1.1), the impedance of the differential driver must be between 29 and 44 Ohms. To match the cable impedance, a series resistor of 27 to 33 Ohms should be connected to each USB line; i.e., on D_{P0} (pin 55) and on D_{M0} (pin 54). If the USB line is improperly terminated or not matched, signal fidelity will suffer. This can be seen on the scope as excessive overshoot and undershoot. This will potentially introduce bit errors.

7.5 Pullup Requirement for Full Speed Device and Low Speed Device

The pullup is a USB requirement to allow the host to identify which devices are low speed and which are full speed in order to communicate at the appropriate data rate. For Full Speed devices (12 Mbps) use a 1.5K pullup resistor (to 3.0 V – 3.6 V) on the $D_{\rm P0}$ line. For Low Speed devices (1.5Mbps), use a 1.5K pullup resistor (to 3.0 V – 3.6 V) on the $D_{\rm M0}$ line.

7.6 Powerdown Mode Cannot Be Invoked Before USB Suspend

If the 8x930Ax is put into powerdown mode prior to receiving a USB Suspend signal from the host, a USB Resume will not properly wake up the 8x930Ax from powerdown mode.

8.0 SPECIFICATION SUPPLEMENT FOR 8X930AX3 AND 8X930AX4

All descriptions above apply to the 8x930Ax and $8x930Ax^2$ microcontrollers. The following specifications apply to recent steppings of the 8x930Ax ($8x930Ax^3$ and $8x930Ax^4$). This information is in addition to (or in place of) the specifications described above.

8.1 Six Endpoint Pairs Functionality

In the default state, the SIXEPPEN bit of 8x930Ax3's and 8x930Ax4's EPCONFIG SFR is cleared and the 6 endpoint pair feature is disabled. In this state, the endpoint pairs of the 8x930Ax3 and 8x930Ax4 are similar to those of the 8x930Ax and 8x930Ax2 devices.

To enable the 6 endpoint pair feature, set EPCONFIG'S SIXEPPEN bit. The 8*x*930A*x*3 and 8*x*930A*x*4 will then have the endpoint pairs shown in Table 17.

EPINDEX	FFSZ1:0	Transmit FIFO (bytes)	Receive FIFO (bytes)
0xxx x000	xx	16	16
0xxx x001	00	256	256
0xxx x010	xx	32	32
0xxx x011	xx	32	32
0xxx x100	xx	32	32
0xxx x101	xx	16	16

Table 17. Slx Endpoint Pair Feature

When the 6 endpoint pair feature is enabled, two additional SFRs — the Function Interrupt Enable Register 1 (FIE1) and the Function Interrupt Flag Register 1 (FIFLG1) — are enabled to manage interrupts for the additional endpoint pairs.

See the 8x930Ax, 8x930Hx Universal Serial Bus Microcontroller User's Manual for additional information.

8.2 DC Characteristics

The V_{OH} specification given in the DC Characteristics section of this datasheet is changed to V_{OH} = {min} V_{CC} - 1.7 V when I_{OH} = -60 μ A for the A3 stepping onward.

8.3 Extended Data Float (EDF) AC Timing Feature

To provide a direct interface capability to slower memory without the use of tristate drivers, an extended data float (EDF) option has been added to the 8x930Ax3 and 8x930Ax4. This option is controlled by the EDF# bit (bit 3 in the UCONFIG1 configuration byte).

If the EDF# bit is configured to 1, the 8x930Ax3 and 8x930Ax4 behave per the current specification (some AC timings are different). This is known as "Compatibility Mode". Table 19 on page 32 lists the AC characteristics in this "Compatibility Mode" that are different compared to the 8x930Ax and 8x930Ax2. Parameters not listed in the table remain the same as for 8x930Ax and 8x930Ax2.

If the 8x930Ax3 and 8x930Ax4 are configured with EDF# = 0, the device will have extended data float timings. This mode is known as the "Increased T_{RHDZ1} Mode." Table 20 on page 32 and Table 21 on page 33 show the parameters that are affected when EDF#= 0.

Configuring the device with EDF# = 0 does not affect wait state A (all regions except 01:). Wait state A can have 0, 1, 2, or 3 wait states. EDF#=0affects external wait state B (region 01:). The summary of the effect EDF# has on wait states is listed in Table 18.

Table 18. Effect of "EDF#" or	Wait States
-------------------------------	-------------

EDF#	WSB#[1:0]	Wait-state (for page 01)		
1	11	0		
1	10	1		
1	01	2		
1	00	3		
0	11	1		
0	10	1		
0	01	3		
0	00	3		

Symbol	Parameter	8x930Ax3/8x930Ax4 Compatibility Mode (ns) (EDF# =1) (1)		
T _{AVLL}	Address Valid to ALE Low	(0.5+M)T _{CLK} - 13 [min]		
T _{LLAX}	Address Hold after ALE Low	10 [min]		
T _{WLWH}	WR# Pulse Width	(1+N)T _{CLK} - 10 [min]		
T _{LLRL}	ALE Low to RD# or PSEN# low	10 [min]		
T _{LHAX}	ALE High to Address Hold	(1+M)T _{CLK} - 27 [min]		
T _{RLDV}	RD# or PSEN# Low to Valid Data/Inst. In	(1+N)T _{CLK} - 30 [max]		
T _{RLAZ}	RD# or PSEN# Low to Address Float	3 max (2)		
T _{RHDZ2}	Data Float After PSEN# or RD# High	T _{CLK} + 10 [max]		
T _{RHLH2}	RD# or PSEN# High to ALE High (data)	Т _{ськ} + 10 [min]		
T _{WHLH}	WR# High to ALE High	T _{CLK} +10 [min]		
T _{AVDV2}	Address (demux'ed) Valid to Valid Data/Instr. In	(2+M+N)T _{CLK} - 38 [max]		
T _{AVRL}	Address Valid to RD# or PSEN# Low	(1+M)T _{CLK} - 40 [min]		
T _{AVWL1}	Address (mux'ed) Valid to WR# Low	(1+M)T _{CLK} - 40 [min]		
 NOTES: Device configured with default data float timing for fast memory interface. Typical value is 0 ns. 				

Table 19. AC Characteristics for 8x930Ax3 and 8x930Ax4 in Compatibilit	v Mode
	,

Table 20. 8x930Ax3 and 8x930Ax4 Default and Extended Data Float Timings

Sym- bol	Parameter	Default Data Float Timing (ns) Compatibility Mode (EDF# =1) (1,2,4,5)	Extended Data Float Timing (ns) Increased T _{RHD21} mode (EDF#=0) (1,3,4,5)	
T _{LLAX}	Address Hold after ALE Low	10 [min]	20 [min]	
T _{RLRH}	RD# or PSEN# Pulse Width	(1+N)T _{CLK} - 10 [min]	(1+N)T _{CLK} - 32 [min]	
T_{WLWH}	WR# Pulse Width	(1+N)T _{CLK} - 10 [min]	(1+N)T _{CLK} - 32 [min]	
T _{LLRL}	ALE Low to RD# or PSEN# low	10 [min]	20 [min]	
T _{LHAX}	ALE High to Address Hold	(1+M)T _{CLK} - 27 [min]	(0.5+M)T _{CLK} + 15 [min]	
T _{RLDV}	RD# or PSEN# Low to Valid Data/Inst. In	(1+N)T _{CLK} - 30 [max]	(1+N)T _{CLK} - 50 [max]	
T _{RHDZ1}	Instruct. Float After PSEN# or RD# High	10 [max]	(0.5)T _{CLK} - 5 [max]	

NOTES:

- Worst-case numbers based on silicon data collected to date. 1.
- 2. Device configured with default data float timing for fast memory interface.
- Device configured with extended data float timing for slow memory interface. 3.
- The values listed are for 12 MHz. For 6 MHz, the value of T_{CLK} will double and will equal 166.6 ns. M=0,1 is the extended ALE state; N= 0,1,2,3 is the RD#/PSEN#/WR# wait state. 4.
- 5.

Tuble 20. 0x0004x0 and 0x0004x4 Benant and Extended Bata Float Timings (Continued)					
Sym- bol	Parameter	Default Data Float Timing (ns) Compatibility Mode (EDF# =1) (1,2,4,5)	Extended Data Float Timing (ns) Increased T _{RHD21} mode (EDF#=0) (1,3,4,5)		
T _{RHDZ2}	Data Float After PSEN# or RD# High	T _{CLK} + 10 [max]	1.5 T _{CLK} - 5 [max]		
T _{RHLH2}	RD# or PSEN# High to ALE High (data)	Т _{СLК} + 10 [min]	(1.5)T _{CLK} - 7 [min]		
T _{RHLH1}	PSEN# High to ALE High (inst.)	10 [min]	(0.5)T _{CLK} - 7 [min]		
T_{WHLH}	WR# High to ALE High	Т _{СLК} + 10 [min]	(1.5)T _{CLK} - 7 [min]		
T _{AVDV1}	Address (mux'ed) Valid to Valid Data/Inst. In	(2+M+N)T _{CLK} - 60 [max]	(1.5+M+N)T _{CLK} - 28 [max]		
T _{AVRL}	Address Valid to RD# or PSEN# Low	(1+M)T _{CLK} - 40 [min]	(0.5+M)T _{CLK} + 10 [min]		
T _{AVWL1}	Address (mux'ed) Valid to WR# Low	(1+M)T _{CLK} - 40 [min]	(0.5+M)T _{CLK} + 10 [min]		
T _{AVWL2}	Address (demux'ed) Valid to WR# Low	(1+M)T _{CLK} - 17 [min]	(1+M)T _{CLK} + 10 [min]		

Table 20. 8x930Ax3 and 8x930Ax4 Default and Extended Data Float Timings (Continued)

NOTES:

1. Worst-case numbers based on silicon data collected to date.

2. Device configured with default data float timing for fast memory interface.

3. Device configured with extended data float timing for slow memory interface.

4. The values listed are for 12 MHz. For 6 MHz, the value of T_{CLK} will double and will equal 166.6 ns.

5. M=0,1 is the extended ALE state; N= 0,1,2,3 is the RD#/PSEN#/WR# wait state.

Table 21. 8x930Ax3 and 8x930Ax4 Real-time Wait State AC Timing Specifications

Symbol (Parameter)	F _{CLK} Variable Default Data Float Timing (ns) (EDF#=1)		F _{CLK} Variable Extended Data Float Timing (ns) (EDF#=0)			
	Min	Тур	Max	Min	Тур	Max
T _{RLYV} (PSEN# or RD# Low to Wait Setup)	0		0.5 Т _{СLК} - 13	0		0.5 Т _{СLК} - 35
T _{WLYV} (WR# Low to Wait Setup)	0		0.5 Т _{СLК} - 13			0.5 Т _{СLК} - 35

9.0 DEVICE ERRATA

The 8x930Ax may contain design defects or errors known as errata. Characterized errata that may cause the 8x930Ax's behavior to deviate from published specifications are documented in a specification update. Refer to the 8x930Ax (8x930AD, 8x930AE) Specification Update (Order Number 272940, Revision 007 or later). Specification updates can be obtained from your local Intel sales office or from the World Wide Web (www.intel.com).

10.0 DATASHEET REVISION HISTORY

This datasheet is valid for A-2 through A-4 step devices. Datasheets are changed as new device information becomes available. Verify with your local Intel sales office that you have the latest version before finalizing a design or ordering devices.

This (-003) revision of the 8x930Ax datasheet replaces earlier product information. The following changes were made in this version:

- 1. Added "Specification Supplement for 8x930Ax3 and 8x930Ax4" on page 31.
- 2. The following AC Characteristics were changed: $T_{AVLL,} T_{AVDV1,} T_{AVRL,} T_{AVWL1.}$ I_{CC} characteristics updated.
- 3.