hitexmsss PHILIPS ISI'SSH:

DEVELOPMENTTOOLS

THE INSIDER'S GUIDE To THE
PHILIPS ARM7-BASED

MICROCONTROLLERS

An Engineer's Introduction To The LPC2100 Series
Trevor Martin BSc. (hons.) CEng. MIEE

www.hitex.co.uk/arm

Introduction to the LPC2000 Introduction

Published by Hitex (UK) Ltd.
ISBN: 0-9549988 1

First Published February 2005
First Reprint April 2005

Hitex (UK) Ltd.

Sir William Lyons Road

University Of Warwick Science Park
Coventry, CV4 7TEZ

Credits

Author: Trevor Martin

Illustrator: Sarah Latchford

Editors: Alison Wenlock & Michael Beach
Cover: Michael Beach

Acknowledgements

The author would like to thank Kees van Seventer and Chris Davies of Philips
Semiconductors for their assistance in compiling this book

© Hitex (UK) Ltd., 21/04/2005
All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system or transmitted in any form or by any means, electronic, mechanical or photocopying,
recording or otherwise without the prior written permission of the Publisher.

2

Introduction to the LPC2000 Introduction

Introduction to the LPC2000 Introduction

1 8 oo 18 od [] o ISP 8
Chapter 1: The ARM7 CPU COrE€c.ccoveiieiie ettt 10
(@ 11 4 7 ST RURSUURTTRPPR 10
LI L= o 1= 1= S 10
REGISTEIS .. ettt b e bbb e e bt et e bt e bt et e ene e bt e ae e e re et e 11
Current Program Status REQISTENuciviiieiie et nneas 12
EXCEPLION IMOAES ...ttt ettt 13
ARM 7 INSTFUCTION SET.....uiiiiiiiiiiiieieie ettt bbb 16
= Lo 0T OSSP 18
Data Processing INStIUCLIONScouiiieiiiiiesiese ettt 19
(000 0}V L0 TR =To 51 S S 20
Copying MUILIPIE REQISTEISccuviiiieiieee e 20
SWAP INSTFUCTION ..ttt bbbt e sreenbe st e sbe e e 21
Modifying The Status REGISTENSccvcviiieieeie e 21
SOTEWAKE INTEITUPT ...ttt ettt e sneenne s 22
IMIACC UNIE. bbb b bbbt e et bbbt beene s 23
THUMB INSTFUCTION SETovviiiiiiiiiceeieiee et 24
SUIMIMAIY ..ottt b e bttt b bt bbb e et e e b e e nne s 26
Chapter 2: Software Developmentccccocveieeiie e 27
(@ 11 4 1 ST PRSU PRSPPI 27
LVAY o] o T O] 0 4] 0] -1 S 27
UVISTON IDE-......o ittt bbbttt bbbttt 28
LI L0 T LTS 28
STANTUDP COUR ...ttt ettt et be et e et e reenbeaneesbeente s 29
Interworking ARM/THUMB COdEccoviiiiieece s 31
STDIO LIDIATIES ..ottt et nne s 32
ACCESSING PEIIPNEIALS ... 33
INTErrupPt SErvICE ROUTINESoveiiiiie et 34
Exception source Constants table C function prototypeccccoeeveveiieneniienennnens 34
SOTEWAKE TNTEITUPT ...ttt b et st e e sneenne s 36
Locating Code IN RAM........ooie et e e e e saeenee e 36
Operating SYSTEM SUPPOTToiiiiieieiieitieie ettt st sbe e 38
Fixing Objects At ADSOIULE LOCALIONScceiveieiieiieeie e 38
INTINE ASSEIMDIET ...ttt b bbb ens 38
Hardware Debugging TOOIS.ccuiiiiiiieiesieeeee e 39

Introduction to the LPC2000 Introduction

IMPOITANTL ...t e et e e b e e nnneas 40
EVEN MOre IMPOITANToviiiiiiecie e 40

YU 010 0 F= T YU PRPR 40
Chapter 3: System Peripherals ..o, 42
OULTINE ...t b bbbt e e e bbb sb e e enes 42
BUS STFUCTUIE ...ttt sttt s e e e be e sbe e e be e nene e 42
V=70 aTo] YA\ £=T o I PSPPSR P R OPRPTPRN 44
ReQIStEr ProgramiMiNg.........ccccoiiiieiieiieie ettt sb e see e 45
Memory Accelerator MOUUIEooveii i 45
Example MAM Configurationcooooeiiiiniiieieie e 49
FLASH Memory ProgramimMing.......ccccceeieieeiroriesieeseesieseesieseesseessesseesseessesssssseessssseenns 50
MemOory Map CONEIOL.........ccuiiiee et 50
BOOUOAART ... bbb 51
PRITIPS ISP UTHTY......oviiiieiiiceee e 52
IN-Application Programmingc.cooeoeeieenieie et 53
EXternal BUS INTEITACEooiiiie e e 54
External Memory INTEITACEooeiiiiieiice e 54
Using The External Bus INTEITACE ..o 57
BOOtING FrOM ROM ...t 58
Phase LOCKEA LOOP . ..oiiiiiieie ettt ettt sttt ste e reenbeenaeaneenne s 60
VLSI Peripheral BUS DIVIAETccoiiiiiiiiiiiieieeee e 62
Example Code: PLL And VPB Configuration...........ccoccoeririneienene e 63
POWET CONTIOL. ...ttt ettt et e e e teesaesreenteeneeaneenreas 64
LPC2000 INTEFTUPT SYSTEIM ...vviiiiiieiiie ettt sb e snb e s nraeeans 66
PIN CONNECE BIOCK........eiuiiiiiiiiieiesie et 66
EXternal INTerrupt PINS ..o 66
INTEITUPT STIUCTUIE ...t ennne e e 67
FIQ INTEITUDT. ..ottt bbbttt 68
Leaving AN FIQ INTEITUPL ..c.veieieie ettt 68
Example Program: FIQ INTEITUPLccoiviiiiiiiiieee e 69

A Z=Tol (o] =0 [N 1 = (SO PRRT RSP 70
Leaving An TRQ INTEITUPT.....cviiiieiiie e 71
Leaving AN TRQ INTEITUPLcoviiiiiee et 72
Example Program: IRQ INTEITUPTccoiiiiiiiiiieceee e 72
NON-VECtOred INTEITUPLS ...ocvviieicce et et 73
Leaving A Non-Vectored IRQ INTEITUPToveiiiiiieiiiesese e 73
Example Program: Non-Vectored INterrupt.........cccocviieeiveie i i 73
INESTEA TNTEITUPTS ...ttt bbb nne s 75
SUIMIMAIY ..ottt b et b btk b e e bt et e e et e b e e s 76
Chapter 4: User Peripherals..........c.cccoiiiieiicic e, 78
OULIINE ...ttt bbbttt b e b e e s e et et nae bt enreenes 78

Introduction to the LPC2000 Introduction

GENEral PUIPOSE 1/O ...ttt 78
General PUIPOSE TIMIEESoiiiiiieieieie ettt bbbt 79
PWIM MOGUIAEOT ...ttt sttt sbe e nne s 82
REAI TIME CIOCK ...ttt aeene e 85
LAY (o] o oo [OSSP 88
[N O SRS SUSSPRSRPR 90
2C INTEITACEo ettt ns 94
ST o I 1] (=] =TSSR 99
ANalog TO Digital CONVEITETc.ecieiieecieee et sre s 101
Digital TO ANAlOg CONVEITETociiiieiieie et ns 104
CAN CONTIOIET ...ttt eneas 105
ISO 7 LaYer MOGEL.........coveieeeece et 105
CAN NOGE DESIGN ...ttt bbbttt b b e 106
CAN MESSAGE ODJECESvivieiieie ettt st te e sreesneenee s 107
CAN BUS AIDITIAtIONc.eeiiieiiee et 109
BIt TIMING oveeeceee e ettt e e e e e e aeeneesreenas 110
CAN MeSSage TranSMISSIONccuveieierieriesiesteeieese e see sttt sbe b b enes 112
CAN Error CONTAINMENTcoiiiiiiieiesie et sre e enes 115
CAN MEeSSAgE RECEPLION ...ttt sb e 118
ACCEPLANCE FILEIING ..oovviiieiece e 119
Configuring The AcCeptanCe Filter..........ccoiiiiiiiiiieereseee e, 120
SUMMIATY ...ttt ettt h e bt it e b e e st e e bt e e Rt e e e be e esbe e bt e esbeenbeeenbeenbeeanbaens 122
Chapter 5: Keil TUtOrialccoooiiiiiiicce e 124
INSTAITALION .. bbbttt bbb nreas 124
Using the Keil UVISION IDEccoooiiiiiiiiee e 125
Exercise 1: Using the Keil TOOISEL..........ccoiiiiiiiiseeeeee e 126

USING THE DEDUGGET ...t 133
Using The ULINK Hardware DebUQQErccevviiiiieieeecee e 138
Setting up the ULINK JTAG hardware debugger:.........cccovveveiievecie e 138
EXErcise 2: Startup COUBouiiiiiiierie e 141

Exercise 3: Using THUMB COUEcccccoveviveiiiiieieee e 142

Exercise 4: Using STDIO [IDraries.ccoovoeieieieneni s 144

Exercise 5: SIMPIe INEITUPL........cveiiee e 146

Exercise 6: Software INTEITUPL.........occoiiiiiiiieeeee e 148

Exercise 7: Memory Accelerator Modulec.ccceeiveieiieve e 149

Exercise 8: In-Application programming..........cccceeerereneniniienenese e 152

Exercise 9: External Bus INtErfacecovvvereiiieniciseee e 153

Exercise 10 Phase LOCKEd LOOPooviiiieiiiiienic e 157

Exercise 11: Fast INTErruptccvoviiieiece e 159

Exercise 12: Vectored INTEITUPLcooviiriiieee e 160

Exercise 13 : Non Vectored INterruptccooeeieieeie i 162

Exercise 14: Nested INTEITUPLScoeririiiiieiere e 163

Introduction to the LPC2000 Introduction

Exercise 15: General purpose 1O PiNS.......cccevveieiiiereiiie e 164

EXercise 16: TImMer CaplUre........ccccieiiiiieieeie e s e ste et 165

Exercise 17: TIMer MatChcccooviiieiiie e 167

Exercise 18: Dual-Edge (Symmetrical) PWM Generation.cccccevevveenene. 170

Exercise 19: Real TIMe ClOCK..........ccoiieiiiiiiece e 172

EXErCise 20: UART ..ottt st 173

EXercise 21: 12C INtEITaCeooveiiiieiiee e 174

EXEICISE 22 SPI ...ttt 175

EXEICISE 22: SPI ..ottt sttt re e e 176

Exercise 23: Analog To Digital Converter...........cccceevveveiecveiiese e 177

Exercise 24: Digital to Analogue CONVEITENcoceiiiiiiniieieiene e 178

Exercise 25: Transmitting CAN Dataccccceevveviereiie e 179

Exercise 26: Receiving CAN Data..........ccooeirriiiiiniiinieieese e 180
Chapter 6: Tutorial With GNU T0OIS.........ccccoviierieiieieeeeceece e 182
INEOTUCTION ... bbbttt bbbttt nre s 182
TG O =1 g (1] o O oo [TSP 182
Interworking ARM/THUMB COUEccouiiiiieiie e 182
ACCESSING PEIIPNETAISoviiiiiiicieee e bbbt 182
INTErTUPt SErVICE ROUTINES ...t 182
SOTEWAIE INTEITUDT ... 183
] [T L= 0 Vo 1 o] SR 183
Exercise 1: Using The Keil Toolset With The GNU Compilerc.c...c..... 184

ExXercise 2: Startup COUEc.coveiiie e 189

Exercise 3: USINg THUMB COdE..........cooiiiiiiiiiienireneseeeesese e 190

Exercise 4: Using The GNU Librariescccccovevieieiieiieeseese e 192

Exercise 5: SIMple INErrUPL.........ooiiiiiieeee e 193

Exercise 6: Software INtErrupt.........ccooveiieieeie e 195
APPENAICES ...ttt e et re e re e 197
APPENAIX A ettt E et R e bt b nre e te et are et 197
BIDHOGIAPNY ... 197
LATZ=] o1 T 0 =T o] 1SS 197
RETEIENCE SITES ... ittt r et ee e 197
Tools and Software DeVEIOPMENTcceiveriiieceese e 197
Evaluation Boards ANd MOGUIES ...t 197

Introduction to the LPC2000 Introduction

Introduction

This book is intended as a hands-on guide for anyone planning to use the Philips LPC2000
family of microcontrollers in a new design. It is laid out both as a reference book and as a
tutorial. It is assumed that you have some experience in programming microcontrollers for
embedded systems and are familiar with the C language. The bulk of technical information
is spread over the first four chapters, which should be read in order if you are completely
new to the LPC2000 and the ARM7 CPU.

The first chapter gives an introduction to the major features of the ARM7 CPU. Reading this
chapter will give you enough understanding to be able to program any ARM7 device. If you
want to develop your knowledge further, there are a number of excellent books which
describe this architecture and some of these are listed in the bibliography. Chapter Two is a
description of how to write C programs to run on an ARM?7 processor and, as such,
describes specific extensions to the ISO C standard which are necessary for embedded
programming. In this book a commercial compiler is used in the main text, however the
GCC tools have also been ported to ARM.

Appendix A details the ARM-specific features of the GCC tools. Having read the first two
chapters you should understand the processor and its development tools. Chapter Three then
introduces the LPC2000 system peripherals. This chapter describes the system architecture
of the LPC2000 family and how to set the chip up for its best performance. In Chapter Four
we look at the on-chip user peripherals and how to configure them for our application code.

Throughout these chapters various exercises are listed. Each of these exercises are described
in detail in Chapter Five, the Tutorial section. The Tutorial contains a worksheet for each
exercise which steps you through an important aspect of the LPC200. All of the exercises
can be done with the evaluation compiler and simulator which come on the CD provided
with this book. A low-cost starter kit is also available which allows you to download the
example code on to some real hardware and “prove” that it does in fact work. It is hoped that
by reading the book and doing the exercises you will quickly become familiar with the
LPC2000.

Introduction to the LPC2000 Introduction

Introduction to the LPC2000 1 - The ARM7 CPU Core

Chapter 1: The ARM7 CPU Core

Outline

The CPU at the heart of the LPC2000 family is an ARM7. You do not need to be an expert
in ARM7 programming to use the LPC2000, as many of the complexities are taken care of
by the C compiler. You do need to have a basic understanding of how the CPU is working
and its unique features in order to produce a reliable design.

In this chapter we will look at the key features of the ARM7 core along with its
programmers’ model and we will also discuss the instruction set used to program it. This is
intended to give you a good feel for the CPU used in the LPC2000 family. For a more
detailed discussion of the ARM processors, please refer to the books listed in the
bibliography.

The key philosophy behind the ARM design is simplicity. The ARM7 is a RISC computer
with a small instruction set and consequently a small gate count. This makes it ideal for
embedded systems. It has high performance, low power consumption and it takes a small
amount of the available silicon die area.

The Pipeline

At the heart of the ARM7 CPU is the instruction pipeline. The pipeline is used to process
instructions taken from the program store. On the ARM 7 a three-stage pipeline is used.

1 2 3 4 5 6 Instruction
Fetch | |~ o=
Decode \ijj"i ’L\izj ' The ARM?7 three-stage pipeline
e »? , : : has independent fetch, decode
Execute | [/~ -~ mui 1= and execute stages

A three-stage pipeline is the simplest form of pipeline and does not suffer from the kind of
hazards such as read-before-write seen in pipelines with more stages. The pipeline has
hardware independent stages that execute one instruction while decoding a second and
fetching a third. The pipeline speeds up the throughput of CPU instructions so effectively
that most ARM instructions can be executed in a single cycle. The pipeline works most
efficiently on linear code. As soon as a branch is encountered, the pipeline is flushed and
must be refilled before full execution speed can be resumed. As we shall see, the ARM
instruction set has some interesting features which help smooth out small jumps in your
code in order to get the best flow of code through the pipeline. As the pipeline is part of the
CPU, the programmer does not have any exposure to it. However, it is important to
remember that the PC is running eight bytes ahead of the current instruction being executed,
so care must be taken when calculating offsets used in PC relative addressing.

For example, the instruction:

0x4000 LDR PC, [PC,#4]

10

Introduction to the LPC2000 1 - The ARM7 CPU Core

will load the contents of the address PC+4 into the PC. As the PC is running eight bytes
ahead then the contents of address 0x400C will be loaded into the PC and not 0x4004 as you
might expect on first inspection.

Registers

The ARM?Y is a load-and-store architecture, so in order to perform any data processing
instructions the data has first to be moved from the memory store into a central set of
registers, the data processing instruction has to be executed and then the data is stored back
into memory.

Mov M1, R1
M1
The ARM7 CPU is a load-and-
store architecture. All data
Mov Mz, Rz s i
M2 > Add Rs, Ry, Rz (Ra=Ri +H2] processing instructions may only
be carried out on a central
register file
Mov Ra, Ms
M3

The central set of registers are a bank of 16 user registers RO — R15. Each of these registers
is 32 bits wide and RO — R12 are user registers in that they do not have any specific other
function. The Registers R13 — R15 do have special functions in the CPU. R13 is used as the
stack pointer (SP). R14 is called the link register (LR). When a call is made to a function the
return address is automatically stored in the link register and is immediately available on
return from the function. This allows quick entry and return into a ‘leaf” function (a function
that is not going to call further functions). If the function is part of a branch (i.e. it is going
to call other functions) then the link register must be preserved on the stack (R13). Finally
R15 is the program counter (PC). Interestingly, many instructions can be performed on R13
- R15 as if they were standard user registers.

RO
R1
R2
R3
R4
R5
R6
15 User registers + PC R7

The central register file has 16 word wide registers plus an
additional CPU register called the current program status

R8 register. RO — R12 are user registers R13 — R15 have special
RO functions.

R10

R11

R12

R13 is used as the stack pointer | R13

R14 is the link register R14

R15 is the Program Counter R15 (PC)

Current Program Status Register| CPSR 11

Introduction to the LPC2000 1 - The ARM7 CPU Core

Current Program Status Register

In addition to the register bank there is an additional 32 bit wide register called the ‘current
program status register’ (CPSR). The CPSR contains a number of flags which report and
control the operation of the ARM7 CPU.

31 302928 27 876 543210
T Interrupt enable Operating mode
Condition code flags IRQ FIO
Negative FIQ Thumb wstruction set RQ
Zero System
Carry User
oVerflow Undefined instruction

The Current Program Status Register contains condition code flags which indicate the result of data
processing operations and User flags which set the operating mode and enable interrupts. The T bit is for
reference only

The top four bits of the CPSR contain the condition codes which are set by the CPU. The
condition codes report the result status of a data processing operation. From the condition
codes you can tell if a data processing instruction generated a negative, zero, carry or
overflow result. The lowest eight bits in the CPSR contain flags which may be set or cleared
by the application code. Bits 7 and 8 are the | and F bits. These bits are used to enable and
disable the two interrupt sources which are external to the ARM7 CPU. All of the LPC2000
peripherals are connected to these two interrupt lines as we shall see later. You should be
careful when programming these two bits because in order to disable either interrupt source
the bit must be set to *1” not *0” as you might expect. Bit 5 is the THUMB bit.

The ARM7 CPU is capable of executing two instruction sets; the ARM instruction set which
is 32 bits wide and the THUMB instruction set which is 16 bits wide. Consequently the T bit
reports which instruction set is being executed. Your code should not try to set or clear this
bit to switch between instruction sets. We will see the correct entry mechanism a bit later.
The last five bits are the mode bits. The ARM7 has seven different operating modes. Your
application code will normally run in the user mode with access to the register bank RO —
R15 and the CPSR as already discussed. However in response to an exception such as an
interrupt, memory error or software interrupt instruction the processor will change modes.
When this happens the registers RO — R12 and R15 remain the same but R13 (LR) and R14
(SP) are replaced by a new pair of registers unique to that mode. This means that each mode
has its own stack and link register. In addition the fast interrupt mode (FIQ) has duplicate
registers for R7 — R12. This means that you can make a fast entry into an FIQ interrupt
without the need to preserve registers onto the stack.

Each of the modes except user mode has an additional register called the “saved program
status register”. If your application is running in user mode when an exception occurs the
mode will change and the current contents of the CPSR will be saved into the SPSR. The
exception code will run and on return from the exception the context of the CPSR will be

12

Introduction to the LPC2000

1 - The ARM7 CPU Core

restored from the SPSR allowing the application code to resume execution. The operating
modes are listed below.

System & User FIQ Supervisor Abort IRQ Undefined
RO [Ro [R0 RO "m0 || RO |
R1 R1 R1 R1 | R | R1
R2 R2 R2 R2 Rz | R2
R3 | Ra R3 R3 Rs | R3
R4 [Ra R4 R4 [Ra | R4
R5 [s R5 RS [R5 | RS
R6 [re R6 [re [Rre | R6
R7 R7_fiq R7 R7 R R7
R8 R8_fiq R8 R8 [Re | R8
R9 R9_fiq Ro R9 Re | R9
R10 R10_fiq R10 R10 " RI0 | R10
R11 R11_fig R11 R11 | R1t | R11
R12 R12_fig R12 R12 Rz | R12
R13 R13_fiq R13_svc R13_abt R13_irq R13_und
R14 R14_fiq R14_svc R14_abt R14_irg R14_und
R15(PC) | | R15(PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)
CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_fiq | [SPsRsw | [sPsm.ant | [SPSRira | [SPSR_und

Exception Modes

The ARM7 CPU has six operating modes
which are used to process exceptions. The
shaded registers are banked memory that is
“switched in” when the operating mode
changes. The SPSR register is used to save a
copy of the CPSR when the switch occurs

When an exception occurs, the CPU will change modes and the PC be forced to an
exception vector. The vector table starts from address zero with the reset vector and then has
an exception vector every four bytes.

Each operating mode has an
associated interrupt vector. When the
processor changes mode the PC will

jump to the associated vector.

NB. there is a missing vector at
0x00000014

Reset Supervisor 0x00000000
Undefined instruction Undefined 0x00000004
Software interrupt (SWI) Supervisor 0x00000008
Prefetch Abort (instruction fetch memory abort) Abort 0x0000000C
Data Abort (data access memory abort) Abort 0x00000010
IRQ (interrupt) IRQ 0x00000018
FIQ (fast interrupt) FIQ 0x0000001C

13

Introduction to the LPC2000 1 - The ARM7 CPU Core

NB: There is a gap in the vector table because there is a missing vector at 0x00000014. This
location was used on an earlier ARM architecture and has been preserved on ARM7 to
ensure software compatibility between different ARM architectures. However in the
LPC2000 family these four bytes are used for a very special purpose as we shall see later.

Priority Exception
Highestl Reset Each of the exception sources has a fixed priority. The on
2 Data Abort chip peripherals are served by FIQ and IRQ interrupts.
Each peripheral’s priority may be assigned within these
3 FIQ groups
4 IRQ
5 Prefetch Abort
Undefined instruction
Lowest 6 SWI

If multiple exceptions occur then there is a fixed priority as shown below.

When an exception occurs, for example an IRQ exception, the following actions are taken:
First the address of the next instruction to be executed (PC + 4) is saved into the link
register. Then the CPSR is copied into the SPSR of the exception mode that is about to be
entered (i.e. SPSR_irg). The PC is then filled with the address of the exception mode
interrupt vector. In the case of the IRQ mode this is 0x00000018. At the same time the mode
is changed to IRQ mode, which causes R13 and R14 to be replaced by the IRQ R13 and R14
registers. On entry to the IRQ mode, the I bit in the CPSR is set, causing the IRQ interrupt
line to be disabled. If you need to have nested IRQ interrupts, your code must manually re-
enable the IRQ interrupt and push the link register onto the stack in order to preserve the
original return address. From the exception interrupt vector your code will jump to the
exception ISR. The first thing your code must do is to preserve any of the registers R0-R12
that the ISR will use by pushing them onto the IRQ stack. Once this is done you can begin
processing the exception.

USER IRQ

l: Save PC into
link register
When an exception occurs the CPU will change

2: Save CPSR into modes and jump to the associated interrupt vector
SPSR. excep

ISE code pushes registers
R13 =3 =

R14 | v onto stack

R15 [Exception Vector Address

Once your code has finished processing the exception it must return back to the user mode
and continue where it left off. However the ARM instruction set does not contain a “return”
or “return from interrupt” instruction so manipulating the PC must be done by regular
instructions. The situation is further complicated by there being a number of different return

14

Introduction to the LPC2000 1 - The ARM7 CPU Core

cases. First of all, consider the SWI instruction. In this case the SWI instruction is executed,
the address of the next instruction to be executed is stored in the Link register and the
exception is processed. In order to return from the exception all that is necessary is to move
the contents of the link register into the PC and processing can continue. However in order
to make the CPU switch modes back to user mode, a modified version of the move
instruction is used and this is called MOVS (more about this later). Hence for a software
interrupt the return instruction is

MOVS R15,R14 ; Move Link register into the PC and switch modes.

However, in the case of the FIQ and IRQ instructions, when an exception occurs the current
instruction being executed is discarded and the exception is entered. When the code returns
from the exception the link register contains the address of the discarded instruction plus
four. In order to resume processing at the correct point we need to roll back the value in the
Link register by four. In this case we use the subtract instruction to deduct four from the link
register and store the results in the PC. As with the move instruction, there is a form of the
subtract instruction which will also restore the operating mode. For an IRQ, FIQ or Prog
Abort, the return instruction is:

SUBS R15, R14,#4

In the case of a data abort instruction, the exception will occur one instruction after
execution of the instruction which caused the exception. In this case we will ideally enter the
data abort ISR, sort out the problem with the memory and return to reprocess the instruction
that caused the exception. In this case we have to roll back the PC by two instructions i.e.
the discarded instruction and the instruction that caused the exception. In other words
subtract eight from the link register and store the result in the PC. For a data abort exception
the return instruction is

SUBS R15, R14.#8

Once the return instruction has been executed, the modified contents of the link register are
moved into the PC, the user mode is restored and the SPSR is restored to the CPSR. Also, in
the case of the FIQ or IRQ exceptions, the relevant interrupt is enabled. This exits the
privileged mode and returns to the user code ready to continue processing.

I CPSR 15 restored from USER IRQ
the SPSR_excep
2. The PC 1s restored from At the end of the exception the CPU returns to
the Link register user mode and the context is restored by
) moving the SPSR to the CPSR
ISR code restores

R13 . -

A14 = - registers from stack

R15 -

15

Introduction to the LPC2000 1 - The ARM7 CPU Core

ARM 7 Instruction Set

Now that we have an idea of the ARM7 architecture, programmers model and operating
modes we need to take a look at its instruction set or rather sets. Since all our programming
examples are written in C there is no need to be an expert ARM7 assembly programmer.
However an understanding of the underlying machine code is very important in developing
efficient programs. Before we start our overview of the ARM7 instructions it is important to
set out a few technicalities. The ARM7 CPU has two instruction sets: the ARM instruction
set which has 32-bit wide instructions and the THUMB instruction set which has 16-bit wide
instructions. In the following section the use of the word ARM means the 32-bit instruction
set and ARMY refers to the CPU.

The ARMY7 is designed to operate as a big-endian or little-endian processor. That is, the
MSB is located at the high order bit or the low order bit. You may be pleased to hear that the
LPC2000 family fixes the endianess of the processor as little endian (i.e. MSB at highest bit
address), which does make it a lot easier to work with. However the ARM7 compiler you
are working with will be able to compile code as little endian or big endian. You must be
sure you have it set correctly or the compiled code will be back to front.

MSB LSB
Little endian
Bit 31 Bit 0
The ARM7 CPU is designed to support code compiler
in big endian or little endian format. The Philips silicon
is fixed as little endian.
LSB MSB
Big endian
Bit 31 Bit 0

One of the most interesting features of the ARM instruction set is that every instruction may
be conditionally executed. In a more traditional microcontroller the only conditional
instructions are conditional branches and maybe a few others like bit test and set. However
in the ARM instruction set the top four bits of the operand are compared to the condition
codes in the CPSR. If they do not match then the instruction is not executed and passes
through the pipeline as a NOP (no operation).

31 28
Every ARM (32 bit) instruction is conditionally executed. The top four
bits are ANDed with the CPSR condition codes. If they do not match
I | the instruction is executed as a NOP
COND

So it is possible to perform a data processing instruction, which affects the condition codes
in the CPSR. Then depending on this result, the following instructions may or may not be
carried out. The basic assembler instructions such as MOV or ADD can be prefixed with
sixteen conditional mnemonics, which define the condition code states to be tested for.

16

Introduction to the LPC2000 1 - The ARM7 CPU Core

Suffix | Flags | Meaning
EQ Z 58 exqual
NE Z clear not equal
cs C set unsigned higher or same
cc C clear unsigned lower Each ARM (32- bit) instruction can be
i st rogAlive prefixed by one of 16 condition codes.
= P, RS H_ence each' instruction has 16
= — e different variants.
VG V clear no overflow
HI C sef and Z clear unsigned higher
LS C clear and 7 sat unsigned lower or same
GE M equals V greater or equal
LT M not equal 1o V less than
GT Z clear AND (N equals V) greater than
LE Z gat OR (N not equal to V) legs than or equal
AL (ignared) always

So for example:

EQMOV R1, #0x00800000

will only move 0x00800000 into the R1 if the last result of the last data processing
instruction was equal and consequently set the Z flag in the CPSR. The aim of this
conditional execution of instructions is to keep a smooth flow of instructions through the
pipeline. Every time there is a branch or jump the pipeline is flushed and must be refilled
and this causes a dip in overall performance. In practice there is a break-even point between
effectively forcing NOP instructions through the pipeline and a traditional conditional
branch and refill of the pipeline. This break-even point is three instructions, so a small
branch such as:

if(x<100)

X++

}

would be most efficient when coded using conditional execution of ARM instructions.
The main instruction groups of the ARM instruction set fall into six different categories,

Branching, Data Processing, Data Transfer, Block Transfer, Multiply and Software
Interrupt.

17

Introduction to the LPC2000 1 - The ARM7 CPU Core

Branching

The basic branch instruction (as its name implies) allows a jump forwards or backwards of
up to 32 MB. A modified version of the branch instruction, the branch link, allows the same
jump but stores the current PC address plus four bytes in the link register.

B 0x8000 0x400

PC = 0x8000
& LDAR2, #10 | 0x8000
The branch instruction has several forms. The branch
BL 0X8000 instruction will jump you to a destination address. The
b 0x400 branch link instruction jumps to the destination and
PC = 0x8000 stores a return address in R14.

R14 = Ox400+4

LDAR2, # 10 0x8000

So the branch link instruction is used as a call to a function storing the return address in the
link register and the branch instruction can be used to branch on the contents of the link
register to make the return at the end of the function. By using the condition codes we can
perform conditional branching and conditional calling of functions. The branch instructions
have two other variants called “branch exchange” and “branch link exchange”. These two
instructions perform the same branch operation but also swap instruction operation from
ARM to THUMB and vice versa.

BLX 08000 0x400
PC = 0x8000
T=1
LDAR2, # 10 0X8000
The branch exchange and branch link exchange instructions
perform the same jumps as branch and branch link but also
swap instruction sets from ARM to THUMB and vice versa.
BLX 0X8000 0x400
PC = 0x8000
T=1
R14 = 0x400+4
LDAR2, # 10 0X8000

This is the only method you should use to swap instruction sets, as directly manipulating the
“T” bit in the CPSR can lead to unpredictable results.

18

Introduction to the LPC2000 1 - The ARM7 CPU Core

Data Processing Instructions

The general form for all data processing instructions is shown below. Each instruction has a
result register and two operands. The first operand must be a register, but the second can be
a register or an immediate value.

OP code Operands 32 bit shift

The general structure of the data processing

instructions allows for conditional execution, a

Cond OP S R1, R2, R3 Shift logical shift of up to 32 bits and the data
operation all in the one cycle

P adiditend seesitiad Enable condition code flags

In addition, the ARM7 core contains a barrel shifter which allows the second operand to be
shifted by a full 32-bits within the instruction cycle. The “S” bit is used to control the
condition codes. If it is set, the condition codes are modified depending on the result of the
instruction. If it is clear, no update is made. If, however, the PC (R15) is specified as the
result register and the S flag is set, this will cause the SPSR of the current mode to be copied
to the CPSR. This is used at the end of an exception to restore the PC and switch back to the
original mode. Do not try this when you are in the USER mode as there is no SPSR and the
result would be unpredictable.

Mnemonic Meaning

AND Logical bitwise AND

EOR Logical bitwise exclusive OR
SUB Subtract

RSB Reverse Subtract

ADD Add

ADC Add with carry

SBC Subtract with carry

RSC Reverse Subtract with carry
TST Test

TEQ Test Equivalence

CMP Compare

CMN Compare negated

ORR Logical bitwise OR

MOV Move

BIC Bit clear

MVN Move negated

These features give us a rich set of data processing instructions which can be used to build
very efficiently-coded programs, or to give a compiler-designer nightmares. An example of
a typical ARM instruction is shown below.

if(Z ==1)R1 = R2+(R3x4)

Can be compiled to: EQADDS R1,R2,R3,LSL #2

19

Introduction to the LPC2000 1 - The ARM7 CPU Core

Copying Registers

The next group of instructions are the data transfer instructions. The ARM7 CPU has load-
and-store register instructions that can move signed and unsigned Word, Half Word and
Byte quantities to and from a selected register.

Mnemonic Meaning

LDR Load Word

LDRH Load Half Word

LDRSH Load Signed Half Word
LDRB Load Byte

LRDSB Load Signed Byte

STR Store Word

STRH Store Half Word

STRSH Store Signed Half Word
STRB Store Byte

STRSB Store Signed Half Word

Since the register set is fully orthogonal it is possible to load a 32-bit value into the PC,
forcing a program jump anywhere within the processor address space. If the target address is
beyond the range of a branch instruction, a stored constant can be loaded into the PC.

Copying Multiple Registers

In addition to load and storing single register values, the ARM has instructions to load and
store multiple registers. So with a single instruction, the whole register bank or a selected
subset can be copied to memory and restored with a second instruction

Ro

The load and store multiple instructions allow
~ you to save or restore the entire register file or
any subset of registers in the one instruction

Mo STM

. |R1s
k LDM

Mx =16

20

Introduction to the LPC2000 1 - The ARM7 CPU Core

Swap Instruction

The ARM instruction set also provides support for real time semaphores with a swap
instruction. The swap instruction exchanges a word between registers and memory as one
atomic instruction. This prevents crucial data exchanges from being interrupted by an
exception.

Ro
The swap instruction allows you to exchange the
contents of two registers. This takes two cycles but is
treated as a single atomic instruction so the exchange
cannot be corrupted by an interrupt.

R4

This instruction is not reachable from the C language and is supported by intrinsic functions
within the compiler library.

Modifying The Status Registers

As noted in the ARM?7 architecture section, the CPSR and the SPSR are CPU registers, but
are not part of the main register bank. Only two ARM instructions can operate on these
registers directly. The MSR and MRS instructions support moving the contents of the CPSR
or SPSR to and from a selected register. For example, in order to disable the IRQ interrupts
the contents of the CPSR must be moved to a register, the “I” bit must be set by ANDing the
contents with 0x00000080 to disable the interrupt and then the CPSR must be
reprogrammed with the new value.

MSR
-
CSPR
SPSR
The CPSR and SPSR are not memory-mapped or part
of the central register file. The only instructions which
Ris operate on them are the MSR and MRS instructions.
These instructions are disabled when the CPU is in
MRS . USER mode.
[E—— s
CSPR
SPSR
R1s

The MSR and MRS instructions will work in all processor modes except the USER mode.
So it is only possible to change the operating mode of the process, or to enable or disable

21

Introduction to the LPC2000 1 - The ARM7 CPU Core

interrupts, from a privileged mode. Once you have entered the USER mode you cannot
leave it, except through an exception, reset, FIQ, IRQ or SWI instruction.

Software Interrupt

The Software Interrupt Instruction generates an exception on execution, forces the processor
into supervisor mode and jumps the PC to 0x00000008. As with all other ARM instructions,
the SWI instruction contains the condition execution codes in the top four bits followed by
the op code. The remainder of the instruction is empty. However it is possible to encode a
number into these unused bits. On entering the software interrupt, the software interrupt
code can examine these bits and decide which code to run. So it is possible to use the SWI
instruction to make calls into the protected mode, in order to run privileged code or make
operating system calls.

31 28 27 24 23

Cond 1111 Ordinal

The Software Interrupt Instruction forces the CPU into SUPERVISOR mode and jumps the PC to the
SWI vector. Bits 0-23 are unused and user defined numbers can be encoded into this space.

The Assembler Instruction:

SWI #3

Will encode the value 3 into the unused bits of the SWI instruction. In the SWI ISR routine
we can examine the SWI instruction with the following code pseudo code:

switch(*(R14-4) & OxOOFFFFFF) // roll back the address stored in link reg
// by 4 bytes
{ // Mask off the top 8 bits and switch
// on result
case (SWI-1)

Depending on your compiler, you may need to implement this yourself, or it may be done
for you in the compiler implementation.

22

Introduction to the LPC2000

1 - The ARM7 CPU Core

MAC Unit

In addition to the barrel shifter, the ARM7 has a built-in Multiply Accumulate Unit (MAC).
The MAC supports integer and long integer multiplication. The integer multiplication
instructions support multiplication of two 32-bit registers and place the result in a third 32-
bit register (modulo32). A multiply-accumulate instruction will take the same product and
add it to a running total. Long integer multiplication allows two 32-bit quantities to be
multiplied together and the 64-bit result is placed in two registers. Similarly a long multiply

and accumulate is also available.

Mnemonic

MUL
MULA
UMULL
UMLAL
SMULL
SMLAL

Meaning

Multiply

Multiply accumulate

Unsigned multiply

Unsigned multiply accumulate
Signed multiply

Signed multiply accumulate

23

Resolution

32 bit
32 bit
64 bit
64 bit
64 bit
64 bit

result
result
result
result
result
result

Introduction to the LPC2000 1 - The ARM7 CPU Core

THUMB Instruction Set

Although the ARMY7 is a 32-bit processor, it has a second 16-bit instruction set called
THUMB. The THUMB instruction set is really a compressed form of the ARM instruction
set.

The THUMB instruction set is
essential for archiving the

16 bit ihsristioa | Thisrb | ARM %, necessary cod_e density to‘make
Thiifiib aeid Pipeline o= Decompressor| - |- Instruction : small single chip ARM7 micros
u code / Decoder g usable

This allows instructions to be stored in a 16-bit format, expanded into ARM instructions and
then executed. Although the THUMB instructions will result in lower code performance
compared to ARM instructions, they will achieve a much higher code density. So, in order
to build a reasonably-sized application that will fit on a small single chip microcontroller, it
is vital to compile your code as a mixture of ARM and THUMB functions. This process is
called interworking and is easily supported on all ARM compilers. By compiling code in the
THUMB instruction set you can get a space saving of 30%, while the same code compiled
as ARM code will run 40% faster.

The THUMB instruction set is much more like a traditional microcontroller instruction set.
Unlike the ARM instructions THUMB instructions are not conditionally executed (except
for conditional branches). The data processing instructions have a two-address format,
where the destination register is one of the source registers:

ARM Instruction THUMB Instruction
ADD RO, RO,R1 ADD RO,R1 RO = RO+R1

The THUMB instruction set does not have full access to all registers in the register file. All
data processing instructions have access to RO —R7 (these are called the “low registers”.)

Ro
R1

R2 In the THUMB programmers’ model all

R3 / . instructions have access to RO-R7. Only a few
R4 { Low Registers instructions may access R8-R12

R5
R6
R7

R9
R10

:}; High Registers EsSNidonAconsS

R13 =
R14 folici

R15

24

Introduction to the LPC2000 1 - The ARM7 CPU Core

However access to R8-R12 (the “high registers”) is restricted to a few instructions:

MOV, ADD, CMP

The THUMB instruction set does not contain MSR and MRS instructions, so you can only
indirectly affect the CPSR and SPSR. If you need to modify any user bits in the CPSR you
must change to ARM mode. You can change modes by using the BX and BLX instructions.
Also, when you come out of RESET, or enter an exception mode, you will automatically
change to ARM mode.

Reset
ARM
BLX
THUME After Reset the ARM7 will execute ARM (32-bit)
instructions. The instruction set can be exchanged at
= ; any time using BX or BLX. If an exception occurs the
exception execution is automatically forced to ARM (32- bit)
|| anu
4 end of exception
THUMB
BX -
ARM

The THUMB instruction set has the more traditional PUSH and POP instructions for stack
manipulation. They implement a fully descending stack, hardwired to R13.

Ro Push (Ro - Ra) Pop (Ro - Ra) Ro
Ri1 R1
Rz Rz
Pl The THUMB instruction set has dedicated PUSH
R3 Ra and POP instructions which implement a
descending stack using R13 as a stack pointer
A1 0 x 8000

Finally, the THUMB instruction set does contain a SWI instruction which works in the same
way as in the ARM instruction set, but it only contains 8 unused bits, to give a maximum of
255 SWI calls.

25

Introduction to the LPC2000 1 - The ARM7 CPU Core

Summary
At the end of this chapter you should have a basic understanding of the ARM7 CPU. Please

see the bibliography for a list of books that address the ARM7 in more detail. Also included
on the CD is a copy of the ARM7 user manual.

26

Introduction to the LPC2000 2 — Software Development

Chapter 2: Software Development

Outline

In this book we will be using an Integrated Development Environment from Keil Electronic.
This IDE is called uVISION (pronounced “MicroVision”) and versions already exist for
other popular microcontrollers including the 8051 and the Infineon C16X family. uVISION
successfully integrates project management, editor, compiler and debugger in one seamless
front-end. Although we are concentrating on the LPC2000 family in this book, the Keil
ARM tools can be used for any other ARM7 based microcontroller.

Which Compiler?

The uVISION development environment can be used with several different compiler

tools. These include the ARM ADS compiler, the GNU compiler and Keil’s own ARM
compiler. In this book the examples are based on the Keil CA-ARM compiler. However, a
parallel set of examples is also included for the GNU compiler and Appendix A details the
differences between the Keil and GNU compilers. This does beg the question of which
compiler to use. First of all the GNU compiler is free, can be downloaded from the internet
and is also included on the CD which comes with this book. So why use an expensive
commercial compiler? Well, before you embark on a full project, it is worth looking at the
table of benchmarks comparing some of the most popular C compilers available for the
ARM CPU.

Dhrystone V2.1

Compiler

Parameter Keil CA GNU ARM ADS
BETA v3.22 L

Execution Speed (pSeconds) 16.5
Dhrystones/sec 59,382 .4
Total Code Size (bytes) 22,266
Stack Size (bytes) 605
Total Data Size (bytes) 10,256

All tests were performed under identical conditions using the Keil pWision Simulator,
The ARM device used was a Philips LPC2294 running at 60MHz in Thumb Mode,

Whetstone

Compiler

Parameter KeilCA GNU ARMADS IAR
BETA w3.22 v1.2 v4.11A

Execution Speed (seconds) 0.195308 2461430 0268623
Whetstone (KWIPS) 3,846
Total Code Size (bytes) 25,516
Stack Size (bytes) 710
Total Data Size (bytes) 76

all tests were performed under identical conditions using the Keil pVision Simulator,
The ARM device used was a Philips LPC2294 running at 60MHz in Thurmb Mode,

27

Introduction to the LPC2000 2 — Software Development

We can see from this simple analysis that the commercial compilers are streets ahead of the
GNU tools in terms of code density and speed of execution. The reasons to use each of the
given compilers can be summed up as follows: if you want the fastest code and standard
tools use the ARM compiler, for best code density use the Keil, if you have no budget or a
simple project use the GNU. Since we are writing code for a small single-chip
microcontroller with limited on-chip resources, the obvious choice for us is the Keil ARM
compiler. When deciding on a toolset it is also important to examine how much support is
given to a specific ARM7 implementation. Although a toolset may generate code for an
ARMY7, it may not understand how the ARM?7 is being used in a specific system i.e.
LPC2000. Using a “raw” ARM7 will generate code, which will run on the LPC2000, but
you will have to spend time writing the start-up code and struggle with a debugger, which
will not understand the LPC peripherals. This can lead to “fighting” the development tools,
which needless to say can be very frustrating.

uVISION IDE

uVISION also includes two debug tools. Once the code has been compiled and linked, it can
be loaded into the uVISION simulator. This debugger simulates the ARM7 core and
peripherals of the supported micro. Using the simulator is a very good way of becoming
familiar with the LPC2000 devices. Since the simulator gives cycle- accurate simulation of
the peripherals, as well as the CPU, it can be a very useful tool for verifying that the chip has
been correctly initialised and that the correct values for things such as timer prescaler values
have been calculated.

However, the simulator can only take you so far and sooner or later you will need to take
some inputs from the real world. This can be done to a certain extent with the simulator
scripting language, but eventually you will need to run your code on the real target. The
simulator front end can be connected to your hardware by the Keil ULINK interface. The
ULINK interface connects to the PC via USB and connects to the development hardware by
the LPC2000 JTAG interface. The JTAG interface is a separate peripheral on the ARM7
which supports debug commands from a host. By using the JTAG you can use the uVISION
simulator to have basic run control of the LPC2000 device. The JTAG allows you to
download code onto the target, to single step and run code at full speed, to set breakpoints
and view memory locations.

Tutorial

Included with this book is a demonstration version of the Keil uVISION IDE. The
installation comes with two compilers, the Keil ARM compiler and the GNU tools. The
tutorial section talks you through example programs illustrating the major features of the
LPC2000. These examples can be run on the simulator, or if you have the starter kit they can
be downloaded and run on the MCB2100 evaluation board. There are two sets of examples
on the CD, one for the Keil compiler and one for the GNU. The main text concentrates on
the Keil compiler. However, Appendix A describes how to use the GNU compiler and also

28

Introduction to the LPC2000 2 — Software Development

describes the GNU version of the exercises up to exercise 6. After exercise 6 you can use the
exercise descriptions in the main text.

As you read through the rest of the book, at the end of each section there will be an exercise
described in the tutorial section which illustrates what has been discussed. The best way to
use this book is to read each section, then jump to the tutorial and do the exercise. This way,
by the time you have worked through the book you will have a firm grasp of the ARM?7, its
tools and the LPC2000 microcontroller.

Exercise 1: Configuring A New Project
The first exercise covers installing the uVISION software and setting up a
first project.

Startup Code

In our example project we have a number of source files. In practice the .c files are your
source code, but the file startup.s is an assembler module provided by Keil. As its name
implies, the startup code is located to run from the reset vector. It provides the exception
vector table as well as initialising the stack pointer for the different operating modes. It also
initialises some of the on-chip system peripherals and the on- chip RAM before it jumps to
the main function in your C code. The startup code will vary, depending on which ARM7
device you are using and which compiler you are using, so for your own project it is
important to make sure that you are using the correct file. The startup code for the Keil
compiler may be found in C:\keilARM\startup and for the GNU use the files in
C:\kei\GNU\startup.

First of all the startup code provides the exception vector table as shown below

EXTERN CODE32 (Undef Handler? 4)

Declare the external C EXTERN CODES? (5971 Handlert
. . EXTERN CODE32 (PAbt_Handler? &)
exception routines. EXTERN CODET? (Db Abt_ Handler?)
T % EXTERN CODES (RO Handenta)
The suffix ?A denotes an EATERN CODES? (FIQ_Hasclerls)
ARM l‘outine Vectors: LDR PG, Reset_Addr
LDR. PC, Undef Addr
LDE. PC, SWI_Addr
LDR PC, Pabt_aAddr
. . LDR PC, Dabt_Addr
Unused vector, this will become — » op P+ Resereed Vostar *
important later ! LDR PC, [RQ_Adir
LDR PC, FIQ_Addr
Reset_Addr: DD Reset_Handler
Undef_Addr: DD Undef Handler?s
— 40 e C . v SWI_Addr: oD SWI_Handler? A
Constants table for ISR S N
“1(:1(11'6SS Dabt_Addr, DD DaAbt_Handler?A

oD 0 /* Reserved Address */
IRQ_4ddr: DD IRQ_HandlerPd
FIQ Adde: DD FIQ_Handler?d

The vector table is located at 0x00000000 and provides a jump to interrupt service routines
(ISR) on each vector. To ensure that the full address range of the processor is available, the
LDR (Load Register) instruction is used. This loads a constant from a table stored
immediately above the vector table. The vector table and the constants table take up the first
64 bytes of memory. On the LPC2000 this first 64 bytes can be mapped from several

29

Introduction to the LPC2000 2 — Software Development

sources, depending on the operating mode of the LPC2000. (This is discussed more fully
later on.) The NOP instruction is used to pad out the vector table at location 0x00000014
which is the location of the *missing’ vector. Again this location is used by the LPC2000
bootloader (discussed again later.) You are responsible for managing the vector table in the
startup code as it is not done automatically by the compiler.

The startup code is also responsible for configuring the stack pointers for each of the
operating modes.

// Setup Stack for each mode
LDR RO, =Top_Stack
// Enter Undefined Instruction Mode and set its Stack
Pointer
Switch mode and disable interrupts —— » MSR CPSR_¢

Load address mto the stack pomter —» MOV §SP.RO The six on chip stack pointers (R13)

are initialised at the top of on chip
memory. Care must be taken to
allocate enough memory for the
MSR CPSR_¢ maximum size of each stack
MOV SP,RO

SUB RO.RO.:

Calculate start address of next stack — » SUB RO,RO;:
// Enter Abort Mode and s

................ FIQ.IRQ and supervisor stacks

// Enter User Mode and set its Stack Pointer
MSR CPSR ¢, #Mode USR
MOV SP.RO
// Enter the C code

LDR RO=?C?INIT

TST RO#L ; Bit-0 set: INIT 15 Thumb
Load an Exit address into the link register — . IDREQ LR =exit?A ; ARM Mode
Jump to the C init routine LDRNE LR.=exit?T ; Thumb Mode

BX RO

Since each operating mode has a unique R13 there are effectively six stacks in the ARM7.
The strategy used by the compiler is to locate user variables from the start of the on-chip
RAM and grow upwards. The stacks are located at the top of memory and grow downwards.
The startup code enters each different mode of the ARM7 and loads each R13 with the
starting address of the stack

Finally switch to USER mode and ~———————p»

enable interrupts

Checl: for ARM or Thumb mode.

|- Stack Configuration (Stack Sizes in Bytes)

Undefined Mode 00000 0004
Supervisor Mode 00000 D004
Abart Mode 0x0000 0004
Fast Interrupt Mode 00000 0004
Interrupt Mode 050000 0030
User/System Mode 00000 0400

[+ PLL Setup v

1 MAM Setup [V

[+ External Memory Controller (EMC) v

Like the vector table you are responsible for configuring the stack size. This can be done by
editing the startup code directly, however Keil provide a graphical editor that allows you to
more easily configure the stack spaces. In addition the graphical editor allows you to
configure some of the LPC2000 system peripherals. We will see these in more detail later
but remember that they can be configured directly in the startup code.

Exercise 2: Startup code
The second exercise in the tutorial takes you through allocating
space for each processor stack and examines the vector table.

30

Introduction to the LPC2000 2 — Software Development

Interworking ARM/THUMB Code

One of the most important things that we need to do in our application code is to interwork
the ARM and THUMB instruction sets. In order to allow this interoperability, ARM have
defined a standard called the ARM THUMB Procedure Call Standard (ATPCS). The
ATPCS defines among other things how functions call one another, how parameters are
passed and how stacks are handled. The APCS adds a veneer of assembler code to support
various compiler features. The more you use, the larger these veneers get. In theory the
APCS allows code built in different toolsets to work together so that you can take a library
compiled by a different compiler and use it with the Keil toolset.

7
/

Parameter Passing |

X

N
The ARM procedure call standard defines how the
user CPU registers should be used by compilers.
Adhering to this standard allows interworking between
different manufacturers tools

Local Variables

Scratch Register
Stack Register
Link Register
Program Counter

The APCS splits the register file into a number of regions: RO to R3 are used for parameter
passing between functions. If you need to pass more than 16 bytes then spilled parameters
are passed via the stack. Local variables are allocated R4 — R11 and R12 is reserved as a
memory location for the intra-call veneer code. In the Keil compiler all code is built for
interworking and the global instruction set is the THUMB, so all code will be compiled as
THUMB instructions (except for interrupt code which defaults to ARM.) This global default
can be changed in the “Options for Target” menu. In the CC tab uncheck the “use THUMB
code” box and the default instruction set will be ARM.

Options for Target "MAM' 21l

Dewcal Targell Dutputl Listing € |Asm I LAM\scl LALDcatal Dabugl Ut\|ItIBS|

— Preprocessor Symbols
Define: I
Undefine: I

— Code Dptimization . -
Wamings: |'waminglevel 2 Vl

Level IT: Camman tail merging j

Emphasiz: | 126

IV treat plain char as 'unsigned char'
¥ Use Thumb Made

™| double precision Hosting point

¥ tlias checking on pointer accesses Bitz ta raund for flaat compare: |3 j'

Include:
Faths | D
Misc
Corbrol:

Compiler |OPTIMIZE [SIZE]1 BROWSE DEBUG TAES (4)
contral
string

Lo

51

0K I Cancel Defaults

Introduction to the LPC2000 2 — Software Development

In addition the programmer can force a given function to be compiled as ARM or THUMB
code. This is done with the two programming directives #Pragma ARM and #pragma
THUMB as shown below. The main function is compiled as ARM code and calls a function
called THUMB_function, (No prizes for guessing that this function is compiled in the 16 bit
instruction set.)

#pragma ARM // Switch to ARM instructions
int main(void)

{

while(1)

{
THUMB_function(); //Call THUMB function

+
}

#pragma THUMB //Switch to THUMB instructions
void THUMB_function(void)
{

unsigned long i,delay;

for (i = 0x00010000;i < 0x01000000 ;i = i<<1l) //LED FLASHer

{

for (delay = 0;delay<0x000100000;delay++) //simple delay loop
3

10SET1 = 1; //Set the next led

}

}

It is also possible to declare individual functions as either ARM or THUMB functions by
using the following declarations on the function prototype:

int ARM_FUNCTION (int my var) _ THUMB
{

int THUMB_FUNCTION (int my var) _ THUMB
{

Exercise 3: Interworking
The next exercise demonstrates setting up a project which interworks ARM and
THUMB code.

STDIO Libraries

The high-level, formatted 10 functions in the STDIO library, such as printf and scanf, are
directed at UARTO on the LPC2000. It is up to the programmer to initialise the UART to the
correct BAUD rate. Once this is done it is possible to use these high- level functions to
stream data to a terminal program on a PC for example. The STDIO functions use two low-
level drivers to send and receive a single character to the conio, the UART in this case. The
two functions are called putchar and getchar and the source for them is available in serial.c
in the Keil lib directory. By adding this file to your project the default library version is

32

Introduction to the LPC2000 2 — Software Development

ignored and the code in serial.c is used in its place. So, by rewriting the putchar and getchar
routines, the high level printf and scanf function can be redirected to any 10 device you want
to use, such as an LCD and keypad. Bear in mind that the high level STDIO functions are
quite bulky and should only be used if your application is very 1/O driven.

Exercise 4: STDIO
This exercise demonstrates the low-level routines used by printf and scanf
and configures them to read and write to the on-chip UART.

Accessing Peripherals

Once we have built some code and got it running on an LPC2000 device, it will at some
point be necessary to access the special function registers (SFR) in the peripherals. As all the
peripherals are memory-mapped, they can be accessed as normal memory locations. Each
SFR location can be accessed by ‘hardwiring’ a volatile pointer to its memory location as
shown below.

#define SFR (*((volatile unsigned long *) OxFFFFF0O00))

The Keil compiler comes with a set of include files which define all the SFR’s in the
different LPC2000 variants. Just include the correct file and you can directly access
the peripheral SFR’s from your C code. The names of the include files are:

LPC21xx.h
LPC22xx.h
LPC210x.h

33

Introduction to the LPC2000 2 — Software Development

Interrupt Service Routines

In addition to accessing the on-chip peripherals, your C code will have to service interrupt
requests. It is possible to convert a standard function into an ISR, as shown below:

void Fiqint (void) _ fiq

{

10SET1 = OxO0FF0000; // Set the LED pins

EXTINT = 0x00000002; // Clear the peripheral interrupt flag
}

The keyword __ fiq defines the function as a fast interrupt request service routine and so will
use the correct return mechanism. Other types of interrupt are supported by the keywords
__IRQ, __SWI, __ABORT.

As well as declaring a C function as an interrupt routine, you must link the interrupt vector
to the function.

Vectors: LDR PC,Reset_Addr
LDR PC,Undef_Addr
LDR PC,SWI_Addr
LDR PC,PAbt_Addr
LDR PC,DAbt_Addr
NOP /* Reserved Vector */
LDR PC, IRQ_Addr
LDR PC,[PC, #-O0xOFFO] /* Vector from VicVectAddr */
LDR PC,FIQ_Addr
Reset_Addr: DD Reset_Handler
Undef_Addr: DD Undef_Handler?A
SWI1_Addr: DD SWI1_Handler?A
PAbt_Addr: DD PAbt_Handler?A
DAbt_Addr: DD DAbt_Handler?A
DD 0 /* Reserved Address */
IRQ_Addr: DD IRQ_Handler?A
FIQ_Addr: DD FIQ_Handler?A

The vector table is in two parts. First there is the physical vector table, which has a Load
Register Instruction (LDR) on each vector. This loads the contents of a 32-bit wide memory
location into the PC, forcing a jump to any location within the processor’s address space.
These values are held in the second half of the vector table, or the constants table which
follows immediately after the vector table. This means that the complete vector table takes
the first 64 bytes of memory. The Keil startup code contains predefined names for the
Interrupt Service Routines (ISR). You can link your ISR functions to each interrupt vector
by using the same name as your C function name. The table below shows the constants table
symbols and the corresponding C function prototypes which should be used.

Exception source Constants table C function prototype
Undefined Instruction Undef_Handler?A void Undef_Handler (void) __abort
Prefetch Abort PAbt_Handler?A void Pabt_Handler (void) __abort
Data Abort DAbt_Handler?A void Dabt_Handler (void) __abort
Fast Interrupt FIQ_Handler?A void FIQ_Handler (void) __fig

The SWI and IRQ exceptions are special cases, as we will see later. The ?A is used to tell
the linker that the corresponding function should be compiled with the ARM instruction set
?T is used for the THUMB instruction set. Only the IRQ and FIQ interrupt sources can be
disabled. The protection exceptions (Undefined instruction, Prefetch Abort, and Data abort)

34

Introduction to the LPC2000 2 — Software Development

are always enabled. Consequently these exceptions must always be trapped. If you do not
declare a corresponding C function for these interrupt sources, then the compiler will default

to using a tight loop to trap any entry to these exceptions.

Pabt_Handler: Default handling of exceptions for

B Pabt Handler which no C function has been
declared

Exercise 5: Exception Handling
In this exercise we configure a C routine to be a simple interrupt and see it working in
the debugger. Later on we will see how the LPC2000 hardware is configured to

service interrupts.

35

Introduction to the LPC2000 2 — Software Development

Software Interrupt

The Software Interrupt exception is a special case. As we have seen, it is possible to encode
an integer into the unused portion of the SWI opcode.

#define SWicall2 asm{ swi#2}

However, in the Keil CA ARM compiler, there is a more elegant method of handling
software interrupts. A function can be defined as a software interrupt by using the following
non ANSI keyword adjacent to the function prototype:

int Syscall2 (int pattern) _ swi(2)
{

¥
In addition the assembler file SWI_VEC.S must be included as part of the project.

Now when a call is made to the function an SWI instruction is used, causing the processor to
enter the supervisor privileged mode and execute the code in the SWI_VEC.S file. This code
determines which function has been called and handles the necessary parameter passing.
This mechanism makes it very easy to take advantage of the exception structure of the
ARMTY7 processor and to partition code which is non-critical code running in user mode, or
privileged code such as a BIOS or operating system. In the tutorial section we will take a
closer look at how this works.

Exercise 6: Software Interrupt
The SWI support in the Keil compiler is demonstrated in this example. You can
easily partition code to run in either the user mode or in supervisor mode.

Locating Code In RAM

As we shall see later, the main performance bottleneck for the ARM7 CPU is fetching the
instructions to execute from the FLASH memory. The LPC2000 has special hardware to
solve this problem for the on-chip FLASH. However if you are running from external
FLASH you are stuck with the access time of the external FLASH. One trick is to boot the
executable code into fast RAM and then run from this RAM. This means that you need to
compile position-independent code which can be copied into the RAM, or compile code so
that it runs in the RAM and is loaded by a separate bootloader program. Both of these
solutions will work, but require extra effort to develop. Fortunately the Keil compiler has a
directive which defines a function as a RAM function. The startup code will copy the
function into RAM and the linker will resolve all calls to it as being located in the defined
RAM area. The function declaration is shown below

int RAM_FUNCTION (int my_VAR) _ ram

{
¥

It is also necessary to define which section of memory will be used to hold these functions.
This is done by declaring a section of the RAM as executable RAM or ERAM. This
declaration makes use of the classes directive to allocate a region of RAM to contain all the
executable RAM functions.

36

Introduction to the LPC2000 2 — Software Development

The basic syntax is shown below:
ERAM (0x40000000 — 0x40000FFF)

This entry should be made in the LA Locate dialogue of the options for target menu.

Options for Target "Simulation’ i ll

Devicel Targetl Dutputl Listingl I I Aszm I L4 Mise L& Locate | Debugl Utilitiesl

[+ Use Memory Layout from T arget Dialog

Reserve |

C [DATA [0-40000000- D4 0007FFF),
classes EADE [0-047FFFF, CONST (040-047FFFF])

User |ERAM (0x40000000-0+40000FFF)
claszes

Usger
Segments

Linker [T0 "lntermupt"
control |CODE

ztring

Euj»_v_l»_uir_ulr_

(1] I Cancel | Defaults |

The compiler does not check if your RAM function is calling functions or library functions
which are not also stored in the RAM. So if your “fast “RAM function makes calls to a
maths routine stored in the FLASH memory, you may not get the performance you were
expecting. This method of locating functions in RAM is not only simple and easy to use, it
has the added advantage that the linker knows where the function will finally end up and can
place the debug symbols at the correct address. This will give you not only a ROMable
image which will run standalone, but also an image which can be debugged.

Inline Functions

It is also possible to increase the performance of your code by inlining your functions. The
inline keyword can be applied to any function as shown below

void NoSubroutine (void) _ _inline

{
+

When the inline keyword is used the function will not be coded as a subroutine, but the
function code will be inserted at the point where the function is called, each time it is called.
This removes the prologue and epilogue code which is necessary for a subroutine, making
its execution time faster. However, you are duplicating the function every time it is called,
so it is expensive in terms of your FLASH memory.

37

Introduction to the LPC2000 2 — Software Development

Operating System Support

If you are using an operating system for the LPC2000, the OS is likely to take care of the
system stacks and context switching. To avoid duplicating this by the compiler, it is possible
to declare a function as a task within the operating system. This causes the compiler to just
translate the code within the function and not to add the normal prologue and epilogue code
which saves and restores registers to the stack. A function may be declared as a task as
shown below

void AnalogueSample(void) __task

{
}

Fixing Objects At Absolute Locations

The compiler also allows you to fix any C object, such as a variable or a function at any
absolute memory location. The compiler has an extension to the C language as shown below

int checksum __at 0x40000000;
Variables declared using this keyword cannot be initialised by the startup code. You must

also be careful to fix variables on the correct boundaries, or you will get a memory abort.
(For example if an integer is located at an uneven memory address.)

Inline Assembler

The compiler also allows you to use ARM or THUMB Assembler instructions within a C
file. This can be done as shown below:

__asm { mov ri5,r2; }

This can be useful if you need to use features which are not supported by the C language, for
example the MRS and MSR instructions.

38

Introduction to the LPC2000 2 — Software Development

Hardware Debugging Tools

Philips have designed the LPC2000 to have the maximum on-chip debug support. There are
several levels of support. The simplest is a JTAG debug port. This port allows you to
connect to the LPC2000 from the PC for a debug session. The JTAG interface allows you to
have basic run control of the chip. That is, you can single step lines of code, run halt and set
breakpoints and also view variables and memory locations once the code is halted.

VCC 33 VCC 3-3

L

_ > 1 2

| TAST —| 3 4

DO — 5 3

PC JTAG AM appiication ISz £
Target| PP TCK—— @ 10
ATK — 1 12
| | | TDI— 13 14

Debug support on the LPC2000 includes a JTAG port for Flash programming and basic run control debugging.

In addition, Philips has included the ARM embedded trace module. The embedded trace
module provides much more powerful debugging options and real time trace, code coverage,
triggering and performance analysis toolsets. In addition to more advanced debug tools, the
ETM allows extensive code verification and software testing which is just not possible with
a simple JTAG interface. If you are designing for safety critical applications, this is a very
important consideration.

Part —PIPESTATE 0
) |—PIPESTATE 1
Trace | |[——]ET™ Trace Trigger| |— PIPESTATE 2

+—TRACESYNC
Analyser |—TRACEPKT 0

t—TRACEPKT 1

t— TRACEPKT 2

e — TRAGEPKT 3
TRST—

TDO —| —
JTAG . ARM 7 TMS — —
Interface

RTCK — —vicCc2

e 8 B
RST— —EXTTRIG

—DBGACK
= —TRACECLK

In addition to the JTAG port Philips have included the ARM ETM
module for high end debugging tools

The final on-chip debug feature is the Real Time Monitor. This is a kernel of code which is
resident in a reserved area of memory. During a debug session the debugger can start the
real monitor via the JTAG port. The real monitor can be used to provide “on the fly” updates
as your code is running. This process is pseudo real time in that the real monitor code
interrupts your code and uses some processor time to read and communicate debug
information to the PC.

39

Introduction to the LPC2000 2 — Software Development

Important!

The JTAG and ETM tools simply provide a fairly “dumb” serial debug connection to the
ARMT7 core. A generic ARM JTAG tool does not have any understanding of the overall
LPC2000 architecture. This means that a generic tool will always enter the bootloader after
reset because it does not write the “program signature” into the FLASH (this feature is
discussed later) and consequently will never run your code. If you are new to the LPC2000
this is likely to catch you out and be very frustrating. Since the Keil tools are developed for
ARMY7 based general purpose microcontrollers MicroVision (“uVISION”) understands the
LPC2000 memory architecture and will debug the device seamlessly.

Even More Important

As mentioned above, the JTAG port is a simple serial debug connection to the ARM7
device. It is very important to understand its behaviour during reset. If the ARM7 CPU is
reset, all of the peripherals including the JTAG are reset. When this happens the ULINK
debugger loses control of the chip and has to re-establish control once the LPC2000 device
comes out of reset. This will take a finite number of clock cycles. While this is happening,
any code which is on the chip will be run as normal. Once the ULINK gets back control of
the chip, it performs a soft reset by forcing the PC back to address zero. However, the on-
chip peripherals are no longer in the reset condition ie peripherals will be initialised,
interrupt enabled etc. You must bear this in mind if the application you are developing could
be adversely affected by this. A quick solution is to place a simple delay loop in the startup
code or at the beginning of main(). After a reset occurs, the CPU will be trapped in this loop
until the ULINK regains control of the chip. None of the application code will have run,
leaving the LPC2000 in its initialised condition.

Summary

So, by the end of this section you should be able to set up a project in the Keil uVISION
IDE, select the compiler and LPC2000 variant you want to use, configure the startup code,
be able to interwork the ARM and THUMB instruction sets, access the LPC2000 peripherals
and write C functions to handle exceptions. With this grounding we can now have a look at
the LPC2000 system peripherals.

40

Introduction to the LPC2000 2 — Software Development

41

Introduction to the LPC2000 3 — System Peripherals

Chapter 3: System Peripherals

Outline

Now that we have some familiarity with the ARM7 core and the necessary development
tools, we can begin to look at the LPC2000 devices themselves. In this section we will
concentrate on the system peripherals, that is to say the features which are used to control
the performance and functional features of the device. This includes the on-chip flash and
SRAM memory, the external bus interface which is present on the LPC22xx devices, the
phase locked loop which is used to multiply the external oscillator in order to provide a
maximum of 60MHz processor clock and the power control features. Finally, we will take a
look at the simplest user interrupt source, the external interrupt pins, before going on to look
at the exception system in detail in the next section.

Bus Structure

To the programmer, the memory of all LPC2100 devices is one contiguous 32 bit address
range. However, the device itself is made up of a number of buses. The ARM7 core is
connected to the Advanced High performance Bus (AHB) defined by ARM. As its name
implies, this is the fastest way of connecting peripheral devices to the ARM?7 core.
Connected to the AHB is the vector interrupt controller and a bridge to a second bus called
the VLSI peripheral bus (VPB). Since the Interrupt vector controller is responsible for
managing all the device interrupt sources, it is connected to the ARM7 core by the fastest
bus.

All the remaining user peripherals are connected to the VPB. The VBP bridge contains a
clock divider, so the VPB bus can be run at a slower speed than the ARM7 core and the
AHB. This is useful for two reasons. Firstly, we can run the user peripherals at a slower
clock rate than the main processor to conserve power. Secondly it gives Philips the option of
adding a slower peripheral to the LPC2000 family without it becoming a bottleneck on the
AHB bus. Currently all the on-chip peripherals are capable of running at 60MHz so the VPB
bus can be set to the same speed as the AHB bus. It is important to note that after reset the
VPB divider is set to divide down the AHB clock by four, so all the on-chip peripherals will
be running at ¥4 the CPU clock frequency.

Finally, there is a third local bus which is used to connect the on-chip Flash and RAM to the
CPU. Connection of the program code and data store to the ARM7 CPU via the AHB bus is
possible, but this introduces some execution stalls because of contention on the bus. Using a
separate local bus removes the possibility of these stalls to give the best processor
performance.

42

Introduction to the LPC2000

3 — System Peripherals

Vectored
ABM 7 Interrupt
Controler
y A
Local Bus v ¥
A A
Advance High Performance Bus
v v
Program AHB/VPB
r ;
Bridge
Code/Data 2

I VLS| Peripheral Bus

ON Chip
Peripherals

43

Although the LPC2000 has a linear
address space there are several internal
buses. It is important to be aware of the
difference between them and how the
performance of the processor is affected

Introduction to the LPC2000 3 — System Peripherals

Memory Map

Despite the number of internal buses, the LPC2000 has a completely linear memory map.
The general layout is shown below.

4.0GB - 0xFFFF FFFF
AHB Peripherals

3.75GB - 0xF000 0000
VPB Peripherals

3.5GB 0xE000 0000

3.0GB — 0xC000 0000

Reserved for
External Memory
The memory map of the LPC2000 includes regions
for on chip flash memory user SRAM, a pre-
2.0GB 0x8000 0000 programmed bootloader, external bus and user

Boot Block b
peripherals.
Reserved for

On-Chip Memory

On-Chip Static RAM

1.0GB 0x4000 0000
Reserved for Special Registers
0x3FFF 8000

Reserved for
On-Chip Memory

On-Chip Non-Volitile Memory
0.0GB 0x0000 0000

The on-chip flash is fixed at 0x00000000 upwards with the user RAM fixed at 0x4000000
upwards. The LPC2000 is pre-programmed at manufacture with a FLASH bootloader and
the ARM real monitor debug program. These programs are placed in the region Ox7FFFFFF
— 0x8000000. The region between 0x8000000 and OXE000000 is reserved for external
memory. Currently the LPC22xx devices are capable of addressing external memory via
four chipselects each with a 16 Mbyte page.

System Control Block

OxFFFF FFFF

0xFFEO 0000 3
OXFFDF FFFF

AHB Peripherals

L8
1
L4

Reserved All the user peripherals are located on

the VLSI peripheral bus. Each peripheral

Pin Connect Block has a 16K address range for its

0xF000 0000 GPIO registers.

OXEFFF FFFF RTC
SPI
12C

not used

PWM 0

UART 1

UART 0

0XE020 0000 Timer 1
0x01F 0000 Timer 0

0xE000 0000 ——————» Watchdog Timer

Reserved

VPB Peripherals

The user peripherals located on the VPB are all mapped into the region between 0xE000000
and 0xE020000 and each peripheral is allocated a 16K memory page. Finally the Vector
Interrupt Unit is located at the top of the address range at OxFFFFF00O.

44

Introduction to the LPC2000 3 — System Peripherals

If your user code tries to access memory outside these regions, or non-existent memory
within them, an abort exception will be produced by the CPU. This mechanism is hardwired
into the design of the processor and cannot be changed or switched off.

Register Programming

Before we start our tour through the system block, it is worth noting how Special Function
Registers (SFR) are programmed on ARM?7 chips.

As a general rule all Special Function
Registers originating from ARM are
controlled by three registers: a Set,

Status Clear and Status register.
NB To clear bits you must write a logic
Set 1100 SFR 1 to the relevant bit in the clear
register.
Clear

Each underlying SFR is controlled by three user registers. A Set register which is used to set
bits, a Clear register which is used to clear bits by writing a logic 1 to the bits you wish to
clear and a Status register which is used to read the current contents of the register. The most
common mistake made when new to the LPC2100 is to write zero into the Clear register
which has no effect.

Memory Accelerator Module
The Memory Accelerator Module (MAM) is the key to the high instruction execution rate of

the LPC2100 family. The MAM is present on the local bus and sits between the FLASH
memory and the ARM7 CPU.

I "= ARM 7

<

Running from on chip FLASH is a performance
v bottleneck for all ARM7 implementations. Philips have
MAM added a Memory Accelerator Module which greatly
enhances the performance of the ARM7 CPU

FLASH

45

Introduction to the LPC2000 3 — System Peripherals

One of the main constraints in designing a high performance, single-chip microcontroller
based on the ARM7 is the access time to the on-chip FLASH memory. The ARM CPU is
capable of running up to 80MHz, however the on-chip FLASH has an access time of 50ns.
Consequently, just running out of the FLASH would limit the execution speed to 20MHz (a
quarter of the possible clock rate of the processor.) There are a number of ways round this
problem. The simplest is to load the critical sections of your program into RAM and run out
of RAM. As the RAM has a much faster access time, our overall performance will be
greatly increased. The down side is that on-chip RAM is a finite and precious resource.
Using it to hold program instructions greatly limits the size of application code which we
could run. Another approach would be to have an on-chip cache. A cache is a small region
of memory placed between the processor and memory store, which stores regions of recently
referenced main memory. In a well-designed cache, the processor will use the cache
memory whenever possible, thus reducing the bottleneck imposed by slow memory.
However, a full cache is a complex peripheral which demands a high number of gates and
consequently a large portion of the LPC200 die area. This flies in the face of the ARM7
design, which has simplicity as its watchword. Another downside of a full cache is that the
runtime of code using the cache is no longer deterministic and could not be used by any
application which required predictability and repeatability.

The Memory Accelerator Module is a compromise between the complexity of a full cache
and the simplicity of allowing the processor to directly access the FLASH memory.

Bank 0 Bank1 | g4k x 128 unit

| TN The FLASH memory is arranged as two
e 7128 ~~ 128 interleaved banks of 128 bit wide memory. One

165 .
5 » - - flash access from the MAM loads four ARM
v ~— instructions or eight THUMB instructions which
Aidr) MAM can be executed by the ARM7 CPU

Like a cache, the MAM attempts to have the next ARM instruction in its local memory in
time for the CPU to execute. First of all the FLASH memory is split into two banks which
are 128 bits wide and can be independently accessed . This means that a single FLASH
access can load four ARM instructions or eight THUMB instructions. User code is
interleaved between the two banks, so during sequential code execution the code fetched
from one bank into the MAM is being executed, while the next 128 bits of instructions from
the second bank is being perfected. This ensures that it will be ready for execution once the
last 128 bits has been executed. This technique works particularly well with the ARM
instructions, which can use the condition codes to iron out small branches in order to keep
the code-flow largely linear. In the case of small loops and jumps the MAM has branch and
trail buffers that hold recently loaded instructions which can be re-executed if required.

46

Introduction to the LPC2000 3 — System Peripherals

The complexities of the MAM are transparent to the user and it is configured by two
registers, the timing register and the control register. There are some additional registers to
provide runtime information on the effectiveness of the MAM. The timing register is used to
control to relationship between the CPU clock and the FLASH access time. By writing to
the first three bits of the timing register you can specify the number of CPU clock cycles
required by the MAM to access the FLASH. As the FLASH has an access time of 20 MHz
and the CPU clock can be set to a maximum of 60MHz, the number of cycles required to
access the FLASH is 3. So, for each three CPU cycles, we can load four instructions which
keep the MAM ahead of the game. The MAM configuration register is used to define the
operating mode of the MAM.

ARM 7 ARM 7
ARM 7 Fully Enabled
Sequencial Code Branches & Code Data
. " 5
MAM :| MAM Disabled MAM :| Instruction prefetch enabled All code & data
present in latches
MAM Instruction prefetch enabled
FLASH FLASH T
FLASH

On reset the MAM is disabled and all access to code and constant data are made directly to
the FLASH. It is possible to partially enable the MAM so that all sequential code is fetched
from it, but branches and constant data stored in the FLASH are accessed directly from the
FLASH. Finally, the MAM may be fully enabled so that it fetches all FLASH memory
accesses from the MAM. The reason for these modes is that, like a cache code, running from
the MAM is not deterministic, so we have the option to switch it off or reduce its impact if
we need to guarantee the run time of our application code. However, even in its full
operating mode the impact of the MAM is not as great as a cache. It is possible to predict
runtime performance particularly with the ‘use performance analysis’ features in
development tools.

To help with this analysis and also to gauge the effectiveness of the MAM, there are a group
of statistical registers which can be used to measure the MAM’s performance.

ARM 7 =
Statistical Status
Register
All code & data > Buffer Access Thg: MAM has some statistics registers
in latch Counter which show the number of accesses to
present in latches the FLASH and the number of
MAM accesses to the MAM so the
effectiveness of the MAM can be
'Y calculated
. Flash Access
- Counter
Statistical Control
FLASH Register

Introduction to the LPC2000 3 — System Peripherals

The Statistics registers are based around two counters which record the accesses made to the
FLASH and the accesses made to the MAM buffers. The statistical control register can
further refine the type of access which will cause the counters to increment. By configuring
the statistical control register we can differentiate between code constant and instruction
fetches, so it is possible to determine the instruction or data hit rate or the combined
instruction and data hit rate. These metrics can give us some information on the efficacy of
the MAM with our application. On the CD there is a simple example which demonstrates
the use of the MAM, its statistical registers and demonstrates how vital it is to the overall
performance of the LPC2000 family.

48

Introduction to the LPC2000 3 — System Peripherals

Example MAM Configuration

The example code shown below starts the LPC2000 with the PLL set to 60MHz and the
MAM disabled. The code FLASHes each LED in sequence with a delay loop between each
increment. An A/D conversion is also done and if the result is above 0x00000080, the code
enables the MAM for maximum execution speed. The effect of the MAM can be seen on the
update rate of the LEDs. In the next section we will look at burning the code into the
FLASH to observe its operation.

int main(void)

{
unsigned int delay;
unsigned int FLASHer = 0x00010000; // define locals
IODIR1 = OxOO0FF0000; // set all ports to output
VPBDIV = 0x02;
ADCR = 0x00270601; // Setup A/D: 10-bit AINO @ 3MHz
ADCR |= 0x01000000; // Start A/D Conversion
while(1)
{
do
{ _
val = ADDR; // Read A/D Data Register
¥
whille ((val & 0x80000000) == 0);
val = ((val >> 6) & OxO03FF);
it (val <0x80)
MAMCR = 0;
MAMTIM = 0x03;
MAMCR = 0x02;
¥
else
MAMCR = 0OxO0;
b
for(delay = 0;delay<0x100000;delay++) //simple delay loop
}
ChangeGPIOPInState(FLASHer); //set the state of the ports
FLASHer = FLASHer <<1; //shift the active led
i F(FLASHer&0x01000000)
FLASHer = 0x00010000; //1Increment FLASHer led and test for
// overflow
}
}
¥
void ChangeGPIOPinState(unsigned int state)
{
IOCLR1 = ~state; //clear output pins
IOSET1 = state; //set output pins
¥

49

Introduction to the LPC2000 3 — System Peripherals

FLASH Memory Programming

Although the internal FLASH is arranged as two interleaved banks, you will be relieved to
know that, to the user, it can be treated as one contiguous memory space and no special tools
are required to prepare the code prior to programming the chip. In terms of programming the
FLASH, to the user it appears as a series of 8K sectors which can be individually erased and
programmed. There are several methods which can be used to program the on-chip FLASH.
The easiest is by the built-in bootloader which allows your code to be downloaded via
UART 0 into RAM and then be programmed into the FLASH. It is also possible to use a
JTAG development tool to program the memory. This is useful during development because
it can be done from the debugging environment without the need to keep switching between
debugger and bootloader. Also, the JTAG connection can be very fast, up to 400Kbytes/sec
download, so in large applications, particularly those using external FLASH memory, it can
be the best method of production programming. Finally it is also possible to reprogram
sections of the FLASH memory under command of the application already on the chip. This,
in application programming, can use any method to load the new code onto the chip (SPI
CAN 12C) and then load it into a given section of FLASH. So there is an easy to use
mechanism which allows field updates to your application.

Memory Map Control

Before looking at the operation of the bootloader we must first understand the different
memory modes available on the LPC2100. As we have seen, the ARM7 interrupt vector
table and its constants table take up the first 64 bytes of memory. In the LPC2000 these first
64 bytes may be mapped from a number of locations, depending on the mode set in the
MEMMAP register. It is important to note that these modes have nothing to do with the
ARMT7 operating modes. The MEMMAP register allows you to select between boot mode,
FLASH mode, RAM mode and External memory mode. When selected, a new vector table
will be mapped into the first 64 bytes of memory. So for the RAM mode the contents of
0x4000000- 0x400003F will be mapped to the start of memory. This allows a program to be
loaded into RAM starting at 0x4000000 and the vector table can then be redirected, thus
allowing the program and its interrupts to run in RAM. This mode is normally only used for
debugging small programs. FLASH mode leaves the first 64 bytes of user FLASH
unchanged and is the normal mode for user applications. Boot mode replaces the first 64
bytes of FLASH with the vector table for the bootloader and places a jump to the on-chip
bootloader on the reset vector.

1 2 3 0
(wdD (x00O000A0 OxA0000040 Ox80000040
00x00000040 i 0% i
ONCHIP USER RAM EXTERNAL BOOTLOADER
FLASH FLASH MODE FLASH MODE
MODE MODE

50

Introduction to the LPC2000 3 — System Peripherals

Bootloader

Every time the LPC2000 comes out of reset its memory map will be in boot mode, so the
instruction on the reset vector will cause it to jump into the bootloader code entry point at
OX7FFFFFFF. This can be the bane of new users if they load their code into FLASH with a
JTAG, reset and single step the first instruction only to find that the program counter is at
some wild high address. If this happens, you need to program the MEMMAP register to
0x00000002, to force the chip into FLASH mode and return the user vector table.

Once the bootloader code has been entered, it will perform a number of checks to see if the
FLASH needs to be programmed. First the watchdog is checked to see if the processor has
had a hard reset of a soft reset. If it is a hard reset, the logic level on pinl.4 will be tested. If
it is low, then the bootloader command handler will be entered. If it is a soft reset (ie
watchdog timeout) or pin 1.4 is high, then there is no external request to reprogram the
FLASH. However, before handing over to the user application, the bootloader will check to
see if there is a valid user program in FLASH. In order to detect if a valid program is
present, every user program must have a program signature. This signature is a word-wide
number that is stored in the unused location in the ARM7 vector table at 0x00000014. The
program signature is the two’s compliment of the checksum of the ARM?7 vector table

FIQ
IRQ
[Signature |<— UNUSED
ABORT Checksum
SWI

UNDEF The program signature is calculated as the

RESET two's compliment of the checksum of the
vector table. This signature must be stored
in the unused vector at 0x00000014 or your

T program will not run

= Zero

When this value is summed with the program signature the result will be zero for a valid
program. If a valid program is detected, the memory operating mode is switched to FLASH,
which restores the user vector table, the program counter is forced to zero and the user
application starts execution. If there is no valid program, then the bootloader enters its
command handler. So, without the program signature your code will never run! The program
signature can be added to your startup code as shown below:

LDR PC, Reset_ Addr
LDR PC, Undefined_Addr
LDR PC, SWI_Addr
LDR PC, Prefetch_Addr
LDR PC, Abort_Addr
-long OxB8AO6F58 /* Program signature */
LDR PC, IRQ_Addr
LDR PC, FIQ_Addr

o1

Introduction to the LPC2000 3 — System Peripherals

Philips ISP Utility

If there is a valid program signature, or pin 0.14 is held low after reset, the LPC2000 will
start the bootloader. Before handing over to the command handler it enters an auto-baud
routine. This routine listens on UART 0 for a synchronisation character. When this is sent by
the host, the LPC2000 measures the bit period and adjusts the Uart 0 baud rate generator to
match the host. Once this is done some further handshaking and configuration takes place
and then control is passed to the command handler.

The Bootloader command handler takes commands from UARTO in ASCII format. The
command set is shown below and allows you full programming control of the FLASH. In
addition the GO command is a simple debugging command which can be used to start
execution of code loaded into RAM. A full description of the bootloader communication
protocol is given in the LPC2000 datasheet.

ISP Command Usage
Unlock U <Unlock Code
Set Baud Rate B <Baud Ratex <stop bit-
Echo A<Setling>
Write to RAM W «<start address> <number of bytes>
Read Memory R <address> <number of bytes> When the bootloader has been

entered it will accept

Prepare sector(s) for write operation| P <start sector number> <end sector number>
commands as ASCI characters

Copy RAM to Flash C <Flash address> <RAM address> <number of bytes= on serial port 0
Go G <address> <Mode>

Erase sector(s) E <start sector numbers <end sector numbers

Blank check sector(s) | <start sector number= <end sector number>

Read Part 1D J

Read Boot code version K

Compare M <address> <address2> <number ofbytes

Philips provide a ready made FLASH In System Programming utility for the PC which can
be used to program the development board. This tool automatically calculates and adds the
program signature to your code, to ensure that your program will run. If you are using this
tool to program the FLASH, your code should have a NOP instruction on the unused vector
for this tool to work correctly.

Exercise 7: Memory Accelerator Module and Flash programming Utility
This exercise describes the use of the Philips Flash programming tool to load a
simple program into the LPC2000. This program runs without the MAM switched
on. By adjusting the A/D value the MAM is enabled so we can see the
performance increase caused by this important peripheral.

52

Introduction to the LPC2000 3 — System Peripherals

In-Application Programming

It is also possible to reprogram the FLASH memory from within your program. All of the
bootloader commands are available as an on-chip API and can be called by your code. To
access the bootloader functions you must set up a table in RAM which contains a command
code for the function you want to use followed by its parameters. The start address of this
table is stored in RO. The start address of a second table which contains the status code and
function results is stored in R1.

Command Code

Parameter 0

Command

Parameter 1 parameter table

ARM Register r0

The bootloader functions can be accessed
Parameter 7 to perform In application programming.

Commands are passed via two tables in
memory. The start addresses for each
table are stored in RO and R1

Status Code

Result 0

Command

Reult] result table

Resultn

The IAP entry point is at Ox7FFFFFFO if you wish to call the functions from a THUMB
function or at Ox7FFFFFF1 if you wish to enter from an ARM function. The return address
is expected to be stored in the link register. This convention is designed to work within the
ARM procedure call standard. A method of calling the IAP routines through function
pointers is detailed in the datasheet. An alternative method is shown below and both
methods are used in the example program. If you are short of program space you can
experiment with both methods to see which is the most efficient in your compiler.

If we define a THUMB function with three parameters as shown below.

void iap (unsigned *cmd, unsigned *rslt, unsigned entry)

asm("'mov r15,r2");

}

We can pass the start address of a command and result array and by the APCS convention
these values will be stored in RO and R1. We can also store the address of the entry point to
the AP routines in the next available parameter register R2. In THUMB mode we cannot
program the high registers directly, but we can move low registers to high registers, hence
we can move the contents of R2 directly into the program counter and initiate the requested
In Application Programming routine. When the 1AP routine has finished, it will return to
your application code using the value stored in the link register, which is the next instruction
in the function which called our void IAP (...) function. You should also note that the In
Application functions return in ARM mode not THUMB. The IAP functions require the top
32 bytes of on-chip RAM, so you must either locate the stacks to start below this region so it

53

Introduction to the LPC2000 3 — System Peripherals

is unused, or, if you need all the RAM, place the IRQ stack at the top of memory and disable
interrupts before you enter the 1AP routines. Using a pointer you can now copy the top 32
bytes of on-chip SRAM into a temporary array and then restore them once you return from
the IAP functions. This way you will not risk corrupting any stacked data.

External Bus Interface

The LPC22xx variants have an External Memory Controller (EMC). When enabled, the
EMC provides four chipselects from 0x80000000. Each chipselect has a fixed 16Mbyte
address range and a programmable wait state generation and can be programmed as an 8,16
or 32-bit wide bus. As well as allowing additional memory and peripheral devices to be
interfaced to the LPC22xx devices, it is possible to boot the chip from external FLASH
memory located on chip select zero.

External Memory Interface

The External Memory Interface of the LPC22xx devices is shown below.

— CS0
— CS3
— DO

— D31
— A0

— A23
— OE

— BLSO0-3
— WE

The data bus uses port 2 GPIO pins 2.0 — 2.31 and the address bus uses Port 3 GPIO pins 3.0
— 3.23. The remainder of port 3 is used for the Chipselects 1 — 3, the bytelane select pins and
the write enable signal. The remaining signal Chipselect 0 and output enable are on port 1.
The two boot pins are multiplexed with the databus pins D26 and D27. Depending on the
state of these pins at reset, the LPC22xx variants can boot from internal FLASH or any
width of memory connected to Chipselect zero. The table below shows the states the pins
should be held in to boot from a particular device. These two pins are fitted with weak
internal pull up resistors which ensure the device will boot from internal FLASH in its
default condition.

00 8 Bit

01 16 Bit

10 32 Bit

11 Internal FLASH

54

Introduction to the LPC2000 3 — System Peripherals

The LPC22xx datasheet shows basic schematics for the most common memory interfacing
options. However, we will consider a practical example of interfacing external FLASH and
static RAM onto a 32-bit bus. The FLASH memory we will use is the AMD
AM29LV320DT. This is a 32 megabit FLASH memory which can be arranged as 4M by 8
bits, or 2M by 16 bits. For the RAM we will use a K6F1616U6A which is a 1M by 16 bit
static RAM. Both these devices are designed for low power applications and the
programming algorithm is supported by the ULINK JTAG interface. The FLASH is
connected to Chipselect 0 and the RAM is connected to Chipselect 1. The schematic for
each Chipselect is shown below.

D100
L.t S N
AZ3.A0
[] < <
Control
—N) N)
1300 U3l
A2 25 28 Di Al 25 26 D16
AT 19 i? g? 44 DI AT 1 Q? g? 44 D7
AT 13 27 o AT 1 27 DI
A1) h2 ol RN A3 2 b2 s oo
ET A Sl DY A6 ¥ o s o
AT 20| b4 D AT_70 | bt o [z
AR 4| o oo [AT_De AT 14| wp e [A7_DX
LR e D7 [22_D7 LU - DE; 20 D3
A0 11 32 D8 ATD 11 32 DX
AT 5|8 il BN AT 5 43 D¢ [ee_ox
AT 7] A% Mo [32 DI YRR T v b1o [22_D%
XK A o1 30 b EXER RN N Eh R)
NP A b [D1 VDD_Vav3 AT 12|) o [Dm
A5 6402 S I AIS 6| A12 D12 (41 Do
Al6 18 | b1y [35_Dl Alo 18 | A1 D1y [35_Dx
ATT 24| 212 Dl s . ATT 24 | A4 ol b
Ao A5 DIsiAd R3O0 [R301 AT a5 AlS DS
S A6 o 10k 10k o] A6
e M7 TWRACC | o AT TWRIACC (o
AT oo | Al8 NG |2 AT | Al8 NG =
| A9 o Al
A2 21 1 a2 A2 21 %0
[\{]]) oe RYEY |2 ‘\\’:[I o loe RYEY |2
IR 7S vee |42 CSE0STL Iheg vee 9 mvop vave
R303 10 mEser w4 B0 10| RESET “
=2 BYTE GND = | =2 BYTE GND =
10k GMND Inxa GND
TLVIZIDT00WMI GND DIVIHDTOOWMI GID
RESET
Po17 1 g

JIX2

I37 default : open

Two of the 29L.VV320DT devices are arranged as 16-bit wide memories to give a 2M page of
32-bit wide FLASH memory. The byte# pin is pulled high on each device to enable the 16-
bit mode. The FLASH device is designed to be a boot sector device and consequently has an
option to protect the top and bottom sectors so that they cannot be corrupted. This feature is
enabled by pulling the |WP/ACC pin low. Since we do not want this feature, the pin is
pulled high allowing us to reprogram any sector of the FLASH memory. We are also not
using the Ready/Busy output, so this is also tied high. The remaining control signals reset,
Output enable (OE), Write Enable (WE) and Chip Enable are connected directly to the
processor. As the memory is to be arranged word-wide (32 bits) we need to be able to
address it every quad bytes, hence A0 and Al are not used. If it is necessary to add more
memory onto this chipselect the 29LV320 can be replaced with a XXX to give a 4M page
of word-wide memory. To access the full 16 Mbyte address range, a duplicate pair of
devices can be added and the chipselect gated with A23 to provide a chipselect for each half
of the memory page.

55

Introduction to the LPC2000 3 — System Peripherals

0x81000000
C30. A23
Four devices with 2 M x16-bit can be arranged as a linear
4M x 32-bit address space. The address line A23 and CS0
0x803800000 are used to decode between the two different banks.
CS0. A23
0x80000000

The RAM is interfaced to the address bus in a similar fashion using Chipselectl except the
devices are 1 Mbyte in size so we are using A2 to A21. Further devices can be mapped in by
multiplexing A22 and A23 with the chipselect line. As this is a RAM device and we may
want to access it word, half-word or byte wide we can use the byte lane pins to allow access
to the upper and lower bytes in each device

[D21..00]

Ny N
AZ3A0)
B A N N
Contrel
" N
U400 U401
2 K i} A2 :)
] %0 D0 -2 A A0 D0 H2—pi7
Al 5| M CU AT 5™ D1 =g DIs
SR D2 s b3 Aol b2 %z D
A0 | 4 b s Ac 0| o b9 bw
AT 15| ™ EERE AT 15| M 3% Dul
W16 | e D[1o ARG | he) DY)
AT 22 ® 43 D7 R0 22 1z DD
AT o7 AT o7 2
ATD a4 | o] o7 ms 44 O A
BLS0 AT 45| 45 D5 W S ER A
LLEBR Al2 48 a0 D10 14 DI0 3 B 14 D6
AT a7 | Al D19 0 BI0 0o
AT 39 | 41 D [on Dl 25 D%
) ATS 40 32 D0 32 D
14005 g Alb 33 | 412 D13 ——pn D13 57w
R ATT 34| A4 DU = D14 I by
: : AlT 34§ s D15 2 D15 |2l
. AT 25| 418
AI0 21 | 418 VDD_V3V3 Al 21 | A6
A 4z | A7 VEBAT AJ0_43
AT 38| A1 y A2 35
BLS2 N 48 e ne 48
TIBR LIBR 1 | il . HIBR 1 | —
B N IGA — MHLBR 1) 7
. LUBRS | g5 _ MHUBRSB | 55~
oF 2 | 2B e |25 OF 2|22 . 25, e
OB e Vee veoram IO 215 vee VCCRAM
) WE 41 | S5 CC o7 WE a1 | S | utc
120 2 BLs3 NE UEE default: 142 e ige
3“.4 TIUBR CSRO11 | = enp L1 SR | e anD 12
252 5 | cs2 GND 2 61 cs2 GhD (22
GND |4 GND [-2
KGFTGTGI6A TR0 REFTGTGUBA EFT
GND fe}

RESET [

Finally the boot pins D26 and D27 must be pulled low if we want to boot from the external
device.

56

Introduction to the LPC2000 3 — System Peripherals

Using The External Bus Interface

Each chipselect has a fixed address range and has a dedicated bus configuration register
BCFGO — BCFG3.The address range of each chipselect is shown below.

CSo 8000 0000 80FFF FFFF
CS1 8100 0000 81FFF FFFF
CS2 8200 0000 82FFF FFFF
CS3 8300 0000 83FFF FFFF

In our hardware example above we have mapped the FLASH onto chip select 0 at
0x80000000 and the ram onto chipselect 1 at 0x81000000. Before we can use the external
memory we must setup the chipselect configuration registers.

AT Mw BM WP WP ERR BUSS ERR WST2 RBLE WSTH IDCY
IDCY Controls the minimum number of idle cycles between read and write operations
WSTI1 Controls the length or read accesses

RBLE 0 for byte wide devices (drives BLS signals high)
1 for 16/32 bit devices (drives BLS signals low)
WST2 Controls the length of write accesses

WPERR Set if software attempts to write to a memory bank

WP Write protect, once set write protects a bank
BM Enables memory bank as a Burst ROM
MW Detines the width of the data bus

AT, BUSS ERR, ERR - Not used

Each of the chipselects in use must be programmed with the correct parameters to match the
external device connected on to it. In the case of the FLASH memory, it has a 90ns read
cycle so at 60MHz with a cycle time of 16 ns we need 6 Cclk read waitstates with one idle
cycle. The FLASH is accessed word-wide, so RBLE is set to zero to disable the byte laning.

Each Chipselect may be configured
00 8 Bit with a buswidth of 8,16 or 32 bits
01 16 Bit
10 32 Bit
11 Reserved

57

Introduction to the LPC2000 3 — System Peripherals

During normal operation the FLASH will not be written to, so WST2 is set to zero. Also, the
write protect may be set to detect accidental writes to the FLASH bank, but during
development it may be wise to set it to zero and disable write protect in case it interferes
with the FLASH programming algorithm of the ULINK. Finally the bus width is set to 32
bits. This gives a configuration value for Chipselect zero of 0x20000060.

In the case of the RAM it has a 70ns read and write time. Consequently at 60MHz the read
and write waitstate (WST1 and WST2) should be set to 5 Cclk cycles with IDCY set to one
cycle. As the RAM is a byte-partitioned device, the byte lane control must be enabled by
setting RBLE to one. And again the bus width must be set to 32 bits. This gives us a
chipselect configuration value of 0x20001440.

These values can be configured with the graphical editor in the Keil startup code.

[#- Stack Configuration (Stack Sizes in Bytes)
- PLL Setup
- MAM Setup
E| External Memary Controller (EMC)
=} Bark Corfiguration 0 {BCFGE0)
- IDCY: Idle Creles
- WWST1: Waik Skates 1
- WSTZ Waik States 2
.. RBLE: Read Byte Lane Enable
- WP Wrike Prokect
- BM: Bursk ROM
- My Memary Width
[=J-- Bank Configurakion 1 (BCFE1
- IDCY: Idle Creles
- WWST1: Waik Skates 1
- WSTZ Waik States 2
.. RBLE: Read Byte Lane Enable
- WP Wrike Prokect
- BM: Bursk ROM
- My Memary Width
B~ Bank Configur akion 2 (BCFE2)
B~ Bank Configurakion 3 (BCFE3

N I R R AU S R R R RE REA R

Booting From ROM

By default the LPC22xx devices will boot from their internal FLASH memory and can
access the external memory once the chipselects are configured. However, if the external
bootpins are pulled low, the chip will boot from external memory. In this case Chipselect
zero will be enabled in the bus width selected by the boot pins. Its waitstate parameters will
default to 34 Cclk cycles for WST1 and WST2 and 16 Cclk cycles for the IDCY. This
ensures that the accesses on Chipselect zero will be slow enough to interface with any
external device. When booting from an external device is selected, the value in the
MEMMARP register will be set to 0x3 (boot from external FLASH) and the first 64 bytes of
external memory on Chipselect 0 will appear at Zero. This means that you must build your

58

Introduction to the LPC2000 3 — System Peripherals

code so that the interrupt vector table and the constants table are located from address
0x80000000. In practice this means changing the start address to 0x80000000 instead of
0x0000000. In the Keil startup code this is done by an assembler directive, which is used to
relocate the CODE_BASE segment containing the vector table.

$1F (EXTERNAL_MODE)

CODE_BASE EQU 0x80000000
$ELSE

CODE_BASE EQU 0x00000000
$ENDIF

AREA STARTUPCODE, CODE, AT CODE_BASE // READONLY, ALIGN=4
PUBLIC__startup

The define EXTERNAL_MODE is declared in the assembler local options menu as shown
below:

Properties Asm I

— Conditional azzembly control Symbolz

— Macro processor
v Standard [+ Case sensitive symbols

Include I B
Paths
Mizc I
Contrals

Azsembler |SET ([EXTERNAL_MODE) DEBUG PRIMTI \phy'Startup.Ist] EF
cantrol
string

L [

Once we have our program ready to run from external FLASH, there is a slight chicken and
egg situation. In order to be able to program the external FLASH the chipselect must be
configured, but to do this we must have code running on the chip. One solution would be to
place a configuration program into the on-chip FLASH, boot from this and use it to
configure the chipselects. However, some LPC variants are available without on-chip
FLASH. Fortunately the ULINK JTAG can run a script file to setup the chipselects as
required and then program the external memory.

In addition it is possible to use the on-chip FLASH in conjunction with the external FLASH
on chipselect 0. In this case you can make best use of the on chip flash by placing your
interrupt functions in it. Since these will be coded in the ARM instruction set you will want
them to run as fast as possible. However you must be careful when locating code into the
on-chip FLASH. If you are booting from external FLASH, the interrupt vector table will be
mapped into the first 64 bytes of internal memory. This means that you must locate any on-
chip code from location 0x00000040 upwards. Anything located below 0x00000040 will be
programmed into the FLASH memory but will be mapped out during normal program

59

Introduction to the LPC2000

3 — System Peripherals

operation. As a result your code will crash, probably in quite a spectacular fashion. In the
Keil compiler this can be achieved by reserving the vector table bytes as shown below

. Options for Target "Simulator LPC229x’

Reserve

[
classes

User
clazses

User
Segments

Linker
control
string

Device] Talget] Dutput] Listing] 5

v Use Memary Layout from Target Dialog

| Asm | LaMise L& Locate | Debug | Utiities |

|DxD-UxBF

DATA [0x40000000-0x40003FFF, 0x21000000-02811FFFFF],
CODE (0x20000000-0<203FFFFF), CONST (0x80000000-0x303FFFFF))

PPRPIT Blinky (0=40)

TO "ASim'Hello"
FRINT["ASimsHelo.map"] CASE

oK | Cancel Defaults

Help

The RESERVE command
makes sure the first 64
bytes of on chip flash are
unused, allowing the
external vector table to be
mapped in. The user
segments table allows
specific routines to be
mapped on chip

Exercise 9: External Bus Interface
This exercise shows the necessary changes to the project we set up in exercise 1 so

that it will boot and run from external memory.

Phase Locked Loop

The Phase Locked Loop is used to take an external oscillator frequency from between 10
MHz — 25MHz from a fundamental crystal and multiply this frequency up to a maximum of
60MHz to provide the on-chip clocks for the ARM7 CPU and peripherals. This allows the
LPC2000 to run at its maximum frequency with a low value external oscillator, thus
minimising the EMC emissions of the LPC2000. The PLL output frequency can also be
changed dynamically, allowing the device to throttle back its execution speed in order to
conserve power when it is idling.

10MHz — 25 MHz

XM P

60

10MHz — 60 MHz
PLL —e

The PLL is used to
multiply the external
crystal frequency up to
the maximum 60 MHz. It
is controlled by the
constants M and P

Introduction to the LPC2000 3 — System Peripherals

Within the PLL are two constants which must be programmed in order to determine the
clock for the CPU and AHB. This clock is called Cclk. The first constant is a
straightforward multiplier of the external crystal. The output frequency of the PLL is given
by

Cclk = M x Osc

In the feedback path of the PLL is a current-controlled oscillator which must operate in the
range 156MHz — 320 MHz.. The second constant acts as a programmable divider which
ensures that the CCO is kept in specification. The operating frequency of the CCO is defined
as

Fcco = Cclk x 2 x P

On our development board there is a 12MHz oscillator so to reach the maximum CPU
frequency of 60MHz

M = Cclk/Osc = 60/12 = 5

And then for P
156< Fcco <320 =60 x 2 x P

By inspection, P = 2

The programming interface for the PLL is shown below.

PLL Register

Creo
The PLL control registers can be
programmed at any time but the new values
“*|:| will not take effect until a correct feed
sequence has been written to PLL FEED
PLLSTAT *— ,l |

T

PLL
FEED

The values written to the user SFRs are not transferred to the internal PLL registers until a
feed sequence is written to the PLL feed register. Once you have updated the PLLCON and
PLLCFG registers, you must write 0x000000AA followed by 0x00000055 (the PLLFEED
register). These values must be written on consecutive cycles. If you program the PLL with
interrupts enabled, it is conceivable that an interrupt could occur after the first word of the
sequence is written and the new PLL settings would not become effective. To set up the PLL
you must write the values for P and M to the PLLCFG register. Then, using the PLLCON
register, the PLL is enabled. This starts up the PLL but there is a finite startup time before it
is stable enough to be used as the Cclk source. The startup of the PLL can be monitored by
reading the LOCK bit in the PLLSTATUS register. Once the lock bit is set, the PLL can be
used as the main clock source. Alternatively an interrupt can be generated when the PLL

61

Introduction to the LPC2000 3 — System Peripherals

locks, so that you can carry out other tasks while the PLL starts. Once the PLL has locked as
a stable clock source, it can replace the external oscillator as the source for Cclk. This is
done via the PLLC bit in the PLLCON register.

The PLL setup sequence is performed by the Keil compiler startup code
and you just need to provide values for M and P. An interrupt is also
generated when the PLL locks. This can be used to replace the polling of
X the lock bit to achieve maximum startup performance.

Has
PLL
Locked

Y

Care should be taken with the values stored for the constants in the PLLCFG register. The
values written to the register for the constants are P-1 and M-1, which ensures that the
values of P and M in the PLL are never zero. Also the value for M is 5 bits long, so the
value for P is not on an even nibble boundary. If you make a simple mistake setting up the
PLL the whole chip may be running out of specification. If the chip enters power down
mode, the PLL is switched off and disconnected. A wakeup from power down does not
restore the PLL so the sme startup sequence must be followed each time the chip exits the
power down setting.

VLSI Peripheral Bus Divider

The external oscillator or the output of the PLL is used as the source for the Cclk which is
the clock source for the ARM7 CPU and the AHB bus. The peripherals are on the separate
VPB bus.

10 Mhz - 60 Mhz Processor clock

» CCLK The Output from the PLL is called
Cclk and provides the clock for the
CPU and AHB bus. The VLSI bus
clock is called Pclk and is derived
from Cclk by the VPB divider.

Fosc
10 Mhz -25 Mhz

Processor clock
PCLK
2.5-60 Mhz

62

Introduction to the LPC2000 3 — System Peripherals

The clock on the VPB bus is called Pclk. This clock is derived from Cclk via the VPB
bridge. The VPB bridge contains a divider which can divide down the Cclk by a factor of
1,2 or 4. The VPB divider register can be programmed by your application at any time. At
reset it is set to the maximum value of four, so the Pclk is running at a quarter of the Cclk
value at startup. Currently all the peripherals on the LPC2000 derivatives can run at the full
60MHz, so the VPB divider is principally used for power-saving by running the VPB clock
at the slowest speed acceptable for your application.

Example Code: PLL And VPB Configuration

The code below demonstrates how to configure the PLL to give 60MHz Cclk and 30 MHz
Pclk with an external crystal of 12MHz.

void init_PLL(void)

{

PLLCFG = 0x00000024; // Set multiplier and divider of PLL to

// give 60.00 MHz

PLLCON = 0x00000001; // Enable the PLL

PLLFEED = OxO00000AA; // Update PLL registers with feed sequence

PLLFEED = 0x00000055;

while (Y(PLLSTAT & 0x00000400)); // test Lock bit

PLLCON = 0x00000003; // Connect the PLL

PLLFEED = Ox000000AA; //Update PLL registers

PLLFEED = 0x00000055;

VPBDIV = 0x00000002; //Set the VLSI peripheral bus to 30.000MHz
}

Exercise 10: Phase Locked Loop
In this exercise we configure the PLL to generate a Cclk of 60MHz and a Pclk of
30MHz

63

Introduction to the LPC2000 3 — System Peripherals

Power Control

Power consumption on all (well-designed) microcontrollers is a direct relationship with the
number of gates and the switching speed. The LPC2000 is no exception, The simplicity and
low gate count of the ARM?7 core contributes to its low power consumption. Intelligent use
of the PLL and VPB divider can contribute to reducing the runtime switching speed. In
addition, the LPC2000 has additional dedicated power control features. The ARM7 CPU has
two power down modes controlled by the first two bits of the PCON register. The CPU may
be placed into Idle mode where the CPU is halted, but the peripherals are still operational.
Any interrupt from a peripheral will wake up the CPU and processing will resume.

Ext Int |:] a) |:] 12c
Idle mode stops the clock to the CPU but
Timer 0 |:|— —E SPI the peripherals are still running and any
interrupt will restart the CPU.
‘I'|mer'1|:| I:lUAFtTO
pwmo[4] Jwatendog 12 0
PCON | [[TIT[TE
RTC l:l 1 l:|8ystem Cantrol
Pin Connect Block I:] b

64

Introduction to the LPC2000 3 — System Peripherals

The ARMY can also be placed into a power down mode which halts both the CPU and the
peripherals. In this mode only a reset or an interrupt generated by the external interrupt pins
will cause the chip to wake up. In power down mode the oscillator is shut down. All the
internal states of the processor registers and on-chip SRAM are preserved, as are the static
logic levels on the 1/O pins. On wake up from power down the clock source is the external
oscillator and the PLL must be reconfigured.

Ext Int
am[—— Power down mode halts the processor and the
peripheral clocks. The external interrupts can be

tmarg) :l i :l used to restart the processor and peripherals.
Timer 1 l:l— :l UART O

ario [] vanr1
v [— R ecsou

12
RTC 1 System Control -
- — PCON 7]
Pin Connect Block [| ¢

The LPC2000 has an internal wake up timer which ensures the external oscillator is stable
and the on chip memory and peripherals have initialised before the CPU starts to execute
instructions. From wake up the oscillator will start to resonate. When its cycles become
strong enough to drive the chip, the wake up timer will count 4096 cycles before initialising
the FLASH memory and resuming program execution. This ensures the minimum restart
delay after a power down or chip reset. It is also possible to power down an individual
peripheral if it is not being used via its power control bit in the PCONP register. A few
peripherals cannot be powered down: these are the Watchdog, GPIO, pin connect block and
the system control block. Your code can optimise the configuration of the LPC2000 for
minimum power consumption for a given application. Some unofficial power consumption
figures are given below.

LPC2106 @60MHz 30mA
Power down 10 - 15uA

LPC2129 @60MHz 55mA
@60MHz VPBDIV =4 40mA

During development it is likely you will be using a JTAG development tool connected to the
ARMTY via a dedicated serial link. If you place the CPU into Idle or Power Down mode no
further debugging will be possible until the CPU is woken up.

65

Introduction to the LPC2000 3 — System Peripherals

LPC2000 Interrupt System

In the C code section we saw how to deal with ARM?7 exceptions for an undefined
instruction, a memory abort and a SWI instruction. In this section we will look at the
remaining two exception sources: the General Purpose Interrupt (IRQ) and Fast Interrupt
(FIQ). These two exceptions are used to handle all the interrupt sources external to the
ARM7 CPU. In the case of the LPC2100 these are the user peripherals. In order to examine
the LPC interrupt structure, we need a simple interrupt source. For this we can use the
external interrupt pins which are the easiest peripheral to configure and EINT1 is connected
to a switch on the development board which allows us to trigger an interrupt at will and
observe the results with the debugger.

Pin Connect Block

All of the I/O pins on the LPC2000 are connected to a number of internal functions via a
multiplexer called the pin select block. The pin select block allows a user to configure a pin
as GPIO or select up to three other functions.

Pinsel 0
I 0
GP10
The Pinselect module allows each I/O pin to be
TXD O PO—0 multiplexed between one of four peripherals
PWM 1 '
Reserved

On reset all the 1/O pins are configured as GPIO. The secondary functions are selected
through the PINSEL registers. The EINT1 interrupt line shares the same 1/0O pin as GP1O
0.14 and a UART1 control line. So, in order to use EINT1 we must configure the pin select
register to switch from the GPIO function to EINTL.

External Interrupt Pins

The external interrupts are controlled by the four registers shown below. The EXMODE
register can select whether the interrupt is level or edge sensitive. If an external interrupt is
configured as edge sensitive, the EXPOL register is used to qualify whether the interrupt is
triggered on the rising or falling edge. In the case of level-sensitive triggering, the external
interrupts can only trigger on a logic zero level. If the power down mode is being used, the
EXWAKE register can enable an interrupt to wake up the CPU. So to set up a simple
interrupt source program configure the EINT1 interrupt to be level sensitive and then
connect it to the processor pin via the pinselO register.

66

Introduction to the LPC2000 3 — System Peripherals

\ Power The external interrupt pins are an easy to
>— antia] configure interrupt source when first
; ontro experimenting with the LPC2000 interrupt

structure

EXTWAKE

—I_I— B vIC

I
PINSEL —

Interrupt Structure

The ARM7 CPU has two external interrupt lines for the fast interrupt request (FIQ) and
general purpose interrupt IRQ request modes. As a generalisation, in an ARM7 system there
should only be one interrupt source which generates an FIQ interrupt so that the processor
can enter this mode and start processing the interrupt as fast as possible. This means that all
the other interrupt sources must be connected to the IRQ interrupt. In a simple system they
could be connected through a large OR gate. This would mean that when an interrupt was
asserted the CPU would have to check each peripheral in order to determine the source of
the interrupt. This could take many cycles. Clearly a more sophisticated approach is
required. In order to handle the external interrupts efficiently an on-chip module called the
Vector Interrupt Controller (VIC) has been added.

ARM7 TDMI

T'he VIC provides additional hardware support for
he on-chip peripheral interrupts. Without the VIC

he interrupt response time would be very slow.
AHB nFIQT Tnmo

Vector Interrupt Controller

The VIC is a component from the ARM prime cell range of modules and as such is a highly
optimised interrupt controller. The VIC is used to handle all the on-chip interrupt sources
from peripherals. Each of the on-chip interrupt sources is connected to the VIC on a fixed
channel: your application software can connect each of these channels to the CPU interrupt
lines (FIQ, IRQ) in one of three ways. The VIC allows each interrupt to be handled as an
FIQ interrupt, a vectored IRQ interrupt, or a non vectored IRQ interrupt. The interrupt
response time varies between these three handling methods. FIQ is the fastest followed by
vectored IRQ with non-vectored IRQ being the slowest. We will look at each or these
interrupt handling methods in turn.

67

Introduction to the LPC2000 3 — System Peripherals

nFIQ

———FIQ . The VIC provides three levels of interrupt
service and on chip interrupt sources
— =z hoaipbndul
ARM7 TDMI nlRQ VIC ——<€—Vectored mQ""gﬁ may be allocated into each group

——<€——Non Vectored IRQ GRS

FIQ interrupt

Any interrupt source may be assigned as the FIQ interrupt. The VIC interrupt select register
has a unique bit for each interrupt. Setting this bit connects the selected channel to the FIQ
interrupt. In an ideal system we will only have one FIQ interrupt. However setting multiple
bits in the Interrupt Select Register will enable multiple FIQ interrupt sources. If this is the
case, on entry the interrupt source can be determined by examining the VIC FIQ Status
register and the appropriate code executed. Clearly having several FIQ sources slows entry
into the ISR code. Once you have selected an FIQ source the interrupt can be enabled in the
VIC interrupt enable register. As well as configuring the VIC, the peripheral generating the
interrupt must be configured and its own interrupt registers enabled. Once an FIQ interrupt
is generated, the processor will change to FIQ mode and vector to 0x0000001C, the FIQ
vector. You must place a jump to your ISR routine at this location in order to serve the
interrupt.

Leaving An FIQ Interrupt

As we have seen, declaring a C function as an FIQ interrupt will make the compiler use the
correct return instructions to resume execution of the background code at the point at which
it was interrupted. However, before you exit the ISR code you must make sure that any
interrupt status flags in the peripheral have been cleared. If this is not done you will get
continuous interrupts until the flag is cleared. Again, be careful, as to clear the flag you will
have to write a logic 1 not a logic 0.

At the end of an interrupt the interrupt status flag must

Clear — | Peripheral Interrupt Register be cleared . Failure to do this will result in continuous
interrupts

68

Introduction to the LPC2000

3 — System Peripherals

Example Program: FIQ Interrupt

This function sets up the external interrupt as an FIQ interrupt then sits in a loop.

void main (void)

{

I0DIR1 = OxO0OFFO0000;

//Set the LED pins as outputs

PINSELO = 0x20000000; //Select the EINT1 function in the pin connect block
VICIntSelect = 0x00008000; //Enable a Vic Channel as FIQ

VICIntEnable

I10CLR1 = OxOO0OFFO0000;

while(1);
¥

0x00008000;

//Loop here forever

//Enable the EINT1 interrupt in the VIC

// Clear the LED"s

In the startup code the FIQ interrupt routine must be added to the vector table. The address
of the FIQ interrupt routine is suffixed with ?A to demote the routine as an ARM (32 Bit

instruction set) routine.

EXTERN CODE32 (Fiqint?A)

__startup PROC
Vectors: LDR
LDR
LDR
LDR
LDR
NOP
Vector */
LDR
LDR
routine into thePC from
Reset_Addr: DD
Undef_Addr: DD
SWI_Addr: DD
PAbt_Addr: DD
DAbt_Addr: DD
DD
IRQ_Addr: DD
FIQ_Addr: DD

stored here

CODE32

PC,=Reset_Addr
PC,Undef_Addr
PC,SWI_Addr
PC,PAbt_Addr
PC,DAbt_Addr

PC,[PC, #-OxOFFO]
PC,FI1Q_Addr
the constants table

Reset_Handler
Undef_Handler
SWI_Handler
PAbt_Handler
DAbt_Handler
0

IRQ _Handler
figint?A

/* Reserved

//Load the address of the FIQ

/* Reserved Address */

// The address of the FIQ routine is

When the INT1 button is pressed on the MCB2100 the FIQ interrupt is generated and the code will
vector to the figint routine. The routine is declared as an interrupt routine by using the _ fiq language
extension. Before exiting the ISR the peripheral flag is cleared.

void fiqint (void) _ Fiq
I0SET1 = OxOOFF0000;
EXTINT = 0x00000002;

//Set the LED pins
//Clear the peripheral interrupt flag

FIQ exception

Exercise 11: FIQ interrupt
This exercise sets up the VIC to respond to an external interrupt line as a

69

Introduction to the LPC2000 3 — System Peripherals

Vectored IRQ

If we have one interrupt source defined as an FIQ interrupt all the remaining interrupt
sources must be connected to the remaining IRQ line. To ensure efficient and timely
processing of these interrupts, the VIC provides a programmable hardware lookup table
which delivers the address of the C function to run for a given interrupt source. The VIC
contains 16 slots for vectored addressing. Each slot contains a vector address register and a
vector control register.

‘ Vector Address |

‘ Default Vector Address |

‘ Vector Address 0 | For a Vectored IRQ the VIC provides a hardware lookup
table for the address of each ISR. The interrupt priority

‘ Vector Address 15 | of each peripheral may also be controlled.

‘ Vector Control 0 |

‘ Vector Control 15 |

The Vector Control Register contains two fields: a channel field and an enable bit. By
programming the channel field, any interrupt channel may be connected to any given slot
and then activated using the enable bit. The priority of a vectored interrupt is given by its
slot number, the lower the slot number, the more important the interrupt.

Vector Control n

0-4 | 5

Channel 0 | T
Channel 4 : . Slot n)
/” Each vector address “slot” may be assigned

Channel 5 [to any peripheral interrupt channel: the
lower the number of the vector address the
higher its priority

A4
Channel 15

The other register in the VIC slot is the Vector Address Register. As its name suggests, this
register must be initialised with the address of the appropriate C function to run when the
interrupt associated with the slot occurs. In practice, when a vectored interrupt is generated
the interrupt channel is routed to a specific slot and the address of the ISR in the slot’s
Vector Address Register is loaded into a new register called the Vector Address Register. So
whenever an interrupt configured as a vectored interrupt is generated, the address of it’s ISR
will be loaded into a fixed memory location called the Vector Address Register.

70

Introduction to the LPC2000 3 — System Peripherals

_ 0
Vector Address:
When an interrupt occurs the vector
address slot associated with the interrupt
channel will transfer its contents to the
vector address register.
v 15
Exception

While this is happening in the VIC unit, the ARM7 CPU is going through its normal entry
into the IRQ mode and will vector the 0x00000018 the IRQ interrupt vector. In order to
enter the appropriate ISR, the address in the VIC Vector Address Register must be loaded
into the PC. The assembly instruction shown below does this in a single cycle.

LDA PC, [PC,#-0xFFO]

As we are on the IRQ we know the address is 0x00000018 + 8 (for the pipeline). If we
deduct OxFFO from this, it wraps the address round the top of the 32-bit address space and
loads the contents of address OXFFFFFF020 (the Vector Address Register.)

0x00 IRQ Interrupt Vector
0x0000 0018
When an IRQ exception occurs the CPU

LDR PC, [PC # FF0) L~ I Load Contents of Location executes the instruction LDA PC[PC,#-0xFFO0]
~~———" | 0x18-FF0-PC into PC which loads the contents of the vector address
register into the PC forcing a jump to the ISR

[T oxrFFF 020

Veector Address Register

OXFFFF FFF

71

Introduction to the LPC2000 3 — System Peripherals

Leaving An IRQ Interrupt

As in the FIQ interrupt, you must ensure that the interrupt status flags are cleared in the
peripheral which generated the request. In addition, at the end of the interrupt you must do a
dummy write to the Vector Address Register. This signals the end of the interrupt to the VIC
and any pending IRQ interrupt will be asserted.

Write — | Vector Address Register

At the end of a vectored IRQ interrupt you must
make a dummy write to the Vector Address
Register in addition to clearing the peripheral flag
to clear the interrupt.

Clear —» |Peripheral Interrupt Register

Example Program: IRQ interrupt

This example is a repeat of the FIQ example but demonstrates how to set up the VIC for a
vectored IRQ interrupt.

The vector table should contain the instruction to read the VIC vector address as follows:

Vectors: LDR PC,Reset_Addr
LDR PC,Undef_Addr
LDR PC,SWI_Addr
LDR PC,PAbt_Addr
LDR PC,DAbt_Addr
NOP
LDR PC,[PC, #-O0xOFFO] /* Vector from

VicVectAddr */
LDR PC,FI1Q_Addr

The C routines to enable the VIC and sever the interrupt are shown below:

void main (void)

{
IODIR1 = Ox000FF000; //Set the LED pins as outputs
PINSELO = 0x20000000; //Enable the EXTINT1l interrupt
VICVectCntlO = 0x0000002F; //select a priority slot for a
// given interrupt
VICVectAddrO = (unsigned)EXTINTVectoredIRQ; //pass the address
// of the IRQ into
// the VIC slot
VICIntEnable = 0x00008000; //enable interrupt
while(1);
}

void EXTINTVectoredIRQ (void) _ irq

I0SET1 = O0x000FF000; //Set the LED pins
EXTINT = 0x00000002; //Clear the peripheral interrupt flag
VICVectAddr = 0x00000000; //Dummy write to signal end

//0of interrupt

72

Introduction to the LPC2000 3 — System Peripherals

Exercise 12: Vectored interrupt
This exercise uses the same interrupt source as in exercise 11 but this time

the VIC is configured to respond to it as a vectored IRQ exception.

Non-Vectored Interrupts

The VIC is capable of handling 16 peripherals as vectored interrupts and at least one as an
FIQ interrupt. If there are more than 17 interrupt sources on the chip, any extra interrupts
can be serviced as non-vectored interrupts. The non-vectored interrupt sources are served by
a single ISR. The address of this ISR is stored in an additional vector address register called
the default vector address register. If an interrupt is enabled in the VIC and is not configured
as an FIQ or does not have a vectored interrupt slot associated with it, then it will act as a
non-vectored interrupt. When such an interrupt is asserted the address in the default vector
address is loaded into the vector address register, causing the processor to jump to this
routine. On entry the CPU must read the IRQ status register to see which of the non-
vectored interrupt sources has generated the exception.

Default Vector Address

Exception The non-vectored interrupt has one
vector address slot that will jump all
non-vectored interrupt sources to one
default ISR

Vector Address

Leaving A Non-Vectored IRQ Interrupt

As with the vectored IRQ interrupt, you must clear the peripheral flag and write to the vector
address register.

Example Program: Non-Vectored Interrupt

void main (void)

{

I0DIR1 = Ox000FF000; //Set the LED pins as outputs
PINSELO = 0x20000000; //Enable the EXTINTO interrupt
VICDefVectAddr = (unsigned)NonVectoredIRQ; //pass the address of the IRQ
//into the VIC slot
VICIntEnable = 0x8000; //Enable EXTINTO in the VIC
while(1);
}
Vectors: LDR PC,Reset_Addr
LDR PC,Undef_Addr
LDR PC,SWI_Addr
LDR PC,PAbt_Addr
LDR PC,DAbt_Addr
NOP
LDR PC,[PC, #-O0xOFFO] /* Vector from VicVectAddr */
LDR PC,FIQ_Addr

73

Introduction to the LPC2000 3 — System Peripherals

void NonVectoredIRQ (void) __irq

{

i T(VICIRQStatus&0x00008000) //Test for the interrupt source
10SET1 = Ox00FF0000; //Set the LED pins
EXTINT = 0x00000002; //Clear the peripheral interrupt flag
update++;

}
VICVectAddr = 0x00000000; //Dummy write to signal end of interrupt
}

Exercise 13 : Non Vectored Interrupt

This final exercise with the VIC demonstrates how to handle a non-vectored
interrupt. It is included for completeness since this mode will not normally be
reauired.

Within the VIC it is possible for the application software to generate an interrupt on any
given channel through the VIC software interrupt registers. These registers are nothing to do
with the software interrupt instruction (SWI), but allow interrupt sources to be tested either
for power-on testing or for simulation during development.

Software Interrupt Register

It is possible to simulate an
interrupt source via the software
interrupt set and clear registers in
the VIC

Interrupt Channel
Interrupt Source

In addition the VIC has a protected mode which prevents any of the VIC registers from
being accessed in USER mode. If the application code wishes to access the VIC, it has to
enter a privileged mode. This can be in an FIQ or IRQ interrupt, or by running a SWI
instruction.

Typical latencies for interrupt sources using the VIC are shown below. In the case of the
non-vectored interrupts use the latency for the vectored interrupt plus the time taken to read
the IRQstatus register and decide which routine to run.

*FIQ

Interrupt Sync

+ Worst Case Instruction execution

+ Entry to first Instruction

= FIQ Latency = 12 cycles = 200 nS @ 60MHz
*IRQ

Interrupt sync
+ worst case instruction execution
+ Entry to first instruction
+ Nesting
= IRQ Latency = 25 cycles = 416nS @ 60MHz

74

Introduction to the LPC2000 3 — System Peripherals

Nested Interrupts

The interrupt structure within the ARM7 CPU and the VIC does not support nested
interrupts. If your application requires interrupts to be able to interrupt ISRs then you must
provide support for this in software. Fortunately this is easy to do with a couple of macros.
Before discussing how nested interrupts work, it is important to remember that the IRQ
interrupt is disabled when the ARM7 CPU responds to an external interrupt. Also, on entry
to a C function that has been declared as an IRQ interrupt routine, the LR _isr is pushed onto
the stack.

IRQ Mode System Mode

Save SPSR_uq onto IRQ Stack
Enable TRQ intertupt

Switch to System mode

Two macros can be used
Save LR_sys onto User Stack to allow nested interrupt
P ISR processing in the
FOSER LPC2000 for a very small
Restore SPSR_svs code and time overhead
Disable IRQ
' Switch to IRQ mode

Restore SPSR._irq
End ISR

Once the processor has entered the IRQ interrupt routine, we need to execute a few
instructions to enable nested interrupt handling. First of all the SPSR_irq must be preserved
by placing it on the stack. This allows us to restore the CPSR correctly when we return to
user mode. Next we must enable the IRQ interrupt to allow further interrupts and switch to
the system mode (remember system mode is user mode but the MSR and MRS instructions
work). In system mode the new link register must again be preserved because it may have
values which are being used by the background (user mode) code so this register is pushed
onto the system stack (also the user stack). Once this is done we can run the ISR code and
then execute a second macro that reverses this process. The second macro restores the state
of the link register, Disables the IRQ interrupts and switches back to IRQ mode finally
restores the SPSR_irg and then the interrupt can be ended. The two macros that perform
these operations are shown below.

#define 1ENABLE /* Nested Interrupts Entry */
__asm { MRS LR, SPSR } /* Copy SPSR_irqg to LR */
__asm { STMFD SPI, {LR} 3} /* Save SPSR_1irq */
__asm { MSR CPSR_c, #Ox1F } /* Enable IRQ (Sys Mode) */
__asm { STMFD SPI, {LR} 3} /* Save LR */

#define IDISABLE /* Nested Interrupts Exit */
__asm { LDMFD SP!, {LR} } /* Restore LR */
__asm { MSR CPSR_c, #0x92 } /* Disable IRQ (IRQ Mode) */
__asm { LDMFD SPI, {LR} } /* Restore SPSR_irq to LR */
__asm { MSR SPSR_cxsf, LR } /* Copy LR to SPSR_irq */

75

Introduction to the LPC2000 3 — System Peripherals

The total code overhead is 8 instructions or 32 Bytes for ARM code and execution of both
macros takes a total of 230 nSec. This scheme allows any interrupt to interrupt any other
interrupt. If you need to prioritise interrupt nesting then the macros would need to block low
priority interrupts by disabling the lower priority interrupt sources in the VIC.

Exercise 14: Nested Interrupts

OK, one last interrupt exercise. This exercise demonstrates setting a timer to
generate a regular periodic interrupt which must run. It also configures an
interrupt which is triggered by Eintl. The external interrupt uses the above
technique to allow the timer interrupt to run even if the external interrupt
routine is active.

Summary

This is the most important chapter in this book as it describes the system architecture of the
LPC2000 family. You must be familiar with all the topics in this chapter in order to be able
to successfully configure the LPC2000 for its best performance and to avoid many of the
common pitfalls which trap people new to this family of devices.

76

Introduction to the LPC2000 4 — User Peripherals

77

Introduction to the LPC2000 4 — User Peripherals

Chapter 4: User Peripherals
Outline

This chapter presents each of the user peripherals in turn. The examples show how to
configure and operate each peripheral. Once you are familiar with how the peripherals work
the example code can be used as the basis for a set of low-level drivers.

General Purpose 1/0

On reset the pin connect block configures all the peripheral pins to be general purpose 1/0
(GPIO) input pins. The GPIO pins are controlled by four registers, as shown below.

GPIO PIN
10 PIN \
GPIO PIN Each GPIO pin is controlled by a bit in each of the four

10 SET i GPIO registers. These bits are data direction, set and clear

’\ and pin status.

: 1100 SFR

f/

10 CLR i /
10 DIR /

The IODIR pin allows each pin to be individually configured as an input (0) or an output
(1). If the pin is an output the IOSET and IOCLR registers allow you to control the state of
the pin. Writing a “1” to these registers will set or clear the corresponding pin. Remember
you write a ‘1’ to the IOCLR register to clear a pin not a ‘0’. The state of the GPIO pin can
be read at any time by reading the contents of the IOPIN register. A simple program to flash
the LED on the evaluation board is shown below.

int main(void)

{
unsigned int delay;
unsigned int flasher = 0x00010000; // define locals
IODIR1 = Ox00FF0000; // set all ports to output
while(1)
for(delay = 0;delay<0x10000;delay++) //simple delay loop
{
3
I0CLR1 = ~Flasher; //clear output pins
IOSET1 = flasher; //set the state of the ports
flasher = flasher <<1; //shift the active led
iT(flasher&0x01000000) flasher = 0x00010000; //Increment flasher
//led and test for
} //overflow
}

78

Introduction to the LPC2000 4 — User Peripherals

Exercise 15: GPIO
This simple exercise demonstrates using the GPIO as an LED chaser program.

General Purpose Timers

The LPC2000 have a number of general purpose timers. The exact number will vary
depending on the variant, but there are at least two timers. All of the general purpose timers
are identical in structure but vary slightly in the number of features supported. The timers
are based around a 32-bit timer counter with a 32-bit prescaler. The clock source for all of
the timers is the VLSI peripheral clock PCLK

Prescaler Reg

The two timers and the PWM module
have the same basic timer structure. A
32-bit timer counter with a 32-bit

PCLK ——)»| Prescaler ——)| Timer Counter | prescaler

Reset Enable

Timer Control |

The tick rate of the timer is controlled by the value stored in the prescaler register. The
prescale counter will increment on each tick of Pclk until it reaches the value stored in the
prescaler register. When it hits the prescale value the timer counter is incremented by one
and the prescale counter resets to zero and starts counting again. The Timer control register
contains only two bits which are used to enable/disable the timer and reset its count.

In addition to the basic counter each timer has up to four capture channels. The capture
channels allow you to capture the value of the timer counter when an input signal makes a
transition.

|_| CAP.ED—— Timer Counter
1 Each capture channel has a capture

Logic) pin. This pin can trigger a capture

Capture Register event on a rising or falling edge. When
an event occurs the value in the timer
counter is latched into an associated
capture register

Capture control

register

Each capture channel has an associated capture pin which can be enabled via the pin connect
block. The Capture control register can configure if a rising or falling edge, or both, on this

79

Introduction to the LPC2000 4 — User Peripherals

pin will trigger a capture event. When the capture event occurs, the current value in the timer
counter will be transferred into the associated capture register and if necessary an interrupt
can be generated. The code below demonstrates how to configure a capture channel. This
example sets up a capture event on a rising edge on pin 0.2 (Capture 0.0) and generates an
interrupt.

int main(void)

{
VPBDIV = 0x00000002; //Set pclk to 30 MHz
PINSELO = 0x00000020; //Enable pin 0.2 as capture channelO
TOPR = 0x00007530; //Load prescaler for 1 Msec tick
TOTCR = 0x00000002; //Reset counter and prescaler
TOCCR = 0x00000005; //Capture on rising edge of channelO
TOTCR = 0x00000001; //enable timer
VICVectAddr4 = (unsigned)TOisr; //Set the timer ISR vector address
VICVectCntl4 = 0x00000024; //Set channel
VICIntEnable = 0x00000010; //Enable the interrupt
while(1);
}
void TOisr (void) _1irg
{
static int value;
value = TOCRO; // read the capture value
TOIR |= 0x00000001; //Clear match O interrupt
VICVectAddr = 0x00000000; //Dummy write to signal end of interrupt
}

Exercise 16: Timer Capture.
This exercise configures a general purpose timer with a capture event to
measure the width of a pulse applied to a capture pin.

Each timer also has up to four match channels. Each match channel has a match register
which stores a 32-bit number. The current value of the timer counter is compared against the
match register. When the values match an event is triggered. This event can perform an
action to the timer (reset, stop or generate interrupt) and also affect an external pin (set,
clear,toggle).

Timer Counter
Y
When the timer counter equals
E ~ the value stored in the match
Reset Tc « — > register it can trigger a timer
Stop Te ; | event ar_ld also affect an external
External Match Register match pin
Interrupt A

Match Register ‘

To configure the timer for a match event, load the match register with the desired value. The
internal match event can now be configured through the Match Control Register. In this
register each channel has a group of bits which can be used to enable the following actions
on a match event: generate a timer interrupt, reset the timer or stop the timer. Any

80

Introduction to the LPC2000 4 — User Peripherals

combination of these events may be enabled. In addition, each match channel has an
associated match pin which can be modified when a match event occurs. As with the capture
pins, you must first use the pin connect block to connect the external pin to the match
channel. The match pins are then controlled by the first four bits in the external match
register.

External Match 3

External Match 2

Fxternal Match . " .
- “L;tf o The EMR register defines the action
i applied to the match pin when a match is
31 T 0 made on its channel. The CPU can also

directly control the logic level on the
match pin by directly writing to the first
four bits in the register

EMR Contact Bits

00 Do Nothing

01 Clear Pin

10 Set Pin

1 Toggle Pin Esternal Match 0 -3

The external match register contains a configuration field for each match channel.
Programming this field decides the action to be carried out on the match pin when a match
event occurs. In addition, each match pin has a bit that can be directly programmed to
change the logic level on the pin.

The example below demonstrates how to perform simple pulse width modulation using two
match channels. Match channel zero is used to generate the period of the PWM signal.
When the match event occurs the timer is reset and an interrupt is generated. The interrupt is
used to set the Match 1 pin high. Match channel 1 is used to control the duty cycle. When
the match 1 event occurs the Match 1 pin is cleared to zero. So by changing the value in the
Match 1 register it is possible to modulate the PWM signal

int main(void)

{
VPBDIV = 0x00000002; // Configure the VPB divi
PINSELO |= 0x00000800; // Matchl as output
TOPR = 0x0000001E; //Load presaler
TOTCR = 0x00000002; //Reset counter and presale
TOMCR = 0x00000003; //0n match reset the counter and generate an
//interrupt
TOMRO = 0x00000010; //Set the cycle time
TOMR1 = 0x00000008; // Set 50% duty cycle
TOEMR = 0x00000042; //0n match clear MAT1 and set MAT1 pin high for
// first cycle
TOTCR = 0x00000001; //Enable timer
VICVectAddr4 = (unsigned)TOisr; //Set the timer ISR vector address
VICVectCntl4 = 0x00000024; //Set channel
VICIntEnable |= 0x00000010; //Enable the interrupt
while(1);
}

81

Introduction to the LPC2000 4 — User Peripherals

void TOisr (void) __1irg
TOEMR |= 0x00000002; // Set MAT1 high for beginning of the cycle
TOIR]= 0x00000001; // Clear match O interrupt

VICVectAddr = 0x00000000; // Dummy write to signal end of interrupt

Exercise 17: Timer Match
This second timer exercise uses two match channels to generate a PWM signal,
there is some CPU overhead in the timer interrupt routine.

PWM Modulator

At first sight the PWM modulator looks a lot more complicated than the general purpose
timers. However it is really an extra general purpose timer with some additional hardware.
The PWM modulator is capable of producing six channels of single edge controlled PWM
or three channels of dual edge controlled PWM.

Latch Enable Register
1
Capture Control Register
I
Capture Register 0 - 4

| Interupt Reg |
| Timer Control |
| Prescale |
| Prescale |
I
| Match Control | » PWMI))
I s » The PWM module is a third general
| Match Register 0 - 6 | PWM : > purpose time with additional hardware for
I Module » dedicated PWM generation
| External Match Reaister | >y
| I | » pwie

Interupt - Match 0 - 6
~ Capture 0-3

In the general purpose timers when a new value is written to a match register the new match
value becomes effective immediately. Unless care is taken in your software this may be part
way through a PWM cycle. If you are updating several channels, the new PWM values will
take effect at different points in the cycle and may cause unexpected results. The PWM
modulator has an additional shadow latch mechanism which allows the PWM values to be
updated on the fly, but the new values will only take effect simultaneously at the beginning
of a new cycle.

Match Reg 0 Shadow Reg 0

|i

The PWM shadow latches allow the
match registers to be updated thought
Match 0 the PWM cycle but the new values will

only become effective at the beginning
Clear ®—> MatchG of a cycle

Latch Enable Register

‘ Timer Counter |

Introduction to the LPC2000 4 — User Peripherals

The value in a given match register may be updated at any time but it will not become
effective until the bit corresponding to the match channel is set in the Latch Enable register
(LER). Once the LER is set, the value in the match register will be transferred to the shadow
register at the beginning of the next cycle. This ensures that all updates are done
simultaneously at the beginning of a cycle. Apart from the shadow latches the PWM
modulator match channels function in the same way as the timer match registers.

The second hardware addition to the PWM modulator over the basic timers is in the output
to the device pins. In place of the match channels directly controlling the match output pin
are a series of SR flip-flops

Match 0

S O ——pPwM1

Match 1
R EN —<— PWMENA1

PWM SEL 2
—{mMux}—s afl>—pPwme Additional circuitry on the match output channels allows
the generation of six channels of single edge PWM
Match 2 modulation or three channels of dual edge PWM
N ==EUENAZ modulation

PWM SEL 2

¥

M }— s a f>—pwms

Match 3
i R EN |<— PWMENA3

PWM Control Register

This arrangement of SR flip-flop and multiplexers allows the PWM modulator to produce
either single edge or dual edge controlled PWM channels. The multiplexer is controlled by
the PWMSEL register and can configure the output stage in one of two configurations. The
first arrangement is for single edge modulation

——» Reset timer counter

Match 0 s q BWM 1
Match 1 R The multiplexer can be programmed to use
pht Single Edge PWM Match 0 to set the external pin at the
beginning of a cycle the remaining match
| | | | | channels are used to modulate each PWM
. channel
S Q PWM 2
Match 2

83

Introduction to the LPC2000 4 — User Peripherals

Here the multiplexer is connecting Match 0 to the S input of each flip-flop and each of the
remaining channels are connected to the R input. With this scheme Match 0 is set up to
count to total cycle period. At the end of the cycle it will reset the counter and set match 0
high. This causes all the flip-flops to be set at the beginning of the cycle. The output Q goes
high raising all the output pins high. Modulation of the PWM signal is done with the
remaining match channels. Each PWM channel has an associated match channel which is
connected to the R input of the flip-flop. When the match is made the flip-flop is reset and
the PWM pin is set low. This allows modulation of the PWM signal by changing the value
of the dedicated match channel.

«
Match 0 o T
—— 8 Timer counter reset ‘ :
Match 1 PWM2 i :
S Q !
Double Edge PWM
Match 2 .
R Match O controls the period of the PWM cycle. Two match channels are
used to modulate the pulse rise and fall times for each PWM channel

By reprogramming the multiplexer the output stage of the PWM modulator can be
configured to dual edge controlled modulation. In this configuration Match 0 is not
connected to any output and is used solely to reset the timer at the end of each PWM period.
In this configuration the S and R inputs to each flip-flop have a dedicated Match channel. At
the beginning of a cycle the PWM output is low. The rising edge of the pulse is controlled
by the Match channel connected to the S input and the falling edge is controlled by the
Match channel connected to the R input. The example below illustrates how to configure
the PWM module for dual edge PWM .

void main(void)

{
PINSELO]= 0x00028000; //Enable pin 0.7 as PWM2
PWMPR = 0x00000001; //Load prescaler
PWMPCR = 0x0000404; //PWM channel 2 double edge control, output enabled
PWMMCR = 0x00000003; //0n match with timer reset the counter
PWMMRO = 0x00000010; //set cycle rate to sixteen ticks
PWMMR1 = O0x00000002; //set rising edge of PWM2 to 2 ticks
PWMMR2 = 0x00000008; //set falling edge of PWM2 to 8 ticks
PWMLER = 0x00000007; //enable shadow latch for match O - 2
PWMEMR = 0x00000280; //Match 1 and Match 2 outputs set high
PWMTCR = 0x00000002; //Reset counter and prescaler
PWMTCR = 0x00000009; //enable counter and PWM, release counter from reset
while(1) // main loop
{
//o //Modulate PWMMR1 and PWMMR2
}
ks

One important line to note is that the PWMEMR register is used to ensure the output of the
match channel is logic 1 when the match occurs. If this register is not programmed correctly
the PWM scheme will not work. Also the PWM modulator does not require any interrupt to
make it work unlike the basic timers.

84

Introduction to the LPC2000 4 — User Peripherals

Exercise 18: Centre-Aligned PWM
This exercise configures the PWM unit to produce a centre aligned PWM signal
without any CPU overhead.

Real Time Clock

The LPC2xxx Real time clock (RTC) is a clock calendar accurate up to 2099. Like all the
other peripherals the RTC runs off the PCLK so an additional external oscillator is not
required. The RTC is designed to be an ultra low power peripheral and through use of the
LPC2xxx low power modes is suitable for running off batteries. As well as providing a
clock calendar, the RTC has a set of alarm registers that can be used to trigger a particular
date and time or on a specific value held in a time-count register.

CLOCK —| Reference Clock Divider |
Seconds O Seconds Alarm
Minutes Minute Alarm
Hours Hour Alarm
) The RTC is a clock calendar with
Interrupt available Day of month Day of month Alarm alarm valid up until 2099
on increment
of register value Day of week Day of week Alarm
Day of year Day of year Alarm
Month Manth Alarm
Year Year Alarm
Interrupt

on match

The RTC clock runs on a standard 32.7KHz clock crystal frequency. In order to derive this
frequency the Pclk is connected to the reference clock divider. In effect this is a prescaler
whicht can accurately divide any Pclk frequency to produce the required 32KHz frequency.

PCLK 32-768
—>—— RTC Prescaler
RTC Clock
A
Logic
The RTC watch crystal frequency may
T T be derived from any value of Pclk
PREINT PREFRAC

To ensure that the RTC clock can be accurately derived from any Pclk the prescaler is more
complicated than the general purpose timer prescalers. The prescaler is programmed by two

85

Introduction to the LPC2000 4 — User Peripherals

registers called PREINT and PREFRAC. As their name implies, these hold integer and
fractional divisor values. The equations used to calculate the load values for these registers
are as follows:

PREINT = (int)(pclk/32768)-1
PREFRAC = pclk — ((PREINT+1) x 32768)
So for a 30MHz Pclk:

PREINT = (int)(30,000,000/32768)-1 = 914
Then

PREFRAC = 30,000,000 — ((914+1) x 32768) = 17280

These values can be programmed directly into the RTC prescaler registers and the RTC is

then ready to run. Just enable the clock in the clock control register and the time counters
will start.

PREINT = 0x00000392; //Set RTC prescaler for 30.000 MHz Pclk
PREFRAC = 0x00004380;
CCR = 0x00000001; //Start the RTC

There are eight time-counter registers, each of which contains a single time quantity which
can be read at any time. In addition there are a set of consolidation registers which present
the same time quantities in three words, allowing all the time information to be read in just
three operations.

Consolidation 0 Seconds
The RTC consolidation registers
allow all the clock calendar

information to be read in three
DOM words

Consolidation 1

Consolidation 2 Year

As well as maintaining a clock, the RTC can also generate alarm events as interrupts. There
are two interrupt mechanisms. You can program the RTC to generate an interrupt when any
time-counter register is incremented, so you could generate an interrupt every second when
the second counter is updated, or once a year when the year counter is incremented. The
counter increment interrupt register allows you to enable an increment interrupt for each of
the eight time-counter registers.

The second method for generating an RTC interrupt is with the alarm registers. Each time-
counter register has a matching Alarm register. If the matching Alarm register is unmasked
it is compared to the time counter register. If all the unmasked alarm registers match the
time counter registers then an interrupt is generated. So it is possible to set an alarm between
now and 2099 with one second’s accuracy. The Alarm Mask register controls which alarm
registers are used in the compare. As both the increment and alarm events can generate an
RTC interrupt it is necessary to distinguish between them from within the interrupt. The
Interrupt location register provides two flags which can be interrogated to see what caused

86

Introduction to the LPC2000 4 — User Peripherals

the RTC interrupt. Again, remember that these flags must be cleared to cancel the interrupt.
An RTC program which sets the clock and uses both styles of interrupt is shown below.

int main(void)

{
VPBDIV = 0x00000002;
I0ODIR1 = OxO0FFO000; // set LED ports to output
I0SET1 = 0x00020000;
PREINT = 0x00000392; //Set RTC prescaler for 30MHz Pclk
PREFRAC = 0x00004380;
CIIR = 0x00000001; //Enable seconds counter interrupt
ALSEC = 0x00000003; //Set alarm register for 3 seconds
AMR = OxO0000O0OFE; //Enable seconds Alarm
CCR = 0x00000001; //Start the RTC
VICVectAddrl3 = (unsigned)RTC_isr; //Set the timer ISR vector address
VICVectCntl13 = 0x0000002D; //Set channel
VICIntEnable = 0x00002000; //Enable the interrupt
while(1);
}
void RTC_isr(void)
{
unsigned led;
i F(1LR&0Xx00000001) //Test for RTC counter interrupt
led = IOPIN1; //read the current state of the 10 pins
I0CLR1 = [1ed&0x00030000; //Clear the illuminated LED
I0SET1 = ~1ed&0x00030000; //Set the idle LED
ILR = 0x00000001; //Clear the interrupt register
}
if(ILR & 0x00000002)
I0SET1 = 0x00100000; //Set LED 0.7
ILR = 0x00000002; //clear the interrupt register
by
VICVectAddr = 0x00000000; //Dummy write to signal end of interrupt
}

Exercise 19: Real Time Clock
This exercise configures the RTC and demonstrates both the alarm and
increment interrupts.

87

Introduction to the LPC2000 4 — User Peripherals

Watchdog

In common with many microcontrollers the LPC2xxx family has a watchdog system to
provide a method of recovering control of a program that has crashed.

Watchdog Register Interface

Mode

The on-chip watchdog can force a

Times:Constant —— Reset processor reset or interrupt. In the case
Watchdog of a watchdog reset a flag is set so your
Counter code can stop a “soft reset”.

Feed —— Interup®

Current Value

The watchdog has four registers as shown above. The watchdog timeout period is set by a
value programmed into the Watchdog Constant Register (WDTCR). The timeout period is
determined by the following formula

Wdperiod = Pclk x WDTC x 4

The minimum value for WDTC is 256 and the maximum is 2732. Hence the minimum
watchdog period at 60MHz is 17.066us and the maximum is just under 5 minutes.

Once the watchdog constant is programmed the operating mode of the watchdog can be
configured. The Watchdog mode register contains three enable bits controlling: whether the
watchdog generates an interrupt, whether it generates a reset and a final bit which is used to
enable operation of the watchdog.

Overflow

Feed error
Watchdog Q_B
Timeout

The watchdog mode register allows configuration the
| watchdog action on underflow (reset or interrupt).

|« e3> Reset

» Interrupt

The Mode register also contains two flags, the WDTOF is set when the watchdog times out
and is only cleared after an external hard reset. This allows your startup code to detect if the
reset event was a power on reset or a reset due to a program error. The Mode register also
contains the watchdog interrupt flag. This flag is read-only, but it must be read in order to
clear the watchdog interrupt. If you need to debug code with the watchdog active you should

88

Introduction to the LPC2000 4 — User Peripherals

not enable the reset option as this will trip up the JTAG debugger when the watchdog times
out.

Once the watchdog timer constant and mode registers have been configured, the watchdog
can be kicked into action by writing to the feed register. This needs a feed sequence similar
to the PLL. To feed the watchdog you must write OXAA followed by 0x55. If this sequence
is not followed, a watchdog feed error occurs and a watchdog timeout event is generated
with its resulting interrupt/reset. It is also important to note that although the watchdog may
be enabled via the watchdog mode register, it does not start running until the first correct
watchdog feed sequence is encountered. Once fully started the watchdog must receive
regular feed sequences in order to stop the watchdog counter reaching zero and timing out.

The final Watchdog register is the Watchdog Timer Value Register which allows you to
read the current value of the watchdog timer.

89

Introduction to the LPC2000 4 — User Peripherals

UART

The LPC2xxx devices currently have two on-chip UARTS. They are both identical to use,
except UART1 has additional modem support. Both peripherals conform to the “550
industry standard” specification. Both have a built-in baud rate generator and 16 byte
transmit and receive FIFOs.

VCC33

: Interrupt Enable !DDNF__I_C_Z] m
Interrupt ID | — -
. ' EEE 26
FIFO Control & _ 1 100NF
I 9 ; °;;a—‘ﬁ9 |
7 = T20UT 4 c27
Line Control 3 8 loom cete Loone
] — RX [* - L My TCET'—‘_T y E]
Line Status | ;: ‘,., Ti0UT szn'::iﬂ
5 riouT2 Wena
Scratch Pad 5 15
= 100NF
Divisor Latch
MSB =
Initialisation of the UARTO is shown below:
void init_serial (void) /* Initialize Serial Interface */
PINSELO = 0x00050000; /* Enable RxD1 and TxD1
*/
U1LCR = 0x00000083; /* 8 bits, no Parity, 1 Stop bit
*/
uiDLL = 0x000000C2; /* 9600 Baud Rate @ 30MHz VPB Clock
*/
U1LCR = 0x00000003; /* DLAB = 0
*/
¥

First the pinselect block must be programmed to switch the processor pins from GPIO to the
UART functions. Next the UART line control register is used to configure the format of the
transmitter data character.

UART Line control register: The LCR
configures the format of transmitted data.
Setting the DLAB bit allows programming
of the BAUD rate generators

‘F\’nrd length select
Stop bit select
Parity enable
Parity select
Break control

Dhvisor latch access bit

In our example the character format is set to 8 bits, no parity and one stop bit. In the LCR
there is an additional bit called DLAB which is the divisor latch access bit. In order to be
able to program the baud rate generator this bit must be set.

90

Introduction to the LPC2000 4 — User Peripherals

The baud rate generator is a sixteen bit prescaler which divides down Pclk to generate the
UART clock which must run at 16 times the baud rate. Hence the formula used to calculate
the UART baud rate is:

Divisor = Pclk/16 x BAUD

In our case at 30MHz:

Divisor = 30,000,000/16 x 9600 = (approx) 194 or OxC2

This gives a true baud rate of 9665. Often it is not possible to get an exact baud rate for the
UARTSs however they will work with up to around a 5% error in the bit timing. So you have
some leeway with the UART timings if you need to adjust the Pclk to get exact timings on
other peripherals such as the CAN bit timings. The divisor value is held in two registers,
Divisor latch MSB (DLM) and Divisor latch LSB (DLL). The first eight bits of both
registers holds each half of the divisor as shown below. Finally the DLAB bit in the LCR
register must be set back to zero to protect the contents of the divisor registers.

16

PCLK BAUD X 16
— DIVISOR ——>

UART baud rate: The UART clock

frequency must be 16 times the

required BAUD rate. This is derived by
dividing Pclk by a 16-bit divisor
Divisor Latch MSB Divisor Latch USB register.

DLAB =1

Once the UART s initialised, characters can be transmitted by writing to the Transmit
Holding Register. Similarly, characters may be received by reading from the Receive Buffer
Register. In fact both these registers occupy the same memory location, writing a character
places the character in the transmit FIFO and reading from this location loads a character
from the Receive FIFO. The two routines shown below demonstrate handling of transmit
and receive characters.

int putchar (int ch) /* Write character to Serial Port */
{
if (ch == "\n")
while (Y(U1LSR & 0x20));
U1THR = CR; /* output CR */

ke
while (I'(U1LSR & 0x20));
return (U1THR = ch);

}

int getchar (void) /* Read character from Serial Port */

while (I'(U1LSR & 0x01));

return (U1RBR);
¥

91

Introduction to the LPC2000 4 — User Peripherals

The putchar() and getchar functions are used to read/write a single character to the UART.
These low level drivers are called by the Keil STDIO functions such as printf() and scanf().
So, if you want to redirect the standard 1/0 from the UART to say an LCD display and a
keypad, rewrite these functions to support sending and receiving a single character to your
desired 1/0 devices. Both the putchar() and getchar() functions read the Link Status Register
(LSR) to check on UART error conditions and to check the status of the receive and
transmit FIFOS.

3 0

L B L3 A 3
Recerve Data ready
Overrun error
]"m’th.' error
Framing error
UART Line Status Register: The

Break interrupt f SN
real ntetrip LSR contains flags which indicate

Transmitter holding register empty events within the UART. It may be
Transmitter empty polled or should be read after a
Error in Rx FIFO UART interrupt is generated.

The UART has a single interrupt channel to the VIC,but three sources of interrupt. UART
interrupts can be generated on a change in the Receive line status. So, if an error condition
occurs, an interrupt is generated and the LSR can be read to see what is the cause of the
error. The remaining two interrupt sources are receive and transmit interrupts. The receive
interrupt is triggered by characters being received into the RX FIFO. The depth at which the
interrupt is triggered is set in the UART FIFO control register.

RBR

UART RX FIFO: Each UART has a sixteen byte
receive FIFO which can be programmed to

8 generate an UART interrupt at various trigger
levels. The character timeout interrupt can be used

, User selectable to read bytes which do not reach a trigger level.

16 Bytes trigger level.

The receive interrupt can be set to trigger after it has received 1,4,8 or 14 characters. So, if
the interrupt is set to trigger when eight characters are in the buffer and a total of 34
characters are sent, then four interrupts will be generated with two characters left in the
FIFO. These remaining characters will cause a “character time out indication” (CTI)
interrupt. The CTI interrupt occurs when there are one or more characters in the FIFO and
no FIFO activity has occurred for 3.5- 4.5 character times.

92

Introduction to the LPC2000 4 — User Peripherals

The transmit FIFO will also generate interrupts when the transmit holding register is empty
and when the transmit shift register is empty.

A
UART Transmit FIFO: Like the RX FIFO, the TX
FIFO is 16 bytes deep and can generate an
interrupt when empty and when it has finished
16 Bytes transmitting
Y — \"‘-, THR empty

-.: THR empty

_ | &TSR empty

UARTL1 has the same basic structure as UARTO, however it has additional support for
modem control. This consists of additional external pins to support the full modem interface
(CTS,DCD,DSR,DTR,RI,RTS), there are two additional registers the modem control
register and the modem status register and an additional interrupt source to provide a modem
status interrupt.

DD
EI
4 DEE

veeas CTS

Diclia DCT

Tralme edge RI
: X Delta DSTL
Modem Status register TT Bdm S
m UART1 Modem registers:

UART1 has additional support
for modem interfacing. The
DTR and RTS signals may be
directly controlled. Changes in
modem status can also
generate a UART interrupt

Modem control register DTE

Loopback

These additional features allow optimal connection to a modem with an interrupt generated
each time there is a change in the modem status register.

Exercise 20: UART
In Exercise 4 we saw how to use the STDIO library with the UARTS. In this
example we look at how the UARTSs are initialised to run at a specific baud rate.

93

Introduction to the LPC2000 4 — User Peripherals

12C Interface

As Philips were the original inventors of the 12C bus standard, it is not surprising to find the
LPC2000 equipped with a fully featured 12C interface. The I12C interface can operate in
master or slave mode up to 400K bits per second and in master mode it will automatically
arbitrate in a multi-master system.

Vee

Rp Rp

SDA L @ 9
Typical 12C bus configuration.
The bus consists of separate clock

SCL and data lines with a pull up resistor
on each line. The two external
devices used in the example are
port expander chips

LPC 2100 PCA 8574 PCA 8574
Rp =50 D = Number of Devices
D RpinKQ

A typical 12C system is shown above where the LPC2000 is connected to two external port
expander chips. As with the other peripherals the Serial Clock (SCL) and Data (SDA) lines
must be converted from GPIO pins to 12C pins via the pin connect block.

-

! - I12C peripheral registers.

The programmers’ interface includes two

2 - ROk timing registers, set and clear registers for

the control register, an address register to
SDA hold the node address when in slave mode

' and a data register to send and receive

£ bytes of data
| 12 SCLL

The 12C peripheral interface is composed of seven registers. The control register has two
separate registers which are used to set and clear bits in the control register (I2CONSET,
I2CONCLR). The bit rate is also determined by two registers (I2SCLH, 12SCLL). The status
register returns control codes which relate to different events on the bus. The data register is
used to supply each byte to be transmitted, or as data is received it will be transferred to this
register. Finally, when the LPC2000 is configured as a slave device its network address is
set by programming the I2ADR register.

In order to initialise the 12C interface we need to run the following lines of code:

VICVectCntll = 0x00000029; //select a priority slot for a given interrupt
VICVectAddrl = (unsigned)I2CISR //pass the address of the IRQ into the VIC slot
VICIntEnable = 0x00000200; //enable interrupt

PINSELO = 0x50; //Switch GPIO to 12C pins

12SCLH = 0x08; //Set bit rate to 57.6KHz

12SCLL = 0x08;

94

Introduction to the LPC2000 4 — User Peripherals

The 12C peripheral must be programmed to respond to each event which occurs on the bus.
This makes it a very interrupt-driven peripheral. Consequently the first thing we must do is
to configure the VIC to respond to an 12C interrupt. Next the pinselect block is configured to
connect the 12C data and clock lines to the external pins. Lastly we must set the bit rate by
programming 12SCLH and 12SCLL. In both of these registers only the first 16 bits are used
to hold the timing values. The formula for the 12C bit rate is given as:

Bit Rate = Pclk/(12SCLH+12CSLL)

In the above example the PLL is not enabled and the external crystal is 14.7456MHz. Hence
the 12C bit rate is:

Bit Rate = 14.7456/B (8 + 8) = 937500

Once configured, the LPC2100 can initiate communication with other bus devices to read
and write data as a bus master, or receive and reply to requests from a bus master. The
contents of the 12C control register are shown below. Remember this register is controlled
by the CONSET and CONCLR registers.

kA 1]

12C control registers:
o I K™ The control registers are used to

- Toan
2CONSET — .l-l'\ 3 b . L S enable the 12C peripheral and interrupt
2 1.11"1:‘ e L"l_l.'[Stop I'I{LF!‘LI[H ac .I.h‘\\ edge as well as Controlling the 12C bus start,
j stop and ack conditions.
a1 4 1 v I 0
[2CONCLR

We will first look at the bus master mode. To enter this mode the 12C peripheral must be
enabled and the acknowledge bit must be set to zero. This prevents the 12C peripheral
acknowledging any potential master and entering the slave mode. In the master mode the
LPC2000 device is responsible for initiating any communication. During a 12C bus transfer
a number of bus events must occur.

| S | Slave Address I RIW | A | DATA | A | DATA | AA | E | Typical 12C transaction :A
A Wi % 12C bus transaction is
e Readl | T | chara_(_:terlsed by a start
l (in Bytes + Acknowledge) condition, slave address
data exchange and stop

condition with acknowledge
handshaking

A = Acknowledge (SDA low)

A= Not Acknowledge (SDA high)
§ = START condition

P = STOP condition

l:l From Master to Slave

[_| From Siave to Master

The bus master must first signal a start condition.To do this the 12C clock line is pulled high
and the data is pulled low. The address of the slave which the master wants to talk to is then
written onto the bus, followed by a bit which states if a read or write is being requested. If
the slave has received this preamble correctly, it will reply with an acknowledge. Then data
can be transferred as a series of bytes and acknowledges, until the master terminates the
transaction with a stop condition. The 12C peripheral on the LPC2000 series is really a 12C
engine. It controls all the bus events but has no intelligence. This means that the ARM7
CPU has to micro-manage the 12C bus for each transaction. Fortunately this is easy to do

95

Introduction to the LPC2000 4 — User Peripherals

and is centred around the 12C interrupt. Once the 12C peripheral is initialised in master mode
we can start a write data transfer as follows:

void 12CTransferByte(unsigned Addr,unsigned Data)

{
12CAddress = Addr; //Place address and data in Globals to be used by
//the interrupt
12CData = Data;
12CONCLR = O0x000000FF; //Clear all 12C settings
12CONSET = 0x00000040; //Enable the 12C interface
I12CONSET = 0x00000020; //Start condition
}

The slave address and data to be sent are placed in global variables so that they can be used
by the 12C interrupt routine. The address is a seven-bit address with the LSB set for write
and cleared for read. The routine next clears the 12C control flags, enables the 12C peripheral
and asserts a start condition. Once the start condition has been written onto the bus an
interrupt is generated and a result code can be read from the 12C status register.

[2Stat 0x08% 0x18 028 0x28/0x20 12C status Register: For each bus
A event an interrupt is generated, a
T T I condition code is returned in the status
2 b register. This code is used to
| s | Slave Address | R/W | A | DATA I A | DATA | AA | P | determine the next action to perform

within the 12C peripheral

If the start condition has been successful, this code will be 0x08. Next the application
software must write the slave address and the R/W bit into the 12Cdata register. This will be
written on to the bus and will be acknowledged by the slave. When the acknowledge is
received, another interrupt is generated and the status register will contain the code 0x18 if
the transfer was successful. Now that the slave has been addressed and is ready to receive
data, we can write a string of bytes into the 12C data register. As each byte is written it will
be transmitted and acknowledged. When it is acknowledged an interrupt is generated and
0x28 will be in the status register if the transfer was successful. If it failed and had a NACK
the code will be 0x20 and the byte must be sent again. So, as each byte is transferred an
interrupt is generated, the status code can be checked and the next byte can be sent. Once all
the bytes have been sent the stop condition can be asserted by writing to the 12C control
register and the transaction is finished. The 12C interrupt is really a state machine which
examines the status register on each interrupt and performs the necessary action. This is easy
to implement as a switch statement as shown below.

96

Introduction to the LPC2000 4 — User Peripherals

void 12CISR (void) //12C interrupt routine
{
switch (12STAT) //Read result code and switch to next action
{
case (0x08): //Start bit
12CONCLR = 0x20; //Clear start bit
12DAT = 12CAddress; //Send address and
//write bit
break;
case (0x18): //Slave address+W, ACK
12DAT = 12Cdata; //Write data to tx register
break;
case (0x20): //Slave address +W, Not ACK
12DAT = 12CAddress; //Resend address and write bit
break;
case (0x28): //Data sent, Ack
12CONSET = 0x10; //Stop condition
break;
default :
break;
}
12CONCLR = 0x08; //Clear 12C interrupt flag

VICVectAddr = 0x00000000; //Clear interrupt in
}

This example sends a single byte but could be easily modified to send multiple bytes.
Additional case statements may be added to handle a master request for data.

128tat 0x08 0x40 0x50 0x50/58
T T T T l 12C master TX: This bus
transaction demonstrates a

| e | e I'mw | " | — l A | DATA I WA | P | master to slave write
transaction

In the case of a master receive, the start condition will be the same but this time the address
written on to the bus will have the R/W bit cleared. When the acknowledge is received after
the slave address is sent, it will be followed by the first byte of data from the slave so the
master does not have to do anything. However, in the case statement we can set the
acknowledge bit so that an ACK is generated as soon as the byte has been transferred. As
each byte is transferred, the data can be read from 12CDAT. When all the bytes have been
received, the stop condition can be asserted and the transaction ends.

97

Introduction to the LPC2000 4 — User Peripherals

The same 12CtransferByte() function can be used to start a read transaction and the
additional case statements required in the interrupt are shown below.

case (0x40) : //Slave Address +R, ACK
12CONSET = 0x04; //Enable ACK for data byte

break;

case (0x48) : //Slave Address +R, Not Ack
12CONSET = 0x20; //Resend Start condition

break;

case (0x50) : //Data Received, ACK

message = 12DAT;
12CONSET = 0x10; //Stop condition

lock = 0; //Signal end of 12C activity

break;

case (0x58): //Data Received, Not Ack
12CONSET = 0x20; // Resend Start condition

break;

Exercise 21: 12C
This exercise demonstrates how to use the 12C interface to communicate to an 12C
EEROM.

98

Introduction to the LPC2000 4 — User Peripherals

SPI Interface

Like the 12C interface the SPI interface is a simple peripheral “engine” which can write and
read data to the SPI bus, but is not intelligent enough to manage the bus. It is up to your
code to initialise the SPI interface and then manage the bus transfers.

SPI Register Interface

Interrupt Flag

| Control |
—— SCK
| Status |
- —«—— Slave Select
VPB | SPI
BUS | D | Periferal
—p— MISO
| Clock Counter |
—— MOSI

Mode Fault
SPI Interrupt Transfer Complete

The SPI peripheral has four external pins: a serial clock pin, slave select pin and two data
pins master in/slave out and master out/slave in. The serial clock pin provides a clock source
of up to 400Kbits/sec when in master mode, or will accept an external clock source when in
slave mode. The SPI bus is purely a serial data connection for high-speed data transfer and
unlike 12C does not have any addressing scheme built into the serial transfer. An external
peripheral is selected by a slave select pin which is a separate pin. Typically, if the LPC2000
Is acting in master mode, it could use a GPIO pin to act as slave select (chip enable) for the
desired SPI peripheral. When the SPI peripheral is in slave mode, it has its own slave select
input which must be pulled low to allow an SPI master to communicate with it. The two data
transfer pins master in / slave out and master out / slave in are connected to the remote SPI
device and their orientation depends on whether the device is operating in master or slave
mode. The diagram below shows a typical configuration for connecting to an EEROM
device.

VDD_V3V3
2

R609 H]RM)
J611 = 10k 10k

Jo12 26

PO10

2 il — 8 .
E— oo - R o d— SPI EEROM peripheral:
Pot HE SR T e] S, oW This diagram shows how to interface
o z5.wmmm?|,l—‘ an external EEROM onto the SPI bus
Il GND i.}"g‘gu“_ . of the LPC2000. It should be noted
= vy e that pins P0.7 and P0.20 must be
5d VDD Va3 pulled high to enable the SPI
S - peripheral as a master
VDD_V3V3 8

SPI - Master/Slave Selection

GND

The programmers’ interface for the SPI peripheral has five registers. The clock counter
register determines the baud rate. Pclk is simply divided by the value in the clock counter to
give the SPI bit rate. This register must hold a minimum value of eight. The control register

99

Introduction to the LPC2000 4 — User Peripherals

is used to configure the operation of the SPI bus. Because of the simple nature of the SPI
data transfer and the wide range of SPI peripherals available, the SPI clock and data lines
can be configured to operate in several different configurations. Firstly the polarity and
phase of the clock must be defined. The polarity can be active high or active low as shown
below and the clock phase can be edge or centre aligned.

CPOL=0 \ |

— S eeer
O o

Finally the data orientation may also be defined as the most significant bit transferred first or
the least significant bit transferred first.

LSBF | I I |
convorregister []
LSB MSB
A a4 The SPI data transmission can be
¢ configured to match the
characteristics of any SPI device
LSBF rrLrr
Control Register -E. MSB LSB
P
KX
<

Each of these configuration features has a configuration bit in the control register and you
must program these bits to match the SPI peripheral you are trying to communicate with.
Once the bit rate has been set and the control register configured, then communication can
begin. To communicate with the SPI memory shown above, first set the GPIO pin to enable
the memory for communication. Then writing to the SPI data register will send a byte of
data and reading from the register will collect any data sent from the external peripheral. The
actual data format used in the transaction will depend on the SPI device you are trying to
communicate with.

Exercise 22: SPI
This exercise demonstrates how to configure the SPI peripheral and
communicate with an external EEROM on the SPI bus

100

Introduction to the LPC2000 4 — User Peripherals

Analog To Digital Converter

The A/D converter present on some LPC2000 variants is a 10-bit successive approximation
converter, with a conversion time of 2.44 uSec or just shy of 410 KSps. The A/D converter
has either 4 or 8 multiplexed inputs depending on the variant. The programming interface
for the A/D converter is shown below.

— Ain0

A/D Analogue to digital converter: The converter is
— Ain7 available with 4 or 8 channels of 10-bit resolution
— V3A
— VSSA

The A/D control register establishes the configuration of the converter and controls the start
of conversion. The first step in configuring the converter is to set up the peripheral clock. As
with all the other peripherals, the A/D clock is derived from the PCLK. This PCLK must be
divided down to equal 4.5MHz. This is a maximum value and if PCLK cannot be divided
down to equal 4.5MHz then the nearest value below 4.5MHz which can be achieved should
be selected.

Edge Start Test PDN CLKS Burst CLKDIV SEL AD Control register:
The control register determines the
conversion mode, channel and
resolution

PCLK is divided by the value stored in the CLKDIV field plus one. Hence the equation for
the A/D clock is as follows:

CLKDIV = (PCLK/Adclk) - 1

As well as being able to stop the clock to the A/D converter in the peripheral power down
register, the A/D has the ability to fully power down. This reduces the overall power
consumption and the on-chip noise created by the A/D. On reset, the A/D is in power down
mode, so as well as setting the clock rate the A/D must be switched on. This is controlled by
the PDN bit in ADCR. Logic one in this field enables the converter. Unlike other peripherals
the A/D converter can make measurements of the external pins when they are configured as
GPIO pins. However, by using the pinselect block to make the external pins dedicated to the
A/D converter the overall conversion accuracy is increased.

Prior to a conversion the resolution of the result may be defined by programming the CLKS
field. The A/D has a maximum resolution of 10 bits but can be programmed to give any
resolution down to 3 bits. The conversion resolution is equal to the number of clock cycles
per conversion minus one. Hence for a 10-bit result the A/D requires 11 ADCLK cycles and
four for a 3-bit result. Once you have configured the A/D resolution, a conversion can be
made. The A/D has two conversion modes, hardware and software. The hardware mode

101

Introduction to the LPC2000 4 — User Peripherals

allows you to select a number of channels and then set the A/D running. In this mode a
conversion is made for each channel in turn until the converter is stopped. At the end of each
conversion the result is available in the A/D data register.

Done QOverun CHN VM dda AD data register:The data register
contains the conversion result,
channel overrun error and
conversion done flag.

At the end of a conversion the Done bit is set and an interrupt may also be generated. The
conversion result is stored in the V/Vdda field as a ratio of the voltage on the analogue
channel divided by the voltage on the analogue power supply pin. The number of the
channel for which the conversion was made is also stored alongside the result. This value is
stored in the CHN field. Finally, if the result of a conversion is not read before the next
result is due, it will be overwritten by the fresh result and the OVERUN bit is set to one. The
example below demonstrates use of the A/D converter in hardware mode.

int main(void)

{
VPBDIV = 0x00000002; //Set the Pclk to 30 MHz
IODIR1 = Ox00FF0000; // P1.16..23 defined as Outputs
ADCR = 0x00270607; // Setup A/D: 10-bit AINO @ 3MHz
VICVectCntlO = 0x00000032; //connect A/D to slot O
VICVectAddrO = (unsigned)AD_ISR; //pass the address of the IRQ into the VIC
//slot
VICIntEnable = 0x00040000; //enable interrupt
while(1)
{
¥
}
void AD_ISR (void)
{
unsigned val,chan;
static unsigned result[4];
val = ADCR;
val = ((val >> 6) & Ox03FF); //Extract the A/D result
chan = ((ADCR >>0x18) & 0x07);
result[chan] = val;
}

The A/D has a second software conversion mode. In this case, a channel is selected for
conversion using the SEL bits and the conversion is started under software control by
writing 0x01 to the START field. This causes the A/D to perform a single conversion and
store the results in the ADDR in the same fashion as the hardware mode. The end of
conversion can be signalled by an interrupt, or by polling the done bit in the ADDR. In the
software conversion mode it is possible to start a conversion when a match event occurs on
timer zero or timer one. Or when a selected edge occurs on P0.16 or P0.22, the edge can be
rising or falling, as selected by the EDGE field in the ADCR.

102

Introduction to the LPC2000 4 — User Peripherals

000 Halted

001 Start Now

010 PO - 16 The A/D may be started by a software event
or it may be started by several hardware

011 PO -22 triggers

100 MAT 0-1

101 MAT 0-3

110 MATT 1-0

111 MAT 1-1

The simplest method of using the A/D converter is shown below.

VPBDIV = 0x02; //Set the Pclk to 30 MHz
10DIR1 = OxOOFFO0000; // P1.16..23 defined as Outputs
ADCR = 0x00270601; // Setup A/D: 10-bit AINO @ 3MHz
ADCR |= 0x01000000; // Start A/D Conversion
while(l)

do

val = ADDR; // Read A/D Data Register
ks

Exercise 23 : Analog To Digital Converter
This exercise uses the A/D to convert an external voltage source and modulate a
bank of LEDs with the result.

103

Introduction to the LPC2000 4 — User Peripherals

Digital To Analog Converter

The LPC2132/2138 variants have a 10-bit Digital to Analogue converter. This is an easy-to-
use peripheral as it only has a single register.

The DAC is enabled by writing to bits 18 and 19 of PINSEL1 and converting pin 0.25 from
GPIO to the AOUT function. It should also be noted that a channel of the analogue to digital
converter also shares this pin.

BIAS Value

15 5 The DAC is controlled by a single register.

The value to be converted is written here
along with the bias value

31 0

Once enabled a conversion can be started by writing to the VALUE bits in the control
register. The conversion time is dependant on the value of the BIAS bit. If it is set to one the
conversion time is 2.5uSec but it can drive 700 uA. If it is zero the conversion time is 1 uSec
but it is only able to deliver 350 uA. However, the total settling time is also dependent on
the external impedance. Figures for the impedance of the DAC have not yet been released.

Exercise 24: Digital to Analog converter

This exercise simulates a sine wave which is sampled by the Analogue to digital
converter. These values are loaded straight into the Digital to Analogue converter
to regenerate the sine wave. The two sine waves can be compared in the logic
analyser window.

104

Introduction to the LPC2000 4 — User Peripherals

CAN Controller

Variants of the LPC2000 are available with up to 4 independent CAN controllers on board
the chip. The CAN controllers are one of the more complicated peripherals on the LPC2000.
In this section we will have a look at the CAN protocol and the LPC2000 CAN peripherals.

The Controller Area Network (CAN) Protocol was developed by Robert Bosch for
Automotive Networking in 1982. Over the last 22 Years CAN has become a standard for
Automotive Networking and has had a wide uptake in non-automotive systems where it is
required to network together a few embedded nodes. CAN has many attractive features for
the embedded developer. It is a low-cost, easy-to-implement, peer to peer network with
powerful error checking and a high transmission rate of up to 1 Mbit/sec. Each CAN packet
is quite short and may hold a maximum of eight bytes of data. This makes CAN suitable for
small embedded networks which have to reliably transfer small amounts of critical data
between nodes.

ISO 7 Layer Model

In the ISO seven layer model the CAN protocol covers the layer two “‘data link layer’, i.e.
forming the message packet, error containment, acknowledgement and arbitration.

. i Object layer

Appllcatlon Lay cr Prioritizer Message Handling
Acceptance filtering

Presentation Layer
Transfer Layer

Session Laver Fault confinement

- Error detection

Acknowledgement

Message framing

Arbitration

Transport Layer

Network Layer

. Physical layer
Data Link Layer Bit representation

Transfer rate
Phvsical Laver Signal level and timing
Nransmission medium

CAN does not rigidly define the layer 1 ‘Physical layer’ so CAN messages may be run over
many different physical mediums. However, the most common physical layer is a twisted
pair and standard line drivers are available. The other layers in the IOS model are effectively
empty and the application code directly addresses the registers of the CAN peripheral. In
effect, the CAN peripheral can be used as a glorified UART without the need for an
expensive and complex protocol stack. Since CAN is also used in Industrial Automation
there are a number of software standards that define how the CAN messages are used to
transfer data between different manufacturers’ equipment. The most popular of these
application layer standards are CANopen and Device net. The sole purpose of these
standards is to provide interoperability between different OEM equipment. If you are
developing your own closed system you do not need these application layer protocols and
are free to implement you own proprietary protocol, which is what most people do.

105

Introduction to the LPC2000 4 — User Peripherals

CAN Node Design

A typical CAN node is shown below. Each node consists of a microcontroller and a separate
CAN controller. The CAN controller may, as in the case of the LPC2000, be fabricated on
the same silicon as the microcontroller or it may be a stand-alone controller in a separate
chip to the microcontroller. The CAN controller is interfaced to the twisted pair by a line
driver and the twisted pair is terminated at either end by a 120 Ohm resistor. The most
common mistake with a first CAN network is to forget the terminating resistors and then
nothing works.

Microcontroller

CAN node hardware: A typical CAN node has
a microcontroller, CAN controller, physical
CAN Controller layer and is connected to a twisted pair
terminated by 120 Ohm resistors.

TX0 TXI1 RX0 RXI1

| |
CAN Transceiver

CANL CANH

=[] [] &

One important feature about the CAN node design is that the CAN controller has separate
transmit and receive paths to and from the physical layer device. So, as the node is writing
on to the bus it is also listening back at the same time. This is the basis of the message
arbitration and for some of the error detection.

The two logic levels are written onto the twisted pair as follows, a logic one is represented
by bus idle with both wires held half way between 0 and Vcc. A logic Zero is represented by
both wires being differentially driven.

V A Recessive Dominant Recessive

CAN Physical layer signals:

VCANL On the CAN bus, logic zero is represented
2.5 by a maximum voltage difference called

\t “Dominant” and logic one by a bus idle state

CaNH called “recessive”. A dominant bit will
= overwrite a recessive bit.
1.5 4
-
t

106

Introduction to the LPC2000 4 — User Peripherals

In “CAN speak” a logic one is called a recessive bit and a logic zero is called a dominant bit.
In all cases a dominant bit will overwrite a recessive bit. So, if ten nodes write recessive and
one writes dominant, then each node will read back a dominant bit. The CAN bus can
achieve bit rates up to a maximum of 1 Mbit/sec. Typically this can be achieved over about
40 metres of cable. By dropping the bit rate, longer cable runs may be achieved. In practice
you can get at least 1500 metres with the standard drivers at 10 Kbit/sec.

CAN Message Objects

The CAN bus has two message objects which may be generated by the application software.
The message object is used to transfer data around the network. The message packet is
shown below.

Conirol

Arbitration Field Field DATA Field Error control and end of frame

A
DLC 0 - 8 Bytes Data 15 bit CRC C EOF
K

A

o 29 Bit Identifier

T

Remote transmit request

Data length code

CAN message packet : The message packet is formed by the CAN controller, the application software
provides the data bytes, the message identifier and the RTR bit

Tne IMESSAYE PdCKeL SLdrts WIL d aortinarit DIt Lo Imark e start Ol Irdarme. Inext comes the
message identifier which may be up to 29 bits long. The message identifier is used to label
the data being sent in the message packet. CAN is a producer / consumer protocol. A given
message is produced from one unique node and then may be consumed by any number of
nodes on the network simultaneously. It is also possible to do point-to-point communication
by making only one node interested in a given identifier. Then a message can be sent from
the producer node to one given consumer node on the network. In the message packet the
RTR bit is always set to zero. (This field will be discussed shortly.) The DLC field is the
data length code and contains an integer between 0 and 8 which indicates the number of data
bytes being sent in this message packet.

So, although you can send a maximum of 8 bytes in the message payload it is possible to
truncate the message packet in order to save bandwidth on the CAN bus. After the 8 bytes of
data there is a 15-bit cyclic redundancy check. This provides error detection and correction
from the start of frame up to the beginning of the CRC field. After the CRC there is an
acknowledge slot. The transmitting node expects the receiving nodes to assert an
acknowledge in this slot within the transmitting CAN packet. In practice the transmitter
sends a recessive bit and any node which has received the CAN message up to this point will
assert a dominant bit on the bus, thus generating the acknowledge. This means that the
transmitter will be happy if just one node acknowledges its message, or if 100 nodes
generate the acknowledge. So when developing your application layer care must be taken to
treat the acknowledge as a weak acknowledge, rather than confirmation that the message has

107

Introduction to the LPC2000

4 — User Peripherals

reached all its destination nodes. After the acknowledge slot there is an end of frame
message delimiter.

It is also possible to operate the CAN bus in a master / slave mode. A CAN node may make
a remote request onto the network by sending a message packet which contains no data, but
has the RTR bit set. The remote frame is requesting a message packet to be transmitted with
a matching identifier. On receiving a remote frame, the node which generates the matching
message will transmit the corresponding message frame.

s
? Identifier

RTR

DLC| CRC

ACK| EOF

Remote Transmit request: The RTR frame is
used to request message packets from the
network as a master / slave transaction

As previously mentioned, the CAN message identifier can be up to 29 bits long. There are
two standards of CAN protocol, the only difference being the length of the message
identifier.

2.0A

2.0B Passive

2.0B Active

Has an 11-bit identifier

Has an 11-bit identifier

Has a 29-bit identifier

It is possible to mix the two protocol standards on the same bus but you must not send a 29-
bit message to an 2.0A device

Frame with

Frame with

11 bit ID 20 bit ID
?“i;Bl\?o(jlll\lz Tx/Rx OK TxRx OK
\(za{i?ﬁgiﬁﬁf Tx/Rx OK Ignored
\21\(1)::11(11 jN Tx/Rx OK Bus ERROR

108

Introduction to the LPC2000 4 — User Peripherals

CAN Bus Arbitration

If a message is scheduled to be transmitted on to the bus and the bus is idle, it will be
transmitted and may be picked up by any interested node. If a message is scheduled and the
bus is active, it will have to wait until the bus is idle before it can be transmitted. If several
messages are scheduled while the bus is active, they will start transmission simultaneously
once the bus becomes idle, being synchronised by the start of frame bit. When this happens,
the CAN bus arbitration will take place to determine which message wins the bus and is
transmitted.

Node A

Node B A X i
Node C CAN arbitration:
} Message arbitration guarantees
that the most important message
[rarariviti = Arbitration phase of message frame will win the bus and be sent
TIITIITD = Remainder of message frame without any qelay- Stalled)
A) messages will then be sent in
= Schedules Message Tx Start B order of priority, lowest value
Start Bit . e .
\ identifier first.
Node A R | | —
Node B I
Node C T _|_|_|__"_/__/T' T

Node B loses Node C loses

CAN arbitrates its messages by a method called “non-destructive bit wise arbitration”. In the
diagram above, three messages are pending transmission. Once the bus is idle and they are
synchronised by the start bit, they will start to write their identifiers onto the bus. For the
first two bits, all three messages write the same logic and hence read back the same logic so
each node continues transmission. However on the third bit, node A and C write dominant
bits and node B writes recessive. At this point, node B wrote recessive but reads back
dominant. In this case it will back off the bus and start listening. Node A and C will continue
transmission until node C write recessive and node A writes dominant. Now node C stops
transmission and starts listening. Now node A has won the bus and will send its message.
Once A has finished, nodes B and C will transmit and node C will win and send its message.
Finally node B will send its message. If node A is scheduled again, it will win the bus even
though the node B and C messages have been waiting. In practice the CAN bus will transmit
the message with the lowest value identifier.

109

Introduction to the LPC2000 4 — User Peripherals

Bit Timing

Unlike many other serial protocols, the CAN bit rate is not just defined by a baud rate
prescaler. The CAN peripheral contains a Baud rate prescaler but it is used to generate a
time gquanta i.e. a time slice. A number of these time quanta are added together to get the
overall bit timing.

CAN bit timing:

Unlike other serial protocols the
CAN bit period is constructed as
a number of segments that allow
you to tune the CAN data

| transmission to the channel being
used.

| Bit Time >

T A

T Tsegl Tseg?2
Syne Sample
Seg Pomt

The bit period is split into three segments. First is the sync segment, which is fixed at one
time quanta long. The next two segments are Tsegl and Tseg2 where the user defines the
number of time quanta in each region. The minimum number of time quanta in a bit period
is 8 and the maximum is 25. The receiving sample point is at the end of Tsegl so changing
the ratio of Tsegl to Tseg2 adjusts the sample point. This allows the CAN protocol to be
tuned to the transmission channel. If you are using long transmission lines, the sample point
can be moved backwards. If you have drifting oscillators you can bring the sample point
forward. In addition, the receivers can adjust their bit rate to lock onto the transmitter. This
allows the receivers to compensate for small variations in the transmitter bit rate. The
amount that each bit can be adjusted is called the “synchronous jump width” and may be set
to between 1 — 4 time quanta and is again user definable.

To calculate the bit timing, the formula is given by

Bit rate = Pclk/(BRP x (1 + Tsegl + Tseg2))
Where: BRP = Baud rate prescaler

This calculation has a lot of unknowns. If we assume that we want to reach a bit rate of
125K with a 60 MHz Pclk and a sample point of about 70%, here is how the BRP
calculation is performed.

The total number of time quanta in a bit period is given by (1+Tsegl+Tseg?2) . If we call this
term QUANTA and rearrange the equation in terms of the baud rate prescaler:

BRP = Pclk/(Bit rate x QUANTA)

110

Introduction to the LPC2000 4 — User Peripherals

Using our known values:

BRP = 60 MHz/(125K x QUANTA)

Now we know that we can have between 8 and 25 time quanta in the bit period, so using a
spreadsheet we can substitute in integer values between 8 and 25 for QUANTA until we get
an integer value for BRP.

In this case when QUANTA = 16 BRP = 30;

Then 16 = Quanta = (1+Tsegl+Tseg2)

So we can adjust the ratio between Tsegl and Tseg2 to give us the desired sample point.
Sample point = (QUANTA x 70)/100

Hence 16 *0.7 = 11.2. This gives Tseg 1 = 10, Tseg2 = 5 and the sample point = 68.8%

The value for the synchronous jump width may be calculated via the following rule of
thumb.

Tseg2 >= 5 Tqg then program SJW to 4
Tseg2 < 5 Tq then program SJW to (Tseg2 - 1) Tq

In this case SJW = 4.

111

Introduction to the LPC2000 4 — User Peripherals

CAN Message Transmission

In the LPC2000, each CAN controller has a number of status and control registers plus three
transmit buffers and a receive buffer.

CAN
CAN MOD Controls Operating Mode
COI‘?’[I’O| CAN CMR Command Register
Rengter CAN GSR Global Status Register
CANICR Interupt Status
CAN IER Interrupt Enable
Rx Buffer CAN BTR Bit Timing Register
CAN EWL Error Warning Limit
Tx1 Buffer CAN SR Status Register
Tx2 Buffer
Tx3 Buffer

In order to configure CAN controller we must program the bit timing register. However the
bit timing register is a protected register and may only be written to when the CAN
controller is in reset. Bit zero of the mode register is used to place the CAN controller into

reset.
» S8
‘:_"F- "'\f-j "f:" ':'J\" BRP
The CAN bit timing is defined by 5
separate parameters
31 23 22 19 15 14 9 [
SAM Sampling
TSEG2 Timing Segment 2
TSEG1 Timing Segment 1
SJw Synchronous Jump Width
BRP Baurate Prescaler

We can use the values calculated above to initialise one of the CAN controllers to
125Kbit/sec. It is important to note that the values stored in the register are the calculated
values minus 1. This ensures that no timing segment is set to zero. Once the CAN controller
has been initialised, it is possible to transmit a message by writing to a transmit buffer. Each
transmit buffer is made up of four words.

112

Introduction to the LPC2000 4 — User Peripherals

CANT FIx Transmit Frame Info
CANT iDx Transmit Identifier
CAN TDAXx Transmit Data 1-4
CAN TDBx Transmit Data 5-8

Two words are used to hold the 8 bytes of data and one word holds the message identifier.
The final register is the frame information register.

FF HIR oLG PRIO
The parameters of each CAN message
are defined in each message buffer
31 23 19 16 7 (

FF Frame Format

DTR Remote Transmit Reguest

DLC Data Len gth Code

Prio Pricrity

This register holds the values of the DLC and the RTR bit. In addition, there is a frame
format (FF) bit that defines whether the message has an 11-bit or 29-bit identifier. As there
are three TX buffers it is possible to define an internal priority for each TX buffer. If several
buffers are scheduled simultaneously, the CAN controller will use internal arbitration to
decide which is transmitted first. This can be done in one of two ways; if the TPM bit in the
MODE register is Zero, the transmit buffer with the lowest value identifier will be sent first.
If TPM is high, then arbitration will use the values stored in the PRIO field in the Tx Frame
Information register and the buffer with the lowest PRIO value is sent first. Once the buffer
has been filled with a message, transmission can be started by setting the Transmit request
bit (TR) in the COMMAND register. The code below shows some code fragments to
initialise the CAN peripheral and transmit a message.

C2MOD = 0x00000001; //Set CAN controller into reset

C2BTR = 0x001C001D; //Set bit timing to 125k

C2MOD = 0x00000000; //Release CAN controller

if(C2SR & 0x00000004) //See if Tx Buffer 1 is free

{
C2TFI1 = 0x00040000; //Set DLC to 4 bytes
C2TID1 = 0x00000022; //Set address to 0x22 Standard Frame
C2TDAl1l = NetworkData; //Copy some data into first four bytes
C2CMR = 0x00000001; //Transmit the message

ks

113

Introduction to the LPC2000 4 — User Peripherals

Exercise 25: CAN Transmit
This exercise configures the second CAN channel for 125K bits\second and
repeatedly transmits a CAN message frame.

114

Introduction to the LPC2000 4 — User Peripherals

CAN Error Containment

The CAN protocol has five methods of error containment built into the silicon. If any error
is detected, it will cause the transmitter to resend the message so the CPU does not need to
intervene unless there is a gross error on the bus. There are three error detection methods at
the packet level; form check, CRC, and acknowledge plus two at the bit level; bit check
error and bit stuffing error. Within the CAN message there are a number of fields that are
added to the basic message. On reception, the message telegram is checked to see if all these
fields are present. If not, the message is rejected and an error frame is generated. This
ensures that a full, correctly formatted message has been received.

Standard 8 byte Data Frame

—— i —
Cali]

Inter Frame Space

s
Must be L1
Dominant

Must be -1

lill_llll7l3&j.
(R

1 (=Recessive)

0 (=Dominant)

Intermission
End of Frame

ACK Delimiter

ACK Slot

CRC Delimiter

CRC Sequence

Data Field

Recessive

Data Length Code

reserved bit (D)

IDE bit (D)

RTR bit (D)

Identifier Field
Start of Frame

Frame Check:

The frame check tests that a
correctly formatted CAN
message has been received.

Each message must be acknowledged by having a dominant bit inserted in the acknowledge
field. If no acknowledge is received, the transmitter will continue to send the message until

an acknowledge is received.

Standard 8 byte Data Frame

Inter Frame Space

—— i —
-

|1‘11 |111|4|
11

|15 |1

seen the fiame as 1
avalid CAN ol
frame overwrites
with Dominant.

> =

T T <

b 3&
<

1 (=Recessive)

-~ (=Dominant)

CRC Delimiter

CRC Sequence

Data Field

It transmitting

Data Length Code

node does not 1‘6561\'§(1 bit (D)
read back IDE bit (D)
domimant then RTR bit (D)

frame 1s re-sent.

Identifier Field

Start of Frame

A A AAA t
Transmitting Intermission
node transmits T End of Frame Acknowledge:
Recessive, any | A ACK Deluniter
node that has L] ACK Slot

All CAN frames must be
acknowledged. If there is no
handshake, the message will
be re-sent

The CAN message packet also contains a 15 bit CRC which is automatically generated by
the transmitter and checked by the receiver. This CRC can detect and correct 4 bits of error

115

Introduction to the LPC2000

4 — User Peripherals

in the region from the start-of-frame to the beginning of the CRC field. If the CRC fails and
the message is rejected, an error frame is placed onto the bus.

———— Standard 8 byte Data Frame . Inter Frame Space

CRC s

(=Recessive)

) T
- =] i
. A A . 0 (=Dominant)

Intermission

CRC: A15bitCRC is

z;lculat.e d us,:;g End of Frame automatically generated which
e e ACE Delimiter is a weighted polynomial
within the frame ACK Slot -
(stuff bits are not CRC Delimi checksum that provides error
ineluded) CROS climiter detection and correction across
edquence the message packet
Data Field
p Dat Lot Cot
15 bit CRC reserved bit (D)
(checksum) IDE bﬂf D)
RTR bit (D)
Tdentifier Field
Start of Frame

Once a node has won arbitration it will start to write its message onto the bus. As during
arbitration as each bit is written onto the bus, the CAN controller is reading back the level
written onto the bus. As the node has won arbitration nothing else should be transmitting so
each bit level written onto the bus must match the level read back. If the wrong level is read
back, the transmitter generates an error frame and reschedules the message. The message is
sent in the next message slot but must still go through the arbitration process with any other
scheduled message.

_———— Standard 8 byte Data Frame 5 Inter Frame Space

- 1 (=Recessive)

0 (=Dominant)

Transmitting
node expects bus
state to be the
same as the state
it is transmitting

[—

Intermission
End of Frame
ACK Delimiter
ACK Slot
CRC Delimiter

Bit check error:

Once the arbitration has
finished the write and read
back mechanism is use for

N.B. Do not itwi i
o no CRC Sequence bitwise error checking
allow multiple Data Field
:;:;Sn:)t Data Length Code
messages with reserv.ed o)
the same ID. DE bit (1)
RTR bit (D)
Identifier Field
Start of Frame

This leads to one of the golden rules in developing a CAN network. In a CAN network,
every identifier must be uniquely generated. So you must not have the same identifier sent
from two different nodes. If this happens, it is possible that two messages with the same 1D
are scheduled together, both messages will fight for arbitration and both will win as they
have the same ID. Once they have won arbitration they will both start to write their data
onto the bus. At some point this data will be different and this will cause a bit check error.
Both messages will be rescheduled, win arbitration and go into error again. Potentially this
‘deadly embrace’ can lock up the network, so beware!

116

Introduction to the LPC2000 4 — User Peripherals

At the bit level, CAN also implements a bit stuffing scheme. For every five dominant bits in
a row, a recessive bit is inserted.

Arbiration/Data atl mt2 n+3 ndd adS a6 a+7 Bit Stuffing:
For every five bits of one logic
in a row a stuff bit of the
opposite logic is inserted. The
— error frame breaks this rule by
CAMN Bit Stream | | | | S];‘;tff | being six dominant bits in a
n n+1 n+2 n+3 n+d n+5 n+6 n+7 row

This helps to break up DC levels on the bus and provides plenty of edges in the bit stream
which are used for resynchronisation. An error frame in the CAN protocol is simply six
dominant bits in a row. This allows any CAN controller to assert an error onto the bus as
soon as the error is detected, without having to wait until the end of a message. Internally
each CAN controller has two counters.

Reset and Configuration

(e) Error counters:

The CAN controller moves between a

REC=> 127 o R‘;“,ﬁef;;ﬂi”;“f“"" number of error states that allow a node to
TEC=127 REC <127 & 128 x 11 recessive bits fail in an elegant fashion, without blocking
TEC< 127 the bUS
/ Error Passive —b Bus OfT >
\ y

TEC > 255

REC: Recessive Error Counter
TEC: Transmit Error Counter

These are a receive error counter and a transmit error counter. These counters will count up
when receiving or transmitting an error frame. If either counter reaches 128, then the CAN
controller will enter an “error passive’ mode. In this mode it still responds to error frames
but if it generates an error frame, it writes recessive bits in place of dominant bits. If the
transmit error counter reaches 255 then the CAN controller will go into a bus-off condition
and take no further part in CAN communication. To restart communication, the CPU must
intervene to reinitialise the controller and put it back onto the bus. Both these mechanisms
are to ensure that if a node goes faulty, it will fail gracefully and not block the bus by
continually generating error frames.

The LPC2000 CAN controllers have a number of error detection mechanisms. First of all,
the current count of the transmit and receive error counters can be read in the Global Status
Register.

Also in this register are two error flags, the Bus Status flag will be set when the maximum
error count is reached and the CAN controller is removed from the bus. The second error
flag is the Error Status flag, which is set when the CAN error counters reach a warning limit.
This warning limit is an arbitrary value that is set by writing a value into the Error Warning
limit register. The default value in this register is 96. Like the bit timing registers, the EWL

117

Introduction to the LPC2000 4 — User Peripherals

register may only be modified when the CAN controller is in reset. In addition, the Interrupt
Capture Register provides extensive diagnostics for managing events on the CAN bus.

The CAN controller has the following interrupt sources,

oSN~ wWNE

Transmit interrupt (one for each buffer)
Receive interrupt

Error Warning

Data overrun

Wake up

Error Passive

Arbitration lost

Bus error

ID ready

CAN Message Reception

Once initialised, the CAN controller is able to receive messages into its receive buffer. This
is similar in layout to the transmit buffers

CAN RFS Reciever Frame Status
CANRID Recieved ldentifier
CAN RDA Recieved Data 1-4
CAN RDB Recieved Data 5-8

The Rx Frame Status register is analogous to the Tx Frame information register. However it
has two additional values. These are the ID Index and the BP bit and these will be explained
in the next section.

The code below demonstrates how to receive a CAN message:

int main(void)

{

VPBDIV = 0x00000001; //Set PCIk to 60MHz

IODIR1 = OxO0FF0000; // set all ports to output
PINSEL1]= 0x00040000; //Enable Pin 0.25 as CAN1 RX
C1MOD = 0x00000001; //5et CAN controller into reset
C1BTR = 0x001C001D; //Set bit timing to 125k

C11ER =0x00000001; //Enable the Receive interrupt

VICVectCntlO = Ox0000003A; //select a priority slot for a given interrupt
VICVectAddrO = (unsigned)CAN1IRQ; //pass the address of the IRQ
//into the VIC slot
VICIntEnable = 0x04000000; //enable interrupt
AFMR = 0x00000001; //Disable the Acceptance filters
C1MOD = 0x00000000; //Release CAN controller

while(1){;}

118

Introduction to the LPC2000 4 — User Peripherals

void CAN1IRQ (void) __1irg
I0CLR1 = ~C1RDA; //clear output pins
I0OSET1 = C1RDA; //set output pins

C1CMR = 0x00000004; //release the receive buffer
VICVectAddr = 0x00000000; //Signal the end of interrupt

¥
Acceptance Filtering

While the receive example shown above will work perfectly well, it suffers from two
problems. Firstly, it receives every message transmitted on the bus. In a fully loaded CAN
bus this could mean a message would be received every 72us. As the LPC2000 has up to 4
CAN controllers, the CPU would have to spend a lot of time just managing the CAN busses.
Secondly, once the message has been received the CAN controller would have to read and
decode the message identifier in order to decide what to do with the message. In order to
overcome these problems, the LPC2000 CAN controllers have a sophisticated acceptance
filtering scheme. The acceptance filter is used to screen messages as they come in from the
CAN bus. The acceptance filter can be programmed to pass or block message identifiers
before they enter the CAN controller for processing. This prevents unwanted messages
entering the CAN receive buffer and consequently greatly reduces the overhead on the CPU.
The acceptance filter has 2K of RAM (512 x 32), which may be allocated into tables of
identifiers. This allows ranges of messages and individual messages to be able to enter into
the CAN receive buffer.

5. If enabled generate and Rx IRQ CAN Controller 1

1

IRQ

-4

A 1. Can message 1s
received Acceptance filters:
- coeptance Filter wi The CAN modules one 2K block of RAM
3. On Match load the message et Lok Toe _ which is used to set up filter tables to
mto the RX buffer ExplicitDs

efficiently handle high bus loadings
without overloading the CPU

4. Load the INDEX value

1 bl A\ Aoaihet Aee 5 ~
nto the RFS register @. 2. Scan against Acceptance

tables

Groups of IDs

T

As a message passes through the acceptance filter, it is assigned an ID Index. This is an
integer number that relates to the message 1D’s offset in the acceptance filter table. This
number is stored in the RX Frame Status register. So rather than decode the raw message 1D,
it is easier and faster to use the index value to decide what message has been received.

119

Introduction to the LPC2000 4 — User Peripherals

CAN Controller 1

)

1. CAN message received

' Full CAN mode:

In full can mode the CAN
RAM may also be

Acceptance Filter with

Identifier Look up Table - . configured as additional
2. Scan ID aganst acceptance tables receive buffers which
FullCANIDs . .
’ store incoming data for
%ﬁ V the CPU to read as
. required
Explicit IDs
. —— 3. On Match transfer message to unique
The CPU can read the roups of s
message objects at message buffer
‘Jll}' fime FullCAN Objects

> —

The acceptance filter also has a full CAN mode. In this mode the messages are received and
scanned against the table of permissible identifiers. If a match is made, the message is
stored not in the CAN controller receive buffer but in a dedicated message buffer within the
acceptance filter memory. In this mode, each message has its own unique message buffer at
a fixed location, making all the CAN data easily accessible from the CPU.

Configuring The Acceptance Filter

The acceptance filter is configured by seven registers. Control of the filter is via the mode
register. The various ID tables are configured by the next five registers and the seventh
register is an error reporting register.

Before configuration of the acceptance filter can start it must be disabled. This is done by
setting the AccOff bit and clearing the AccBP bit in the acceptance filter mode register. If
the CAN controller is run with this configuration, then all messages on the bus will be
received.

The Acceptance filter mode register
provides global control of the
acceptance filter

31 o]

AccOFF ENABLE/DISABLE ACCEPTANCEFILTER
AccBP
eFCAN ENABLES FULLCAN MODE

120

Introduction to the LPC2000 4 — User Peripherals

Once the acceptance filter is disabled, each of the four filter tables may be configured. The
four tables are as follows:

Individual standard identifiers (11 bit ID)
Groups of standard identifiers (11 bit ID)
Individual Extended identifiers (29 bit ID)
Groups of extended identifiers (29 bit ID)

The acceptance filter RAM starts at 0XEO038000. Each of the tables must be defined and
fixed at absolute locations in the filter RAM. The start address of each table should then be
written into the relevant acceptance filter register. The tables should start at the beginning of
RAM and use the memory contiguously. Finally, the address of the last used location of
RAM should be written into the End of Table register. To enable the Acceptance filter, set
the ACCoff bit to logic one and AccBP bits to zero.

Each of the tables is constructed as follows;

31 29 26 16
15 13 10 0

Controller # Dis not Identifier
able | used

The Individual Standard identifier table allows you to define individual 11-bit identifiers
that will pass through the acceptance filter. Each definition takes two bytes, the first 11 bits
contains the message identifier to be passed. This is followed by a bit to dynamically enable
or disable this filter entry. Finally, the top three bits associates this filter entry with a
particular CAN controller.

3 29 26 16 10 0

. arz | o t ifi o arz | Q¢ t ifi
Controller# | 5= | n Lower Identifier Bound Controller# | & | 52y Upper Identifier Bound

The group standard identifier table uses the same format but two entries are used to define
the upper and lower identifier address range for messages that are allowed to pass through
the acceptance filter

a1 29 28 0

| Controller # I Identifier I

The individual extended identifier table uses four bytes per entry, as shown above. The first
29 bits define the message identifier to be passed through the acceptance filter and the top
three bits associates the filter entry with a particular CAN controller. The group extended
identifier table uses two words in the same format as the individual extended table to build
up a start and end identifier values in the same fashion as the standard message group table

121

Introduction to the LPC2000 4 — User Peripherals

The following code shows how the acceptance filters may be configured for the basic CAN
mode.

unsigned int StandardFilter[2] _at_ OxE0038000; //Declare the standard
//acceptance filter table

unsigned int GroupStdFilter[2] _at OxE0038008; //Next the standard Group

//Tilter table
unsigned int IndividualExtFilter[2] _at O0xE0038010; //Now the extended filter
//table
unsigned int GroupExtFilter[2] _at_ OxE0038018; //Finally the Group extended
//Tilter table

AFMR = 0x00000001; //Disable the Acceptance filters
StandardFilter[0] = 0x20012002; //Setup the standard filter table
StandardFilter[1] = 0x20032004; //Allow lds 1,2,3 & 4

SFF_sa = 0x00000000; //Set start address of Standard table
SFF_GRP_sa = 0x00000008; //Set start address of Standard group table
EFF_sa = 0x00000008; //Set start address of Extended table

EFF_GRP_sa = 0x00000008; //Set start address of Extended group table
ENDofTable = 0x00000008; //Set end of table address

AFMR = 0x00000000; //Enable Acceptance filters

C1MOD = 0x00000000; //Release CAN controller

Exercise 26 CAN Receive
Like the last exercise this example configures the CAN peripheral for 125Kbits/sec and
sets the acceptance filters to receive one of three message frames.

Summary

This chapter is a bit of a moving target! The LPC2000 is a rapidly growing family with new
variants being released on a regular basis. Check the CD that came with this book for a .PDF
update to this chapter or keep an eye on the web at http://www.hitex.co.uk/arm/Ipcbook

If you have worked through this and the proceeding chapters, you should now have a firm
grasp of the LPC2000 family the ARM7 CPU and the necessary development tools.
Appendix B lists further reading and web resources for the ARM7 and the LPC2000 in
particular.

122

Introduction to the LPC2000 4 — User Peripherals

123

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Chapter 5: Keil Tutorial

This chapter contains worksheets for the practical examples that are available on the CD.
There are two sets of examples one for the Keil compiler and one for the GNU compiler.
This chapter is written for the Keil compiler. If you want to use the GNU compiler you
should start with Appendix A which details the non-ANSI additions to the GCC compiler.
Appendix A also contains example worksheets for the first six exercises that deal with the
specifically with GNU tools. After exercise six you can rejoin this chapter and use either the
GNU or Keil examples for the remaining examples.

Installation

All the necessary software for the practical examples is on the CD that comes with this
book. If you place the CD in the drive on your PC the following window will appear.

o Macromedia Flash Player 7 i ;Igll!
hitex

DEVELOPMENTTOOLS Philips LPC Seminar 2100 CD ROM

Welcome to the embedded world of Hitex

Application notes for the ARM processor

Course notes for the ARM
Tools

Exercises

ISP

MCB2100 Information
User Manuals

CMX Operating System

Exit Install Keil GNU Compiler
" Reader Setup Keil ARM uVision Developement Software

1. Firstitis necessary to install the Keil uVISION software, this will also install the
Keil compiler.

2. If you wish to use the GNU compiler you will need to install this separately once
uVISION is installed.

Next install the example set for the compiler you plan to use
Finally install the Philips ISP flash programming tool

Once the software has been installed you are ready to start the tutorial exercises

124

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Using the Keil UVISION IDE

This section will cover the development tools that can be used to develop code for the
LPC2000. In this book all the example are written for the Keil ARM toolset. The Keil
toolset comprises of the UVISION IDE which contains an editor and project manager, an
ARM?7 Compiler and linker and a Software simulator. The simulator will simulate the
ARMT7 core and the LPC2000 peripherals so it is possible to see the full operation of the
chip by just using the simulator. An evaluation version of the toolset

is available free from the Keil website at www.keil.com or on the CD supplied with this
book. It is also possible to purchase a starter kit which contains an evaluation board and
JTAG debugger that allows you to develop code on a real target device.

The Keil ARM compiler allows us to write in the C language and compile code to run on the
LPC2000 devices. In order to cope with the microcontroller architecture the compiler has a
number of non ANSI extensions that allow us to handle features such as interrupts
ARM/Thumb interworking and accessing device peripherals. Before we start its worth
looking at a simplified memory map of an LPC2000 so we can understand how to build a
project.

OxFFFF FFFF
Peripherals
0xE000 000
0x4000 FEFF The memory map of the_ LPC21xx is a linear 40 G_B
Static R address space with regions for on chip flash, static
tatic Ram ram and peripherals
0x4000 0000
Flash 0x00001 FFFF
Memor
Y 0

Since the reset and exception vector table are located from zero upwards the on chip flash
memory is located from zero for up to 256K. The on chip SRAM starts at 0x40000000 for
up to 64K and the on chip peripherals are mapped from 0XE0Q000000 to the top of memory.

Before we begin to look at the compiler in detail I will run through a step by step tutorial on
how to set up a UVISION project, compile the code and run the debugger. This does not
cover all the features of uVISION but once you have a basic understanding of the IDE feel
free to explore. If you copy the example from the CD onto you hard disk the source files
referred to below can be found in C:\examples\ex1-first project. Ok lets build our first
project.

125

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 1: Using the Keil Toolset

This example is based on the source code that can be found in

C:\Work\EX1 first program

In this first exercise we will spend some time defining a first project, building the code and
downloading it into the simulator for debugging. We will then cover the basic debugging
functions of the Keil simulator.

Double click on the Keil Uvision3 icon to start the IDE. L7

AR - i = [\ Wirk', AR Phils o mrpdes, LA e | =101x]
[t gd yem mopt obug Fiph Perpherds ook IS winde teb SEIE |

T e I YR |
B EHeBrrn ¢ EE oK >
—2x 3

s
FEIDT o
=z
5 [T Chareel | T 1o Fiaire. L Secke
Wiaichdag WDINT n L] OGN n L]
Timea 0 4 IRg DONNO0N0H o n
Trt 1 i) O u u
wanTo 13 " QTR a L)
AT IRQ DONOCONEH n n
PaM 8 I3 QOOO0000H [[
5P 0 L OO0 a o =
PLL Lack mock. 2 ng DOONOON0H o 1 -
i 3 IRQ DODNEON0H n n ll
= | Evtonal indemuga [N1 IRG OO0 u u
3 | Coemal intem N 5 I OO0 [[= BRE ™
Futanalitangt 2 THT %R e [1 A Addee] [i y I Nis 1
Enbectnd frmmmps
I~ IneSsdect T Sabin I~ i€ natie T Rt
Vectored NG
Sie[) =] [Eeeie VIDVectCon fouoonoomn MiMectadk [xnmnm
Crarwat [=] Mim VD eiecthddr |DLO000000
¥ oot [VT [N 000
MCSeiine [OuO0000000 VI rable: i'_o’JI!.llI.ll MCIAD Sy [W00000000 1
VICSskiriCesr: [Romromn e) VCRRS 000000 =
L X | [STSTRTH Momary ™ | |
Fmachy | | AW

The Keil UVISION (a.k.a “uVISION”) IDE is designed to support several compilers, the
Gnu C compiler, The ARM development suite and the Keil ARM compiler. Before
compiling make sure you have the GNU compiler selected. This is done by activating the
project workspace, right clicking and selecting manage components. In this dialog select the

Components, Environment and Books [l x|

Praject Components Folders/Extensions | Booksl

i Development Tool Folder Default File Extensions:

[V Use Setings fiom TOOLS.INI:

C Source: |“e

Tool Base Folder: |E'\KEi|\AF!M\
BIN : |E'\YEi|\ARM\B|N\

C++ Source: |“.cpp

B Source; |7 e e

el e

INC: | Object: [" obi
LIE: | Libwary: |"lib
Regfile: | Document: | bt “h: “inc

— Select ARM Development Tool
IV Use Keil ARM Toals

C Folder: | C:\Cyanush
I Use GNU Tools SRR :
Keil Foat Folder: |\ ailbARMY
Realiew Falder; JC:\Progiam Files\ARMWADSYT_2%
I Use ARM Tools CENISH RO :
Keil Foat Folder; | \FeilbARMY

ok | Cencel Defailis | Help

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Folders/extensions tab and make sure the “Keil ARM tools” box is selected.

Next click on the “Books” tab.

Components, Environment and Books g|

s

raject Components] Folders/Extensions Books]

General Books ¥ | 4| ¥ | | Tool Specific ™ | ¥ | |Device Specific. 73 [| 4| ¥
Felease Notes 1 zer banual
Complete User's Guide Selection
GMU C Compiler
GMLU C Run-Time Libraries
GMNU C Utilities

GMLUI C Aszembler

Default Root: Default Root Default oot
CihKeily |C.\KeiI\AF|M\ |c.\
Change Book
oK | Cancel | it I Help

Highlight the UserManual entry and press the “Change Book” button.

Add f Change Book ltem

Book Title:

|User b anual

Book Path:
|I::'~.Wnrk\.t'-“«FlM\F'hiIi|:u$ Course ImageiU ser ManualshLPC211

)4 | Catcel J

Now change the path to point to the LPC2000 user manual, which can be found on the CD
in the “User Manuals” directory. You can now add any other documentation you wish
through these menus.

Once the project has been fully configured the on-line documentation can be accessed
through the Books tab in the project workspace window. The full Keil documentation for

Project Wiorkspace x

- m Tools User's Guide
@ Release Notes
@ Complete User's Guide Selection
8 G C Compiler
&% GNU C Run-Time Libraries
& GNU C Utilities
8GN C Assembler
- m Device Data Books
% User Manual

B. E. @.|"%. | = 127

Introduction to the LPC2000 5 — Tutorial With Keil Tools

uVISION and the CARM compiler is found under “Complete Users Guide Selection”
Once you have added the datasheet click the OK button to continue defining the project.

From the menu bar select Project\new Project.

-~ A 4 1 PR - —

B pvision2

“ File Edit View |Project Debug Flash Petipherals Tools SWCS ‘Window Help

|leswa

Import pYisionl Project. ..

Open Praject

In the New project dialog navigate to your desired project directory.

Create New Project ﬂll

Save in: | |3 First program j &= EF -

File: name: |First Save I
Save as tupe: |Proiect Filez [.uv2) LI Cancel |

4

In the new project dialog name the project “first.uv2” and select Save.

A “select new device for target’ dialog will appear. Navigate through the device database
and select the Philips\LPC2129 folder and then OK.

trU |
Wendar: Philips
Device: LPC2292
Farnily: ARM
Data base Description
£ LPC2124 ;I ARM7TDMI-S based high-performance 32-bit RISC Microcontroller with TI’;I
€1 LPC212 256KE on-chip Flash ROM with In-Spstem Progriamming (15P) and Invpplc
£ LPCZI94 16KB RAM, Yectored Interrupt Controller, External Bus Contraller,
Two UARTS, 12C serial interface, 2 SPI senial interfaces,
£ Lpezan2 Twwo fimers (7 caplureécompare channels),
-~ £3 LPC2214 Fia/h uriit with up to B PWM outputs,
8 8-chanrels 10bit ADC, 2 CAN channels
1 eal Time Clock, Watchdog Timer, General purpase 1/0 pins.
£1 LProone —I|' |Real Time Clack, Walchdog Timer, General 1/

£ PRO/PETCSING CFLU clack up to 60 MHz, On-chip ciystal oscilator and On-chip PLL

€1 PBO/PEICSZ<2
€1 PBO/PEICSAR2
£ PBO/PEICSER2
£ PBOCSSTES

£ PBOCHSTEG =
-
4] LIJ L]

Cancel

128

Introduction to the LPC2000 5 — Tutorial With Keil Tools

In the project browser highlight the “Target1’ root folder and select the local menu by
pressing the right mouse button. In this menu select “options for target’.

rEw——— L

Select Device For Target ‘Target 1

Options For Targek Target 1'

2pen File

¥ rebuild targek
*.| Build target F?
Translate File
Stop build

fdd Eiles bo Graup, ..
Manage Components

Rernave Iken

IT Include Dependencies

In the “Target’ tab, set the simulation frequency to 12.000 MHz. Also make sure the “Use on
chip Rom” and “Use On chip Ram” boxes are ticked.

Options for Target "Interworking’ I} ﬂ
Device Tanget | Elulpull L\stmgl C | Hism | LAM\scl LALucalel Dehugl Ullhllssl
Philips LPC2292

ral (MHz): | I Bin Endian

I¥ Use Orvchip FIOM (040 - Dx3FFFF)
Operating system: [Hone =] ¥ Use Dnchip RidM (0:40000000 - 0+40003FFF)

External beman

Start: Size, Stark: Size:
#1: [Remt =] | | 5 [Ram 7] | |
w2 [ren =] | | 15 [Ram =] | |
43 [ren] | | 15 [Ram =] | |
aK I Cancel | Defaults I Help |

In the LA Locate tab, make sure that the “Use memory layout from target dialog” box is
ticked.

129

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Options for Target 'Interworking’ D x|

Dewcel Talgetl Dutputl L\stingl C | Asm I LA Mise LA Locate |Dabug| Utilitiesl

¥ Use Memony Layout from Target Dialog

Reserve |

C | DT A [0+40000000-0x40003FFF],
classes | CODE (1u0-0x3FFFF), COMST [Cu0-023FFFF])

User
classes

User
Segments

Linker [T “Thymb1"
contral |CASE

slring

Ev_u»_h_l;ul»_v_l»_

ok I Cancel Defaults

In the debug tab select make sure the use simulator radio button is checked along with the
“Load application at startup” and “Go till main”.

Options for Target ‘Simulator® E]
Device] Target] Dutputl Listing] (B] Asm] LAMisc:l LA Locate Debug 1 Ut\lities]
+ Use Simulator Settings || © Use: NS NEE e v | Settings
Iv Load Application at Startup v Go till mainf) ¥ Load Application at Startup [~ Go till main{]
Initialization File: Initialization File:
Festore Debug Session Settings Festore Debug Session Settings

Iv Breakpoints v Toobox v Breakpoirits ¥ Toolbox

v ‘watchpaoints & Pa [~ Watchpoints

v temary Dizplay v Memary Display
CPU DLL: Parameter: Driver DLL: Parameter:
[s4RM.DLL |-eLPC2100 [seRM.DLL |
Dialog DLL: FParameter: Dialog DLL: Parameter:
|DAF|MP.DLL |-pLF'EI21]]TAHMP.DLL |-pLPC21]

0K, | Cancel | Defauls ‘ Help

Select OK to complete the target options.

In the project browser expand the ‘targetl’ root node to show the source group 1 folder.

=l

S-2-4 Target 1
E e ource Group |

130

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Highlight the “source group 1’ folder, open the local menu with a right click and select “‘Add
files to source group source groupl’’.

=l
E‘ﬁ Target 1
D Source Group 1

Select Deyice For Target ‘Target 1

Options Far Group 'Source Group 1'

Open File

ebuild target

uild Earget F7
Translate File

Stop build

Add Files to Group 'Source Group 1' K

Manage Cormponents
Remove Group ‘Source Group 1' and it's Files

'7 Include Dependencies

In the “Add files to group’ dialog add the file blinky.c and serial.c.

Loak ir: I:-'_'-'i‘\iv"ork | 4= EF Ed-
Elinky.c
Serial.c

File name: || Add

Files of type: IC Source file (*.c) LI &I

s

Change the ‘“Type of file’ filter to ASM and add the file startup.s
These are all the source files necessary for the project so select “Close” .
Notes:

(i) You can view the source code contained in a file by double clicking on the file name in
the project browser window.

(if) The “manage components/project components” option also allows you to customise your
project by adding extra source groups and different build options such as build for RAM
debugging or Flash, debug in the simulator or with the JTAG.

Build the code by selecting the Project\build target menu or the F7 key. Build Icons are also
available on the toolbar.

131

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Start debugger Make project

Ble Edt Wew Froject Debug Flash Perphersls Tods SWCS Window Help i l

ABHD | ER oz FE e n REE ez QeERcers||cans |\

For the rest of the tutorial, the projects will be defined but relevant bits of code will be
missing. A complete copy of the exercise can be found in the solution directory. All the

example code is included on your CD.

132

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Using The Debugger

Launch the debugger by selecting the ‘debugger\start/stop debugger session menu or the
button on the toolbar.

Debugger Toolbar Source Window Disassembly Window
K2 FIR - pi
Fle Edt View Prof FMPMUMImEVCSMt{eb
Eg-AnN-] - D2 EE e T D K BT -1
mEHOBEOu e [QEYEcE >
m_o)_ge!wu_v!gpug -3%|
Fi Value
Curent
RO 100
A1 om0 — Y A
R2 0400 E M Mrchive Arm\ARM Course image- mb mo ified exercises\Exercis,
R3 e
R4 000
RS @000
RE (be100
R7 000
:g m | /* Demonstrates configuring & function as an ISR ipssn
A10 00 e R e £0x000000F4 E1AOCOOD MOV R12.R13 A
il 0000 Pl it i 0x000000F8 ES2DDB00 STMD RI31,[R11-R12,R14-PC}
R12 0000 | ".,'f_.,'.'_'_'_*:'“".::_,'__,__'"_","__,,_',”.',_ 0x0D000OFC EZ4CBOD4 SUB R11,R1Z,#0=x00000004
R13(5P g0 i 372 initFig(): s7Initi
GG | i | 38:
AISPC R0 0200000100 EBOOOOLL EL initFiq(0z0000014C)
* CPSR 00 “I 30z while(l)
* - SPSH 0% T oo 40: i
27 | id EXTintFI id ib i "F I :
S User/System 1 e b et e it 0x00000104 E3AQ320E MOV R3, #WDMOD (02E0000000)
= Fasl Intesupt 20 | : 0x00000108 E2833904 ADD R3,R3,.#0x00023000
A8 000 =1, 0x0000010C E3ADZEFE MOV R2, #0x00FFO000
. [1|) nein exoaean vocn : IOCLR1 = 0x0OFFO000;
R11 D000,

a3 L
34 int main (void)

m2 0000,
R13(5F) Ded 00
RI4(LR) Q000

* 5SPsR 0000 £
initFiqi); ¥
= Inkesmpt Reshial) : 77 FIQ Interrupt Service Routine
while (1) 44
{ :
. . 51: void EXTintFIQ (void)
1 I0CLR1 = OxOOFFOD00;
il ¥ 0z00000110 ES583201C STR RZ,[R3,#0x001C]
& 0x00000114 EAFFFFFD B 0x00000110
* 52: {
53
'0x00000118 ES2D0O00C STMDB R13!,{R2-R3}
Mode User |
States. 52

Sec 00000

B EUM® B e @ ook

Include "N:“SArchive A ARM CoursBy Imsge- mb mea| [m{—“ 2| | *| Name Vs
*|MAP 0x40000000. 0x4000E€Ef READ WRI | :

PORTO = 0x4000 |0x00000000: 18 FO 9F ES 18 FO 9F E5 18 FO <lype F2 tp edits

i |0x00000g0A: SF ES 18 FO SF ES 18 FO 9F ES B

58 6F AD B8 FO FF 1F E5 18 FO
:‘HPESSBDGDDDD-!DGDDUDDl]:

A4 AM 0N nn 40 00 an oon_an oo j
ory #1 f; Memory #2 J, Memory #3 § Memory #4 |2 [T T 0T Locals j watch #1 Afﬂ A Calstack /
R

Command Line CPU Registers Memory Window Watch Window

The code will be loaded into the simulator and executed from the reset vector until it reaches
main().

The project browser is replaced by a register window that allows you to view the contents of
the CPU registers. Here you can:

- View the registers in each of the different operating modes

- Open the SPSR and CPSR registers to view the flags

- View the internal mode to the simulated cycle count and timestamp

- Change the contents of a register by triple clicking on its value and then entering a
new value.

133

Introduction to the LPC2000 5 — Tutorial With Keil Tools

From main(), single step the code:
Use F11 to step a line of code
Use F10 to block step lines of code and functions
Use F5 to run the code at full speed
Use Esc to halt the code

Note: For the single step commands to work, a source code window must be the active
window

To set a breakpoint:

Select a line of code, right click for the local menu and select “insert/remove breakpoint”.
Now press F5 to run to the breakpoint.

i=2:
while (i <= n) {
fibo = £ibl + £ibZ:
£ibl = fih2; £ Undo
fib2Z = fiho: L2 Redo
i++:
} o Ut
return(fibo) ; Copy
H E Easte
s int wain{woid] & Toggle Bookmark
int i: Show Disassembly at 0xCa
Sel Program Counker
for (:7) Insert Fnclude <LPE210%, He!
{
counter = 0; * } Run to Cursor line
for (i = 0; i <= 21
I Go Tao Line
counter++; M Insert/Remave Breakpoint
) fiboCount = Fiby B Enable/Disable Ereakpaint
3 Clear complete Code Coverage Info

Run to a point in the code:
This is a quick way of getting to an arbitrary pointing your code.

Select a line of code, open the local menu, “select run to cursor”. This will execute code

until this line is reached. You can also select “Set program counter”. This forces the PC to
the current position without running any code.

134

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Select view/disassembly to see the underlying assembler code:

= Disassembly =10l =
2z L |
D Inteay =l
28
o:0:z000000E4 E1A0C000 MOV R12,R13
0z000000ES E92DD&70 STMDEB R13!,{R4-R6,R11-R12,R14-PC}
0z00000C0EC EZ24CBO04 SUB R11,R12,#0x00000004
0z000000F0 EBFFFFEA BL 0z000000A0
29: Bars ()
30: 1
0z000000F4 [ES9F5030 LDR RS, [PC,#0x0030]
0z000000F8 [E3a06000 MOV RE,#0xz00000000
F1:: counter = 0;
0z000000FC ES856000 STR RE, [R5]
F2i for (1 =0§ 1 x=205 d++)
33 {
0z00000100 ElA04006 MOV R4,R6
34: counter++;
0z00000104 [ES950000 LDR RO, [R5]
0z00000108 EZ2800001 ADD RO,RO,#0x00000001
0z0000010C ES850000 STR RO, [R5]
35:: fiboCount = Fibonacel (counter):
36 1
3T I
0z00000110 EBFFFFE&e BL Fibonacel (0x000000B0)
0z00000114 ES9F3014 LDR R3, [PC,#0x0014]
0z000001158 ES830000 STR RO, [R3] et
1l H 4

Examine program variables:

In the C code window place the cursor on the “counter” variable. Open the local window
and select “Add counter to watch window” in the sub menu select #1

G0 To Line

for (::] \J_T_“] Insert/Remove Breakpoink

{ ﬂ Enable/Cisable Breakpaint
':':'unt'.ar 7 Clear complete Code Coverage Info
for (i =
{ Add "counter” o Wakch \Window, .,

Coumnt -

fiboCount = Fibonacecl (counter): =

In the “Watch and call stack window”, select the Watch #1 tab to view the contents of
counter

135

Introduction to the LPC2000 5 — Tutorial With Keil Tools

[T AT > TP Locals b watch #1 £ Wiaich #2 f Call Stack f

Examine memory locations:
Open the memory window with “view\memory window”

Set the start of the memory window to 0x40000060, the address of the counter variable.

2| pddress: [040000060 |;
0x400000/0: 06 OO OO OO 0O OO OO OO OO OO0 OO0 OO OO OO 0O OO0 o0 oo
Ox40000072: 00 OO OO OO QO OO OO OO OO OO0 OO0 OO OO OO 0O OO0 o0 oo
Ox40000084: 00 OO OO OO QO OO OO OO OO OO0 OO OO OO OO 0O OO0 o0 oo
0x400000%9&: 00 OO OO OO QO OO OO OO OO0 OO0 OO0 OO OO OO 0O OO0 o0 oo
0x400000A8: 00 OO OO OO QO OO OO OO OO OO0 OO OO OO OO QO OO0 o0 oo
0x400000BA: 00O 00D OO OO 0O OO OO OO OO OO0 OO0 OO0 OO0 OO0 0O OO0 00 a0
Ox400000CC: 00 OO OO OO QO OO OO OO OO0 OO0 OO0 OO0 OO OO 0O OO0 o0 oo
0x40000CDE: 00 00 00 00 0O OO OO OO0 OO @0 00 00 00 00 00 OO0 OO0 Q0
0x400000F0O: 00O OO OO OO QO OO OO OO OO OO0 OO0 OO OO OO 0O OO0 o0 oo
0x40000102: 00 00 00 OO0 0O OO OO OO0 OO @0 00 00 00 00 0O OO0 OO0 00
Ox40000114: 00 OO OO OO QO OO OO OO OO OO0 OO OO OO OO QO OO0 o0 oo :J
[A[ATFTFIT memory #1 £ Memory #2 F_Wemory #5 A, hiemory & [

View the device peripherals:
Open some of the windows under the Peripherals menu.

Rog"T Reset CPL ¥ectored Interrupt Controller (¥IC) x|
Systemn Contral Block Source I Mame | Channel | Type I Yeckar | |ntE nable | R awlnt |
'watchdog WOINT a IRQ 00000000H a a
) Timer 0 4 IR 00000o00H a a
Bin Connext Block Timer 1 5 IRQ 00000000H 0 0
GRID UARTO g IRQ 00000oo0H]]
UaART » LART1 7 IRQ 0a0a00o0H 0 0
SPI Interface P a IR 00000000H a a
SPI 10 IR 00000o00H i i
Tirner > PLL Lock, PLOCE. 12 IR 00000oo0H]]
Pulse Width Madulator RTC 13 IRQ 0a0a00o0H 0 0
i lock External Interrupt 0 EIMNTO 14 IRQ Q0a0o00oH i] i]
(8= s Estemal Interupt 1 EINTT 15 IRQ 00000000H 0 0
Watchdog External Intermupt 2 EINT2 16 IRQ 00000000H 0 0
Selected Intermupt
[[IntSelsct [~ Softnt [IntEnable I~ Rawlnt |
—Wectared IRG
Slat: ID YI [~ Enable WIC ectCrti0: ID:-:DDDDDDDD WICWectbhddr: ID:-:DDDDDDDD
Charnel: ID 'I WIC ectaddrl: IUHUDDDUUDD VICDefi¥ecttddr: IDHUDDDUDUD
WICPratection: IUHUUUUUDDU WICIntS elect: IUHUUUUUDDU WICH awlntr: IUHUUUUUDUU
WICSoftint: ID:-:DDDDDDDD WICIntEnable: ID:-:DDDDDDDD WICIRG S batus: ID:-:DDDDDDDD
WICS aftintClear: IURDUUUUDDU WICIntE RClr: IURDUUUUDDU WICFIOS batug: IURDUUUUDUU

136

Introduction to the LPC2000 5 — Tutorial With Keil Tools

The debugger has many mode functions but the above debugging tools will allow you to run
the course exercises. The simulator can also be replaced by a JTAG debugger and the same

front end can be used to debug real hardware.

137

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Using The ULINK Hardware Debugger
The JTAG debugger included with the starter kit is the Keil ULINK. This connects to the

JTAG port on MCB2100 (P5) and then connects to the PC via USB. To switch from using
the simulator to using the ULINK, follow the steps below.

Setting up the ULINK JTAG hardware debugger:

Connect the ULINK to the MCB2100 as shown below and plug the USB connection into the
PC. Power should also be connected to the MCB2100 (6.5V).

= | ==l

af:
D L

e ULINK

Configure UVISION to use the ULINK in place of the simulator:
First open the utilities menu in the “Options for target” dialogue . Select the “use target

device for Flash programming” radio button and select the ULINK ARM7 debugger from
the drop down menu. Also tick the update target before debugging box

Options for Target 'Target 1* _"Iil

Devicel Targetl Dutpull Lislingl cC |Assamhler| Lmkell Debug Utilities |

~ Configure Flash Menu Command

& |se Target Driver far Flash Programming

|UL\NK ARMT Debugger j Settings v Update Target before Debugging
it Fie: | _Ea
" Use Extemnal Tool far Flash Programming
(T ot [LFEZ10IEFERE

Arguments: |"NH“ "W $D COM1; 98001

™| BurIndependent

0K I Cancel Defaults

138

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Configure the flash algorithm:

Next click the setting button. Set the start address for the RAM at 0x40000000 with a size of
0x400. Click the add button and select the flash algorithm for the device you are using then
click OK to quit.

Configure Flash Download I x|
 Download Function — R for Algorithm
v v i
g "o d 0w Start: [0:40000000 | Size: [040400
ii V¥ Program I~ Resst and Run
— Programming Algorithm
Dezcription | Device Type | Address Range |
LPC2000 4P 128kB Flash Orrchip Flash 00000000 - 0001 DFFFH

Start: [0:00000000 | Size: [0:0001E000

Add Remove | Help | ok |

Switch from the simulator to the JTAG debugger:

Again open the options for target dialogue and select the debugger menu. On the right hand
side of the menu select the ULINK ARM7 Debugger from the dropdown menu and tick the
Use radio button.

x
Devicel Targell Dutputl L\stingl C I Asm I LAMisc:I L4 Locate Debug | Utilitiesl
© Use Simulator Settings | o Use: IULINKAHM Debugger LI Settings |

¥ Load Application at Startup v Gao il mainf) ¥ Load &pplication at Startup v Go till main{)

Initialization File:

|.\map. ini

Initialization File:

| Bl

Restare Debug Session Settings Restare Debug Session Settings

¥ Breakpoints W Toolbox ¥ Breakpoints v Toolbox

[V 'watchpoints & P4 [~ ‘wiatchpoints

v Memory Display ¥ Memory Display
CPU DLL: Parameter. Driver DLL: Farameter:
|54RM.DLL [stRMDLL |
Dialog DLL: Parameter. Dialog DLL: Parameter:
DARMP.DLL pLPC2292 ITAF!MF'.DLL |rpLF'C2292

ok I Cancel | Defaults | Help |

UVISION is now ready to use the ULINK JTAG in place of the simulator.

If you are in the JTAG debugger or simulator you must halt any running code and quit the
debugger before you can rebuild the code or quit the project.

139

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Important Note for the following exercises:

All the following exercises have builds to be debugged in either the Keil Simulator or to be
downloaded onto the MCB2100 target hardware and debugged via the ULINK JTAG
debugger. The root folder of the project will be named “Simulator” for the simulation
version or “Flash” for the version built to be debugged on the hardware. Only the debug
options in the project are changed. To switch between the two versions make the “project
workspace” the active window right click and select manage components.

Components, Environment and Books

Project Components] Folders.-"ExtensiDns] Books]

Project Targets: 3|9 4+ | ¥ | |Groups: ¥ || ¥ | |Files: x|+
Flash [Source code fibo.c
Aszsembler Source code

Set as Current T arget Add Files
ok | Cancel | Help

In the project components tab select the project target you want (either Simulation or Flash)
and click the “Set as current target” button.

In a real project this feature of uVISION allows you to setup several different builds of a
project or have several different programs in a project which are part of one larger
application.

140

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 2: Startup code

In this exercise we will configure the compiler startup code to configure the stack for each
operating mode of the Arm7 we will also ensure that the interrupts are switched on and that

our program is correctly located on the interrupt vector.

Open the project in C:\work\EX2 startup

Open the file Startup.s and using the graphical editor configure the operating mode stacks as

follows.
[=]- skack Configuration
Top of Stack Address 4000 4000
(=B ==k Sizes (in Bytes)
. Undefined Mode 00000 0050
- Supervisor Mode 0000 Q0S80
- Abort Mode 00000 0030
... Fast Inkerrupt Mode Ce0000 Q030
. Interrupt Mode 00000 0030
- Jser|System Mode 0000 0400
[PLL Setup [+
Now:

Compile the code

Start the simulator and when the PC reaches main examine the contents of each R13
register.

Examine the flags in the CPSR to determine the operating mode and instruction set being
used

At last entry in the register window is the “Internal Mode” this gives additional information
including timing information (if you are in the simulator).

Project Wearkspace ®

Feqgister | Walue |

Current

+-

Uszer/System
Fast Interrupt
Intermipt
Supervizar
13 [SF)

+

Each stack is allocated a space of 0x80. The
user stack is 0x400 bytes so user data will start
at 0x40003d80 — 0x400

+

000000514

Ox00000000
Ox00000000

F14 [LR]
+- SPSH
Abort
Undefined
Internal

B. .| .

B

141

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 3: Using THUMB code

In this example we will build a very simple program to run in the ARM 32-bit instruction set
and call a 16-bit thumb function and then return to the 32-bit ARM mode.

Open the project in C:\ work\ EX3 Thumb code

In main.c complete the function declarations for the main function and thumb function as
follows.

void main (void) __arm

void thumb_function(void) _ thumb//Nb use double underscore

Again in the file browser select the root target (Flash) and in the local menu “options for
target”. In the C tab you can select the global instruction set by checking or unchecking the
“use thumb mode” box. It is also possible to define the instructions set to be used for a C
module by checking or unchecking the same flag in the local C options menu for the C
module.

DOptions for Target ‘Interworking” ZI

Devicel Targetl Dutputl Listing C |Asm I LAMisc:I LALoc:atel Debugl Utilitiesl

— Preprocessor Symbols

Define: ||

Undefine: |

— Code Optimization

Wamings: |Warninglevel 2 b
Level: I?: Loop strength reduction LI alh I SRS J
Emphasis: |Favor execution speed -
o I _I ¥ treat plain char as ‘unsigned char'
V' Use Thumb Mode ;
™| double precision luating point
¥ &lias checking on pointer accesses
Include
Paths | J
Misc I
Controls
Compiler |THUME OPTIMIZE (7.5PEED) BROWSE DEBUG TAES [4) ;I
contral
string j
(6]3 I Cancel Defaults Help |

Compile and download the code into the debugger

Open the disassembly window and single step through the code using the F11 key

142

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Observe the switch from 32-bit to 16-bit code and the THUMB flag in the CPSR

32-bit ARM code

\ thumbh_function:

FoCPSR o DE0000D0 genpppo13c ES9FCO00 LDR R12,[PC]
------- N 0 0z00000140 E12FFFIC BX R12
------- z 1 0x00000144 00000149 DD 0z00000143
------- C 1 46: for (i = 0x00010000:;i < 0010000 ;i = i<<1)
....... Wi] 47 {
....... | 0 48:
_______ . a 0x00000148 4606 LDR RO, [FC,#0x0018]
_______ - 0 0z0000014& EO0O7 B 0x0000015C
------- M 0x10

The processor is running in ARM (32-bit) mode, the T bit is clear and the instructions are 4
bytes long. A call to the THUMB function is made which executes a BX instruction forcing
the processor into THUMB mode (16-bit).

143

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 4: Using STDIO libraries

In this exercise we will look at tailoring the Printf function to work with the LPC2100
UART. We will look at the registers of the UART’s in more detail later.

Open the project in EX4 printf\work
In main.c add a message for transmission to the printf statement

while(1)
{

printf("Your Message Here \n"); //Call the prinfF function
}

Add the file serial.c in the work directory to the project

EIE Prinkf
L——_IE C source code

= [#] main.c

serial.c
E-£5 Assembler startup code

EIE Docurmentation

o abstract, bk

In serial.c complete the putchar() function so it writes a single character to the serial port.

int putchar (int ch)

{
if (ch == "\n")
whille ('(UOLSR & 0x20));
UOTHR = CR;
}
whille (I'(UOLSR & 0x20));
return (UOTHR = ch);
}

Compile the code and download it to the development board or simulator

Connect COMO on the board to PC comm. Port 1 and start hyperterminal with the
configuration file in the exercise directory.

If you are using the simulator select view/serial window #1. This opens a terminal window
within the simulator that displays the UARTO output

Run the code and check that the message appears on the terminal window.

144

Introduction to the LPC2000

5 — Tutorial With Keil Tools

k2 n3 - [Serial #1] =8|
" Fie Edt View Project Debug Flash Perpherdls Tools SVCS Window Help 1@ x|
g 2R @ % % Ve v |« 23| S g I g
E HdemTR 2 HE aRvEEER >
[Project Werkspace - x| =]
Fiegister [value |
= Cunrent
Hello World, well its traditional
R4 0x00000000
~RE 0x00000000
~RE 0x00000000
R7 000000000
R& 0x00000000
it} 0x00000000
R10 0x40003670
11 0x00000000
R12 (x00000000
CPSR (0z00000020
-GPSR 0x00000000
- User/System %
B Fagt Intenupt
B Intempt
Bl Supervisor
- Abort
B Undefined
=~ Intemal
PC $ 0x000001FE
Mode User
States 1229123
Sec 0.02046752
K| _>l_I
E. W . = maine |B) seidc |[B) Satps o Seialf]
x[xxx Restricted Version with 16384 Byte Code Size Limit =] X[Hame Yale [
Ylexx Currently used: 1844 Bytes (11%) !
5|BS mainnd4
‘EE >
3|ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess COVERAGE DEFINE DIR |+ l
& [AIA T FTET, Buld }, command A Findin Fils /. KD o TATETF T Locals 4 Wiatch #1 p, wiatch #2 }, Call Stack /.
Ready I o [T W

145

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 5: Simple interrupt
In this exercise we will setup a basic FIQ interrupt and see it serviced.
Open the project in C:\work\EX5-Interrupt

In main.c complete the definition of the FIQ_ Handler function to define it as the FIQ
interrupt service routine

void FIQ_Handler (void) _ fiq

In startup.s complete the vector constants table to define EXTIntFIQ as the FIQ ISR.

__startup PROC CODE32
Vectors: LDR PC,=Reset_Addr

LDR PC,Undef_Addr

LDR PC,SWI_Addr

LDR PC,PAbt_Addr

LDR PC,DAbt_Addr

NOP /* Reserved Vector */

LDR PC,[PC, #--OxOFF0]

LDR PC,FIQ_Addr

i The FIQ interrupt vector, the instruction loads the

Sﬁggkﬁgg:; BB Sﬁggknzgg:g: address of the c routine into the PC
SWI1_Addr: DD SWI_Handler
PAbt_Addr: DD PAbt_Handler
DAbt_Addr: DD DAbt_Handler

DD 0 /* Reserved Address */
IRQ_Addr: DD IRQ_Handler
FIQ_Addr: bD FIQ_Handler?A <—____ The constants table holds the address of the

FIQ C routine
Compile the code and download it onto the board.

Step through the code until you reach the while loop
Set a breakpoint in the FIQ_Handler function
Press F5 to set the program running

On the MCB2100 board press the INT button to generate the interrupt.

146

Introduction to the LPC2000 5 — Tutorial With Keil Tools

If you want to see the entry and exit mechanisms to the exception it is best to use the
simulator and single step in the disassembly window. This way you can watch the program
flow and the actions on the CPU registers. To control the interrupt in the simulator open the
peripherals/GPIO port 0 window. If you set the program running unchecking the Pinl1.4 box
will generate the interrupt. You must raise the pin high again to stop interrupts.

General Purpose Input/Output 0 (GPIO 0}

~GPIOD —
el Bit: 9868:9n theguternalepyas of thel PC2300; Bit: D
IODIRO: |0=00000000 P T T Frrr i T rrr |]

I FTTrTrTT
IBSETE: (0400000000 [T T (T T T T T T (T T
lDELHD:|DHUUDUUUDU EEEEEEEN EEEEEEED DERERERE EEEEEEE
IOPING: [0:00004000 T T T T T FRr T T T

Pins: (000004000 T T T I I T T T [TTTTITIr]

e logic level the simulator =

Alternatively in the toolbox there is a “Generate EINT1” button. This button will gene rate a
simulated pulse onto the interrupt pin.

Toolbox with user
Toolbox button } configurable scripts Update Windows

1 Generate EINT 1

Within uVISION there is a full scripting language that allows you to simulate external
events. These scripts based on the C language and are stored in text files. The script used to
simulate the pulse is shown below.

signal void Toggle(void)

PORTO = (PORTO ~ 0x4000);
twatch (200);
PORTO = (PORTO ~ 0x4000);

}

KILL BUTTON *
DEFINE BUTTON "GenerateEINT1","Toggle()"

This script is stored in the file signal.ini and is added to the project in the debug window.
For more details on the scripting language see the uVISION documentation.

147

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 6: Software Interrupt

In this exercise we will define an inline assembler function to call a software interrupt and
place the value 0x02 in the calling instruction. In the Software interrupt SWI we will decode
the instruction to see which SWI function has been called and then use a case statement to
run the appropriate code.

Open the project in C:\work\EX6 SWI\
Add the file SWI_VEC.S to the project

In Main.c declare the two function as SWI functions as follows

void SWI_Calll(int pattern) _ swi(8)
{

}
void SWI_Call2(void) _ swi(9)
}
Compile and download the code into the debugger
Step the code and observe the SWI being serviced
In the disassembly window we can see the call to the first function. This passes the

parameter and generates an SWI which is packed with the integer 8. In the register window
we can read the CPSR which shows we are in user mode.

El- CPSH 040000030

------- N 0 50: SWI_Calll(pattern):

------- z 1 al:

------- C 0 Oxz0000019E 4807 LDE R0, [PC,#0x001C]
----- IV g Oxz000001&0 DFOE SW% Oxz08

....... F D

------- T 1 Branch to function is replaced by an

------- M 0:10<4—— User mode swi instruction

Once we have generated the software interrupt the chip will change modes run the code in
vectors.s and then enter our number 8 SWI function .

= CPSE 030000063 30 woid 3WI_Calli(int pattern) _ swi(&)
....... M 1 215
....... z 0 22
------- C i Sictc IOCLR1 = OxOOFFOO000;
....... W 1] 24 IO3ET1 = pattern;
....... | ‘I =5 }
....... F |:| —
....... T ‘I
....... M oz € Supervisor mode

148

Introduction to the LPC2000

5 — Tutorial With Keil Tools

Exercise 7: Memory Accelerator Module

This exercise demonstrates the importance of the memory accelerator module. Initially the
PLL is set to 60MHz operation but the MAM is disabled. A simple LED flashing routine is
used to illuminate the LEDs on the target board in sequence. This shows the sort of
performance you can expect from and ARM?7 running directly from on chip FLASH
memory. When the value of the potentiometer is changed the MAM is enabled and the code
will run faster making the LEDs flash faster. This increase in performance caused solely by
the MAM which is why it is so important to this kind of small single chip microcontroller.
In this example we will use the bootloader to load the code into the flash in place of the

JTAG.

Open the project in exercises/EX7-MAM

In main.c complete the code to enable the MAM

In Options for target/output tick the generate hex box

Build the code

Connect the PC serial port to COMO on the target board

Apply power to the board.

Start the Philips ISP Utility to get the screen shown below

[LPC2000 Flash Utility

File Buffer Help

PHILIPS

=10 x|

LPC2000 Flash Utility V2.2.0

i~ Erase / Blank

— Flazh Programming

Filename:

- Communication

®TaL Freq. [kHz]: |12000

Read
Device ID

IMAM.hex {* Entire Device

ElanlkBozch (" Selected Sectors

Upload ta Flash | i~ Ef::ec:ﬂtel Eodde E

gistpta Start Sectar: I a
Eraze |
Compare Flash | Manual Reset End Sector: I 14
—Device
Device: [IPC2123 -] Part 1D

Boot Loader ID:I

Connected To Port:
COM2: hd

Use Baud Rate:
19200 hd

Time-Out [sec]: |_2

Use DTR/RTS

for Reset and
= Boot Loader

Selection

Make sure the “Use DTR/RTS” box is ticked.

Press the “Read Device ID” button, If the board is connected ok the part ID number and

bootload version will be displayed.

Make a note of these numbers as we will use them in the next exercise.

149

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Next select the MAM.hex file from the project directory and press “Upload to Flash” this
will program the target LPC2100.

You can also use the “Compare” button the verify that the flash has programmed correctly.

If you select the buffer option the same operations can be performed along with calculation
of the program signature and limited debugging options.

% LPC2000 Flash Utility - Flash Buffer

=l
Load Hex File ‘ Yector Calc Upload ta Flash Download Flash Save Hex File Fill Buffer
Code Execution -Address Range Fill alue: ,F
,7 % Selected Range Start: |$HO0000000
Run from Address &H00000000
" Thumb = ARM " Ertire Buffer End: |&HO0O00ZDF

LPC2000 Flash Utility

Once the Target LPC2100 has been programmed the chip will automatically be rebooted and
start to run your code.

Turn the potentiometer fully clockwise
Reset the code and the LED’s will start to sequence

If you turn the potentiometer anticlockwise the mam will be enabled and you can see the
LPC2000 “turbo” kick in.

In the ISP utility under the buffer option you can view a HEX dump of you program. In this
view the calculated program signature is also shown.

150

Introduction to the LPC2000 5 — Tutorial With Keil Tools

If you reconnect the JTAG and start the debugger without downloading the program you can
examine the interrupt vector table. As we have programmed the flash with the Philips ISP
tool the program signature has been added in location 0x00000014 which exists as a NOP in

the startup code.

151

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 8: In-Application programming

This example demonstrates how to call the bootloader API from within your application
programs. The code makes a call into the bootloader functions to run the “Read\Part ID”
function. This example has only been built to work with the MCB2100 evaluation board.

Open the project in C:\work\ EX8 I1AP

Add the following lines of code to main.c

command[0] = O0x36;
iap(command, result,O0x7FFFFFFO) ;

Add the following lines to API.c

#pragma asm
mov ri15,r2; //move entry address into PC

#pragma endasm

Now make sure that main is compiled as ARM code and API is built as Thumb code

Build the code and start the debugger

Run the code up to the first call to the IAP function.

Set a breakpoint on the line of code after this function

Step into the 1AP function

Look at the contents of RO-R2, These registers should contain the addresses of the command
table, the results table and the entry address of the bootloader functions. Also R14 should

contain the return address to the main function.

Step the line of assembly code which will jump you to OX7FFFFFFF. This is the entry to the
bootloader code.

Now run the code at full speed, it will execute the bootloader function called and return to
the address held in R14 (the next line in main.c).

When the code hits the breakpoint examine the CPSR to see which instruction set is now
being used.

Take a look at the result table and read the PartlID number returned by the bootloader.
Compare this to the value returned in the previous example.

Run the next call to the Bootloader API and check that the correct bootloader version is
returned.

152

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 9: External Bus Interface

This exercise demonstrates how to build a project to use the external bus. It is necessary to
link the code so it is located in an external flash device, configure any chipselect that is used.
Because the MCB2100 evaluation board uses a true single chip device this example uses the
simulator to demonstrate the external bus interface. The project is built to place code in flash
at 0x80000000 which is the boot chipselect and RAM at 0x81000000 which is chipselect
one. On real hardware the boot method is determined by the state of the two external boot
pins, in the simulator we use a script file to set the correct condition. However we will also
look at configuring the JTAG to program external flash memory so this example can be used
on real hardware.

Open the project in C:\work\ebi\
In the “Options for target” menu select the device tab and select the LPC2294.

Next, select the Target tab and fill in two regions of external memory and uncheck the “Use
on chip ROM” as shown below.

Options for Target ‘phyCore LPC229x' g]

Device Tanget] Dutput] L\sting] C] Asm 1 LA Misc] L&, anate] Debug] Uti\ities]
Philips LPC2234
wtal (MHz: [BigEndian
™ Use Or-chip ROM [0x0 - 0x3FFFF]
DOperating system; |None x| UseOnchip RM (0+40000000 - 0x40003FFF)
External Memory
Start: Size: Start: Size:
#1: [RoM | |0480000000 [0-00400000 84 [Ram ~] | [
#2: [RaM | [0x81000000 [0x00200000 #5 [Ram v] | |
#z [Ram | | | e [Ram ~] | |
QK | Cancel | Defaults | Help

Next highlight the startup.s file right click and select “Options for file” and select the ASM
tab.

153

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Enter the “EXTERNAL_MODE” symbol in the control directives box as shown below.

Options for File ‘Startup.s’

Properties Asm

Conditional azzembly control Symbols

acro processor

v Standard [¥ Casze sensitive symbols

Include | D
Pathz
Misc |
Controls

Assembler |SET [EXTERMAL_MODE) DEBUG PRIMTL \phy\Startup. lst] EP
contral
string

QK | Cancel Defaults Help

This will ensure the startup code is correctly built for an external boot.

Next in the graphical display of the startup code add the parameters necessary for the
chipselect configuration

—|- External Mernory Contraller (EMC) [v
- Bank Configuration 0 (BCFGD) [v
IDCY: Idle Cycles 3
WSTL: Wait States 1 7
WSTZ: Wait States 2 7

RELE: Read Byte Lane Enable [
WP Write Protect [
EM: Burst RiOM B

I Mermary Wwidth 32-hik
—| Bank Configuration 1 (BCFE1) [v
IDCY: Idle Cycles 3
WSTL: Wait States 1 7
WSTZ: Wait States 2 7
RELE: Read Byte Lane Enable [v
WP Write Protect [
BM: Burst ROM I_
I Mermary Wwidth 32-hik

Build the code and start the simulator

154

Introduction to the LPC2000 5 — Tutorial With Keil Tools

In the disassembly window the PC is set to address 0x00000000 and no meaningful code has
been loaded.

‘0z00000000 00000000 AWDEQ R0O,R0O,RO
Oz00000004 00000000 AWDEQ RO.RO,RO
Ox00000008 00000000 AMDEQ RO,.R0O,RO
Ozb0000000OC 00000000 AMDEQ R0O,R0O,RO
Oz00000010 00000000 AMDEQ R0O,R0O,RO
0z00000014 00000000 ANDEQ RO.RO,RO
Ox00000018 00000000 AMDEQ RO,.R0O,RO
Oz0000001C 00000000 AMDEQ RO,R0O,RO
Oz00000020 00000000 AMDEQ R0O,R0O,RO
Oz00000024 00000000 AMDEQ R0O,R0O,RO
0z00000028 00000000 ANWDEQ RO.RO,RO
Oz0000002C 00000000 AMDEQ RO,R0O,RO
Oz00000030 00000000 AMDEQ R0O,R0O,RO
Oz00000034 00000000 AMDEQ R0O,R0O,RO
0z00000038 00000000 AWDEQ RO.RO,RO
Ox0000003C 00000000 AMDEQ RO,.R0O,RO
Oz00000040 00000000 AMDEQ R0O,R0O,RO

Open the peripherals/system control block/ memory mapping control

Memory Mapping Control @
b emon Mapping Control

MERMAR: | 0201

AP

Switch from “User Flash Mode” to “Ext Flash Mode”

This will map the first 64 bytes of chipselect Zero into address 0x00000000 upwards. This is
our vector table that is located in the external flash.

0=z00000000 ESSFFO18 LDE PC, [PC,#0z00158]
0z00000004 ESY9FFO18 LDR PC, [PC,#0x0018]
Dz000000083 ESY9FFO18 LDR PC, [PC,#0x0018]
OzO00o00000C ES9FFO18 LDR FC, [PC,#0z00158]
0xz00000010 ES9FFO018 LDR PC, [PC,#0=00158]
0z00000014 E1A00000 HOP

0z00000018 ESIFFFFOD LDR FC, [PC.#-0x0FF0O]
0z0000001C ES9FFO18 LDR PC, [PC.,#0=x00158]
0z000000Z0 80000040 DD ODz=80000040
0z00000024 80000324 DD Dzg0000324
0z00000028 ©0000320 DD OxB80000320
0z00000o02Cc §000031C DD Oz8000031C
0z00000030 80000318 DD Dzx80000318
0z00000034 00000000 DD Dz00000000
0z00000038 ©0000314 DD Ox50000314
0xz0000003C 80000310 DD O=80000310

If you single step off the reset vector you will jump to 0x80000040 and start running code
from the external Flash device.

155

Introduction to the LPC2000 5 — Tutorial With Keil Tools

The ULINK JTAG can also be used to program external flash devices. This can be achieved
as follows.

Open the options for target/utilities window and add the file flash.ini as shown below

Options for Target ‘phyCore LPC229x

Device] Target] Dutput] Listing] [] Aszm] LAMisc:] L4 Locate | Debug Wtilities
1 Configure Flazh Menu Command
@+ |Jsze Target Driver for Flash Programming
|ULINK ARM Debugger j Seftings ¥ Update Target before Debugging
Init File: [-\Fash | _Edt.
" |Jse External Toal for Flash Programming
Command:| : J
Arguments:| 1
-
’TI Cancel Defaults Help

This is a script file that is used by the ULINK JTAG to configure the necessary chipselects
to allow code to be programmed into the external flash and as such should reflect the values
used in the startup code.

Next select the settings button and you can add the flash algorithm to match the external
device used.

Flash Download Setup @

— Download Function | Rt for Algorithm
LOAD " Erase FUl Chip ™ Program
Fg ¢ CrseSectos W Veily Start: [0:40000000 Size: |0x0500
" DonotErase | Reset and Run
Programming Algorithm
Description | Device Type | Device Size | Address Range
A 2948008 T Dual Flash Ext. Flash 32-bit 2t B0000000H - B0MFFFFFH
Start | Size: |
add || | [ox][cance |

With this configuration using the debugger with the JTAG and external flash becomes
seamless.

156

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 10 Phase Locked Loop

In this exercise we will configure the operation of the PLL to give maximum speed of
operation for the ARM 7 core for a 12.00MHz oscillator. We will also configure the VLSI
bus to run at half the speed of the ARM7 core.

Using Cclk = M x OSC calculate the maximum integer value for M given that OSC = 12.00
MHz and Cclk =< 60 MHz

Using Fcco = cclk x 2 x P calculate a suitable value for P using the result for Cclk
calculated above and were 156 MHz <Fcco< 320MHz

Using the results for M and P calculate the value for PLLCFG

(answer M =5and P = 2)

Calculate the value for VPBDIV to set Pclk at half the frequency of Cclk
Open the project in C:\work\ EX7 PLL

Complete the code in main as follows

Set multiplier and divider of PLLin PLLCFG to give 60.00 MHz

PLLCFG = 0x00000024;

Enable the PLL in PLLCON

PLLCON = 0x00000001;

Update the internal PLL registers with the feed sequence

PLLFEED
PLLFEED

0OxO00000AA;
0x00000055;

Test the Lock bit in PLLSTAT until the PLL is stable

while (!(PLLSTAT & 0x00000400))

Connect the PLL as the main clock source

PLLCON = 0x00000003;
Set the VLSI peripheral bus to 30.00MHz

VPBDIV = 0x00000002;

Compile the code and load it into the board.

157

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Run the initPLL routine and observe the results in the Peripherals\PLL window. This will
show the true bus frequency.

Phase Locked Loop {PLL)) x|

— Caontral Register
F'LLEDN:IEIKEIB |¥ PLLE | PLLC

— Configuration Regizter
PLLCFG: |0x24 MSEL:IE 'i PSEL:|2 'I

— Statuz Register
PLLSTAT: [0:0724 MSEL: |5 <] PSEL|z -]

[¥ PLLE ¥ PLLC [# PLOCK

—Feed Register
FLLFEELD: IDKEE
— Crystal Ozcillator & Processor Clock—————————————————
XTAL:I 12000000 MHz Crpetal D=zcillator [Fozc]
CLDCK:I E0.000000 MMHz Proceszor Clock [CCLE)

Configuration of the PLL can be done via the Keil startup code but for this exercise this
code is disabled. The equivalent settings for the startup code are shown below.

+

Stack, Configuration (Stack Sizes in Bytes)

+- WFEDIV Setup [v
- e v
M3EL: PLL Multiplier Selection 5
PSEL: PLL Divider Selection z
+)- MAM Setup [
+ ~

158

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 11: Fast Interrupt

In this exercise we will configure an the external interrupt to be handled as an FIQ. This
code was used in exercise 5 to show the C handling of an interrupt function. This time we
will see how to configure the hardware for an FIQ interrupt.

Open the project in EX12 Interrupt vectored\work

Configure the external interrupt as an FIQ by programming the IntSelect register

ViICIntSelect = 0x00008000;
Compile the code and start the debugger and check the interrupt works as in exercise 5.

The name of the FIQ ISR must match the name in the vector constant table in startup.s. The
default name given by Keil is FIQ_Handler.

If you are using the simulator the interrupt can be triggered by setting pin 0.14 low in the
peripherals/GPIO window or by using the “Generate EINT1” button in the toolbox

159

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 12: Vectored Interrupt

In this exercise we will configure a IRQ source to be handled as a vectored interrupt by the
VIC. We will use the same external interrupt as exercise 9 but this time it will have its own
dedicated ISR to give faster servicing of the interrupt request.

Open the project in C:\work\EX11 Interrupt vectored

Configure slot 0 in the VIC to service the EINT1 interrupt

VICVectCntlO = 0x0000002F;

Place the address of the dedicated external interrupt routine in the correct vector address
register.

VICVectAddrO = (unsigned)EXTINTVectoredIRQ;

Complete the code in the EXTINTVectored to cancel the interrupt

EXTINT
VICVectAddr

0x00000002;
0x00000000;

Compile the code and start download it into the debugger.

Run the code and check that the interrupt is entered correctly and that it only runs once for
each press of the EINT1 button pin 0.14.

If you are using the simulator open the GPIO Port O peripheral window. The interrupt can
be triggered by bringing pin 0.14 low or use the “Generate EINT1” button in the toolbox.

Open the VIC peripheral window in the debugger and get familiar with its layout and how
the VIC is configured.

Yectored Interrupt Controller {¥IC) l ﬂ
Channell Source | MHame | Type | Wector | IntEnabIel Flawlntl ﬂ
5 Tirner 1 IRQ 00000000H 0 0
5 UARTO IRQ 0000a0ooH] i]
7 UART1 IRQ 000aa00oH]]
8 Pt IRQ 00000000H 0 il
] |2C IRQ 0000a0ooH] 1]
10 SPID IRC) 00000000H 0 0 Each VIC slot is shown here
1 5P IRQ 00000000H 0 0
12 PLL Lock, PLOCK. IRQ 0000a000H 0 1
13 RTC IRQ 00000000H 0 0
14 Euternal Interrupt 0 EINTO IRQ 00000000H 0 0
& Extemal Interrupt 1 EINT1 IRQD 000007 20 1 1
16 Euternal Interrupt 2 EINTZ IRQ 00000ooH 0 i} ﬂ
—Selected Intermupt: Extemal [nterupt 1
IV IniEnable [~ IntSelect ooy [0 =] YICVacthddiD: (000000120 Details of the selected slot
[~ Saftint [Rawlnt are shown here
WICVectaddr: | 0000001 20 WICIntS elect; | 0=00000000 YICR awlntr: |0=00003000
WVICS oftint: |0=00000000 | VICIntEnable; |0«00008000 WICIRGStatus; IDRDDUDSUDD Global registers are shown
WICS aftintClear: IDHDDDDDDDD WICIntEnClr: IDHDDDDDDDD YICFIGS atus: iDHDDDDDDDD here

160

Introduction to the LPC2000 5 — Tutorial With Keil Tools

In the simulator use the cycle counter in the register window calculate how long the device
takes to enter to the first line of your code in the interrupt routine

161

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 13 : Non Vectored Interrupt

In this exercise we will use the Vector interrupt unit to generate the slowest form of interrupt
response a non vectored interrupt . We will use External interrupt one EINT1 to generate an
interrupt. The VIC will respond to this interrupt event by providing the address of a general
purpose ISR for the processor to jump to. On entry to this routine the ISR must calculate the
source of the interrupt, take appropriate action and then correctly exit the ISR and resume
normal processing.

Open the project in EX9-Interrupt Non Vectored\work
In Startup.s add the correct assembly code to the IRQ interrupt vector
LDR PC,[PC, #-OxFFO]

In main.c configure the Pin Connect Block to enable P0.14 as an External interrupt.
PINSELO = 0x20000000;

Place the address of the NonVectored ISR into the Default vector address register. Note in C
this can be done as follows:

VICDefVectAddr = (unsigned)<Name of ISR routine>;
Enable the External interrupt channel in the VIC
VICIntEnable = 0x8000;

In the interrupt routine check the IRQ status register to find the source of the interrupt

i T(VICIRQStatus&0x00008000)

At the end of the ISR clear the interrupt flag in EINTO register and perform dummy write to
the correct register in the VIC to clear the interrupt source

EXTINT = 0x00000002;

VICVectAddr = 0x00000000;
Compile the code and start the debugger

Run the code and check that the interrupt is entered correctly and that it only runs once for
each press of the EINT1 button pin 0.14.

If you are using the simulator open the GPIO Port 0 peripheral window. The interrupt can be
triggered by bringing pin 0.14 low. Alternatively open the toolbox and use the “Generate
EINT1” button.

In the simulator use the cycle counter in the register window calculate how long the device
takes to enter to the first line of your code in the interrupt routine

162

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 14: Nested Interrupts

In this exercise we will setup two interrupt sources. First timerQ which sets a port pin high
for the duration of the interrupt and secondly external interrupt one which also sets a second
port pin high for the duration of the interrupt. Under normal operation both interrupts would
block each other while they are running. However by adding the appropriate macros to the
External interrupt routine we can allow the timer interrupt to interrupt the external interrupt
routine so it will be guaranteed to run every 10ms. This can be observed on the LEDS on
theMCB2100 or in the logic analyser of the simulator.

Open the project in EX14-Interrupt Non Vectored\work

In Main.c complete the two IENABLE and IDISABLE macros

#define 1ENABLE // Nested Interrupts Entry

__asm { MRS LR, SPSR } // Copy SPSR_irq to LR
__asm { STMFD SPI, {LR} } // Save SPSR_irq
_asm { MSR CPSR_c, #Ox1F } // Enable IRQ (Sys Mode)
__asm { STMFD SPI, {LR} } // Save LR

#define IDISABLE // Nested Interrupts Exit
__asm { LDMFD SPI, {LR} } // Restore LR
__asm { MSR CPSR_c, #0x92 } // Disable IRQ (IRQ Mode)
__asm { LDMFD SP!, {LR} } // Restore SPSR_irqg to LR
__asm { MSR SPSR_cxsf, LR } // Copy LR to SPSR_irq

Add the two macros to the External interrupt service routine

void EXINT1_ISR (void) _ _irq

{
EXTINT = 2; // Clear EINT1 interrupt flag
1ENABLE; // allow nested interrupts
10SET1 = 0x00010000; // Switch on an LED

delay (0x500000); // wait a long time

10CLR1 = 0x00010000; // Switch off the LED
IDISABLE; // disable interrupt nesting
VICVectAddr = 0O; // Acknowledge Interrupt

}

Build the project and download it to the debugger

If you are using the MCB2100 run the code at full speed. One LED will flash for the period
it is in the timer interrupt. Press the INT1 button and the second led will illuminate for the
longer period it is in the External interrupt routine. However the timer led will continue to
flash because the interrupt is not blocked.

If you are using the simulator the same behaviour can be observed using the logic analyser.

Remove the IDISABLE and IENABLE macros and observe the new behaviour.

163

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 15: General purpose 10 pins

In this exercise we will use the GPIO pins. A group of pins will be set as outputs and then
each will be flashed sequentially.

Open the project in EX12 GP10\work
Add the include file for the LPC21xx SFR’s
#include <LPC21xx.H>

Program the data direction register to enable pins 1.16 — 1.23 as output

I0DIR1 = OxOOFFO000;

Complete the ChangeGPIOPinState function to clear and set the relevant pins

10CLR1
I0SET1

~state;
state;

Compile the code and download it into the debugger
Run the code on the MCB2100 to see the LED chaser.

If you are using the simulator step through the code and check it works by examining the
state of the 10 pins via the GPIO peripheral window

164

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 16: Timer Capture

In this exercise we will use timer 0 in a simple compare mode to measure the time between
starting the timer and getting a rising edge on pin 0.02. Because the MCB2100 does not
have a button on a capture channel to generate the pulse this exercise is based on the

Simulator. A target version is included but you would need to modify the MCB2100
hardware and observe the output on an oscilloscope.

Pclk = 30 MHz Pclock tick = 0.033MHz
Open the project in EX18 Timer capture\work
In main.c complete the code as follows

Enable pin 0.2 as capture channel 0:
PINSELO = 0x00000020;

Load prescaler with 1 micro second tick value:
TOPR = 0x0000001E;

Reset timer counter and prescaler counter registers:
TOTCR = 0x00000002;

Configure capture channel 0 to capture on the rising edge: TOCCR = 0x00000005;

Enable the timer:
TOTCR = 0x00000001;

In the interrupt routine copy the capture value into a dummy variable:
Value = TOCRO;

Compile and load the code into the debugger
Run the program and check the following

Test the capture interrupt is working by setting a breakpoint on the timer ISR, and running
the code.

In the simulator a script has been added to the toolbox to generate a pulse on 0.02. If you are
using the MCB2100 you need to pull the port pin up to Vcc via a 10K resistor.

165

Introduction to the LPC2000 5 — Tutorial With Keil Tools

In the simulator check that the timer is incrementing at the required rate by single stepping

until the timer increments and measuring the time interval with the clock in the register
window.

Timer count

x|
~ Prescaler ~ Timer Intenupt Register
: | 0=0DgO0007
- l A S IR [Ga0d000010
PC: [0x00000009 TE: [0:0009314F I~ Reset

—Match Channel
MCR: [0:00000000 EMR: [0500000000
MRD: [0:00000000 MR1:[000000000 MRZ [0-00000000

I~ Intenupton MRO [Intemupt on MAT
[~ ResetonMRO [~ Reseton MR
[~ StopenMAD [~ Stop on MAT

MR 3: [0+00000000
[~ Interupton MRZ [Interrupt on MA3
[~ ReselonhR2 [~ ResetonMR3
[~ Stop on MAZ [~ Stop on MR3
EMCE: [Nothing =] EMCT:[Mathing =] EMEZ [Nothing =] EME3:[Nothing =]
I~ EstenalMatch 0 [~ Extemal Match 1

I EdemalMaich2 [~ Estemmal Mateh 3
[~ MRO Intemupt [~ MR Intemupt [~ MR2 Intarupt [~ MR3 Intamupt
— Capturs Channel
CCA: | 0:00000005
Timer value at CAD: [0:000397AF CA1: [0x00000000 CR2: [0x00000000 CR3: [0x00000000
» ¥ Rising Edge 0 I~ Rising Edge 1 I~ RisingEdge 2 I~ RisingEdge 3
Captu re event [~ Faling Edge 0 [~ Falling Edge 1 [~ Faling Edgs 2 [~ Faling Edge 3
¥ Intemupt on Event 0 [~ Intemupton Everit 1 I Internupton Event 2 1 Internupt on Event 3
¥ CAPO.0 [~ Capoi [C Capnz 5 caras
[¥ CROIntsmpt [~ CR1 Interrupt [~ CR2Z Interrupt [~ CR3 Interrupt

166

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 17: Timer Match

In this exercise we will configure the timer to generate a single edge PWM signal using two
match channels. Match zero will be used to generate the total PWM period. On match it will
be used to reset the timer and generate an interrupt. Match one will be used to create the
duty cycle. On match it will clear the external match one pin. At the beginning of the cycle
the interrupt will set the external match one pin high.

Open the project in EX18 Timer Match\work

In Main.c complete the timer initialising code as follows

Configure the pin connect block with P0.5 as MAT1

PINSELO |= 0x00000800;

Set match zero to reset the counter and generate an interrupt

TOMCR = 0x00000003;

Set the PWM period to 16 msec

TOMRO = 0x00000010;

Set the Match 1 to give a 50% duty cycle

TOMR1 = 0x00000008;

Configure match 1 pin to clear on Match.It is also set high for the first cycle

TOEMR = 0x00000042;

In the interrupt set Match 1 output pin High

TOEMR |= 0x00000002;

Compile and download the code into the debugger

Run the code and observe the activity on GPIO pin 0.5 with an oscilloscope.

167

Introduction to the LPC2000

5 — Tutorial With Keil Tools

Again we can see the configuration of the timer in the peripherals window

r— Prescaler Timer
PR: [(<0000001E TER: [0x00000001 [Enabls
PC: [-00000003 TC: [0:00000000 I~ Reset

Interrupt Regizter

IR: | 0x00000000

x|

r~ Match Channel

Match on 0x10 MCR: [0:00000002

EMR: [0x00000042

MR 000000010

[¥ Interupt on MRO
[v Feset on MRO
—> [~ Stop on MRO

MR1: [0:00000008 ﬂz 000000000

[~ Interupton MBT [~ Intemupt on MR2
[~ Reset on MR1 I” ResetonMR2
[~ Stop on MR1 I~ StoponMR2

MR [0-00000000

I Interupt on MR3
I~ Reseton MR3
I~ StoponMR3

EMCC: [Nothing x|

[~ Estemal Match 0
[~ MR Intemupt

Generate interrupt and reset

EMCT: [Clear »] EMC2 [Nothing 7|

[¥ Externalbatchl [Extemal Match 2
[~ MR Intemupt I~ MRAZ Interrupt

EMC3: [Nathing x|

[~ Estemal Match 3
I~ MR3 Intemupt

r— Capture Channel:

CCR: | 0400000000

CRO: [0-00000000
[~ Rising Edge 0
[~ Faliing Edge 0

[T CAPDO
[~ CRO Intermipt

CR1: [0:00000000

[~ Rising Edge 1
[~ Falling Edge 1

CR2 [0:00000000
[~ Rising Edge 2
I~ Faling Edge 2

= CAP0A
[~ CR1 Interupt

" Capnz
I~ CR2Intermupt

CR% [(+00000000

[~ Rising Edge 3
I~ Faling Edge 3

[~ Interupt an Event 0 [~ Interupt on Event 1 [~ Interupt on Event 2 [~ Interupt on Event 3

I~ CAP03
I~ CR2 Intermupt

Match on 0x08

The simulator also includes a logic analyser window that can display a graphical trace of
activity on a pin over time. The logic analyser is used as follows

Open the logic analyser window with view\logic analyser

In the top left hand corner press the setup button

Add an new signal called PORTO, set the mask to 0x00000020 and set the display type to

bit.

Logic Analyzer]

| Current Logic Analyzer Signals:

N
Dizplay Type: Bit
Pefirn Walue:

Mazk:

|l]rc[l
IDxDDEIEIEIEI2D

PORTO

oo [
I ax Walue: |-Dx1

Shift Right: ID

2]

"Export / Import

Esport Signal Definitions... |

Import Signal Definitions... |

kel [cese ||

Help I

168

Clear the matchl pin

<4+—

Add new signal

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Now as you run the code any activity on the matchl pin will be recorder into the logic
analyser window.

Min Tine: M ax Tirne: Range: Grid: Zoom: Code:

setup___| Expm___| |0.000533 me (2532347 ms 2000000 ps 0100000 ps [n | ow | an | s || show]

e — — — T 0
=
=
él
=
=
oc
=
T

0:0- Jo 4 e L RN N R | R

| ' i ' i ' i ' i ' i ' i ' i ' i ' i ' ' i ' i ' i ' i ' i ' i ' i ' i ' i '

2530400 ms 2531400 ms 2532400 ms

Kl | i

169

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 18: Dual-Edge (Symmetrical) PWM Generation.

In this exercise we will use the PWM module to generate a single channel of symmetrically
modulated PWM signal. This will use the MATO channel to generate to total signal period
and will be configured to reset the timer. MAT1 will be user to generate the turn on off and
MAT2 will generate the turn off point. The PWM duty cycle can then be modulated by the
+- keys in serial window 2.

Open the project in C:\work\ EX20 PWMModule

In main.c complete the code as follows

Enable pin 0.7 as PWM2

PINSELDO |= 0x00008000;

Configure PWM channel two to double edge control, output enabled

PWMPCR = 0x0000404;

Configure Timer O reset to the counter

PWMMCR = 0x00000003;

Set the reload values of matl and mat2 to give an initial “spike” which is gradually
broadened in the main loop as the code runs.

PWMMRO = 0x000000FF;

PWMMRL1 = 0x00000080;

PWMMR2 = 0x00000080;

enable shadow latch for match O - 2

PWMLER = 0x00000007;

Reset counter and prescaler and enable PWM mode
PWMTCR = 0x00000002;

enable timer with PWM enabled

PWMTCR = 0x00000009;

In the main while loop enable the shadow latch to update the match registers when a new
values are available.

PWMLER = 0x0000006;

170

Introduction to the LPC2000

5 — Tutorial With Keil Tools

Compile and download the code into the debugger

Run the code and check that it is correct with the simulator

Again the peripheral window can be user to view the configuration of the PWM module

Pulse Width Modulator (PWM)

x|

— Selected Channel

— Prescaler Timer Interupt Register
Counter Enable
FR: ID:-:EIEIEIEIEIEIIZH TCR: ID:-:EIEIEIEIEIDDEI v
[~ Reset IH:IDHDDDDDDDD

PC: IEI:-:EIEIEIEIEIEIEIEI TC: IEI:-:EIEIEIEIEIEIEIEI ¥ PwM Enable

— Match Channelz
W | kR | Interruptl Hesetl Stopl EMLC | Eut Matchl kR Intl Latch | Fatd |
1] 000000 0H 1 1 0 Mothing 1] 1] 1
1 00000002H 0 1] 1] Set 0 0 1 0
2 00000002H 1] i i Set 1] 1] 1 1]
3 Q0000000H 1] i 0 Mothing 1] 1] i 1]
4 Qo000000H 1] i 0 Mothing 1] 1] i 1]
a] 00000000H 0 1] 0 Mothing 0 0 1] 0
& Q0000000H 1] i 0 Mothing 1] 1] i 1]

¥ Match 0 Latch
[~ MRO Intermipt

MR IEI:-:EIEIEIEIEIEI‘I 1]

¥ Irkerrupt on MEO
v Reset on MRO

[~ Stop on MRD

EMCD: INathing "'l

[~ Extemnal Match 0

MCR: | 000000003

EMR: |0x00000250

LER: | 0x00000007 PCR: | 000000404

The logic analyser can also be used to examine the activity on the PWM 1 pin. This time the

mask should be set to 0x00000080.
Min Time: M ax Tirne: Range: Grid: Zoanm: Code:
Export .| | [0.002667 ms [10.35253ms [10.00000 ps [0500000ws | n | Ouw | &0 | ool || Show |
o | H
g | |
= Il]
= ! !
E : :
0 :) S : RS SRS (A S S
] i
10.34300 ms 1034800 ms 1035300 ms

171

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 19: Real Time Clock

In this exercise we will use all the major features of the real time clock. The first step is to
configure the reference clock to give 32.768 KHz. We can then configure the counter
increment registers to give an interrupt every second and the alarm registers to give an
interrupt at 10 seconds.

External oscillator = 12.00MHz, Cclk = 60.000MHz, Pclk = 30.000MHz
Calculate the value of PREINT using PREINT = (int)(pclk/32768)-1

(Answer 0x392)

Calculate the value of PREFAC using PREFRAC = Pclk-((PREINT+1)x32768)
(Answer 0x4380)

Open the project in ex16 RTC\work

In main.c enter the values for PREINT and PREFAC

Next enable the Seconds increment interrupt

ClIR = 0x00000001,;

Set the Seconds alarm register for 3 seconds and enable the seconds alarm in the alarm mask
register

ALSEC = 0x00000003;
Program the Clock control register to start the RTC running
CCR = 0x00000001;

In the interrupt routine test the interrupt location register to determine the cause of the RTC
interrupt (seconds increment or alarm)

if(ILR&0x00000001) increment
if(ILR & 0x00000002) Alarm

In either case make sure the interrupt flag is cleared before exiting the interrupt
ILR =0x00000001; increment
ILR =0x00000002; Alarm

Using either the simulator or the MCB2100 hardware prove the code works correctly.
Remember the simulator is not realtime and you have to use the Internal.Sec counter in the
register window to get timing information.

172

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 20: UART

In this exercise we will configure UARTL1 to transmit at 19200 baud 8 bits no parity on stop
bit. We will use the UART to echo characters sent to it from the simulator terminal window.

Open the project in EX13 UART\work

Configure the UART for 9600 Baud 8/N/1 with pclk = 30MHz (The actual achievable baud
rate is 9664)

UART1_LCR = 0x00000083
UART1_DLL = 0x000000C2;
UART1_LCR =0x00000003;

In getchar and putchar add the code to monitor the line status register

a For Putchar while ({(UART1_LSR & 0x20)); (This line is used twice)
b For Getchar while (I(UART1_LSR & 0x01));

Compile and download the code into the debugger

If you are using the MCB2100 hardware connect UART1 to the serial port of a PC and start
Hyperterminal. When you run the code enter characters in Hyperterminal and see them
echoed back to the screen.

If you are using the simulator use the built in serial window to simulate a terminal (serial
window #2).

173

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 21: 12C interface

This exercise will demonstrate using the 12C interface to write and read back from a serial
EEPROM of the type (see the CD for the full datasheet). Because the MCB2100 evaluation
board is not fitted with such a memory a script file is used to simulate the EEPROM so we
can test our routines and have them ready as soon as the hardware becomes ready.

Open the project in C:\work\I2C

The script file is in 12C.ini and this is added to the project in “Options for Target/Debug”
Add the following lines to the C code

Build the code and start the simulator

Open the peripherals/12C window.

The 12C Hardware tab shows the configuration of the peripheral and the 12C communication
tab will show all the bus transactions.

In this code the 12Ctransfer() function starts the 12C bus transaction which is then handled
by the 12C interrupt function. The interrupt function is a state machine in the form of a case
statement. By setting a breakpoint on the initial switch statement we can run the code and
observe the activity on the 12C bus

Lyl
092 woid I2CISRE (void) _ irg

=
ngos

flose | switch (IZSTAT)
097 | o

After running the code the transactions on the 12C bus will look as follows.

12C Interface E|

|2C Hardware 120 Communication]

Mode | Address | Direction | Data [= ACK | = NACK] |
b azter 20, Tranzmit 00, 01, 02, 03, 04,

b aster 20, Tranzmit 00,

b aster 20, Receive 01,02 03, 04,

Introduction to the LPC2000

5 — Tutorial With Keil Tools

The Simulated EEPROM memory is mapped into an unused section of the processor address
range. In this case 0x00030000 to 0x000300FF. As the code is run you can view data as it is
written and read from the memory, this can be a great aid to debugging your drivers.

Address: |nx3unnn

-

Oxz00030000:
Oxz00030008:
Oxz00030010:
Oxz0003001%5:
Oxz00030020:
Oxz000300258:
Oxz00030030:
Oxz00030035:

» [M Me

Merncey

01
oo
oo
oo
oo
oo
oo
oo

a2
ao
ao
ao
ao
ao
ao
ao

03
oo
oo
oo
oo
oo
oo
oo

04
ao
ao
ao
ao
ao
ao
ao

oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo
oo

ao
ao
ao
ao
ao
ao
ao
ao

oo
oo
oo
oo
oo
oo
oo
oo

-

(minl (mim] imim] imlm} imim] imim] imim] imim]
mory #lr'{. Mernory #2 .}5. Mermory #3 .}'5 I

175

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 22: SPI
Like the 12C example this example uses the SPI interface to communicate to a serial
EEPROM and demonstrates how to write and read data to such a device. Since the

MCB2100 is not fitted with such a memory this example uses the simulator with a script file
to simulate the EEPROM.

Open the project in C:\work\EX16-SPI
The script file is in SPL.ini and this is added to the project in “Options for Target/Debug”
The script maps some memory for the SPI EEPROM at 0x700000-0x7000FF

In Main.c add the following lines of Code

Configure the operation mode and bit timing.

SOSPCCR
SOSPCR

0x000000FF;
0x000000A0;

Kick off an SPI transfer

SP1_write(output_buffer,8);

Use a case statement for each state of the transaction

case (0x01): //Send Write opcode

SOSPDR = 0x00000005;

status = 0x02; //set next state
break;

Compile the code and start the simulator

Set a breakpoint on the switch statement in the SPI ISR

Run the code and examine the state of the virtual EEPROM memory and the debug output in
the message window.

176

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 23: Analog To Digital Converter

In this exercise we will configure the A/D in hardware mode and do an 8 bit conversion on
channel 0. The results are modulated onto the LED pins.

Open the A to D project in C:\work\EX20-AtoD

Program the ADCR to give hardware conversion on channel zero, 8 bits resolution, Adjust
the A/D clock for a Pclk of 30 MHz

ADCR = 0x00270601,

Test the done bit in ADDR to find a finished conversion

while ((val & 0x80000000) == 0);

Compile the code and load it into the debugger

If you are using the target board turning the potentiometer will change the analogue value
analogue channel 0.

If you are using the simulator the peripheral window will allow you to simulate external
voltages.

5
— &0 Control
ﬂ-.DEFI:IEI:-cm 270E0 SELZID:-:E” v FDHM
W BURST

CLES: I Belk/7hit "I CLEDIY: ID:-:EIE'- [~ EDGE
ST.":".HTZINI:IW vI 54D Hate:|4285?14

— a0 Data

&ADDR: IEI:-:EIEIEIEI4I:EIEI CHM: IEI:-:EIEI I': DONE
OWERLIM
WA |3.3EIEIEI WA A IEI:-:EH 30

—&nalog Inputs

.-’-'-.INEI:I'I.EIEIEIEI .-’-'-.IN'I:IEI.EIEIEIEI .&INE:ID.DDEIEI .&INS:ID.DDDD

A new simulation script has been added that allows you to change the A-D voltage via
buttons in the toolbox.

177

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 24: Digital to Analogue Converter

In this exercise we will setup the A-D to make a conversion every 50uSec (20 KHz) by
using a timer match channel to trigger the conversion. As soon as the conversion is made the
converted value is fed into the Digital to Analogue converter. If you have access to a signal
generator and a scope you can compare the input and output waveforms or use the simulator
and the Logic analyzer.

Open the AtoD project in C:\work\EX20-AtoD

Configure the A/D so it is triggered by timer0 match channel

Copy the A/D result into the DAC register

Build the project and start the debugger

If you are using the MCB2100 connect a signal generator to the A/D input channel and an
oscilloscope to the output.

Run the code and compare the two waveforms
Vary the input frequency and find the frequency at which aliasing occurs

If you are using the simulator an input script is provided in the toolbox and the input /output
signals can be compared in the logic analyser window.

178

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 25: Transmitting CAN Data

In the next two exercises we are going to look at transmitting and receiving CAN messages.
In order for a CAN network to work we need a minimum of two nodes. Fortunately the
LPC2194 has two independent CAN controllers which are brought out to two D-Type
connectors on the evaluation board. For our examples we will connect the two channels
together and send data from one channel to the other.

Setup the evaluation board with the JTAG debugger and connect Pin 2 (CAN low) of socket
P3 to pin 2 of socket P4.

Do the same with pin7 (CAN High)

Open the project in c:\examples\work\EX22- TXCAN

Calculate the bit timing values for 125 Mbit/sec withPclk = 60 MHz
Complete the lines of code in the example

Program the bit timing register

C2BTR = 0x001C001D

To transmit the data set the Data length code to four bytes

C2TFI1 = 0x00040000;

Set the address to message 22 and a standard 11 bit identifier
C2TID1 =0x00000022;

Copy the A/D result into the first byte of the TX buffer
C2TDAl =val;

Schedule the message for transmission

C2CMR = 0x00000001;

Build the code and start the debugger

Once the code is running the A/D conversion will be transmitted from the CAN2 module
and received by CANL1. The received data is then written to the GPIO to modulate the
LED’s

In the simulator the two CAN channels are looped back by a script file and the CAN traffic
may be observed in the Peripherals/y CAN/communication window.

179

Introduction to the LPC2000 5 — Tutorial With Keil Tools

Exercise 26: Receiving CAN Data

This is the same code as in the previous example but this time it is presented from the
receive point of view.

Open the project in C:\work\EX24-CANRX
In main.c add the following lines to configure the acceptance filter to receive messages

Declare an array in the filter memory
unsigned int StandardFilter[2] _at_ OxE0038000;

Configure the standard message filter table

AFMR = 0x00000001 ;
StandardFilter[0] = 0x20012002;
StandardFilter[1] = 0x20032004;
SFF_sa = 0x00000000;
SFF_GRP_sa = 0x00000008;

Release the receive buffer before leaving the ISR

CI1CMR = 0x00000004;

Build the code and start the debugger.

Run the code as far as initialising the CAN peripherals.

Examine the Acceptance filter memory in peripherals/fCAN/Acceptance filter
This view shows you which messages may be received by the CAN peripherals.
Continue to run the code and receive a message.

Check that the message ID matches the Index assigned in the Acceptance filter.

180

Introduction to the LPC2000 5 — Tutorial With Keil Tools

181

Introduction to the LPC2000 6 — Tutorial With GNU Tools

Chapter 6: Tutorial With GNU Tools

Intoduction

The following tutorial demonstrates how to setup a project in uVISION for the GNU
compiler. Exercises 1 — 6 are repeated to show the non-ANSI aspects of the GNU compiler.
Once you are familiar with these exercises, you can rejoin the main tutorial but use the
exercise examples in the GCC directory.

GCC Startup Code

The startup code used in the GNU project is different in that the Keil Assembler has
different directives and naming conventions. However, it is performing the same operations.
It is up to the programmer to edit the vector table as discussed in the section on the Keil
compiler startup code. The graphical editor allows you to configure the processor stacks and
system peripherals in the same way as the Keil compiler startup code.

Interworking ARM/THUMB Code

The GCC compiler also supports the ARM procedure calling standard and allows
interworking between the ARM and THUMB instruction sets. However, unlike the Keil
compiler, it is not possible to select individual functions as ARM or THUMB. In the GCC
compiler all ARM code must be in one module or modules and the THUMB code must be in
separate modules. These modules are compiled as ARM or THUMB as required and then
linked together. This process is described in example 3 in this section.

Accessing Peripherals

The Keil and GNU compilers can use the same include files to access the on-chip SFR
registers.

Interrupt Service Routines

The GCC compiler has a set of non-ANSI extensions which allow functions to be declared
as interrupt routines. The general form of the declaration is shown below

void IRQ_Routine (void) _ attribute__ ((interrupt(’IRQ™)));

The following keywords are available to define the exception source required:

F1Q, 1RQ,SWI ,UNDEF.

This function declaration is only required on the function prototype and should not be used
on the main body of the function. An interrupt service routine is shown in example 5.

182

Introduction to the LPC2000 6 — Tutorial With GNU Tools

Software Interrupt

There is no real software interrupt support in the GCC compiler. To generate a software
interrupt you must use inline Assembler as shown below:

#define Softwarelnterrupt2 asm (' swi #02')

This will place a SWI instruction encoded with the value 2 in your code. Next it is possible
to declare a pointer to a CPU register using the non-ANSI register keyword as shown below:

register unsigned * link_ptr asm ('r14");

This allows us to read the contents of the link register when we enter the ISR. When the
SWI instruction is executed, the CPU will enter supervisor mode and jump to the SWI
vector. The address of the SWI instruction plus four will be stored in the link register. On
entry to the software interrupt ISR the following line of code is executed:

temp = *(link_ptr-1) & OxOOFFFFFF;

The address stored in the link register is rolled back by one instruction (word-wide pointer
i.e. four bytes) so that it is pointing at the address of the SWI instruction which generated the
exception. The top eight bits of the SWI instruction are masked off and bits 0-23 are copied
into the temp variable. This in effect loads the number 2 into the temp variable. A switch
statement can now be used to run the desired code. This method of handling software
interrupts is shown in example 6.

Inline Functions

Within the GNU compiler functions may be declared as inline functions as follows:

inline int fast_function(char paraml)

183

Introduction to the LPC2000 6 — Tutorial With GNU Tools

Exercise 1: Using The Keil Toolset With The GNU Compiler
This example is based on the source code which can be found in:
C:\Exercise\Work\EX1 first program

In this first exercise we will spend some time defining a first project, building the code and
downloading it into the Simulator for debugging. We will then cover the basic debugging
functions of the Keil simulator.

The Keil uVISION IDE is designed to support several compilers: the GNU C compiler, the
ARM development suite and the Keil ARM compiler. Before compiling, make sure you
have the GNU compiler selected. This is done by activating the project workspace, right-
clicking and selecting ‘manage components’. In this dialog, select the Folders/extensions tab
and make sure the GNU tools box is selected.

Components, Environment and Books él
Project Components Folders/Extenzions IBooksI
~ Development Tool Folder i~ Default File Extensions:
. i T i
™| Use Settings fom TOOLS.HI CSource o
Tool Base Folder IE-‘\KEN\AHM‘\ | Ces Source: |".com
BIN; [CASIAAMABING _l - -~
INC: | Object: [*obj
LIE: | Librane |~ lib
Regile | Document |t “h: %inc
~ Select ARM Development Tool
I Use Keil ARM Tacls
C Folder. |E:\Cygnus',
I¥ Usa GNU Tools et .
Keil oot Folder, |C:4KeihARMY
Realfiew Folder: |C:*Program Files*ARMYADSYT_2Y
I~ UseARM Tools S _
Keil Root Folder. |C:4KeihaRMY
oK I Cancel | [efaults | Help |
L]
- - . . - L]
Double-click on the Keil Uvision3 icon to start the IDE. [2¥ =
5 100 -0 L b e A] E———— ol
| gh e ot ooy Figh Paspherds Jok $RC5 Wi b : =lelx
|ltzuo B [e A =i &a DR anr®
[meBmBMEO o EE
| 2l =
|
|
ki
T T peciphera unsiges o Bode)
U a
o]
u o
u 0
0 1
]]
u 1] |
o 1 &
Bog 4
R e] = I
i s s o
| | Vectoreaing
G0] e Cveicom oo v oo
Beeet[0 =] VWdaclikdl ARG VICD o ecihck: [0
VACPvncon: [B-0000000) Wk et [EETED IRkt [RLRGT0
MCSotne S it o MRS 000 [
PO e N Jj o
HE |ETSTETR smmers | | [STETFIT ook (S o powom f
Poady AW

184

Introduction to the LPC2000 6 — Tutorial With GNU Tools

From the menu bar select Project\New Project.

I pision2

” File Edit “ew |Project Cebug Flash Petipherals Tools SWCS Window Help
|lesea

Import pYisionl Praject...

Open Project

In the New Project dialog navigate to your desired project directory.

Create New Project ﬂil

Save |n|U First program j L= EF Ed-

File name: |First Save I
Save as tupe; |Proiect Files [*.uv2] LI Cancel |

4

In the New Project dialog name the project first.uv2 and select Save.

A “select new device for target’ dialog will appear. Navigate through the device data base
and select the Philips\LPC2129 folder and select OK.

thU |

Wendar. Philips

Devics: LPC2292

Farnily: AR

Data base Description
] LPC2124 ;I ARMZTOMI-S based high-performance 32-bit RISC Microcantroller with Tl'd
£ LPC22a 256KE on-chip Flazsh ROM with In-System Programming (15F) and In-Applic
£ LPCHo 1EKB RAM, Yectored Interrupt Controller, Esternal Bus Controller,

Two UARTS, 12C serial interface, 2 5P serial interfaces.

€1 Lpeznz Two timers 7 capture/compare channels).
£ LPC2214 /b uniit with up to B PWM outputs,
3 8-channels 10bit ADC, 2 CAN channels
£ LPC2o04 = Real Time Clock, Wwatchdog Timer, General purpose [/0 pirs.
€1 PRI/PEICEIND CPU clock up to B0 MHz, On-chip crpstal oscillator and On-chip PLL

~£1 PBO/PEICSZR2
~£1 PBO/PETCSAR2
~£1 PBO/PETCSER2
~£1 PBOCSSTES

£] PBOCSSTER
S | LIJ =

185

Introduction to the LPC2000 6 — Tutorial With GNU Tools

In the project browser highlight the ‘Targetl’ root folder and select the local menu by
pressing the right mouse button. In this menu select ‘Options for Target’.

rEw——— L

Select Device For Target ‘Target 1

Options For Targek Target 1'

2pen File

¥ rebuild targek
*.| Build target F?
Translate File
Stop build

fdd Eiles bo Graup, ..
Manage Components

Rernave Iken

IT Include Dependencies

In the “Target’ tab set the simulation frequency to 12.000 MHz.

Dptions for Target 'Target 1' . 2lx|
Device Terget | Dutput | Listing | CC | Assembler | Linker | Debug | Utites |
Phiips LPC2232

tal [MHz)
Operating system: | Mone id

0K | Caneel | Defais |

In the Linker tab select the linker file flash.ld and tick the “Garbage collection” and do not
use “standard startup files” boxes

Options for Target ‘Flash’ 1 2l

Device | Target| Dutput| Listing | CC | Assembler Linker | Debug | Utities |

Tesxt Stark: I
¥ Enable Garbage Collection
¥ Do not use Standard System Startup Files Data Start: I
I Do not uss Standard System Libraries BSS Start: I

™ Use Math Libraries

Linker Serpt [\Flash.d
F"e| _ J Ed...

Include: |
Libraries
Include:
Paths | J
Misc ;I
controls d
Linker |-T AFlash.d A/l ~gc-sections -o gpic.elf ;I
contiol |0 nostartfiles
sting |

OK I Cancel Defaults

186

Introduction to the LPC2000

Note: To build the project so it will run within the on-chip RAM of the LPC2100 device,

configure the Text start as select the linker file RAM.Id

In the debug tab make sure the “Use Simulator” radio button is active. Also make sure
“Load Application at Startup” and “Go till main()” are checked.

Options for Target ‘Simulator®

Device] Target] Dutputi Listing] (E:

(* Use Simulator

¥ Load Application at Startup v Go till main(

Initialization File:

Restore Debug Session Settings

]

| 2] e

| Bem | L& Misc| L& Locate Debua | Utifes |

Setting: || © Usze: |G

+| Settings

¥ Load Application at Startup I~ Go till mainf)

Initialization File:

Restore Debug Session Settings

6 — Tutorial With GNU Tools

[V Breakpaints W Toolbox W Breakpaints v Toolbox

IV Watchpoints & Pé [Watchpoints

[V Memany Display v Memary Display
CPU DLL: Paramneter: Drriver DLL: Pararneter:
[SARM.DLL |-cLPC2100 SARM.DLL |
Dialog DLL: Farameter: Dialog DLL: Parameter:
DaRMP.OLL -pLPC21:9 |TAF|MF'.DLL |-pLPE21xS

(1] 4 | Cancel | Defaultz I Help

Select OK to complete the target options.

In the project browser expand the “Targetl’ root node to show the Source group 1 folder.

=l =|

Elﬁ Target 1
[:| Source Group 1

Highlight the *Source Group 1’ folder, open the local menu with a right click and select
‘Add Files to group Source Groupl’.

Select Device for Target Target 1°

x|

B84 Target 1
[:‘ Source Group 1

Options For Group ‘Source Group 1'

Cpen File

F7?

Build target
Translate File
Stop build

Add Files ko Group 'Source Group 1' k

Manage Cormponents

Remove Group ‘Source Group 1' and it's Files

,T Include Dependencies

187

Introduction to the LPC2000 6 — Tutorial With GNU Tools

In the “‘Add files to Group’ dialog add the file blinky.c and serial.c.

Loak ir: Iﬁw’ork j = EF Ed-
@ Elinky.c
@ Serial.c
File name: || fdd
Files of type: IC Source file (*.c) j Close
A

Change the ‘Type of file’ filter to ASM and add the file startup.s
These are all the source files necessary for the project so select close.

You can view the source code contained in a file by double-clicking on the file name in the
project browser window.

Once you have added all the source files the project can be built via the program menu or by
the build button on the toolbar.

Start debugger Make project

Ele Edt MWew Project Debug Flash Perpherals Tools SWCS Window Help i

ABEHG | FER D EE e AL REE Ml S| an@E :_-mvm;-= [(2 |

Once the code is built, you can start the simulator by pressing the debugger button. The use
of the simulator and JTAG debugger are detailed in Exercise One in the Tutorial and are the
same for the GNU compiler.

188

Introduction to the LPC2000 6 — Tutorial With GNU Tools

Exercise 2: Startup Code

In this exercise we will configure the compiler startup code to configure the stack for each
operating mode of the ARM7. We will also ensure that the interrupts are switched on and
that our program is correctly located on the interrupt vector.

Open the project in EX2 Startup\work

Open the file Startup.s and using the graphical editor configure the operating mode stacks as
follows:

[=]- Skack Configuration

Top of Stack Address Q000 000

E| g izes (in Bykes)
- Undefined Mode 00000 0030
- SUpervisor Mode 0000 Q0S80
- bort Mode 00000 0050
- Fast Interrupt Mode 0000 Q030
.. Inkerrupk Maode 0000 Q030
- ser|System Mode 0000 0400

[FLL Setup [¥

Compile the code

Start the simulator and when the PC reaches main, examine the contents of each R13
register.

=-- User/Syst__.

~RE 0x00000000
- R3 0x00000000
R0 0x40003330
R 0x00000000
- R12 0x00000000

=+ R13[5P) 0x40003420
- R14[LR] 0x00000000
- Fast Interupt

‘Ra Ox00000000
A3 0x00000000
- R0 0x00000000
- A1 0x00000000
- R12 0x00000000
~R13(5F) 0x4000300 Each stack is allocated a space of 0x80. The user stack is 0x400
- R14[LR) 000000000 bytes so user data will start at 0x40003d80 — 0x400
- 5PSRA Ox00000000
- Interrupt

-~ R13(5P) Ox40003e80
- R14(LR] 0x00000000
[+ SPSR Ox00000000
= Supervizor

- R13[(SP] Oxd40003e00
- R14[LR] 0x00000000
- 5PSR 0x00000000
- Abart

- R13(5P] Ox40003f30
- R14(LR] 0x00000000

- SPSR 000000000 Start of stack space at the top of on-chip memory
=l Undefined
- R13[5P) Ox40004000
K14 (LK) 0<00000000 189

- SPSR 0=00000000

Introduction to the LPC2000 6 — Tutorial With GNU Tools

Exercise 3: Using THUMB Code

In this example we will build a very simple program to run in the ARM 32-bit instruction set
and call a 16-bit THUMB function and then return to the 32-bit ARM mode.

Open the project in EX3 THUMB code\work

In the files browser select thumb.c open the local menu (right-click) and select “options for
thumb.c”

25

26 Lextern void thuwbh_ function(void); FAExter:
27T

E-#24 Flash ‘

Ea Source Group 1
-k

Options for File 'thumb. ¢’ I
L
Open thumb.c
Rebuild target
Build target F7
Translate C:iWorkiARM\Philips Course ImagelGCC ARM ExercisesiEX3-Thumb CodelSolutionthumb,
1

i| Manage Components
Remove File thumb.,c'

Include Dependencies
B}

Select the CC tab and in the misc controls add —mthumb or tick the “compile thumb code”
box and click OK

Options for File 'thumb.c* x|

Properties T |

— Preprocessor Symbolz

Diefine: |

Undefine: |

~ Code Generation

7 Enable 4PCS [5RM Procedure Call Standard) Opimization: | <defaul> |
¥ Generate Stack Check Code ‘Warnings: | <default> -

¥ Support Calls between &R M and THUME Instuction Set .
[Strict ANSI C

¥ Compile Thumb Code

Inchude I B
Paths

Misc |
Contral:
Compiler |-c -mepu=arm7tdmi -mthumb -gdwarf-2 40 -w -0 -mapcs-frame -mthumb-ntenwark ;I
contral [IC:AKeifARMYNCYPhilips' -0 thumb.o
shritig j

ok, I Cancel | Defaults | Help

Again in the file browser select the root target (FLASH) and in the local menu “options for
target”

190

Introduction to the LPC2000

6 — Tutorial With GNU Tools

In the CC tab tick the “enable APCS option and the “support calls between THUMB and

ARM”
options or Target Haskt ﬂ
Devicel Targell Dutnuli Listing CC |Assembleri Linkell Debugl Ut\lit\esl
— Preprocessor Symbols
Defire: |
Undefine: |
 Code Generation
[Enable 4PCS (ARM Procedure Call Standard) Optimization: | <default> |
[Generate Stack Check Code ‘Warnings: | NoWamings -
¥ Support Calls between ARM and THUME Instruction Set .
™ Strict ANSI C
[~ Compile Thumb Code
Include
Faths | B
tisc |
Contrals
EDth”E" - -mepu=aim7tdmi -gdwarf-2 -MD - -0 -mapcs-frame -mthumb-intenwork -1C:\KeilARMYINCYPhilipsh ;I
control |.a%g
sting j
0K I Cancel Defaultz Help |

Compile and download the code into the debugg

er

Open the disassembly window and single step through the code using the F11 key

Observe the switch from 32-bit to 16-bit code and the THUMB flag in the CPSR

- CPSR 060000010

....... N I:I

....... Z ‘I

....... - 37: 1
....... v 0 0x00000198
....... N 0x0000019C
....... E D 0x000001A0
....... T =>0x00000144
"""" 4 0=10

EB0ooooo
EAFFFFFC
ES9FCoon
E1Z2FFF1C

36: thumb_function():

BL
B
LDR
BX

000000140
000000194
R1Z,[PC]
R12

The processor is running in ARM (32-bit) mode, the T-bit is clear and the instructions are 4
bytes long. A call to the THUMB function is made which executes a BX instruction forcing

the processor into THUMB mode (16-bit).

The THUMB bit is set and on entry to the THUMB function a PUSH instruction is used to

preserve registers on to the stack.

191

Introduction to the LPC2000 6 — Tutorial With GNU Tools

Exercise 4: Using The GNU Libraries

In this exercise we will look at tailoring the GNU Printf function to work with the LPC2100
UART. We will look at the registers of the UARTS in more detail later.

Open the project in EX4 printf\work

In main.c add a message for transmission to the printf statement

while(1)
{

printf(*'Your Message Here \n"); //Call the prinfF function

}

Add the file syscalls.c in the work directory to the project.

=223 Flash
£ Source Group 1
- [#] main.c
b [¥] serial.c
: Startup.s
B [#] Syscalls.c

In syscalls.c add modify the write function as follows:

Complete the for loop statement so it runs for the length of the printf string (len)

Inside the for loop add the putchar statement to write a single character to the stdio channel (
putchar (*ptr))

Increment the pointer to the character string ptr++

int write (int file, char * ptr, int len)

{
int i;
for (i = 0; i < len; i++) putchar (*ptr++);
return len;

}

Compile the code and download it to the development board
Run the code and observe the output within hyper terminal

If you are using the simulator, select view/serial window #1. This opens a terminal window
within the simulator which displays the UARTO output.

192

Introduction to the LPC2000 6 — Tutorial With GNU Tools

Exercise 5: Simple Interrupt
1. In this exercise we will setup a basic FIQ interrupt and see it serviced.
2. Open the project in EX5-Interrupt\work

3. In main.c complete the definition of the EXTintFIQ function prototype to define it as the
FIQ interrupt service routine

void EXTintF1Q (void) __ attribute__ ((interrupt(FIQ"™))):

In startup.s complete the vector constants table to define EXTintFIQ as the FIQ ISR.

-global EXTintFIQ Declare the name of the C ISR function as a
global
-global _startup
-func _startup
_sStartup:
Vectors: LDR PC, Reset_Addr
LDR PC, Undef_Addr
LDR PC, SWI_Addr
LDR PC, PAbt_Addr Vector Table
LDR PC, DAbt_Addr
.long OxB8AOG6F58
LDR PC, [PC, #-OxFFO]
LDR PC, FIQ_Addr
Reset_Addr: -word Reset_Handler
Undef_Addr: -word Undef Handler
SWI1_Addr: -word SWI1_Handler Constants table
PAbt_Addr: -word PAbt_Handler
DAbt_Addr: -word DAbt_Handler
-word 0
IRQ_Addr: -word IRQ_Handler
FIQ_Addr: -word EXTintFIQ

Insert the name of the C ISR function in the constants table

5. Compile the code and download it onto the board.

6. Step through the code and observe the following using the disassembly window and
the registers window.

Step through the code until you reach the while loop

c. Set a breakpoint in the EXTintFIQ function

Press F5 to set the program running

On the MCB2100 board press the INT button to generate the interrupt.

If you want to see the entry and exit mechanisms to the exception, it is best to use the

simulator and single step in the disassembly window. This way you can watch the program
flow and the actions on the CPU registers.

193

Introduction to the LPC2000 6 — Tutorial With GNU Tools

To control the interrupt in the simulator, open the peripherals/GP10 port 0 window. Pin 0.14
is set high by the map.ini startup script. If you set the program running unchecking, the
Pinl1.4 box will generate the interrupt. You must raise the pin high again to stop interrupts.

General Purpose Input/Output 0 {GPIO 0} i ﬂ

—GFIOO
3 Bit: 2423 Bt 1615 Btk 8 7 Bitg D
IODIRD: 000000000 T T I P T Frrrrd]

1
I I I I
IBSET0: 000000000 | T (T ()
lDELHU:l'JHDUDUDDDD EEREENED EEEEEEER EEEER (|

O T T

[OPHO: j 000004000 EEEEEEERE T I I T 1 T I
Pins: [0+00004000 I O O

Alternatively in the toolbox there is a “Generate EINT1” button. This button will generate a
simulated pulse on to the interrupt pin.

Toolbox g]

Toolbox button } Toolbox with user IJpdate Windows

configurable scripts

1 Generate EINT 1

Within uVISION there is a full scripting language which allows you to simulate external
events. These scripts are based on the C language and are stored in text files. The script used
to simulate the pulse is shown below:

signal void Toggle(void)

PORTO = (PORTO ~ 0x4000);

twatch (200);

PORTO = (PORTO ™ 0x4000);
}

KILL BUTTON *
DEFINE BUTTON "GenerateEINT1","Toggle()"

This script is stored in the file signal.ini and is added to the project in the debug window.
For more details on the scripting language see the uVISION documentation.

194

Introduction to the LPC2000 6 — Tutorial With GNU Tools

Exercise 6: Software Interrupt

In this exercise we will define an inline Assembler function to call a software interrupt and
place the value 0x02 in the calling instruction. In the software interrupt SWI we will decode
the instruction to see which SWI function has been called and then use a case statement to
run the appropriate code.

Open the project in EX6 SWI\work

In main.c add the following code
As the first instruction in main add the assembler define which calls the swi instruction

#define Softwarelnterrupt2 asm (' swi #02')

In the SWI ISR complete the register definition to access R14

register unsigned * link _ptr asm ('r14™);

Complete the code to pass value of the SWI ordinal into the temp variable

temp = *(link_ptr-1) & OxOOFFFFFF;
Compile and download the code into the debugger
Step the code and observe the SWI being serviced

In the disassembly window the first SWI instruction has been encoded with the value 1 at
location 0x0000015C

47: Softwarelnterruptl:
0z0000015C EF000001 SWI OxzO00oooo001
On entry to the ISR the supervisor link register contains the value 0x00000160
“R14(LR] Dx00000160
The calculation for temp is temp = *(link_ptr-1) & OXO0OFFFFFF or 0x164 — 4 (word-wide
pointer remember) which is 0x15C which points to the instruction which generated the SWI.

The top 8 bits are masked off which yields a value of 1. This is used in the case statement to
run the required code.

195

Introduction to the LPC2000 6 — Tutorial With GNU Tools

196

Appendices

Appendix A

Bibliography

ARM7TDMI datasheet
LPC2119/2129/2194/2292/2294 User Manual
ARM System on chip architecture

Architecture Reference Manual
ARM System developers guide

MicroC/OS-II
GCC The complete reference

Webliography
Reference Sites

http://www.arm.com

http://www.philips.com

http://www.Ipc2000.com

Tools and Software Development

http://ww.hitex.co.uk

http://www.keil.co.uk

http://www.ucos-ii.com

http://www.ristancase.com

http://gcc.gnu.org/onlinedocs/gcc/

Evaluation Boards And Modules

http://www.phytec.co.uk

http://www.embeddedartists.com

197

ARM

Philips

Steve Furber
David Seal
Andrew N. Sloss,
Domonic Symes,
Chris Wright
Jean J. Labrosse
Arthur Griffith

198

The LPC2000 family from Philips semiconductors is the first of a new generation of
microcontrollers based on the ARM7-TDMI 16/32-bit RISC processor.

This book is written as both an introduction to the ARM7-TDMI processor and the LPC2000
microcontroller architecture. The content is based on a series of one day seminars held for
professional engineers interested in learning how to use the LPC2000 family as quickly as
possible.

Topics covered in this book include:

- Introduction to the ARM7 processor
- Software development tools

- LPC2000 system architecture

- LPC2000 peripherals

In addition a comprehensive tutorial is included that takes you through
practical exercises to reinforce the topics discussed in the main text. By
reading this book and performing the accompanying exercises, you will
quickly become well versed in the ARM7 processor and the LPC2000
microcontroller.

The CD accompanying the book includes an evaluation version
of the popular uVISION3 IDE and compiler from Keil
Elektronik plus all the example exercises for both the Keil
CARM and the GCC ARM compilers.

www.hitex.co.uk/arm

hitex

DEVELOPMENTTOOLS

[> |85 WARE

PHILIPS

ISBN 0-9549988-1-2
—

‘W Hitex (UK) Ltd., Sir William Lyons Road, Science Park, Coventry, UK, CV4 7EZ. Tel +44 (0) 2476 692066

