
1

1

CrossWorks for ARM

Welcome to CrossWorks for ARM!

CrossWorks for ARM is a streamlined integrated development environment,
compilation tools, and libraries for building, testing, and deploying
applications on ARM7, ARM9, and XScale microcontrollers.

Documentation overview

A comprehensive collection of technical documentation, including reference
material, release notes, sample code, technical notes, and Q&As. Each of the
links below leads to the resources for a specific topic. Key resources also
include getting started documents, API references, and cross-references for
related topics.

If you have a question or need some help working with CrossStudio, please
check our frequently asked questions page or use CrossStudio's Help window
(page 124). If the problem is not covered in the documentation, see Requesting
support and reporting problems (page 18) for more information.

2 Introduction
Welcome to CrossWorks for ARM!

2

Introduction

This guide is divided into a number of sections:

Introduction (page 2). Covers installing CrossWorks on your machine
and verifying that it operates correctly, followed by a brief guide to the
operation of the CrossStudio integrated development environment,
debugger, and other software supplied in the CrossWorks package.

CrossStudio Tutorial (page 19). Describes how to get started with
CrossStudio and runs through all the steps from creating a project to
debugging it on hardware.

CrossStudio Reference (page 41). Contains information on how to use
the CrossStudio development environment to manage your projects,
build, and debug your applications.

Tasking Library Tutorial (page 200). Contains documentation on using
the CrossWorks tasking library to write multi-threaded applications.

ARM Library Reference (page 221). Contains documentation for the
functions that are specific to the ARM.

Standard C Library Reference (page 258). Contains documentation for
the functions in the standard C library supplied in the package.

GCC Users Guide. Contains an htmlised version of the GCC user
documentation.

ARM Target Support (page 148). Contains a description of system files
used for startup and debugging of ARM executables.

3

ARM Target Interfaces (page 144). Contains a description of the support
ARM target interfaces.

What is CrossWorks?

CrossWorks for ARM is a complete C development system for ARM 7
microprocessors. It comprises of the ARM GCC C compiler, the CrossWorks C
Library and the CrossStudio integrated development environment.

In order to use CrossWorks for ARM you will need:

Windows 98, Windows Me, Windows NT 4.0, Windows 2000 or Windows
XP.

A Macgraigor Wiggler for ARM (WNPJ-ARM-20/WNPJ-ARM-14) or
compatible parallel port to JTAG interface.

An ARM 7 target board with 20 or 14 pin JTAG connector. CrossWorks for
ARM provides support for several ARM based microcontrollers out of the
box in the form of examples and target configurations. CrossWorks can
also be easily modified to support other ARM 7 targets, see ARM Target
Support (page 148) for more information.

GCC CrossWorks for ARM comes with a pre-built version of the GCC C and C++
compiler, assembler, linker and other tools to enable you to immediately begin
developing applications for ARM.

CrossWorks C
Library

CrossWorks for ARM has it's own royalty-free ANSI and ISO C compliant C
library that has been specifically designed for use within embedded systems.

CrossStudio IDE CrossStudio for ARM is a streamlined integrated development environment
(IDE) for building, testing, and deploying ARM applications. CrossStudio
provides:

Source Code Editor A powerful source code editor with multi-level undo
and redo, makes editing your code a breeze.

Project System A complete project system organises your source code
and build rules.

Build System With a single key press you can build all your applications
in a solution, ready for them to be loaded onto a developer card or into the
debugger.

ARM Hardware Debug With the Macgraigor Wiggler attached, you can
use the integrated debugger to step through and diagnose problems in
your software on your target board.

4 Introduction
What we don't tell you...

Integrated Debugger The debugger will help you to quickly find
problems in your ARM and THUMB applications.

ARM Flash Programming and Debug You can download your programs
directly into Flash and debug them seamlessly from within the IDE.

Integrated Help system The built-in help system provides context-
sensitive help and a complete reference to the CrossStudio IDE and tools.

What we don't tell you...

This documentation does not attempt to teach the C or assembly language
programming; rather, you should seek out one of the many introductory texts
available. And similarly the documentation doesn’t cover the ARM
architecture or microcontroller application development in any great depth.

We also assume that you’re fairly familiar with the operating system of the
host computer being used. For Microsoft Windows development environment
we recommend Windows 2000 or Windows XP, but you can use
Windows NT 4, Windows 95, Windows 98, or Windows Me if you wish.

C programming
guides

Kernighan, B.W. and Ritchie, D.M., The C Programming Language (2nd
edition, 1988). Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-
110362-8.
The original C bible, updated to cover the essentials of ANCI C (1990
version).

Harbison, S.P. and Steele, G.L., A C Reference Manual (second edition, 1987).
Prentice-Hall, Englewood Cliffs, NJ, USA. ISBN 0-13-109802-0.
A nice reference guide to C, including a useful amount of information on
ANSI C. Written by Guy Steele, a noted language expert.

ANSI C reference ISO/IEC 9899:1990, C Standard and ISO/IEC 9899:1999, C Standard. The
standard is available from your national standards body or directly from
ISO at www.iso.ch.

ARM ARM technical reference manuals, specifications, user guides and white
papers for can be found at http://www.arm.com/Documentation/.

GCC The latest GCC documentation, news and downloads can be be found at
http://gcc.gnu.org/.

5

Release notes

Changes in Release 1.6 Build 1

General Added support for Cortex-M3 (ADIv5) in Wiggler (or compatible) and
CrossConnect JTAG adapters.

New package-based target support. CrossWorks now ships without any
target support. Support packages for various targets are installed after
CrossWorks installation.

Updated versions of the C/C++ compilers from the GNU Compiler
Collection and assembler, linker, librarian from GNU Binutils that support
Thumb-2 code generation. These are based on the CodeSourcery arm-
2005q3-2 release with updates for the ARMv7M architecture.

CrossStudio Added Windows docking window (Ctrl+Alt+R) which replaces the
Window > Windows dialog.

Re-worked Debug Windows menu organisation.

Added a quick document selector on Ctrl+Tab and Ctrl+Shift+Tab which
mimics Windows Explorer Alt-tabbing.

Now Ctrl+Tab and Ctrl+Shift+Tab follow Visual Studio tabbing
behaviour so that you can quickly alternate between the same two
documents.

New Paste As String, Paste As HTML, and Paste As Comment to quickly
paste copied content into program source code.

Dynamic visual brace, parenthesis, and bracket matching automatically
which highlights the mate if it is visible on the screen.

New Bookmarks window (Ctrl+Alt+K or View > Bookmarks):
bookmarks are now permanent and the Edit > Bookmarks menu is
updated to reflect the new bookmark capability.

Numbered (permanent) bookmarks 1 through 9 can be dropped (Ctrl+K,
1 through Ctrl+K, 9) and jumped to (Ctrl+Q, 1 through Ctrl+Q, 9).

New Find and Replace window (Ctrl+Alt+F or Search > Find And
Replace) which contains a much enhanced find and replace capability,
including project-wide, solution-wide, all-open-document, and directory
(and subdirectory) find and replace.

6 Introduction
Release notes

Exception trapping support is moved from Debug > Exceptions to the
Breakpoints window to better highlight debugger and simulator
capabilities and state.

Help > Keyboard Map now has a Report feature to generate an HTML
keyboard map report to an editor for saving or printing.

New Autos window (Debug > Autos) that displays automatic variable
and expression values for the current context. Note that this is not the
same as the Locals window—the Locals window displays the values of
parameters and local variables in the currently selected frame, the Autos
window displays globals, locals, and expressions for the context around
the current and previous execution points.

New environment option to hide the Output window after a successful
build (which is now the default).

New option to hide the Output window after a successful download
(which is now the default).

Fixed phantom windows reappearing in a dock site after the final dock
window in a dock site was closed.

Added new Undo and Redo grouping styles in Tools > Options:
Individual words (now the default), Individual characters (the default up
to v1.5), and Whole of last insertion (like Microsoft Word and many other
Office applications).

New code editor key sequences: Delete Word (Ctrl+K, T) to delete the
word under the cursor, Delete to Start of Line (Ctrl+K, Backspace), Delete
to End of Line (Ctrl+K, Ctrl+K), and Select Word (Ctrl+Q, T).

In addition to the middle mouse button bringing up the Go To Function
menu, Alt-Middle will bring up the Go To Header menu.

Go To Definition (Ctrl+Q, D) will move the cursor to the definition of the
variable or function under the cursor and drop a navigation marker.

Go To Declaration (Ctrl+Q, E) will move the cursor to the declaration of
the variable or function under the cursor and drop a navigation marker.

The code editor now allows additional per-language user-defined
keywords. Set these up in the Languages pane of the Tools > Options
dialog.

Tools > Options now opens at the previously-selected page rather than
always at Environment/General.

Added Install Package and Remove Package to Tools menu. This is used
to install and remove target support files.

7

Added Import Section Placement and View Section Placement actions to
project explorer.

Number of projects displayed in Solution name fixed in project explorer.

Added Start Debugging and variants from the project explorer context
menu.

Added new options to Tools > Options to connect to target on start
debugging and disconnect on stop debugging.

New linker property Treat Warnings As Errors. Since linker warnings are
usually fatal this is set to Yes by default.

Linker property Entry Point now defaults to reset_handler rather than
0x00000000.

Linker property Keep Symbols now defaults to _vector.

Compiler property Enforce ANSI Checking now works with C++ files.

New compiler property Keep Assembly Code which will keep the
assembly code output of the compiler.

Compiler now defines the symbol __CROSSWORKS_ARM.

New compiler property Generate Static call_via_rX which works around
a restriction in the implementation of long calls when using Thumb code
generation.

New staging property Post Stage Command.

New section property Vector Section Name.

Fixed debug_break on ARM7TDMI.

Fixed crash when the debugger displayed variables that it couldn't find a
type for.

Addresses in memory map files that are preceeded by a + are treated as
offsets from the enclosing address.

Target Interfaces Simulator now uses a DLL file to implement the memory system of the
simulated target. Target-specific DLL files are shipped with target specific
packages.

Simulator now runs the loader executables if appropriate for target.

Segger J-Link DLL file is now not shipped with CrossWorks. You must
install the Segger software and modify the appropriate Segger J-Link
target property to point to the jlinkarm.dll file.

Added support for XScale devices with 7 bit JTAG instruction registers.

8 Introduction
Release notes

Added support for the Cortex-M3 debug inteface in Wiggler and
CrossConnect targets.

Erase All now supported.

Libraries Libraries are now built for V4, V4T, V5TE and V7M architectures. The V3
architecture is not supported in this release.

CTL CTL projects are now created that reference the source code of CTL. This
simplifies debugging and end user customisation of the CTL source code.

New variable ctl_timeslice_period, when non-zero implements
timeslicing.

New byte queues that are a specialisation of message queues.

The use_timeout parameter to blocking functions can now specify an
absolute or a delay time period.

Replaced usage of swi with msr when changing from system to supervisor
mode in a co-operative task switch.

Updated default CTL application.

Known Problems Replace in Files is not yet implemented.

Changes in Release 1.5 Build 2

CrossStudio Fixed crash when disassembling address ranges that wrap.

Simulator modified to avoid crash due to memory allocation based on
project memory map.

First release of Disk Explorer window.

ARM target support Fixed STR7 and SAM7 header files.

Fixed problem when unplugging the CrossConnect.

Changes in Release 1.5

Support for redesigned CrossConnect for ARM.

GCC version 3.4.4 of gcc.exe, cc1.exe and cc1plus.exe are supplied.

Binutils version 2.16.1 of ar.exe, as.exe, ld.exe, nm.exe, objcopy.exe,
objdump.exe, ranlib.exe and strip.exe are supplied.

ARM target support Target support header files now contain bit field defines.

9

CrossStudio Fixed crash when locating to disassembly mode.

General improvements to disassembly/intermixed modes.

Fixed remove and solution rename bugs in project explorer.

Fixed problems with upper case project filename.

Workaround for ELF files that don't have .pubnames and .aranges section.

Find in files and find in project files now save open files.

Added default workspace layout option to Window menu.

Fixed rebuild bug when additional output files are generated.

Improved support for C++ variable/symbol display.

Changes in Release 1.4

ARM target support Support for TI TMS470.

Support for theARMPatch AT91-SBC.

Support for theARMPatch LPC-SBC2.

Support for LogicPD SDKLH79520.

Enhanced Philips LPC support - improved loader and memory map files.

JTAG interface now supports daisychaining in order to support multi-core
devices.

Improved wiggler performance.

Can now alter J-Link JTAG clock speed.

CrossStudio Added address and size display to memory map editor.

New file type Linker Script that will be used for linkage in preference to
the section placement and memory map files.

Added Import Memory Map function on projects that don't have a
processor type property.

The View Memory Map function is now only available on projects that
have a processor type property.

Added Processor and Import nodes to the memory map file - these
currently can only be displayed in the memory map editor.

Debugger can now display VFP and FPA floating point format numbers.

C/C++ Library Added new option to enable or disable linking of the GCC libraries.

10 Introduction
Release notes

Now supports RTTI and exceptions.

Build 2 Changes Fixed missing floating point libraries.

Build 3 Changes Added support for Freescale MC9328MXL Dragonball including
examples for M9328MXLADS board

Build 4 Changes Added CVS configuration management support.

Added support for ATMEL AT91SAM7A1, AT91SAM7A2 and
AT91SAM7A3 including examples for AT91SAM7A1-EK board.

Build 5 Changes Wiggler target interface now works with ARM9EJS.

Changes in Release 1.3

Support for CrossConnect for ARM.

Added new program crossbuild that enables command line building.

Added new program crossload that enables command line loading.

Version 3.4.2 of gcc.exe, cc1.exe and cc1plus.exe are shipped.

ARM target support Support for XScale processors.

Support for cache flushing on breakpoint (required for 920T and 740T
cores).

Support for STMicroelectronics STR71x parts.

Support for ATMEL AT91SAM7 parts.

Support for latest Philips LPC2xxx parts and faster flash loader.

Support for GamePark GP32.

Added Processor type property for Analog Devices ADuC702x parts.

Added fast FLASH verification.

CrossStudio Disassembly is intermixed with source code when debug is enabled.

Properties, configurations and system files are now selectable at project
creation time.

Default executable project will now run on an ARM with RAM mapped at
0x00000000.

The Symbols Window can be printed.

Added linkage map generation to the Linker property group and display
in the project explorer.

11

Added remove ununsed symbol capability to the Build property group.

Input/Output options have been renamed Printf/Scanf options and can
be more finely controlled.

Added support for SourceOffSite 3.5.1 to source code integration.

Added new source code control window that displays a filtered list of the
project files.

Fixed problem with memory map editor sorting section placement files.

Built-in commands (cp, chmod etc) now work relative to the project
directory.

CrossStudio
Debugging

Variable display, pointers now have an expand button.

Variable display, arrays not fetched until expand button is pressed.

Variable display, pointers to structs displayed as one level.

Debugger now displays bool and bitfields types correctly.

Added support for bitfields in many of the processor register displays.

Fixed problem printing global variables when not defined in the current
compilation unit.

Fixed problem printing enumeration variables.

Environment option to break on main (or other symbol) if no breakpoints
are set.

C Library Faster implementations of memset, strlen and strcpy functions - improves
Dhrystone numbers.

Fixed fmod looping when given two value whose relative magnitude is
greater than 2^23.

Fixed tanh using bad polynomial for numbers >= ~0.5.

printf formats 0.0 in %g format as "0" rather than "0e+00".

ARM Library Added header file __debug_stdio.h that enables C stdio functions (e.g.
printf) to be used.

DebugI/O library now has debug_exit and debug_time functions.

CTL has been extensively (unfortunately not compatible with the previous
release) revised and now includes support for integer valued priority
semaphores and message queues.

ARMLib has support for re-enabling interrupts from an ISR.

12 Introduction
Release notes

Changes in Release 1.2

CrossStudio Integrated the new fast floating point routines from GCC 3.4.0.

Board specific CTL source code now shipped.

Fixed printing of arrays of structs in debugger.

Segger J-LINK ARM JTAG interface now supported.

Post build step now possible after link.

Support for the Revely (Sharp MCU) boards.

More LPC2000 boards supported (Olimex LPC-P1, Keil MCB2100 and IAR
LPC210x KickStart).

Executable files now have the .elf extension.

The LPC2000 project type now has a processor property.

Fixed problem with the THUMB build of the maths library.

Added a new linker property to enable ARM or THUMB versions of the
library to be selected independently of the application build type e.g.
THUMB app using ARM library.

Modified LPC2000 FLASH loader. The FLASH loader no longer needs to
be rebuilt in order to support boards running at different oscillator
frequencies, the frequency can now be specified in the Target | Loader
Parameter project property.

Version 3.3.3 of gcc.exe, cc1.exe and cc1plus.exe are shipped.

Improvements to Visual SourceSafe integration - now detects writing of
source controlled files and prompts for checkout.

The Wiggler JTAG clock frequency can now be reduced in order to support
boards with unreliable target interface connections.

Changes in Release 1.1

CrossStudio New icons for target interface connections.

Code templates can now be edited and are remembered.

Assembly code files now have their own indentation settings in the text
editor and environment options.

Support for Philips LPC210x parts.

13

Added Print Preview capability, now found on the File menu and in the
standard tool bar.

Printing now works for both HTML and text editor documents.

The Print tool button on the toolbar prints immediately to the default
printer, as in Microsoft Office, without bringing up a Print dialog. The
default printer is shown in the tool tip of the Print tool button.

The Project menu has been split into Project and Build menus to reduce
the size of a combined menu.

The Edit | Find menu has been promoted to the menu bar and renamed
Search.

A new environment property (Environment Options | Build | General |
Before Debugging | Build before Debug) will automatically build a project
when out of date rather than displaying a dialog.

Added the Clipboard Ring which operates rather like the Office
Clipboard in Microsoft Office and identically to the Clipboard Ring in
Microsoft Visual Studio .NET.

Added Auto Step to the Debug menu to animate program stepping.

The SFR Window has been combined into the Registers Window. There
are now four general register windows that can each be configured to
display one or more groups of SFR and CPU registers.

The mouse middle button brings up the Goto Function menu.

The Goto Function menu now works on assembly language files and
displays the list of labels in the source file.

The way that errors are highlighted in the code editor can be configured as
no highlighting, underline error, flag error in the margin, or underline and
flag the error.

For Windows, the IDE now stores its settings in the registry under the
current user key rather the local machine key.

The Build Log and Target Log have been rewritten to display relevant
errors, warnings, and notes in a nicer form.

The Call Stack window can optionally display the calling source file, line
number, and call address.

Added Enable Interrupt Processing and Disable Interrupt Processing
tool buttons to the Debug toolbar.

The properties window dialog doesn't stay focused when other selections
are made.

14 Introduction
Release notes

Register window now saves the radix when it is changed for a given entry.

Fixed problem exiting when the session file was read only.

The debug_putchar function now outputs a single byte.

Additional assembler/compiler/linker properties are now held as a string
list so the property inheritance system applies to them.

Fixed problem with date check and string list properties.

Support for file differencing.

Support for Visual SourceSafe integration.

Registers window can now display bitfields.

Implemented Disassemble function on project explorer right click.

Can build C++ programs - C++ library currently not supported.

Debugger handles large programs better.

Debugger expressions have limited support for the C++ :: operator.

Source navigator now just reparses files that have changed.

Debugger threads window that enables RTOS threads to be displayed by
executing a JavaScript program.

JavaScript console window that enables JavaScript expressions to be
evaluated.

Wiggler download speed has increased.

Memory window has an option to access memory by display width.

Breakpoints on addresses now set an execute breakpoint not a data write.

Removed target specific files from the target system. These are now put
into the project at project creation time. Existing projects are automatically
upgraded when they are loaded.

Instruction set simulator included to enable evaluation of CrossWorks
without hardware.

CrossWorks tasking library included in distribution.

Project system now creates ARM and THUMB configurations for
executable projects.

Project system now creates configurations for library builds.

Support for ARM9 debug interface.

Target specific header file supplied in targets subdirectory of include.

15

Version 3.3.2 of gcc.exe, cc1.exe and cc1plus.exe are shipped.

memcpy has been written in ARM assembly code to speed it up.

Improved ARM and THUMB disassembly.

Support for Aeroflex AX07CF192.

Support for MPE ARM Development Kit.

Activating your product

Each copy of CrossWorks must be licensed and registered before it can be used.
Each time you purchase a CrossWorks license, you, as a single user, can use
CrossWorks on the computers you need to develop and deploy your
application. This covers the usual scenario of using both a laptop and desktop
and, optionally, a laboratory computer.

Evaluating CrossWorks

If you are evaluating CrossWorks on your computer, you must activate it. To
activate your software for evaluation, follow these instructions:

Install CrossWorks on your computer using the CrossWorks installer and
accept the license agreement.

Run the CrossStudio application.

From the Help menu, click About CrossStudio.

Click the Product Activation tab.

Using e-mail, send the contents of the Registration Key field to the e-mail
address license@rowley.co.uk.

By return you will receive an activation key. To activate CrossWorks for
evaluation, do the following::

Run the CrossStudio application.

From the Help menu, click About CrossStudio.

Click the Product Activation tab.

Type in or paste the returned activation key into the Activation Key field.

The License Details field will change to indicate the type of activation key
entered and how long the evaluation lasts for.

If you need more time to evaluate CrossWorks, simply request a new
evaluation key when the issued one expires or is about to expire.

16 Introduction
Text conventions

After purchasing CrossWorks

When you purchase CrossStudio, either directly from ourselves or through a
distributor, you will be issued a Product Key which uniquely identifies your
purchase. To permanently activate your software, follow these instructions:

If you have not already done so, install CrossWorks on your computer
using the CrossWorks installer and accept the license agreement.

Run the CrossStudio application.

From the Help menu, click About CrossStudio.

Click the Product Activation tab.

Type or paste your product key into the Product Key field.

Using e-mail, send the contents of the Registration Key field to the e-mail
address license@rowley.co.uk.

By return you will receive an activation key. To activate CrossWorks:

Run the CrossStudio application.

From the Help menu, click About CrossStudio.

Click the Product Activation tab.

Type in or paste the returned activation key into the Activation Key field.

The License Details field will change to indicate the type of activation key
entered.

As CrossWorks is licensed per developer, you can install the software on any
computer that you use such as a desktop, laptop, and laboratory computer, but
on each of these you must go through activation using your issued product
key.

Text conventions

Throughout the documentation, text printed in this typeface represents
verbatim communication with the computer: for example, pieces of C text,
commands to the operating system, or responses from the computer. In
examples, text printed in this typeface is not to be used verbatim: it represents a
class of items, one of which should be used. For example, this is the format of
one kind of compilation command:

hcl source-file

This means that the command consists of:

17

The word hcl, typed exactly like that.

A source-file: not the text source-file, but an item of the source-file class, for
example ‘myprog.c’.

Whenever commands to and responses from the computer are mixed in the
same example, the commands (i.e. the items which you enter) will be
presented in this typeface. For example, here is a dialogue with the
computer using the format of the compilation command given above:

c:\crossworks\examples>hcl -v myprog.c
CrossWorks MSP430 Compiler Driver Release 1.0.0
Copyright (c) 1997-2004 Rowley Associates Ltd.

The user types the text hcl -v myprog.c, and then presses the enter key (which
is assumed and is not shown); the computer responds with the rest.

Standard syntactic metalanguage

In a formal description of a computer language, it is often convenient to use a
more precise language than English. This language-description language is
referred to as a metalanguage. The metalanguage which will be used to describe
the C language is that specified by British Standard 6154. A tutorial
introduction to the standard syntactic metalanguage is available from the
National Physical Laboratory.

The BS6154 standard syntactic metalanguage is similar in concept to many
other metalanguages, particularly those of the well-known Backus-Naur
family. It therefore suffices to give a very brief informal description here of the
main points of BS6154; for more detail, the standard itself should be consulted.

Terminal strings of the language—those built up by rules of the
language—are enclosed in quotation marks.

Non-terminal phrases are identified by names, which may consist of
several words.

When numbers are used in the text they will usually be decimal. When we
wish to make clear the base of a number, the base is used as a subscript, for
example 158 is the number 15 in base eight and 13 in decimal, 2F16 is the
number 2F in hexadecimal and 47 in decimal.

A sequence of items may be built up by connecting the components with
commas.

Alternatives are separated by vertical bars (‘|’).

Optional sequences are enclosed in square brackets (‘[’ and ‘]’).

18 Introduction
Requesting support and reporting problems

Sequences which may be repeated zero or more times are enclosed in
braces (‘{’ and ‘}’).

Each phrase definition is built up using an equals sign to separate the two
sides, and a semicolon to terminate the right hand side.

Requesting support and reporting problems

With software as complex as CrossWorks, it’s it’s almost inevitable that you’ll
need assistance at some point. Here are some pointers on what to do when you
think you’ve found a problem.

Requesting help

If you need some help working with CrossWorks, please contact our support
department by e-mail, support@rowley.co.uk.

Reporting a bug

Should you have a problem with this product which you consider a bug,
please report it by e-mail to our support department, bugs@rowley.co.uk.

Support and suggestions

If you have any comments or suggestions regarding the software or
documentation, please send these in an e-mail to support@rowley.co.uk or in
writing to:

CrossWorks Customer Support
Rowley Associates Limited
8 Silver Street
Dursley
Gloucestershire GL11 4ND
UNITED KINGDOM

Tel: +44 1453 547916
Fax: +44 1453 544068

19

3

CrossStudio Tutorial

CrossStudio allows you to organize your collection of projects into a
workspace or solution. We provide a number of project templates for popular
evaluation and demonstration boards with the product which you can use as
a springboard to start your application development. A project is typically
organized into groups, where each group gathers together files that are
related—for example, header files, source files, and documentation files can all
have their own group in a project.

This section will take you through creating, compiling, and debugging a
simple application using the build-in simulator to prepare you for starting
your own projects using CrossStudio.

In this section

Creating a project (page 20). Describes how to start a project, select your
target processor, and other common options.

Managing files in a project (page 22). Describes how to add existing and
new files to a project and how to remove items from a project.

Setting project options (page 26). Describes how to set options on project
items and how project option inheritance works.

Building projects (page 28). Describes how to build the project, correct
compilation and linkage errors, and find out how big your applications
are.

20 CrossStudio Tutorial
Creating a project

Exploring projects (page 30). Describes how to use the Project Explorer,
Symbol Browser, and Source Navigator to find out how much memory
your project takes and navigate around the files that make up the project.
It also describes the similarities and differences between the three
windows.

Using the debugger (page 35). Describes the debugger and how to find
and fix problems at a high level when executing your application.

Low-level debugging (page 38). Describes how to use debugger features
to debug your program at the machine level by watching registers and
tracing instructions.

Creating a project

To start developing an application, you create a new project. To create a new
project, do the following:

From the File menu, click New then New Project...

The New Project dialog appears. This dialog displays the set of project types
and project templates.

We'll create a project to develop our application in C:

Click the Executable icon in the Templates pane which selects the type of
project to add.

Type Tutorial in the Name edit box, which names the project.

You can use the Location edit box or the Browse button to locate where
you want the project to be created.

Click OK.

This will create a project for a generic ARM target that has RAM mapped at
address 0x00000000, as we are going to run this example on the simulator this
is fine. ARM hardware however is rarely so accommodating as memory will
be mapped at different addresses, target specific startup code may be required
to initialize peripherals, different techniques need to be employed to reset the
target and target specific loader applications are required to program FLASH.
To create a project to run on hardware you should instead select a template
from the project type matching your target, this will create a project with the
memory maps, startup code, reset script and FLASH loader for your target.

Once created, the project setup wizard prompts you to set some common
options for the project.

21

Here you can specify an additional file format to be output when the
application is linked, and what library support to include if you use printf and
scanf. You can change these settings after the project is created using the
Project Explorer.

Clicking Next displays the files that will be added to the project.

The Links to system files group shows the links that will be created in the
project to CrossStudio system files. Project links are fully explained in Project
management (page 48), and we can ignore these for now.

Clicking Next displays the configurations that will be added to the project.

Here you can specify the default configurations that will be added to the
project. Project configurations are fully explained in Project management
(page 48), and we can ignore these for now.

Complete the project creation by clicking Finish.

The Project Explorer shows the overall structure of your project. To see the
project explorer, do one of the following:

From the View menu, click Project Explorer.

or

Type Ctrl+Alt+P.

or

Right click the tool bar area.

22 CrossStudio Tutorial
Managing files in a project

From the popup menu, select Project Explorer.

This is what our project looks like in the Project Explorer:

You'll notice that the project name is shown in bold which indicates that it is
the active project (and in our case, the only project). If you have more than one
project then you can set the active project using the dropdown box on the build
tool bar or the context menu of the project explorer.

The files are arranged into two groups:

Source Files contains the main source files for your application which will
typically be header files, C files, and assembly code files. You may want to
add files with other extensions or documentation files in HTML format,
for instance.

System Files contains links to source files that are not part of the project
yet are required when the project is built and run. In this case, the system
files are crt0.s which is the C runtime startup written in assembly code,
RAM_at_Zero_MemoryMap.xml a memory map file that describes a
target with RAM located at address 0x00000000, sram_placement.xml
which directs the linker on how to arrange program sections in memory,
Standard_ARM_Startup.s which contains the target specific start code
and exception vectors and Standard_ARM_Target.js which contains
the target specific target script which instructs the debugger on how to
reset the target and what to do when the processor stops or starts. Files
which are stored outside of the projects home directory are shown by a
small purple shortcut indicator at the bottom left of the icon, as above.

These folders have nothing to do with directories on disk, they are simply a
means to group related files together in the project explorer. You can create
new folders and specify filters based on the file extension so that when you
add a new file to the project it will be placed in the folder whose filter matches
the file extension.

Managing files in a project

We'll now set up the project with some files that demonstrate features of the
CrossStudio IDE. For this, we will add one pre-prepared and one new file to
the project.

Adding an existing file to a project

We will add one of the tutorial files to the project. To add an existing file to the
project, do the following:

23

From the File menu, click Add Existing File.

or

Type Ctrl+D.

or

In the Project Explorer, right click the Tutorial project node.

Select Add Existing File from the context menu.

When you've done this, CrossStudio displays a standard file locator dialog.
Navigate to the CrossStudio installation directory, then to the tutorial
folder, select the fact.c.

Now click OK to add the file to the project. The Project Explorer will show
fact.c with a shortcut arrow because the file is not in the project's home
directory. Rather than edit the file in the tutorial directory, we'll take a copy of
it and put it into the project home directory:

In the Project Explorer, right click the fact.c node.

From the popup menu, click Import.

The shortcut arrow disappears from the fact.c node which indicates that
the file is now in our home directory.

We can open a file for editing by double clicking the node in the Project
Explorer. Double clicking fact.c brings it into the code editor:

24 CrossStudio Tutorial
Managing files in a project

Adding a new file to a project

Our project isn't complete as fact.c is only part of an application. We'll add
a new C file to the project which will contain the main() function. To add a new
file to the project, do the following:

From the Project menu, click New File.

or

On the Project Explorer tool bar, click the Add New File tool button.

or

In the Project Explorer, right click the Tutorial node.

From the context menu, click Add New File.

or

Type Ctrl+N.

The New File dialog appears.

Ensure that the C File (.c) icon is selected.

In the Name edit box, type main.

The dialog box will now look like this:

25

Click OK to add the new file.

CrossStudio opens an editor with the new file ready for editing. Rather than
type in the program from scratch, we'll add it from a file stored on disk.

From the Edit menu, click Insert File or type Ctrl+K, Ctrl+I.

Using the file browser, navigate to the tutorial directory.

Select the main.c file.

Click OK.

Your main.c file should now look like this:

Next, we'll set up some project options.

26 CrossStudio Tutorial
Setting project options

Setting project options

You have now created a simple project, and in this section we will set some
options for the project.

You can set project options on any node of the solution. That is, you can set
options on a solution-wide basis, on a project-wide basis, on a project group
basis, or on an individual file basis. For instance, options that you set on a
solution are inherited by all projects in that solution, by all groups in each of
those projects, and then by all files in each of those groups. If you set an option
further down in the hierarchy, that setting will be inherited by nodes that are
children of (or grandchildren of) that node. The way that options are inherited
provides a very powerful way to customize and manage your projects.

Changing the ARM architecture

In this instance, we will set up the targeted ARM architecture to be v5T. As we
will be running the example on the simulator it doesn't matter which
architecture we target as the simulator will simulate the architecture specified
in the project. To change the targeted ARM architecture:

Right click the Tutorial project in the Project Explorer and select Properties
from the menuthe Project Options dialog appears.

Click the Configuration dropdown and change to the Common
configuration.

Click the Compiler tab to display the code generation options.

Click the ARM Architecture option and change this from v4T to v5T.

The dialog box will now look like this:

27

Notice that when you change between Debug and Release configurations, the
code generation options change. This dialog shows which options are used
when building a project (or anything in a project) in a given configuration.
Because we have set the target processor in the Common configuration, both
Debug and Release configurations will use this setting. We could, however,
set the processor type to be different in Debug and Release configurations,
allowing us to develop on a processor with a large amount of code memory
and hardware emulation support, but elect to deploy on a smaller, more cost
effective variant.

Now click OK to accept the changes made to the project.

Using the Properties Window

If you click on the project node, the Properties Window will show the
properties of the projectthese have all been inherited from the solution. If you
modify a property when the project node is selected then youll find that its
value is highlighted because you have overridden the property value that was
inherited from the solution. You can restore the inherited value of a property
by right clicking the property and selecting Use Inherited Value from the
menu.

Next, we'll build the project.

28 CrossStudio Tutorial
Building projects

Building projects

Now that the project is created and set up, it's time to build it. Unfortunately,
there are some deliberate errors in the program which we need to correct.

Building the project

To buld the project, do the following:

From the Project menu, click Build.

—or—

On the Build tool bar, click the Build tool button.

—or—

Type F7.

Alternatively, to build the Tutorial project using a context menu, do the
following:

In the Project Explorer, right click the Tutorial project node.

Select Build from the context menu.

CrossStudio starts compiling the project files but finishes after detecting an
error. The Output Window shows the Build Log which contains the errors
found in the project:

Correcting compilation and linkage errors

CrossStudio compiled fact.c without errors, but main.c contains two
errors. After compilation, CrossStudio moves the cursor to the line containing
the first reported error. As well as this, the line is marked in the gutter and
highlighted by underlining it red. (You can change this behaviour using the
Environment Options dialog.)

29

The status bar also updates to indicate two build errors and shows the first
error message.

To correct the error, change the return type of factorial from void to int
in its prototype.

To move the cursor to the line containing the next error, type F4 or from the
Search menu, click Next Location. The cursor is now positioned at the
debug_printf statement which is missing a terminating semicolonadd the
semicolon to the end of the line. Using F4 again indicates that we have
corrected all errors:

Pressing F4 again wraps around and moves the cursor to the first error, and
you can use Shift+F4 or Previous Location in the Search menu to move back
through errors. Now that the errors are corrected, compile the project again.
The build log still shows that we have a problem.

Notice that fact.c has not been recompiled because it was compiled
correctly before and is up to date. The remaining error is a linkage error.
Double click on fact.c in the Project Explorer to open it for editing and
change the two occurrences of fact to factorial. Recompile the project—
this time, the project compiles correctly:

30 CrossStudio Tutorial
Exploring projects

Exploring projects

Now that the project has no errors and builds correctly, we can turn our
attention to uncovering exactly how our application fits in memory and how
to navigate around it.

Using Project Explorer features

The Project Explorer is the central focus for arranging your source code into
projects, and it's a good place to show ancillary information gathered when
CrossStudio builds your applications. This section will cover the features that
the Project Explorer offers to give you an overview of your project.

Project code and data sizes

Developers are always interested in how much memory their applications take
up, and with small embedded microcontrollers this is especially true. The
Project Explorer can display the code and data sizes for each project and
individual source file that is successfully compiled. To do this, click the
Options dropdown on the Project Explorer tool bar and make sure that Show
Code/Data Size is checked. Once checked, the Project Explorer displays two
additional columns, Code and Data.

The Code column displays the total code space required for the project and the
Data column displays the total data space required. The code and data sizes
for each C and assembly source file are estimates, but good estimates
nontheless. Because the linker removes any unreferenced code and data and
performs a number of optimizations, the sizes for the linked project may not
be the sum of the sizes of each individual file. The code and data sizes for the
project, however, are accurate. As before, your numbers may not match these
exactly.

31

Dependencies

The Project Explorer is very versatile: not only can you display the code and
data sizes for each element of a project and the project as a whole, you can also
configure the Project Explorer to show the dependencies for a file. As part of the
compilation process, CrossStudio finds and records the relationships between
filesthat is, it finds which files are dependent upon other files. CrossStudio
uses these relationships when it comes to build the project again so that it does
the minimum amount of work to bring the project up to date.

To show the dependencies for a project, click the Options button on the Project
Explorer tool bar and ensure that Show Dependencies is checked in the menu.
Once checked, dependent files are shown as sub-nodes of the file which
depends upon them.

In this case, main.c is dependent upon cross_studio_io.h because it it
includes it with a #include directive. You can open cross_studio_io.h in an
editor by double clicking it, so having dependencies turned on is an effective
way of navigating to and summarising the files that a source file includes.

Output files

Another useful piece of information is knowing the files output files when
compiling and linking the application. Needless to say, CrossStudio can
display this information too. To turn on output file display, click the Options
button on the Project Explorer tool bar and ensure that Show Output Files is
checked in the menu. Once checked, output files are shown in an Output Files
folder underneath the node that generates them.

In the above figure, we can see that the object files fact.o, main.o, and
crt0.o are object files produced by compiling their corresponding source
files; the map file Tutorial.map and the linked executable Tutorial.elf
are produced by the linker. As a convenience, double clicking an object file or
a linked executable file in the Project Explorer will open an editor showing the
disassembled contents of the file.

Disassembling a project or file

You can disassemble a project either by double clicking the corresponding file
as described above, or you can use the Disassemble tool to do it.

To disassemble a project or file, do one of the following:

Click the appropriate project or file in the Project Explorer view.

On the Project Explorer tool bar, click the Disassemble tool button .

or

32 CrossStudio Tutorial
Exploring projects

Right click the appropriate project or file in the Project Explorer view.

From the popup menu, click the Disassemble.

CrossStudio opens a new read-only editor and places a disassembled listing
into it. If you change your project and rebuild it, causing a change in the object
or executable file, the disassembly updates to keep the display up-to-date with
the file on disk.

Using Symbol Browser features

Whilst a map file produced by the linker is traditionally the best way (and in
some cases, the only way) to see how your application is laid out in memory,
CrossStudio provides a much better way to examine and navigate your
application: the Symbol Browser. You can use the Symbol Browser to navigate
your application, see which data objects and functions have been linked into
your application, what their sizes are, which section they are in, and where
they are placed in memory.

Displaying the Symbol Browser

To display the Symbol Browser window if it is hidden, do one of the
following:

From the View menu, click Symbol Browser.

or

Type Ctrl+Alt+Y.

or

Right click the tool bar area to display the View menu.

From the popup menu, click Symbol Browser.

Drilling down into the application

The Tutorial project shows this in the Symbol Browser:

33

From this you can see:

The .vectors section containing the ARM exception vectors is placed in
memory between address 0x00000000 and 0x0000003B.

The .fast section containing performance critical code and data is empty.

The .init section containing the system startup code is placed in memory
between address 0x0000003C and 0x00000213.

The .text section containing the program code is placed in memory
between address 0x00000214 and 0x0000065F.

The .text_load section which is the section that the .text section image is
loaded from is at the same address as .text. If the .text and .text_load
section start addresses differ then the startup code will copy the contents
of the .text_load section to the .text section before the program enters
main. This feature allows the .text section to run from RAM in ROM based
applications.

The .bss section containing zeroed data is empty.

The .ctors containing the global constructor table is empty.

The .data section containing initialized data is empty.

The .data_load section which is the section that the .data section image is
loaded from is at the same address as .data. If the .data and .data_load
section start addresses differ then the startup code will copy the contents
of the .data_load section to the .data section before the program enters
main. This feature is required for ROM based applications so that data can
be initialized in RAM on startup.

34 CrossStudio Tutorial
Exploring projects

The .dtors section containing the global destructor table is empty.

The .heap section is 1024 bytes in length and located at 0x00000678. Note
that the size of the heap can be adjusted by modifying the size of the .heap
section in the section placement file (sram_placement.xml in this
example).

The .stack section which contains the User/System mode stack is 1024
bytes in length and located at 0x00000A78. Note that the sizes of the stacks
can be adjusted by modifying the size of the .stack sections in the section
placement file (sram_placement.xml in this example).

The .stack_irq section which contains the IRQ mode stack is 256 bytes in
length and located at 0x00000E78.

The .stack_fiq section which contains the FIQ mode stack is 256 bytes in
length and located at 0x00000F78.

The .stack_abt section which contains the Abort mode stack is 0 bytes in
length.

The .stack_svc section which contains the Supervisor mode stack is 0 bytes
in length.

The .stack_und section which contains the Undefined mode stack is 0
bytes in length.

To drill down, open the .text node by double clicking it: CrossStudio displays
the individual functions that have been placed in memory and their sizes:

Here, we can see that main is 104 bytes in size and is placed in memory
between addresses 0x00000270 and 0x000002D7 inclusive. Just as in the Project
Explorer, you can double click a function and CrossStudio moves the cursor to
the line containing the definition of that function, so you can easily navigate
around your application using the Symbol Browser.

Printing Symbol Browser contents

You can print the contents of the Symbol Browser by focusing the Symbol
Browser window and selecting Print from the File menu, or Print Preview if
you want to see what it will look like before printing. CrossStudio prints only
the columns that you have selected for display, and prints items in the same
order they are displayed in the Symbol Browser, so you can choose which
columns to print and how to print symbols by configuring the Symbol Browser
display before you print.

We have touched on only some of the features that the Symbol Browser offers;
to find out more, refer to Symbol browser (page 132) where it is described in
detail.

35

Using the debugger

Our sample application, which we have just compiled and linked, is now built
and ready to run. In this section we'll concentrate on downloading and
debugging this application, and using the features of CrossStudio to see how
it performs.

Getting set up

Before running your application, you need to select the target to run it on. The
Targets window lists each target interface that is defined, as does the Targets
menu, and you use these to connect CrossStudio to a target. For this tutorial,
you'll be debugging on the simulator, not hardware, to simplify matters. To
connect to the simulator, do one of the following:

From the Target menu, click Connect ARM Simulator.

—or—

From the View menu, click Targets to focus the Targets window.

In the Targets window, double click ARM Simulator.

After connecting, the connected target is shown in the status bar:

The color of the LED in the Target Status panel changes according to what
CrossStudio and the target are doing:

White — No target is connected.

Yellow — Target is connected.

Solid green — Target is free running, not under control of CrossStudio or
the debugger.

Flashing green — Target is running under control of the debugger.

Solid red — Target is stopped at a breakpoint or because execution is
paused.

Flashing red — CrossStudio is programming the application into the
target.

Setting a breakpoint

CrossStudio will run a program until it hits a breakpoint. We'll place a
breakpoint on the call to debug_printf in main.c. To set the breakpoint,
Move the cursor to the line containing debug_printf and do one of the
following:

36 CrossStudio Tutorial
Using the debugger

On the Build tool bar, click the Toggle Breakpoint button — .

—or—

Type F9.

Alternatively, you can set a breakpoint without moving the cursor by clicking
in the gutter of the line to set the breakpoint on.

The gutter displays an icon on lines where the breakpoints are set. The
Breakpoints window updates to show where each breakpoint is set and
whether it's set, disabled, or invalid—you can find more detailed information
in the Breakpoints window (page 100) section. The breakpoints that you set
are stored in the session file associated with the project which means that your
breakpoints are remembered if you exit and re-run CrossStudio.

Starting the application

You can now start the program in one of these ways:

From the Debug menu, click Start Debugging.

—or—

On the Build tool bar, click the Start Debugging button — .

—or—

Type F5.

The workspace will change from the standard Editing workspace to the
Debugging workspace. You can choose which windows to display in both
these workspaces and manage them independently. CrossStudio loads the
active project into the target and places the breakpoints that you have set.
During loading, the the Target Log in the Output Window shows its progress
and any problems:

The program stops at our breakpoint and a yellow arrow indicates where the
program is paused.

37

You can step over a statement by selecting Debug > Step Over, by typing F10
or by clicking the Step Over button on the Debug tool bar. Right now, we'll
step into the next function, factorial, and trace its execution. To step into
factorial, select Debug > Step Into, type F11, or click the Step Into button
on the Debug tool bar. Now the display changes to show that you have entered
factorial and execution is paused there.

You can also step to a specific statement using Debug > Run To Cursor. To
restart your application to run to the next breakpoint use Debug > Go.

Note that when single stepping you may step into a function that the debugger
cannot locate source code for. In this case the debugger will display the
instructions of the application, you can step out to get back to source code or
continue to debug at the instruction code level. There are may be cases in
which the debugger cannot display the instructions, in these cases you will
informed of this with a dialog and you should step out.

Inspecting data

Being able to control execution isn't very helpful if you can't look at the values
of variables, registers, and peripherals. Hovering the mouse pointer over a
variable will show its value as a data tip:

38 CrossStudio Tutorial
Low-level debugging

You can configure CrossStudio to display data tips in a variety of formats at
the same time using the Environment Options dialog.

The Call Stack window shows the function calls that have been made but have
not yet finished, i.e. the active set of functions. To display the Call Window,
select Debug > Debug Windows > Call Stack, or type Ctrl+Alt+S.

You can find out about the call stack window in the Call stack window (page
105) section.

Program output

The tutorial application uses the function debug_printf to output a string
to the Debug Console in the Output Window. The Debug Console appears
automatically whenever something is written to it—pressing F5 to continue
program execution and you will notice that the Debug Console appears. In
fact, the program runs forever, writing the same messages over and over again.
To pause the program, select Debug > Break or type Ctrl+. (control-period).

In the next section we'll cover low-level debugging at the machine level.

Low-level debugging

This section describes how to debug your application at the register and
instruction level. Debugging at a high level is all very well, but there are
occasions where you need to look a little more closely into the way that your
program executes to track down the causes of difficult-to-find bugs and
CrossStudio provides the tools you need to do just this.

Setting up again

What we'll now do is run the sample application, but look at how it executes
at the machine level. If you haven't done so already, stop the program
executing by typing Shift+F5, by selecting Stop Debugging from the Debug
menu, or clicking the Stop Debugging button on the Debug tool bar. Now run
the program so that it stops at the first breakpoint again.

You can see the current processor state in the Register windows. To show the
first registers window, do one of the following:

From the Debug menu, click Debug Windows then Registers 1.

—or—

Type Ctrl+T, R, 1.

39

Your registers window will look something like this:

This register view is displaying the registers for the active processor mode. You
can also display the entire set of ARM registers, to do this select CPU - ALL
from the Groups menu on the toolbar.

There are four register windows so you can open and display four sets of
peripheral registers at the same time.

You can configure which registers and peripherals to display in the Registers
windows individually. As you single step the program, the contents of the
Registers window updates automatically and any change in a register value is
highlighted in red.

Debugging modes

The debugger supports three modes of debug

Source mode where the source code is displayed in a code editor.

Interleaved mode where the editor displays an interleaved listing of the
currently located source code. All single stepping is done an instruction at
a time.

Assembly mode where a disassembly of the instructions around the
currently located instruction is shown in the editor. All single stepping is
done an instruction at a time.

You have already seen debugging at the source level. To single step at the
assembly level, from the Debug menu click Control then Interleaved Mode.
The editor window now interleaves the source code of the application with the
assembly language generated by the compiler:

40 CrossStudio Tutorial
Low-level debugging

In interleaved mode, debugging controls such as single step, step into, and
step out work at the instruction level, not the source level. To return to high-
level source debugging, select Debug > Control > Source Mode.

There are other windows that help you with debugging, such as the memory
view and the watch windows, and the CrossStudio Window Reference
describes these.

Stopping and starting debugging

You can stop debugging using Debug | Stop. If you wish to restart debugging
without reloading the program then you can use Debug > Debug From Reset.
Note that when you debug from reset no loading takes place so it is expected
that your program is built in a way such that any resetting of data values is
done as part of the program startup. You can also attach the debugger to a
running target using the Debug > Attach Debugger.

41

4

CrossStudio Reference

This section is a reference to the CrossStudio integrated development
environment.

In this section

Overview (page 42). Contains an overview of CrossStudio and its layout.

Project management (page 48). Describes how to manage files and
projects in CrossStudio.

Building projects (page 61). Describes how to build projects and correct
errors in them.

Source code control (page 64). Describes how to set up your source code
control provider so that it works seamlessly with CrossStudio.

Debug expressions (page 68). Describes the type and form of expression
that CrossStudio can evaluate when debugging an application.

Source code editor (page 69). Describes CrossStudio’s integrated code
editor and how to get the most from it.

Memory map editor (page 91). Describes how to edit memory map files
that guide section placement.

Section placement (page 93). Describes how your project is partitioned
and placed into the target device’s memory.

CrossStudio Windows (page 96). CrossStudio Windows (page
96)Describes each of CrossStudio’s window individually.

42 CrossStudio Reference
Overview

CrossStudio menu summary (page 169). Summarizes each of the menus
presented in CrossStudio.

Overview

This section introduces the overall layout and operation of the CrossStudio
integrated development environment.

CrossStudio standard layout

The following figure shows the standard layout of CrossStudio. The main
window is divided into the following areas:

Title bar Displays the name of the current file being edited and the active
workspace.

Menu bar Dropdown menus for editing, building, and debugging your
program.

Toolbars Frequently used actions are quickly accessible on toolbars below
the menu bar.

Editing area A tabbed or MDI view of multiple editors and the HTML
viewer.

Docked windows CrossStudio has many windows which can be docked
to the left of, to the right of, or below the editing area. You can configure
which windows are visible when editing and debugging. The figure
shows the project explorer, targets window, and output window.

Status bar At the bottom of the window, the status bar contains useful
information about the current editor, build status, and debugging
environment.

The title bar

CrossStudio’s title bar displays the name of the active editor tab if in Tabbed
Document Workspace mode or the active MDI window if in Multiple
Document Workspace mode.

43

Title bar format
The first item shown in the title bar is CrossStudio’s name. Because
CrossStudio targets different processors, the name of the target processor
family is also shown so you can distinguish between instances of CrossStudio
when debugging multi-processor or multi-core systems.

The file name of the active editor follows CrossStudio’s name; you can
configure the exact presentation of the file name this as described below.

After the file name, the title bar displays status information on CrossStudio’s
state:

[building]. CrossStudio is building a solution, building a project, or
compiling a file.

[run]. An application is running under control of the CrossStudio’s inbuilt
debugger

[break]. The debugger is stopped at a breakpoint.

[autostep]. The debugger is single stepping the application without user
interaction—this is called autostepping.

The Target Status panel in the status bar also shows CrossStudio’s state—see
The status bar (page 45).

Configuring the title bar
You can configure whether the full path of the file or just its file name is shown
in the title bar.

Displaying the full file path in the title bar

To display the full file path in the title bar, do the following:

From the Tools menu, click Options.

In the Appearance group, check Show full path in title bar.

Displaying only the file name in the title bar

To display only the file name in the title bar, do the following:

From the Tools menu, click Options.

In the Appearance group, uncheck Show full path in title bar.

44 CrossStudio Reference
Overview

The menu bar

The menu bar conatins dropdown menus for editing, building, and debugging
your program. You can navigate menu items using the keyboard or using the
mouse. You’ll find a complete description of each menu and its contents in
CrossStudio menu summary (page 169).

Navigating menus using the mouse

To navigate menus using the mouse, do the following;

Click the required menu title in the menu bar; the menu appears.

Click the required menu item in the dropdown menu.

—or—

Click and hold the mouse on the required menu title in the menu bar; the
menu appears.

Drag the mouse to the required menu item on the dropdown menu.

Release the mouse.

Navigating menus using the keyboard

To navigate menus using the keyboard, do the following:

Tap the Alt key which focuses the menu bar.

Use the Left and Right keys to navigate to the required menu.

Use the Up or Down key to activate the requied menu

Type Alt or Esc to cancel menu selection at any time.

Each menu on the menu bar has one letter underlined, its shortcut, so to
activate the menu using the keyboard:

Whilst holding down the Alt key, type the menu’s shortcut.

Once the menu has dropped down you can navigate it using the cursor keys:

Use Up and Down to move up and down the menu.

Use Esc to cancel a dropdown menu.

Use Right or Enter to open a submenu.

Use Left or Esc to close a submenu and return to the parent menu.

Type the underlined letter in a menu item to activate that menu item.

Type Enter to activate the selected menu item.

45

The status bar

At the bottom of the window, the status bar contains useful information about
the current editor, build status, and debugging environment. The status bar is
divided into two regions, one that contains a set of fixed panels and the other
that is used for messages.

The message area
The leftmost part of the status bar is a message area that is used for things such
as status tips, progress information, warnings, errors, and other notifications.

The status bar panels
You can show or hide the following panels on the status bar:

Panel Description

Target device status

Displays the connected target interface.When connected,
this panel contains the selected target interface name and,
if applicable, the processor that the target interface is
connected to. The LED icon flashes green when programs
are running, is solid red when stopped at a breakpoint,
and is yellow when connected but not running a program.
Double clicking this panel displays the Targets window
and ight clicking it brings up the Target menu.

Cycle count panel

Displays the number of processor cycles run by the
executing program. This panel is only visible if the
currently connected target supports performance
counters which can report the total number of cycles
executed. Double clicking this panel resets the cycle
counter to zer, and right clicking this panel beings up the
Cycle Count menu.

Insert/overwrite status
Indicates whether the current editor is in insert or
overwrite mode. If the editor is in overwrite mode the
OVR panel is highlighted otherwise it is dimmed.

Read only status
Indicates whether the editor is in read only mode. If the
editor is editing a read only file or is in read only mode,
the READ panel is highlighted otherwise it is dimmed.

46 CrossStudio Reference
Overview

Configuring the status bar panels

To configure which panels are shown on the status bar, do the following:

From the View menu, click Status Bar.

From the status bar menu, check the panels that you want displayed and
uncheck the ones you want hidden.

—or—

Right click on the status bar.

From the status bar menu, check the panels that you want displayed and
uncheck the ones you want hidden.

You can also select the panels to display from the Tools > Options dialog in the
Environment > More... folder.

From the Tools menu, click Options.

In the tree view Environment folder, click More...

In the Status bar group, check the panels that you want displayed and
uncheck the ones you want hidden.

Hiding the status bar

To hide the status bar, do the following:

Build status

Indicates the success or failure of the last build. If the last
build completed without errors or warnings, the build
status pane contains “Build OK” otherwise it contains the
number of errors and warnings reported. Right clicking
this panel displays the Build Log in the Output window.

Caret position

Indicates the cursor position of the current editor. For text
editors, the caret position pane displays the line number
and column number of the cursor; for binary editors it
displays the address where the

Caps lock status
Indicates the Caps Lock state. If the Caps Lockis on, CAPS
is highlighted, otherwise it is dimmed.

Num lock status
Indicates the Num Lock state. If the Num Lock is on,
NUM is highlighted, otherwise it is dimmed.

Scroll lock status
Indicates the Scroll Lock state. If the Scroll Lock is on, SCR
is highlighted, otherwise it is dimmed.

Time panel Displays the current time.

Panel Description

47

From the View menu, click Status Bar.

From the status bar menu, uncheck the Status Bar menu item.

—or—

Right click on the status bar.

From the status bar menu, uncheck the Status Bar menu item.

Showing the status bar

To show the status bar, do the following:

From the Tools menu, click Options.

In the tree view Environment folder, click More...

In the Status bar group, check (visible).

Showing or hiding the size grip

You can choose to hide or display the size grip when the CrossStudio main
window is not maximized—the size grip is never shown in full screen mode or
when maximized. To do this:

From the View menu, click Status Bar.

From the status bar menu, uncheck the Size Grip menu item.

—or—

Right click on the status bar.

From the status bar menu, uncheck the Size Grip menu item.

You can also choose to hide or display the size grip from the Tools > Options
dialog in the Environment > More... folder.

From the Tools menu, click Options.

In the tree view Environment folder, click More...

In the Status bar group, check or uncheck the Size grip item.

The editing workspace

The main area of CrossStudio is the editing workspace. This area contains files
that are being edited by any of the editors in CrossStudio, and also the HTML
Browser that's used by the online help system.

48 CrossStudio Reference
Project management

You can organize the windows in the editing area either into tabs or as separate
windows. In Tabbed Document Workspace mode, only one window is visible
at any one time, and each of the tabs displays the file's name. In Multiple
Document Workspace mode, many overlapping windows are displayed in
the editing area.

By default, CrossStudio starts in Tabbed Document Workspace mode, but you
can change at any time between the two.

Changing to Multiple Document Workspace mode

To change to Multiple Document Workspace mode, do the following:

From the Window menu, click Multiple Document Workspace.

Changing to Tabbed Document Workspace mode

To change to Tabbed Document Workspace mode, do the following:

From the Window menu, click Tabbed Document Workspace.

The document mode is remembered between invocations of CrossStudio.

Project management

CrossWorks has a project system that enables you to manage the source files
and build instructions of your solution. The Project Explorer and the
Properties Window are the standard ways to edit and view your solution. You
can also edit and view the project file which contains your solution using the
text editor—this can be used for making large changes to the solution.

In this section

Project system (page 49). A summary of the features of the CrossStudio
project system.

Creating a project (page 51). Describes how to create a project and add it
to a solution.

Adding existing files to a project (page 52). Describes how to add
existing files to a project, how filters work, and what folders are for.

Adding new files to a project (page 53). Describes how create and add
new files to a project.

Removing a file, folder, project, or project link (page 54). Describes how
to remove items from a project.

49

Project properties (page 54). Describes what properties are, how they
relate to a project, and how to change them.

Project configurations (page 57). Describes what project build
configurations are, to to create them, and how to use themProject
configurations (page 57).

Project dependencies and build order (page 58). Describes project
dependencies, how to edit them, and how they are used to define the order
projects build in.

Project macros (page 59). Describes what project macros are and what
they are used for.

Related sections

Project explorer (page 127). Describes the project explorer and how to use
it.

Project property reference (page 352). A complete reference to the
properties used in the project system.

Project file format (page 348). Describes the XML format CrossStudio
uses for project files.

Project system

A solution is a collection of projects, and all projects are contained in solutions.
Organizing your projects into a solution allows you to build all the projects in
a solution with a single keystroke, load them onto the target ready for
debugging with another.

Projects in a solution can can reside in the same or different directories. Project
directories are always relative to the directory of the solution file which
enables you to move or share project file hierarchies on different computers.

The Project Explorer organizes your projects and files and provides quick
access to the commands that operate on them. A tool bar at the top of the
window offers quick access to commonly used commands for the item selected
in the Project Explorer.

Projects

The projects you create within a solution have a project type which
CrossStudio uses to determine how to build the project. The project type is
selected when you use the New Project dialog. The particular set of project
types can vary depending upon the variant of CrossWorks you are using,
however the following project types are standard to most CrossWorks
variants:

50 CrossStudio Reference
Project management

Executable — a program that can be loaded and executed.

Externally Built Executable — an executable that is not built by
CrossWorks.

Library — a group of object files that collected into a single file (sometimes
called an archive).

Object File — the result of a single compilation.

Staging — a project that can be used to apply a user defined command (for
example cp) to each file in a project.

Combining — a project that can be used to apply a user defined command
when any files in a project have changed.

Properties and configurations

Properties are data that are attached to project nodes. They are usually used in
the build process for example to define C preprocessor symbols. You can have
different values of the same property based on a configuration, for example
you can change the value of a C preprocessor symbol for a release or a debug
build.

Folders

Projects can contain folders which are used to group related files together. This
grouping can be done using the file extension of the file or it can be done by
explicitly creating a file within a folder. Note that folders do not map onto
directories in the file store they are solely used to structure the project explorer
display.

Files

The source files of your project can be placed either in folders or directly in the
project. Ideally files placed in project should be relative to the project directory,
however there are cases when you might want to refer to a file in an absolute
location and this is supported by the project system. The project system will
allow (with a warning) duplicate files to be put into a project.

The project system uses the extension of the file to determine the appropriate
build action to perform on the file. So

a file with the extension .c will be compiled by a C compiler.

a file with the extension .s or .asm will be compiled an assembler.

a file with the extension .cpp or .cxx will be compiled by a C++ compiler.

a file with the object file extension .o or .hzo will be linked.

a file with the library file extension .a or .hza will be linked.

51

a file with the extension .xml will be opened and it's file type determined
by the XML document type.

other file extensions will not be compiled/linked with.

You can modify this behaviour by setting the File Type property of the file
with the Common configuration selected in the properties window which
enables files with non-standard extensions to be compiled by the project
system.

Solution links

You can create links to existing project files from a solution which enables you
to create hierarchical builds. For example you could have a solution that builds
a library together with a stub test driver executable. You can then link to this
solution (by right clicking on the solution node of the project explorer and
selecting Add Existing Project) to be able to use the library from a project in
the current solution.

Project and session files

When you have created a solution it is stored in a project file. Project files are
text files with the file extension hzp that contain an XML description of your
project. When you exit CrossWorks details of your current session are stored
in a session file. Session files are text files with the file extension hzs that
contain details such as files you have opened in the editor and breakpoints you
set in the breakpoint window.

Creating a project

You can create a new solution for each project or alternatively create projects
in an existing solution.

To create a new project in an existing solution, do the following:

From the Project menu, click New then New Project... to display the New
Project wizard.

In the New Project wizard, select the type of project you wish to create and
where it will be placed.

Ensure that the "Add the project to current solution" radio button is
checked.

Click OK to go to next stage of project creation or Cancel to cancel the
creation.

52 CrossStudio Reference
Project management

The project name must be unique to the solution and ideally the project
directory should be relative to the solution directory. The project directory is
where the project system will use as the current directory when it builds your
project. Once complete, the project explorer displays the new solution, project,
and files of the project. To add another project to the solution, repeat the above
steps.

Creating a new project in a new solution

To create a new project in a new solution, do the following:

From the File menu, click New then New Project... to display the New
Project dialog.

In the New Project dialog, select the type of project you wish to create and
where it will be placed.

Click OK.

Adding existing files to a project

You can add existing files to a project in a number of ways.

Adding existing files to the active project

You can add one or more files to the active project quickly using the standard
Open File dialog.

To add existing files to the active project do one of the following:

From the Project menu, select Add Existing File...

—or—

On the Project Explorer tool bar, click the Add Existing File button.

—or—

Type Ctrl+D.

Using the Open File dialog, navigate to the directory containing the existing
files, select the ones to add to the project, then click OK. The selected files are
added to the folders whose filter matches the extension of the each of the files.
If no filter matches a file's extension, the file is placed underneath the project
node.

Adding existing files to any project

To add existing files a project without making it active:

In the Project Explorer, right click on the project to add a new file to.

53

From the popup menu, select Add Existing File...

The procedure for adding existing files is the same as above.

Adding existing files to a specific folder

To add existing files directly to a folder bypassing the file filter do the
following:

In the Project Explorer, right click on the folder to add a new file to.

From the popup menu, select Add Existing File...

The files are added to the folder without using any filter matching.

Adding new files to a project

You can add new files to a project in a number of ways.

Adding a new file to the active project

To add new files to the active project, do one of the following:

From the Project menu, click Add New File...

—or—

On the Project Explorer tool bar, click the Add New File button.

—or—

Type Ctrl+N.

Adding a new file to any project

To add a new file to a project without making it active, do one of the following:

In the Project Explorer, right click on the project to add a new file to.

From the popup menu, select Add New File...

When adding a new file, CrossStudio displays the New File dialog from which
you can choose the type of file to add, its file name, and where it will be stored.
Once created, the new file is added to the folder whose filter matches the
extension of the newly added file. If no filter matches the newly added file
extension, the new file is placed underneath the project node.

Adding a new file to a specific folder

To add new files directly to a folder bypassing the file filter do the following:

In the Project Explorer, right click on the folder to add a new file to.

54 CrossStudio Reference
Project management

From the popup menu, select Add New File...

The new file is added to the folder without using any filter matching.

Removing a file, folder, project, or project link

You can remove whole projects, folders, or files from a project, or you can
remove a project from a solution using the Remove tool button on the project
explorer’s toolbar. Removing a source file from a project does not remove it
from disk.

Removing an item

To remove an item from the solution do one of the following:

Click on the project item to remove from the Project Explorer tree view.

On the Project Explorer toolbar, click the Remove button (or type Delete).

—or—

Right click on the the project item to remove from the Project Explorer tree
view.

From the popup menu, click Remove.

Project properties

For solutions, projects, folders and files - properties can be defined that are
used by the project system in the build process. These property values can be
viewed and modified using the properties window in conjunction with the
project explorer. As you select an item in the project explorer the properties
window will list the set of properties that are applicable.

Some properties are only applicable to a given item type. For example linker
properties are only applicable to a project that builds an executable file.
However other properties can be applied either at the file, project or solution
project node. For example a compiler property can be applied to the solution,
project or individual file. By setting properties at the solution level you enable
all files of the solution to use this property value.

Unique properties

A unique property has one value. When a build is done the value of a unique
property is the first one defined in the project hierarchy. For example the Treat
Warnings As Errors property could be set to Yes at the solution level which
would then be applicable to every file in the solution that is compiled,
assembled and linked. You can then selectively define property values for

55

other project items. For a example particular source file may have warnings
that you decide are allowable so you set the Treat Warnings As Errors to No
for this particular file.

Note that when the properties window displays a project property it will be
shown in bold if it has been defined for unique properties. The inherited or
default value will be shown if it hasn't been defined.

solution — Treat Warnings As Errors = Yes
project1 — Treat Warnings As Errors = Yes

file1 — Treat Warnings As Errors = Yes
file2 — Treat Warnings As Errors = No

project2 — Treat Warnings As Errors = No
file1 — Treat Warnings As Errors = No
file2 — Treat Warnings As Errors = Yes

In the above example the files will be compiled with these values for Treat
Warnings As Errors

Aggregating properties

An aggregating property collects all of the values that are defined for it in the
project hierarchy. For example when a C file is compiled the Preprocessor
Definitions property will take all of the values defined at the file, project and
solution level. Note that the properties window will not show the inherited
values of an aggregating property.

solution — Preprocessor Definitions = SolutionDef
 project1 — Preprocessor Definitions =
 file1 — Preprocessor Definitions =

file2 — Preprocessor Definitions = File1Def
project2 — Preprocessor Definitions = ProjectDef

file1 — Preprocessor Definitions =
file2 — Preprocessor Definitions = File2Def

In the above example the files will be compiled with these Preprocessor
Definitions

project1/file1 Yes

project1/file2 No

project2/file1 No

project2/file2 Yes

project1/file1 SolutionDef

project1/file2 SolutionDef, File1Def

56 CrossStudio Reference
Project management

Configurations and property values

Property values are defined for a configuration so you can have different
values for a property for different builds. A given configuration can inherit the
property values of other configurations. When the project system requires a
property value it checks for the existence of the property value in current
configuration and then in the set of inherited configurations. You can specify
the set of inherited configurations using the Configurations dialog.

There is a special configuration named Common that is always inherited by a
configuration. The Common configuration enables property values to be set
that will apply to all configurations that you create. You can select theCommon
configuration using the Configurations combo box of the properties window.
If you are modifying a property value of your project it's almost certain that
you want each configuration to inherit these values - so ensure that the
Common configuration has been selected.

If the property is unique then it will use the one defined for the particular
configuration. If the property isn't defined for this configuration then it uses
an arbitrary one from the set of inherited configurations. If the property still
isn't defined it uses the value for the Common configuration. If it still isn't
defined then it tries the to find the value in the next level of the project
hierarchy.

solution [Common] — Preprocessor Definitions = CommonSolutionDef
solution [Debug] — Preprocessor Definitions = DebugSolutionDef
solution [Release] — Preprocessor Definitions = ReleaseSolutionDef

project1 - Preprocessor Definitions =
file1 - Preprocessor Definitions =
file2 [Common] — Preprocessor Definitions = CommonFile1Def
file2 [Debug] — Preprocessor Definitions = DebugFile1Def

project2 [Common] — Preprocessor Definitions = ProjectDef
file1 — Preprocessor Definitions =
file2 [Common] - Preprocessor Definitions = File2Def

project2/file1 SolutionDef, ProjectDef

project2/file2 SolutionDef, ProjectDef, File2Def

project1/file1 SolutionDef

57

In the above example the files will be compiled with these Preprocessor
Definitions when in Debug configuration

and the files will be compiled with these Preprocessor Definitions when in
Release configuration

Project configurations

Project configurations are used to create different software builds for your
projects. A configuration is used to define different project property values, for
example the output directory of a compilation can be put into different
directories which are dependent upon the configuration. By default when you
create a solution you'll get some default project configurations created.

Selecting a configuration

You can set the configuration that you are building and debugging with using
the combo box of the Build tool bar or the Build > Set Active Build
Configuration menu option.

project1/file1 CommonSolutionDef, DebugSolutionDef

project1/file2
CommonSolutionDef,
DebugSolutionDef,CommonFile1Def,
DebugFile1Def

project2/file1
CommonSolutionDef, DebugSolutionDef,
ProjectDef

project2/file2
ComonSolutionDef, DebugSolutionDef,
ProjectDef, File2Def

project1/file1 CommonSolutionDef, ReleaseSolutionDef

project1/file2
CommonSolutionDef, ReleaseSolutionDef,
CommonFile1Def

project2/file1
CommonSolutionDef, ReleaseSolutionDef,
ProjectDef

project2/file2
ComonSolutionDef, ReleaseSolutionDef,
ProjectDef, File2Def

58 CrossStudio Reference
Project management

Creating a configuration

You can create your own configurations using Build > Build Configurations
which will show the Configurations dialog. The New button will produce a
dialog that allows you name your configuration. You can now specify which
existing configurations your new configuration will inherit values from.

Deleteing a configuration

You can delete a configuration by selecting it and pressing the Remove button.
Note that this operation cannot be undone or cancelled so beware.

Hidden configurations

There are some configurations that are defined purely for inheriting and as
such shouldn't appear in the build combo box. When you select a
configuration in the configuration dialog you can specify if you want that
configuration to be hidden.

Project dependencies and build order

You can set up dependency relationships between projects using the Project
Dependencies dialog. Project dependencies make it possible to build
solutions in the correct order and where the target permits, to manage loading
and deleting applications and libraries in the correct order. A typically usage
of project dependencies is to make an executable project dependent upon a
library executable. When you elect to build the executable then the build
system will ensure that the library it is dependent upon is up to date. In the
case of a dependent library then the output file of the library build is supplied
as an input to the executable build so you don't have to worry about this.

Project dependencies are stored as project properties and as such can be
defined differently based upon the selected configuration. You almost always
want project dependencies to be independent of the configuration so the
Project Dependencies dialog selects the Common configuration by default.

Making a project dependent upon another

To make one project dependent upon another, do the following:

From the Project menu, click Dependencies to display the Project
Dependencies dialog.

From the Project dropdown, select the target project which depends upon
other projects.

In the Depends Upon list box, check the projects that the target project
depends upon and uncheck the projects that it does not depend upon.

59

Some items in the Depends Upon list box may be disabled, which indicates
that if the project were checked, a circular dependency would result. Studio
prevents you from constructing circular dependencies using the Project
Dependencies dialog.

Finding the project build order

To display the project build order, do the following:

From the Project menu, click Build Order to display the Project
Dependencies dialog with the Build Order tab selected.

The projects build in order from top to bottom.

If your target supports loading of multiple projects, then the Build Order also
reflects the order in which projects are loaded onto the target. Projects will
load, in order, from top to bottom. Generally, libraries need to be loaded before
applications that use them, and you can ensure that this happens by making
the application dependent upon the library. With this a dependency set, the
library gets built before the application and loaded before the application.

Applications are deleted from a target in reverse build order, and as such
applications are removed before the libraries that they depend upon.

Project macros

You can use macros to modify the way that the project system refers to files.
Macros are divided into four classes:

System Macros. These are provided by the Studio application and are
used to relay information from the environment, such as paths to common
directories.

Global Macros. These macros are saved in the environment and are
shared across all solutions and projects. Typically, you would set up paths
to library or external items here.

Project Macros. These macros are saved in the project file as project
properties and can define macro values specific to the solution/project
they are defined in.

Build Macros. These macros are generated by the project system
whenever a build occurs.

60 CrossStudio Reference
Project management

System macros

The following macro values are defined by the system

System macros can be used in build properties and also for environment
settings.

Global macros

To define a global macro

Select Macros from the Project menu.

Click on the the Global tab.

Set the macro using the syntax name = replacement text.

Project macros

To define a project macro

Select Macros from the Project menu.

Click on the Project tab.

Select the solution or project the macro should apply to.

Set the macro using the syntax name = replacement text.

Alternatively you can set the project macros from the properties window:

Select the appropriate solution/project in the Project Explorer.

In the properties window, select the Macros property in the General
Options group.

Click on the the ellipsis button on the right.

Set the macro using the syntax name = replacement text.

Build macros

The following macro values are defined by the project system for a build of a
given project node.

Macro Description

StudioDir The install directory of the CrossStudio application.

Macro Description

ProjectDir The project directory.

61

Using macros

You can use a macro in a project property or an environment setting using the
$(macro) syntax. For example the Object File Name property has a default
value of $(IntDir)/$(InputName)$(OBJ).

To enable debugging of builds you should use the Build Information... dialog
that is on the context menu of the project explorer. This dialog will give a full
list of the macros that are specified for the project node selected together with
the macro expanded property values.

Building projects

CrossStudio provides a facility to build projects in various configurations.

ProjectName The project name.

Configuration The selected build configuration.

SolutionDir The directory containing the solution file.

SolutionName The solution name.

InputFileName The name of an input file relative to its project directory.

InputName
The name of an input file relative to its project directory
without its extension.

InputExt The extension of an input file.

IntDir
The macro-expanded value of the Intermediate
Directory property.

OutDir
The macro-expanded value of the Output Directory
property.

EXE
The default file extension for an executable file including
the dot.

LIB
The default file extension for a library file including the
dot.

OBJ
The default file extension for an object file including the
dot.

LibExt
A platform specific library extension that is generated
based on project property values.

Macro Description

62 CrossStudio Reference
Building projects

Build configurations and their uses

Configurations are typically used to differentiate debug builds from release
builds. For example, debug builds will have different compiler options to a
release buid: a debug build will set the options so that the project can be
debugged easily, whereas a release build will enable optimization to reduce
program size or increase its speed. Configurations have other uses; for
example, you can use configurations to produce variants of software such as a
library for for several different hardware variants.

Configurations inherit properties from other configurations. This provides a
single point of change for definitions that are common to configurations. A
particular property can be overridden in a particular configuration to provide
configuration-specific settings.

When a solution is created two configurations are generated, Debug and
Release, and you can create additional configurations using Build > Build
Configurations. Before you build, ensure that the appropriate configuration is
set using Project > Set Active Build Configuration or alternatively the
configuration box in the build tool bar. You should also ensure that the
appropriate build properties are set in the properties window.

Building your applications

When CrossStudio builds your application, it tries to avoid building files that
have not changed since they were last built. It does this by comparing the
modification dates of the generated files with the modification dates of the
dependent files together with the modification dates of the properties that
pertain to the build. If you are copying files then sometimes the modification
dates may not be updated when the file is copied— in this instance it is wise
to use the Rebuild command rather than the Build command.

You can see the build rationale CrossStudio is using by setting the
Environment Properties | Build Settings | Show Build Information
property and the build commands themselves by setting the Environment
Properties | Build Settings | Echo Build Command property.

You may have a solution that contains several projects that are dependent
upon each. Typically you might have several executable project and some
library projects. The Project > Dependencies dialog specifies the
dependencies between projects and to see the affect those dependencies have
on the solution build order. Note that dependencies can be set on a per
configuration basis but the default is for dependencies to be defined in the
Common configuration.

63

You will also notice that new folders titled Dependencies has appeared in the
project explorer. These folder contains the list of newly generated files and the
files that they where generated from. These files can be decoded and displayed
in the editor by right clicking on the file and seeing if it supports the View
operation.

If you have the symbols window displayed then it will be updated with the
symbol and section information of all executable files that have been built in
the solution.

When CrossStudio builds projects it uses the values set in the properties
window. To generalise your builds you can define macro values that are
substituted when the project properties are used. These macro values can be
defined globally at the solution and project level and can be defined on a per
configuration basis. You can view and update the macro values using Project
> Macros.

The combination of configurations, properties with inheritance, dependencies
and macros provides a very powerful build management system. However,
these systems can become complicated. To enable you to understand the
implications of changing build settings, right clicking a node in the project
explorer and selecting Properties brings up a dialog that shows the macros
and build steps that apply to that project node.

Building all projects

To build all projects in the solution, do one of the following:

On the Build toolbar, click the Build Solution button.

—or—

From the Build menu, select Build Solution.

—or—

Type Alt+F7.

—or—

Right click the solution in the Project Explorer window.

From the menu, click Build.

Building a single project

To build a single project only, do one of the following:

Select the required project in the Project Explorer.

On the Build tool bar, click the Build tool button.

—or—

64 CrossStudio Reference
Source code control

Select the required project in the Project Explorer.

From the the Project menu, click Build.

—or—

Right-click on the required project in the Project Explorer window.

From the menu, click Build.

Compiling a single file

To compile a single file, do one of the following:

In the Project Explorer, right click the source file to compile.

From the menu, click Compile.

—or—

In the Project Explorer, click the source file to compile.

From the Build menu, click Compile.

—or—

In the Project Explorer, click the source file to compile.

Type Ctrl+F7.

Correcting errors after building

The results of a build are displayed in the Build Log in the Output window.
Errors are highlighted in red, and warnings are highlighted in yellow. Double-
clicking an error, warning, or note will move the cursor to the appropriate
source line.

You can move forward and backward through errors using Search > Next
Location and Search > Previous Location.

Source code control

CrossWorks supports team development of applications using source code
control. At present CrossWorks integrates with Microsoft Visual SourceSafe,
SourceGear SourceOffSite 3.5.1, and CVS. The source code control integration
capability provides:

Connecting to the source control database (sometimes called a repository).

65

Mapping files in the project system to those in the source code control
system

Showing the source control status of files and projects

Adding and removing files and projects from source control

Typical source control operations such as Add to source control, Remove
from source control, and so on.

Configuring source control

You need to configure CrossStudio to use source control in your projects. This
section describes how to configure CrossStudio and your projects for source
control.

Connecting to the source control system

Before you can check files in and out of source code control, you must connect
to the source control system. To connect to the source control system, do the
following:

From the Project menu, click Source Control then Connect...

This displays a source control system specific dialog that enables you specify
which source control database to connect to and to enter passwords etc. This
dialog will reappear each time you load the solution to provide you with the
opportunity to cancel source control connection.

Mapping files

In order to map local files to those in the source control database, the project
file is taken to be the root of the project hierarchy. The first time CrossWorks
tries to check the source control status of the project file it will prompt you to
specify the location of this file in the source control database. This mapping
will be stored in the session file so you won't need to specify the mapping each
time the project is loaded. If you cancel at the prompt to specify the location of
a project file in the source control database, use Project | Source Control |
Add To Source Control to make CrossWorks prompt again.

If a project directory is defined for a project file then this will be prepended to
the filename in the project when mapping to files in the source control system.
Note that only relative project directories (and filenames) are supported.

66 CrossStudio Reference
Source code control

Using source control

Once you have configured source control in CrossStudio, you can use the
CrossStudio features to manipulate files in the source control system.

Adding files to source control

To add a file to the source control system so that it can be controlled, checked
in, checked out, and so on, do the following:

In the Project Explorer, right click the file to add to source control.

From the menu, click Source Control then Add To Source Control.

Checking files out

To check a file out of the source control system, do the following:

In the Project Explorer, right click the file to check out.

From the menu, click Source Control then Check Out.

—or—

In the Project Explorer, click the file to check out.

From the Project menu, click Source Control then Check Out.

—or—

In the Project Explorer, click the file to check out.

On the Source Control tool bar, click the Check Out button.

Checking files in

To check a file into the source control system, do the following:

In the Project Explorer, right click the file to check in.

From the menu, click Source Control then Check In.

—or—

In the Project Explorer, click the file to check out.

From the Project menu, click Source Control then Check In.

—or—

In the Project Explorer, click the file to check out.

On the Source Control tool bar, click the Check In button.

67

Undoing check outs

To under a check out and return a file on disk to its previous checked in state,
do the following:

In the Project Explorer, right click the file to undo the check out of.

From the menu, click Source Control then Undo Check Out.

Getting the latest version of a file

To retrieve the latest version of a file from source control, do the following:

In the Project Explorer, right click the file to check out.

From the menu, click Source Control then Get Latest Version.

Showing the differences between files

To show the differences between the file on disk and the version checked into
source control, do the following:

In the Project Explorer, right click the file to show the differences of.

From the menu, click Source Control then Show Differences.

Removing a file from source control

To remove a file from being managed by the source control system, do the
following:

In the Project Explorer, right click the file to remove from source control.

From the menu, click Source Control then Remove From Source Control.

Note that this deletes the file from the source code control system but does not
touch the working file on disk and does not remove the file from the project.

Source control properties

When a file is controlled, the Properties window shows the following
properties in the Source Control Options group:

Checked Out. If Yes, the file is checked out by you to the project location;
if No, the file is not checked out.

Different. If Yes, the checked out file differs from the one held in the
source control system; if No, they are identical.

File Path. The file path of the file in the source control system.

Old Version. If Yes, the file in the project location is an old version
compared to the latest version in the source control system.

68 CrossStudio Reference
Debug expressions

Status. Controlled indicates that the file is controlled by the source code
control system.

Source control status

By selecting Project > Source Control > Show Status a window is displayed
that shows the current source control state of each file in the project. If a local
file has been changed then this file is displayed in red. You can use this
window to do multiple source control operations e.g. add several files to the
source control. You can restrict the file list to a node in the project hierarchy e.g.
all files of a folder, and supply a filter which enables the file list to be restricted
to the source control status e.g. all files that are different.

When a given file or solution is selected in the project explorer, the source
control properties appear in the properties window—these properties reflect
the local checkout status of the file and whether or not it has been modified.

Debug expressions

The debugger can evaluate simple expressions that can be subsequently
displayed in the watch window or as a tool-tip in the code editor.

The simplest expression is an identifier which the debugger tries to interpret
in the following order

an identifier that exists in the scope of the current context.

the name of a global identifier in the program of the current context.

Numbers can be used in expressions, hexadecimal numbers must be prefixed
with 0x.

Registers can be referenced by prefixing the register name with an @.

The standard programming language operators !, ~, *, /, %, +, -, >>, <<, <, <=,
>, >=, ==, |=, &, ^, |, &&, || are supported on number types.

The standard assignment operators =, +=, -=, *=, /=, %=, >>=, <<=, &=, |=, ̂ =
are supported on number types.

The array subscript [] operator is supported on array and pointer types.

The structure access operator . is supported on structured types (this also
works on pointers to structures) and the -> works similarly.

The dereference operator (prefix *) is supported on pointers, the addressof
(prefix &) and sizeof operators are supported.

Casting to basic pointer types is supported. For example (unsigned char
*)0x300 can be used to display the memory at a given location.

69

Operators have the precedence and associativity that one would expect of a C
like programming language.

Source code editor

The Code Editor is a text editor which allows you to edit text, but has features
that make it particularly well suited to editing code and is referred to as either
the Text Editor or the Code Editor, based on its content.

You can open multiple code editors to view or edit the code in projects and
copy and paste among them. The Windows menu contains a list of all open
code editors..

The code editor supports the language of the source file that it is editing,
showing code with syntax highlighting and offering smart indenting.

You can open a code editor in several ways, some of which are:

By double clicking on a file in the Project Explorer or by right clicking on
a file and selecting Open from the context menu.

Using the File menu New or Open commands.

Right clicking in a source file and selecting a file from the Open Include
File menu.

Elements of the code editor

The code editor is divided into several elements which are described here.

Code Pane The area where you edit your code. You can set options that
affect the behavior of text in the code pane as it relates to indenting,
tabbing, dragging and dropping of text, and so forth. For more
information, see General, All Languages, Text Editor, Options Dialog Box.

Margin gutter A gray area on the left side of the code editor where margin
indicators such as breakpoints, bookmarks, and shortcuts are displayed.
Clicking this area sets a breakpoint on the corresponding line of code. You
can hide or display the Margin Indicator bar in General, Tools, Text Editor,
Options dialog box.

Horizontal and vertical scroll bars Allows you to scroll the code pane
horizontally and vertically so that you can view the code that extends
beyond the viewable edges of the code pane. You can hide or display the
horizontal and vertical scroll bars using the General, Tools, Text Editor,
Options dialog box.

70 CrossStudio Reference
Source code editor

Navigation

There are several ways to move around code editors:

Mouse and cursor motion keys

Bookmarks

The Go To Line command

The Navigate Backward and Navigate Forward buttons

Navigating with the mouse and keyboard
The most common way to navigate text is with the mouse and cursor motion
keys:

Click a location with the mouse.

Use the arrow keys to move one character at a time, or the arrow keys in
combination with the Ctrl key to move one word at a time.

Use the scroll bars or scroll wheel on the mouse to move through the text.

Use the Home, End, PageUp, and PageDown keys.

Use Alt+PageUp and Alt+PageDown to move the insertion point to the
top or bottom of the window, respectively.

Use Ctrl+Up and Ctrl+Down to scroll the view without moving the
insertion point.

The keystrokes most commonly used to navigate around a document are:

Keystroke Description

Up Moves the cursor up one line.

Down Moves the cursor down one line.

Left Moves the cursor left one character.

Right Moves the cursor right one character.

Home
Moves the cursor to the first character on the line. Pressing Home
a second time moves the cursor to the first column.

End Moves the cursor to the end of the line.

PageUp Moves the cursor up one page.

PageDown Moves the cursor down one page.

71

Go To Line
To move the cursor to a particular line number, do one of the following:

From the Edit menu, click Advanced then Go To Line.

Enter the line number to move the cursor to.

—or—

Type Ctrl+G, Ctrl+L.

Enter the line number to move the cursor to.

Selecting Text

Selecting text with the keyboard

You can select text using the keyboard by using Shift with the navigation keys.

Hold Shift key down while using the Navigation Keys.

Selecting text with the mouse

Move mouse cursor to the point in the document that you want to start
selecting.

Hold down left mouse button and drag mouse to mark selection.

Release left mouse button to end selection.

Ctrl+Left Moves the cursor left one word.

Ctrl+Right Moves the cursor right one word.

Ctrl+Up Moves the cursor to the previous function.

Ctrl+Down Moves the cursor to the next function.

Ctrl+Home Moves the cursor to the start of the document.

Ctrl+End Moves the cursor to the end of the document.

Alt+Up Scrolls the document up by one line.

Alt+Down Scrolls the document down by one line.

Keystroke Description

72 CrossStudio Reference
Source code editor

Matching Delimiters
The editor can find the matching partner for delimiter characters such as (), [],
{}, <>.

To match a delimiter

Move cursor to the left of the delimiter character to be matched.

Select Edit | Advanced | Match Delimiter menu item or use Ctrl+] keys.

To select a delimited range

Move cursor to the left of the delimiter character to be matched.

Use Ctrl+Shift+] keys.

Bookmarks

To edit a document elsewhere and then return to your current location, add a
bookmark. The bookmarks presented in this section are temporary bookmarks
and their positions are not saved when the file is closed nor when the solution
is closed.

Adding a bookmark

To add a temporary bookmark, move to the line you want to bookmark and do
one of the following:

On the Text Edit tool bar, click the Toggle Bookmark button.

—or—

From the Edit menu, click Bookmarks then Toggle Bookmark.

—or—

Type Ctrl+F2.

A temporary bookmark symbol appears next to the line in the indicator
margin which shows that the bookmark has been set.

Moving through bookmarks

To navigate forward through temporary bookmarks, do one of the following:

On the Text Edit tool bar, click the Next Bookmark button.

—or—

From the Edit menu, click Bookmarks then Next Bookmark.

73

—or—

Type F2.

The editor moves the cursor to the next bookmark set in the document. If there
is no following bookmark, the cursor is moved to the first bookmark in the
document.

To navigate backward through temporary bookmarks, do one of the following:

On the Text Edit tool bar, click the Previous Bookmark button.

—or—

From the Edit menu, click Bookmarks then Previous Bookmark.

—or—

Type Shift+F2.

The editor moves the cursor to the previous bookmark set in the document. If
there is no previous bookmark, the cursor is moved to the last bookmark in the
document.

Moving to the first or last bookmark

To move to the first bookmark set in a document, do one of the following:

From the Edit menu, click Bookmarks then First Bookmark.

—or—

Type Ctrl+K, F2.

To move to the last bookmark set in a document, do one of the following:

From the Edit menu, click Bookmarks then Last Bookmark.

—or—

Type Ctrl+K, Shift+F2.

Removing bookmarks

To remove a temporary bookmark, move to the line you want to remove the
bookmark from and do one of the following:

On the Text Edit tool bar, click the Toggle Bookmark button.

—or—

From the Edit menu, click Bookmarks then Toggle Bookmark.

—or—

Type Ctrl+F2.

74 CrossStudio Reference
Source code editor

The temporary bookmark symbol disappears whoch shows that the bookmark
has been removed.

To remove all temporary bookmarks set in a document, do the following:

From the Edit menu, click Bookmarks then Clear All Bookmarks.

—or—

Type Ctrl+Shift+F2.

Changing text

Whether you are editing code, HTML, or plain text, the Code Editor is just line
many other text editors or word processors. For code that is part of a project,
the project's programming language support provides syntax highlighting
colorization, indentation, and so on.

Adding text
The editor has two text input modes:

Insertion mode As text is entered it is inserted at the current cursor
position and any text to the right of the cursor is shifted along. A visual
indication of inserion mode is a that the cursor is a flashing line.

Overstrike mode As text is entered it replaces any text to the right of the
cursor. A visual indication of inserion mode is that the cursor is a flashing
block.

Insert and overstrike modes are common to all editors: if one editor is in insert
mode, all editors are set to insert mode.. You can configure the cursor
appearance in both insertion and overstrike modes using the Tools > Options
dialog in the Text Editor > General pane.

Changing to insertion or overstrike mode

To toggle between insertion and overstrike mode, do the following:

Press the Insert button to toggle between insert and overwrite mode.

If overstike mode is enabled, the OVR status indicator will be enabled and
the overstrike cursor will be visible.

Adding or inserting text

To add or insert text, do the following:

Either click somewhere in the document or move the cursor to the desired
location.

75

Enter the text.

If your cursor is between existing characters, the text is inserted between
them.

To overwrite characters in an existing line, press the Insert key to put the editor
in Overstrike mode.

Deleting text
The text editor supports the following common editing keystrokes:

Deleting characters

To delete characters or a words in a line, do the following:

Place the cursor immediately before the word or letter you want to delete.

Press the Delete key as many times as needed to delete the characters or
words.

—or—

Place your cursor at the end of the letter or word you want to delete.

Press the Backspace key as many times as needed to delete the characters
or words.

Note You can double-click a word and then press Delete or Backspace to
delete it.

Deleting lines or paragraphs

To delete text which spans more than a few characters, do the following:

Highlight the text you want to delete by selecting it. You can select text by
holding down the left mouse button and dragging over the text, or by
using the Shift key with the either the arrow keys or the Home, End, Page
Up, Page Down keys.

Press Delete or Backspace.

Key Description

Backspace Deletes one character to the left of the cursor

Delete Deletes one character to the right of the cursor

Ctrl+Backspace Deletes one word to the left of the cursor

Ctrl+Delete Deletes one word to the right of the cursor

76 CrossStudio Reference
Source code editor

Using the clipboard

Copying text

To copy the selected text to the clipboard, do one of the following:

From the Edit menu, select Copy.

—or—

Type Ctrl+C.

—or—

Type Ctrl+Ins.

To append the selected text to the clipboard, do the following:

From the Edit menu, click Clipboard then Copy Append.

To copy whole lines from the current editor and place them onto the clipboard

Select Edit | Clipboard | Copy Lines menu item.

To copy whole lines from the current editor and append them onto the end of
the clipboard

Select Edit | Clipboard | Copy Lines Append menu item.

To copy bookmarked lines from the current editor place them onto the
clipboard

Select Edit | Clipboard | Copy Marked Lines menu item.

To copy bookmarked lines from the current editor and append them onto the
end of the clipboard

Select Edit | Clipboard | Copy Marked Lines Append menu item.

Cutting text

To cut the selected text to the clipboard, do one of the following:

From the Edit menu, click Cut.

—or—

Type Ctrl+X.

—or—

Type Shift+Del.

To cut selected text from the current editor and append them onto the end of
the clipboard

77

Select Edit | Clipboard | Cut Append menu item.

To cut whole lines from the current editor and place them onto the clipboard

Select Edit | Clipboard | Cut Lines menu item.

To cut whole lines from the current editor and append them onto the end of the
clipboard

Select Edit | Clipboard | Cut Lines Append menu item.

To cut bookmarked lines from the current editor and place them onto the
clipboard

Select Edit | Clipboard | Cut Marked Lines menu item.

To cut bookmarked lines from the current editor and append them onto the
end of the clipboard

Select Edit | Clipboard | Cut Marked Lines Append menu item.

Pasting text

To paste text into current editor from clipboard, do one of the following:

From the Edit menu, click Paste.

—or—

Type Ctrl+V.

—or—

Type Shift+Ins.

To paste text into a new editor from clipboard, do the following:

From the Edit menu, click Clipboard then Paste As New Document.

Clearing the clipboard

To clear the clipboard, do the following:

From the Edit menu, click Clipboard then Clear Clipboard.

Drag and drop editing

You can select text and then drag and drop it in another location. You can drag
text to a different location in the same text editor or to another text editor.

Dragging and dropping text

To drag and drop text, do the following:

78 CrossStudio Reference
Source code editor

Select the text you want to move, either with the mouse or with the
keyboard.

Click on the highlighted text and keep the mouse button pressed.

Move the mouse cursor to where you want to place the text.

Release the mouse button to drop the text.

Dragging text moves it to the new location. You can copy the text to a new
location by holding down the Ctrl key while moving the text: the mouse cursor
changes to indicate a copy. Pressing the Esc key while dragging text will cancel
a drag and drop edit.

Enabling drag and drop editing

To enable or disable drag and drop editing, do the following:

From the Tools menu, click Options.

Under Text Editor, click General.

In the Editing section, check Drag/drop editing to enable drag and drop
editing or uncheck it to disable drag and drop editing.

Undo and redo

The editor has an undo facility to undo previous editing actions. The redo
feature can be used to re-apply previously undone editing actions.

Undoing one edit

To undo one editing action, do one of the following:

From the Edit menu, click Undo.

—or—

On the Standard toolbar, click the Undo tool button.

—or—

Type Ctrl+Z or Alt+Backspace.

Undoing multiple edits

To undo multiple editing actions, do the following:

On the Standard toolbar, click the arrow next to the Undo tool button.

From the menu, select the editing operations to undo.

79

Undoing all edits

To undo all edits, do one of the following:

From the Edit menu, click Advanced then Undo All.

—or—

Type Ctrl+K, Ctrl+Z.

Redoing one edit

To redo one editing action, do one of the following:

From the Edit menu, click Redo.

—or—

On the Standard toolbar, click the Redo tool button.

—or—

Type Ctrl+Y or Alt+Shift+Backspace.

Redoing multiple edits

To redo multiple editing actions, do the following:

On the Standard toolbar, click the arrow next to the Redo tool button.

From the menu, select the editing operations to redo.

Redoing all edits

To redo all edits, do one of the following:

From the Edit menu, click Advanced then Redo All.

—or—

Type Ctrl+K, Ctrl+Y.

Indentation

The editor uses the Tab key to increase or decrease the indentation level. The
indentation size can be altered in the editor's Language Properties window.

Changing indentation size

To change the indentation size, do the following:

Select the Properties Window.

Select the Language Properties pane.

80 CrossStudio Reference
Source code editor

Set the Indent Size property for the required language.

The editor can optionally use tab characters to fill whitespace when indenting.
The use of tabs for filling whitespace can be selected in the editor's Language
Properties window.

Selecting tab or space fill when indenting

To enable or disable the use of tab characters when indenting, do the following:

Select the Properties Window.

Select the Language Properties pane.

Set the Use Tabs property for the required language. Note that changing
this setting does not add or remove existing tabs from files, the change will
only effect new indents.

The editor can provide assistance with source code indentation while inserting
text. There are three levels of indentation assistance:

None The indentation of the source code is left to the user.

Indent This is the default. The editor maintains the current indentation
level. When Return or Enter is pressed, the editor automatically moves the
cursor to the indentation level of the previous line.

Smart The editor analyses the source code to compute the appropriate
indentation level for the line. The number of lines before the current cursor
position that are analysed for context can be altered. The smart indent
mode can be configured to either indent open and closing braces or the
lines following the braces.

Changing indentation options

To change the indentation mode, do the following:

Select the Properties Window.

Select the Language Properties pane.

Set the Indent Mode property for the required language.

To change whether opening braces are indented in smart indent mode, do the
following:

Select the Properties Window.

Select the Language Properties pane.

Set the Indent Opening Brace property for the required language.

To change whether closing braces are indented in smart indent mode, do the
following:

81

Select the Properties Window.

Select the Language Properties pane.

Set the Indent Closing Brace property for the required language.

Changing indentation context

To change number of previous line used for context in smart indent mode, do
the following:

Select the Properties Window.

Select the Language Properties pane.

Set the Indent Context Lines property for the required language.

File management

To create a file

Select File | New | New File menu item.

Opening an existing file

To open an existing file, do one of the following:

From the File menu, click Open...

Choose the file to open from the dialog.

Click Open.

—or—

Type Ctrl+O.

Choose the file to open from the dialog.

Click Open.

Opening multiple files

To open multiple existing files in the same directory, do one of the following

Select File | Open menu item.

Choose multiple files to open from the dialog. Hold down Ctrl key to add
individual files or hold down Shift to select a range of files.

Select Open from the dialog.

82 CrossStudio Reference
Source code editor

Saving a file

To save a file, do one of the following:

Activate the editor to save.

From the File menu, click Save.

—or—

Activate the editor to save.

Type Ctrl+S.

—or—

Right click the tab of the editor to save.

From the popup menu, click Save.

Saving a file to a different name

:To save a file, do one of the following:

Select editor to save.

From the File menu, click Save As...

Enter the new file name and click Save.

—or—

Right click the tab of the editor to save.

From the popup menu, click Save As...

Enter the new file name and click Save.

Printing a file

:To print a file, do one of the following:

Select editor to print.

From the File menu, click Print...

Select the printer to print to and click OK.

—or—

Right click the tab of the editor to print.

From the popup menu, click Print...

Select the printer to print to and click OK.

83

To insert a file at the current cursor position

Select the editor to insert file into.

Move the cursor to the required insertion point.

Select Edit | Insert File menu item.

Select file to insert.

Click Open button.

To toggle a file's write permission

Select the editor containing the file.

Select Edit | Advanced | Toggle Read Only.

Find and replace

To find text in a single file

Select Edit | Find and Replace | Find... menu item.

Enter the string to be found in the Find what input.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole word, i.e. there will be whitespace, the
beginning or the end of line on either side of the string being searched for,
set the Match whole word option.

If the search string is a Regular expressions (page 85), set the Use regular
expression option.

If the search should move up the document from the current cursor
position rather than down the document, set the Search up option.

Click Find button to find next occurrence of the string or click Mark All to
bookmark all lines in the file containing the string.

To find text within a selection

Select text to be searched.

Select Edit | Find and Replace | Find... menu item.

Enter the string to be found in the Find what input.

If the search will be case sensitive, set the Match case option.

84 CrossStudio Reference
Source code editor

If the search will be for a whole word, i.e. there will be whitespace, the
beginning or the end of line on either side of the string being searched for,
set the Match whole word option.

If the search string is a Regular expressions (page 85), set the Use regular
expression option.

If the search should move up the document from the current cursor
position rather than down the document, set the Search up option.

Click Mark All to bookmark all lines in the selection containing the string.

To find and replace text

Select Edit | Find and Replace | Replace... menu item.

Enter the string to be found in the Find what input.

Enter the string to replace the found string with in the Replace with input.
If the search string is a Regular expressions (page 85) then the \n
backreference can be used in the replace string to reference captured text.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole word, i.e. there will be whitespace, the
beginning or the end of line on either side of the string being searched for,
set the Match whole word option.

If the search string is a Regular expressions (page 85), set the Use regular
expression option.

If the search should move up the document from the current cursor
position rather than down the document, set the Search up option.

Click Find button to find next occurrence of string and then Replace
button to replace the found string with replacement string or click Replace
All to replace all occurrences of the string without prompting.

To find text in multiple files

Select Edit | Find and Replace | Find in Files... menu item.

Enter the string to be found in the Find what input.

Enter the wildcard to use to filter the files in the In file types input.

Enter the folder to start search in the In folder input.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole word, i.e. there will be whitespace, the
beginning or the end of line on either side of the string being searched for,
set the Match whole word option.

85

If the search string is a Regular expressions (page 85), set the Use regular
expression option.

If the search will be carried out in the root folder's sub-folders, set the Look
in subfolders option.

The output of the search results can go into two separate panes. If the
output should go into the second pane, select Output to pane 2 option.

Click Find button.

Regular expressions

The editor can search and replace test using regular expressions. A regular
expression is a string that uses special characters to describe and reference
patterns of text. The regular expression system used by the editor is modelled
on Perl's regexp language. For more information on regular expressions, see
Mastering Regular Expressions, Jeffrey E F Freidl, ISBN 0596002890.

Summary of special characters
The following table summarizes the special characters that the CrossStudio
editor supports.

Characters Meaning

\d Match a numeric character.

\D Match a non-numeric character.

\s Match a whitespace character.

\S Match a non-whitespace character.

\w Match a word character.

\W Match a non-word character.

[c]

Match set of characters, e.g. [ch] matches characters c or h. A range
can be specified using the '-' character, e.g. [0-27-9] matches if
character is 0, 1, 2, 7 8 or 9. A range can be negated using the '^'
character, e.g. [^a-z] matches if character is anything other than a
lower case alphabetic character.

\c
The literal character c. For example to match the character * you
would use *.

\a Match ASCII bell character.

86 CrossStudio Reference
Source code editor

Examples
The following regular expressions can be used with the editor's search and
replace operations. To use the regular expression mode the Use regular
expression check box must be set in the search and replace dialog. Once

\f Match ASCII form feed character.

\n Match ASCII line feed character.

\r Match ASCII carriage return character.

\t Match ASCII horizontal tab character.

\v Match ASCII vertical tab character.

\xhhhh Match Unicode character specified by hexadecimal number hhhh.

. Match any character.

* Match zero or more occurrences of the preceding expression.

+ Match one or more occurrences of the preceding expression.

? Match zero or one occurrences of the preceding expression.

{n} Match n occurrences of the preceding expression.

{n,} Match at least n occurrences of the preceding expression.

{,m} Match at most m occurrences of the preceding expression.

{n,m}
Match at least n and at most m occurrences of the preceding
expression.

^ Beginning of line.

$ End of line.

\b Word boundary.

\B Non-word boundary.

(e) Capture expression e.

\n Backreference to nth captured text.

Characters Meaning

87

enabled, the regular expressions can be used in the Find what search string.
The Replace with strings can use the "\n" backreference string to reference any
captured strings.

Advanced editor features

Code Templates
The editor provides the ability to use code templates. A code template is a
block of frequently used source code that can be inserted automatically by
using a particular key sequence. A '|' character is used in the template to
indicate the required position of the cursor after the template has been
expanded.

To view code templates

Select Edit | Advanced | View Code Templates menu item.

Code templates can either be expanded manually or automatically when the
Space key is pressed.

To expand a code template manually

Type a key sequence, for example the keys c followed by b for the
comment block template.

Select Edit | Advanced | Expand Template or type Ctrl+J to expand the
template.

To expand the template automatically

Ensure the Expand Templates On Space editor property is enabled.

"Find what"
String

"Replace with"
String

Description

u\w.d
Search for any length string containing one or
more word characters beginning with the
character ‘u’ and ending in the character ‘d’.

^.*;$ Search for any lines ending in a semicolon.

(typedef.+\s+)(
\S+);

\1TEST_\2;
Find C type definition and insert the string
“TEST” onto the beginning of the type name.

88 CrossStudio Reference
Source code editor

Type a key sequence, for example the keys c followed by b for the
comment block template.

Now type Space key to expand the template.

Editing Macros
The editor has a number of built-in macros for carrying out common editing
actions.

To declare a type

Select Edit | Editing Macros | Declare Or Cast Tomenu item for required
type.

To cast to a type

Select text in the editor containing expression to cast.

Select Edit | Editing Macros | Declare Or Cast Tomenu item for required
type cast.

To insert a qualifier

Select Edit | Editing Macros | Insert menu item for required qualifier.

Tab Characters
The editor can either use tab characters or only use space characters to fill
whitespace. The use of tabs or spaces when indenting can be specified in the
editor's language properties. The editor can also add or remove tabs characters
in blocks of selected text.

To replace spaces with tab characters in selected text

Select text.

Select Edit | Advanced | Tabify Selection menu item

To replace tab characters with spaces in selected text

Select text.

Select Edit | Advanced | Untabify Selection menu item

Changing Case
The editor can change the case of selected areas of text.

89

To change case of selected text to uppercase

Select text.

Select Edit | Advanced | Make Selection Uppercase menu item.

To change case of selected text to lowercase

Select text.

Select Edit | Advanced | Make Selection Lowercase menu item.

Commenting
The editor can add or remove language specific comment characters to areas
of text.

To comment out an area of selected text

Select text to comment out.

Select Edit | Advanced | Comment menu item.

To uncomment an area of selected text

Select text to remove comment characters from.

Select Edit | Advanced | Uncomment menu item.

Indentation
The editor can increase or decrease the indentation level of an area of selected
text.

To increase indentation of selected text

Select text.

Select Edit | Advanced | Increase Line Indent menu item.

To decrease indentation of selected text

Select text.

Select Edit | Advanced | Decrease Line Indent menu item.

Sorting
The editor can sort areas of selected text in ascending or descending ASCII
order.

90 CrossStudio Reference
Source code editor

To sort selected lines into ascending order

Select text to sort.

Select Edit | Advanced | Sort Ascending menu item.

To sort selected lines into descending order

Select text to sort.

Select Edit | Advanced | Sort Descending menu item.

Text Transposition
The editor can transpose word or line pairs.

To transpose the word at the current cursor position with the previous word

Select Edit | Advanced | Transpose Words menu item.

To transpose the current line with the previous line

Select Edit | Advanced | Transpose Lines menu item.

Whitespace

To make whitespace visible

Select Edit | Advanced | Visible Whitespace menu item.

Code templates

The editor provides the ability to use code templates. A code template is a
block of frequently used source code that can be inserted automatically by
using a particular key sequence. A '|' character is used in the template to
indicate the required position of the cursor after the template has been
expanded.

Editing code templates

To edit code templates, do the following:

From the Edit menu, click Advanced then View Code Templates.

Code templates can either be expanded manually or automatically when the
Space key is pressed.

91

Manually expanding a template

To expand a code template manually, do the following:

Type a key sequence, for example the keys c followed by b for the
comment block template.

From the Edit menu, click Advanced then Expand Template or type Ctrl+J
to expand the template.

Automatically expanding templates

To expand the template automatically, do the following:

Ensure the Expand Templates On Space editor property is enabled.

Type a key sequence, for example the keys c followed by b for the
comment block template.

Now type Space key to expand the template.

Memory map editor

Memory map files are tree structured descriptions of the target memory map.
Memory map files are used by the compiler to ensure correct placement of
program sections. Memory map files are used by the debugger so that it knows
which memory addresses are valid on the target and which program sections
to load. You can also use the memory files to direct the debugger to display
memory mapped peripherals. Usually you don't need to modify memory map
files—they will be set up for the particular targets that CrossStudio supports
but it is useful to view them with the memory map editor.

You can open memory map files using File > Open and selecting the XML file
that contains the memory map or alternatively using the View Memory Map
option on the context menu of the Project Explorer.

The memory map editor provides a tree structured view of the memory space
of a target. The memory map consists of a set of different node types that are
arranged in a hierarchy. These nodes have properties that can be modified
using the properties window when the node is selected. These properties and
the placement of nodes within the memory map are used as input to the
program building process so that the linker knows where sections should be
placed. Additionally the debugger uses the information in memory map files
to enable register display and memory display.

The memory map editor supports the following node types:

Root. The top most node of the memory map.

92 CrossStudio Reference
Memory map editor

Memory Segment. A range of addresses that represents a memory region
in the target.

Program Section. Represents a program section of your application.

Register Group. Represents an area of memory that contains a group of
related registers.

Register. Represents a memory mapped register.

Bit Field. Part of a memory mapped register.

The following statements hold regarding the creation and movement of nodes
within a memory

Memory segments can be within the Root segment.

Program sections must be within a memory segment.

Register groups can be within the Root or within a memory segment.

Registers can be within memory segments or register groups.

Bit Fields can be within registers.

All nodes have mandatory and optional properties associated with them. All
nodes have a mandatory Name property. This name should be unique within
the memory map.

Memory segment and register group properties

Start Address. A hexadecimal number stating where the memory begins
(lowest address).

Start Address Symbol. The name of a linker symbol to generate that has
the value of the Start Address.

Size. A hexadecimal number that defines the size in bytes of the memory
segment.

Size Symbol. The name of a linker symbol to generate that has the value
of the Size.

Access Type. Specifies if the memory segment is read only or read/write.

Program section properties

Start Address. An optional hexadecimal value that is the absolute load
position of the section. If this isn't set then the relative placement of the
program section within the memory segment will determine the load
position of the section.

Size. An optional decimal value that is the size in bytes of the program
section.

93

Load. Specifies whether or not the section should be loaded by the
debugger.

Alignment. An optional decimal value that specifies the alignment
requirements of the section.

Section To Run In. An optional name of another program section that this
program section will be copied to.

Input Section Names. The optional names of the files that will be placed
into this section.

Register properties

Start Address. A hexadecimal value specifying where the register is
placed.

Start Address Symbol. The name of a linker symbol to generate that has
the value of the Start Address.

Register Type. Optional, a C type specifying how you want the register to
be displayed. The defaults to the word length of the target processor.

Endian. Optional, specifies the byte order of a multibyte register. This
defaults to the byte order of the target processor.

Bitfield properties

Bit Offset. A decimal value that is the starting bit position of the bit field.
Bit 0 is the first bit position.

Bit Length. A decimal value that defines the number of bits in the field.

The editor has many of the attributes of the text editor and the same key-
bindings for example cut, copy and paste are all accessible from the Edit menu.
In addition to the standard editor capabilities the memory map editor
supports the movement up and down of nodes within a hierarchy. This
enables the sequencing of program sections to be achieved.

Section placement

To describe the desired layout of your program in memory the CrossWorks
project system uses a memory map file and an optional linker placement file.
These files are both xml files and can be edited either with the text editor or
with the built-in memory map editor. The principle usage of the memory map

94 CrossStudio Reference
Section placement

file is to describe the physical location of memory segments on the target. The
specification of where to place program sections is done in terms of these
memory map segments.

Using a single file

In this scheme the sections are explicitly placed in the memory segments of the
memory map file

ROOT
PERIPHERALS1 (0x70000000)
PERIPHERALS2 (0x60000000)
FLASH (0x400000000)

.text

.vectors
SRAM (0x00000000)

.stack

In this system the sections .text and .vectors are placed in the FLASH segment
and the .stack section is placed in the SRAM section.

The memory map file to use for the linkage can either be included as a part of
the project or alternatively it can be specified in the Memory Map File project
property.

Using two files

In this scheme a separate section placement file is used to specify the section
placement by referring to the memory segments of another file. This scheme
enables a single hardware description to be shared across projects and also
enables a project to be built for a variety of hardware descriptions. The format
of a section placement is very similar to a memory map file - however no
addresses are needed for the memory segments.

ROOT
FLASH

.text

.vectors
SRAM

.stack

The memory map file can just contain the memory segment descriptions

ROOT
PERIPHERALS1 (0x70000000)
PERIPHERALS2 (0x60000000)
FLASH (0x400000000)
SRAM (0x00000000)

95

The section placement file to use for linkage can either be included as a part of
the project or alternatively it can be specified in the Section Placement File
project property.

Adding a new section

To add a new section you must create one using the either the assembler or the
compiler. For the CrossWorks C compiler this can be achieved using the
#pragma codeseg("name") directive. For the GNU C compiler this can be
achieved using the __attribute__((section("name")) on the functions. For both
compilers CrossWorks supports renaming of the code, constant, data and
zero'd data using the Section Options properties.

Once you have created a section you can then place it into one of the memory
segments of either the memory map file or the section placement file. Note that
the placement order is kept when the linker command line is generated unless
you specify explicitly an address that the section should be placed at.

Specifying load sections and run sections

If the section you have created is a code section then you should set the Load
property of the section to "Yes". This makes the linker include the section in the
program. For example a new code section called .text2 can be placed into the
program using

ROOT
FLASH

.text2

.text

.vectors
SRAM

.stack

If you specify a new data section then you will need to instruct the linker to put
the initialisation information about the section into the program and you will
need to modify the startup code to initialise the contents of this section from
the program.

Data sections using the CrossWorks linker

For the CrossWorks linker you can specify that initialisation data is stored in
the program using the .init directive and you can refer to the start and end of
the section using the SFE and SFB directives. If for example you create a new
data section called "IDATA2" you can store this in the program by putting the
following into the startup code

data_init_begin2
.init "IDATA2"
data_init_end2

96 CrossStudio Reference
CrossStudio Windows

You can then use these symbols to copy the stored section information into the
data section using (an assembly coded version of)

memcpy(SFB(IDATA2), data_init_begin2, data_init_end2-data_init_end2)

Data sections using the GNU linker

For the GNU linker you have to specify a load section in the program where
the initialisation data will be stored and the run section where it will be copied
to. For example

ROOT
FLASH

.data2

...
SRAM

.data2_run

...

The .data2 section will have the load attribute set to "Yes" and the "section to
run in" attribute set to .data2_run, the .data2_run section will have the load
attribute set to "No".

CrossWorks generates a GNU linker script containing three symbols for each
section marking the load address, start run address and end run address.
These symbols can be used to copy the sections from their load positions to
their run positions.

 memcpy(__data2_start__, __data2_load_start__, __data2_end__ -
__data2_start__);

CrossStudio Windows

This section is a reference to each of the windows in the CrossStudio
environment.

In this section

Breakpoints window (page 100). Describes how to use the breakpoints
window to manage breakpoints in a program.

Call stack window (page 105). Descibes how to traverse the call stack to
examine data and where function calls came from.

Clipboard ring window (page 97). Describes how to use the clipboard
ring to make complex cut-and-pastes easier.

97

Execution counts window (page 110) and Trace window (page 121).
Describes how to gather useful profiling statistics on your application on
the simulator and targets that support execution profiling and tracing.

Globals window (page 110), Locals window (page 112), and Watch
window (page 121). Describes how to examine your application's local
and global variables and how to watch specific variables.

Memory window (page 114). Describes how to look at target memory in
raw hexadecimal form.

Register windows (page 116). Describes how to examine processor
registers and peripherals defined by the project's memory map file.

Threads window (page 119). Describes how CrossStudio can display
thread-local data, tasks and objects when you run your application under
a real-time operating system.

Help window (page 124). Describes how the CrossSudio help system
works and how to get answers to your questions.

Output window (page 126). Describes the output window and the logs it
contains.

Project dependencies and build order (page 58). Describes the project
explorer and how to manage your projects.

Properties window (page 129). Describes the property window and how
to change environment and project properties using it.

Source code control (page 64). Describes how to use the Source Navigator
to easily browse your project's functions, methods, and variable.

Symbol browser (page 132). Describes how you can use the Symbol
browser to find out how much code and data your application requires.

Targets window (page 139). Describes how to manage your target
connections by creating new ones, editing existing ones, and deleteing
unused ones.

Clipboard ring window

The code editor captures all Cut and Copy operations and stores the the cut or
copied item on the Clipboard Ring. The clipboard ring stores the last 20 text
items that were cut or copied, but you can configure the maximum number of
items stored on the clipboard ring using the environment options dialog. The
clipboard ring is an excellent place to store scraps of text when you're working
with many documents and need to cut and paste between them.

98 CrossStudio Reference
CrossStudio Windows

Showing the clipboard ring

To display the Clipboard Ring window if it is hidden, do one of the following:

From the View menu, click Clipboard Ring.

—or—

Type Ctrl+Alt+C.

—or—

Right click the tool bar area to display the View menu.

From the popup menu, click Clipboard Ring.

Pasting an item by cycling the clipboard ring

To paste from the clipboard ring, do the following:

Cut or copy some text from your code. The last item you cut or copy into
the clipboard ring is the current item for pasting.

Type Ctrl+Shift+V to paste the clipboard ring's current item to the current
document.

Repeatedly type Ctrl+Shift+V to cycle through the entries in the clipboard
ring until you get to the one you want to permanently paste in the
document. Each time you press Ctrl+Shift+V, the editor replaces the last
entry you pasted from the clipboard ring so that you end up with only the
last one you selected. The item you stop on then becomes the current item.

Move to another location or cancel the selection. You can use Ctrl+Shift+V
to paste the current item again or cycle the clipboard ring to a new item.

Clicking an item in the clipboard ring makes it the current item.

Pasting a specific item into a document

To paste an item on the clipboard ring directly into the current document, do
one of the following:

Move the cursor to the position where you want to paste the item into the
document.

Display the dropdown menu of the item to paste by clicking the arrow to
its right.

From the menu, click Paste.

—or—

Make the item you want to paste the current item by clicking it.

99

Move the cursor to the position where you want to paste the item into the
document.

Type Ctrl+Shift+V.

Pasting all items into a document

To paste all items on the clipboard ring into the current document, move the
cursor to the position where you want to paste the items into the document
and do one of the following:

From the Edit menu, click Clipboard Ring then Paste All.

—or—

On the Clipboard Ring tool bar, click the Paste All button.

—or—

Type Ctrl+R, Ctrl+V.

Removing a specific item from the clipboard ring

To remove an item from the clipboard ring, do the following:

Display the dropdown menu of the item to delete by clicking the arrow at
the right of the item.

From the menu, click Delete.

Removing all items from the clipboard ring

To remove all items from the clipboard ring, do one of the following:

From the Edit menu, click Clipboard Ring then Clear Clipboard Ring.

—or—

On the Clipboard Ring tool bar, click the Clear Clipboard Ring button.

—or—

Type Ctrl+R, Delete.

Configuring the clipboard ring

To configure the clipboard ring, do the following:

From the Tools menu, select Options.

Under Environment, select Even More...

Check Preserve Contents to save the content of the clipboard ring between
runs, or uncheck it to start with an empty clipboard ring.

100 CrossStudio Reference
CrossStudio Windows

Change Maximum Items to configure the maximum number of items
stored on the clipboard ring.

Build log window

The Build window contain the results of the last build, it is cleared on each
rebuild.

If there are any errors in the build then they are displayed in red. Clicking on
such a line will locate the editor to the errant source line.

The command lines used to do the build can be echoed to the build log using
the tools/options/build/echo checkbox.

Breakpoints window

The Breakpoints window manages the list of currently set breakpoints on the
solution. Using the breakpoint window you can:

Enable, disable and delete existing breakpoints.

Add new breakpoints.

Show the status of existing breakpoints.

Chain breakpoints together.

Breakpoints are stored in the session file so they will be remembered each time
you work on a particular project. When running in the debugger, you can set
breakpoints on assembly code addresses. These low-level breakpoints appear
in the breakpoint window for the duration of the debug run but are not saved
when you stop debugging.

When a breakpoint is hit then the matched breakpoint will be highlighted in
the breakpoint window.

Breakpoints window layout
The Breakpoints window is divided into a tool bar and the main breakpoint
display.

101

The Breakpoint tool bar

The Breakpoints window display

The main part of the Breakpoints window displays the breakpoints that have
been set and what state they are in. You can organize breakpoints into folders,
called breakpoint groups.

CrossStudio displays these icons to the left of each breakpoint:

Button Description

Creates a new breakpoint using the New Breakpoint dialog.

Toggles the selected breakpoint between enabled and disabled
states.

Removes the selected breakpoint.

Moves the cursor to the statement that the selected breakpoint is
set at.

Deletes all breakpoints.

Disables all breakpoints.

Enables all breakpoints.

Creates a new breakpoint group and makes it active.

Icon Description

Enabled breakpoint An enabled breakpoint will stop your
program running when the breakpoint condition is met.

Disabled breapoint A disabled breakpoint will not stop the
program when execution passes through it.

Invalid breakpoint An invalid breakpoint is one where the
breakpoint cannot be set, for example there is no executable code
associated with the source code line where the breakpoint is set
or the processor does not have enough hardware breakpoints.

Chained breakpoint The breakpoint is linked to its parent and is
enabled when its parent is hit.

102 CrossStudio Reference
CrossStudio Windows

Showing the Breakpoints window

To display the Breakpoints window if it is hidden, do one of the following:

From the View menu, click Other Windows then Breakpoints.

—or—

From the Debug menu, click Debug Windows then Breakpoints.

—or—

Type Ctrl+Alt+B.

—or—

On the Debug tool bar, click the Breakpoints icon.

—or—

Right click the tool bar area to display the View menu.

From the popup menu, click Other Windows then Breakpoints.

Managing single breakpoints
You can manage breakpoints in the Breakpoint window.

Deleting a breakpoint

To delete a breakpoint, do the following:

In the Breakpoints window, click the breakpoint to delete.

From the Breakpoints window tool bar, click the Delete Breakpoint
button.

Editing a breakpoint

To edit the properties of a breakpoint, do the following:

In the Breakpoints window, right click the breakpoint to edit.

From the popup menu, click Edit Breakpoint.

Edit the breakpoint in the Breakpoint dialog.

Enabling or disabling a breakpoint

To toggle the enable state of a breakpoint, do one of the following:

In the Breakpoints window, right click the breakpoint to enable or disable.

From the popup menu, click Enable/Disable Breakpoint.

—or—

103

In the Breakpoints window, click the breakpoint to enable or disable.

Type Ctrl+F9.

Chaining breakpoints
You can chain breakpoints together using the Chain Breakpoint From dialog.
When a breakpoint is chained from another breakpoint it will not be hit until
the breakpoint it has been chained from has been hit. Note that when a
breakpoint is chained to another breakpoint then that breakpoint will not stop
your application executing it is there simply to activate the breakpoint
(actually breakpoints) it is chained to.

Chained breakpoints have the breakpoint they are chained from displayed as
child nodes in the tree display you can remove the chain with the right click
context menu.

Note that when you delete or disable a breakpoint that other breakpoints are
chained from then those breakpoints are always activated. The chain will also
remain in case you wish to reset it.

Managing breakpoint groups
Breakpoints are divided into breakpoint groups. You can use breakpoint groups
to specify sets of breakpoints that are applicable to a particular project in the
solution or for a particular debug scenario. Initially there is a single breakpoint
group, named Default, to which all new breakpoints are added.

Creating a new breakpoint group

To create a new breakpoint group, do one of the following:

From the Breakpoints window tool bar, click the New Breakpoint Group
button.

—or—

From the Debug menu, click Breakpoints then New Breakpoint Group.

—or—

Right click anywhere in the Breakpoints window.

From the popup menu, click New Breakpoint Group.

In the New Breakpoint Group Dialog, enter the name of the breakpoint
group.

104 CrossStudio Reference
CrossStudio Windows

Selecting a new active breakpoint group

When you create a breakpoint, it is added to the active breakpoint group. To
make a group the active group, do the following:

In the Breakpoints window, click the breakpoint group to make active.

From the popup menu, click Set as Active Group.

Deleting a breakpoint group

To delete a breakpoint group, do the following:

In the Breakpoints window, right click the breakpoint group to delete.

From the popup menu, click the Delete Breakpointt Group button.

Enabling all breakpoints in a breakpoint group

You can enable all breakpoints within a group as a whole. To enable all
breakpoints in a group, do the following:

In the Breakpoints window, right click the breakpoint group to enable.

From the popup menu, click Enable Breakpoint Group.

Disabling all breakpoints in a breakpoint group

You can disable all breakpoints within a group as a whole. To disable all
breakpoints in a group, do the following:

In the Breakpoints window, right click the breakpoint group to disable.

From the popup menu, click Disable Breakpoint Group.

Managing all breakpoints
You can delete, enable, or disable all breakpoints.

Deleting all breakpoints

To delete all breakpoints, do one of the following:

From the Debug menu, click Breakpoints then Delete All Breakpoints.

—or—

From the Breakpoints window tool bar, click the Delete All Breakpoints
button.

—or—

Type Ctrl+Shift+F9.

105

Enabling all breakpoints

To enable all breakpoints, do one of the following:

From the Debug menu, click Breakpoints then Enable All Breakpoints.

—or—

From the Breakpoints window tool bar, click the Enable All Breakpoints
button.

Disabling all breakpoints

To disable all breakpoints, do one of the following:

From the Debug menu, click Breakpoints then Disable All Breakpoints.

—or—

From the Breakpoints window tool bar, click the Disable All Breakpoints
button.

Call stack window

The Call Stack window displays the list of function calls (stack frames) that are
active at the point that program execution halted. When program execution
halts, CrossStudio populates the call stack window from the active (currently
executing) task. For simple single-threaded applications not using the
CrossWorks tasking library there is only a single task, but for multi-tasking
programs that do use the CrossWorks Tasking Library there may be any
number of tasks. CrossStudio updates the Call Stack window when you
change the active task in the Threads window (page 119).

Call Stack user interface
The Call Stack window is divided into a tool bar and the main breakpoint
display.

106 CrossStudio Reference
CrossStudio Windows

Call Stack tool bar

Call Stack display

The main part of the Call Stack window displays each unfinished function call
(active stack frame) at the point that program execution halted. The most
recent stack frame is displayed at the bottom of the list and the eldest is
displayed at the top of the list.

CrossStudio displays these icons to the left of each function name:

These icons can be overlaid to show, for instance, the debugger context and a
breakpoint on the same stack frame.

Showing the Call Stack window

To display the Call Stack window if it is hidden, do one of the following:

From the View menu, click Other Windows then Call Stack.

—or—

Button Description

Moves the cursor to where the call to the selected frame was
made.

Sets the debugger context to the selected stack frame.

Moves the debugger context down one stack to the called
function

Moves the debugger context up one stack to the calling function

Selects the fields to display for each entry in the call stack.

Sets the debugger context to the most recent stack frame and
moves the cursor to the currently executing statement.

Icon Description

Indicates the stack frame of the current task.

Indicates the stack frame selected for the debugger context.

Indicates that a breakpoint is active and when the function
returns to its caller.

107

From the Debug menu, click Debug Windows then Call Stack.

—or—

Type Ctrl+Alt+S.

—or—

On the Debug tool bar, click the Call Stack icon.

—or—

Right click the tool bar area to display the View menu.

From the popup menu, click Other Windows then Breakpoints.

Configuring the Call Stack window
Each entry in the Call Stack window displays the function name and,
additionally, parameter names, types, and values. You can configure the Call
Stack to display varying amounts of information for each stack frame. By
default, CrossStudio displays all information.

Displaying or hiding parameter names

To display or hide the name of each parameter in the call stack, do the
following:

On the Call Stack tool bar, click the Fields button.

From the dropdown menu, check or uncheck Parameter Names.

Displaying or hiding parameter values

To display or hide the value of each parameter in the call stack, do the
following

On the Call Stack tool bar, click the Fields button.

From the dropdown menu, check or uncheck Parameter Valuev.

Displaying or hiding parameter types

To display or hide the type of each parameter in the call stack, do the following:

On the Call Stack tool bar, click the Fields button.

From the dropdown menu, check or uncheck Parameter Types.

Displaying or hiding file names and source line numbers

To display or hide the file name and source line number columns of each frame
in the call stack, do the following:

108 CrossStudio Reference
CrossStudio Windows

On the Call Stack tool bar, click the Fields button.

From the dropdown menu, check or uncheck Call Sourrce Location.

Displaying or hiding call addresses

To display or hide the call address of each frame in the call stack, do the
following:

On the Call Stack tool bar, click the Fields button.

From the dropdown menu, check or uncheck Call Address.

Changing the debugger context
You can select the stack frame for the debugger context from the Call Stack
window.

Selecting a specific stack frame

To move the debugger context to a specific stack frame, do one of the
following:

In the Call Stack window, double click the stack frame to move to.

—or—

In the Call Stack window, click the stack frame to move to.

On the Call Stack window's tool bar, click the Switch To Frame button.

—or—

In the Call Stack window, right click the stack frame to move to.

From the popup menu, select Switch To Frame.

The debugger moves the cursor to the statement where the call was made. If
there is no debug information for the statement at the call location,
CrossStudio opens a disassembly window at the instruction.

Moving up one stack frame

To move the debugger context up one stack frame to the calling function, do
one of the following:

On the Call Stack window's tool bar, click the Up One Stack Frame
button.

—or—

On the Debug Location tool bar, click the Up One Stack Frame button.

—or—

109

Type Alt+-.

The debugger moves the cursor to the statement where the call was made. If
there is no debug information for the statement at the call location,
CrossStudio opens a disassembly window at the instruction.

Moving down one stack frame

To move the debugger context down one stack frame to the called function, do
one of the following:

On the Call Stack window's tool bar, click the Down One Stack Frame
button.

—or—

On the Debug Location tool bar, click the Down One Stack Frame button.

—or—

Type Alt++.

The debugger moves the cursor to the statement where the call was made. If
there is no debug information for the statement at the call location,
CrossStudio opens a disassembly window at the instruction.

Setting a breakpoint on a return to a function

To set a breakpoint on return to a function, do one of the following:

In the Call Stack window, click the stack frame on the function to stop at
when it is returned to.

From the Build tool bar, click the Toggle Breakpoint button.

—or—

In the Call Stack window, click the stack frame on the function to stop at
when it is returned to.

Type F9.

—or—

In the Call Stack window, right click the function to stop at when it is
returned to.

From the popup menu, click Toggle Breakpoint.

110 CrossStudio Reference
CrossStudio Windows

Execution counts window

The Execution Counts window shows a list of source locations and the number
of times those source locations have been executed. This window is only
available for targets that support the collection of jump trace information.

The count value displayed is the number of times the first instruction of the
source code location has been executed. The source locations displayed are
target dependent - they could represent each statement of the program or each
jump target of the program. If however the debugger is in intermixed or
disassembly mode then the count values will be displayed on a per instruction
basis.

The execution counts window is updated each time your program stops and
the window is visible so if you have this window displayed then single
stepping may be slower than usual.

The counts window can be sorted by any column (counts, source file, or
function name) by clicking on the appropriate column header. Double clicking
on an entry will locate the source display to the appropriate source code
location.

Globals window

The globals window displays a list of all variables that are global to the
program. The operations available on the entries in the globals window are
the same as the Watch window (page 121) except that variables cannot be
added to or deleted from the globals window.

Globals window user interface
The Globals window is divided into a tool bar and the main data display.

111

Globals tool bar

Using the Globals window
The Globals window shows the global variables of the application when the
debugger is stopped. When the program stops at a breakpoint or is stepped,
the Globals window automatically updates to show the active stack frame and
new variable values. Items that have changed since they that were previously
displayed are highlighted in red.

Showing the Globals window

To display the Globals window if it is hidden, do one of the following:

From the View menu, click Other Windows then Globals.

—or—

From the Debug menu, click Debug Windows then Globals.

—or—

Type Ctrl+Alt+G.

—or—

Button Description

Displays the selected item in binary.

Displays the selected item in octal.

Displays the selected item in decimal.

Displays the selected item in hexadecimal.

Displays the selected item as a signed decimal.

Displays the selected item as a character or Unicode character.

Sets the displayed range in the active memory window to the
where the selected item is stored.

Sorts the global variables alphabetically by name.

Sorts the global variables numerically by address or register
number (default).

112 CrossStudio Reference
CrossStudio Windows

Right click the tool bar area to display the View menu.

From the popup menu, click Other Windows then Globals.

Changing display format

When you select a variable in the main part of the display, the display format
button highlighted on the Globals window tool bar changes to show the item’s
display format.

To change the display format of a global variable, do one of the following:

Right click the item to change.

From the popup menu, select the format to display the item in.

—or—

Click the item to change.

On the Globals window tool bar, select the format to display the item in.

Modifying global variable values

To modify the value of a global variable, do one of the following:

Click the value of the global variable to modify.

Enter the new value for the global variable. Prefix hexadecimal numbers
with ‘0x’, binary numbers with ‘0b’, and octal numbers with ‘0’.

—or—

Right click the value of the global variable to modify.

From the popup menu, select one of the operations to modify the global
variable value.

Locals window

The locals window displays a list of all variables that are in scope of the
selected stack frame in the Call Stack.

Locals window user interface
The Locals window is divided into a tool bar and the main data display.

113

Locals tool bar

Using the Locals window
The Locals window shows the local variables of the active function when the
debugger is stopped. The contents of the Locals window changes when you
use the Debug Location tool bar items or select a new frame in the Call Stack
window. When the program stops at a breakpoint or is stepped, the Locals
window automatically updates to show the active stack frame. Items that have
changed since they that were previously displayed are highlighted in red.

Showing the Locals window

To display the Locals window if it is hidden, do one of the following:

From the View menu, click Other Windows then Locals.

—or—

From the Debug menu, click Debug Windows then Locals.

—or—

Type Ctrl+Alt+L.

—or—

Button Description

Displays the selected item in binary.

Displays the selected item in octal.

Displays the selected item in decimal.

Displays the selected item in hexadecimal.

Displays the selected item as a signed decimal.

Displays the selected item as a character or Unicode character.

Sets the displayed range in the active memory window to the
where the selected item is stored.

Sorts the local variables alphabetically by name.

Sorts the local variables numerically by address or register
number (default).

114 CrossStudio Reference
CrossStudio Windows

Right click the tool bar area to display the View menu.

From the popup menu, click Other Windows then Locals.

Changing display format

When you select a variable in the main part of the display, the display format
button highlighted on the Locals window tool bar changes to show the item’s
display format.

To change the display format of a local variable, do one of the following:

Right click the item to change.

From the popup menu, select the format to display the item in.

—or—

Click the item to change.

On the Locals window tool bar, select the format to display the item in.

Modifying local variable values

To modify the value of a local variable, do one of the following:

Click the value of the local variable to modify.

Enter the new value for the local variable. Prefix hexadecimal numbers
with ‘0x’, binary numbers with ‘0b’, and octal numbers with ‘0’.

—or—

Right click the value of the local variable to modify.

From the popup menu, select one of the operations to modify the local
variable value.

Memory window

The memory window shows the contents of the connected target's memory
areas. The memory window does not show the complete address space of the
target and instead you must enter both the start address and the number of
bytes for the memory window to display. You can specify the start address and
the size using Debug expressions (page 68) which enables you to position the
memory display at the start address of a variable or use a value in a register.
You can also specify if you want the expressions to be evaluated each time the
memory window is updated or you can re-evaluate them yourself with the
press of a button.

115

Memory window updates
The memory window updates each time the debugger locates to source code.
So it will update each time your program stops on a breakpoint or single step
and whenever you traverse the call stack. If any values that were previously
displayed have changed they will be displayed in red.

Display formats
You can set the memory window to display 8-bit, 16-bit, and 32-bit values that
are formatted as hexadecimal, decimal, unsigned decimal, octal or binary. You
can also change the number of columns that are displayed.

You can change a value in the memory window by clicking the value to change
and editing it as a text field. Note that when you modify memory values you
need to prefix hexadecimal numbers with “0x”, binary numbers with “0b” and
octal numbers with “0”.

Saving memory contents
You can save the displayed contents of the memory window to a file in various
formats. Alternatively you can export the contents to a binary editor to work
on them.

Saving memory

You can save the displayed memory values as a binary file, Motorola S-record
file, Intel hex file, or a Texas Instruments TXT file..

To save the current state of memory to a file, do the following:

Selects the start address and number of bytes to save by editing the Start
Address and Size fields in the memory window tool bar.

Right click the main memory display.

From the popup memu, select Save As then select the format from the
submenu.

Exporting memory

To export the current state of memory to a binary editor, do the following:

Selects the start address and number of bytes to save by editing the Start
Address and Size fields in the memory window tool bar.

Right click the main memory display.

From the popup memu, select Export to Binary Editor.

116 CrossStudio Reference
CrossStudio Windows

Note that subsequent modifications in the binary editor will not modify
memory in the target.

Register windows

The register windows can show the values of both CPU registers and the
processor’s special function or peripheral registers. Because microcontrollers
are becoming very highly integrated, it’s not unusual for them to have
hundreds of special function registers or peripheral registers, so CrossStudio
provides four register windows. You can configure each register window to
display one or more register groups for the processor being debugged.

Register window user interface
The Registers window is divided into a tool bar and the main data display.

117

Register tool bar

Using the register window
Both CPU registers and special function registers are shown in the main part
of the Registers window. When the program stops at a breakpoint or is
stepped, the Register windows automatically update to show the current
values of the registers. Items that have changed since they that were
previously displayed are highlighted in red.

Showing the Registers window

To display register window n if it is hidden, do one of the following:

From the View menu, click Other Windows then Registers n.

—or—

From the Debug menu, click Debug Windows then Registers n.

—or—

Type Ctrl+T, R, n.

Button Description

Displays the CPU, special function register, and periheral register
groups.

Displays the selected item in binary.

Displays the selected item in octal.

Displays the selected item in decimal.

Displays the selected item in hexadecimal.

Displays the selected item as a signed decimal.

Displays the selected item as a character or Unicode character.

Sets the displayed range in the active memory window to the
where the selected item is stored.

Sorts the registers alphabetically by name.

Sorts the registers numerically by address or register number
(default).

118 CrossStudio Reference
CrossStudio Windows

—or—

Right click the tool bar area to display the View menu.

From the popup menu, click Other Windows then Registers n.

Displaying CPU registers

The values of the CPU registers displayed in the registers window depend up
upon the selected context. The selected context can be:

The register state the CPU stopped in.

The register state when a function call occurred selected using the Call
Stack window.

The register state of the currently selected thread using the the Threads
window.

The register state that you have supplied using the Debug > Locate
operation.

To display a group of CPU registers, do the following:

On the Registers window tool bar, click the Groups button — .

From the dropdown menu, check the register groups to display and
uncheck the ones to hide.

You can uncheck all CPU register groups to allow more space in the display for
special function or peripheral registers. So, for instance, you can have one
register window showing the CPU registers and other register windows
showing different peripheral registers.

Displaying special function or peripheral registers

The registers window shows the set of register groups that have been defined
in the memory map file that the application was built with. If there is no
memory map file associated with a project, the Registers window will show
only the CPU registers.

To display a special function or peripheral register, do the following:

On the Registers window tool bar, click the Groups button — .

From the dropdown menu, check the register groups to display and
uncheck the ones to hide.

119

Changing display format

When you select a register in the main part of the display, the display format
button highlighted on the Registers window tool bar changes to show the
item’s display format.

To change the display format of a register, do one of the following:

Right click the item to change.

From the popup menu, select the format to display the item in.

—or—

Click the item to change.

On the Registers window tool bar, select the format to display the item in.

Modifying register values

To modify the value of a register, do one of the following:

Click the value of the register to modify.

Enter the new value for the register. Prefix hexadecimal numbers with ‘0x’,
binary numbers with ‘0b’, and octal numbers with ‘0’.

—or—

Right click the value of the register to modify.

From the popup menu, select one of the operations to modify the register
value.

Modifying the saved register value of a function or thread may not be
supported.

Threads window

The threads window displays the set of executing contexts on the target
processor structured as a set of queues. The executing contexts are supplied to
the threads window using a JavaScript program called threads.js that must be
in the current active project. When the JavaScript program executes (when the
application stops) it creates entries in the threads window that contain the
name, priority and status of the thread together with the saved execution
context (register state) of the thread. By double clicking on one of the entries in
the threads window the debugger is located to it's saved execution context -
you can put the debugger back into the default execution context using Show
Next Statement.

120 CrossStudio Reference
CrossStudio Windows

Writing threads.js
The JavaScript program contained in threads.js must be have a named function
called update which is called when the threads window is refreshed. The
threads window is updated using the following JavaScript interface

Threads.newqueue("queuename")
Threads.add("threadname", threadpriority, "threadstate", registers)

The Threads.newqueue function takes a string argument and creates a new
top level entry in the threads window. Subsequent threads that are added to
this window will go under this.

The Threads.add function takes a string argument for the thread name, an
integer argument for the thread priority, a string argument for the current state
of the thread and finally an array (or null) containing the execution context of
the thread (registers). The array containing the registers should contain the
entries in the order they are displayed in the CPU registers display—typically
this will be in register number order e.g. r0, r1, and so on.

To generate the thread lists you need to access the debugger from the
JavaScript program. To do this you can use the JavaScript interface

Debug.evaluate("expression");

which will evaluate the string argument as a debug expression and return the
result. The returned result will be an object if you evaluate an expression that
denotes a structure or an array. If the expression denotes an structure then each
field can be accessed using the JavaScript array notation, for example:

c = Debug.evaluate("complex");
i = c["i"];
j = c["j"];

Because JavaScript is a dynamic language, you can write the above in a more
natural fashion:

c = Debug.evaluate("complex");
i = c.i;
j = c.j;

You can access arbitrary memory locations using C style casts, for example:

v = Debug.evaluate("*(unsigned*)0x200");

and similarly you can cast to user-defined types:

v = Debug.evaluate("*(Complex*)0x200");

121

Note that you should ensure that the JavaScript program will terminate as if it
goes into an endless loop then the debugger, and consequently CrossStudio,
will become unresponsive and you will need to kill CrossStudio using a task
manager.

Trace window

The trace window displays historical information on the instructions executed
by the target. The type and number of the trace entries depends upon the
target that is connected when gathering trace information. Some targets may
trace all instructions, others may trace jump instructions, and some may trace
modifications to variables. You'll find the trace capabilities of your target on
the right click context menu.

Each entry in the trace window has a unique number, and the lower the
number the earlier the trace. You can click on the header to show earliest to
latest or the latest to earliest trace entries. If a trace entry can have source code
located to it then double clicking on the trace entry will show the appropriate
source display.

Some targets may provide timing information which will be displayed in the
ticks column.

The trace window is updated each time the debugger stops when it is visible.
So single stepping is likely to be slower if you have this window displayed.

Watch window

The watch window provides a means to evaluate expressions and display the
values of those expressions. Typically expressions are just the name of the
variable to be displayed, but can be considerably more complex see Debug
expressions (page 68). Note that the expressions are always evaluated when
your program stops so the expression you are watching is the one that is in
scope of the stopped program position.

Watch window user interface
The Watch window is divided into a tool bar and the main data display.

122 CrossStudio Reference
CrossStudio Windows

Watch tool bar

Using the Watch window
Each expression appears as a row in the display. Each row contains the
expression and its value. If the value of an expression is structured (for
example an array) then you can open the structure see its contents.

The display is updated each time the debugger locates to source code. So it will
update each time your program stops on a breakpoint or single step and
whenever you traverse the call stack. Items that have changed since they that
were previously displayed are highlighted in red.

Showing the Watch window

To display watch window n if it is hidden, do one of the following:

From the View menu, click Other Windows then Watch n.

—or—

From the Debug menu, click Debug Windows then Watch n.

—or—

Type Ctrl+T, W, n.

Button Description

Displays the selected item in binary.

Displays the selected item in octal.

Displays the selected item in decimal.

Displays the selected item in hexadecimal.

Displays the selected item as a signed decimal.

Displays the selected item as a character or Unicode character.

Sets the displayed range in the active memory window to the
where the selected item is stored.

Sorts the global variables alphabetically by name.

Sorts the global variables numerically by address or register
number (default).

123

—or—

Right click the tool bar area to display the View menu.

From the popup menu, click Other Windows then Watch n.

Changing display format

When you select a variable in the main part of the display, the display format
button highlighted on the Watch window tool bar changes to show the item’s
display format.

To change the display format of a local variable, do one of the following:

Right click the item to change.

From the popup menu, select the format to display the item in.

—or—

Click the item to change.

On the Watch window tool bar, select the format to display the item in.

The selected display format will then be used for all subsequent displays and
will be recorded when the debug session stops.

For C programs the interpretation of pointer types can be changed by right
clicking and selecting from the popup menu. A pointer can be interpreted as:

a null terminated ASCII string.

an array.

an integer.

dereferenced.

Modifying watched values

To modify the value of a local variable, do one of the following:

Click the value of the local variable to modify.

Enter the new value for the local variable. Prefix hexadecimal numbers
with ‘0x’, binary numbers with ‘0b’, and octal numbers with ‘0’.

—or—

Right click the value of the local variable to modify.

From the popup menu, select one of the operations to modify the
variable’s value

124 CrossStudio Reference
CrossStudio Windows

Help window

The help viewer is located in the HTML viewer in the main tab window. It
displays the currently selected help topic.

Context sensitive help
CrossStudio provides four types of context sensitive help with increasing
detail:

Tool tips. When you move your mouse pointer over a tool button and
keep it still, a small window appears with a very brief description of the
tool button and its keyboard shortcut if it has one.

Status tips. In addition to tool tips, CrossStudio provides a longer
description in the status bar when you hover over a tool button or when
you move over a menu item.

What's This? For even more detail, What's This? help provides a
description of tool buttons and menu items in an expanded form.

Online Manual. CrossStudio has links from all windows to the online
help system.

What's This? help

To quickly find out what a menu item or tool button does, you can use "What's
This?" help. To do this:

From the Help menu, click What's This? or type Shift+F1

Click on the tool button or menu item of interest.

CrossStudio will then display a small window containing the name and a brief
description of the tool button or menu item.

Help in the online manual

CrossStudio provides an extensive HTML-based help system which is
available at all times. To go to the help information for a particular window or
user interface element:, do the following:

Focus the appropriate element by clicking it.

From the Help menu, click CrossStudio Help or type F1.

You can return to the Welcome page at any time:

From the View menu, click HTML Browser then Home

—or—

125

Type Alt+Home.

Help from the text editor

The text editor is linked to the help system in a special way. If you place the
cursor over a word and press F1, that word is looked up in the help system
index and the most likely page displayed in the HTML browser—it's a great
way to quickly find the reference help pages for functions provided in the
library.

Using the Contents window
The Contents view provides a list of all the topics and sub-topics within the
help system.

The highlighted entry indicates the current help topic. Other topics can be
selected and the help viewer will update accordingly.

To move to the next topic

From the Help menu, click Next Topic

—or—

Click the Next Topic tool button on the Contents window toolbar.

To move to the previous topic

From the Help menu, click Previous Topic

—or—

Click the Previous Topic tool button on the Contents window toolbar.

Using the Search window
Using the Search window you can search for multiple words or phrases. When
the search button is pressed the matching pages are listed in order of relevance.

When you select a topic in the Search window, the corresponding help topic is
shown in the HTML browser.

Using the Index window
The index view allows single keywords to be located. Keywords can either be
typed, or selected from the list. As the selected keyword changes the topic with
the highest number of hits is displayed. Other topics can be selected and the
help viewer will update accordingly.

126 CrossStudio Reference
CrossStudio Windows

Output window

The Output window contains logs and transcripts from various systems
within CrossStudio. Most notably, it contains the Build Log, Target Log and
Find in Files results.

Output window user interface
The Output window is divided into a tool bar and the log display.

Output tool bar

Showing the Output window

To display the Output window if it is hidden, do one of the following:

From the View menu, click Output.

—or—

Type Ctrl+Alt+O.

—or—

Right click the tool bar area to display the View menu.

From the popup menu, click Output.

Using the output window

Showing a specific log

To display a specific log, do one of the following:

On the Output window tool bar, click the Output Pane List.

From the list, click the log to display.

—or—

From the View menu, click Logs and then the log to display.

—or—

Button Description

Tree view Shows the log as a tree view.

Flat view Shows the log as a flat view.

127

Right click the tool bar area to display the View menu

From the popup menu, click Logs and then the log to display.

Showing the Build Log

To display the build log in the output window, do one of the following:

From the Build menu, click Show Build Log.

—or—

Double click the Target Status panel in the status bar.

Showing the Target Log

To display the target log in the output window, do the following:

From the Target menu, click Show Target Log.

Project explorer

The Project Explorer organizes your projects and files and provides quick
access to the commands that operate on them. A tool bar at the top of thw
window offers quick access to commonly used commands for the item selected
in the Project Explorer.

This section gives a brief overview of the project explorer window and its
operation, but for a complete description of how to work with projects and
how to manage them, please refer to Project management (page 48).

128 CrossStudio Reference
CrossStudio Windows

The Project Explorer tool bar

Showing the Project Explorer

To activate the Project Explorer if it is hidden, do one of the following:

From the View menu, click Project Explorer.

—or—

Type Ctrl+Alt+P.

—or—

On the Standard tool bar, click the Project Explorer icon.

—or—

Right click the tool bar area to display the View menu.

From the popup menu, click Project Explorer.

Setting project properties

When you select an item in the project explorer, the properties window
displays the properties that can be set for the item. This allows you to set
compilation options for source files, for instance.

Button Description

Adds a new file to the project using the New File dialog.

Adds an existing files to the project.

Removes files, folders, projects, and links from the project.

Creates a new folder in the project.

Builds the active project.

Disassembles the selected project item.

Sets project explorer options.

Displays the properties dialog for the selected item.

129

Opening files for editing

Double clicking a source file will load it into the code editor for editing. As
you switch between files in the editor, the selection in the project explorer
changes to highlight the file that you're currently editing.

Source code control

Using the the project explorer you can check files into and out of a source code
control system. Right clicking on a source file brings up a context menu with
the following source code control operations:

Check In checks a file into source code control.

Check Out checks a source file out of the repository and makes it writable.

Undo Check Out undoes a check out and reverts the file on disk to the one
in the source code control system.

Add To Source Control adds a file to source control.

Remove From Source Control removes a file from source control and
deletes it from the source code control database.

For more information on source code control, see Source code control (page
64).

Related sections

See the Project management (page 48) section.

Properties window

The properties window displays properties of the current focused CrossStudio
object. Using the properties window you can set build properties of your
project, modify the editor defaults and change target settings.

The properties window is organised as a set of key value pairs. As you select
one of the keys then a help display explains the purpose of the property.
Because the properties are numerous and can be specific to a particular
product build you should consider this help to be the definitive help on the
property.

You can organise the property display so that it is divided into categories or
alternatively display it as a flat list that is sorted alphabetically.

The combo-box enables you to change the properties yourself and explains
which properties you are looking at.

130 CrossStudio Reference
CrossStudio Windows

Some properties have actions associated with them - you can find these by
right clicking on the property key. Most properties that represent filenames can
be opened this way.

When the properties window is displaying project properties you'll find that
some properties are displayed in bold. This means that the property value
hasn't been inherited. If you wish to inherit rather than define such a property
then on the right click context menu you'll find an action that enables you to
inherit the property.

Source navigator window

One of the best ways to find your way around your source code is using the
Source Navigator. The source navigator parses the active project's source code
and organizes classes, functions, and variables in various ways.

Source navigator user interface
The Source Navigator window is divided into a tool bar and the main
breakpoint display.

Source Navigator tool bar

Source navigator display

The main part of the Source Navigator window an overview of the functions,
classes, and variables of your application.

Button Description

Sorts the objects alphabetically.

Sorts the objects by type.

Sorts the objects by access (public, protected, private).

Groups objects by type (functions, classes, structures, variables).

Move the cursor to the statement where the object is defined.

Move the cursor to the statement where the object is declared. If
more than one declaration exists, an arbitrary one is chosen.

Manually re-parses any changed files in the project.

131

CrossStudio displays these icons to the left of each object:

Showing the Source Navigator window

To display the Source Navigator window if it is hidden, do one of the
following:

From the View menu, click Source Navigator.

—or—

Type Ctrl+Alt+N.

—or—

Right click the tool bar area to display the View menu.

From the popup menu, click Source Navigator.

Using the source navigator

Parsing source files manually

To parse source files manually, do one of the following:

From the Tools menu, click Source Navigator then Refresh.

Icon Description

Structure or namespace A C or C++ structure or a C++
namespace.

C++ class A C++ class.

Private function A C++ member function that is declared
private or a function that is declared with static linkage.

Protected function A C++ member function that is declared
protected.

Public function A C++ member function that is declared public
or a function that is declared with extern linkage.

Private variable A C++ member variable that is declared private
or a variable declared with static linkage.

Protected variable A C++ member variable that is declared
protected.

Public variable A C++ member variable that is declared public
or a variable that is declared with extern linkage.

132 CrossStudio Reference
CrossStudio Windows

—or—

On the Source Navigator tool bar, click Refresh.

CrossStudio re-parses any changed files and updates the source navigator
display with the changes. Progress information and any errors are sent to the
Source Navigator Log in the Output window when parsing.

Grouping objects by type

You can group object by their type, that is whether they are classes, functions,
namespaces, structures, or variables. Each object is placed into a folder
according to its type

To group objects in the source browser by type, do one of the following:

From the Tools menu, click Source Navigator then Group By Type.

—or—

On the Source Navigator tool bar, click the arrow to the right of the Cycle
Grouping button.

From the dropdown menu, click Group By Type.

Symbol browser

The Symbol Browser window shows useful information about your linked
application and complements the information displayed in the Project
Explorer window. You can select different ways to filter and group the
information in the symbol browser to provide an at-a-glance overview of your
application as a whole. You can use the symbol browser to drill down to see
how big each part of your program is and where it’s placed. The way that
symbols are sorted and grouped is saved between runs. When you rebuild an
application, CrossStudio automatically updates the symbol browser so you
can see the effect your changes are making to the memory layout of your
program.

Symbol browser user interface
The symbol browser is divided into a tool bar and the main symbol display.

133

Symbol Browser tool bar

Symbol Browser display

The main part of the symbol browserdisplays each symbol (both external and
static) that the is linked into an application. CrossStudio displays these icons
to the left of each symbol:

Symbol browser columns

You can choose to display the following fields against each symbol:

Button Description

Groups symbols by source file name.

Groups symbols by symbol type (equates, functions, labels,
sections, and variables)

Groups symbols by the section that they are defined in.

Moves the cursor to the statement that defined the symbol.

Chooses the columns to display in the symbol browser.

Icon Description

Private Equate A private symbol that is not defined relative to a
section.

Public Equate A public symbol that is not defined relative to a
section.

Private Function A private function symbol.

Public Function A public function symbol.

Private Label A private data symbol, defined relative to a
section.

Public Label A public data symbol, defined relative to a section.

Section A program section.

134 CrossStudio Reference
CrossStudio Windows

Value. The value of the symbol. For labels, code, and data symbols this
will be the address of the symbol. For absolute or symbolic equates, this
will be the value of the symbol.

Range. The range of addresses the code or data item covers. For code
symbols that correspond to high-level functions, the range is the range of
addresses used for that function's code. For data addreses that correspond
to high-level static or extern variables, the range is the range of addresses
used to store that data item. These ranges are only available if the
corresponding source file was compiled with debugging information
turned on: if no debugging information is available, the range will simply
be the first address of the function or data item.

Size. The size, in bytes, that the code or data item covers. The Size column
is derived from the Range of the symbol: if the symbol corresponds to a
high-level code or data item and has a range, then Size is calculated as the
difference between the start and end address of the range. If a symbol has
no range, the size column is left blank.

Section. The section in which the symbol is defined. If the symbol is not
defined within a section, the Section column is left blank.

Type. The high-level type for the data or code item. If the source file that
defines the symbol is compiled with debugging information turned off,
type information is not available and the Type column is left blank.

Showing the Symbol Browser window

To display the Symbol Browser window if it is hidden, do one of the
following:

From the View menu, click Symbol Browser.

—or—

Type Ctrl+Alt+Y.

—or—

Right click the tool bar area to display the View menu.

From the popup menu, click Symbol Browser.

Configuring the Symbol Browser

Choosing fields to display

Initially the Range and Size columns are shown in the symbol browser. You
can select which columns to display using the Field Chooser on the Symbol
Browser tool bar.

135

To select the fields to display in the Symbol Browser, do one of the following:

Click the Field Chooser button on the Symbol Browsertool bar.

Check the fields that you wish to display and uncheck the fields that you
wish to hide.

—or—

From the Tools menu, select Symbol Browser then Fields.

Check the fields that you wish to display and uncheck the fields that you
wish to hide.

Grouping symbols by section

When you group symbols by section, each symbol is grouped underneath the
section that it is defined in. Symbols that are absolute or are not defined within
a section are grouped beneath “(No Section)”.

To group symbols by section, do the following:

On the Symbol Browser tool bar, click the arrow next to the Cycle
Grouping tool button.

From the popup menu, click Group By Section.

—or—

From the Tools menu, click Symbol Browser then Group By Section.

The Cycle Grouping tool button icon will change to indicate that the symbol
browser is now grouping symbols by section.

Grouping symbols by type

When you group symbols by type, each symbol is grouped underneath the
type of symbol that it is. Each symbol is classified as one of the following:

An Equate has an absolute value and is not defined as relative to, or inside,
a section.

A Function is a symbol that is defined by a high-level code sequence.

A Variable is defined by a high-level data declaration.

A Label is a symbol that is defined by an assembly language module.
Label is also used when high-level modules are compiled with debugging
information turned off.

To group symbols by source type, do the following:

On the Symbol Browser tool bar, click the arrow next to the Cycle
Grouping tool button.

136 CrossStudio Reference
CrossStudio Windows

From the popup menu, click Group By Type.

—or—

From the Tools menu, click Symbol Browser then Group By Type.

The Cycle Grouping tool button icon will change to indicate that the symbol
browser is now grouping symbols by type.

Grouping symbols by source file

When you group symbols by source file, each symbol is grouped underneath
the source file that it is defined in. Symbols that are absolute, are not defined
within a source file, or are compiled with without debugging information, are
grouped beneath “(Unknown)”.

To group symbols by source file, do one of the following:

On the Symbol Browser tool bar, click the arrow next to the Cycle
Grouping tool button.

From the popup menu, click Group By Source File.

—or—

From the Tools menu, click Symbol Browser then Group By Source File.

The Cycle Grouping tool button icon will change to indicate that the symbol
browser is now grouping symbols by source file.

Sorting symbols alphabetically

When you sort symbols alphabetically, all symbols are displayed in a single list
in alphabetical order.

To group symbols alphabetically, do one of the following:

On the Symbol Browser tool bar, click the arrow next to the Cycle
Grouping tool button.

From the popup menu, click Sort Alphabetically.

—or—

From the Tools menu, click Symbol Browser then Sort Alphabetically.

The Cycle Grouping tool button icon will change to indicate that the symbol
browser is now grouping symbols alphabetically.

137

Filtering, finding, and watching symbols
When you’re dealing with big projects with hundreds, or even thousands, of
symbols, a way to filter the display of those symbols and drill down to the ones
you need is very useful. The symbol browser provides an editable combo box
in the toolbar which you can use to specify the symols you’d like displayed.
The symbol browser uses “*” to match a sequence of zero or more characters
and “?” to match exactly one character.

The symbols are filtered and redisplayed as you type into the combo box.
Typing the first few characters of a symbol name is usually enough to narrow
the display to the symbol you need. One thing to note is that the C compiler
prefixes all high-level language symbols with an underscore character, so the
variable extern int u or the function void fn(void) have low-level symbol
names _u and _fn. The symbol browseruses the low-level symbol name when
displaying and filtering, so you must type the leading underscore to match
high-level symbols.

Finding symbols with a common prefix

To display symbols that start with a common prefix, do the following:

Type the required prefix into the combo box, optionally followed by a “*”.

For instamce, to display all symbols that start with “i2c_”, type “i2c_” and all
matching symbols are displayed—you don’t need to add a trailing “*” in this
case as it is implied.

Finding symbols with a common suffix

To display symbols that end with a common suffix, do the following:

Type “*” into the combo box followed by the required suffix.

For instamce, to display all symbols that end in “_data”, type “*_data” and all
matching symbols are displayed—in this case the leading “*” is required.

Jumping to the definition of a symbol

Once you have found the symbol you’re interested in and your source files
have been compiled with debugging information turned on, you can jump to
the definition of a symbol using the Go To Definition tool button.

To go to the definition of a symbol, do one of the following:

Select the symbol from the list of symbols.

On the Symbol Browser tool bar, click Go To Definition.

—or—

Right click the symbol in the list of symbols.

138 CrossStudio Reference
CrossStudio Windows

From the popup menu, click Go To Definition.

Adding symbol to watch and memory windows

If a symbol’s range and type is known, you can add it to the most recently
opened watch window or memory window.

To add a symbol to the watch window, do the following:

In the Symbol Browser, right click on the the symbol you wish to add to
the watch window.

From the popup menu, click Add To Watch.

To add a symbol to the memory window, do the following:

In the Symbol Browser, right click on the the symbol you wish to add to
the memory window.

From the popup menu, click Locate Memory.

Working with the Symbol Browser
Here are a few common ways to use the symbol browser:

What function takes up the most code space or what takes the most data space?

Show the symbol browser by selecting Symbol Browser from the Tools
menu.

Group symbols by type by choosing Symbol Browser > Group By Type
from the Tools menu.

Make sure that the Size field is checked in Symbol Browser > Fields on
the Tools menu.

Ensure that the filter on the symbol browser tool bar is empty.

Click on the Size field in the header to sort by data size.

Read off the the sizes of variables under the Variable group and functions
under the Functions group.

What's the overall size of my application?

Show the symbol browser by selecting Symbol Browser from the Tools
menu.

Group symbols by section by choosing Symbol Browser > Group By
Section from the Tools menu.

Make sure that the Range and Size fields are checked in Symbol Browser
> Fields on the Tools menu.

139

Read off the section sizes and ranges of each section in the application.

Targets window

The targets window (and associated menu) displays the set of target interfaces
that you can connect to in order to download and debug your programs. Using
the targets window in conjunction with the properties window enables you to
define new targets based on the specific target types supported by the
particular CrossStudio release.

You can connect, disconnect, and reconnect to a target system. You can also
reset and load programs using the target window. If you load a program using
the target window and you need to debug it then you will have to use the
Debug > Attach Debugger operation.

Targets window layout

Targets tool bar

Showing the Targets window

To display the Targets window if it is hidden, do one of the following:

From the View or Target menu, click Targets.

—or—

Type Ctrl+Alt+T.

—or—

Right click the tool bar area to display the View menu.

From the popup menu, click Targets.

Button Description

Connects the selected target interface.

Disconnects the connected target interface.

Reconnects the connected target interface.

Resets the connected target interface.

Displays the properties of the selected target interface.

140 CrossStudio Reference
CrossStudio Windows

Managing target connections

Connecting a target

To connect a target, do one of the following:

In the Targets window, double click the target to connect.

—or—

From the Target menu, click the target to connect.

—or—

In the Targets window, click the target to connect.

On the Targets window tool bar, click the Connect button

—or—

In the Targets window, right click the target to connect.

From the popup menu, click Connect

—or—

In the Targets window, click the target to connect.

Type Ctrl+T, C.

Disconnecting a target

To disconnect a target, do one of the following:

From the Target menu, click Disconnect

—or—

On the Targets window tool bar, click the Disconnect button

—or—

Type Ctrl+T, D.

—or—

Right click the connected target in the Targets window

From the popup menu, click Disconnect.

Alternatively, connecting a different target will automatically disconnect the
current target connection.

141

Reconnecting a target

You can disconnect and reconnect a target in a single operation using the
reconnect feature. This may be useful if the target board has been power cycled
or reset manually as it forces CrossStudio to resynchronize with the target.

To reconnect a target, do one of the following:

From the Target menu, click Reconnect.

—or—

On the Targets window tool bar, click the Reconnect button.

—or—

Type Ctrl+T, E.

—or—

In the Targets window, right click the target to reconnect.

From the popup menu, click Reconnect.

Automatic target connection

You can configure CrossStudiuo to automatically connect to the last used
target interface when loading a solution.

To enable or disable automatic target connection, do the following:

From the View menu, click Properties Window.

In the Properties Window, click Environment Properties from the combo
box.

In the Target Settings section, set the Enable Auto Connect property to
Yes to enable automatic connection or to No to disable automatic
connection.

Creating a new target interface

To create a new target interface, do the following:

From the targets window's context menu, click New Target Interface. A
new menu will be displayed containing the types of target interface that
may be created.

Select the type of target interface to create.

142 CrossStudio Reference
CrossStudio Windows

Setting target interface properties

All target interfaces have a set of properties. Some properties are read-only and
provide information on the target, others are modifiable and allow the target
interface to be configured. Target interface properties can be viewed and
edited using CrossStudio's property system.

To view or edit target properties, do the following:

Select a target.

Select the Properties option from the target's context menu.

Restoring default target definitions

The targets window provides the facility to restore the target definitions to the
default set. Restoring the default target definitions will undo any of the
changes you have made to the targets and their properties and therefore
should be used with care.

To restore the default target definitions, do the following:

Select Restore Default Targets from the targets window context menu.

Click Yes when prompted if you want to restore the default targets.

Controlling target connections

Resetting the target

Reset of the target is typically handled automatically by the system when you
start debugging. However, the target may be manually reset using the Targets
window.

To reset the connected target, do one of the following:

On the Targets window tool bar, click the Reset button.

—or—

From the Target menu, click Reset

—or—

Type Ctrl+T, S.

Downloading programs

Program download is handled automatically by CrossStudio when you start
debugging. However, you can download arbitrary programs to a target using
the Targets window.

To download a program to the currently selected target, do the following:

143

In the Targets window, right click the selected target.

From the popup menu, click Download File.

From the Download File menu, select the type of file to download.

In the Open File dialog, select the executable file to download and click
Open to download the file.

CrossStudio supports the following file formats when downloading a
program:

Binary

Intel Hex

Motorola S-record

CrossWorks native object file

Texas Instruments text file

Verifying downloaded programs

You can verify a target's contents against a arbitrary programs held on disk
using the Targets window.

To verify a target's contents against a program, do the following:

In the Targets window, right click the selected target.

From the popup menu, click Verify File.

From the Verify File menu, select the type of file to verify.

In the Open File dialog, select the executable file to verify and click Open
to verify the file.

CrossStudio supports the same file types for verification as it does for
downloading, described above.

Erasing target memory

Usually, erasing target memory is done automatically CrossStudio downloads
a program, but you can erase a target's memory manually.

To completely erase target memory, do the following:

In the Targets window, right click the target to erase.

From the popup menu, click Erase All.

To erase part of target memory, do the following:

In the Targets window, right click the target to erase.

From the popup menu, click Erase Range.

144 CrossStudio Reference
ARM Target Interfaces

Target definition file

The target interface information in the targets window is stored in an XML file
called the target definition file.

To change the target definition file used by the targets window, do the
following:

From the Tools menu, click Options.

In the Environment Options, select the Target section.

Edit the Target definition file entry to change the path to the target
definition file.

Click OK to apply the change, the targets window should load the new
target definition file.

ARM Target Interfaces

A target interface is a mechanism for communicating with and controlling a
target. A target maybe be a physical hardware device or a simulator.

CrossStudio has a targets window for viewing and manipulating target
interfaces. For more information on the targets window, see Targets window
(page 139).

Before a target interface can be used, it must be connected. CrossStudio
permits connection to only one target at a time. For more information on
connecting to target interfaces, see Connecting to a target.

All target interfaces have a set of properties. The properties provide
information on the connected target and allow the target interface to be
configured. For more information on viewing and editing target properties,
see Viewing and editing target properties.

CrossWorks for ARM can connect to the following targets and target
interfaces:

USB CrossConnect for ARM

Macraigor System's Wiggler for ARM

Segger J-Link

CrossStudio ARM Simulator

145

USB CrossConnect for ARM Target Interface

The USB CrossConnect for ARM target interface provides access to ARM
targets via the Rowley Associates USB CrossConnect for ARM. This target
interface supports program loading and debugging of both RAM and FLASH
based applications.

CrossConnect Properties

Firmware Variant The variant of the firmware running on the currently
connected CrossConnect. Some early CrossConnects requires a different
variant of the firmware for ARM7, ARM9 and XScale, each target also has
a maximum and variable speed variant of the firmware making six
variants in total. You should use the CrossConnect configuration utility
(xcconf) to configure your CrossConnect with the required firmware
variant.

Firmware Version The version number of the firmware running on the
currently connected CrossConnect.

Serial Number The serial number of the currently connected
CrossConnect device.

Use Serial Number The serial number of the CrossConnect you want to
connect to. If multiple USB CrossConnects are connected to your system,
this property allows you to specify which one to use. If no serial number
is specified, the first available CrossConnect will be used.

Current Device Properties

Device Type The JTAG device ID of the currently connected device.

JTAG Properties

Adaptive Clocking Specifies whether JTAG adaptive clocking using the
RTCK signal should be used. This option requires the variable speed
variant of the CrossConnect firmware.

Identify Target Specifies whether the target should be identified on
connection.

JTAG Clock Divider The value to divide the JTAG clock frequency. The
variable speed variant of the CrossConnect firmware is required if this
value is set greater than 1.

146 CrossStudio Reference
ARM Target Interfaces

Loader Properties

Erase All If set to Yes, all of the target's FLASH memory will be erased
prior to downloading the application. This can be used to speed up
download of large programs as it generally quicker to erase a whole device
rather than individual segments. If set to No, only the areas of FLASH
containing the program being downloaded will be erased.

Target Properties

Processor Endian Specifies the byte order of the target processor. Note
that the value of this property will be automatically set to a project's
Endianproperty when a project is downloaded or attached to.

Processor Stop Time The timeout period, in milliseconds, to allow when
stopping the processor.

Macraigor Wiggler (20 and 14 pin) Target Interface

The Macraigor Wiggler target interface provides access to ARM targets via
Macraigor System's Wiggler for ARM (or compatible device). This target
interface supports program loading and debugging of both RAM and FLASH
based applications. There are two variants of the Wiggler, one with 20 pins and
one with 14 pins, and both are supported.

Connection Properties

Parallel Port The parallel port connection to use to connect to the target.

Parallel Port Address The base address of the currently connected
parallel port (if available).

Parallel Port Sharing If set to Yes, parallel port may be shared with other
device drivers and programs. If set to No, the target interface will demand
exclusive use of the port.

Current Device Properties

Device Type The JTAG device ID of the currently connected device.

JTAG Properties

Identify Target Specifies whether the target should be identified on
connection.

Invert nSRST Specifies whether the nSRST signal should be inverted.

147

JTAG Clock Divider The value to divide the JTAG clock frequency. This
feature allows the JTAG clock frequency to be reduced in order to allow
CrossStudio to communicate with boards with unreliable target interfaces.

Loader Properties

Erase All If set to Yes, all of the target's FLASH memory will be erased
prior to downloading the application. This can be used to speed up
download of large programs as it generally quicker to erase a whole device
rather than individual segments. If set to No, only the areas of FLASH
containing the program being downloaded will be erased.

Target Properties

Processor Endian Specifies the byte order of the target processor. Note
that the value of this property will be automatically set to a project's
Endianproperty when a project is downloaded or attached to.

Processor Stop Time The timeout period, in milliseconds, to allow when
stopping the processor.

Segger J-Link

The Segger J-Link target interface provides access to ARM targets via the
Segger USB J-Link ARM JTAG interface. This target interface supports
program loading and debugging of both RAM and FLASH based applications.

Current Device Properties

Device Type The JTAG device ID of the currently connected device.

J-Link Properties

Speed The JTAG clock frequency.

Version The firmware version.

Loader Properties

Erase All If set to Yes, all of the target's FLASH memory will be erased
prior to downloading the application. This can be used to speed up
download of large programs as it generally quicker to erase a whole device
rather than individual segments. If set to No, only the areas of FLASH
containing the program being downloaded will be erased.

148 CrossStudio Reference
ARM Target Support

Target Properties

Processor Endian Specifies the byte order of the target processor. Note
that the value of this property will be automatically set to a project's
Endianproperty when a project is downloaded or attached to.

Processor Stop Time The timeout period, in milliseconds, to allow when
stopping the processor.

CrossStudio ARM Simulator Target Interface

The ARM Simulator target interface provides access to CrossStudio's ARM
simulator. This target interface supports program loading and debugging. The
simulator's memory configuration is determined by the memory map file of
the current project/configuration.

ARM Target Support

When a target specific executable project is created using the Creating a
project (page 20), the following default files are added to the project:

Target_Startup.s - The Target Startup Code (page 149)code.

crt0.s - The CrossWorks standard crt0.s (page 150) code.

Target_MemoryMap.xml - The ARM Memory Map Files (page 152) file for
the board. Note that for some target's a general linker placement file may
not be suitable. In these cases there will be two memory map files, one for
a Flash build and one for a RAM build.

flash_placement.xml - The linker placement file for a Flash build.

sram_placement.xml - The linker placement file for a RAM build.

Target_Target.js - The ARM Target Script File (page 154)

Initially, shared versions of these files are added to the project, if you want to
modify any these files you should select the file in the project explorer and then
click the Import option from the context menu. This will copy a writeable
version of the file into your project directory and change the path in the project
explorer to be that of the local file. You will then be able to make changes to the
local file without effecting the shared copy of the file.

The following list describes the typical flow of a C program created using
CrossStudio's project templates:

149

The processor starts executing at address 0x0000000 which is the reset
exception vector. The exception vector table can be found in the Target
Startup Code (page 149) code, it is put into the program section
.vectorswhich is positioned at address 0x00000000 by the ARM Memory
Map Files (page 152) file.

The processor jumps to the reset_handler label in the Target Startup Code
(page 149) code which configures the target.

When the target is configured the Target Startup Code (page 149)code
jumps to the _start entry point in the crt0.s (page 150)code which sets up
the C runtime environment.

When the C runtime environment has been set up the crt0.s (page 150)
code jumps to the C entry point function main.

When the program returns from main, it re-enters the crt0.s (page
150)code, executes the destructors and then finally enters an endless loop.

Target Startup Code

The following section describes the role of the target specific startup code.

When you create a new project to produce an executable file using a target
specific project template, a file containing the default startup code for the
target will be added to the project. Initially a shared version of this file will be
added to the project, if you want to modify this file you should select the file
in the project explorer and then select Import to copy the file to your project
directory.

The target startup file typically consists of the following:

_vectors - This is the exception vector table. It is put into it's own .vectors
section in order to ensure that it is always placed at address 0x00000000.

reset_handler - This is the main reset handler function and typically the
main entry point of an executable. The reset handler will usually carry out
any target specific initialisation and then jump to the _startentry point. In
a C system the _start entry point is in the crt0.s (page 150)file.

undef_handler - This is the default undefined instruction exception handler.
This has been declared as a weak symbol to allow the user the override the
implementation.

swi_handler - This is the default software interrupt exception handler. This
has been declared as a weak symbol to allow the user the override the
implementation.

150 CrossStudio Reference
ARM Target Support

pabort_handler - This is the default prefetch abort exception handler. This
has been declared as a weak symbol to allow the user the override the
implementation.

dabort_handler - This is the default data abort exception handler. This has
been declared as a weak symbol to allow the user the override the
implementation.

irq_handler - This is the default IRQ exception handler. This has been
declared as a weak symbol to allow the user the override the
implementation.

fiq_handler - This is the default FIQ exception handler. This has been
declared as a weak symbol to allow the user the override the
implementation.

crt0.s

The following section describes the role of the C runtime startup code.

When you create a new project to produce an executable file using a target
specific project template, the crt0.s file will be added to the project. Initially a
shared version of this file will be added to the project, if you want to modify
this file you should select the file in the project explorer and then select Import
to copy the file to your project directory.

The entry point of the C runtime startup code is _start. In a typical system this
will be called by the Target Startup Code (page 149) code after it has initialized
the target.

The C runtime carries out the following actions:

Initialize the stacks.

Copy the contents of the .data (initialized data) section from non-volatile
memory should it be required.

Copy the contents of the .fast section from non-volatile memory to SRAM
should it be required.

Initialize the .bss section.

Initialize the heap.

Call constructors.

Jump to the main entry point.

Call destructors.

Wait in exit loop.

151

Stacks
The ARM maintains six separate stacks. The position and size of these stacks
are specified in the project's section placement or memory map file by the
following program sections:

.stack - System and User mode stack.

.stack_svc - Supervisor mode stack

.stack_irq - IRQ mode stack

.stack_fiq - FIQ mode stack

.stack_abt - Abort mode stack.

.stack_und - Undefined mode stack.

The crt0.s startup code references these sections and initializes each of the
stack pointer registers to point to the appropriate memory location. To change
the location in memory of a particular stack, the section should be moved to
the required position in the section placement or memory map file.

There is a Stack Size linker project property for each stack, you can modify this
property in order to alter each stack maximum size. For compatibility with
earlier versions of CrossStudio you can also specify the stack size using the
stack section's Size property in the section placement or memory map file.

Should your application not require one or more of these stacks to be set up
you can remove the sections from the memory map file or set the size to 0 and
remove the initialization code from the crt0.s file.

.data Section
The .data section contains the initialized data. If the run address is different
from the load address, as it would be in a FLASH based application in order to
allow the program to run from reset, the crt0.s startup code will copy the .data
section from the load address to the run address before calling the main entry
point.

.fast Section
For performance reasons it is a common requirement with embedded systems
to have critical code running from fast memory, the .fast section can be used to
simplify this. If the .fast section's run address is different from the load address
the crt0.s startup code will copy the .fast section from the load address to the
run address before calling the main entry point.

152 CrossStudio Reference
ARM Target Support

.bss Section
The .bss section contains the zero initialized data. The crt0.s startup code
references the .bss section and sets its contents to zero.

Heap
The position and size of the heap is specified in the project's section placement
or memory map file by the .heap program section.

The crt0.s startup code references this section and initializes the heap. To
change the position of the heap, the section should be moved to the required
position in the section placement or memory map file.

There is a Heap Size linker project property, you can modify this property in
order to alter the heap size. For compatibility with earlier versions of
CrossStudio you can also specify the heap size using the heap section's Size
property in the section placement or memory map file.

Should your application not require the heap functions, you can remove the
heap section from the memory map file or set the size to 0 and remove the heap
initialization code from the crt0.s file.

ARM Memory Map Files

CrossStudio's memory map files are XML files that are used for the following
purposes:

Linking- Memory map files are used by the linker to describe how to lay
out a program in memory.

Loading- Memory map files are used by the loader to check that a program
being downloaded will actually fit into the target's memory.

Debugging- Memory map files are used by the debugger to describe the
location and types of memory a target has. This information is used to
decide how to debug the program, for example whether to set hardware
or software breakpoints on particular memory location.

There are two types of memory map files:

Board Memory Definition - This type of memory map file is used to describe
a target's memory segments. If no Linker Placement file is defined, a Board
Memory Definition file can also describe how program sections should be
laid out within the memory segments.

Linker Placement - This type of memory map file is used to describe how
program sections should be laid out in the memory segments described by
a Board Memory Definition file. As the Linker Placement file does not describe

153

memory addresses, only the mapping between memory segments and
program sections, it can be used as a general means to describe the layout
of a program not tied to a particular target. A Linker Placementfile does not
need to be used if the Board Memory Definitionfile contains all the program
section information.

Memory map files can be viewed and edited using CrossStudio's memory map
editor, for more information see Memory map editor (page 91).

To use a memory map file, simply add the memory file to a project. You may
have configuration specific memory map files by excluding memory map files
from configurations as you would any other source file.

ARM Project Configurations

The following table describes the default set of Project configurations (page
57) when you create a new project:

Configuration
Name

Description

ARM Flash Debug

Compile/assemble for ARM instruction set. Link ARM version of
libraries. Load into and run from Flash memory.
Compile/assemble with debug information and with
optimization disabled.

ARM Flash
Release

Compile/assemble for ARM instruction set. Link ARM version of
libraries. Load into and run from Flash memory.
Compile/assemble without debug information and with
optimization enabled.

ARM RAM Debug
Compile/assemble for ARM instruction set. Link ARM version of
libraries. Load into and run from RAM. Compile/assemble with
debug information and with optimization disabled.

ARM RAM
Release

Compile/assemble for ARM instruction set. Link ARM version of
libraries. Load into and run from RAM. Compile/assemble
without debug information and with optimization enabled.

THUMB Flash
Debug

Compile/assemble for THUMB instruction set. Link THUMB
version of libraries. Load into and run from Flash memory.
Compile/assemble with debug information and with
optimization disabled.

THUMB Flash
Release

Compile/assemble for THUMB instruction set. Link THUMB
version of libraries. Load into and run from Flash memory.
Compile/assemble without debug information and with
optimization enabled.

154 CrossStudio Reference
ARM Target Support

ARM Target Script File

The target interface system uses CrossStudio's JavaScript (ECMAScript)
interpreter to support board and target specific behaviour.

The main use for this is to support non-standard target and board reset
schemes and also to configure the target after reset, see Reset Script for more
information.

The target script system can also be used to carry out target specific operations
when the debugger attaches, stops or starts the target. This can be useful when
debugging with caches enabled as it provides a mechanism for the debugger
to FLUSH and disable caches when the processor enters debug state and then
re-enable the caches when the processor is released into run state. See Attach
Script, Stop Script, and Run Script for more information.

In order to reduce script duplication, when the target interface runs a reset,
attach, run or stop script it first looks in the current active project for a file
marked with a project property File Type set to Reset Script. If a file of this
type is found it will be loaded prior to executing the scripts, each of the scripts
can then call functions within this script file.

Reset Script
The Reset Script property held in the Target project property group is used to
define a script to execute to reset and configure the target.

The aim of the reset script is to get the processor into a known state. When the
script has executed the processor should be reset, stopped on the first
instruction and configured appropriately.

As an example, the following script demonstrates the reset script for an
Evaluator 7T target board with a memory configuration that re-maps SRAM to
start from 0x00000000. The Evaluator7T_Reset function carries out the
standard ARM reset and stops the processor prior to executing the first

THUMB RAM
Debug

Compile/assemble for THUMB instruction set. Link THUMB
version of libraries. Load into and run from RAM.
Compile/assemble with debug information and with
optimization disabled.

THUMB RAM
Release

Compile/assemble for THUMB instruction set. Link THUMB
version of libraries. Load into and run from RAM.
Compile/assemble without debug information and with
optimization enabled.

Configuration
Name

Description

155

instruction. The Evaluator7T_ResetWithRamAtZero function calls this reset
function and then configures the target memory by accessing the configuration
registers directly. See TargetInterface Object for a description of the
TargetInterface object which is used by the reset script to access the target
hardware.

function Evaluator7T_Reset()
{
 TargetInterface.setNSRST(0);
 TargetInterface.setICEBreakerBreakpoint(0, 0x00000000, 0xFFFFFFFF,

0x00000000, 0xFFFFFFFF, 0x100, 0xF7);
 TargetInterface.setNSRST(1);
 TargetInterface.waitForDebugState(1000);
 TargetInterface.trst();

}

function Evaluator7T_ResetWithRamAtZero()
{
 Evaluator7T_Reset();
 /***
 * Register settings for the following memory configuration: *
 * *
 * ---------------------- *
 * | ROMCON0 - 512K FLASH | 0x01800000 - 0x0187FFFF *
 * |----------------------| *
 * | ROMCON2 - 256K SRAM | 0x00040000 - 0x0007FFFF *
 * |----------------------| *
 * | ROMCON1 - 256K SRAM | 0x00000000 - 0x0003FFFF *
 * ---------------------- *
 * *
 ***/
 TargetInterface.pokeWord(0x03FF0000, 0x07FFFFA0); // SYSCFG
 TargetInterface.pokeWord(0x03FF3000, 0x00000000); // CLKCON
 TargetInterface.pokeWord(0x03FF3008, 0x00000000); // EXTACON0
 TargetInterface.pokeWord(0x03FF300C, 0x00000000); // EXTACON1
 TargetInterface.pokeWord(0x03FF3010, 0x0000003E); // EXTDBWIDTH
 TargetInterface.pokeWord(0x03FF3014, 0x18860030); // ROMCON0
 TargetInterface.pokeWord(0x03FF3018, 0x00400010); // ROMCON1
 TargetInterface.pokeWord(0x03FF301C, 0x00801010); // ROMCON2
 TargetInterface.pokeWord(0x03FF3020, 0x08018020); // ROMCON3
 TargetInterface.pokeWord(0x03FF3024, 0x0A020040); // ROMCON4
 TargetInterface.pokeWord(0x03FF3028, 0x0C028040); // ROMCON5
 TargetInterface.pokeWord(0x03FF302C, 0x00000000); // DRAMCON0
 TargetInterface.pokeWord(0x03FF3030, 0x00000000); // DRAMCON1
 TargetInterface.pokeWord(0x03FF3034, 0x00000000); // DRAMCON2

156 CrossStudio Reference
ARM Target Support

 TargetInterface.pokeWord(0x03FF3038, 0x00000000); // DRAMCON3
 TargetInterface.pokeWord(0x03FF303C, 0x9C218360); // REFEXTCON

}

Attach Script
The Attach Script property held in the Target project property group is used
to define a script that is executed when the debugger first attaches to an
application. This can be after a download or reset before the program is run or
after an attach to a running application. The aim of the attach script is to carry
out any target specific configuration before the debugger first attaches to the
application being debugged.

See TargetInterface Object for a description of the TargetInterface object which
is used by the attach script to access the target hardware.

Stop Script
The Stop Script property held in the Target project property groups is used to
define a script that is executed when the target enters debug/stopped state.
This can be after the application hits a breakpoint or when the Debug | Break
operation has been carried out. The aim of the stop script is to carry out any
target specific operations before the debugger starts accessing target memory.
This is particularly useful when debugging applications that have caches
enabled as the script can disable and flush the caches enabling the debugger to
access the current memory state.

See TargetInterface Object for a description of the TargetInterface object which
is used by the stop script to access the target hardware.

Run Script
This Run Script property held in the Target project property group is used to
define a script that is executed when the target enters run state. This can be
when the application is run for the first time or when the Debug | Go
operation has been carried out after the application has hit a breakpoint or
been stopped using the Debug | Break operation. The aim of the run script is
to carry out any target specific operations after the debugger has finished
accessing target memory. This can be useful to re-enable caches previously
disabled by the stop script.

See TargetInterface Object for a description of the TargetInterface object which
is used by the run script to access the target hardware.

157

TargetInterface Object
The TargetInterface object is used to access the currently connected target
interface. The following section describes the TargetInterface object's member
functions.

TargetInterface.beginDebugAccess

Synopsis TargetInterface.beginDebugAccess()

Description Put target into debug state if it is not already in order to carry out a number of
debug operations. The idea behind beginDebugAccess and
endDebugAccessis to minimize the number of times the target enters and
exits debug state when carrying out a number of debug operations. Target
interface functions that require the target to be in debug state (such as peek and
poke) also use beginDebugAccessand endDebugAccess to get the target into
the correct state. A nesting count is maintained, incremented by
beginDebugAccess and decremented by endDebugAccess. The initial
processor state is recorded on the first nested call to beginDebugAccessand
this state is restored when the final endDebugAccess is called causing the
count to return to it initial state.

TargetInterface.delay

Synopsis TargetInterface.delay(milliseconds)

Description TargetInterface.delay waits for milliseconds milliseconds

TargetInterface.endDebugAccess

Synopsis TargetInterface.endDebugAccess(alwaysRun)

Description Restore the target run state recorded at the first nested call to
beginDebugAccess.See beginDebugAccess for more information. If
alwaysRun is non-zero the processor will exit debug state on the last nested
call to endDebugAccess.

TargetInterface.eraseBytes

Synopsis TargetInterface.eraseBytes(address, length)

Description TargetInterface.eraseBytes erases a block of erasable memory. addressis the
start address of the block to erase and length is the number of bytes to erase.

158 CrossStudio Reference
ARM Target Support

TargetInterface.executeFunction

Synopsis TargetInterface.executeFunction(address, r0, timeout)

Description TargetInterface.executeFunction executes a function on the target.addressis
the address of the function entry point, r0 is the value to set register r0 on entry
to the function (in effect the first parameter to the function), and timeout is the
timeout value in milliseconds to wait for the function to complete.

TargetInterface.getRegister

Synopsis TargetInterface.getRegister(register)

Description TargetInterface.getRegister gets the value of a CPU register. Note that the set
of register values are only updated when the CPU stops. register is a string
specifying the register to get and must be one of r0, r1, r2, r3, r4, r5, r6, r7, r8,
r9, r10, r11, r12, r13, r14, r15, sp, lr, pc, cpsr, r8_fiq, r9_fiq, r10_fiq, r11_fiq,
r12_fiq, r13_fiq, r14_fiq, spsr_fiq, r13_svc, r14_svc, spsr_svc, r13_abt, r14_abt,
spsr_abt, r13_irq, r14_irq, spsr_irq, r13_und, r14_und, spsr_und.
TargetInterface.getRegister returns the register's value.

TargetInterface.peekByte

Synopsis TargetInterface.peekByte(address)

Description TargetInterface.peekByte reads a byte of target memory from addressand
returns it.

TargetInterface.peekBytes

Synopsis TargetInterface.peekBytes(address, length)

Description TargetInterface.peekBytes reads a block of bytes from target memory starting
at >address for length bytes and returns the result as an array containing the
bytes read.

TargetInterface.peekUint16

Synopsis TargetInterface.peekUint16(address)

Description TargetInterface.peekUint16 reads a 16-bit unsigned integer from target
memory from address and returns it.

159

TargetInterface.peekUint32

Synopsis TargetInterface.peekUint32(address)

Description TargetInterface.peekUint32 reads a 32-bit unsigned integer from target
memory from address and returns it.

TargetInterface.peekWord

Synopsis TargetInterface.peekWord(address)

Description TargetInterface.peekWord reads a word as an unsigned integer from target
memory from address and returns it.

TargetInterface.pokeByte

Synopsis TargetInterface.pokeByte(address, data)

Description TargetInterface.pokeByte writes the byte data to address in target memory.

Synopsis TargetInterface.pokeUint16

TargetInterface.pokeUint16(address, data)

Description TargetInterface.pokeUint16 writes data as a 16-bit value to addressin target
memory.

Synopsis TargetInterface.pokeUint32

TargetInterface.pokeUint32(address, data)

Description TargetInterface.pokeUint32 writes data as a 32-bit value to addressin target
memory.

Synopsis TargetInterface.pokeWord

TargetInterface.pokeWord(address, data)

Description TargetInterface.pokeWord writes data as a word value to addressin target
memory.

TargetInterface.pokeBytes

Synopsis TargetInterface.pokeBytes

TargetInterface.pokeBytes(address, data)

Description TargetInterface.pokeBytes writes the array data containing 8-bit data to target
memory at address.

160 CrossStudio Reference
ARM Target Support

TargetInterface.peekMultUint16

Synopsis TargetInterface.peekMultUint16(address, length)

Description TargetInterface.peekMultUint16 reads length unsigned 16-bit integers from
target memory starting at address and returns them as an array.

TargetInterface.peekMultUint32

Synopsis TargetInterface.peekMultUint32(address, length)

Description TargetInterface.peekMultUint32 reads length unsigned 32-bit integers from
target memory starting at address and returns them as an array.

TargetInterface.pokeMultUint16

Synopsis TargetInterface.pokeMultUint16(address, data)

Description TargetInterface.pokeBytes writes the array data containing 16-bit data to
target memory at address.

TargetInterface.pokeMultUint32

Synopsis TargetInterface.pokeMultUint32(address, data)

Description TargetInterface.pokeBytes writes the array data containing 32-bit data to
target memory at address.

TargetInterface.setICEBreakerBreakpoint

Synopsis TargetInterface.setICEBreakerBreakpoint(n, addressValue, addressMask,
dataValue, dataMask controlValue, controlMask)

Description TargetInterface.setICEBreakerBreakpoint sets an ICEBreaker breakpoint. nis
the number of the watchpoint unit to use, addressValue is the address value,
addressMask is the address mask, dataValue is the data value, dataMask is
the data mask, controlValue is the control value, and controlMask is the
control mask.

TargetInterface.setNSRST

Synopsis TargetInterface.setNSRST(state)

Description TargetInterface.setNSRST sets the level of the target's nSRST reset signal high
if state is non-zero.

161

TargetInterface.setRegister

Synopsis TargetInterface.setRegister(register, value)

Description TargetInterface.setRegister sets the CPU regsister register to value.

registeris a string describing the register to set and must be one of r0, r1, r2, r3,
r4, r5, r6, r7, r8, r9, r10, r11, r12, r13 or sp, r14 or lr, r15 or pc, cpsr, r8_fiq, r9_fiq,
r10_fiq, r11_fiq, r12_fiq, r13_fiq, r14_fiq, spsr_fiq, r13_svc, r14_svc, spsr_svc,
r13_abt, r14_abt, spsr_abt, r13_irq, r14_irq, spsr_irq, r13_und, r14_und,
spsr_und.

Note that this function will only change the CPU register state if the CPU is
stopped.

TargetInterface.trst

Synopsis TargetInterface.trst()

Description TargetInterface.trst performs a JTAG TAP reset.

TargetInterface.waitForDebugState

Synopsis TargetInterface.waitForDebugState(timeout)

Description TargetInterface.waitForDebugState waits for the target to enter debug state
with a timeout of timeoutmilliseconds. If the timeout period expires and
exception is thrown which is caught by the debugger.

ARM Program Loader

CrossStudio for ARM supports Flash programming (and subsequent
debugging) by loading a program into the RAM of the target and transmitting
it the data to be programmed.

The use of a target loader is determined by the value of the Loader File Path
project property defined for the appropriate configuration of the project. The
Loader File Path property specifies the location of the loader executable to use,
if this is defined the loader executable will be downloaded onto the target an
run prior to download of the main application.

In addition to the Loader File Path property, the Loader File Type project
property must be specified. This tells CrossStudio how to communicate with
the loader program. The various communication mechanisms available are
explained in more detail later. The Load File Typeproperty may be set to one
of the following:

162 CrossStudio Reference
ARM Target Support

Comms Channel Loader - The ARM debug comms channel is used to
communicate with the loader.

Fast Comms Channel Loader - The ARM debug comms channel is used to
communicate with the loader. This scheme is significantly faster at
downloading than Comms Channel Loader because it makes the
assumption that the loader program is always ready to read data and
therefore does not check the ARM comms channel status before
transmitting data. This may not be suitable for all targets or loaders. If you
experience reliability problems downloading and verifying programs
using this setting, you should revert to the Comms Channel
Loadersetting.

RAM Loader - The target's RAM is used to communicate with the loader.

The functionality a loader provides to CrossStudio is:

Erase all non-volatile memory.

Erase a block of non-volatile memory.

Write a block of data into volatile or non-volatile memory.

Read a block of data from volatile or non-volatile memory.

Set a block of volatile or non-volatile memory to a specific value.

Verify a block of volatile or non-volatile memory.

CrossStudio can communicate with the loader running on the ARM in one of
two ways:

ARM Debug Comms Port - All transactions with the loader are carried out
over the ARM debug comms port. This is generally quicker than using
RAM communication, however the ARM debug comms port is not
supported on all targets.

RAM - All transactions with the loader are carried out by the host writing
data to target RAM, executing code and then reading the results out of
target RAM. This system has the advantage that it will run on all targets,
however it is not necessarily as quick as using the ARM debug comms port
and can be hard to use if RAM is scarce.

To simplify the creation of a new loader program, a number of files have been
supplied in the target/loader directory:

loader.h - This file contains prototypes for all the loader functions and a
number of useful macros.

loader_main.c - This file contains the main entry point of a loader. It handles
the reading of commands from the host and calling the appropriate loader
entry points.

163

loader_comm.c & loader_ram.c - These files implement the ARM debug
comms port and RAM communication mechanisms used by the loader.
Each file implements a version of the waitForCommand, loaderReadWord
and loaderWriteWord functions. A loader that uses the ARM debug comms
port should link in loader_comm.c and a loader that uses RAM should link
in loader_ram.c. A loader using loader_comm.cshould have the Loader File
Type project property set to either Comms Channel Loader or Fast
Comms Channel Loader. A loader using loader_ram.cshould have the
Loader File Type project property set to RAM Loader.

In order to implement a loader, the following loader entry points should be
implemented:

void loaderBegin() - This function is called before the loader enters it main
loop, it can be used to initialize the loader if required.

void loaderEnd()- This function is called when the loader exits it main loop,
it can be used to clean up after the loader if required.

int loaderPoke(unsigned char *address, unsigned int length) - This function is
called when the host requests a write to memory. The address parameter
specifies the address to start writing to, the length parameter specifies the
number of bytes to write. The data to write should be read from the host
using the loaderReadWordfunction, the bytes are stored in each word in
little endian order. A non-zero value should be returned on success.

int loaderMemset(unsigned char *address, unsigned int length, unsigned char c)
- This function is called when the host request memory to be set to
particular value. The address parameter specifies the address to start
writing to, the length parameter specifies the number of bytes to write and
the c parameter specifies the value to write. A non-zero value should be
returned on success.

int loaderErase(unsigned char *address, unsigned int length) - This function is
called when the host requests a block of non-volatile memory to be erased.
The address parameter specifies the starting address of the block to erase,
the length parameter specifies the length of the block in bytes. A non-zero
value should be returned on success.

int loaderEraseAll() - This function is called when the host requests all non-
volatile memory to be erased. A non-zero value should be returned on
success.

int loaderSetParameter(unsigned int parameter, unsigned int value) - This
function is called when the host attempts to set a loader specific property.
The parameter parameter specifies the parameter to set, this is currently
always set to zero. The value parameter specifies the value being set. The
parameter value to be passed to the loader can be specified in the Loader
Parameter project property.

164 CrossStudio Reference
ARM Target Support

A loader that uses loader_ram.c must also define the program section in RAM
called .comm_buffer. The RAM this section occupies is used to write the data
sent to and from the loader. The size to set the .comm_buffer section to is
dependent on how much RAM you have free, however the larger you set the
.comm_buffer the faster the loader will run.

The loader projects and source code for all the supported targets can be found
in the target-specific directories contained in the targetsdirectory

The following code demonstrates the structure of a loader implementation:

#include "../loader/loader.h"

void
loaderBegin()
{
}

void
loaderEnd()
{
}

int
loaderPoke(unsigned char *address, unsigned int length)
{
 while (length)
 {
 unsigned int data = loaderReadWord();
 int i;
 for (i = 4; i && length; --i)
 {

 if (ADDRESS_IN_FLASH(address))
 flash_write_byte(address++, (unsigned char)data);

 else
 *address++ = (unsigned char)data;

 data >>= 8;
 length--;

 }
 }

 return 1;
}

int
loaderMemset(unsigned char *address, unsigned int length, unsigned char c)
{
 while(length--)

165

 {
 if (ADDRESS_IN_FLASH(address))
 flash_write_byte(address++, (unsigned char)c);

 else
 *address++ = (unsigned char)c;

 }
 return 1;

}

int
loaderErase(unsigned char *address, unsigned int length)
{
 if (!is_erased(address, length))
 flash_erase(address, length);

 return 1;
}

int
loaderEraseAll()
{
 if (!is_erased(FLASH_START_ADDRESS, FLASH_END_ADDRESS))

 flash_erase_all(FLASH_START_ADDRESS);
 return 1;

}

The targets directory contains a directory for each supported target. The loader
source code for each target can be found in these directories. In order to view,
edit and build a loader project open the Loader.hzp solution for the required
target. By default CrossStudio picks the loaders from the Release/Loader.exe
directory of each target directory.

166 CrossStudio Reference
Dialogs

ARM Device Specific Target Support

Dialogs

Debug file search editor

When a program is built with debugging enabled the debugging information
contains paths describing where the source files that went into the program are
located in order to allow the debugger to find them. If a program or libraries
linked into the program are being run on a different machine to the one they
were compiled on or if the source files have moved since the program was
compiled, the debugger will unable to find the source files.

In this situation the simplest way to help CrossStudio find the moved source
files is to add the directory containing the source file to one of it's source file
search paths. Alternatively, if CrossStudio cannot find a source file it will
prompt you for it's location and record it's new location in it's source file map.

Debug source file search paths
The debug source file search paths can be used to help the debugger locate
source files that are no longer in the same location as they were at compile
time. When a source file cannot be found, the search path directories will be
checked in turn to see if they contain the source file. CrossStudio maintains
two debug source file search paths:

Project session search path This path is set in the current project session
and does not apply to all projects.

The global search path This path is set system wide and applies to all
projects.

The project session search path is checked before the global search path.

To view and edit the debug search paths

From the Debug menu, click Edit Search Paths

167

Debug source file map
If a source file cannot be found whilst debugging and the debugger has to
prompt the user for its location, the results are stored in the debug source file
map. The debug source file map is simply a mapping between the original file
name and it's new location. When a file cannot be found at its original location
or in the debug search paths the debug source file map is checked to see if a
new location for the file has been recorded or if the user has specified that the
file does not exist. Each project session maintains it's own source file map, the
map is not shared by all projects.

To view the debug source file map

From the Debug menu, click Edit Search Paths

To remove individual entries from the debug source file map

From the Debug menu, click Edit Search Paths

Right click on the mapping you want to delete

From the context menu, click Delete Mapping

To remove all entries from the debug source file map

From the Debug menu, click Edit Search Paths

Select Delete All Mappings from the context menu

Environment options

Environment General

Window menu contains. Specifies the maximum number of open
windows to be listed in the Window menu.

Most recently used project list contains. Specifies the maximum number
of project files to be listed in the File > Recent Projects menu.

Most recently used files list contains. Specifies the maximum number of
files to be listed in the File > Recent Files menu.

Use large icons in toolbars. Enables large icons in tool bars.

Show status bar. Enables display of status bar.

Show full path in title bar. Enables display in title bar of full file path of
current file being edited.

168 CrossStudio Reference
Dialogs

Show dock window contents when moving. Enables display of docking
window contents when window is being moved.

Docking windows show toolbars. Configures docking window toolbar
display.

Projects location. Specifies the default directory location of projects.

Environment Workspace

The workspaces dialog provides the ability to specify which windows and
toolbars are displayed in Full Screen, Normal and Debug run states.

Text Editor General

Vertical scroll bar. Enables display of vertical scroll bar.

Horizontal scroll bar. Enables display of horizontal scroll bar.

Indicator margin. Enables display of indicator margin.

Margins enabled. Enables margins.

Top margin. Size in lines of top margin.

Left margin. Size in columns of left margin.

Bottom margin. Size in lines of bottom margin.

Right margin. Size in columns of right margin.

Hide mouse cursor when typing. Enables hiding of mouse cursor when
typing.

Use I-beam text cursor. Enables I-beam cursor when mouse is moved
over editor.

Allow editing or read only files. Enables the editing of read only files.

Insert mode style. Specifies the caret style when the editor is in insert
mode.

Overtype mode style. Specifies the caret style when the editor is in
overwrite mode.

Text Editor Indent

File type. The type of file to configure the indent options for.

Insert spaces. Enables insertion of spaces only.

Tab size. Specifies the tab size in characters.

Keep tabs. Enables use of tab characters.

169

Indent size. Specifies the default indentation size in characters.

Auto indent. Specifies indent mode.

Indent open brace. Enables indentation of open braces when in smart
indent mode.

Indent closing brace. Enables indentation of closing braces when in smart
indent mode.

Previous lines used for context. Specifies the maximum number of lines
prior to the current line to start parsing when in smart indent mode.

Build General

Echo command lines to log. Enables echoing of build command lines to
output window.

Show build information in log. Enables build avoidance logic to be
displayed.

Debugger General

Default data display. Specifies the default data display format.

Source file search path. Comma separated list of directories to use to
locate source files.

Debugger Data Tips

Limit data tip array display to n elements. Specifies the maximum
number of array elements to display when showing array data tips.

Display extended data tips. Enables display of extended data tips.
Extended data tips display the data in a number of formats.

Extended data tip formats. Specifies the formats to display when
displaying extended data tips is enabled.

CrossStudio menu summary

The following sections describe each menu and each menu item.

170 CrossStudio Reference
CrossStudio menu summary

File menu

The File menu provides commands to create, open, and close files, and to print
them.

The File menu

File commands

Menu command Keystroke Description

New Displays the New menu.

Open Ctrl+O Opens an existing file for editing.

Open With Displays the Open With menu.

Close Ctrl+F4
Closes the active editor. If you have made changes to the file,
CrossStudio prompts you to save the file.

Open Solution Ctrl+Shift+O

Opens an existing solution for editing. If you already have an open
solution, CrossStudio will close it before opening the new solution
and, if you have made changes to any of the files in your solution,
you are prompted to save each of them.

Close Solution
Closes the current solution. If you have made changes to any of the
files in your solution, you are prompted to save each of them.

171

Save file Ctrl+S
Saves the contents of the active editor to disk. If it is a new file
without a name, CrossStudio opens a file browser for you to choose
where to save the file and what to call it.

Save file As... Ctrl+K, A

Saves the contents of the active editor to disk using a different name.
CrossStudio opens a file browser for you to choose where to save the
file and what to call it. After saving, the editor is set to edit the newly
saved file, not the previous file.

Save file And
Close

Ctrl+K, D
Saves the contents of the active editor to disk and then closes the
editor. If it is a new file without a name, CrossStudio opens a file
browser for you to choose where to save the file and what to call it.

Save All Ctrl+Shift+S

Saves all edited files to disk. For each new file without a name,
CrossStudio opens a file browser for you to choose where to save the
file and what to call it. Cancelling a save at any time will return you
to CrossStudio without saving the remainder of the files.

Save All And Exit Alt+Shift+F4

Saves all edited files to disk and then exits CrossStudio. For each
new file without a name, CrossStudio opens a file browser for you
to choose where to save the file and what to call it. Cancelling a save
at any time will return you to CrossStudio without exiting.

Page Setup...
Steps into the next statement or instruction and enters C functions
and assembly language subroutines. If a breakpoint is hit when
stepping, the debugger immediately stops at that breakpoint.

Print Preview...
Opens the Print Preview dialog and shows the document as it will
appear when it is printed.

Recent Files

Opens the Recent Files menu which contains a list of files that have
been recently opened, with the most recently opened file first in the
list. You can configure the number of files retained in the Recent
Files menu in the Environment Options dialog. You can clear the
list of recent files by selecting Clear Recent Files List from the
Recent Files menu.

Recent Projects

Opens the Recent Projects menu which contains a list of projects
that have been recently opened, with the most recently opened
project first in the list. You can configure the number of projects
retained in the Recent Projects menu in the Environment Options
dialog. You can clear the list of recent projects by selecting Clear
Recent Projects List from the Recent Projects menu.

Exit Alt+F4

Saves all edited files, closes the solution, and exits CrossStudio. For
each new file without a name, CrossStudio opens a file browser for
you to choose where to save the file and what to call it. Cancelling a
save at any time will return you to CrossStudio without exiting.

Menu command Keystroke Description

172 CrossStudio Reference
CrossStudio menu summary

New menu

The New menu provides commands to create files and folders.

The New menu

New menu commands

Edit menu

The Edit menu provides commands to edit files.

Menu command Keystroke Description

New File... Creates a new file using the New File dialog

New Blank File Ctrl+K, Ctrl+N Creates a new, unnamed document.

New Project... Creates a new project using the New Project dialog.

New Blank
Solution

Ctrl+K,
Ctrl+Shift+N

Creates a new solution containing no projects.

New File
Comparison

Ctrl+T, F Creates a new file comparison window.

New Folder...
Creates a new folder underneath the currently selected item in the
Project Explorer.

173

The Edit menu

Edit menu commands

Menu command Keystroke Description

Undo
Ctrl+Z
—or—
Alt+Backspace

Undoes the last editing action.

Redo

Ctrl+Y
—or—
Alt+Shift+Backsp
ace

Redoes the last undone editing action.

Cut
Ctrl+X
—or—
Shift+Delete

Cuts the selected text to the clipboard. If no text is selected, cuts the
current line to the clipboard.

Copy
Ctrl+C
—or—
Ctrl+Insert

Cuts the selected text to the clipboard. If no text is selected, copies
the current line to the clipboard.

Paste
Ctrl+V
—or—
Shift+Insert

Pastes the clipboard into the document.

Delete Delete
Deletes the selection. If no text is selected, deletes the character to the
right of the cursor.

Clipboard Displays the Clipboard menu.

174 CrossStudio Reference
CrossStudio menu summary

Clipboard menu

The Clipboard menu provides commands to edit files using the clipboard.

The Clipboard menu

Clipboard menu commands

Clipboard Ring Displays the Clipboard Ring menu.

Select All Ctrl+A Selects all text or items in the document.

Insert File Ctrl+K, Ctrl+I Inserts a file into the document at the cursor position.

Expand Template Ctrl+J Forces expansion of a template.

Editing Macros Displays the Editing Macros menu.

Selection
Displays the Edit Selection menu. See Edit Selection menu (page
177).

Bookmarks Displays the Bookmarks menu.

Format Displays the Formatting menu.

Advanced Displays the Advanced Editing menu.

Menu command Keystroke Description

Menu command Keystroke Description

Cut Append Ctrl+Shift+X
Cuts the selected text and appends it to the clipboard. If no text is
selected, cuts and appends the current line to the clipboard.

175

Clipboard Ring menu

The Clipboard Ring menu provides commands to edit files using the
clipboard ring.

The Clipboard Ring menu

Cut Lines Num -
Converts the selection to complete lines then cuts the selected text
lines them to the clipboard. If no text is selected, cuts and appends
the current line to the clipboard.

Cut Lines Append Shift+Num -
Converts the selection to complete lines then cuts the selected text
lines and appends them to the clipboard. If no text is selected, cuts
and appends the current line to the clipboard.

Cut Marked Lines Cuts all bookmarked lines in the current document to the clipboard.

Cut Marked Lines
Append

Cuts all bookmarked lines in the current document and appends
them to the clipboard.

Copy Append
Copies the selected text and appends it to the clipboard. If no text is
selected, copies and appends the current line to the clipboard.

Copy Lines
Converts the selection to complete lines then copies the selected text
lines them to the clipboard. If no text is selected, copies and appends
the current line to the clipboard.

Copy Lines
Append

Converts the selection to complete lines then copies the selected text
lines and appends them to the clipboard. If no text is selected, copies
and appends the current line to the clipboard.

Copy Marked
Lines

Copies all bookmarked lines in the current document to the
clipboard.

Copy Marked
Lines Append

Copies all bookmarked lines in the current document and appends
them to the clipboard.

Paste to New
Document

Alt+Shift+V Creates a new, unnamed document and pastes the clipboard into it.

Clear Clipboard Clears the contents of the clipboard.

Menu command Keystroke Description

176 CrossStudio Reference
CrossStudio menu summary

Clipboard Ring menu commands

Macros menu

The Macros menu provides additional commands to record and play key
sequences as well as provide some fixed macros.

The Macros menu

Macros menu commands

Menu command Keystroke Description

Paste All Ctrl+Shift+X Pastes the contents of the clipboard ring to the current document.

Cycle Clipboard
Ring

Num - Cycles the clipboard ring.

Clear Clipboard
Ring

Ctrl+R, Del Clears the contents of the clipboard ring.

Clipboard Ring Ctrl+Alt+C
Displays the Clipboard Ring window. See Clipboard ring window
(page 97).

Menu command Keystroke Description

Play Recording Ctrl+Shift+P Plays the last recorded keyboard macro.

Start Recording Ctrl+Shift+R Starts recording a keyboard macro.

177

Edit Selection menu

The Edit > Selection menu provides commands to operate on the selection.

The Edit Selection menu

Pause/Resume
Recording

Temporarily pauses a recording a keyboard macro. If already
paused, recommences recording of the keyboard macro.

Stop Recording
Stops recording a keyboard macro and saves it. Note that when
recording has commenced, the keystroke to stop recording the
keyboard macro is Ctrl+Shift+R.

Cancel Recording Cancels recording without changing the current keyboard macro.

Insert Hard Tab Ctrl+Q, Tab
Inserts a tab character into the document even if the document's
language settings inserts tabs as spaces.

Declare Or Cast to
type

If there is a selection, parentheses are placed around the selection
and that expression is cast to type. If there is no selection, type is
inserted into the document.

Insert keyword Inserts keyword into the document, followed by a space.

Menu command Keystroke Description

178 CrossStudio Reference
CrossStudio menu summary

Edit Selection menu commands

Menu command Keystroke Description

Tabify Ctrl+K, Tab
Convert space characters in the selection to tabs according to the tab
settings for the language.

Untabify Ctrl+K, Space
Convert tab characters in the selection to spaces according to the tab
settings for the language.

Make Uppercase Ctrl+Shift+U
Convert the letters in the selection to uppercase. If there is no
selection, CrossStudio converts the character to the right of the
cursor to uppercase and moves the cursor right one character.

Switch Case Ctrl+U

Switches the letter case of letters in the selection; that is, uppercase
characters become lowercase, and lowercase become uppercase. If
there is no selection, CrossStudio switches the letter case of the
character to the right of the cursor and moves the cursor right one
character.

Comment Ctrl+/
Prefixes lines in the selection with language-specific comment
characters. If there is no selectiom, CrossStudio comments the cursor
line.

Uncomment Ctrl+Shift+/
Removes the prefixed from lines in the selection that contains
language-specific comment characters. If there is no selectiom,
CrossStudio uncomments the cursor line.

Increase Line
Indent

Tab
Increases the line indent of the selection. If there is no selection, the
cursor is moved to the next tab stop by inserting spaces or a tab
character according to the tab settings for the document.

Decrease Line
Indent

Shift+Tab
Decreases the line indent of the selection. If there is no selection, the
cursor is moved to the previous tab stop.

Align Left Ctrl+K, Ctrl+J, L
Aligns all text in the selection to the leftmost non-blank character in
the selection.

Align Center Ctrl+K, Ctrl+J, C
Centers all text in the selection between the leftmost and rightmost
non-blank characters in the selection.

Align Right Ctrl+K, Ctrl+J, R
Aligns all text in the selection to the rightmost non-blank character
in the selection.

Sort Ascending Sorts the selection into ascending lexicographic order.

Sort Descending Sorts the selection into decending lexicographic order.

179

Bookmarks menu

The Bookmarks menu provides commands to drop and find temporary
bookmarks.

The Bookmarks menu

Bookmarks menu commands

Advanced menu

The Advanced menu provides additional commands to edit your document.

Menu command Keystroke Description

Toggle Bookmark Ctrl+F2 Inserts or removes a bookmark on the cursor line.

Next Bookmark F2
Moves the cursor to the next bookmark in the document. If there is
no following bookmark, the cursor is placed at the first bookmark in
the document.

Previous
Bookmark

Shift+F2
Moves the cursor to the previous bookmark in the document. If
there is no previous bookmark, the cursor is placed at the last
bookmark in the document.

First Bookmark Ctrl+K, F2 Moves the cursor to the first bookmark in the document.

Last Bookmark Ctrl+K, Shift+F2 Moves the cursor to the last bookmark in the document.

Clear All
Bookmarks

Ctrl+Shift+F2 Removes all bookmarks from the document.

180 CrossStudio Reference
CrossStudio menu summary

The Advanced menu

Advanced menu commands

View menu

The View menu provides commands to control the way that windows and
their contents are seen within CrossStudio.

Menu command Keystroke Description

Undo All Ctrl+K, Ctrl+Z Undoes all editing actions in the document.

Redo All Ctrl+K, Ctrl+Y Redoes all editing actions in the document.

Transpose Words Ctrl+K, Ctrl+T Swaps the word at the cursor position with the preceding word.

Transpose Lines Ctrl+K, T Swaps the cursor line with the preceding line.

Scroll To Top Ctrl+G, Ctrl+T Moves the cursor line to the top of the window.

Scroll To Middle Ctrl+G, Ctrl+M Moves the cursor line to the middle of the window.

Scroll To Bottom Ctrl+G, Ctrl+B Moves the cursor line to the bottom of the window.

Toggle Read Only Ctrl+K, Ctrl+R Toggles the read only bit of the document.

Visible
Whitespace

Ctrl+Shift+8
Toggles the document display between non-visible whitespace and
visible whitespace where tabs and spaces are shown with special
characters.

181

The View menu

View menu commands

Menu command Keystroke Description

Project Explorer Ctrl+Alt+P Activates the Project Explorer. See Project explorer (page 127).

Source Navigator Ctrl+Alt+N Activate the Source Navigator. See Source Navigator.

Targets Ctrl+Alt+T Activates the Targets window. See Targets window (page 139).

Output Ctrl+Alt+O Activates the Output window. See Output window (page 126).

Properties
Window

Ctrl+Alt+W
Activates the Properties window. See Properties window (page
129).

Favorites Ctrl+Alt+V Activates the Favorites window. See Favorites Window.

Terminal
Emulator

Ctrl+Alt+M
Activates the Terminal Emulator window. See Terminal Emulator
Window.

Debug Console Ctrl+Alt+D Activates the Debug Console window.

JavaScript
Console

Ctrl+Alt+J Activates the JavaScript Console window.

Symbol Browser Ctrl+Alt+Y
Activates the Symbol Browser window. See Symbol browser (page
132).

182 CrossStudio Reference
CrossStudio menu summary

Other Windows menu

The Other Windows menu provides commands to activate additional
windows in CrossStudio.

The Other Windows menu

Clipboard Ring Ctrl+Alt+C Activates the Clipboard Ring window.

Other Windows Displays the Other Windows menu.

HTML Browser Displays the HTML Browser menu.

Logs Displays the Logs menu.

Status Bar Displays the Status Bar menu.

Outlining Displays the Outlining menu.

Full Screen Alt+Shift+Return Activates the Full Screen workspace.

Menu command Keystroke Description

183

Other Windows commands

Menu command Keystroke Description

Breakpoints Ctrl+Alt+B
Activates the Breakpoints window. See Breakpoints window (page
100).

Call Stack Ctrl+Alt+S Activates the Call Stack window. See Call stack window (page 105).

Locals Ctrl+Alt+L Activates the Locals window. See Locals window (page 112).

Globals Ctrl+Alt+G Activates the Globals window. See Globals window (page 110).

Threads Ctrl+Alt+D Activates the Threads window. See Threads window (page 119).

Registers 1 Ctrl+T, R, 1
Activates the first Register window. See Register windows (page
116).

Registers 2 Ctrl+T, R, 2
Activates the second Register window. See Register windows
(page 116).

Registers 3 Ctrl+T, R, 3
Activates the third Register window. See Register windows (page
116).

Registers 4 Ctrl+T, R, 4
Activates the fourth Register window. See Register windows (page
116).

Watch 1 Ctrl+T, W, 1 Activates the first Watch window. See Watch window (page 121).

Watch 2 Ctrl+T, W, 2
Activates the second Watch window. See Watch window (page
121).

Watch 3 Ctrl+T, W, 3 Activates the third Watch window. See Watch window (page 121).

Watch 4 Ctrl+T, W, 4 Activates the fourth Watch window. See Watch window (page 121).

Memory 1 Ctrl+T, M, 1
Activates the first Memory window. See Memory window (page
114).

Memory 2 Ctrl+T, M, 2
Activates the second Memory window. See Memory window (page
114).

Memory 3 Ctrl+T, M, 3
Activates the third Memory window. See Memory window (page
114).

Memory 4 Ctrl+T, M, 4
Activates the fourth Memory window. See Memory window (page
114).

Execution Trace
Activates the Execution Trace window. See Trace window (page
121).

Execution Counts
Activates the Execution Counts window. See Execution counts
window (page 110).

184 CrossStudio Reference
CrossStudio menu summary

Browser menu

The Browser menu provides commands nagivate through the browser history.

The Browser menu

Browser commands

Toolbars menu

The Toolbars menu provides commands to display or hide CrossStudio tool
bars.

The Toolbars menu

Menu command Keystroke Description

Show Browser Ctrl+Alt+H Activates the Browser window.

Back Ctrl+Alt+Left Displays the previous page in the browser history.

Forward Ctrl+Alt+Right Displays the following page in the browser history.

Home Ctrl+Alt+Home Displays the home page.

Text Size Displays the Browser Text Size menu.

185

Toolbar menu commands

Search menu

The Search menu provides commands to search in files.

The Search menu

Menu command Keystroke Description

Standard Displays the Standard tool bar.

Text Edit Displays the Text Edit tool bar.

Build Displays the Build tool bar.

Debug Displays the Debug tool bar.

Debug Location Displays the Debug Location tool bar.

Macro Recording Displays the Macro Recording tool bar.

HTML Browser Displays the HTML Browser tool bar.

Source Control Displays the Source Control tool bar.

File Comparison Displays the File Comparison tool bar.

Customize... Displays the Toolbar Configuration dialog.

186 CrossStudio Reference
CrossStudio menu summary

Search menu commands

Project menu

The Project menu provides commands to manipulate the project.

Menu command Keystroke Description

Find
Ctrl+F

Searches documents for strings.

Find in Files Ctrl+Shift+F Searches for a string in multiple files.

Replace Replace Replaces text with different text.

Replace in Files Ctrl+Shift+H Replaces text with different text in multiple files.

Find Next F3 Searches for the next occurrence of the specified text.

Find Previous Shift+F3 Searches for the previous occurrence of the specified text.

Find Selected Text Ctrl+F3 Searches for the next occurrence of the selection.

Find and Mark All Alt+Shift+F3
Searches the document for all occurrences of the specified text and
marks them with bookmarks.

Go To L:ine Ctrl+G, Ctrl+L Moves the cursor to a specified line in the document.

Go To Mate Ctrl+]
Moves the cursor to the bracket, parenthesis, or brace that matches
the one at the cursor.

Next Location F4 Moves the cursor to the line containing the next error or tag.

Previous Location Shift+F4 Moves the cursor to the line containing the previous error or tag.

Next Function Ctrl+PgDn Moves the cursor to the declaration of the next function.

Previous Function Ctrl+PgUp Moves the cursor to the declaration of the previous function.

Case Sensitive
Matching

Ctrl+K, Ctrl+F, C Enables or disables the case sensitivity of letters when searching.

Whole Word
Matching

Ctrl+K, Ctrl+F, W Enables or disables whole word matching when searching.

Regular
Expression
Matching

Ctrl+K, Ctrl+F, X
Enables or disables expression matching rather than plain text
matching.

187

The Project menu

Project menu commands

Build menu

The Build menu provides commands to build projects and solutions.

Menu command Keystroke Description

Add New File... Ctrl+N Adds a new file to the active project.

Add Existing
File...

Ctrl+D Adds an existing file to the active project.

Add New
Project...

Ctrl+Shift+N Adds a new project to the solution.

Add Existing
Project

Ctrl+Shift+D Adds a link to an existing project to the solution.

New Folder... Adds a new folder to the current project or folder.

Source Control Displays the Source Control menu.

Dependencies...
Displays the Project Dependencies dialog to alter project
dependencies.

Build Order... Displays the Build Order tab of the Project Dependencies dialog.

Macros...
Displays the Project Macros dialog to edit the macros defined in a
project.

Set Active Project Displays a menu which allows you to select the active project.

Properties Alt+Return Displays the Project Properties dialog for the current project item.

188 CrossStudio Reference
CrossStudio menu summary

The Build menu

Build menu commands

Menu command Keystroke Description

Build and Debug Builds the active project and starts debugging it.

Build and Run Builds the active project and runs it without debugging.

Compile file Ctrl+F7 Compiles the selected project file.

Build project F7 Builds the active project.

Rebuild project Alt+F7 Rebuilds the active project.

Clean project
Removes all output and temporary files generated by the active
project.

Build Solution Shift+F7 Builds all projects in the solution.

Rebuild Solution Alt+Shift+F7 Rebuilds all projects in the solution.

Clean Solution
Removes all output and temporary files generated by all projects in
the solution.

Batch Build Displays the Batch Build menu.

Cancel Build Shift+Pause Stops any build in progress.

Build
Configurations...

Displays the Build Configurations dialog.

Set Active Build
Configuration

Displays a menu which allows you to select the active build
configuration.

189

Debug menu

The Debug menu provides commands to download, run, and debug your
application. You can find common debug actions as tool buttons on the Debug
toolbar.

The Debug menu

The Debug toolbar

Show Build Log Displays the Build Log in the Output window.

Menu command Keystroke Description

190 CrossStudio Reference
CrossStudio menu summary

Debug commands

Menu command Keystroke Description

Debug Windows
Displays the Debug Windows menu. See Debug Windows menu
(page 194).

Breakpoints Displays the Breakpoints menu. See Breakpoint menu (page 193).

Control
Displays the Debug Control menu. See Debug Control menu (page
191).

Start Debugging F5
Downloads the program to the selected target interface and starts
running the program under control of the debugger.

Reset and Debug Ctrl+Alt+F5
Resets the selected target interface without downloading the project
and starts running the program.

Attach Debugger Ctrl+T, H
Attaches the debugger to the program running on the selected target
interface.

Start Without
Debugging

Ctrl+F5
Downloads the program to the selected target interface and starts
running the program without the debugger.

Go F5
Continues running the program until a breakpoint is hit or a
hardware exception is raised.

Break Ctrl+. Stops the program running and returns control to the debugger.

Stop Shift+F5 Stops debugging the program and returns to the editing workspace.

Restart Ctrl+Shift+F5
Resets the selected target interface and starts debugging the
program.

Step Into F11
Steps into the next statement or instruction and enters C functions
and assembly language subroutines. If a breakpoint is hit when
stepping, the debugger immediately stops at that breakpoint.

Step Over F10
Steps over the next statement or instruction without entering C
functions and assembly language subroutines. If a breakpoint is hit
when stepping, the debugger immediately stops at that breakpoint.

Step Out Shift+F11

Steps out of the function or subroutine by executing up to the
instruction following the call to the current function or subroutine.
If a breakpoint is hit when stepping, the debugger immediately
stops at that breakpoint.

Run To Cursor Ctrl+F10
Runs the program to the statement or instruction the cursor is at. If
a breakpoint is hit when stepping, the debugger immediately stops
at that breakpoint.

191

Debug Control menu

The Debug Control menu provides commands to control how you debug your
program. The Debug Control menu is a submenu of the Debug menu.

Auto Step Alt+F11
Animates program execution by running the program and updates
all debugger windows after each statement or instruction executed.

Set Next
Statement

Shift+F10
Sets the program counter to the statement or instruction that the
cursor is on. Note that doing this may lead to unpredictable or
incorrect execution of your program.

Show Next
Statement

Alt+*
Displays the source line or instruction associated with the program
counter. You can use this to show the execution point after
navigating through files.

Locate...

Quick Watch Shift+F9

Opens a viewer on the variable or expression at the cursor position.
If no text is selected, CrossStudio opens a viewer using the word at
the cursor position as the expression. If some text is selected,
CrossStudio opens a viewer using the selected text as the expression.

Add To Watch Ctrl+T, Ctrl+W

Adds the variable or expression at the cursor position to the last
activated watch window. If no text is selected, CrossStudio adds the
word at the cursor position to the watch window. If some text is
selected, CrossStudio adds the selected text as the expression to the
watch window.

Remove From
Watch

Removes the variable or expression at the cursor position to the last
activated watch window. If no text is selected, CrossStudio removes
any expression matching the word at the cursor position from the
watch window. If some text is selected, CrossStudio removes any
expression matching the selected text from the watch window.

Edit Search Paths
Opens the Debug Search File dialog. See Debug file search editor
(page 166).

Exceptions Opens the Exceptions dialog.

Menu command Keystroke Description

192 CrossStudio Reference
CrossStudio menu summary

The Debug Control menu

Debug Control commands

Menu command Keystroke Description

Source Mode Ctrl+T, S
Switches the debugger into Source Debugging mode where code is
stepped a statement at a time.

Interleaved Mode Ctrl+T, I
Switches the debugger into Interleaved Debugging mode where
code is stepped one instruction at a time and source code is
intermixed with the generated assembly code.

Assembly Mode Ctrl+T, A
Switches the debugger into Assembly Debugging mode where
code is stepped one instruction at a time with a simple disassembly
of memory.

Toggle Debug
Mode

Ctrl+F11
Toggles between Source Debugging and Interleaved Debugging
modes.

Enable Interrupt
Processing

Ctrl+T, N
Enables global interrupts in the processor by writing to the
appropriate register.

Disable Interrupt
Processing

Ctrl+T, X
Disables global interrupts in the processor by writing to the
appropriate register.

Start Cycle
Counter

Restarts the cycle counter after it has been paused.

Pause Cycle
Counter

Pauses the cycle counter so that it does not incremement and count
cycles even though code executes.

Reset Cycle
Counter

Resets the cycle counter to zero.

193

Breakpoint menu

The Breakpoint menu provides commands to create, modifiy, and remove
breakpoints. The Breakpoint menu is a submenu of the Debug menu.

The Breakpoint menu

Breakpoint commands

Menu command Keystroke Description

New Breakpoint... Ctrl+Alt+F9
Activates the New Breakpoint menu which allows you to create
complex breakpoints on code or data. See Breakpoints window
(page 100).

New Breakpoint
Group...

Creates a new breakpoint group in the Breakpoints window. You
can manage breakpoints individually or as a group.

Disable All
Breakpoints

Disables all breakpoints so that they are never hit.

Enable All
Breakpoints

Enables all breakpoints so that they can be hit.

Clear All
Breakpoints

Ctrl+Shift+F9 Removes all breakpoints set in the Breakpoints window.

Next Breakpoint Alt+F9
Selects the next breakpoint in the Breakpoint window and moves
the cursor to the statement or instruction associated with that
breakpoint.

Previous
Breakpoint

Alt+Shift+F9
Selects the previous breakpoint in the Breakpoint window and
moves the cursor to the statement or instruction associated with that
breakpoint.

194 CrossStudio Reference
CrossStudio menu summary

Debug Windows menu

The Debug Windows menu provides commands to activate debugging
windows. The Debug Windows menu is a submenu of the Debug menu.

The Debug Windows menu

Debug Windows commands

Menu command Keystroke Description

Breakpoints Ctrl+Alt+B
Activates the Breakpoints window. See Breakpoints window (page
100).

Call Stack Ctrl+Alt+S Activates the Call Stack window. See Call stack window (page 105).

Locals Ctrl+Alt+L Activates the Locals window. See Locals window (page 112).

Globals Ctrl+Alt+G Activates the Globals window. See Globals window (page 110).

Threads Ctrl+Alt+D Activates the Threads window. See Threads window (page 119).

Registers 1 Ctrl+T, R, 1
Activates the first Register window. See Register windows (page
116).

Registers 2 Ctrl+T, R, 2
Activates the second Register window. See Register windows
(page 116).

195

Tools menu

The Tools menu provides setup and configuration of CrossStudio.

The Tools menu

Registers 3 Ctrl+T, R, 3
Activates the third Register window. See Register windows (page
116).

Registers 4 Ctrl+T, R, 4
Activates the fourth Register window. See Register windows (page
116).

Watch 1 Ctrl+T, W, 1 Activates the first Watch window. See Watch window (page 121).

Watch 2 Ctrl+T, W, 2
Activates the second Watch window. See Watch window (page
121).

Watch 3 Ctrl+T, W, 3 Activates the third Watch window. See Watch window (page 121).

Watch 4 Ctrl+T, W, 4 Activates the fourth Watch window. See Watch window (page 121).

Memory 1 Ctrl+T, M, 1
Activates the first Memory window. See Memory window (page
114).

Memory 2 Ctrl+T, M, 2
Activates the second Memory window. See Memory window (page
114).

Memory 3 Ctrl+T, M, 3
Activates the third Memory window. See Memory window (page
114).

Memory 4 Ctrl+T, M, 4
Activates the fourth Memory window. See Memory window (page
114).

Execution Trace
Activates the Execution Trace window. See Trace window (page
121).

Execution Counts
Activates the Execution Counts window. See Execution counts
window (page 110).

Menu command Keystroke Description

196 CrossStudio Reference
CrossStudio menu summary

Tools menu commands

Window menu

The Window menu provides commands to control windows within
CrossStudio.

The Window menu

Menu command Keystroke Description

Source Navigator Displays the Source Navigator configuration menu.

Symbol Browser Displays the Symbol Browser configuration menu.

Terminal
Emulator

Displays the Terminal Emulator configuration menu.

Comparisons Displays the Comparisons menu.

Disassemble Ctrl+K, Ctrl+V Disassembles the selected project item.

Options... Displays the Environment Options dialog.

197

Window menu commands

Menu command Keystroke Description

New Horizontal
Tab Group

Ctrl+F6
Splits the tab group in two at the active tab and creates two tab
groups in tabbed document workspace mode.

Close Ctrl+F4 Closes the active document window.

Close All Ctrl+Shift+F4 Closes all document windows.

Close All
Unedited
Windows

Ctrl+K, Ctrl+F4 Closes all document windows that have not been changed.

Hide window Hides the focused dock window.

Cascade Cascades windows in multiple document interface mode.

Tile Horizontally Tiles windows horizontally in multiple document interface mode.

Next Ctrl+Tab Activates the next window in the tab group or window stack.

Previous Ctrl+Shift+Tab Activates the previous window in the tab group or window stack.

Next Tab Group F6 Activates the next tab group in tabbed document interface mode.

Previous Tab
Group

Shift+F6 Activates the next tab group in tabbed document interface mode.

Tabbed Document
Workspace

Enables the tabbed document workspace.

Multiple
Document
Workspace

Enables the multiple document workspace.

Workspace
Layouts

Displays the Workspace Layout menu which allows selection of
various workspace layouts.

Reverse
Workspace
Layout

Reverses the left and right dock areas.

Customize
Workspace
Layout...

Displays the Document Workspace Layout dialog.

Windows... Displays the Windows dialog.

198 CrossStudio Reference
CrossStudio menu summary

Help menu

The Help menu provides access to online help for CrossStudio.

The Help menu

Help menu commands

Menu command Keystroke Description

CrossStudio Help F1 Displays online help for the focused GUI element.

What's This Shift+F1
Enters What's This? mode which provides a short description of
each GUI element.

Contents Ctrl+Alt+F1 Activates the Contents window.

Index Ctrl+Alt+F2 Activates the Index window.

Search Ctrl+Alt+F3 Activates the Search window.

Tip of the Day Activates the Tip of the Day window.

Locate Topic
Locates the help page displayed by the browser in the Contents
window.

Previous Topic Ctrl+Alt+Up
Moves to the previous topic in the Contents window and updates
the browser.

Next Topic Ctrl+Alt+Down
Moves to the next topic in the Contents window and updates the
browser.

Keyboard Map Ctrl+K, Ctrl+M Displays the Keyboard Map dialog.

199

Quick Links
Displays the Quick Links menu which contains useful shortcuts to
the online manual.

Favorites Displays the web pages from the Favorites window.

About
CrossStudio

Displays information on CrossStudio, the license agreement, and
activation status.

Menu command Keystroke Description

200 Tasking Library Tutorial
CrossStudio menu summary

5

Tasking Library Tutorial

This section describes the CrossWorks Tasking Library which will be
subsequently referred to as the CTL. The CTL provides a multi-priority,
preemptive, task switching and synchronisation facility. Additionally the
library provides timer, interrupt service routine and memory block allocation
support.

In this section

Overview (page 201). Describes the principles behind the CTL.

Tasks (page 204). Describes how to create CTL tasks, turn the main
program into a task and manage tasks.

Event sets (page 206). Describes what a CTL event set is and how it can be
used.

Semaphores (page 209). Describes what a CTL semphore is and how it
can be used.

Message queues (page 211). Describes what a CTL message queue is and
how it can be used.

Byte queues (page 214). Describes what a CTL byte queue is and how it
can be used.

Global interrupts control (page 216). Describes how you can use CTL
functions to enable and disable global interrupts.

201

Timer support (page 217). Describes the timer facilities that the CTL
provides.

Programmable interrupt handling (page 218). Describes how you can
use CTL functions on systems that have programmable interrupt
controller hardware.

Low-level interrupt handling (page 219). Describes how to write
interrupt service routines that co-exist with the CTL.

Memory areas (page 220). Describes how you can use the CTL to allocate
fixed sized memory blocks.

Related sections

<ctl_api.h> - Tasking functions (page 221). The reference for each of the
functions and variables defined by the CTL.

Threads window (page 119). A scriptable debugger window that
displays the threads of a running program together with their state.

Overview

The CTL enables your application to have multiple tasks. You will typically
use a task when you have some algorithmic or protocol processing that
suspend it's execution whilst other activities occur. For example you may have
a protocol processing task and a user interface task.

Tasks

A task (sometimes called a thread) is a CPU execution context which is
typically a subset of the CPU register state. When a task switch occurs the CPU
execution context is saved on to the stack of the current task, a new task is
selected to run and its saved CPU execution context is restored. The process of
selecting a new task to run is called task switching or (re)scheduling.

A task has a priority associated with it, the lowest priority is 0 the highest is
255. A task is either executing (the current task) or it is queued in the task list.
The task list is kept in priority order with the highest priority task at the head
of the list. The current task will always have a priority that is greater than or
equal to the first runnable task in the task list.

Task switching can be cooperative or preemptive.

202 Tasking Library Tutorial
Overview

Cooperative task switching occurs when the current task calls a CTL function
which checks for rescheduling and the next task ready to run is of the same or
higher priority than the current task.

Preemptive task switching occurs when an interrupt service routine calls a
CTL function which checks for rescheduling and the next task ready to run is
of a higher priority then the current task.

Preemptive task switching can also occur when an interrupt service routine
calls a CTL function which checks for rescheduling, time slicing is enabled, the
time slice period has been exceeded and the next task ready to run is of the
same priority as the current task.

There is one executing task and there must always be a task ready to execute
i.e. the task list must have a runnable task queued on it. Typically there will
always be an idle task that loops and perhaps puts the CPU into a power save
mode. A task on the task list is either runnable or waiting for something (e.g.
timeout).

When a task switch occurs global interrupts will be enabled. So you can safely
call the tasking library functions with interrupts disabled.

Task synchronization and resource allocation

The CrossWorks tasking library provides several mechanisms to synchronize
execution of tasks and to serialise resource allocation.

Event Sets — An event set is a word sized variable which tasks can wait
for specific bits (events) to be set to 1. You can wait for any specified events
in an event set or for all of the specified events. You can also specify that
the events the task are waiting on are automatically cleared (set to 0) when
the task has completed its wait.

Counting Semaphores — A counting semaphore is a word size variable
which tasks can wait for to be non-zero. Counting semaphores are useful
when serialising access to fixed sized buffers i.e. the count value can
represent the number of free or used elements in the buffer.

Message Queues — A message queue is a structure that enables tasks to
post and receive data. Message queues are used to provide a buffered
communication mechanism between tasks.

Byte Queues — A byte queue is a specialisation of a message queue i.e. it's
a message queue where the messages are 1 byte in size.

Interrupt enable/disable — The tasking library provides functions that
enable and disable the global interrupt enables state of the processor.
These functions can be used to provide a time critical mutual exclusion
facility.

203

Note that all waits on task synchronization objects are priority based i.e. the
highest priority task waiting will be scheduled first.

Timer support

If your application can provide a periodic timer interrupt (for example one that
keeps a watch dog alive) then you can use the timer wait facility of the library.
This is a simple software counter that is incremented by your timer interrupt.
You can use this to specify a wakeup time and to prevent your program
waiting forever for something to happen.

Interrupt service routine support

On systems that have programmable interrupt controllers the CTL provides
functions that enable you to install interrupt service routines as C functions
and associate the required hardware priority to their execution. On systems
that have fixed interrupt schemes functions are provided that enable you to
create interrupt service routines that co-operate with the CTL.

Tasks can synchronize with interrupt service routines using either event sets,
semaphores or message queues. Interrupt service routines are allowed to set
(and clear) events in an event set, to signal a semphore and to do a non
blocking post to a message queue. Interrupt service routines cannot wait for
events, wait for a semaphore or use blocking message queue functions.

Memory block allocation support

The CTL provides a simple memory block allocator that can be used in
situations where the standard C malloc and free functions are either too slow
or may block the calling task.

C library support

The CTL provides a task specific errno as well as exclusion mechanisms to
enable usage of malloc/free functions in a multi-tasking envrionment.

204 Tasking Library Tutorial
Tasks

Tasks

Each task has a corresponding task structure that holds information such as
the priority and the saved register state. You allocate task structures by
declaring them as C variables.

CTL_TASK_t mainTask;

You create the first task using the ctl_task_init function which turns the main
program into a task. This function takes a pointer to the task structure that
represents the main task, it's priority and a name as parameters.

ctl_task_init(&mainTask, 255, "main");

This function must be called before any other CrossWorks tasking library calls
are made. The priority (second parameter) must be between 0 (the lowest
priority) and 255 (the highest priority). It is advisable to create the first task
with the highest priority which enables the main task to create other tasks
without being descheduled. The name should point to a zero terminated
ASCII string for debug purposes. When this function has been called global
interrupts will be enabled, so you must ensure that any interrupt sources are
disabled before calling this function.

You can create other tasks using the function ctl_task_run which
initialises a task structure and may cause a context switch. You supply the
same arguments as task_init together with the function that the task will
run and the memory that the task will use as its stack.

The function that a task will run should take a void * parameter and not
return any value.

void task1Fn(void *parameter)
{
 // task code goes in here
 …
}

The parameter value is supplied to the function by the ctl_task_run call.
Note when a task function returns the ctl_task_die function is called which
terminates the task.

You have to allocate the stack for the task as an C array of unsigned.

unsigned task1Stack[64];

The size of the stack you need depends on the CPU type (the number of
registers that have to be saved), the function calls that the task will make and
(depending upon the CPU) the stack used for interrupt service routines.
Running out of stack space is common problem with multi-tasking systems

205

and the error behaviour is often misleading. It is recommended that you
initialise the stack to known values so that you can check the stack with the
CrossWorks debugger if problems occur.

memset(task1Stack, 0xba, sizeof(task1Stack));

Your ctl_task_run function call should look something like this.

ctl_task_run(&task1Task,
 12,
 task1Fn,
 0,
 "task1",
 sizeof(task1Stack) / sizeof(unsigned),
 task1Stack,
 0);

The first parameter is a pointer to the task structure. The second parameter is
the priority (in this case 12) the task will start executing at. The third parameter
is a pointer to the function to execute (in this case task1Fn). The fourth
parameter is the value that is supplied to the task function (in this case zero).
The fifth parameter is a null terminated string that names the task for debug
purposes. The sixth parameter is the size of the stack in words. The seventh
parameter is the pointer to the stack. The last parameter is for systems that
have a seperate call stack and is the number of words to reserve for the call
stack.

You can change the priority of a task using the ctl_task_set_priority function
call which takes a pointer to a task structure and the new priority as
parameters.

ctl_task_set_priority(&mainTask, 0);

Example

The following example turns main into a task and creates another task. The
main task ultimately will be the lowest priority task that switches the CPU into
a power save mode when it is scheduled - this satisfies the requirement of
always having a task to execute and enables a simple power saving system to
be implemented.

#include <ctl_api.h>

void task1(void *p)
{
 // task code, on return task will be terminated
}

static CTL_TASK_t mainTask, task1Task;
static unsigned task1Stack[64];

206 Tasking Library Tutorial
Event sets

int
main(void)
{
 // Turn myself into a task running at the highest priority.
 ctl_task_init(&mainTask, 255, "main");

 // Initialise the stack of task1.
 memset(task1Stack, 0xba, sizeof(task1Stack)/sizeof(unsigned));

 // Make another task ready to run.
 ctl_task_run(&task1Task, 1, task1, 0, "task1", sizeof(task1Stack) /
sizeof(unsigned), task1Stack, 0);

 // Now all the tasks have been created go to lowest priority.
 ctl_task_set_priority(&mainTask, 0);

 // Main task, if activated because task1 is suspended, just
 // enters low power mode and waits for task1 to run again
 // (for example, because an interrupt wakes it).
 for (;;)
 {
 // Go into low power mode
 sleep();
 }
}

Note that initially the main task is created at the highest priority whilst it
creates the other tasks, it then changes it's priority to the lowest task. This
technique can be used when multiple tasks are created to enable all of the tasks
to be created before they start to execute.

Note the usage of sizeof when passing the stack size to ctl_task_run.

Event sets

An event set is a means to synchronise tasks with other tasks and interrupt
service routines. An event set contains a set of events (one per bit) which tasks
can wait to become set (value 1). When a task waits on an event set the events
it is waiting for are matched against the current values—if they match then the
task can still execute. If they don't match, the task is put on the task list together
with details of the event set and the events that the task is waiting for.

You allocate an event set by declaring it as C variable

CTL_EVENT_SET_t e1;

An CTL_EVENT_SET_t is a synonym for an unsigned type. Thus, when an
unsigned is naturally 16 bits an event set will contain 16 events and when it is
naturally 32 bits an event set will contain 32 events.

You can initialise an event set using the ctl_events_init (page 226) function.

207

ctl_events_init(&e1, 0);

Note that initialisation should be done before any tasks can use an event set.

You can set and clear events of an event set using the ctl_events_set_clear
(page 226) function.

ctl_events_set_clear(&e1, 1, 0x80);

This example will set the bit zero event and clear the bit 15 event. If any tasks
are waiting on this event set the events they are waiting on will be matched
against the new event set value which could cause the task to become
runnable.

You can wait for events to be set using the ctl_events_wait (page 227) function.
You can wait for any of the events in an event set to be set
(CTL_EVENT_WAIT_ANY_EVENTS) or all of the events to be set
(CTL_EVENT_WAIT_ALL_EVENTS). You can also specify that when events
have been set and have been matched that they should be automatically reset
(CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR and
CTL_EVENT_WAIT_ALL_EVENTS_WITH_AUTO_CLEAR). You can
associate a timeout with a wait for an event set to stop your application
blocking indefinately.

ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS, &e1, 0x80, 0, 0);

This example waits for bit 15 of the event set pointed to by e1 to become set.

if (ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS, &e1, 0x80, 1,
ctl_get_current_time()+1000)==0)
 {
 // timeout occured
 }

This example uses a timeout and tests the return result to see if the timeout
occured.

Task synchronisation in an interrupt service routine

The following example illustrates synchronising a task with a function called
from an interrupt service routine.

CTL_EVENT_SET_t e1;
CTL_TASK_s t1;

void ISRfn()
{
 // do work, and then...
 ctl_events_set_clear(&e1, 1, 0);
}

208 Tasking Library Tutorial
Event sets

void task1(void *p)
{
 while (1)
 {
 ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS, &e1, 1, 0, 0);
 ...
 ctl_events_set_clear(&e1, 0, 1);
 }
}

Task synchronisation with more than one interrupt service routine

The following example illustrates synchronising a task with functions called
from two interrupt service routines.

CTL_EVENT_SET_t e1;
CTL_TASK_s t1;

void ISRfn1(void)
{
 // do work, and then...
 ctl_events_set_clear(&e1, 1, 0);
}
void ISRfn2(void)
{
 // do work, and then...
 ctl_events_set_clear(&e1, 2, 0);
}
void task1(void *p)
{
 for (;;
 {
 unsigned e;
 e = ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS_AUTO_CLEAR,
 &e1,
 1 | 2,
 0, 0);
 if (e & 1)
 {
 // ISRfn1 completed
 }
 else if (e & 2)
 {
 // ISRfn2 completed
 }
 else
 {
 // error
 }
 }
}

Resource serialisation

The following example illustrates resource serialisation of two tasks.

209

CTL_EVENT_SET_t e1;

void task1(void)
{
 for (;;)
 {
 ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS_AUTO_CLEAR, &e1, 1, 0,
0);
 // resource has now been acquired
 ctl_events_set_clear(&e1, 1, 0);
 // resource has now been released
 }
}

void task2(void)
{
 for (;;)
 {
 ctl_events_wait(CTL_EVENT_WAIT_ANY_EVENTS_AUTO_CLEAR, &e1, 1, 0,
0);
 // resource has now been acquired
 ctl_events_set_clear(&e1, 1, 0);
 // resource has now been released
 }
}
....
void main(void)
{

 ctl_events_init(&e1, 1);

}

Note that e1 is initialised with the event set—without this neither task would
acquire the resource.

Semaphores

A semaphore is a counter which tasks can wait for to be non-zero. When a
semaphore is non-zero and a task waits on it then the semaphore value is
decremented and the task continues execution. When a semaphore is zero and
a task waits on it then the task will be suspended until the semaphore is
signalled. When a semaphore is signalled and no tasks are waiting for it then
the semaphore value is incremented. When a semaphore is signalled and tasks
are waiting then one of the tasks is made runnable.

You allocate a semaphore by declaring it as a C variable

CTL_SEMAPHORE_t s1;

210 Tasking Library Tutorial
Semaphores

An CTL_SEMAPHORE_t is a synonym for an unsigned type, so the
maximum value of the counter is dependent upon the word size of the
processor (either 16 or 32 bits).

You can initialise a semaphore using the ctl_semaphore_init (page 235)
function.

ctl_semaphore_init(&s1, 1);

Note that initialisation should be done before any tasks can use a semaphore.

You can signal a semaphore using the ctl_semaphore_signal (page 235)
function.

ctl_semaphore_signal(&s1);

The highest priority task waiting on the semphore pointed at by s1 will be
made runnable by this call. If no tasks are waiting on the semaphore then the
semaphore value is incremented.

You can wait for a semaphore with an optional timeout using the
ctl_semaphore_wait (page 235) function.

ctl_semaphore_wait(&s1, 0, 0);

This example will block the task if the semaphore is zero, otherwise it will
decrement the semaphore and continue execution.

if (ctl_semaphore_wait(&s1, 1, ctl_get_current_time()+1000)==0)
 {
 // timeout occured
 }

This example uses a timeout and tests the return result to see if the timeout
occured.

Task synchronisation in an interrupt service routine.

The following example illustrates synchronising a task with a function called
from an interrupt service routine.

CTL_SEMAPHORE_t s1;

void ISRfn()
{
 // do work
 ctl_semaphore_signal(&s1);
}

void task1(void *p)
{
 while (1)
 {
 ctl_semaphore_wait(&s1, 0, 0);
 …

211

 }
}

Resource serialisation

The following example illustrates resource serialisation of two tasks.

CTL_SEMAPHORE_t s1=1;

void task1(void)
{
 for (;;)
 {
 ctl_semaphore_wait(&s1, 0, 0);
 /* resource has now been acquired */
 …
 ctl_semaphore_signal(&s1);
 /* resource has now been released */
 }
}

void task2(void)
{
 for (;;)
 {
 ctl_semaphore_wait(&s1);
 /* resource has now been acquired */
 …
 ctl_semaphore_signal(&s1);
 /* resource has now been released */
 }
}

int
main(void)
{
 …
 ctl_semaphore_init(&s1, 1);
 …
}

Note that s1 is initialised to one, without this neither task would acquire the
resource.

Message queues

A message queue is a structure that enables tasks to post and receive messages.
A message is a generic (void) pointer and as such can be used to send data that
will fit into a pointer type (2 or 4 bytes depending upon processor word size)
or can be used to pass a pointer to a block of memory. The message queue has
a buffer that enables a number of posts to be completed without receives
occuring. The buffer keeps the posted messages in a fifo order so the oldest

212 Tasking Library Tutorial
Message queues

message is received first. When the buffer isn't full a post will put the message
at the back of the queue and the calling task continues execution. When the
buffer is full a post will block the calling task until there is room for the
message. When the buffer isn't empty a receive will return the message from
the front of the queue and continue execution of the calling task. When the
buffer is empty a receive will block the calling task until a message is posted.

You allocate a message queue by declaring it as a C variable

CTL_MESSAGE_QUEUE_t m1;

A message queue is initialised using the ctl_message_queue_init (page 233)
function.

void *queue[20];
…
ctl_message_queue_init(&m1, queue, 20);

This example uses an 20 element array for the message queue. Note that the
array is a void * which enables pointers to memory or (cast) integers to be
communicated via a message queue.

You can post a message to a message queue with an optional timeout using the
ctl_message_queue_post (page 233) function.

ctl_message_queue_post(&m1, (void *)45, 0, 0);

This example posts the integer 45 onto the message queue.

if (ctl_message_queue_post(&m1, (void *)45, 1,
ctl_get_current_time()+1000) == 0)
 {
 // timeout occured
 }

This example uses a timeout and tests the return result to see if the timeout
occured.

If you want to post a message and you don't want to block (e.g from an
interrupt service routine) you can use the ctl_message_queue_post_nb (page
234) function.

if (ctl_message_queue_post_nb(&m1, (void *)45)==0)
 {
 // queue is full
 }

This example tests the return result to see if the post failed.

You can receive a message with an optional timeout using the
ctl_message_queue_receive (page 234) function.

213

void *msg;
 ctl_message_queue_receive(&m1, &msg, 0, 0);

This example receives the oldest message in the message queue.

if (ctl_message_queue_receive(&m1, &msg, 1,
ctl_get_current_time()+1000) == 0)
 {
 // timeout occured
 }

This example uses a timeout and tests the return result to see if the timeout
occured.

If you want to receive a message and you don't want to block (e.g from an
interrupt service routine) you can use the ctl_message_queue_receive_nb
(page 234) function.

if (ctl_message_queue_receive_nb(&m1, &msg)==0)
 {
 // queue is empty
 }

Example The following example illustrates usage of a message queue to implement the
producer-consumer problem.

CTL_MESSAGE_QUEUE_t m1;
void *queue[20];

void task1(void)
{
 …
 ctl_message_queue_post(&m1, (void *)i, 0, 0);
 …
}

void task2(void)
{
 void *msg;
 …
 ctl_message_queue_receive(&m1, &msg, 0, 0);
 …
}

int
main(void)
{
 …
 ctl_message_queue_init(&m1, queue, 20);
 …
}

214 Tasking Library Tutorial
Byte queues

Byte queues

A byte queue is a structure that enables tasks to post and receive data bytes.
The byte queue has a buffer that enables a number of posts to be completed
without receives occuring. The buffer keeps the posted bytes in a fifo order so
the oldest byte is received first. When the buffer isn't full a post will put the
byte at the back of the queue and the calling task continues execution. When
the buffer is full a post will block the calling task until there is room for the
byte. When the buffer isn't empty a receive will return the byte from the front
of the queue and continue execution of the calling task. When the buffer is
empty a receive will block the calling task until a byte is posted.

You allocate a byte queue by declaring it as a C variable

CTL_BYTE_QUEUE_t m1;

A byte queue is initialised using the ctl_byte_queue_init (page 224) function.

unsigned char queue[20];
…
ctl_byte_queue_init(&m1, queue, 20);

This example uses an 20 element array for the byte queue.

You can post a byte to a byte queue with an optional timeout using the
ctl_byte_queue_post (page 224) function.

ctl_byte_queue_post(&m1, 45, 0, 0);

This example posts the byte 45 onto the byte queue.

if (ctl_byte_queue_post(&m1, 45, 1, ctl_get_current_time()+1000) == 0)
 {
 // timeout occured
 }

This example uses a timeout and tests the return result to see if the timeout
occured.

If you want to post a byte and you don't want to block (e.g from an interrupt
service routine) you can use the ctl_byte_queue_post_nb (page 225) function

if (ctl_byte_queue_post_nb(&m1, 45)==0)
 {
 // queue is full
 }

This example tests the return result to see if the post failed.

You can receive a byte with an optional timeout using the
ctl_byte_queue_receive (page 225) function.

215

void *msg;
 ctl_byte_queue_receive(&m1, &msg, 0, 0);

This example receives the oldest byte in the byte queue.

if (ctl_byte_queue_receive(&m1, &msg, 1, ctl_get_current_time()+1000)
== 0)
 {
 // timeout occured
 }

This example uses a timeout and tests the return result to see if the timeout
occured.

If you want to receive a byte and you don't want to block (e.g from an interrupt
service routine) you can use the ctl_byte_queue_receive_nb (page 225)
function.

if (ctl_byte_queue_receive_nb(&m1, &msg)==0)
 {
 // queue is empty
 }

Example The following example illustrates usage of a byte queue to implement the
producer-consumer problem.

CTL_BYTE_QUEUE_t m1;
void *queue[20];

void task1(void)
{
 …
 ctl_byte_queue_post(&m1, (void *)i, 0, 0);
 …
}

void task2(void)
{
 void *msg;
 …
 ctl_byte_queue_receive(&m1, &msg, 0, 0);
 …
}

int
main(void)
{
 …
 ctl_byte_queue_init(&m1, queue, 20);
 …
}

216 Tasking Library Tutorial
Global interrupts control

Global interrupts control

The CrossWorks tasking library provides functions that lock and unlock the
global interrupt enables. These functions can be used (sparingly) to provide a
fast mutual exclusion facility for time critical uses.

You can disable interrupts using the ctl_global_interrupts_disable (page 228)
function call.

int en=ctl_global_interrupts_disable();

This function returns the previous global interrupts enabled state.

You can enable interrupts using the ctl_global_interrupts_enable (page 229)
function call.

int en=ctl_global_interrupts_enable();

This function returns the previous global interrupts enabled state.

You can restore the previous global interrupts enabled state you the
ctl_global_interrupts_set (page 229) function call.

int en = ctl_global_interrupts_disable();
...
ctl_set_interrupts(en);

Note that you can call a tasking library function that causes a task switch with
global interrupts disabled. The tasking library will ensure that when a task is
scheduled that global interrupts are enabled.

You can re-enable global interrupt enables from within an interrupt service
routine using the ctl_global_interrupts_re_enable_from_isr (page 229)
function call in order to permit higher priority interrupts to occur. A call to this
function must be matched with a call to the
ctl_global_interrupts_un_re_enable_from_isr (page 230) function.

// code of interrupt service routine
...
ctl_global_interrupts_re_enable_from_isr();
...
// global interrupts are now enabled so another interrupt can be
handled.
...
ctl_global_interrupts_un_re_enable_from_isr();
...

217

Timer support

The current time is held as a 32 bit value in the ctl_current_time (page 226)
variable. This variable is incremented by a periodic interrupt that is started
using the ctl_timeout_wait (page 236) function. When you start the timer you
must pass it a function to call when the periodic interrupt occurs. The interrupt
function can be a user defined function that calls ctl_increment_tick_from_isr
(page 230).

void myfn{void)
 {
 ...
 ctl_increment_tick_from_isr();
 ...
 }
void main(...)
 ..
 ctl_start_timer(myfn);
 ..

Alternatively you can pass the ctl_increment_tick_from_isr (page 230)
function as the parameter

void main(...)
{
 ..
 ctl_start_timer(ctl_increment_tick_from_isr);
 ..

You can atomically read ctl_current_time (page 226) using the
ctl_get_current_time (page 228) function on systems whose word size is not 32
bit.

You can find out the resolution of the timer using the
ctl_get_ticks_per_second (page 228)function.

You can suspend execution of a task for a fixed period using the
ctl_timeout_wait (page 239) function.

Note that this function takes the timeout not the duration as a parameter, so
you should always call this function with ctl_get_current_time()+duration.

ctl_timeout_wait(ctl_get_current_time()+100);

This example suspends execution of the calling task for 100 increments of the
ctl_current_time variable.

218 Tasking Library Tutorial
Programmable interrupt handling

Programmable interrupt handling

The CTL provides an optional set of functions for establishing C functions as
interrupt service routines. These functions are available on systems that have
programmable interrupt controller hardware. On systems that have fixed
interrupt schemes you should use the facilities described in Low-level
interrupt handling (page 219) when you create your interrupt service
routines.

The function ctl_set_isr (page 236) is used to establish a C function as an
interrupt service routine.

You must enable an interrupt source using ctl_umask_isr (page 240) and you
can disable an interrupt source using ctl_mask_isr (page 231).

The C function you have established is called when the interrupt occurs. On
entry to this function interrupts will still be disabled. To allow interrupts of a
higher priority to occur you should enable interrupts on entry by calling
ctl_global_interrupts_re_enable_from_isr (page 229) and disable interrupts
on exit by calling ctl_global_interrupts_un_re_enable_from_isr (page 230).
Note that the pending interrupt flag in the interrupt controller hardware will
be cleared by the CTL when your interrupt service routine returns.

Interrupt service routine example

void isr(void)
{
 ctl_global_interrupts_re_enable_from_isr();
 …
 // do interrupt handling stuff in here
 // including clearing the source of the interrupt
 …
 ctl_global_interrupts_un_re_enable_from_isr();
}

int main(void)
{
 …
 ctl_set_isr(11, 11, CTL_ISR_TRIGGER_FIXED, isr, 0);
 ctl_unmask_isr(11);
 …
}

The isr function is triggered from interrupt vector 11 and will run at priority
11. When the function is run it enables interrupts which will allow higher
priority interrupts to trigger whilst it is executing.

219

Low-level interrupt handling

If your system doesn’t support a programmable interrupt controller and you
want tasks to be rescheduled when interrupts occur, you must save the register
state of the CPU on entry to an interrupt service routine and increment the
global variable ctl_interrupt_count (page 231).

When you are executing an interrupt service routine you must not call the
tasking library functions that may block (task_wait_events,
task_wait_semaphore, task_post_message, task_receive_message,
task_wait_timeout) — you can call other tasking library functions, but a task
switch will only occur when the last interrupt handler has completed
execution.

Whilst you are executing an interrupt service routine you can allow interrupts
of a higher priority to occur by calling
ctl_global_interrupts_re_enable_from_isr (page 229). You must also disable
interrupts before exit from the interrupt service routine by calling
ctl_global_interrupts_un_re_enable_from_isr (page 230).

In order to achieve a task switch from an interrupt service routine the
ctl_exit_isr (page 227) function must be jumped to as the last action of an
interrupt service routine. This function must be passed a pointer to the saved
registers.

Interrupt service routine (ARM example)

This example declares an ISR using the GCC syntax for declaring naked
functions and accessing assembly code instructions.

void irq_handler(void) __attribute__((naked));

void
irq_handler(void)
{
 asm("stmfd sp!, {r0-r12, lr}");
 asm("mrs r0, spsr");
 asm("stmfd sp!, {r0}");
 ctl_interrupt_count++;

 // do interrupt handling stuff in here

 asm("mov r0, sp");
 asm("b ctl_exit_isr");
}

Note that the registers SPSR, R0 through R12 and R14 (user mode program
counter) must be saved on the stack. The user mode R13 and R14 registers
don’t need to be saved because they are held in banked registers.

Note that FIQ handlers are not supported on the ARM.

220 Tasking Library Tutorial
Memory areas

Memory areas

Memory areas provide your application with dynamic allocation of fixed sized
memory blocks. Memory areas should be used in preference to the standard C
library malloc and free functions if the calling task (or interrupt service
routine) cannot block.

You allocate a memory area by declaring it as a C variable

CTL_MEMORY_AREA_t m1;

A message queue is initialised using the ctl_memory_area_init (page 232)
function.

unsigned mem[20];
…
ctl_message_queue_init(&m1, mem, 2, 10);

This example uses an 20 element array for the memory. The array is split into
10 blocks of each of which two words in size.

You can allocate a memory block from a memory area using the
ctl_memory_area_allocate (page 232) function. If the memory block cannot be
allocated then zero is returned.

unsigned *block = ctl_memory_area_allocate(&m1);
if (block)
 // block has been allocated
else
 // no block has been allocated

When you have finished with a memory block you should return it to the
memory area from which it was allocated using ctl_memory_area_free (page
232):

ctl_memory_area_free(&m1, block);

221

6

ARM Library Reference

In addition to the Standard C Library, CrossWorks for ARM provides an
additional set of library routines that you can use.

In this section

<ctl_api.h> - Tasking functions (page 221). Describes the C tasking
library, a library of functions that enable you to run multiple tasks in a real-
time system.

<cross_studio_io.h> - Debug I/O library (page 240). Describes the
virtual console services and semi-hosting support that CrossStudio
provides to help you when developing your applications.

<__armlib.h> - Misc ARM functions (page 253). Describes the ARM
specific facilities which you can build into your application.

<ctl_api.h> - Tasking functions

The header file <ctl_api.h> defines functions and macros that you can use to
write multi-threaded applications. For more information on how to use the
tasking library, please see the Tasking Library Tutorial (page 200).

222 ARM Library Reference
<ctl_api.h> - Tasking functions

Task management functions

ctl_task_die Terminate the executing task

ctl_task_executing Active task

ctl_task_init Create initial task

ctl_task_list Priority-ordered list of runnable tasks

ctl_task_run Create a task

ctl_task_remove Remove a task from waiting task list

ctl_task_reschedule Cause a reschedule

ctl_task_set_priority Set the priority of a task

Event Set functions

ctl_events_init Initialise an event set

ctl_events_set_clear Set and clear events

ctl_events_wait Wait for events or timeout

Semaphore functions

ctl_semaphore_init Initialise a semaphore

ctl_semaphore_signal Signal a semaphore

ctl_semaphore_wait Wait for a semaphore or timeout

Message queue functions

ctl_message_queue_init Initialise a message queue

ctl_message_queue_post Post a message to a message queue or timeout

ctl_message_queue_post_nb
Post a message to a message queue without
blocking

ctl_message_queue_receive
Receive a message from a message queue or
timeout

ctl_message_queue_receive
_nb

Receive a message from a message queue without
blocking

Byte queue functions

ctl_byte_queue_init Initialise a byte queue

ctl_byte_queue_post Post a byte to a byte queue or timeout

223

ctl_byte_queue_post_nb Post a byte to a byte queue without blocking

ctl_byte_queue_receive Receive a byte from a byte queue or timeout

ctl_byte_queue_receive_nb
Receive a message from a byte queue without
blocking

Global interrupts control

ctl_global_interrupts_disabl
e

Disable global interrupts

ctl_global_interrupts_enabl
e

Enable global interrupts

ctl_global_interrupts_set Set global interrupts to saved state

ctl_global_interrupts_re_en
able_from_isr

Reenable global interrupts from an interrupt
service routine

ctl_global_interrupts_un_re
_enable_from_isr

Redisable global interrupts from an interrupt
service routine

Timer support

ctl_timeout_wait Start the timer ticking.

ctl_current_time The current time in ticks.

ctl_get_ticks_per_second Return the number of ticks in a second.

ctl_get_current_time Atomically return the current time in ticks.

ctl_increment_tick_from_isr Increment tick timer.

ctl_timeout_wait Wait until timeout has occured.

ctl_timeslice_period The timeslice period - zero means no time slicing.

Programmable interrupt controller support

ctl_set_isr Install an interrupt service routine

ctl_mask_isr Mask an interrupt source

ctl_umask_isr Unmask an interrupt source

Low level interrupt service routine support

ctl_exit_isr Exit from ISR and check for reschedule

ctl_interrupt_count Nested interrupt count

224 ARM Library Reference
<ctl_api.h> - Tasking functions

ctl_byte_queue_init

Synopsis #include <ctl_api.h>
void ctl_byte_queue_init(CTL_BYTE_QUEUE_t *m,
 unsigned char *queue,
 unsigned queue_size);

Description The function ctl_byte_queue_init is given a pointer to the byte queue to
initialise in m. The array that will be used to implement the byte queue pointed
to by queue and its size in queue_size are also supplied.

Portability ctl_byte_queue_init is provided in every implementation of the CrossWorks
tasking library.

See Also Byte queues (page 214)

ctl_byte_queue_post

Synopsis #include <ctl_api.h>
unsigned ctl_byte_queue_post(CTL_BYTE_QUEUE_t *m,
 unsigned char byte,
 CTL_TIMEOUT_t timeoutType,
 CTL_TIME_t timeout);

Description The ctl_byte_queue_post function posts the byte to the byte queue pointed at
by m. If the byte queue is full then the caller will block until the byte can be
posted or, if timeoutType is non-zero, the current time reaches the timeout
value. This function returns zero if the timeout occured otherwise it returns
one.

Restrictions This function should not be called from an interrupt service routine.

Portability ctl_byte_queue_post is provided in every implementation of the CrossWorks
tasking library.

Memory areas

ctl_memory_area_init Initialise a memory area

ctl_memory_area_allocate Allocate a block from a memory area

ctl_memory_area_free Return a block to a memory area

Miscellaneous functions and variables

ctl_handle_error Handle an error condition

ctl_libc_mutex C library mutex

225

See Also Byte queues (page 214)

ctl_byte_queue_post_nb

Synopsis #include <ctl_api.h>
unsigned ctl_byte_queue_post_nb(CTL_BYTE_QUEUE_t *m,
 unsigned char byte);

Description The ctl_byte_queue_post_nb function posts the byte to the byte queue
pointed at by m. If the byte queue is full then the function will return zero
otherwise it will return one.

Portability ctl_byte_queue_post_nb is provided in every implementation of the
CrossWorks tasking library.

See Also Byte queues (page 214)

ctl_byte_queue_receive

Synopsis #include <ctl_api.h>
unsigned ctl_byte_queue_receive(CTL_BYTE_QUEUE_t *m,
 unsigned char *byte,
 CTL_TIMEOUT_t timeoutType,
 CTL_TIME_t timeout);

Description The function ctl_byte_queue_receive pops the oldest byte in the byte queue
pointed at by m into the memory pointed at by byte. This function will block
if no bytes are available unless timeoutType is non-zero and the current time
reaches the timeout value. If the timeout occured the function returns zero
otherwise it will return one.

Restrictions This function should not be called from an interrupt service routine.

Portability ctl_byte_queue_receive is provided in every implementation of the
CrossWorks tasking library.

See Also Byte queues (page 214)

ctl_byte_queue_receive_nb

Synopsis #include <ctl_api.h>
unsigned ctl_byte_queue_receive_nb(CTL_BYTE_QUEUE_t *m,
 unsigned char *byte);

Description The function ctl_byte_queue_receive_nb pops the oldest byte in the byte
queue pointed at by m into the memory pointed at by byte. If no bytes are
available then the function returns zero otherwise it will return one.

226 ARM Library Reference
<ctl_api.h> - Tasking functions

Portability ctl_byte_queue_receive_nb is provided in every implementation of the
CrossWorks tasking library.

See Also Byte queues (page 214)

ctl_current_time

Synopsis #include <ctl_api.h>
extern CTL_TIME_t ctl_current_time;

Description ctl_current_time holds the current time in ticks. ctl_current_time is
incremented by ctl_increment_ticks_from_isr.

Portability ctl_current_time is provided in every implementation of the CrossWorks
tasking library.

ctl_events_init

Synopsis #include <ctl_api.h>
int ctl_events_init(CTL_EVENT_SET_t *event_set,
 CTL_EVENT_SET_t set);

Description ctl_events_init initializes the event_set with the set values.

Portability ctl_events_init is provided in every implementation of the CrossWorks
tasking library.

See Also Event sets (page 206)

ctl_events_set_clear

Synopsis #include <ctl_api.h>
void ctl_events_set_clear(CTL_EVENT_SET_t *eventSet,
 CTL_EVENT_SET_t set,
 CTL_EVENT_SET_t clear);

Description This will set the events defined by set and clear the events defined by clear of
the event set pointed to by eventSet. This function will then search the task list,
matching tasks that are waiting on the eventSet, and make them runnable if
the match is successful.

Portability ctl_events_set_clear is provided in every implementation of the CrossWorks
tasking library.

See Also Event sets (page 206)

227

ctl_events_wait

Synopsis #include <ctl_api.h>
unsigned ctl_events_wait(CTL_EVENT_WAIT_TYPE_t waitType,
 CTL_EVENT_SET_t *eventSet,
 CTL_EVENT_SET_t events,
 CTL_TIMEOUT_t timeoutType,
 CTL_TIME_t timeout);

Description The ctl_events_wait function waits for events to be set (value 1) in the event
set pointed to by eventSet with an optional timeout applied if timeoutType is
non-zero.

The waitType can be one of the following:

CTL_EVENT_WAIT_ANY_EVENTS — wait for any of the events in
*eventSet to be set.

CTL_EVENT_WAIT_ANY_EVENTS_WITH_AUTO_CLEAR — wait for
any of the events in *eventSet to be set and reset (value 0) them.

CTL_EVENT_WAIT_ALL_EVENTS — wait for all of the events in
*eventSet to be set.

CTL_EVENT_WAIT_ALL_EVENTS_WITH_AUTO_CLEAR — wait for
all of the events in *eventSet to be set and reset (value 0) them.

The ctl_events_wait function returns the value pointed to by eventSet before
any auto-clearing occurred or zero if the timeout occured.

Restrictions This function should not be called from an interrupt service routine.

Portability ctl_events_wait is provided in every implementation of the CrossWorks
tasking library.

See Also Event sets (page 206)

ctl_exit_isr

Synopsis #include <ctl_api.h>
void ctl_exit_isr(void *savedRegisters);

Description The ctl_exit_isr function must be jumped to from an interrupt service routine
with global interrupts disabled. This function will decrement the
ctl_interrupt_count variable and if zero it will check if a task switch is
required. The savedRegisters parameter points to the registers saved on the
stack on entry to the interrupt service routine. If a task switch is needed then
the register state in savedRegisters will be stored in the ctl_task_executing

228 ARM Library Reference
<ctl_api.h> - Tasking functions

and a new task will be made the executing task. If a context switch isn’t
required or the ctl_interrupt_count is non-zero then the register state in
savedRegisters is restored and the interrupt handler returns.

Restrictions

Portability ctl_exit_isr is provided in every implementation of the CrossWorks tasking
library.

See Also Low-level interrupt handling (page 219)

ctl_get_current_time

Synopsis #include <ctl_api.h>
CTL_TIME_t ctl_get_current_time(void);

Description Atomically returns the value of ctl_current_time (page 226).

Portability ctl_get_current_time is provided in every implementation of the CrossWorks
tasking library.

ctl_get_ticks_per_second

Synopsis #include <ctl_api.h>
unsigned long ctl_get_ticks_per_second(void);

Description Returns the number of ticks in a second.

Portability ctl_get_ticks_per_second is provided in every implementation of the
CrossWorks tasking library.

ctl_global_interrupts_disable

Synopsis #include <ctl_api.h>
int ctl_global_interrupts_disable(void);

Description ctl_global_interrupts_disable disables global interrupts and returns the
return the enabled state of interrupts before they were enabled. You can pass
the return value of ctl_global_interrupts_disable to ctl_global_interrupts_set
to restore the previous global interrupt enable state.

Portability ctl_global_interrupts_disable is provided in every implementation of the
CrossWorks tasking library.

See Also

Global interrupts control (page 216)

229

ctl_global_interrupts_enable

Synopsis #include <ctl_api.h>
int ctl_global_interrupts_enable(void);

Description ctl_global_interrupts_enable enables global interrupts and returns the return
the enabled state of interrupts before they were enabled. You can pass the
return value of ctl_global_interrupts_enable to ctl_global_interrupts_set to
restore the previous global interrupt enable state.

Portability ctl_global_interrupts_enable is provided in every implementation of the
CrossWorks tasking library.

See Also Global interrupts control (page 216)

ctl_global_interrupts_re_enable_from_isr

Synopsis #include <ctl_api.h>
void ctl_global_interrupts_re_enable_from_isr(void);

Description ctl_global_interrupts_re_enable_from_isr does what is required to re-enable
global interrupts from an interrupt service routine.

Restrictions This function should only be invoked by an interrupt service routine and must
be matched with a call to ctl_global_interrupts_un_re_enable_from_isr
before the interrupt service routine completes.

Portability ctl_global_interrupts_re_enable_from_isr is provided in every
implementation of the CrossWorks tasking library.

See Also Global interrupts control (page 216),
ctl_global_interrupts_un_re_enable_from_isr (page 230)

ctl_global_interrupts_set

Synopsis #include <ctl_api.h>
void ctl_global_interrupts_set(int enable);

Description ctl_global_interrupts_set disables or enables global interrupts according to
rhe state enable. If enable is zero, interrupts are disabled and if enable is non-
zero, interrupts are enabled.

Portability ctl_global_interrupts_set is provided in every implementation of the
CrossWorks tasking library.

See Also Global interrupts control (page 216)

230 ARM Library Reference
<ctl_api.h> - Tasking functions

ctl_global_interrupts_un_re_enable_from_isr

Synopsis #include <ctl_api.h>
void ctl_global_interrupts_un_re_enable_from_isr(void);

Description ctl_global_interrupts_un_re_enable_from_isr undoes whatever
ctl_global_interrupts_re_enable_from_isr had to do resulting in global
interrupts being disabled whilst in an interrupt service routine.

Restrictions This function should only be invoked by an interrupt service routine.

Portability ctl_isr_disable_interrupts is provided in every implementation of the
CrossWorks tasking library.

See Also Global interrupts control (page 216),
ctl_global_interrupts_re_enable_from_isr (page 229)

ctl_handle_error

Synopsis #include <ctl_api.h>
void ctl_handle_error(CTL_ERROR_CODE_t error);

Description ctl_handle_error is a function that you must supply in your application that
handles errors detected by the CrossWorks tasking library.

The errors that can be reported are:

CTL_ERROR_NO_TASKS_TO_RUN — a reschedule has occured but
there are no tasks which are runnable.

CTL_WAIT_CALLED_FROM_ISR — an interrupt service routine has
called a tasking library function that could block.

CTL_SUICIDE_IN_ISR — the ctl_task_die (page 237) function has been
called from an interrupt service routine.

Portability ctl_handle_error is used in every implementation of the CrossWorks tasking
library

ctl_increment_tick_from_isr

Synopsis #include <ctl_api.h>
void ctl_increment_tick_from_isr(void);

Description ctl_increment_tick_from_isr increments the ctl_current_time and does
rescheduling. This function must be called from a periodic interrupt service
routine with interrupts disabled. This function enables the timer service of the
CrossWorks tasking library to be used.

231

Restrictions This function should only be invoked by an interrupt service routine.

Portability ctl_increment_tick_from_isr is provided in every implementation of the
CrossWorks tasking library.

See Also Timer support (page 217)

ctl_interrupt_count

Synopsis #include <ctl_api.h>
extern unsigned ctl_interrupt_count;

Description The ctl_interrupt_count variable contains a count of the interrupt nesting
level. This variable must be incremented on entry to an interrupt service
routine and will be decremented when ctl_exit_isr is invoked.

Portability ctl_interrupt_count is provided in every implementation of the CrossWorks
tasking library.

See Also Low-level interrupt handling (page 219), ctl_exit_isr (page 227)

ctl_libc_mutex

Synopsis #include <ctl_api.h>
extern CTL_EVENT_SET_t ctl_libc_mutex;

Description ctl_libc_mutex is the event set used to serialise access to C library resources.
The event set is used as follows:

bit 0 — used by malloc and free

bit 1 — used by printf

bit 2 — used by scanf

bit 3 — used by debug input and ouput operations

Portability ctl_libc_mutex is provided in every implementation of the CrossWorks
tasking library.

ctl_mask_isr

Synopsis #include <ctl_api.h>
 int ctl_mask_isr(unsigned int vector);

Description The function ctl_mask_isr disables an interrupt source. The vector argument
specifies the interrupt source to mask.

232 ARM Library Reference
<ctl_api.h> - Tasking functions

Portability ctl_disable_interrupts is provided in every implementation of the
CrossWorks tasking library.

See Also Programmable interrupt handling (page 218)

ctl_memory_area_allocate

Synopsis #include <ctl_api.h>
unsigned *ctl_memory_area_allocate(CTL_MEMORY_AREA_t *memory_area);

Description The function ctl_memory_area_allocate is given a pointer to the memory_area
which has been initialised. This function returns a block of the size specified in
the call to ctl_memory_area_init or zero if no blocks are available.

Portability ctl_memory_area_allocate is provided in every implementation of the
CrossWorks tasking library.

See Also Memory areas (page 220), ctl_memory_area_init (page 232)

ctl_memory_area_free

Synopsis #include <ctl_api.h>
void ctl_memory_area_free(CTL_MEMORY_AREA_t *memory_area,
 unsigned *block);

Description The function ctl_memory_area_free is given a pointer to a memory_area
which has been initialised and a block that has been returned by
ctl_memory_area_allocate. The block is returned to the memory area so that it
can be allocated again.

Portability ctl_memory_area_free is provided in every implementation of the
CrossWorks tasking library.

See Also Memory areas (page 220), ctl_memory_area_allocate (page 232)

ctl_memory_area_init

Synopsis #include <ctl_api.h>
void ctl_memory_area_init(CTL_MEMORY_AREA_t *memory_area,
 unsigned *memory,
 unsigned block_size_in_words,
 unsigned num_blocks);

Description The function ctl_memory_area_init is given a pointer to the memory area to
initialise in memory_area. The array that will be used to implement the
memory area is pointed to by memory. The size of a memory block is given

233

supplied in block_size_in_words and the number of block is supplied in
num_blocks. Note that memory must point to a block of memory that is at
least block_size_in_wordsnum_blocks words long.

Portability ctl_memory_area_init is provided in every implementation of the CrossWorks
tasking library.

See Also Memory areas (page 220)

ctl_message_queue_init

Synopsis #include <ctl_api.h>
void ctl_message_queue_init(CTL_MESSAGE_QUEUE_t *m,
 void **queue,
 unsigned queue_size);

Description The function ctl_message_queue_init is given a pointer to the message queue
to initialise in m. The array that will be used to implement the message queue
pointed to by queue and its size in queue_size are also supplied.

Portability ctl_message_queue_init is provided in every implementation of the
CrossWorks tasking library.

See Also Message queues (page 211)

ctl_message_queue_post

Synopsis #include <ctl_api.h>
unsigned ctl_message_queue_post(CTL_MESSAGE_QUEUE_t *m,
 void *message,
 CTL_TIMEOUT_t timeoutType,
 CTL_TIME_t timeout);

Description The ctl_message_queue_post function posts the message to the message
queue pointed at by m. If the message queue is full then the caller will block
until the message can be posted or, if timeoutType is non-zero, the current
time reaches the timeout value. This function returns zero if the timeout
occured otherwise it returns one.

Restrictions This function should not be called from an interrupt service routine.

Portability ctl_message_queue_post is provided in every implementation of the
CrossWorks tasking library.

See Also Message queues (page 211)

234 ARM Library Reference
<ctl_api.h> - Tasking functions

ctl_message_queue_post_nb

Synopsis #include <ctl_api.h>
unsigned ctl_message_queue_post_nb(CTL_MESSAGE_QUEUE_t *m,
 void *message);

Description The ctl_message_queue_post_nb function posts the message to the message
queue pointed at by m. If the message queue is full then the function will
return zero otherwise it will return one.

Portability ctl_message_queue_post_nb is provided in every implementation of the
CrossWorks tasking library.

See Also Message queues (page 211)

ctl_message_queue_receive

Synopsis #include <ctl_api.h>
unsigned ctl_message_queue_receive(CTL_MESSAGE_QUEUE_t *m,
 void **message,
 CTL_TIMEOUT_t timeoutType,
 CTL_TIME_t timeout);

Description The function ctl_message_queue_receive pops the oldest message in the
message queue pointed at by m into the memory pointed at by message. This
function will block if no messages are available unless timeoutType is non-
zero and the current time reaches the timeout value. If the timeout occured the
function returns zero otherwise it returns 1.

Restrictions This function should not be called from an interrupt service routine.

Portability ctl_message_queue_receive is provided in every implementation of the
CrossWorks tasking library.

See Also Message queues (page 211)

ctl_message_queue_receive_nb

Synopsis #include <ctl_api.h>
unsigned ctl_message_queue_receive_nb(CTL_MESSAGE_QUEUE_t *m,
 void **message);

Description The function ctl_message_queue_receive_nb pops the oldest message in the
message queue pointed at by m into the memory pointed at by message. If no
messages are available the function returns zero otherwise it returns 1.

Portability ctl_message_queue_receive_nb is provided in every implementation of the
CrossWorks tasking library.

235

See Also Message queues (page 211)

ctl_semaphore_init

Synopsis #include <ctl_api.h>
void ctl_semaphore_init(CTL_SEMAPHORE_t *s,
 unsigned value);

Description The function ctl_semaphore_init initialises the semaphore pointed at by s to
the value.

Portability ctl_semaphore_init is provided in every implementation of the CrossWorks
tasking library.

See Also Semaphores (page 209)

ctl_semaphore_signal

Synopsis #include <ctl_api.h>
void ctl_signal_semaphore(CTL_SEMAPHORE_t *s);

Description The ctl_signal_semaphore signals the semaphore pointed at by s. If tasks are
waiting for the semaphore then the highest priority task will be made
runnable. If no tasks are waiting for the semaphore then the semaphore value
will be incremented.

Portability ctl_signal_semaphore is provided in every implementation of the CrossWorks
tasking library.

See Also Semaphores (page 209)

ctl_semaphore_wait

Synopsis #include <ctl_api.h>
unsigned ctl_wait_semaphore(CTL_SEMAPHORE_t *s,
 CTL_TIMEOUT_t timeoutType,
 CTL_TIME_t timeout);

Description The ctl_wait_semaphore waits for the semaphore pointed at by s to be non-
zero. If the semaphore is zero then the caller will block unless timeoutType is
non-zero and the current time reaches the timeout value. If the timeout
occured the function returns zero otherwise it returns one.

Restrictions This function should not be called from an interrupt service routine.

Portability ctl_wait_semaphore is provided in every implementation of the CrossWorks
tasking library.

236 ARM Library Reference
<ctl_api.h> - Tasking functions

See Also Semaphores (page 209)

ctl_timeout_wait

Synopsis #include <ctl_api.h>
void ctl_start_timer(CTL_ISR_FN_t timerFn);

Description The ctl_start_timer function starts a periodic timer interrupt that calls the
timerFn function.

Restrictions This function should only be called once.

Portability ctl_start_timer is provided in every implementation of the CrossWorks
tasking library.

ctl_set_isr

Synopsis #include <ctl_api.h>
void ctl_set_isr(unsigned int vector,
 unsigned int priority,
 CTL_ISR_TRIGGER_t trigger,
 CTL_ISR_FN_t isr,
 CTL_ISR_FN_t *oldisr);

Description The function ctl_set_isr takes the interrupt vector number and priority as
arguments. These number will vary from system to system - check the data
sheet of the system you are using for information. The trigger defines the type
of interrupt that will trigger the interrupt service routine.

CTL_ISR_TRIGGER_FIXED — the trigger type is not programmable.

CTL_ISR_TRIGGER_LOW_LEVEL — generates an interrupt when the
signal is low.

CTL_ISR_TRIGGER_HIGH_LEVEL — generates an interrupt when the
signal is high.

CTL_ISR_TRIGGER_NEGATIVE_EDGE — generates an interrupt on a
falling edge.

CTL_ISR_TRIGGER_POSITIVE_EDGE — generates an interrupt on a
rising edge.

CTL_ISR_TRIGGER_DUAL_EDGE — generates an interrupt on either a
falling or a rising edge.

On many systems the interrupt controller lacks a programmable trigger type—
use CTL_ISR_TRIGGER_FIXED on these systems.

237

The isr parameter is the C function to call on interrupt and if oldisr is non zero
then the existing interrupt handler is returned in *oldisr.

Portability The ctl_set_isr function is provided on systems that have programmable
interrupt controller hardware.

See Also Programmable interrupt handling (page 218)

ctl_task_die

Synopsis #include <ctl_api.h>
void ctl_task_die(void);

Description ctl_task_die terminates the currently executing task and schedules the next
ready task. You cannot remove the currently executing task from an interrupt
service routine; if you do, the error handler is called with the reason code
CTL_SUICIDE_IN_ISR.

Portability ctl_task_die is provided in every implementation of the CrossWorks tasking
library.

ctl_task_executing

Synopsis #include <ctl_api.h>
extern CTL_TASK_t *ctl_task_executing;

Description The ctl_task_executing variable points to the CTL_TASK_t structure of the
currently executing task. The priority field is the only one of the CTL_TASK_t
structure that is defined for the task that is executing. It is an error is
ctl_task_executing takes the NULL value.

Portability ctl_task_executing is provided in every implementation of the CrossWorks
tasking library.

ctl_task_init

Synopsis #include <ctl_api.h>
void ctl_task_init(CTL_TASK_t *task,
 unsigned char priority,
 char *name);

Description ctl_task_init turns the main program into a task. This function takes a pointer
in task to the CTL_TASK_t structure that represents the main task, it's priority
(0 is the lowest priority, 255 the highest), and a zero terminated string pointed
by name. On return from this function global interrupts will be enabled.

238 ARM Library Reference
<ctl_api.h> - Tasking functions

Restrictions The function must be called before any other CrossWorks tasking library calls
are made.

Portability ctl_task_init is provided in every implementation of the CrossWorks tasking
library.

ctl_task_list

Synopsis #include <ctl_api.h>
extern CTL_TASK_t *ctl_task_list;

Description ctl_task_list points to the CTL_TASK_t structure of the highest priority task
that isn’t executing. It is an error if ctl_task_list takes the NULL value.

Portability ctl_task_list is provided in every implementation of the CrossWorks tasking
library.

ctl_task_remove

Synopsis #include <ctl_api.h>
void ctl_task_remove(CTL_TASK_t *task);

Description ctl_task_remove removes the task task from the waiting task list. Once you
you have removed a task the only way to re-introduce it to the system is to call
ctl_task_run.

You can remove the currently executing task by passing ctl_task_executing to
ctl_task_remove which is the same as calling ctl_task_die. You cannot remove
the currently executing task from an interrupt service routine; if you do, the
error handler is called with the reason code CTL_SUICIDE_IN_ISR.

Portability ctl_task_remove is provided in every implementation of the CrossWorks
tasking library.

ctl_task_reschedule

Synopsis #include <ctl_api.h>
void ctl_task_reschedule(void);

Description ctl_task_reschedule causes a reschedule to occur. This can be used by tasks of
the same priority to share the CPU.

Restrictions This function should not be called from an interrupt service routine.

Portability ctl_task_reschedule is provided in every implementation of the CrossWorks
tasking library.

239

ctl_task_run

Synopsis #include <ctl_api.h>
void ctl_task_run(CTL_TASK_t *task,
 unsigned char priority,
 void (*entrypoint)(void *),
 void *parameter,
 char *name,
 unsigned stack_size_in_words,
 unsigned *stack,
 unsigned call_size_in_words);

Description This function takes a pointer in task to the CTL_TASK_t structure that
represents the task. The priority can be zero for the lowest priority up to 255
which is the highest. The entrypoint parameter is the function that the task
will execute which has the parameter passed to it. The name is a pointer to a
zero terminated string used for debug purposes. The start of the memory used
to implement the stack that the task will execute in is stack and the size of the
memory is supplied in stack_size_in_words. On systems that have two stacks
(e.g. ATMEL AVR) then the call_size_in_words parameter must be set to
specify the number of stack elements to use for the call stack.

Portability ctl_task_run is provided in every implementation of the CrossWorks tasking
library.

ctl_task_set_priority

Synopsis #include <ctl_api.h>
void ctl_task_set_priority(CTL_TASK_t *task, unsigned char priority);

Description ctl_task_set_priority changes the priority of task to priority. The priority can
be 0, the lowest priority, to 255, which is the highest priority.

You can change the priority of the currently executing task by passing
ctl_task_executing as the task parameter.

Portability ctl_task_set_priority is provided in every implementation of the CrossWorks
tasking library.

ctl_timeout_wait

Synopsis #include <ctl_api.h>
void ctl_timeout_wait(CTL_TIME_t timeout);

Description The ctl_timeout_wait function takes the timeout (not the duration) as a
parameter and suspends the calling task until the current time is less than the
timeout.

240 ARM Library Reference
<cross_studio_io.h> - Debug I/O library

Restrictions This function should not be called from an interrupt service routine.

Portability ctl_task_set_priority is provided in every implementation of the CrossWorks
tasking library.

ctl_timeslice_period

Synopsis #include <ctl_api.h>
extern CTL_TIME_t ctl_timeslice_period;

Description ctl_timeslice_period contains the number of ticks to allow a task to run before
it will be preemptively rescheduled by a task of the same priority. The variable
is set to zero by default so that only higher priority tasks will be preemptively
scheduled.

Portability ctl_timeslice_period is provided in every implementation of the CrossWorks
tasking library.

ctl_umask_isr

Synopsis #include <ctl_api.h>
int ctl_unmask_isr(unsigned int vector);

Description The function ctl_unmask_isr enables an interrupt source. The vector
argument specifies the interrupt source to unmask.

Portability ctl_unmask_isr is provided on systems that have programmable interrupt
controller hardware.

See Also Programmable interrupt handling (page 218)

<cross_studio_io.h> - Debug I/O library

The header file <cross_studio_io.h> defines functions that enable the target
program to perform input and output using Virtual Console Services.

These functions are closely modelled on the standard C <stdio.h> functions.

Output functions

debug_printf Formatted output to the virtual console

debug_putchar Write one character to the virtual console

241

debug_puts Write string to the virtual console

Input functions

debug_getchar Read one character from the virtual console

debug_getd Read a double floating value from the virtual console

debug_getf Read a floating value from the virtual console

debug_geti Read an integer from the virtual console

debug_getl Read a long integer from the virtual console

debug_getll Read a long long integer from the virtual console

debug_gets Read a string from the virtual console

debug_getu Read an unsigned integer from the virtual console

debug_getul Read an unsigned long integer from the virtual console

debug_getull Read an unsigned long long integer from the virtual console

File functions

debug_fopen Open a file

debug_fflush Flush a file

debug_fclose Close a file

debug_fprintf Formatted output to a file

debug_fgetc Read one character from a file

debug_fgets Read a string from a file

debug_fputc Write one character to a file

debug_fputs Write a string to a file

debug_fread Read from a file

debug_fwrite Write to a file

debug_fseek Position a file

debug_ftell Remember position of a file

debug_rewind Reposition to start of a file

debug_filesize Get the size of a file

debug_clearerr Clear error flags associated with a file

242 ARM Library Reference
<cross_studio_io.h> - Debug I/O library

debug_break

Synopsis #include <cross_studio_io.h>
void debug_break();

Description debug_break causes the the debugger to stop the target and position the
cursor on the line that called debug_break.

Portability debug_break is an extension provided by CrossWorks C.

debug_clearerr

Synopsis #include <cross_studio_io.h>
void debug_clearerr(DEBUG_FILE *stream);

Description debug_clearerr clear any error or end of file conditions on stream.

Portability debug_clearerr is an extension provided by CrossWorks C.

debug_fclose

Synopsis #include <cross_studio_io.h>
void debug_fclose(DEBUG_FILE *stream);

Description debug_fclose flushes any buffered output to stream and then closes the
stream.

Portability debug_fclose is an extension provided by CrossWorks C.

debug_feof Test for end of file

debug_ferror Test a file for errors

Debug functions

debug_runtime_error Stop debugger and display a runtime error string

debug_break Programmed breakpoint that stops the debugger

Miscellaneous functions

debug_time
Returns the number of seconds elapsed since midnight
(00:00:00), January 1, 1970, coordinated universal time
(UTC)

243

debug_feof

Synopsis #include <cross_studio_io.h>
int debug_feof(DEBUG_FILE *stream);

Description debug_feof returns non-zero if the end of file condition is set for stream.

Portability debug_feof is an extension provided by CrossWorks C.

debug_ferror

Synopsis #include <cross_studio_io.h>
int debug_ferror(DEBUG_FILE *stream);

Description debug_ferror returns a non-zero value if the error indicator is set for stream.

Portability debug_ferror is an extension provided by CrossWorks C.

debug_fflush

Synopsis #include <cross_studio_io.h>
int debug_fflush(DEBUG_FILE *stream);

Description debug_fflush flushes any buffered output to the stream.

debug_fflush returns 0 on success and EOF if there was an error.

Portability debug_fflush is an extension provided by CrossWorks C.

debug_fgetc

Synopsis #include <cross_studio_io.h>
int debug_fgetc(DEBUG_FILE *stream);

Description debug_fgetc reads and returns the next character on stream or EOF if no
character is available.

Portability debug_fgetc is an extension provided by CrossWorks C.

debug_fgets

Synopsis #include <cross_studio_io.h>
char *debug_fgets(char *s, int n DEBUG_FILE *stream);

Description debug_fgets reads at most n?1 characters from stream into the array pointed
to by s.

244 ARM Library Reference
<cross_studio_io.h> - Debug I/O library

debug_fgets returns s on success, or 0 on error or end of file.

Portability debug_fgets is an extension provided by CrossWorks C.

debug_filesize

Synopsis #include <__cross_studio_io.h>
int debug_filesize(DEBUG_FILE *stream);

Description debug_filesize returns the size of the file associated with the stream stream in
bytes.

debug_filesize returns EOF on error.

Portability debug_filesize is an extension provided by CrossWorks C.

debug_fopen

Synopsis #include <cross_studio_io.h>
DEBUG_FILE *debug_fopen(const char *filename, const char *mode);

Description debug_fopen opens the named file and returns a stream or NULL if the open
fails. The mode is a string containing one of:

r — open file for reading

w — create file for writing

a — open or create file for writing and position at the end of the file

r+ — open file for reading and writing

w+ — create file for reading and writing

a+ — open or create text file for reading and writing and position at the
end of the file

The mode should then include either “t” or “b” to specify if carriage return,
linefeed combinations are translated into newline characters e.g. “rt”, “a+b”.

Portability debug_fopen is an extension provided by CrossWorks C.

debug_fprintf

Synopsis #include <cross_studio_io.h>
int debug_fprintf(DEBUG_FILE *stream, const char *format, ...);

245

Description debug_fprintf writes to stream, under control of the string pointed to by
format that specifies how subsequent arguments are converted for output. The
actual formatting is performed on the host by CrossStudio and therefore
debug_fprintf is very small and consumes almost no code and data space,
only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If
the format is exhausted while arguments remain, the excess arguments are
evaluated but are otherwise ignored.

debug_fprintf returns number of characters transmitted, or a negative value
if an output or encoding error occurred.

Portability debug_fprintf is an extension provided by CrossWorks C.

debug_fputc

Synopsis #include <cross_studio_io.h>
int debug_fputc(int c, DEBUG_FILE *stream);

Description debug_fputc writes the character c to the stream stream.

debug_fputc returns the character written. If a write error occurs,
debug_fputc returns EOF.

Portability debug_fputc is an extension provided by CrossWorks C.

debug_fputs

Synopsis #include <cross_studio_io.h>
int debug_fputs(const char *s, DEBUG_FILE *stream);

Description debug_fputs writes the string pointed to by s to the stream stream and
appends a new-line character to the output. The terminating null character is
not written.

debug_fputs returns EOF if a write error occurs; otherwise it returns a
nonnegative value.

Portability debug_fputs is an extension provided by CrossWorks C.

debug_fread

Synopsis #include <cross_studio_io.h>
int debug_fread(void *ptr, int size, int nobj, DEBUG_FILE *stream);

246 ARM Library Reference
<cross_studio_io.h> - Debug I/O library

Description debug_fread reads from stream into the array ptr at most nobj objects of size
size and returns the number of objects read. debug_feof and debug_ferror can
be used to determine status.

Portability debug_fread is an extension provided by CrossWorks C.

debug_printf

Synopsis #include <cross_studio_io.h>
int debug_fscanf(DEBUG_FILE *file, const char *format, ...);

Description debug_fscanf reads from the file, under control of the string pointed to by
format that specifies how subsequent arguments are converted for input. The
actual formatting is performed on the host by CrossStudio and therefore
debug_fscanf is very small and consumes almost no code and data space, only
the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If
the format is exhausted while arguments remain, the excess arguments are
evaluated but are otherwise ignored.

debug_fscanf returns number of characters read, or a negative value if an
output or encoding error occurred.

Portability debug_fscanf is an extension provided by CrossWorks C.

debug_fseek

Synopsis #include <cross_studio_io.h>
int debug_fseek(DEBUG_FILE *stream, long offset, int origin);

Description debug_fseek sets the file position for stream; a subsequent read or write will
access data at that position. The origin can be one of:

0 — sets the position to offset bytes from the beginning of the file

1 — sets the position to offset bytes relative to to the current position

2 — sets the position to offset bytes from the end of the file

Note that for text files offset must be zero. debug_fseek returns non-zero on
error.

Portability debug_fseek is an extension provided by CrossWorks C.

247

debug_ftell

Synopsis #include <cross_studio_io.h>
int debug_ftell(DEBUG_FILE *stream, long *offset);

Description debug_ftell writes the current file position of stream to the object pointed to
by offset.

debug_ftell returns EOF on error:

Portability debug_ftell is an extension provided by CrossWorks C.

debug_fwrite

Synopsis #include <cross_studio_io.h>
int debug_fwrite(void *ptr, int size, int nobj, DEBUG_FILE *stream);

Description debug_fwrite writes from the array pointed to by ptr, nobj objects of size size
on stream and returns the number of objects written. debug_feof and
debug_ferror can be used to determine status.

Portability debug_fwrite is an extension provided by CrossWorks C.

debug_getch

Synopsis #include <cross_studio_io.h>
int debug_getch(void);

Description debug_getch prompts the user for character input and returns the character
supplied or a negative value if no character is available.

Portability debug_getch is an extension provided by CrossWorks C.

debug_getchar

Synopsis #include <cross_studio_io.h>
int debug_getchar(void);

Description debug_getchar prompts the user for character input and returns the character
supplied or a negative value if no character is available.

Portability debug_getchar is an extension provided by CrossWorks C.

248 ARM Library Reference
<cross_studio_io.h> - Debug I/O library

debug_getd

Synopsis #include <cross_studio_io.h>
int debug_getd(double *d);

Description debug_getd prompts the user to enter an real value. The number is written to
the double object pointed to by d.

debug_getd returns zero on success and EOF on error.

Portability debug_getd is an extension provided by CrossWorks C.

debug_getf

Synopsis #include <cross_studio_io.h>
int debug_getf(float *f);

Description debug_getf prompts the user to enter an real value. The number is written to
the float object pointed to by f.

debug_getf returns zero on success and EOF on error.

Portability debug_getf is an extension provided by CrossWorks C.

debug_geti

Synopsis #include <cross_studio_io.h>
int debug_geti(int *i);

Description debug_geti prompts the user to enter an integer. If the number starts with 0x
it is interpreted as a hexadecimal number, if it starts with 0 it is interpreted as
an octal number, if it starts with 0b it is interpreted as a binary number,
otherwise it is interpreted as a decimal number. The number is written to the
int object pointed to by i.

debug_geti returns zero on success and EOF on error.

Portability debug_geti is an extension provided by CrossWorks C.

debug_getl

Synopsis #include <cross_studio_io.h>
int debug_getl(long *l);

249

Description debug_getl prompts the user to enter an integer. If the number starts with 0x
it is interpreted as a hexadecimal number, if it starts with 0 it is interpreted as
an octal number, if it starts with 0b it is interpreted as a binary number,
otherwise it is interpreted as a decimal number. The number is written to the
long object pointed to by l.

debug_getl returns zero on success and EOF on error.

Portability debug_getl is an extension provided by CrossWorks C.

debug_getll

Synopsis #include <cross_studio_io.h>
int debug_getl(long *ll);

Description debug_getll prompts the user to enter an integer. If the number starts with 0x
it is interpreted as a hexadecimal number, if it starts with 0 it is interpreted as
an octal number, if it starts with 0b it is interpreted as a binary number,
otherwise it is interpreted as a decimal number. The number is written to the
long long object pointed to by ll.

debug_getll returns zero on success and EOF on error.

Portability debug_getll is an extension provided by CrossWorks C.

debug_gets

Synopsis #include <cross_studio_io.h>
int debug_gets(char *s, int n);

Description debug_gets prompts the user for string input and writes at most n?1
characters into the array pointed to be s which is null terminated.

debug_gets returns the number of characters read or EOF on error. .

Portability debug_gets is an extension provided by CrossWorks C.

debug_getu

Synopsis #include <cross_studio_io.h>
int debug_getu(unsigned *u);

Description debug_getu prompts the user to enter an integer. If the number starts with 0x
it is interpreted as a hexadecimal number, if it starts with 0 it is interpreted as
an octal number, if it starts with 0b it is interpreted as a binary number,
otherwise it is interpreted as a decimal number. The number is written to the
unsigned object pointed to by u.

250 ARM Library Reference
<cross_studio_io.h> - Debug I/O library

debug_getu returns zero on success and EOF on error.

Portability debug_getu is an extension provided by CrossWorks C.

debug_getul

Synopsis #include <cross_studio_io.h>
int debug_getul(unsigned long *ul);

Description debug_getul prompts the user to enter an integer. If the number starts with 0x
it is interpreted as a hexadecimal number, if it starts with 0 it is interpreted as
an octal number, if it starts with 0b it is interpreted as a binary number,
otherwise it is interpreted as a decimal number. The number is written to the
unsigned long object pointed to by ul.

debug_getul returns zero on success and EOF on error.

Portability debug_getul is an extension provided by CrossWorks C.

debug_getull

Synopsis #include <cross_studio_io.h>
int debug_getul(unsigned long *ull);

Description debug_getull prompts the user to enter an integer. If the number starts with 0x
it is interpreted as a hexadecimal number, if it starts with 0 it is interpreted as
an octal number, if it starts with 0b it is interpreted as a binary number,
otherwise it is interpreted as a decimal number. The number is written to the
unsigned long longobject pointed to by ull.

debug_getull returns zero on success and EOF on error.

Portability debug_getull is an extension provided by CrossWorks C.

debug_kbhit

Synopsis #include <cross_studio_io.h>
int debug_kbhit(void);

Description debug_kbhit return a non-zero value if a character is available or 0 is not.

Portability debug_kbhit is an extension provided by CrossWorks C.

251

debug_printf

Synopsis #include <cross_studio_io.h>
int debug_printf(const char *format, ...);

Description debug_printf writes to the Target I/O Console Window, under control of the
string pointed to by format that specifies how subsequent arguments are
converted for output. The actual formatting is performed on the host by
CrossStudio and therefore debug_printf is very small and consumes almost
no code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If
the format is exhausted while arguments remain, the excess arguments are
evaluated but are otherwise ignored.

debug_printf returns number of characters transmitted, or a negative value if
an output or encoding error occurred.

Portability debug_printf is an extension provided by CrossWorks C.

debug_putchar

Synopsis #include <cross_studio_io.h>
int debug_putchar(int c);

Description debug_putchar writes the character c to the Target I/O Console Window.

debug_putchar returns the character written. If a write error occurs, putchar
returns EOF.

Portability debug_printf is an extension provided by CrossWorks C.

debug_puts

Synopsis #include <cross_studio_io.h>
int debug_puts(const char *s);

Description debug_puts writes the string pointed to by s to the Target I/O Console
Window and appends a new-line character to the output. The terminating null
character is not written.

debug_puts returns EOF if a write error occurs; otherwise it returns a
nonnegative value.

Portability debug_puts is an extension provided by CrossWorks C.

252 ARM Library Reference
<cross_studio_io.h> - Debug I/O library

debug_rewind

Synopsis #include <cross_studio_io.h>
void debug_rewind(DEBUG_FILE *stream);

Description debug_rewind sets the current file position of the stream stream to the
beginning of the file and clears any error and end of file conditions.

Portability debug_rewind is an extension provided by CrossWorks C.

debug_runtime_error

Synopsis #include <cross_studio_io.h>
void debug_runtime_error(const char *error);

Description debug_runtime_error causes the debugger to stop the target, position the
cursor at the line that called debug_runtime_error, and display the null-
terminated string pointed to by error.

Portability debug_runtime_error is an extension provided by CrossWorks C.

debug_scanf

Synopsis #include <cross_studio_io.h>
int debug_scanf(const char *format, ...);

Description debug_scanf reads from the Target I/O Console Window, under control of the
string pointed to by format that specifies how subsequent arguments are
converted for input. The actual formatting is performed on the host by
CrossStudio and therefore debug_scanf is very small and consumes almost no
code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If
the format is exhausted while arguments remain, the excess arguments are
evaluated but are otherwise ignored.

debug_scanf returns number of characters read, or a negative value if an
output or encoding error occurred.

Portability debug_scanf is an extension provided by CrossWorks C.

debug_time

Synopsis #include <cross_studio_io.h>
unsigned long debug_ftell(unsigned long *ptr);

253

Description debug_time writes the current file position of stream to the object pointed to
by offset.

debug_ftell returns EOF on error:

debug_time returns the number of seconds elapsed since midnight (00:00:00),
January 1, 1970, coordinated universal time (UTC), according to the system
clock of the host computer.

The return value is stored in *ptr if ptr is not NULL.

Portability debug_time is an extension provided by CrossWorks C.

<__armlib.h> - Misc ARM functions

The header <__armlib.h> defines a number of useful ARM specific functions.

Interrupt functions

__ARMLIB_enab
leIRQ (page 254)

Enable IRQ interrupts.

__ARMLIB_disa
bleIRQ (page 254)

Disable IRQ interrupts.

__ARMLIB_isrEn
ableIRQ (page
254)

Re-enable IRQ interrupts from within an IRQ ISR.

__ARMLIB_isrDi
sableIRQ (page
255)

Re-disable IRQ interrupts from within an IRQ
ISR.

__ARMLIB_enab
leFIQ (page 255)

Enable FIQ interrupts.

__ARMLIB_disa
bleFIQ (page 256)

Disable FIQ interrupts.

Debug I/O functions

__ARMLIB_com
mTX (page 256)

Send a word of data down the ARM debug
communications channel.

__ARMLIB_com
mRX (page 256)

Read a word of data from the ARM debug
communications channel.

254 ARM Library Reference
<__armlib.h> - Misc ARM functions

__ARMLIB_enableIRQ

Synopsis #include <__armlib.h>
void __ARMLIB_enableIRQ(void);

Description __ARMLIB_enableIRQ globally enables the ARM's IRQ interrupts by
clearing the I bit of the CPSR register.

Portability __ARMLIB_enableIRQ is an ARM specific extension provided by
CrossWorks C.

See also __ARMLIB_disableIRQ (page 254)__ARMLIB_enableFIQ (page
255)__ARMLIB_disableFIQ (page 256)__ARMLIB_isrEnableIRQ (page
254)__ARMLIB_isrDisableIRQ (page 255)

__ARMLIB_disableIRQ

Synopsis #include <__armlib.h>
void __ARMLIB_disableIRQ(void);

Description __ARMLIB_disableIRQ globally disables the ARM's IRQ interrupts by
setting the I bit of the CPSR register.

Portability __ARMLIB_disableIRQ is an ARM specific extension provided by
CrossWorks C.

See also __ARMLIB_enableIRQ (page 254)__ARMLIB_enableFIQ (page
255)__ARMLIB_disableFIQ (page 256)__ARMLIB_isrEnableIRQ (page
254)__ARMLIB_isrDisableIRQ (page 255)

__ARMLIB_isrEnableIRQ

Synopsis #include <__armlib.h>
void __ARMLIB_isrEnableIRQ(void);

__ARMLIB_runC
ommPortServer
(page 257)

Serve ARMCPS commands from the ARM's
debug communications channel.

Miscellaneous Functions

__ARMLIB_crc32
(page 257)

Compute a CRC-32 checksum of a block of data.

Interrupt functions

255

Description __ARMLIB_isrEnableIRQ re-enables the ARM's global interrupts from
within an ISR enabling reentrant IRQ interrupt handlers.

Calls to __ARMLIB_isrEnableIRQ should be accompanied with a call to
__ARMLIB_isrDisableIRQ (page 255)prior to completion of the ISR.

Portability __ARMLIB_isrEnableIRQ is an ARM specific extension provided by
CrossWorks C.

See also __ARMLIB_enableIRQ (page 254)__ARMLIB_disableIRQ (page
254)__ARMLIB_isrDisableIRQ (page 255)

__ARMLIB_isrDisableIRQ

Synopsis #include <__armlib.h>
void __ARMLIB_isrDisableIRQ(void);

Description __ARMLIB_isrDisableIRQ re-disables the ARM's global interrupts from
within an ISR.

__ARMLIB_isrDisableIRQ should only be called after a previous call to
__ARMLIB_isrEnableIRQ (page 254).

Portability __ARMLIB_isrDisableIRQ is an ARM specific extension provided by
CrossWorks C.

See also __ARMLIB_enableIRQ (page 254)__ARMLIB_disableIRQ (page
254)__ARMLIB_isrEnableIRQ (page 254)

__ARMLIB_enableFIQ

Synopsis #include <__armlib.h>
void __ARMLIB_enableFIQ(void);

Description __ARMLIB_enableFIQ globally enables the ARM's FIQ interrupts by clearing
the F bit of the CPSR register.

Portability __ARMLIB_enableFIQ is an ARM specific extension provided by
CrossWorks C.

See also __ARMLIB_disableFIQ (page 256)__ARMLIB_enableIRQ (page
254)__ARMLIB_disableIRQ (page 254)__ARMLIB_isrEnableIRQ (page
254)__ARMLIB_isrDisableIRQ (page 255)

256 ARM Library Reference
<__armlib.h> - Misc ARM functions

__ARMLIB_disableFIQ

Synopsis #include <__armlib.h>
void __ARMLIB_disableFIQ(void);

Description __ARMLIB_disableFIQ globally disables the ARM's FIQ interrupts by setting
the F bit of the CPSR register.

Portability __ARMLIB_disableFIQ is an ARM specific extension provided by
CrossWorks C.

See also __ARMLIB_enableFIQ (page 255)__ARMLIB_enableIRQ (page
254)__ARMLIB_disableIRQ (page 254)__ARMLIB_isrEnableIRQ (page
254)__ARMLIB_isrDisableIRQ (page 255)

__ARMLIB_commTX

Synopsis #include <__armlib.h>
void __ARMLIB_commTX(unsigned long n);

Description __ARMLIB_commTX transmits the word of data n down the ARM's debug
communications channel. This function will block until the operation is
complete.

Portability __ARMLIB_commTX is an ARM specific extension provided by CrossWorks
C.

See also __ARMLIB_commRX (page 256)

__ARMLIB_commRX

Synopsis #include <__armlib.h>
unsigned long __ARMLIB_commRX(void);

Description __ARMLIB_commRX reads a word of data from the ARM's debug
communications channel. This function will block until the operation is
complete.

Portability __ARMLIB_commRX is an ARM specific extension provided by CrossWorks
C.

See also __ARMLIB_commTX (page 256)

257

__ARMLIB_runCommPortServer

Synopsis #include <__armlib.h>
void __ARMLIB_runCommPortServer(void);

Description __ARMLIB_runCommPortServer serves ARMCPS commands from the
ARM's debug communication channel until terminated by the host.

Portability __ARMLIB_runCommPortServer is an ARM specific extension provided by
CrossWorks C.

__ARMLIB_crc32

Synopsis #include <__armlib.h>
void __ARMLIB_crc32(const unsigned char *src, unsigned long length);

Description __ARMLIB_crc32 computes a CRC-32 checksum of a block of data. The
parameter src points to the start of the data block and lengthspecifies the size
of the data block in bytes.

Portability __ARMLIB_crc32 is an ARM specific extension provided by CrossWorks C.

258 Standard C Library Reference
<__armlib.h> - Misc ARM functions

7

Standard C Library Reference

CrossWorks C provides a library that conforms to the ANSI and ISO standards
for C.

In this section

<assert.h> - Diagnostics (page 259). Describes the diagnostic facilities
which you can build into your application.

<ctype.h> - Character handling (page 260). Describes the character
classification and manipulation functions.

<errno.h> - Errors (page 264). Describes the macros and error values
returned by the C library.

<limits.h> - Integer numerical limits (page 265). Describes the macros
that define the extreme values of underlying C types.

<math.h> - Mathematics (page 270). Describes the mathematical
functions provided by the C library.

<setjmp.h> - Non-local jumps (page 294). Describes the non-local goto
capabilities of the C library.

<stdarg.h> - Variable arguments (page 296). Describes the way in which
variable parameter lists are accessed.

<stdio.h> - Input/output functions (page 298). Describes the formatted
input and output functions.

259

<stdio.h> - Input/output functions (page 298). Describes the general
utility functions provided by the C library.

<string.h> - String handling (page 330). Describes the string handling
functions provided by the C library.

<assert.h> - Diagnostics

The header file <assert.h> defines the assert macro under control of the
NDEBUG macro, which the library does not define.

assert

Synopsis #include <assert.h>
void assert(expression);

Description assert allows you to place assertions and diagnostic tests into programs.

If NDEBUG is defined as a macro name at the point in the source file where
<assert.h> is included, the assert macro is defined as:

#define assert(ignore) ((void)0)

If NDEBUG is not defined as a macro name at the point in the source file
where <assert.h> is included, the assert macro expands to a void expression
that calls __assert. When such an assert is executed and expression is false,
assert calls the __assert function with information about the particular call that
failed: the text of the argument, the name of the source file, and the source line
number. These are the stringized expression and the values of the
preprocessing macros __FILE__ and __LINE__.

The prototype for __assert is:

extern void __assert(const char *, const char *, int);

There is no default implementation of __assert. Keeping __assert out of the
library means that you can can customize its behaviour without rebuilding the
library.

Macros

assert (page 259) Assert that a condition is true

260 Standard C Library Reference
<ctype.h> - Character handling

Important notes The assert macro is redefined according to the current state of NDEBUG each
time that <assert.h> is included.

Portability assert conforms to ISO/IEC 9899:1990 (C90).

<ctype.h> - Character handling

The header <ctype.h> declares several functions useful for classifying and
mapping characters.

The character argument to all functions is an int, the value of which is
representable as an unsigned char or is the value of the macro EOF. If the
argument has any other value, the behavior is undefined.

Only the "C" locale is supported by CrossWorks C, and thus the functions in
this header are not affected by locales.

The term printing character refers to a member of a set of characters, each of
which occupies one printing position on a display device; the term control
character refers to a member of a set of characters that are not printing
characters. All letters and digits are printing characters.

Classification functions

isalnum Is character alphanumeric?

isalpha Is character alphabetic?

isblank Is character a space or horizontal tab?

iscntrl Is character a control character?

isdigit Is character a decimal digit?

isgraph Is character any printing character except space?

isupper Is character a lowercase letter?

isprint Is character printable?

ispunct Is character a punctuation mark?

isspace Is character a whitespace character?

isupper Is character an uppercase letter?

isxdigit Is character a hexadecimal letter?

261

isalnum

Synopsis #include <ctype.h>
int isalnum(int c);

Description isalnum returns nonzero (true) if and only if isalpha or isdigit return true for
value of the argument c.

Portability isalnum conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also isalpha (page 261) isdigit (page 262)

isalpha

Synopsis #include <ctype.h>
int isalpha(int c);

Description isalpha returns nonzero (true) if and only if isupper or islower return true for
value of the argument c.

Portability isalpha conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also isupper (page 263) isupper (page 262)

isblank

Synopsis #include <ctype.h>
int isblank(int c);

Description isblank returns nonzero (true) if and only if the value of the argument c is
either a space character (' ') or the horizontal tab character ('\t').

Portability isblank ISO/IEC 9899:1999 (C99).

See also isspace (page 263)

iscntrl

Synopsis #include <ctype.h>
int iscntrl(int c);

Conversion functions

tolower Convert uppercase character to lowercase

toupper Convert lowercase character to uppercase

262 Standard C Library Reference
<ctype.h> - Character handling

Description iscntrl returns nonzero (true) if and only if the value of the argument c is a
control character. Control characters have values 0 through 31 and the single
value 127.

Portability iscntrl conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

isdigit

Synopsis #include <ctype.h>
int isdigit(int c);

Description isdigit returns nonzero (true) if and only if the value of the argument c is a
decimal digit 0 through 9.

Portability isdigit conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

isgraph

Synopsis #include <ctype.h>
int isgraph(int c);

Description isgraph returns nonzero (true) if and only if the value of the argument c is any
printing character except space (' ').

Portability isgraph conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

isupper

Synopsis #include <ctype.h>
int islower(int c);

Description islower returns nonzero (true) if and only if the value of the argument c is an
uppercase letter a through z.

Portability islower conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

isprint

Synopsis #include <ctype.h>
int isprint(int c);

Description isprint returns nonzero (true) if and only if the value of the argument c is any
printing character including space (' ').

Portability isprint conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

263

ispunct

Synopsis #include <ctype.h>
int ispunct(int c);

Description ispunct returns nonzero (true) for every printing character for which neither
isspace nor isalnum is true.

Portability ispunct conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also isspace (page 263) isalnum (page 261)

isspace

Synopsis #include <ctype.h>
int isspace(int c);

Description isspace returns nonzero (true) if and only if the value of the argument c is a
standard white-space character. The standard white-space characters are space
(' '), form feed ('\f'), new-line ('\n'), carriage return ('\r'), horizontal
tab ('\t'), and vertical tab ('\v').

Portability isspace conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also isblank (page 261)

isupper

Synopsis #include <ctype.h>
int isupper(int c);

Description isupper returns nonzero (true) if and only if the value of the argument c is an
uppercase letter A through Z.

Portability isupper conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

isxdigit

Synopsis #include <ctype.h>
int isxdigit(int c);

Description isxdigit returns nonzero (true) if and only if the value of the argument c is a
hexadecimal digit 0 through 9, a through f, or A through F.

Portability isxdigit conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

264 Standard C Library Reference
<errno.h> - Errors

tolower

Synopsis #include <ctype.h>
int tolower(int c);

Description tolower converts an uppercase letter to a corresponding lowercase letter.

If the argument c is a character for which isupper is true, tolower returns the
corresponding lowercase letter; otherwise, the argument is returned
unchanged.

Portability tolower conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

toupper

Synopsis #include <ctype.h>
int toupper(int c);

Description toupper converts a lowercase letter to a corresponding uppercase letter.

If the argument c is a character for which islower is true, toupper returns the
corresponding uppercase letter; otherwise, the argument is returned
unchanged.

Portability toupper conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

<errno.h> - Errors

The header file <errno.h> defines macros defines several macros, all relating
to the reporting of error conditions.

errno

Synopsis #include <errno.h>
int errno;

Description errno expands to a modifiable lvalue of type int, the value of which is set to a
positive error number by several library functions.

Macros

errno Error number

265

The ISO standard does not specify whether errno is a macro or an identifier
declared with external linkage. Portable programs must not make
assumptions about the implementation of errno.

The value of errno is zero at program startup, but is never set to zero by any
library function. The value of errno may be set to a nonzero value by a library
function, and this effect is documented in each functio that does so.

The header file <errno.h> defines the macros EDOM, EILSEQ, and ERANGE
which expand to integer constant expressions with type int, distinct positive
values, and which are suitable for use in #if preprocessing directives.

Portability errno conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

<limits.h> - Integer numerical limits

The header file <limits.h> defines macros that expand to various limits and
parameters of the standard integer types.

Type sizes

CHAR_BIT Number of bits in a char

Character minimum and maximum values

CHAR_MIN Minimum value of a char

CHAR_MAX Maximum value of a char

SCHAR_MIN Minimum value of a signed char

SCHAR_MAX Maximum value of a signed char

UCHAR_MAX Maximum value of an unsigned char

Short minimum and maximum values

SHRT_MIN Minimum value of a short

SHRT_MAX Maximum value of a short

USHRT_MAX Maximum value of an unsigned short

Integer minimum and maximum values

INT_MIN Minimum value of an int

INT_MAX Maximum value of an int

266 Standard C Library Reference
<limits.h> - Integer numerical limits

CHAR_BIT

Synopsis #include <limits.h>
#define CHAR_BIT 8

Description CHAR_BIT is the number of bits for smallest object that is not a bit-field (byte).

Portability CHAR_BIT conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

CHAR_MIN

Synopsis #include <limits.h>
#define CHAR_MIN 0

Description CHAR_MIN is the minimum value for an object of type char.

Portability CHAR_MIN conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

CHAR_MAX

Synopsis #include <limits.h>
#define CHAR_MAX 255

Description CHAR_MAX is the maximum value for an object of type char.

Portability CHAR_MAX conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

UINT_MAX Maximum value of an unsigned int

Long integer minimum and maximum values

LONG_MIN Minimum value of a long

LONG_MAX Maximum value of a long

ULONG_MAX Maximum value of an unsigned long

Long long integer minimum and maximum values

LLONG_MIN Minimum value of a long long

LLONG_MAX Maximum value of a long long

ULLONG_MAX Maximum value of an unsigned long long

267

INT_MIN

Synopsis #include <limits.h>
#define INT_MIN processor-dependent-value

Description INT_MIN is the minimum value for an object of type int.

For processors where an integer is held in 16 bits, INT_MIN is -32768, and for
processors where an integer is held in 32 bits, INT_MIN is -2147483648.

Portability INT_MIN conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

INT_MAX

Synopsis #include <limits.h>
#define INT_MAX processor-dependent-value

Description INT_MAX is the maximum value for an object of type int.

For processors where an integer is held in 16 bits, INT_MAX is 32767, and for
processors where an integer is held in 32 bits, INT_MAX is 2147483647.

Portability INT_MAX conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

LLONG_MIN

Synopsis #include <limits.h>
#define LLONG_MIN (-9223372036854775807-1)

Description LLONG_MIN is the minimum value for an object of type long long int.

Portability LLONG_MIN conforms to ISO/IEC 9899:1999 (C99).

LLONG_MAX

Synopsis #include <limits.h>
#define LLONG_MAX (-9223372036854775807-1)

Description LLONG_MAX is the maximum value for an object of type long long int.

Portability LLONG_MAX conforms to ISO/IEC 9899:1999 (C99).

268 Standard C Library Reference
<limits.h> - Integer numerical limits

LONG_MIN

Synopsis #include <limits.h>
#define LONG_MIN (-2147483647-1)

Description LONG_MIN is the minimum value for an object of type long int.

Portability LONG_MIN conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

LONG_MAX

Synopsis #include <limits.h>
#define LONG_MAX 2147483647

Description LONG_MAX is the maximum value for an object of type long int.

Portability LONG_MAX conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

SCHAR_MIN

Synopsis #include <limits.h>
#define SCHAR_MIN -127

Description SCHAR_MIN is the minimum value for an object of type signed char.

Portability SCHAR_MIN conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

SCHAR_MAX

Synopsis #include <limits.h>
#define SCHAR_MAX 127

Description SCHAR_MAX is the maximum value for an object of type signed char.

Portability SCHAR_MAX conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

SHRT_MIN

Synopsis #include <limits.h>
#define SHRT_MIN (-32767-1)

269

Description SHRT_MIN is the minimum value for an object of type short int.

Portability SHRT_MIN conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

SHRT_MAX

Synopsis #include <limits.h>
#define SHRT_MAX 32767

Description SHRT_MAX is the maximum value for an object of type short int.

Portability SHRT_MAX conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

UCHAR_MAX

Synopsis #include <limits.h>
#define UCHAR_MAX 255

Description UCHAR_MAX is the maximum value for an object of type unsigned char.

Portability UCHAR_MAX conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

UINT_MAX

Synopsis #include <limits.h>
#define UINT_MAX processor-dependent-value

Description UINT_MAX is the maximum value for an object of type unsigned int.

For processors where an unsigned integer is held in 16 bits, UINT_MAX is
65535, and for processors where an unsigned integer is held in 32 bits,
UINT_MAX is 4294967295.

Portability UINT_MAX conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

ULLONG_MAX

Synopsis #include <limits.h>
#define ULLONG_MAX 18446744073709551615

Description ULLONG_MAX is the maximum value for an object of type unsigned long
long int.

270 Standard C Library Reference
<math.h> - Mathematics

Portability ULLONG_MAX conforms to ISO/IEC 9899:1999 (C99).

ULONG_MAX

Synopsis #include <limits.h>
#define ULONG_MAX 2147483647

Description ULONG_MAX is the maximum value for an object of type unsigned long int.

Portability ULONG_MAX conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

USHRT_MAX

Synopsis #include <limits.h>
#define USHRT_MAX 65535

Description USHRT_MAX is the maximum value for an object of type unsigned short int.

Portability USHRT_MAX conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

<math.h> - Mathematics

The header file <math.h> defines a number of types, macros, and
mathematical functions.

Classification functions

isfinite Is floating value finite?

isinf Is floating value an infinity?

isnan Is floating value a NaN?

Trigonometric functions

sin Compute sine of a double

sinf Compute sine of a float

cos Compute cosine of a double

cosf Compute cosine of a float

271

tan Compute tangent of a double

tanf Compute tangent of a float

Inverse trigonometric functions

asin Compute inverse sine of a double

asinf Compute inverse sine of a float

acos Compute inverse cosine of a double

acosf Compute inverse coside of a float

atan Compute inverse tangent of a double

atanf Compute inverse tangent of a float

atan2 Compute inverse tangent of a ratio of doubles

atan2f Compute inverse tangent of a ratio of floats

Inverse hyperbolic functions

acosh Compute inverse hyperbolic cosine of a double

acoshf Compute inverse hyperbolic cosine of a float

asinh Compute inverse hyperbolic sine of a double

asinhf Compute inverse hyperbolic sine of a float

atanh Compute inverse hyperbolic tangent of a double

atanhf Compute inverse hyperbolic tangent of a float

Hyperbolic functions

cosh Compute hyperbolic cosine of a double

coshf Compute hyperbolic cosine of a float

sinh Compute hyperbolic sine of a double

sinhf Compute hyperbolic sine of a float

tanh Compute hyperbolic tangent of a double

tanhf Compute hyperbolic tangent of a float

Exponential and logarithmic functions

exp Compute exponential of a double

expf Compute exponential of a float

272 Standard C Library Reference
<math.h> - Mathematics

frexp Set exponent of a double

frexpf Set exponent of a float

ldexp Adjust exponent of a double

ldexpf Adjust exponent of a float

log Compute natural logarithm of a double

logf Compute natural logarithm of a float

log10 Compute common logarithm of a double

log10f Compute common logarithm of a float

Power functions

sqrt Compute square root of a double

sqrtf Compute square root of a float

cbrt Compute cube root of a double

cbrtf Compute cube root of a float

pow Raise a double to a power

powf Raise a float to a power

Absolute value functions

fabs Compute absolute value of a double

fabsf Compute absolute value of a float

hypot Compute complex magnitude of two doubles

hypotf Compute complex magnitude of two floats

Remainder functions

fmod Compute remainder after division of two doubles

fmodf Compute remainder after division of two floats

modf Break a double to integer and fractional parts

modff Break a float to integer and fractional parts

Maximum, minimum, and positive difference functions

fmax Compute maximum of two doubles

fmaxf Compute maximum of two floats

273

acos

Synopsis #include <math.h>
double acos(double x);

Description acos returns the principal value, in radians, of the inverse circular cosine of x.
The principal value lies in the interval [0, PI] radians.

Fast math library
behavior

If |x| > 1, errno is set to EDOM and acos returns HUGE_VAL.

IEC 60559 math
library behavior

If x is NaN, acos returns x.
If |x| > 1, acos returns NaN with invalid signal.

Portability acos conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

acosf

Synopsis #include <math.h>
float acosf(float x);

Description acosf returns the principal value, in radians, of the inverse circular cosine of x.
The principal value lies in the interval [0, PI] radians.

Fast math library
behavior

If |x| > 1, errno is set to EDOM and acosf returns HUGE_VAL.

IEC 60559 math
behavior

If x is NaN, acosf returns x.
If |x| > 1, acosf returns NaN with invalid signal.

Portability acosf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

fmin Compute minimum of two doubles

fminf Compute minimum of two floats

Nearest integer functions

ceil Compute smallest integer not greater than a double

ceilf Compute smallest integer not greater than a float

floor Compute largest integer not greater than a double

floorf Compute largest integer not greater than a float

274 Standard C Library Reference
<math.h> - Mathematics

acosh

Synopsis #include <math.h>
double acosh(double x);

Description acosh returns the non-negative inverse hyperbolic cosine of x.

acosh(x) is defined as log(x + sqrt(x^2-1)), assuming completely accurate
computation.

Fast math library
behavior

If x< 1, errno is set to EDOM and acosh returns HUGE_VAL.

IEC 60559 math
library behavior

If x < 1, acosh returns NaN with signal.
If x is NaN, acosh returns NaN without signal .

Portability acosh conforms to ISO/IEC 9899:1999 (C99).

acoshf

Synopsis #include <math.h>
float acoshf(float x);

Description acoshf returns the non-negative inverse hyperbolic cosine of x.

Fast math library
behavior

If x< 1, errno is set to EDOM and acoshf returns HUGE_VALF.

IEC 60559 math
library behavior

If x < 1, acoshf returns NaN with signal.
If x is NaN, acoshf returns NaN without signal.

Portability acoshf conforms to ISO/IEC 9899:1999 (C99).

asin

Synopsis #include <math.h>
double asin(double x);

Description asin returns the principal value, in radians, of the inverse circular sine of x. The
principal value lies in the interval [-PI/2, +PI/2] radians.

Fast math library
behavior

If |x| > 1, errno is set to EDOM and asin returns HUGE_VAL.

IEC 60559 math
library behavior

If x is NaN, asin returns x.
If |x| > 1, asin returns NaN with invalid signal.

Portability asin conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

275

asinf

Synopsis #include <math.h>
float asinf(float val);

Description asinf returns the principal value, in radians, of the inverse circular sine of val.
The principal value lies in the interval [-PI/2, +PI/2] radians.

Fast math library
behavior

If |x| > 1, errno is set to EDOM and asinf returns HUGE_VALF.

IEC 60559 math
library behavior

If x is NaN, asinf returns x.
If |x| > 1, asinf returns NaN with invalid signal.

Portability asinf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

asinh

Synopsis #include <math.h>
double asinh(double x);

Description asinh returns the inverse hyperbolic sine of x.

Portability asinh conforms to ISO/IEC 9899:1999 (C99).

asinhf

Synopsis #include <math.h>
float asinhf(float x);

Description asinhf returns the inverse hyperbolic sine of x.

Portability asinhf conforms to ISO/IEC 9899:1999 (C99).

atan

Synopsis #include <math.h>
double atan(double x);

Description atan returns the principal value, in radians, of the inverse circular tangent of x.
The principal value lies in the interval [-¾?, +¾?] radians.

Portability atan conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See Also atan2 (page 276)

276 Standard C Library Reference
<math.h> - Mathematics

atan2

Synopsis #include <math.h>
double atan2(double y, double x);

Description atan2 returns the value, in radians, of the inverse circular tangent of y divided
by x using the signs of x and y to compute the quadrant of the return value.
The principal value lies in the interval [-PI/2, +PI/2] radians.

Fast math library
behavior

If x = y = 0, errno (page 264) is set to EDOM and atan2 returns HUGE_VAL.

IEC 60559 math
library behavior

atan2f(x, NaN) is NaN
atan2f(NaN, x) is NaN
atan2f(0, +(anything but NaN)) is 0
atan2f(0, -(anything but NaN)) is ?
atan2f((anything but 0 and NaN), 0) is ?/2
atan2f((anything but Infinity and NaN), +Infinity) is 0
atan2f((anything but Infinity and NaN), -Infinity) is ?
atan2f(Infinity, +Infinity) is ?/4
atan2f(Infinity, -Infinity) is 3?/4
atan2f(Infinity, (anything but 0, NaN, and Infinity)) is ?/2

Portability atan2 conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See Also atan (page 275)

atan2f

Synopsis #include <math.h>
float atan2f(float y, float x);

Description atan2f returns the value, in radians, of the inverse circular tangent of y divided
by x using the signs of x and y to compute the quadrant of the return value.
The principal value lies in the interval [-PI/2, +PI/2] radians.

Fast math library
behavior

If x = y = 0, errno (page 264) is set to EDOM and atan2f returns HUGE_VALF.

IEC 60559 math
library behavior

atan2f(x, NaN) is NaN
atan2f(NaN, x) is NaN
atan2f(0, +(anything but NaN)) is 0
atan2f(0, -(anything but NaN)) is ?
atan2f((anything but 0 and NaN), 0) is ?/2
atan2f((anything but Infinity and NaN), +Infinity) is 0
atan2f((anything but Infinity and NaN), -Infinity) is ?

277

atan2f(Infinity, +Infinity) is ?/4
atan2f(Infinity, -Infinity) is 3?/4
atan2f(Infinity, (anything but 0, NaN, and Infinity)) is ?/2

Portability atan2f conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See Also atanf (page 277)

atanf

Synopsis #include <math.h>
float atanf(float x);

Description atanf returns the principal value, in radians, of the inverse circular tangent of
x. The principal value lies in the interval [-¾?, +¾?] radians.

Portability atanf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

atanh

Synopsis #include <math.h>
double atanh(double x)

Description atanh returns the inverse hyperbolic tangent of x.

Fast math library If |x| ? 1, errno is set to EDOM and atanh returns HUGE_VAL.

IEC 60559 math
library behavior

If |x| > 1 atanh returns NaN with signal.
If x is NaN, atanh returns that NaN with no signal.
If x is 1, atanh returns Infinity with signal.
If x is -1, atanh returns -Infinity with signal.

Portability atanh conforms to ISO/IEC 9899:1999 (C99).

atanhf

Synopsis #include <math.h>
float atanhf(float val)

Description atanhf returns the inverse hyperbolic tangent of val.

Fast math library
behavior

If |x| ? 1, errno is set to EDOM and atanhf returns HUGE_VALF.

278 Standard C Library Reference
<math.h> - Mathematics

IEC 60559 math
library behavior

If |val| > 1 atanhf returns NaN with signal.
If val is NaN, atanhf returns that NaN with no signal.
If val is 1, atanhf returns Infinity with signal.
If val is -1, atanhf returns -Infinity with signal.

Portability atanhf conforms to ISO/IEC 9899:1999 (C99).

cbrt

Synopsis #include <math.h>
double cbrt(double x);

Description cbrt computes the cube root of x.

Portability cbrt conforms to ISO/IEC 9899:1999 (C99).

cbrtf

Synopsis #include <math.h>
float cbrt(float x);

Description cbrtf computes the cube root of x.

Portability cbrtf conforms to ISO/IEC 9899:1999 (C99).

ceil

Synopsis #include <math.h>
double ceil(double x);

Description ceil computes the smallest integer value not less than x.

IEC 60559 math
library behavior

ceil(0) is 0.
ceil(Infinity) is Infinity.

Portability ceil conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

ceilf

Synopsis #include <math.h>
float ceilf(float x);

Description ceilf computes the smallest integer value not less than x.

IEC 60559 math
library behavior

ceilf(0) is 0.
ceilf(Infinity) is Infinity.

279

Portability ceilf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

cos

Synopsis #include <math.h>
double cos(double x);

Description cos returns the radian circular cosine of x.

Fast math library
behavior

If |x| > 10^9, errno is set to EDOM and cos returns HUGE_VAL.

IEC 60559 math
library behavior

If x is NaN, cos returns x.
If |x| is Infinity, cos returns NaN with invalid signal.

Portability cos conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

cosf

Synopsis #include <math.h>
float cosf(float x);

Description cosf returns the radian circular cosine of x.

Fast math library
behavior

If |x| > 10^9, errno is set to EDOM and cosf returns HUGE_VALF.

IEC 60559 math
library behavior

If x is NaN, cosf returns x.
If |x| is Infinity, cosf returns NaN with invalid signal .

Portability cosf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

cosh

Synopsis #include <math.h>
double cosh(double x);

Description cosh calculates the hyperbolic cosine of x.

Fast math library
behavior

If |x| >~ 709.782, errno is set to EDOM and cosh returns HUGE_VAL.

IEC 60559 math
library behavior

If x is +Infinity, -Infinity, or NaN, cosh returns |x|.
If |x| >~ 709.782, cosh returns +Infinity or -Infinity depending upon the sign
of x.

Portability cosh conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

280 Standard C Library Reference
<math.h> - Mathematics

coshf

Synopsis #include <math.h>
float coshf(float x);

Description coshf calculates the hyperbolic sine of x.

Fast math library
behavior

If |x| >~ 88.7228, errno is set to EDOM and coshf returns HUGE_VALF.

IEC 60559 math
library behavior

If x is +Infinity, -Infinity, or NaN, coshf returns |x|.
If |x| >~ 88.7228, coshf returns +Infinity or -Infinity depending upon the sign
of x.

Portability coshf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

exp

Synopsis #include <math.h>
double exp(double x);

Description exp computes the base-e exponential of x.

Fast math library
behavior

If |x| >~ 709.782, errno is set to EDOM and exp returns HUGE_VAL.

IEC 60559 math
library behavior

If x is NaN, exp returns NaN.
If x is Infinity, exp returns Infinity
If x is -Infinity, exp returns 0.

Portability exp conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

expf

Synopsis #include <math.h>
float expf(float x);

Description expf computes the base-e exponential of x.

Fast math library
behavior

If |x| >~ 88.722, errno is set to EDOM and expf returns HUGE_VALF.

IEC 60559 math
library behavior

If x is NaN, expf returns NaN.
If x is Infinity, expf returns Infinity
If x is -Infinity, expf returns 0.

Portability expf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

281

fabs

Synopsis #include <math.h>
double fabs(double x);

Description fabs computes the absolute value of the floating-point number x.

Portability fabs conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

fabsf

Synopsis #include <math.h>
float fabs(float x);

Description fabsf computes the absolute value of the floating-point number x.

Portability fabsf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

floor

Synopsis #include <math.h>
double floor(double x);

Description floor computes the largest integer value not greater than x.

IEC 60559 math
library behavior

floor(0) is0.
floor(Infinity) is Infinity.

Portability floor conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

floorf

Synopsis #include <math.h>
double floor(double x);

Description floorf computes the largest integer value not greater than x.

IEC 60559 math
library behavior

floorf(0) is0.
floorf(Infinity) is Infinity.

Portability floorf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

fmax

Synopsis #include <math.h>
double fmax(double x, double y);

282 Standard C Library Reference
<math.h> - Mathematics

Description fmax determines the minimum of x and y.

IEC 60559 math
library behavior

fmax(NaN, y) is y.
fmax(x, NaN) is x.

Portability fmax conforms to ISO/IEC 9899:1999 (C99).

fmaxf

Synopsis #include <math.h>
float fmaxf(float x, float y);

Description fmaxf determines the minimum of x and y.

IEC 60559 math
library behavior

fmaxf(NaN, y) is y.
fmaxf(x, NaN) is x.

Portability fmaxf conforms to ISO/IEC 9899:1999 (C99).

fmin

Synopsis #include <math.h>
double fmin(double x, double y);

Description fmin determines the minimum of x and y.

IEC 60559 math
library behavior

fmin(NaN, y) is y.
fmin(x, NaN) is x.

Portability fmin conforms to ISO/IEC 9899:1999 (C99).

fminf

Synopsis #include <math.h>
float fminf(float x, float y);

Description fminf determines the minimum of x and y.

IEC 60559 math
library behavior

fminf(NaN, y) is y.
fminf(x, NaN) is x.

Portability fminf conforms to ISO/IEC 9899:1999 (C99).

283

fmod

Synopsis #include <math.h>
double fmod(double x, double y);

Description fmod computes the floating-point remainder of x divided by y. fmod returns
the value x - ny, for some integer n such that, if y is nonzero, the result has the
same sign as x and magnitude less than the magnitude of y.

Fast math library
behavior

If y = 0, fmod returns zero and errno is set to EDOM.

IEC 60559 math
library behavior

fmod(0, y) is 0 for y not zero.
fmod(Infinity, y) is NaN and raises the “invalid” floating-point exception.
fmod(x, 0) is NaN and raises the “invalid” floating-point exception.
fmod(x, Infinity) is x for x not infinite.

Portability fmod conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

fmodf

Synopsis #include <math.h>
float fmod(float x, float y);

Description fmod computes the floating-point remainder of x divided by y. fmod returns
the value x - ny, for some integer n such that, if y is nonzero, the result has the
same sign as x and magnitude less than the magnitude of y.

Fast math library
behavior

If y = 0, fmodf returns zero and errno is set to EDOM.

IEC 60559 math
library behavior

fmodf(0, y) is 0 for y not zero.
fmodf(Infinity, y) is NaN and raises the “invalid” floating-point exception.
fmodf(x, 0) is NaN and raises the “invalid” floating-point exception.
fmodf(x, Infinity) is x for x not infinite.

Portability fmodf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

frexp

Synopsis #include <math.h>
double frexp(double x, int *exp);

Description frexp breaks a floating-point number into a normalized fraction and an
integral power of 2.

284 Standard C Library Reference
<math.h> - Mathematics

frexp stores power of two in the int object pointed to by exp and returns the
value x, such that x has a magnitude in the interval [1/2, 1) or zero, and value
equals x * 2^exp.

If x is zero, both parts of the result are zero.

IEC 60559 math
library behavior

If x is Infinity or NaN, frexp returns x and stores zero into the int object pointed
to by exp.

Portability frexp conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

frexpf

Synopsis #include <math.h>
float frexp(float x, int *exp);

Description frexpf breaks a floating-point number into a normalized fraction and an
integral power of 2.

frexpf stores power of two in the int object pointed to by exp and returns the
value x, such that x has a magnitude in the interval [1/2, 1) or zero, and value
equals x * 2^exp.

If x is zero, both parts of the result are zero.

IEC 60559 math
library behavior

If x is Infinity or NaN, frexpf returns x and stores zero into the int object
pointed to by exp.

Portability frexpf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

hypot

Synopsis #include <math.h>
double hypot(double x, double y);

Description hypot compute the square root of the sum of the squares of x and y, sqrt(x*x +
y*y), without undue overflow or underflow. If x and y are the lengths of the
sides of a right-angled triangle, then hypot computes the length of the
hypotenuse..

IEC 60559 math
library behavior

If x or y is +Infinity or -Infinity, hypot returns Infinity.
If x or y is NaN, hypot returns NaN.

Portability hypot conforms to ISO/IEC 9899:1999 (C99).

285

hypotf

Synopsis #include <math.h>
float hypotf(float x, float y);

Description hypotf compute the square root of the sum of the squares of x and y, sqrtf(x*x
+ y*y), without undue overflow or underflow. If x and y are the lengths of the
sides of a right-angled triangle, then hypotf computes the length of the
hypotenuse..

IEC 60559 math
library behavior

If x or y is +Infinity or -Infinity, hypotf returns Infinity.
If x or y is NaN, hypotf returns NaN.

Portability hypotf conforms to ISO/IEC 9899:1999 (C99).

isfinite

Synopsis #include <math.h>
int isfinite(floating-type x);

Description isfinite determines whether x is a fiinite value (zero, subnormal, or normal,
and not infinite or NaN). The isfinite macro returns a non-zero value if and
only if its argument has a finite value.

Fast math library
behavior

As the fast math library does not support NaN and infinite values, isfinite
always returns a non-zero value.

Portability isfinite conforms to ISO/IEC 9899:1999 (C99).

isinf

Synopsis #include <math.h>
int isinf(floating-type x);

Description isinf determines whether its argument value is an infinity (positive or
negative). The determination is based on the type of the argument.

Portability isinf confirms to ISO/IEC 9899:1999 (C99).

isnan

Synopsis #include <math.h>
int isnan(floating-type x);

286 Standard C Library Reference
<math.h> - Mathematics

Description isnan determines whether its argument value is a NaN. The determination is
based on the type of the argument.

Portability isnan confirms to ISO/IEC 9899:1999 (C99).

ldexp

Synopsis #include <math.h>
double ldexp(double x, int exp);

Description ldexp multiplies a floating-point number by an integral power of 2.

ldexp returns x * 2^exp.

Fast math library
behavior

If the result overflows, errno is set to ERANGE and ldexp returns
HUGE_VAL.

IEC 60559 math
library behavior

If x is Infinity or NaN, ldexp returns x.
If the result overflows, ldexp returns Infinity.

Portability ldexp conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

ldexpf

Synopsis #include <math.h>
float ldexpf(float x, int exp);

Description ldexpf multiplies a floating-point number by an integral power of 2.

ldexpf returns x * 2^exp.

Fast math library
behavior

If the result overflows, errno is set to ERANGE and ldexpf returns
HUGE_VALF.

IEC 60559 math
library behavior

If x is Infinity or NaN, ldexpf returns x.
If the result overflows, ldexpf returns Infinity.

Portability ldexpf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

log

Synopsis #include <math.h>
double log(double x);

Description log computes the base-e logarithm of x.

Fast math library
behavior

If x = 0, errno is set to ERANGE and log returns -HUGE_VAL.
If x < 0, errno is set to EDOM and log returns -HUGE_VAL.

287

IEC 60559 math
library behavior

If x < 0 or x = -Infinity, log returns NaN with signal.
If x = 0, log returns -Infinity with signal.
If x = Infinity, log returns Infinity.
If x = NaN, log returns x with no signal.

Portability log conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

log10

Synopsis #include <math.h>
double log10(double x);

Description log10 computes the base-10 logarithm of x.

Fast math library
behavior

If x = 0, errno is set to ERANGE and log10 returns -HUGE_VAL.
If x < 0, errno is set to EDOM and log10 returns -HUGE_VAL.

IEC 60559 math
library behavior

If x < 0 or x = -Infinity, log10 returns NaN with signal.
If x = 0, log10 returns -Infinity with signal.
If x = Infinity, log10 returns Infinity.
If x = NaN, log10 returns x with no signal.

Portability log10 conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

log10f

Synopsis #include <math.h>
float log10f(float x);

Description log10f computes the base-10 logarithm of x.

Fast math library
behavior

If x = 0, errno is set to ERANGE and log10f returns -HUGE_VALF.
If x < 0, errno is set to EDOM and log10f returns -HUGE_VALF.

IEC 60559 math
library behavior

If x < 0 or x = -Infinity, log10f returns NaN with signal.
If x = 0, log10f returns -Infinity with signal.
If x = Infinity, log10f returns Infinity.
If x = NaN, log10f returns x with no signal.

Portability log10f conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

logf

Synopsis #include <math.h>
float logf(float x);

Description logf computes the base-e logarithm of x.

288 Standard C Library Reference
<math.h> - Mathematics

Fast math library
behavior

If x = 0, errno is set to ERANGE and logf returns -HUGE_VALF.
If x < 0, errno is set to EDOM and logf returns -HUGE_VALF.

IEC 60559 math
library behavior

If x < 0 or x = -Infinity, logf returns NaN with signal.
If x = 0, logf returns -Infinity with signal.
If x = Infinity, logf returns Infinity.
If x = NaN, logf returns x with no signal.

Portability logf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

modf

Synopsis #include <math.h>
double modf(double x, double *iptr);

Description modf breaks x into integral and fractional parts, each of which has the same
type and sign as x.

The integral part (in floating-point format) is stored in the object pointed to by
iptr and modf returns the signed fractional part of x.

Portability modf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

modff

Synopsis #include <math.h>
float modff(float x, double *iptr);

Description modff breaks x into integral and fractional parts, each of which has the same
type and sign as x.

The integral part (in floating-point format) is stored in the object pointed to by
iptr and modff returns the signed fractional part of x.

Portability modff conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

pow

Synopsis #include <math.h>
double pow(double x, double y);

Description pow computes x raised to the power y.

Fast math library
behavior

If x < 0 and y <= 0, errno is set to EDOM and pow returns -HUGE_VAL.
If x <= 0 and y is not an integer value, errno is set to EDOM and pow returns
-HUGE_VAL.

289

IEC 60559 math
library behavior

If y = 0, pow returns 1.
If y =1, pow returns x.
If y = NaN, pow returns NaN.
If x = NaN and y is anything other than 0, pow returns NaN.
If x < -1 or 1 < x, and y = +Infinity, pow returns +Infinity.
If x < -1 or 1 < x, and y =-Infinity, pow returns 0.
If -1 < x < 1 and y = +Infinity, pow returns +0.
If -1 < x < 1 and y = -Infinity, pow returns +Infinity.
If x = +1 or x = -1 and y = +Infinity or y = -Infinity, pow returns NaN.
If x = +0 and y > 0 and y <> NaN, pow returns +0.
If x = -0 and y > 0 and y <> NaN or y not an odd integer, pow returns +0.
If x = +0 and y <0 and y <> NaN, pow returns +Infinity.
If x = -0 and y > 0 and y <> NaN or y not an odd integer, pow returns +Infinity.
If x = -0 and y is an odd integer, pow returns -0.
If x = +Infinity and y > 0 and y <> NaN, pow returns +Infinity.
If x = +Infinity and y < 0 and y <> NaN, pow returns +0.
If x = -Infinity, pow returns pow(-0, y)
If x < 0 and x <> Infinity and y is a non-integer, pow returns NaN.

Portability pow conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

powf

Synopsis #include <math.h>
float powf(float x, float y);

Description powf computes x raised to the power y.

Fast math library
behavior

If x < 0 and y <= 0, errno (page 264) is set to EDOM and powf returns -
HUGE_VALF.
If x <= 0 and y is not an integer value, errno (page 264) is set to EDOM and
pow returns -HUGE_VALF.

IEC 60559 math
library behavior

If y = 0, powf returns 1.
If y =1, powf returns x.
If y = NaN, powf returns NaN.
If x = NaN and y is anything other than 0, powf returns NaN.
If x < -1 or 1 < x, and y = +Infinity, powf returns +Infinity.
If x < -1 or 1 < x, and y =-Infinity, powf returns 0.
If -1 < x < 1 and y = +Infinity, powf returns +0.
If -1 < x < 1 and y = -Infinity, powf returns +Infinity.
If x = +1 or x = -1 and y = +Infinity or y = -Infinity, powf returns NaN.
If x = +0 and y > 0 and y <> NaN, powf returns +0.
If x = -0 and y > 0 and y <> NaN or y not an odd integer, powf returns +0.
If x = +0 and y <0 and y <> NaN, powf returns +Infinity.
If x = -0 and y > 0 and y <> NaN or y not an odd integer, powf returns +Infinity.

290 Standard C Library Reference
<math.h> - Mathematics

If x = -0 and y is an odd integer, powf returns -0.
If x = +Infinity and y > 0 and y <> NaN, powf returns +Infinity.
If x = +Infinity and y < 0 and y <> NaN, powf returns +0.
If x = -Infinity, powf returns powf(-0, y)
If x < 0 and x <> Infinity and y is a non-integer, powf returns NaN.

Portability powf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

scalbn

Synopsis #include <math.h>
double scalbn(double x, int exp);

Description scalbn multiplies a floating-point number by an integral power of
FLT_RADIX.

As floating-point aritmetic conforms to IEC 60559, FLT_RADIX is 2 and
scalbn is (in this implementation) identical to ldexp.

scalbn returns x * FLT_RADIX^exp.

Fast math library
behavior

If the result overflows, errno is set to ERANGE and scalbn returns
HUGE_VAL.

IEC 60559 math
library behavior

If x is Infinity or NaN, scalbn returns x.
If the result overflows, scalbn returns Infinity.

Portability scalbn conforms to ISO/IEC 9899:1999 (C99).

See Also ldexp (page 286)

scalbnf

Synopsis #include <math.h>
float scalbnf(float x, int exp);

Description scalbnf multiplies a floating-point number by an integral power of
FLT_RADIX.

As floating-point aritmetic conforms to IEC 60559, FLT_RADIX is 2 and
scalbnf is (in this implementation) identical to ldexpf.

scalbnf returns x * FLT_RADIX^exp.

Fast math library
behavior

If the result overflows, errno (page 264) is set to ERANGE and scalbnf returns
HUGE_VALF.

IEC 60559 math
library behavior

If x is Infinity or NaN, scalbnf returns x.
If the result overflows, scalbnf returns Infinity.

291

Portability scalbnf conforms to ISO/IEC 9899:1999 (C99).

See Also ldexpf (page 286)

sin

Synopsis #include <math.h>
double sin(double x);

Description sin returns the radian circular sine of x.

Fast math library
behavior

If |x| > 10^9, errno (page 264) is set to EDOM and sin returns HUGE_VAL.

IEC 60559 math
library behavior

sin returns x if x is NaN.
sin returns NaN with invalid signal if |x| is Infinity.

Portability sin conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

sinf

Synopsis #include <math.h>
float sinf(float x);

Description sinf returns the radian circular sine of x.

Fast math library
special cases

If |x| > 10^9, errno (page 264) is set to EDOM and sin returns HUGE_VALF.

IEC 60559 math
library special cases

sinf returns x if x is NaN.
sinf returns NaN with invalid signal if |x| is Infinity.

Portability sinf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

sinh

Synopsis #include <math.h>
double sinh(double x);

Description sinh calculates the hyperbolic sine of x.

Fast math library
behavior

If |x| >~ 709.782, errno (page 264) is set to EDOM and sinh returns
HUGE_VAL.

IEC 60559 math
library behavior

If x is +Infinity, -Infinity, or NaN, sinh returns |x|.
If |x| >~ 709.782, sinh returns +Infinity or -Infinity depending upon the sign
of x.

292 Standard C Library Reference
<math.h> - Mathematics

Portability sinh conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

sinhf

Synopsis #include <math.h>
float sinhf(float x);

Description sinhf calculates the hyperbolic sine of x.

Fast math library
behavior

If |x| >~ 88.7228, errno (page 264) is set to EDOM and sinhf returns
HUGE_VALF.

IEC 60559 math
library behavior

If x is +Infinity, -Infinity, or NaN, sinhf returns |x|.
If |x| >~ 88.7228, sinhf returns +Infinity or -Infinity depending upon the sign
of x.

Portability sinhf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

sqrt

Synopsis #include <math.h>
double sqrt(double val);

Description sqrt computes the nonnegative square root of val. C90 and C99 require that a
domain error occurs if the argument is less than zero. CrossWorks C deviates
and always uses IEC 60559 semantics.

Special cases If val is +0, sqrt returns +0.
If val is -0, sqrt returns -0.
If val is Infinity, sqrt returns Infinity.
If val < 0, sqrt returns NaN with invalid signal.
If val is NaN, sqrt returns that NaN with invalid signal for signaling NaN.

Portability sqrt conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99)
except in the case of domain errors.

sqrtf

Synopsis #include <math.h>
float sqrtf(float val);

Description sqrtf computes the nonnegative square root of val. C90 and C99 require that a
domain error occurs if the argument is less than zero. CrossWorks C deviates
and always uses IEC 60559 semantics.

293

Special cases If val is +0, sqrt returns +0.
If val is -0, sqrt returns -0.
If val is Infinity, sqrt returns Infinity.
If val < 0, sqrt returns NaN with invalid signal.
If val is NaN, sqrt returns that NaN with invalid signal for signaling NaN.

Portability sqrtf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99)
except in the case of domain errors.

tan

Synopsis #include <math.h>
double tan(double x);

Description tan returns the radian circular tangent of x.

Fast math library
behaviour

If |x| > 10^9, errno (page 264) is set to EDOM and tan returns HUGE_VAL.

IEC 60559 math
library behaviour

If x is NaN, tan returns x.
If |x| is Infinity, tan returns NaN with invalid signal.

Portability tan conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

tanf

Synopsis #include <math.h>
float tanf(float x);

Description tanf returns the radian circular tangent of x.

Fast math library
special cases

If |x| > 10^9, errno is set to EDOM and tanf returns HUGE_VALF.

IEC 60559 math
library special cases

If x is NaN, tanf returns x.
If |x| is Infinity, tanf returns NaN with invalid signal.

Portability tanf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

tanh

Synopsis #include <math.h>
double tanh(double x);

Description tanh calculates the hyperbolic tangent of x.

IEC 60559 math
library behavior

If x is NaN, tanh returns NaN.

294 Standard C Library Reference
<setjmp.h> - Non-local jumps

Portability tanh conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

tanhf

Synopsis #include <math.h>
float tanhf(float x);

Description tanhf calculates the hyperbolic tangent of x.

IEC 60559 math
library behavior

If x is NaN, tanhf returns NaN.

Portability tanhf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

<setjmp.h> - Non-local jumps

The header file <setjmp.h> defines macros and functions for non-local flow of
control, commonly used to implement exception handling in a C program.

jmp_buf

Synopsis #include <setjmp.h>
typedef implementation-defined-type jmp_buf[];

Description The type jmp_buf is an array type suitable for holding the information needed
to restore a calling environment. The environment of a call to setjmp consists
of information sufficient for a call to the longjmp function to return execution
to the correct block and invocation of that block, were it called recursively. It
does not include the state of the floating-point status flags, of open files, or of
any other component of the machine.

Portability jmp_buf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also longjmp (page 295), setjmp (page 295)

Types

jmp_buf Structure to hold processor state

Functions

longjmp Non-local jump to saved state

setjmp Save state for non-local jump

295

longjmp

Synopsis #include <setjmp.h>
void longjmp(jmp_buf env, int val);

Description longjmp restores the environment saved by the most recent invocation of
setjmp with the corresponding jmp_buf argument. If there has been no such
invocation, or if the function containing the invocation of setjmp has
terminated execution in the interim, the behavior iof longjmp undefined.

When the environment is restored, all accessible objects have values have state
as of the time the longjmp function was called.

After longjmp is completed, program execution continues as if the
corresponding invocation of setjmp had just returned the value specified by
val. Note that longjmp cannot cause setjmp to return the value 0; if val is 0,
setjmp returns the value 1.

Important notes Objects of automatic storage duration that are local to the function containing
the invocation of the corresponding setjmp that do not have volatile-qualified
type and have been changed between the setjmp invocation and longjmp call
are indeterminate.

Portability longjmp conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also setjmp (page 295)

setjmp

Synopsis #include <setjmp.h>
int setjmp(jmp_buf env);

Description setjmp saves its calling environment in the jmp_buf argument env for later
use by the longjmp function.

On return is from a direct invocation, setjmp returns the value zero. If the
return is from a call to the longjmp function, the setjmp macro returns a
nonzero value determined by the call to longjmp.

The ISO standard does not specify whether setjmp is a macro or an identifier
declared with external linkage. If a macro definition is suppressed in order to
access an actual function, or a program defines an external identifier with the
name setjmp, the behavior of setjmp is undefined.

Portability setjmp conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also longjmp (page 295)

296 Standard C Library Reference
<stdarg.h> - Variable arguments

<stdarg.h> - Variable arguments

The header file <stdarg.h> defines a number of macros to access variable
parameter lists.

va_arg

Synopsis #include <stdarg.h>
type va_arg(va_list ap, type);

Description va_arg expands to an expression that has the specified type and the value of
the type argument. The ap parameter must have been initialized by va_start or
va_copy, without an intervening invocation of va_end. You can create a
pointer to a va_list and pass that pointer to another function, in which case the
original function may make further use of the original list after the other
function returns.

Each invocation of the va_arg macro modifies ap so that the values of
successive arguments are returned in turn. The parameter type must be a type
name such that the type of a pointer to an object that has the specified type can
be obtained simply by postfixing a ‘*’ to type.

If there is no actual next argument, or if type is not compatible with the type of
the actual next argument (as promoted according to the default argument
promotions), the behavior of va_arg is undefined, except for the following
cases:

one type is a signed integer type, the other type is the corresponding
unsigned integer type, and the value is representable in both types;

one type is pointer to void and the other is a pointer to a character type.

The first invocation of the va_arg macro after that of the va_start macro returns
the value of the argument after that specified by parmN. Successive
invocations return the values of the remaining arguments in succession.

Examples When calling va_arg, you must ensure that type is the promoted type of the
argument, not the argument type. The following will not work as you expect:

Functions

va_end Start access to variable arguments

va_arg Get variable argument value

va_end Finish access to variable arguments

va_copy Copy va_arg structure

297

char x = va_arg(ap, char);

Because characters are promoted to integers, the above must be written:

char ch = (char)va_arg(ap, int);

Portability va_arg conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also va_copy (page 297), va_end (page 297), va_end (page 297)

va_copy

Synopsis #include <stdarg.h>
void va_copy(va_list dest, va_list src);

Description va_copy initializes dest as a copy of src, as if the va_start macro had been
applied to dest followed by the same sequence of uses of the va_arg macro as
had previously been used to reach the present state of src. Neither the va_copy
nor va_start macro shall be invoked to reinitialize dest without an intervening
invocation of the va_end macro for the same dest.

Portability va_copy conforms to ISO/IEC 9899:1999 (C99).

See also va_arg (page 296), va_end (page 297), va_end (page 297)

va_end

Synopsis #include <stdarg.h>
void va_end(va_list ap);

Description va_end indicates a normal return from the function whose variable argument
list ap was initialised by va_start or va_copy. The va_end macro may modify
ap so that it is no longer usable without being reinitialized by va_start or
va_copy. If there is no corresponding invocation of va_start or va_copy, or if
va_end is not invoked before the return, the behavior is undefined.

Portability va_end conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also va_arg (page 296), va_copy (page 297), va_end (page 297)

va_end

Synopsis #include <stdarg.h>
void va_start(va_list ap, parmN);

Description va_start initializes ap for subsequent use by the va_arg and va_end macros.

298 Standard C Library Reference
<stdio.h> - Input/output functions

The parameter parmN is the identifier of the last fixed parameter in the
variable parameter list in the function definition (the one just before the ', ...').

The behaviour of va_start and va_arg is undefined if the parameter parmN is
declared with the register storage class, with a function or array type, or with
a type that is not compatible with the type that results after application of the
default argument promotions.

va_start must be invoked before any access to the unnamed arguments.

va_start and va_copy must not be be invoked to reinitialize ap without an
intervening invocation of the va_end macro for the same ap.

Portability va_start conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also va_arg (page 296), va_copy (page 297), va_end (page 297)

<stdio.h> - Input/output functions

The header file <stdio.h> defines a number of functions to format and output
values. The format-control directives that for the formatted input and output
function are described in Formatted input control strings (page 304) and
Formatted output control strings (page 299).

Character and string I/O functions

getchar Read a character from standard input

gets Read a string from standard input

putchar Write a character to standard output

puts Write a string to standard output

Formatted input functions

scanf Read formatted text from standard input

sscanf Read formatted text from a string

vscanf
Read formatted text from standard input using a va_list
argument

vsscanf Read formatted text from a string using a va_list argument

Formatted output functions

printf Write formatted text to standard output

299

Formatted output control strings

The format is composed of zero or more directives: ordinary characters (not
‘%’), which are copied unchanged to the output stream; and conversion
specifications, each of which results in fetching zero or more subsequent
arguments, converting them, if applicable, according to the corresponding
conversion specifier, and then writing the result to the output stream.

Overview

Each conversion specification is introduced by the character ‘%’. After the ‘%’,
the following appear in sequence:

Zero or more flags (in any order) that modify the meaning of the
conversion specification.

An optional minimum field width. If the converted value has fewer
characters than the field width, it is padded with spaces (by default) on the
left (or right, if the left adjustment flag has been given) to the field width.
The field width takes the form of an asterisk ‘*’ or a decimal integer.

An optional precision that gives the minimum number of digits to appear
for the ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, and ‘X’ conversions, the number of digits to
appear after the decimal-point character for ‘e’, ‘E’, ‘f’, and ‘F’
conversions, the maximum number of significant digits for the ‘g’ and ‘G’
conversions, or the maximum number of bytes to be written for s
conversions. The precision takes the form of a period ‘.’ followed either
by an asterisk ‘*’ or by an optional decimal integer; if only the period is
specified, the precision is taken as zero. If a precision appears with any
other conversion specifier, the behavior is undefined.

An optional length modifier that specifies the size of the argument.

A conversion specifier character that specifies the type of conversion to be
applied.

snprintf Write formatted text to a string with truncation

sprintf Write formatted text to a string

vprintf Write formatted text to standard output using a va_list argument

vsnprintf
Write formatted text to a string with truncation using a va_list
argument

vsprintf Write formatted text to a string using a va_list argument

300 Standard C Library Reference
<stdio.h> - Input/output functions

As noted above, a field width, or precision, or both, may be indicated by an
asterisk. In this case, an int argument supplies the field width or precision. The
arguments specifying field width, or precision, or both, must appear (in that
order) before the argument (if any) to be converted. A negative field width
argument is taken as a ‘-’ flag followed by a positive field width. A negative
precision argument is taken as if the precision were omitted.

Some CrossWorks library variants do not support width and precision
specifiers in order to reduce code and data space requirements; please ensure
that you have selected the correct library in the Printf Width/Precision
Support property of the project if you use these.

Flag characters

The flag characters and their meanings are:

‘-’. The result of the conversion is left-justified within the field. The
default, if this flag is not specified, is that the result of the conversion is
left-justified within the field.

‘+’. The result of a signed conversion always begins with a plus or minus
sign. The default, if this flag is not specified, is that it begins with a sign
only when a negative value is converted.

space. If the first character of a signed conversion is not a sign, or if a
signed conversion results in no characters, a space is prefixed to the result.
If the space and ‘+’ flags both appear, the space flag is ignored.

‘#’. The result is converted to an alternative form. For ‘o’ conversion, it
increases the precision, if and only if necessary, to force the first digit of the
result to be a zero (if the value and precision are both zero, a single ‘0’ is
printed). For ‘x’ or ‘X’ conversion, a nonzero result has ‘0x’ or ‘0X’ prefixed
to it. For ‘e’, ‘E’, ‘f’, ‘F’, ‘g’, and ‘G’ conversions, the result of converting a
floating-point number always contains a decimal-point character, even if
no digits follow it. (Normally, a decimal-point character appears in the
result of these conversions only if a digit follows it.) For ‘g’ and ‘F’
conversions, trailing zeros are not removed from the result. As an
extension, when used in ‘p’ conversion, the results has ‘#’ prefixed to it.
For other conversions, the behavior is undefined.

‘0’. For ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, ‘X’, ‘e’, ‘E’, ‘f’, ‘F’, ‘g’, and ‘G’ conversions,
leading zeros (following any indication of sign or base) are used to pad to
the field width rather than performing space padding, except when
converting an infinity or NaN. If the ‘0’ and ‘-’ flags both appear, the ‘0’
flag is ignored. For ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, and ‘X’ conversions, if a precision is
specified, the ‘0’ flag is ignored. For other conversions, the behavior is
undefined.

301

Length modifiers

The length modifiers and their meanings are:

‘hh’. Specifies that a following ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, or ‘X’ conversion
specifier applies to a signed char or unsigned char argument (the
argument will have been promoted according to the integer promotions,
but its value will be converted to signed char or unsigned char before
printing); or that
a following ‘n’ conversion specifier applies to a pointer to a signed char
argument.

‘h’. Specifies that a following ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, or ‘X’ conversion specifier
applies to a short int or unsigned short int argument (the argument will
have been promoted according to the integer promotions, but its value is
converted to short int or unsigned short int before printing); or that a
following ‘n’ conversion specifier applies to a pointer to a short int
argument.

‘l’. Specifies that a following ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, or ‘X’ conversion specifier
applies to a long int or unsigned long int argument; that a following ‘n’
conversion specifier applies to a pointer to a long int argument; or has no
effect on a following ‘e’, ‘E’, ‘f’, ‘F’, ‘g’, or ‘G’ conversion specifier. Some
CrossWorks library variants do not support the ‘l’ length modifier in
order to reduce code and data space requirements; please ensure that you
have selected the correct library in the Printf Integer Support property of
the project if you use this length modifier.

‘ll’. Specifies that a following ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, or ‘X’ conversion
specifier applies to a long long int or unsigned long long int argument;
that a following ‘n’ conversion specifier applies to a pointer to a long long
int argument. Some CrossWorks library variants do not support the ‘ll’
length modifier in order to reduce code and data space requirements;
please ensure that you have selected the correct library in the Printf
Integer Support property of the project if you use this length modifier.

If a length modifier appears with any conversion specifier other than as
specified above, the behavior is undefined. Note that the C99 length modifiers
‘j’, ‘z’, ‘t’, and ‘L’ are not supported.

Conversion specifiers

The conversion specifiers and their meanings are:

‘d’, ‘i’. The argument is converted to signed decimal in the style [-]dddd.
The precision specifies the minimum number of digits to appear; if the
value
being converted can be represented in fewer digits, it is expanded with

302 Standard C Library Reference
<stdio.h> - Input/output functions

leading spaces. The default precision is one. The result of converting a zero
value with a precision of zero is no characters.

‘o’, ‘u’, ‘x’, ‘X’. The unsigned argument is converted to unsigned octal for
‘o’, unsigned decimal for ‘u’, or unsigned hexadecimal notation for ‘x’ or
‘X’ in the style dddd; the letters ‘abcdef’ are used for ‘x’ conversion and
the letters ‘ABCDEF’ for ‘X’ conversion. The precision specifies the
minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it is expanded with leading spaces. The default
precision is one. The result of converting a zero value with a precision of
zero is no characters.

‘f’, ‘F’. A double argument representing a floating-point number is
converted to decimal notation in the style [-]ddd.ddd, where the number of
digits after
the decimal-point character is equal to the precision specification. If the
precision is missing, it is taken as 6; if the precision is zero and the ‘#’ flag
is not specified, no decimal-point character appears. If a decimal-point
character appears, at least one digit appears before it. The value is rounded
to the appropriate number of digits. A double argument representing an
infinity is converted to ‘inf’. A double argument representing a NaN is
converted to ‘nan’. The ‘F’ conversion specifier produces ‘INF’ or ‘NAN’
instead of ‘inf’ or ‘nan’, respectively. Some CrossWorks library variants
do not support the ‘f’ and ‘F’ conversion specifiers in order to reduce code
and data space requirements; please ensure that you have selected the
correct library in the Printf Floating Point Support property of the project
if you use these conversion specifiers.

‘e’, ‘E’. A double argument representing a floating-point number is
converted in the style [-]d.dddedd, where there is one digit (which is
nonzero if the
argument is nonzero) before the decimal-point character and the number
of digits after it is equal to the precision; if the precision is missing, it is
taken as 6; if the precision is zero and the ‘#’ flag is not specified, no
decimal-point character appears. The value is rounded to the appropriate
number of digits. The ‘E’ conversion specifier produces a number with ‘E’
instead of ‘e’ introducing the exponent. The exponent always contains at
least two digits, and only as many more digits as necessary to represent the
exponent. If the value is zero, the exponent is zero. A double argument
representing an infinity is converted to ‘inf’. A double argument
representing a NaN is converted to ‘nan’. The ‘E’ conversion specifier
produces ‘INF’ or ‘NAN’ instead of ‘inf’ or ‘nan’, respectively. Some
CrossWorks library variants do not support the ‘f’ and ‘F’ conversion
specifiers in order to reduce code and data space requirements; please
ensure that you have selected the correct library in the Printf Floating

303

Point Support property of the project if you use these conversion
specifiers.

‘g’, ‘G’. A double argument representing a floating-point number is
converted in style ‘f’ or ‘e’ (or in style ‘F’ or ‘e’ in the case of a ‘G’
conversion specifier), with the precision specifying the number of
significant digits. If the precision is zero, it is taken as one. The style used
depends on the value converted; style ‘e’ (or ‘E’) is used only if the
exponent resulting from such a conversion is less than -4 or greater than or
equal to the precision. Trailing zeros are removed from the fractional
portion of the result unless the ‘#’ flag is specified; a decimal-point
character appears only if it is followed by a digit. A double argument
representing an infinity is converted to ‘inf’. A double argument
representing a NaN is converted to ‘nan’. The ‘G’ conversion specifier
produces ‘INF’ or ‘NAN’ instead of ‘inf’ or ‘nan’, respectively. Some
CrossWorks library variants do not support the ‘f’ and ‘F’ conversion
specifiers in order to reduce code and data space requirements; please
ensure that you have selected the correct library in the Printf Floating
Point Support property of the project if you use these conversion
specifiers.

‘c’. The argument is converted to an unsigned char, and the resulting
character is written.

‘s’. The argument is be a pointer to the initial element of an array of
character type. Characters from the array are written up to (but not
including) the terminating null character. If the precision is specified, no
more than that many characters are written. If the precision is not specified
or is greater than the size of the array, the array must contain a null
character.

‘p’. The argument is a pointer to void. The value of the pointer is
converted in the same format as the ‘x’ conversion specifier with a fixed
precision of 2*sizeof(void *).

‘n’. The argument is a pointer to signed integer into which is written the
number of characters written to the output stream so far by the call to the
formatting function. No argument is converted, but one is consumed. If
the conversion specification includes any flags, a field width, or a
precision, the behavior is undefined.

‘%’. A ‘%’ character is written. No argument is converted.

Note that the C99 width modifier ‘l’ used in conjuction with the ‘c’ and ‘s’
conversion specifiers is not supported and nor are the conversion specifiers ‘a’
and ‘A’.

304 Standard C Library Reference
<stdio.h> - Input/output functions

Formatted input control strings

The format is composed of zero or more directives: one or more white-space
characters, an ordinary character (neither ‘%’ nor a white-space character), or a
conversion specification.

Overview

Each conversion specification is introduced by the character ‘%’. After the ‘%’,
the following appear in sequence:

An optional assignment-suppressing character ‘*’.

An optional nonzero decimal integer that specifies the maximum field
width (in characters).

An optional length modifier that specifies the size of the receiving object.

A conversion specifier character that specifies the type of conversion to be
applied.

The formatted input function executes each directive of the format in turn. If a
directive fails, the function returns. Failures are described as input failures
(because of the occurrence of an encoding error or the unavailability of input
characters), or matching failures (because of inappropriate input).

A directive composed of white-space character(s) is executed by reading input
up to the first non-white-space character (which remains unread), or until no
more characters can be read.

A directive that is an ordinary character is executed by reading the next
characters of the stream. If any of those characters differ from the ones
composing the directive, the directive fails and the differing and subsequent
characters remain unread. Similarly, if end-of-file, an encoding error, or a read
error prevents a character from being read, the directive fails.

A directive that is a conversion specification defines a set of matching input
sequences, as described below for each specifier. A conversion specification is
executed in the following steps:

Input white-space characters (as specified by the isspace function) are
skipped, unless the specification includes a ‘[’, ‘c’, or ‘n’ specifier.

An input item is read from the stream, unless the specification includes an
n specifier. An input item is defined as the longest sequence of input
characters which does not exceed any specified field width and which is,
or is a prefix of, a matching input sequence. The first character, if any, after
the input item remains unread. If the length of the input item is zero, the
execution of the directive fails; this condition is a matching failure unless

305

end-of-file, an encoding error, or a read error prevented input from the
stream, in which case it is an input failure.

Except in the case of a ‘%’ specifier, the input item (or, in the case of a %n
directive, the count of input characters) is converted to a type appropriate
to the conversion specifier. If the input item is not a matching sequence,
the execution of the directive fails: this condition is a matching failure.
Unless assignment suppression was indicated by a ‘*’, the result of the
conversion is placed in the object pointed to by the first argument
following the format argument that has not already received a conversion
result. If this object does not have an appropriate type, or if the result of
the conversion cannot be represented in the object, the behavior is
undefined.

Length modifiers

The length modifiers and their meanings are:

‘hh’. Specifies that a following ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, ‘X’, or ‘n’ conversion
specifier applies to an argument with type pointer to signed char or
pointer to unsigned char.

‘h’. Specifies that a following ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, ‘X’, or ‘n’ conversion
specifier applies to an argument with type pointer to short int or unsigned
short int.

‘l’. Specifies that a following ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, ‘X’, or ‘n’ conversion
specifier applies to an argument with type pointer to long int or unsigned
long int; that a following ‘e’, ‘E’, ‘f’, ‘F’, ‘g’, or ‘G’ conversion specifier
applies to an argument with type pointer to double. Some CrossWorks
library variants do not support the ‘l’ length modifier in order to reduce
code and data space requirements; please ensure that you have selected
the correct library in the Printf Integer Support property of the project if
you use this length modifier.

‘ll’. Specifies that a following ‘d’, ‘i’, ‘o’, ‘u’, ‘x’, ‘X’, or ‘n’ conversion
specifier applies to an argument with type pointer to long long int or
unsigned long long int. Some CrossWorks library variants do not support
the ‘ll’ length modifier in order to reduce code and data space
requirements; please ensure that you have selected the correct library in
the Printf Integer Support property of the project if you use this length
modifier.

If a length modifier appears with any conversion specifier other than as
specified above, the behavior is undefined. Note that the C99 length modifiers
‘j’, ‘z’, ‘t’, and ‘L’ are not supported.

306 Standard C Library Reference
<stdio.h> - Input/output functions

Conversion specifiers

‘d’. Matches an optionally signed decimal integer, whose format is the
same as expected for the subject sequence of the strtol function with the
value 10 for the base argument. The corresponding argument must be a
pointer to signed integer.

‘i’. Matches an optionally signed integer, whose format is the same as
expected for the subject sequence of the strtol function with the value zero
for the base argument. The corresponding argument must be a pointer to
signed integer.

‘o’. Matches an optionally signed octal integer, whose format is the same
as expected for the subject sequence of the strtol function with the value
18 for the base argument. The corresponding argument must be a pointer
to signed integer.

‘u’. Matches an optionally signed decimal integer, whose format is the
same as expected for the subject sequence of the strtoul function with the
value 10 for the base argument. The corresponding argument must be a
pointer to unsigned integer.

‘x’. Matches an optionally signed hexadecimal integer, whose format is the
same as expected for the subject sequence of the strtoul function with the
value 16 for the base argument. The corresponding argument must be a
pointer to unsigned integer.

‘e’, ‘f’, ‘g’. Matches an optionally signed floating-point number whose
format is the same as expected for the subject sequence of the strtod
function. The corresponding argument shall be a pointer to floating. Some
CrossWorks library variants do not support the ‘e’, ‘f’ and ‘F’ conversion
specifiers in order to reduce code and data space requirements; please
ensure that you have selected the correct library in the Scanf Floating
Point Support property of the project if you use these conversion
specifiers.

‘c’. Matches a sequence of characters of exactly the number specified by
the field width (one if no field width is present in the directive). The
corresponding argument must be a pointer to the initial element of a
character array large enough to accept the
sequence. No null character is added.

‘s’. Matches a sequence of non-white-space characters The corresponding
argument must be a pointer to the initial element of a character array large
enough to accept the sequence and a terminating null character, which will
be added automatically.

‘[’. Matches a nonempty sequence of characters from a set of expected
characters (the scanset). The corresponding argument must be a pointer to

307

the initial element of a character array large enough to accept the sequence
and a terminating null character, which will be added automatically. The
conversion specifier includes all subsequent characters in the format
string, up to and including the matching right bracket ‘]’. The characters
between the brackets (the scanlist) compose the scanset, unless the
character after the left bracket is a circumflex ‘^’, in which case the scanset
contains all characters that do not appear in the scanlist between the
circumflex and the right bracket. If the conversion specifier begins with
‘[]’ or‘[^]’, the right bracket character is in the scanlist and the next
following right bracket character is the matching right bracket that ends
the specification; otherwise the first following right bracket character is the
one that ends the specification. If a ‘-’ character is in the scanlist and is not
the first, nor the second where the first character is a ‘^’, nor the last
character, it is treated as a member of the scanset. Some CrossWorks
library variants do not support the ‘[’ conversion specifier in order to
reduce code and data space requirements; please ensure that you have
selected the correct library in the Scanf Classes Supported property of the
project if you use this conversion specifier.

‘p’. Reads a sequence output by the corresponding ‘%p’ formatted output
conversion. The corresponding argument must be a pointer to a pointer to
void.

‘n’. No input is consumed. The corresponding argument shall be a pointer
to signed integer into which is to be written the number of characters read
from the input stream so far by this call to the formatted input function.
Execution of a ‘%n’ directive does not increment the assignment count
returned at the completion of execution of the fscanf function. No
argument is converted, but one is consumed. If the conversion
specification includes an assignment-suppressing character or a field
width, the behavior is undefined.

‘%’. Matches a single ‘%’ character; no conversion or assignment occurs.

Note that the C99 width modifier ‘l’ used in conjuction with the ‘c’, ‘s’, and
‘[’ conversion specifiers is not supported and nor are the conversion specifiers
‘a’ and ‘A’.

getchar

Synopsis #include <stdio.h>
int getchar(void);

Description getchar reads a single character from the standard input stream.

If the stream is at end-of-file or a read error occurs, getc returns EOF.

Portability getchar conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

308 Standard C Library Reference
<stdio.h> - Input/output functions

gets

Synopsis #include <stdio.h>
char *gets(char *s);

Description gets reads characters from standard input into the array pointed to by s until
end-of-file is encountered or a new-line character is read. Any new-line
character is discarded, and a null character is written immediately after the last
character read into the array.

gets returns s if successful. If end-of-file is encountered and no characters have
been read into the array, the contents of the array remain unchanged and gets
returns a null pointer. If a read error occurs during the operation, the array
contents are indeterminate and gets returns a null pointer.

Portability

gets conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also getchar (page 307)

printf

Synopsis #include <stdio.h>
int printf(const char *format, ...);

Description printf writes to the standard output stream using putchar, under control of the
string pointed to by format that specifies how subsequent arguments are
converted for output.

If there are insufficient arguments for the format, the behavior is undefined. If
the format is exhausted while arguments remain, the excess arguments are
evaluated but are otherwise ignored.

printf returns number of characters transmitted, or a negative value if an
output or encoding error occurred.

Portability printf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See Also Formatted output control strings (page 299)

putchar

Synopsis #include <stdio.h>
int putchar(int c);

Description putchar writes the character c to the standard output stream.

309

putchar returns the character written. If a write error occurs, putchar returns
EOF.

Portability putchar conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also Customizing putchar, puts (page 309)

puts

Synopsis #include <stdio.h>
int puts(const char *s);

Description puts writes the string pointed to by s to the standard output stream using
putchar and appends a new-line character to the output. The terminating null
character is not written.

puts returns EOF if a write error occurs; otherwise it returns a nonnegative
value.

Portability puts conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also putchar (page 308)

scanf

Synopsis #include <stdio.h>
int scanf(const char *format, ...);

Description scanf reads input from the standard input stream under control of the string
pointed to by format that specifies the admissible input sequences and how
they are to be converted for assignment, using subsequent arguments as
pointers to the objects to receive the converted input.

If there are insufficient arguments for the format, the behavior is undefined. If
the format is exhausted while arguments remain, the excess arguments are
evaluated but are otherwise ignored.

scanf returns the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, scanf returns the number of input items assigned,
which can be fewer than provided for, or even zero, in the event of an early
matching failure.

Portability scanf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See Also Formatted input control strings (page 304)

310 Standard C Library Reference
<stdio.h> - Input/output functions

snprintf

Synopsis #include <stdio.h>
int snprintf(char *s, size_t n, const char *format, ...);

Description snprintf writes to the string pointed to by s under control of the string pointed
to by format that specifies how subsequent arguments are converted for
output.

If n is zero, nothing is written, and s can be a null pointer. Otherwise, output
characters beyond the n-1st are discarded rather than being written to the
array, and a null character is written at the end of the characters actually
written into the array. A null character is written at the end of the conversion;
it is not counted as part of the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If
the format is exhausted while arguments remain, the excess arguments are
evaluated but are otherwise ignored.

If copying takes place between objects that overlap, the behavior is undefined.

snprintf returns the number of characters that would have been written had n
been sufficiently large, not counting the terminating null character, or a
negative value if an encoding error occurred. Thus, the null-terminated output
has been completely written if and only if the returned value is nonnegative
and less than n.

Portability snprintf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See Also Formatted output control strings (page 299)

sprintf

Synopsis #include <stdio.h>
int sprintf(char *s, const char *format, ...);

Description sprintf writes to the string pointed to by s under control of the string pointed
to by format that specifies how subsequent arguments are converted for
output. A null character is written at the end of the characters written; it is not
counted as part of the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If
the format is exhausted while arguments remain, the excess arguments are
evaluated but are otherwise ignored.

If copying takes place between objects that overlap, the behavior is undefined.

sprintf returns number of characters transmitted (not counting the
terminating null), or a negative value if an output or encoding error occurred.

311

Portability sprintf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See Also Formatted output control strings (page 299)

sscanf

Synopsis #include <stdio.h>
int sscanf(const char *s, const char *format, ...);

Description sscanf reads input from the string s under control of the string pointed to by
format that specifies the admissible input sequences and how they are to be
converted for assignment, using subsequent arguments as pointers to the
objects to receive the converted input.

If there are insufficient arguments for the format, the behavior is undefined. If
the format is exhausted while arguments remain, the excess arguments are
evaluated but are otherwise ignored.

sscanf returns the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, sscanf returns the number of input items assigned,
which can be fewer than provided for, or even zero, in the event of an early
matching failure.

Portability sscanf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See Also Formatted input control strings (page 304)

vprintf

Synopsis #include <stdio.h>
int vprintf(const char *format, va_list arg);

Description vprintf writes to the standard output stream using putchar, under control of
the string pointed to by format that specifies how subsequent arguments are
converted for output. Before calling vprintf, arg must be initialized by the
va_start macro (and possibly subsequent va_arg calls). vprintf does not invoke
the va_end macro.

vprintf returns number of characters transmitted, or a negative value if an
output or encoding error occurred.

Notes vprintf is equivalent to printf with the variable argument list replaced by arg.

Portability vprintf conforms to ISO/IEC 9899:1999 (C99).

See Also Formatted output control strings (page 299)

312 Standard C Library Reference
<stdio.h> - Input/output functions

vscanf

Synopsis #include <stdio.h>
int vscanf(const char *format, va_list arg);

Description vscanf reads input from the standard input stream under control of the string
pointed to by format that specifies the admissible input sequences and how
they are to be converted for assignment, using subsequent arguments as
pointers to the objects to receive the converted input. Before calling vscanf, arg
must be initialized by the va_start macro (and possibly subsequent va_arg
calls). vscanf does not invoke the va_end macro.

If there are insufficient arguments for the format, the behavior is undefined.

vscanf returns the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, vscanf returns the number of input items assigned,
which can be fewer than provided for, or even zero, in the event of an early
matching failure.

Notes vscanf is equivalent to scanf with the variable argument list replaced by arg.

Portability vscanf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See Also Formatted input control strings (page 304)

vsnprintf

Synopsis #include <stdio.h>
int vsnprintf(char *s, size_t n, const char *format, va_list arg);

Description vsnprintf writes to the string pointed to by s under control of the string
pointed to by format that specifies how subsequent arguments are converted
for output. Before calling vsnprintf, arg must be initialized by the va_start
macro (and possibly subsequent va_arg calls). vsnprintf does not invoke the
va_end macro.

If n is zero, nothing is written, and s can be a null pointer. Otherwise, output
characters beyond the n-1st are discarded rather than being written to the
array, and a null character is written at the end of the characters actually
written into the array. A null character is written at the end of the conversion;
it is not counted as part of the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If
the format is exhausted while arguments remain, the excess arguments are
evaluated but are otherwise ignored.

If copying takes place between objects that overlap, the behavior is undefined.

313

vsnprintf returns the number of characters that would have been written had
n been sufficiently large, not counting the terminating null character, or a
negative value if an encoding error occurred. Thus, the null-terminated output
has been completely written if and only if the returned value is nonnegative
and less than n.

Notes vsnprintf is equivalent to snprintf with the variable argument list replaced by
arg.

Portability vsnprintf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See Also Formatted output control strings (page 299)

vsprintf

Synopsis #include <stdio.h>
int vsprintf(char *s, const char *format, va_list arg);

Description vsprintf writes to the string pointed to by s under control of the string pointed
to by format that specifies how subsequent arguments are converted for
output. Before calling vsprintf, arg must be initialized by the va_start macro
(and possibly subsequent va_arg calls). vsprintf does not invoke the va_end
macro.

A null character is written at the end of the characters written; it is not counted
as part of the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If
the format is exhausted while arguments remain, the excess arguments are
evaluated but are otherwise ignored.

If copying takes place between objects that overlap, the behavior is undefined.

vsprintf returns number of characters transmitted (not counting the
terminating null), or a negative value if an output or encoding error occurred.

Notes vsprintf is equivalent to sprintf with the variable argument list replaced by
arg,

Portability vsprintf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See Also Formatted output control strings (page 299)

vsscanf

Synopsis #include <stdio.h>
int vsscanf(const char *s, const char *format, va_list arg);

314 Standard C Library Reference
<stdlib.h> - General utilities

Description vsscanf reads input from the string s under control of the string pointed to by
format that specifies the admissible input sequences and how they are to be
converted for assignment, using subsequent arguments as pointers to the
objects to receive the converted input. Before calling vsscanf, arg must be
initialized by the va_start macro (and possibly subsequent va_arg calls).
vsscanf does not invoke the va_end macro.

If there are insufficient arguments for the format, the behavior is undefined.

vsscanf returns the value of the macro EOF if an input failure occurs before
any conversion. Otherwise, vsscanf returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of
an early matching failure.

Notes vsscanf is equivalent to sscanf with the variable argument list replaced by arg.

Portability vsscanf conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See Also Formatted input control strings (page 304)

<stdlib.h> - General utilities

The header file <stdlib.h> defines a number of types, macros, and functions of
general utility.

Types

div_t Structure containing quotient and remainder after division of ints

ldiv_t
Structure containing quotient and remainder after division of
longs

lldiv_t
Structure containing quotient and remainder after division of
long longs

String to number conversions

atoi Convert string to int

atol Convert string to long

atoll Convert string to long long

strtol Convert string to long

strtoll Convert string to long long

strtoul Convert string to unsigned long

315

atof

Synopsis #include <stdlib.h>
int atof(const char *nptr);

Description atof converts the initial portion of the string pointed to by nptr to an int
representation.

atof does not affect the value of errno on an error. If the value of the result
cannot be represented, the behavior is undefined.

strtoull Convert string to unsigned long long

Number to string conversions

itoa Convert int to string

ltoa Convert long to string

lltoa Convert long long to string

utoa Convert unsigned to string

ultoa Convert unsigned long to string

ultoa Convert unsigned long long to string

Integer arithmetic functions

div Divide two ints returning quotient and remainder

ldiv Divide two longs returning quotient and remainder

lldiv Divide two long longs returning quotient and remainder

Pseudo-random sequence generation functions

RAND_MAX Maximum value returned by rand

rand Return next random number in sequence

srand Set seed of random number sequence

Memory allocation functions

calloc Allocate space for an array of objects and initialize them to zero

free Frees allocated memory for reuse

malloc Allocate space for a single object

realloc Resizes allocated memory space or allocates memory space

316 Standard C Library Reference
<stdlib.h> - General utilities

Except for the behavior on error, atof is equivalent to strtod(nptr, (char
**)NULL).

atoi returns the converted value.

Portability atoi conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See Also strtol (page 322)

atoi

Synopsis #include <stdlib.h>
int atoi(const char *nptr);

Description atoi converts the initial portion of the string pointed to by nptr to an int
representation.

atoi does not affect the value of errno on an error. If the value of the result
cannot be represented, the behavior is undefined.

Except for the behavior on error, atoi is equivalent to (int)strtol(nptr,
(char **)NULL, 10).

atoi returns the converted value.

Portability atoi conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See Also strtol (page 324)

atol

Synopsis #include <stdlib.h>
long int atol(const char *nptr);

Description atol converts the initial portion of the string pointed to by nptr to a long int
representation.

atol does not affect the value of errno on an error. If the value of the result
cannot be represented, the behavior is undefined.

Except for the behavior on error, atol is equivalent to strtol(nptr, (char
**)NULL, 10).

atol returns the converted value.

Portability atol conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See Also strtol (page 324)

317

atoll

Synopsis #include <stdlib.h>
long int atoll(const char *nptr);

Description atoll converts the initial portion of the string pointed to by nptr to a long long
int representation.

atoll does not affect the value of errno on an error. If the value of the result
cannot be represented, the behavior is undefined.

Except for the behavior on error, atoll is equivalent to strtoll(nptr,
(char **)NULL, 10).

atoll returns the converted value.

Portability atoll conforms to ISO/IEC 9899:1999 (C99).

See Also strtoll (page 325)

calloc

Synopsis #include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Description calloc allocates space for an array of nmemb objects, each of whose size is size.
The space is initialized to all zero bits.

calloc returns a null pointer if the space for the array of object cannot be
allocated from free memory; if space for the array can be allocated, calloc
returns a pointer to the start of the allocated space.

Portability calloc conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

div

Synopsis #include <stdlib.h>
div_t div(int numer, int denom);

Description div computes numer / denom and numer % denom in a single operation.

div returns a structure of type div_t (page 318) comprising both the quotient
and the remainder. The structures contain the members quot (the quotient)
and rem (the remainder), each of which has the same type as the arguments
numer and denom. If either part of the result cannot be represented, the
behavior is undefined.

Portability div conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

318 Standard C Library Reference
<stdlib.h> - General utilities

See also div_t (page 318)

div_t

Synopsis #include <stdlib.h>
typedef struct {
 int quot;
 int rem;
} div_t;

Description div_t stores the quotient and remainder returned by div (page 317).

Portability div_t conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also div (page 317)

free

Synopsis #include <stdlib.h>
void free(void *ptr);

Description free causes the space pointed to by ptr to be deallocated, that is, made
available for further allocation. If ptr is a null pointer, no action occurs.

Notes If ptr does not match a pointer earlier returned by calloc, malloc, or realloc, or
if the space has been deallocated by a call to free or realloc, the behaviour is
undefined.

Portability free conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

itoa

Synopsis #include <stdlib.h>
char *itoa(int val, char *buf, int radix);

Description itoa converts val to a string in base radix and places the result in buf.

itoa returns buf as the result.

If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all
other values of radix, value is considered unsigned and never has a leading
minus sign.

Portability itoa is an extension to the standard C library provided by CrossWorks C.

See Also ltoa (page 320), lltoa (page 320), ultoa (page 329), ultoa (page 329), utoa (page
330)

319

ldiv

Synopsis #include <stdlib.h>
ldiv_t ldiv(long int numer, long int denom);

Description ldiv computes numer / denom and numer % denom in a single operation.

ldiv returns a structure of type ldiv_t (page 319) comprising both the quotient
and the remainder. The structures contain the members quot (the quotient)
and rem (the remainder), each of which has the same type as the arguments
numer and denom. If either part of the result cannot be represented, the
behavior is undefined.

Portability ldiv conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also ldiv_t (page 319)

ldiv_t

Synopsis #include <stdlib.h>
typedef struct
{
 long int quot;
 long int rem;
} ldiv_t;

Description ldiv_t stores the quotient and remainder returned by ldiv (page 319).

Portability ldiv_t conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also ldiv (page 319)

lldiv

Synopsis #include <stdlib.h>
lldiv_t lldiv(long long int numer, long long int denom);

Description lldiv computes numer / denom and numer % denom in a single operation.

lldiv returns a structure of type lldiv_t (page 320) comprising both the
quotient and the remainder. The structures contain the members quot (the
quotient) and rem (the remainder), each of which has the same type as the
arguments numer and denom. If either part of the result cannot be
represented, the behavior is undefined.

Portability lldiv conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

320 Standard C Library Reference
<stdlib.h> - General utilities

See also lldiv_t (page 320)

lldiv_t

Synopsis #include <stdlib.h>
typedef struct
{
 long long int quot;
 long long int rem;
} lldiv_t;

Description lldiv_t stores the quotient and remainder returned by lldiv (page 319).

Portability lldiv_t conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also lldiv (page 319)

lltoa

Synopsis #include <stdlib.h>
char *lltoa(long long val, char *buf, int radix);

Description lltoa converts val to a string in base radix and places the result in buf.

lltoa returns buf as the result.

If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all
other values of radix, value is considered unsigned and never has a leading
minus sign.

Portability lltoa is an extension to the standard C library provided by CrossWorks C.

See Also itoa (page 318) ltoa (page 320) ultoa (page 329) ultoa (page 329) utoa
(page 330)

ltoa

Synopsis #include <stdlib.h>
char *ltoa(long val, char *buf, int radix);

Description ltoa converts val to a string in base radix and places the result in buf.

ltoa returns buf as the result.

If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all
other values of radix, value is considered unsigned and never has a leading
minus sign.

321

Portability ltoa is an extension to the standard C library provided by CrossWorks C.

See Also itoa (page 318) lltoa (page 320) ultoa (page 329) ultoa (page 329) utoa
(page 330)

malloc

Synopsis #include <stdlib.h>
void *malloc(size_t size);

Description malloc allocates space for an object whose size is specified by size and whose
value is indeterminate.

malloc returns a null pointer if the space for the object cannot be allocated from
free memory; if space for the object can be allocated, malloc returns a pointer
to the start of the allocated space.

Portability malloc conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

rand

Synopsis #include <stdlib.h>
int rand(void);

Description rand computes a sequence of pseudo-random integers in the range 0 to
RAND_MAX.

rand returns the computed pseudo-random integer.

Portability rand conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See Also srand (page 322) RAND_MAX (page 321)

RAND_MAX

Synopsis #include <stdlib.h>
#define RAND_MAX 32767

Description RAND_MAX expands to an integer constant expression that is the maximum
value returned by rand.

Portability RAND_MAX conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

See Also rand (page 321) srand (page 322)

322 Standard C Library Reference
<stdlib.h> - General utilities

realloc

Synopsis #include <stdlib.h>
void *realloc(void *ptr, size_t size);

Description realloc deallocates the old object pointed to by ptr and returns a pointer to a
new object that has the size specified by size. The contents of the new
object is identical to that of the old object prior to deallocation, up to the lesser
of the new and old sizes. Any bytes in the new object beyond the size of the old
object have indeterminate values.

If ptr is a null pointer, realloc behaves like malloc for the specified size. If
memory for the new object cannot be allocated, the old object is not
deallocated and its value is unchanged.

realloc function returns a pointer to the new object (which may have the same
value as a pointer to the old object), or a null pointer if the new object could not
be allocated.

Notes If ptr does not match a pointer earlier returned by calloc, malloc, or realloc, or
if the space has been deallocated by a call to free or realloc, the behaviour is
undefined.

Portability realloc conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

srand

Synopsis #include <stdlib.h>
void srand(unsigned int seed);

Description srand uses the argument seed as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calls to rand. If srand is called with the
same seed value, the same sequence of pseudo-random numbers is generated.

If rand is called before any calls to srand have been made, a sequence is
generated as if srand is first called with a seed value of 1.

Portability srand conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See Also rand (page 321) RAND_MAX (page 321)

strtol

Synopsis #include <stdlib.h>
double strtod(const char *nptr, char **endptr);

Description strtod converts the initial portion of the string pointed to by nptr to a double
representation.

323

First, strtod decomposes the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by isspace (page 263)),
a subject sequence resembling a floating-point constant, and a final string of
one or more unrecognized characters, including the terminating null character
of the input string. strtod then attempts to convert the subject sequence to a
floating-point number, and return the result.

The subject sequence is defined as the longest initial subsequence of the input
string, starting with the first non-white-space character, that is of the expected
form. The subject sequence contains no characters if the input string is empty
or consists entirely of white space, or if the first non-white-space character is
other than a sign or a permissible letter or digit.

The expected form of the subject sequence is an optional plus or minus sign
followed by a nonempty sequence of decimal digits optionally containing a
decimal-point character, then an optional exponent part.

If the subject sequence begins with a minus sign, the value resulting from the
conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer.

If the subject sequence is empty or does not have the expected form, no
conversion is performed, the value of nptr is stored in the object pointed to by
endptr, provided that endptr is not a null pointer.

strtod returns the converted value, if any. If no conversion could be performed,
zero is returned. If the correct value is outside the range of representable
values, HUGE_VAL is returned according to the sign of the value, if any, and
the value of the macro errno (page 264) is stored in errno (page 264).

Portability strtod conforms to ISO/IEC 9899:1990 (C90).

strtof

Synopsis #include <stdlib.h>
float strtof(const char *nptr, char **endptr);

Description strtof converts the initial portion of the string pointed to by nptr to a double
representation.

First, strtof decomposes the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by isspace (page 263)),
a subject sequence resembling a floating-point constant, and a final string of
one or more unrecognized characters, including the terminating null character
of the input string. strtof then attempts to convert the subject sequence to a
floating-point number, and return the result.

324 Standard C Library Reference
<stdlib.h> - General utilities

The subject sequence is defined as the longest initial subsequence of the input
string, starting with the first non-white-space character, that is of the expected
form. The subject sequence contains no characters if the input string is empty
or consists entirely of white space, or if the first non-white-space character is
other than a sign or a permissible letter or digit.

The expected form of the subject sequence is an optional plus or minus sign
followed by a nonempty sequence of decimal digits optionally containing a
decimal-point character, then an optional exponent part.

If the subject sequence begins with a minus sign, the value resulting from the
conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer.

If the subject sequence is empty or does not have the expected form, no
conversion is performed, the value of nptr is stored in the object pointed to by
endptr, provided that endptr is not a null pointer.

strtof returns the converted value, if any. If no conversion could be performed,
zero is returned. If the correct value is outside the range of representable
values, HUGE_VALF is returned according to the sign of the value, if any, and
the value of the macro errno (page 264) is stored in errno (page 264).

Portability strtof conforms to ISO/IEC 9899:1990 (C90).

strtol

Synopsis #include <stdlib.h>
long int strtol(const char *nptr, char **endptr, int base);

Description strtol converts the initial portion of the string pointed to by nptr to a long int
representation.

First, strtol decomposes the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by isspace (page 263)),
a subject sequence resembling an integer represented in some radix
determined by the value of base, and a final string of one or more
unrecognized characters, including the terminating null character of the input
string. strtol then attempts to convert the subject sequence to an integer, and
return the result.

When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an
optional plus or minus sign followed by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the
subject sequence is an optional plus or minus sign followed by a sequence of
letters and digits representing an integer with the radix specified by base. The

325

letters from a (or A) through z (or Z) represent the values 10 through 35; only
letters and digits whose ascribed values are less than that of base are
permitted.

If the value of base is 16, the characters '0x' or '0X' may optionally precede
the sequence of letters and digits, following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input
string, starting with the first non-white-space character, that is of the expected
form. The subject sequence contains no characters if the input string is empty
or consists entirely of white space, or if the first non-white-space character is
other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the
sequence of characters starting with the first digit is interpreted as an integer
constant. If the subject sequence has the expected form and the value of base
is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the
conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer.

If the subject sequence is empty or does not have the expected form, no
conversion is performed, the value of nptr is stored in the object pointed to by
endptr, provided that endptr is not a null pointer.

strtol returns the converted value, if any. If no conversion could be performed,
zero is returned. If the correct value is outside the range of representable
values, LONG_MIN (page 268) or LONG_MAX (page 268) is returned
according to the sign of the value, if any, and the value of the macro errno
(page 264) is stored in errno (page 264).

Portability strtol conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

strtoll

Synopsis #include <stdlib.h>
long long int strtoll(const char *nptr, char **endptr, int base);

Description strtoll converts the initial portion of the string pointed to by nptr to a long int
representation.

First, strtoll decomposes the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by isspace (page 263)),
a subject sequence resembling an integer represented in some radix
determined by the value of base, and a final string of one or more

326 Standard C Library Reference
<stdlib.h> - General utilities

unrecognized characters, including the terminating null character of the input
string. strtoll then attempts to convert the subject sequence to an integer, and
return the result.

When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an
optional plus or minus sign followed by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the
subject sequence is an optional plus or minus sign followed by a sequence of
letters and digits representing an integer with the radix specified by base. The
letters from a (or A) through z (or Z) represent the values 10 through 35; only
letters and digits whose ascribed values are less than that of base are
permitted.

If the value of base is 16, the characters '0x' or '0X' may optionally precede
the sequence of letters and digits, following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input
string, starting with the first non-white-space character, that is of the expected
form. The subject sequence contains no characters if the input string is empty
or consists entirely of white space, or if the first non-white-space character is
other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the
sequence of characters starting with the first digit is interpreted as an integer
constant. If the subject sequence has the expected form and the value of base
is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the
conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer.

If the subject sequence is empty or does not have the expected form, no
conversion is performed, the value of nptr is stored in the object pointed to by
endptr, provided that endptr is not a null pointer.

strtoll returns the converted value, if any. If no conversion could be performed,
zero is returned. If the correct value is outside the range of representable
values, LLONG_MIN (page 267) or LLONG_MAX (page 267) is returned
according to the sign of the value, if any, and the value of the macro ERANGE
is stored in errno (page 264).

Portability strtoll conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

327

strtoul

Synopsis #include <stdlib.h>
unsigned long int strtoul(const char *nptr, char **endptr, int base);

Description strtoul converts the initial portion of the string pointed to by nptr to a long int
representation.

First, strtoul decomposes the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by isspace (page 263)),
a subject sequence resembling an integer represented in some radix
determined by the value of base, and a final string of one or more
unrecognized characters, including the terminating null character of the input
string. strtoul then attempts to convert the subject sequence to an integer, and
return the result.

When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an
optional plus or minus sign followed by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the
subject sequence is an optional plus or minus sign followed by a sequence of
letters and digits representing an integer with the radix specified by base. The
letters from a (or A) through z (or Z) represent the values 10 through 35; only
letters and digits whose ascribed values are less than that of base are
permitted.

If the value of base is 16, the characters '0x' or '0X' may optionally precede
the sequence of letters and digits, following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input
string, starting with the first non-white-space character, that is of the expected
form. The subject sequence contains no characters if the input string is empty
or consists entirely of white space, or if the first non-white-space character is
other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the
sequence of characters starting with the first digit is interpreted as an integer
constant. If the subject sequence has the expected form and the value of base
is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the
conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer.

If the subject sequence is empty or does not have the expected form, no
conversion is performed, the value of nptr is stored in the object pointed to by
endptr, provided that endptr is not a null pointer.

328 Standard C Library Reference
<stdlib.h> - General utilities

strtoul returns the converted value, if any. If no conversion could be
performed, zero is returned. If the correct value is outside the range of
representable values, LONG_MAX (page 268) or ULONG_MAX (page 270) is
returned according to the sign of the value, if any, and the value of the macro
ERANGE is stored in errno (page 264).

Portability strtoul conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

strtoull

Synopsis #include <stdlib.h>
unsigned long long int strtoull(const char *nptr,
 char **endptr,
 int base);

Description strtoull converts the initial portion of the string pointed to by nptr to a long
int representation.

First, strtoull decomposes the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by isspace (page 263)),
a subject sequence resembling an integer represented in some radix
determined by the value of base, and a final string of one or more
unrecognized characters, including the terminating null character of the input
string. strtoull then attempts to convert the subject sequence to an integer, and
return the result.

When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an
optional plus or minus sign followed by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the
subject sequence is an optional plus or minus sign followed by a sequence of
letters and digits representing an integer with the radix specified by base. The
letters from a (or A) through z (or Z) represent the values 10 through 35; only
letters and digits whose ascribed values are less than that of base are
permitted.

If the value of base is 16, the characters '0x' or '0X' may optionally precede
the sequence of letters and digits, following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input
string, starting with the first non-white-space character, that is of the expected
form. The subject sequence contains no characters if the input string is empty
or consists entirely of white space, or if the first non-white-space character is
other than a sign or a permissible letter or digit.

329

If the subject sequence has the expected form and the value of base is zero, the
sequence of characters starting with the first digit is interpreted as an integer
constant. If the subject sequence has the expected form and the value of base
is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the
conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer.

If the subject sequence is empty or does not have the expected form, no
conversion is performed, the value of nptr is stored in the object pointed to by
endptr, provided that endptr is not a null pointer.

strtoull returns the converted value, if any. If no conversion could be
performed, zero is returned. If the correct value is outside the range of
representable values, LLONG_MAX (page 267) or ULLONG_MAX (page 269)
is returned according to the sign of the value, if any, and the value of the macro
ERANGE is stored in errno (page 264).

Portability strtoull conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

ultoa

Synopsis #include <stdlib.h>
char *ulltoa(unsigned long long val, char *buf, int radix);

Description ulltoa converts val to a string in base radix and places the result in buf.

ulltoa returns buf as the result.

If radix is greater than 36, the result is undefined.

Portability ulltoa is an extension to the standard C library provided by CrossWorks C.

See Also itoa (page 318) ltoa (page 320) lltoa (page 320) ultoa (page 329) utoa (page
330)

ultoa

Synopsis #include <stdlib.h>
char *ultoa(unsigned long val, char *buf, int radix);

Description ultoa converts val to a string in base radix and places the result in buf.

ultoa returns buf as the result.

If radix is greater than 36, the result is undefined.

Portability ultoa is an extension to the standard C library provided by CrossWorks C.

330 Standard C Library Reference
<string.h> - String handling

See Also itoa (page 318) ltoa (page 320) lltoa (page 320) ultoa (page 329) utoa (page
330)

utoa

Synopsis #include <stdlib.h>
char *utoa(unsigned val, char *buf, int radix);

Description utoa converts val to a string in base radix and places the result in buf.

utoa returns buf as the result.

If radix is greater than 36, the result is undefined.

Portability utoa is an extension to the standard C library provided by CrossWorks C.

See Also itoa (page 318) ltoa (page 320) lltoa (page 320) ultoa (page 329) ultoa
(page 329)

<string.h> - String handling

The header file <string.h> defines functions that operate on arrays that are
interpreted as null-terminated strings.

Various methods are used for determining the lengths of the arrays, but in all
cases a char * or void * argument points to the initial (lowest addressed)
character of the array. If an array is accessed beyond the end of an object, the
behavior is undefined.

Where an argument declared as size_t n specifies the length of an array for a
function, n can have the value zero on a call to that function. Unless explicitly
stated otherwise in the description of a particular function, pointer arguments
must have valid values on a call with a zero size. On such a call, a function that
locates a character finds no occurrence, a function that compares two character
sequences returns zero, and a function that copies characters copies zero
characters.

Copying functions

memcpy Copy memory

memmove Safely copy overlapping memory

strcpy Copy string

strncpy Copy string up to a maximum length

331

memchr

Synopsis #include <string.h>
void *memchr(const void *s, int c, size_t n);

Description memchr locates the first occurrence of c (converted to an unsigned char) in the
initial n characters (each interpreted as unsigned char) of the object pointed to
by s. Unlike strchr, memchr does not terminate a search when a null character
is found in the object pointed to by s.

Concatenation functions

strcat Convert string to int

strncat Convert string to long

Comparison functions

memcmp Compare memory

strcmp Compare strings

strncmp Compare strings up to a maximum length

strcoll Collate strings

Search functions

memchr Search memory for a character

strchr Find first occurrence of character within string

strcspn Compute size of string not prefixed by a set of characters

strpbrk Find first occurrence of characters within string

strrchr Find last occurrence of character within string

strspn Compute size of string prefixed by a set of characters

strstr Find first occurrence of a string within a string

strtok Break string into tokens

Miscellaneous functions

memset Set memory to character

strerror Return string from error code

strlen Calculate length of string

332 Standard C Library Reference
<string.h> - String handling

memchr returns a pointer to the located character, or a null pointer if c does
not occur in the object.

Portability memchr conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also strchr (page 333)

memcmp

Synopsis #include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

Description memcmp compares the first n characters of the object pointed to by s1 to the
first n characters of the object pointed to by s2. memcmp returns an integer
greater than, equal to, or less than zero as the object pointed to by s1 is greater
than, equal to, or less than the object pointed to by s2.

Portability memcmp conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

memcpy

Synopsis #include <string.h>
void *memcpy(void *s1, const void *s2, size_t n);

Description memcpy copies n characters from the object pointed to by s2 into the object
pointed to by s1. The behaviour of memcpy is undefined if copying takes place
between objects that overlap.

memcpy returns the value of s1.

Portability memcpy conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

memmove

Synopsis #include <string.h>
void *memmove(void *s1, const void *s2, size_t n);

Description memmove copies n characters from the object pointed to by s2 into the object
pointed to by s1 ensuring that if s1 and s2 overlap, the copy works correctly.
Copying takes place as if the n characters from the object pointed to by s2 are
first copied into a temporary array of n characters that does not overlap the
objects pointed to by s1 and s2, and then the n characters from the temporary
array are copied into the object pointed to by s1.

memmove returns the value of s1.

333

Portability memmove conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

memset

Synopsis #include <string.h>
void *memset(void *s, int c, size_t n);

Description memset copies the value of c (converted to an unsigned char) into each of the
first n characters of the object pointed to by s.

memset returns the value of s.

Portability memset conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

strcat

Synopsis #include <string.h>
char *strcat(char *s1, const char *s2);

Description strcat appends a copy of the string pointed to by s2 (including the terminating
null character) to the end of the string pointed to by s1. The initial character of
s2 overwrites the null character at the end of s1. The behaviour of strcat is
undefined if copying takes place between objects that overlap.

strcat returns the value of s1.

Portability strcat conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

strchr

Synopsis #include <string.h>
char *strchr(const char *s, int c);

Description strchr locates the first occurrence of c (converted to a char) in the string pointed
to by s. The terminating null character is considered to be part of the string.

strchr returns a pointer to the located character, or a null pointer if c does not
occur in the string.

Portability strchr conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also memchr (page 331)

334 Standard C Library Reference
<string.h> - String handling

strcmp

Synopsis #include <string.h>
int strcmp(const char *s1, const char *s2);

Description strcmp compares the string pointed to by s1 to the string pointed to by s2.
strcmp returns an integer greater than, equal to, or less than zero if the string
pointed to by s1 is greater than, equal to, or less than the string pointed to by
s2.

Portability strcmp conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

strcoll

Synopsis #include <string.h>
int strcoll(const char *s1, const char *s2);

Description strcoll compares the string pointed to by s1 to the string pointed to by s2.
strcoll returns an integer greater than, equal to, or less than zero if the string
pointed to by s1 is greater than, equal to, or less than the string pointed to by
s2.

strcoll is not affected by the locale as CrossWorks C provides no locale
capability.

Portability strcoll is provided for compaibility only and is not required in a freestanding
implementation according to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999
(C99).

strcpy

Synopsis #include <string.h>
char *strcpy(char *s1, const char *s2);

Description strcpy copies the string pointed to by s2 (including the terminating null
character) into the array pointed to by s1. The behaviour of strcpy is undefined
if copying takes place between objects that overlap.

strcpy returns the value of s1.

Portability strcpy conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

335

strcspn

Synopsis #include <string.h>
size_t strcspn(const char *s1, const char *s2);

Description strcspn computes the length of the maximum initial segment of the string
pointed to by s1 which consists entirely of characters not from the string
pointed to by s2.

strcspn returns the length of the segment.

Portability strcspn conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

strerror

Synopsis #include <string.h>
char *strerror(int errnum);

Description strerror maps the number in errnum to a message string. Typically, the values
for errnum come from errno, but strerror can map any value of type int to a
message.

strerror returns a pointer to the message string.

The program must not modify the returned message string. The message may
be overwritten by a subsequent call to strerror.

Portability strerror conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

strlen

Synopsis #include <string.h>
size_t strlen(const char *s);

Description strlen returns the length of the string pointed to by s, that is the number of
characters that precede the terminating null character.

Portability strlen conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

strncat

Synopsis #include <string.h>
char *strncat(char *s1, const char *s2, size_t n);

Description strncat appends not more than n characters from the array pointed to by s2 to
the end of the string pointed to by s1. A null character in s1 and characters that
follow it are not appended. The initial character of s2 overwrites the null

336 Standard C Library Reference
<string.h> - String handling

character at the end of s1. A terminating null character is always appended to
the result. The behaviour of strncat is undefined if copying takes place
between objects that overlap.

strncat returns the value of s1.

Portability strncat conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

strncmp

Synopsis #include <string.h>
int strncmp(const char *s1, const char *s2, size_t n);

Description strncmp compares not more than n characters from the array pointed to by s1
to the array pointed to by s2. Characters that follow a null character are not
compared.

strncmp returns an integer greater than, equal to, or less than zero, if the
possibly null-terminated array pointed to by s1 is greater than, equal to, or less
than the possibly null-terminated array pointed to by s2.

Portability strncmp conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

strncpy

Synopsis #include <string.h>
char *strncpy(char *s1, const char *s2, size_t n);

Description strncpy copies not more than n characters from the array pointed to by s2 to
the array pointed to by s1. Characters that follow a null character in s1 are not
copied. The behaviour of strncpy is undefined if copying takes place between
objects that overlap. If the array pointed to by s2 is a string that is shorter than
n characters, null characters are appended to the copy in the array pointed to
by s1, until n characters in all have been written.

strncpy returns the value of s1.

Portability strncpy conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

strpbrk

Synopsis #include <string.h>
char *strpbrk(const char *s1, const char *s2);

337

Description strpbrk locates the first occurrence in the string pointed to by s1 of any
character from the string pointed to by s2.

strpbrk returns a pointer to the character, or a null pointer if no character from
s2 occurs in s1.

Portability strpbrk conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

strrchr

Synopsis #include <string.h>
char *strrchr(const char *s, int c);

Description strrchr locates the last occurrence of c (converted to a char) in the string
pointed to by s. The terminating null character is considered to be part of the
string.

strrchr returns a pointer to the character, or a null pointer if c does not occur in
the string.

Portability strrchr conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

See also strchr (page 333)

strspn

Synopsis #include <string.h>
size_t strspn(const char *s1, const char *s2);

Description strspn computes the length of the maximum initial segment of the string
pointed to by s1 which consists entirely of characters from the string pointed
to by s2.

strspn returns the length of the segment.

Portability strspn conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

strstr

Synopsis #include <string.h>
char *strstr(const char *s1, const char *s2);

Description strstr locates the first occurrence in the string pointed to by s1 of the sequence
of characters (excluding the terminating null character) in the string pointed to
by s2.

338 Standard C Library Reference
<string.h> - String handling

strstr returns a pointer to the located string, or a null pointer if the string is not
found. If s2 points to a string with zero length, strstr returns s1.

Portability strstr conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

strtok

Synopsis #include <string.h>
char *strtok(char *s1, const char *s2);

Description A sequence of calls to strtok breaks the string pointed to by s1 into a sequence
of tokens, each of which is delimited by a character from the string pointed to
by s2. The first call in the sequence has a non-null first argument; subsequent
calls in the sequence have a null first argument. The separator string pointed
to by s2 may be different from call to call.

The first call in the sequence searches the string pointed to by s1 for the first
character that is not contained in the current separator string pointed to by s2.
If no such character is found, then there are no tokens in the string pointed to
by s1 and strtok returns a null pointer. If such a character is found, it is the start
of the first token.

strtok then searches from there for a character that is contained in the current
separator string. If no such character is found, the current token extends to the
end of the string pointed to by s1, and subsequent searches for a token will
return a null pointer. If such a character is found, it is overwritten by a null
character, which terminates the current token. strtok saves a pointer to the
following character, from which the next search for a token will start.

Each subsequent call, with a null pointer as the value of the first argument,
starts searching from the saved pointer and behaves as described above.

Portability strtok conforms to ISO/IEC 9899:1990 (C90) and ISO/IEC 9899:1999 (C99).

339

8

CrossBuild

The command line program crossbuild enables your software to be built
without using CrossStudio. This tool can be used for production build
purposes but isn’t designed to be used for development. The tool works from
a crossstudio project file (.hzp) and options that specify what is to be built.

crossbuild [options] project.hzp

You must specify a configuration to build in using the -config option.

crossbuild -config "V5T THUMB LE Release" arm.hzp

This example will build all projects in the solution contained in arm.hzp in the
configuration "V5T THUMB LE Release".

If you want to build a specific project in the solution then you can specify it
using the -project option.

crossbuild -config "V5T THUMB LE Release" -project "libm" libc.hzp

This example will build the project libm contained in libc.hzp in the
configuration "V5T THUMB LE Release".

If your project file imports other project files (using the <import..> mechanism)
then denoting projects requires you to specify the solution names as a comma
seperated list in brackets after the project name.

crossbuild -config "V5T THUMB LE Release" -project "libc(C Library)"
arm.hzp

340 CrossBuild
<string.h> - String handling

With this example libc(C Library) specifies the libc project in the C Library
solution that has been imported by the project file arm.hzp.

If you want to build a specific solution that has been imported from other
project files you can use the -solution option. This option takes the solution
names as a comma seperated list.

crossbuild -config "ARM Debug" -solution "ARM Targets,EB55" arm.hzp

With this example ARM Targets,EB55 specifies the EB55 solution imported by
the ARM Targets solution which in turn was imported by the project file
arm.hzp.

You can do a batch build using the -batch option.

crossbuild -config "ARM Debug" -batch libc.hzp

With this example the projects in libc.hzp which are marked to batch build in
the configuration "ARM Debug" will be built.

By default a make style build will be done i.e. the dates of input files are
checked against the dates of output files and the build is avoided if the output
file is up to date. You can force a complete build by using the -rebuild option.
Alternatively you can remove all output files using the -clean option.

You can see the commands that are being used in the build if you use the -echo
option and you can also see why commands are being executed using the -
verbose option. You can see what commands will be executed without
executing them using the -show option.

CrossBuild Options

-batch Do a batch build.

-config 'name'
Specify the configuration to build in. If the 'name'
configuration can’t be found crossbuild will list the set of
configurations that are available.

-clean Remove all the output files of the build process.

-D macro=value Define a macro value for the build process.

-echo Show the command lines as they are executed.

-project 'name'
Specify the name of the project to build. If crossbuild
can’t find the specified project then a list of project names
is shown.

-rebuild Always execute the build commands.

-show Show the command lines but don’t execute them.

341

-solution 'name'
Specify the name of the solution to build. If crossbuild
can’t find the specified solution then a list of solution
names is shown.

-verbose Show build information.

CrossBuild Options

342 CrossLoad
<string.h> - String handling

9

CrossLoad

CrossLoad is a command line program that allows you to download and
verify applications without using CrossStudio. This tool can be used for
production purposes but is not designed to be used for development.

Usage

crossload [options]
[files...]

Options

-targettarget
Specify the target interface to use. Use the -listtargets
option to display the list of supported target interfaces.

-listtargets List all of the supported target interfaces.

-solutionfile Specify the CrossWorks solution file to use.

-projectname Specify the name of the project to use.

-configconfiguration Specify the build configuration to use.

-filetypefiletype

Specify the type of the file to download. By default
CrossLoad will attempt to detect the file type, you should
use this option if CrossLoad cannot determine the file
type or to override the detection and force the type. Use
the -listfiletypes option to display the list of supported
file types.

343

In order to carry out a download or verify CrossLoad needs to know what
target interface to use. The supported target interfaces vary between systems,
to produce a list of the currently supported target interfaces use the -listtargets
option.

crossload -listtargets

This command will produce a list of target interface names and descriptions:

 usb USB CrossConnect
 parport Parallel Port Interface
 sim Simulator

Use the -target option followed by the target interface name to specify which
target interface to use:

crossload -target usb ...

CrossLoad is normally used to download and/or verify projects created and
built with CrossStudio. To do this you need to specify the target interface you
want to use, the CrossStudio solution file, the project name and the build
configuration. The following command line will download and verify the
debug version of the projectMyProject contained within the MySolution.hzp
solution file using a USBCrossConnect:

crossload -target usb -solution MySolution.hzp -project MyProject -config
Debug

In some cases it is useful to download a program that might not have been
created using CrossStudio using the settings from an existing CrossStudio
project. You might want to do this if your existing project describes specific
loaders or scripts that are required in order to download the application. To do

-listfiletypes List all of the supported file types.

-setpropproperty=value Set the target property property to value.

-listprops
List the target properties of the target specified by the -
target option.

-noverify Do not carry out verification of download.

-nodownload Do not carry out download, just verify.

-nodisconnect Do not disconnect the target interface when finished.

-help Display the command line options.

-verbose Produce verbose output.

-quiet Do not output any progress messages.

Usage

344 CrossLoad
<string.h> - String handling

this you simply need to add the name of the file you want to download to the
command line. For example the following command line will download the
HEX file ExternalApp.hex using the release settings of the project MyProject
using a USB CrossConnect:

crossload -target usb -solution MySolution.hzp -project MyProject -config
Release ExternalApp.hex

CrossLoad is able to download and verify a range of file types. The supported
file types vary between systems, to display a list of the file types supported by
CrossLoad use the -listfiletypes option:

crossload -listfiletypes

This command will produce a list of the supported file types, for example:

 hzx CrossStudio Executable File
 bin Binary File
 ihex Intel Hex File
 hex Hex File
 tihex TI Hex File
 srec Motorola S-Record File

CrossLoad will attempt to determine the type of any load file given to it, if it
cannot do this you may specify the file type using the -filetype option:

crossload -target usb -solution MySolution.hzp -project MyProject -config
Release ExternalApp.txt -filetype tihex

It is possible with some targets to carry out a download without the need to
specify a CrossStudio project. In this case all you need to specify is the target
interface and the load file. For example the following command line will
download myapp.s19 using a USB CrossConnect:

crossload -target usb myapp.s19

Each target interface has a range of configurable properties that allow you to
customize the default behaviour. To produce a list of the target properties and
their current value use the -listprops option:

crossload -target parport -listprops

This command will produce a list of the parport target interfaces properties, a
description of what the properties are and their current value:

 Name: JTAG Clock Divider
 Description: The amount to divide the JTAG clock frequency.
 Value : 1

 Name: Parallel Port
 Description: The parallel port connection to use to connect to
target.
 Value : Lpt1

 Name: Parallel Port Sharing
 Description: Specifies whether sharing of the parallel port with

345

other device drivers or programs is permitted.
 Value : No

You can modify a target property using the -setprop option. For example the
following command line would set the parallel port interfaced used to lpt2:

crossload -target parport -setprop "Parallel Port"="Ltp2" ...

346 Appendicies
Copyright, disclaimer, and trademarks

10

Appendicies

Copyright, disclaimer, and trademarks

Copyright

Copyright 2001, 2002, 2003, 2004 Rowley Associates Limited. All rights
reserved.

No part of this document may be reproduced without the prior written
consent of Rowley Associates. The software and associated documents are
furnished under licence agreement. The software must be used and copied
only in accordance with the terms of that agreement. This document may not,
in whole or in part, be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior
consent, in writing, from Rowley Associates Limited.

Disclaimer

The information contained in this manual is subject to change and does not
represent a commitment on the part of the copyright holder. While the
information contained herein is assumed to be accurate, Rowley Associates
assumes no responsibility for any errors or omissions. In no event shall Rowley
Associates, its employees, its contractors, or the authors of this document be

347

liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature
or kind.

Trademarks

CrossWorks? and CrossStudio? are trademarks of Rowley Associates Limited.
Microsoft is a registered trademark, and Windows? is a trademark of Microsoft
Corporation. All other product names are trademarks or registered
trademarks of their respective owners.

Activating your product

Each copy of CrossWorks must be licensed and registered before it can be used.
Each time you purchase a CrossWorks license, you, as a single user, can use
CrossWorks on the computers you need to develop and deploy your
application. This covers the usual scenario of using both a laptop and desktop
and, optionally, a laboratory computer.

Evaluating CrossWorks

If you are evaluating CrossWorks on your computer, you must activate it. To
activate your software for evaluation, follow these instructions:

Install CrossWorks on your computer using the CrossWorks installer and
accept the license agreement.

Run the CrossStudio application.

From the Help menu, click About CrossStudio.

Click the Product Activation tab.

Using e-mail, send the contents of the Registration Key field to the e-mail
address license@rowley.co.uk.

By return you will receive an activation key. To activate CrossWorks for
evaluation, do the following::

Run the CrossStudio application.

From the Help menu, click About CrossStudio.

Click the Product Activation tab.

Type in or paste the returned activation key into the Activation Key field.

348 Appendicies
Project file format

The License Details field will change to indicate the type of activation key
entered and how long the evaluation lasts for.

If you need more time to evaluate CrossWorks, simply request a new
evaluation key when the issued one expires or is about to expire.

After purchasing CrossWorks

When you purchase CrossStudio, either directly from ourselves or through a
distributor, you will be issued a Product Key which uniquely identifies your
purchase. To permanently activate your software, follow these instructions:

If you have not already done so, install CrossWorks on your computer
using the CrossWorks installer and accept the license agreement.

Run the CrossStudio application.

From the Help menu, click About CrossStudio.

Click the Product Activation tab.

Type or paste your product key into the Product Key field.

Using e-mail, send the contents of the Registration Key field to the e-mail
address license@rowley.co.uk.

By return you will receive an activation key. To activate CrossWorks:

Run the CrossStudio application.

From the Help menu, click About CrossStudio.

Click the Product Activation tab.

Type in or paste the returned activation key into the Activation Key field.

The License Details field will change to indicate the type of activation key
entered.

As CrossWorks is licensed per developer, you can install the software on any
computer that you use such as a desktop, laptop, and laboratory computer, but
on each of these you must go through activation using your issued product
key.

Project file format

CrossStudio project files are held in text files with the .hzp extension. We
anticipate that you may want to edit project files and perhaps generate them
so they are structured using XML syntax to enable simple construction and
parsing.

349

The first entry of the project file defines the XML document type which is used
to validate the file format.

<!DOCTYPE CrossStudio_Project_File>

The next entry is the solution element; there can only be one solution element
in a project file. This specifies the name of solution displayed in the project
explorer and also has a version attribute which defines the file format version
of the project file. Solutions can contain projects, projects can contain folder
and /files, and folders can contain folder and files. This hierarchy is reflected
in the XML nesting, for example:

<solution version="1" Name="solutionname">

 <project Name="projectname">

 <file Name="filename"/>

 <folder Name="foldername">

 <file Name="filename2"/>

 </folder>

 </project>

</solution>

Note that each entry has a Name attribute. Names of project elements must be
unique to the solution, names of folder elements must be unique to the project
however names of files do not need to unique.

Each file element must have a file_name attribute that is unique to the project.
Ideally the file_name is a file path relative to the project (or solution directory)
but you can also specify a full file path if you want to. File paths are case
sensitive and use / as the directory separator. They may contain macro
instantiations so you cannot have file paths containing the $ character. For
example

<file file_name="$(StudioDir)/source/crt0.s" Name="crt0.s" />

will be expanded using the value of the $(StudioDir) when the file is
referenced from CrossStudio.

Project properties are held in configuration elements with the Name attribute
of the configuration element corresponding to the configuration name e.g.
"Debug". At a given project level (solution, project, folder) there can only be
one named configuration element i.e. all properties defined for a configuration
are in single configuration element.

350 Appendicies
Project Templates file format

<project Name="projectname">

 ...

 <configuration project_type="Library" Name="Common" />

 <configuration Name="Release" build_debug_information="No" />

 ...

</project>

You can link projects together using the import element.

<import file_name="target/libc.hzp" />

Project Templates file format

The CrossStudio New Project Dialog works from a file called
project_templates.xml which is held in the targets subdirectory of
the CrossStudio installation directory. We anticipate that you may want to add
your own new project types so they are structured using XML syntax to enable
simple construction and parsing.

The first entry of the project file defines the XML document type which is used
to validate the file format.

<!DOCTYPE Project_Templates_File>

The next entry is the projects element; which is used to group a set of new
project entries into an XML hierarchy.

<projects>

 <project....

</projects>

Each project entry has a project element that contains the class of the project
(attribute caption), the name of the project (attribute name), it's type
(attribute type) and a description (attribute description).

<project caption="ARM Evaluator7T" name="Executable" description=An
executable for an ARM Evaluator7T." type="Executable"/>

The project type can be one of

351

"Executable" - a fully linked executable.

"Library" - a static library.

"Object file" - an object file.

"Staging" - a staging project.

"Combining" - a combining project.

"Externally Built Executable" - an externally built executable.

The configurations that are to be created for the project are defined using the
configurationelement. The configuration element must have a name
attribute.

<configuration name="ARM RAM Release"/>

The property values to be created for the project are defined using the
property element. If you have a defined value then you can specify this
using the value attribute and optionally set the property in a defined
configuration.

<property name="target_reset_script" configuration="RAM"
value="Evaluator7T_ResetWithRamAtZero()"/>

Alternatively you can include a property that will be shown to the user who
can supply a value as part of the new project process.

<property name="linker_output_format"/>

The folders to be created are defined using the folder element. The folder
element must have a name attribute and can also have a filter attribute.

<folder name="Source Files" filter="c;cpp;cxx;cc;h;s;asm;inc"/>

The files to be in the project are specified using the file element. You can use
build system Project macros (page 59) to specify files that are in the
CrossStudio installation directory. Files will be copied to the project directory
or just left as references based on the value of the expand attribute.

<file name="$(StudioDir)/source/crt0.s" expand="no"/>

You can define the set of configurations that can be referred to in the the top-
level configurations element.

<configurations>

 <configuration....

</configurations>

352 Appendicies
Project property reference

This contains the set of all configurations that can be created when a project is
created. Each configuration is defined using a configuration element
which can define the property values for that configuration.

<configuration name="Debug">

 <property name="build_debug_information" value="Yes">

Project property reference

Assembler and Compiler Properties

These properties are applicable to C and assembly code source files.

Property Description

Additional Assembler Options
Additional command line options to be supplied
to the assembler.

Additional Compiler Options
Additional command line options to be supplied
to the compiler.

ARM Architecture

Specifies the versions of the ARM or THUMB
instruction set to generate code for and the
library variant the linker should use. The options
are v3, v4T, v5T, v5TE.

ARM Floating Point Format

Specifies the ARM floating point format. This
value is currently only used by the debugger to
describe how to display floating point values, it
does not affect code generation.

ARM/THUMB interworking
Specifies that the code generated can be called
either from ARM or THUMB code and the
library variant the linker should use.

Endian

Specifies the endianness to build for. Note that
the value of this property at project level will be
used to automatically set the Endian target
property when a project is downloaded or
attached to.

353

External Build Properties

These properties are applicable to Externally Built Executable project types.

Enforce ANSI Checking
Enable additional checking to ensure programs
conform to the ANSI-C99 standard.

Instruction Set
Specifies the instruction set the compiler should
generate code for. The options are ARM or
THUMB.

Long Calls
Specifies whether function calls are made using
absolute addresses.

Object File Name
Specifies the name of the object file produced by
the compiler/assembler. This property will have
macro expansion applied to it.

Optimization Level
Specifies the optimization level to use for
compliation.

Property Description

Property Description

Build Command The command line that will build the executable.

Clean Command The command line that will clean the executable.

Executable File
The name of the externally built executable file.
This property will have macro expansion
applied to it.

Load Address
The address to load the file at. This is required if
the load address isn't contained in the executable
file - for example a binary file.

Load File Type
The type of the executable file. The default is to
detect the file type based on the file extension.

354 Appendicies
Project property reference

Folder Properties

These properties are applicable to project folders.

Build Properties

These properties are applicable to a range of project types.

Property Description

Filter
A list of file extensions that are matched when a
file is added to the project.

Property Description

Build Quietly
Suppress the display of the startup banners and
information messages.

Enable Unused Symbol Removal
If this option is set then any unreferenced
symbols will be removed from your program.

Exclude From Build
Specifies whether or not to exclude the
project/file from the build.

File Type

Use this property to change the file type of the
selected file. This can be used to be able to
compile or assemble a file that has no recognised
file type.

Include Debug Information
Specifies whether symbolic debug information is
generated.

Macros
Defines macro values that are used for filename
generation

Intermediate Directory

Specifies a relative path from the project
directory to the intermediate file directory. This
property will have macro expansion applied to
it.

Optimize Output
Specifies whether the application should be
optimized for size and speed.

Output Directory

Specifies a relative path from the project
directory to the output file directory. This
property will have macro expansion applied to
it.

355

Preprocessor Options

These properties are applicable to C and assembly code source files.

Project Directory
Specifies the project directory. This can be either
relative to the solution directory (recommended)
or can be an absolute directory.

Project Type Specifies the type of project to build.

Suppress Warnings
Specifies whether the display of warning
messages should be suppressed.

Target Processor
Select a set of target specific options based on the
target processor.

Treat Warnings as Errors
Specifies whether warning messages should be
treated as errors.

Property Description

Property Description

Ignore Includes
If set to Yes, the System Include Directories and
User Include Directories properties are ignored.

Preprocessor Definitions Specifies one or more preprocessor definitions.

Preprocessor Undefinitions
Specifies one or more preprocessor
undefinitions.

System Include Directories
Specifies the system include path. This property
will have macro expansion applied to it.

Undefine All Preprocessor
Definitions

If set to Yes, no standard preprocessor
definitions will be defined.

User Include Directories
Specifies the user include path. This property
will have macro expansion applied to it.

356 Appendicies
Project property reference

Section Properties

These properties are applicable to C and assembly code source files.

Input/Output Properties

These properties define what the printf/scanf support is to be used.

Staging Properties

These properties are applicable to Staging project types.

Property Description

Code Section Name
Specifies the default section name to use for the
program code section.

Constant Section Name
Specifies the default section name to use for the
read-only constant section.

Data Section Name
Specifies the default section name to use for the
initialised, writable data section.

Zeroed Section Name
Specifies the default section name to use for the
zero-initialised, writable data section.

Property Description

Floating Point I/O Supported
Specifies whether the version of the printf and
scanf functions that support floating point
numbers should be linked into the application.

Integer I/O Support
Specifies the largest integer type supported by
the printf and scanf function group.

Scanf Classes Supported
Enables support for %[...] and %[^...] character
class matching in the scanf functions.

Property Description

Output File Path
Specifies the name the file will be copied to. This
property will have macro expansion applied to
it.

357

Combining Properties

These properties are applicable to Combining project types.

Library Properties

These properties are applicable to Library project types.

Set Readonly
Specifies that the output file will have it's
permissions set to readonly.

Stage Command
Specifies the command be used to do the staging
operation. This property will have macro
expansion applied to it.

Property Description

Property Description

Output File Path
Specifies the name the file will be copied to. This
property will have macro expansion applied to
it.

Set Readonly
Specifies that the output file will have it's
permissions set to readonly.

Combine Command
Specifies the command be used to do the
combining operation. This property will have
macro expansion applied to it.

Property Description

Library File Name
Specifies the name of the output file produced by
the librarian. This property will have macro
expansion applied to it.

358 Appendicies
Project property reference

Linker Properties

These properties are applicable to Executable project types.

Property Description

Additional Input Files
Additional object and library files to be supplied
to the linker. This property will have macro
expansion applied to it.

Additional Linker Options
Additional command line options to be supplied
to the linker.

Additional Output Format
Specifies an additional file format to be
generated by the linker. For example an s-record
output may be generated as well as the .hzx file.

Check For Memory Segment
Overflow

Specifies that the linker should check whether
program sections fit into the memory segments
they have been placed in.

Entry Point
Specifies the entry point of the program. This
may be a symbol or an absolute address.

Executable File Name
Specifies the name of the output file produced by
the linker.

Generate Map File
Specifies whether or not a linker map file is
generated.

Heap Size
Specifies the heap size in bytes to be used by the
application.

Include Standard Libraries
Specifies whether the standard libraries should
be linked into the application.

Include Startup Code
Specifies whether the standard C startup code is
linked into the application.

Library Instruction Set
Specifies the library variant the linker should
use. The options are ARM or THUMB.

Linker Script File
Use specified linker script file rather than auto
generating one from the section placement and
memory map files.

Memory Map File

The name of the file containing the memory map
description. This property will have macro
expansion applied to it. Note that a memory map
file in the project will be used in preference to
this setting.

359

Target Properties

These properties are applicable to "executable" project types.

Post Build Command
Specifies a command to run after the link
command has executed.

Section Placement File

The name of the file containing the section
placement description. This property will have
macro expansion applied to it. Note that a
section placement file in the project will be used
in preference to this setting.

Stack Size (Abort Mode)
Specifies the size of the Abort mode stack in
bytes.

Stack Size (FIQ Mode) Specifies the size of the FIQ mode stack in bytes.

Stack Size (IRQ Mode) Specifies the size of the IRQ mode stack in bytes.

Stack Size (Supervisor Mode)
Specifies the size of the Supervisor mode stack in
bytes.

Stack Size (Undefined Mode)
Specifies the size of the Undefined mode stack in
bytes.

Stack Size (User/System Mode)
Specifies the size of the User/System mode stack
in bytes.

Stack Size (User/System Mode)
Specifies the size of the User/System mode stack
in bytes.

Use GCC Libraries
Use GCC floating point, exception and rtti
libraries.

Use Multi Threaded Libraries
Specifies that multi-threaded (re-entrant)
versions of the libraries should be linked in.

Property Description

Property Description

Attach Script
The script that is executed when the debugger
attaches to the target.

Reset Script
The script that is executed when the target is
reset. This script is typically responsible for
resetting the target and configuring memory.

360 Appendicies
Project property reference

Run Script

The script that is executed when the target is
released into run state. This script is typically
responsible for re-enabling caches previously
disabled by the stop script.

Stop Script
The script that is executed when the target enters
debug state. This script is typically responsible
for disabling or flushing caches.

ARM Debug Interface
Specifies whether the target's debug interface is
ARM7TDI, ARM7DI, ARM9TDMI or XScale
compliant.

JTAG Data Bits After

Specifies the number of bits to pad the JTAG data
register after the data for the ARM processor
being targeted. As the width of the BYPASS
register is normally 1 bit this value is usually
equal to the number of devices in the scan chain
after the device being targeted.

JTAG Data Bits Before

Specifies the number of bits to pad the JTAG data
register before the data for the ARM processor
being targeted. As the width of the BYPASS
register is normally 1 bit this value is usually
equal to the number of devices in the scan chain
before the device being targeted.

JTAG Instruction Bits After

Specifies the number of bits to pad the JTAG
instruction register with the BYPASS instruction
(all bits set) after the instruction for the ARM
processor being targeted. This value should be
the combined length of the instruction registers
for all devices in the scan chain after the ARM
processor being targeted.

JTAG Instruction Bits Before

Specifies the number of bits to pad the JTAG
instruction register with the BYPASS instruction
(all bits set) before the instruction for the ARM
processor being targeted. This value should be
the combined length of the instruction registers
for all devices in the scan chain before the ARM
processor being targeted.

Property Description

361

Code editor command summary

The following table summarizes the keystrokes and corresponding menu
items for code editor commands:

First Loader Program Section

The name of the loader's first program section.
This value is used to tell CrossStudio the area of
memory occupied by the loader in order to
prevent it from being overwritten during
download. This parameter is only required if the
program being downloaded overwrites the
loader.

Last Loader Program Section

The name of the loader's last program section.
This parameter is only required if the program
section specified by First Loader Program Section
is not the loader's only program section.

Loader File Path

Specifies the file path of the loader program to
use. This is typically used by targets that support
FLASH download. It is not possible to download
programs to FLASH using only the ARM's
debug interface. A loader program therefore has
to be downloaded and run from RAM prior to
the download of the main application.

Loader File Type
Specifies the communication mechanism used to
communicate with the loader.

Loader Parameter
This field allows a parameter to be passed to the
loader. The parameter is loader specific.

Reset After Download
Specifies whether the target should be reset after
a download using a loader.

Stop CPU Using DBGRQ
Specifies whether the CPU should be stopped by
asserting DBGRQ rather than by using
breakpoints.

Property Description

Keystrokes Menu Description

Up Move the caret one line up.

Down Move the caret one line down.

362 Appendicies
Code editor command summary

Left Move the caret one character to the left.

Right Move the caret one character to the right.

Home Move the caret to the start of the current line.

End Move the caret to the end of the current line.

PageUp Move the caret on page up.

PageDown Move the caret one page down.

Ctrl+Up Scroll the document down one line.

Ctrl+Down Scroll the document up one line.

Ctrl+Left
Move the caret to the start of the previous
word.

Ctrl+Right Move the caret to the start of the next word.

Ctrl+Home Move the caret to the start of the document.

Ctrl+End Move the caret to the end of the document.

Ctrl+PageUp Move the caret to the top of the window.

Ctrl+PageDown Move the caret to the bottom of the window.

Enter
Return

Insert a new line and move the caret to an
appropriate position on the next line
dependant on the indent settings.

Shift+Up Extend the current selection up by one line.

Shift+Down Extend the current selection down by one line.

Shift+Left
Extend the current selection left by one
character.

Shift+Right
Extend the current selection right by one
character.

Shift+Home
Extend the current selection to the beginning of
the current line.

Shift+End
Extend the current selection to the end of the
current line.

Shift+PageUp Extend the current selection up by one page.

Keystrokes Menu Description

363

Shift+PageDow
n

Extend the current selection down by one page.

Ctrl+Shift+Left
Extend the current selection to the beginning of
the previous word.

Ctrl+Shift+Righ
t

Extend the current selection to the end of the
next word.

Ctrl+Shift+Hom
e

Extend the current selection to the beginning of
the file.

Ctrl+Shift+End
Extend the current selection to the end of the
file.

Ctrl+Shift+Page
Up

Extend the current selection to the top of the
window.

Ctrl+Shift+Page
Down

Extend the current selection to the end of the
window.

Ctrl+Shift+]
Select the text contained within the nearest
delimiter pair.

Ctrl+A Select the entire document.

Ctrl+F8 Select the current line.

Edit |
Advanced | Sort
Ascending

Sort the lines contained within the current
selection into ascending order.

Edit |
Advanced | Sort
Descending

Sort the lines contained within the current
selection into descending order.

Ctrl+C
Ctrl+Insert

Edit | Copy Copy the current selection into the clipboard.

Ctrl+X
Shift+Delete

Edit | Cut
Copy the current selection into the clipboard
and remove the selected text from the
document.

Ctrl+V
Shift+Insert

Edit | Paste
Insert the contents of the clipboard into the
document at the current caret position.

Ctrl+L Cut the current line or selection.

Ctrl+Shift+L Delete the current line or selection.

Keystrokes Menu Description

364 Appendicies
Code editor command summary

Edit | Clipboard
| Clear
Clipboard

Empty the current contents of the clipboard.

Ctrl+F2

Edit |
Bookmarks |
Toggle
Bookmark

Add or remove a bookmark to the current line.

F2
Edit |
Bookmarks |
Next Bookmark

Move the caret to the next bookmark.

Shift+F2

Edit |
Bookmarks |
Previous
Bookmark

Move the caret to the previous bookmark.

Edit |
Bookmarks |
First Bookmark

Move the caret to the first bookmark in the
document.

Edit |
Bookmarks |
Last Bookmark

Move the caret to the last bookmark in the
document.

Ctrl+Shift+F2

Edit |
Bookmarks |
Clear All
Bookmarks

Remove all bookmarks from the document.

Alt+F2
Add a permanent bookmark on the current
line.

Ctrl+F Edit | Find Display the find dialog.

Ctrl+H Edit | Replace Display the replace dialog.

F3
Find the next occurrence of the previous search
ahead of the current caret position.

Shift+F3
Find the next occurrence of the previous search
behind the current caret position.

Ctrl+]
Find the matching delimiter character for the
nearest delimiter character on the current line.

Ctrl+F3
Search up the document for currently selected
text.

Keystrokes Menu Description

365

Ctrl+Shift+F3
Search down the document for the currently
selected text.

Ctrl+G, Ctrl+L Display the goto line dialog.

Backspace
Delete the character to the left of the caret
position.

Delete
Delete the character to the right of the caret
position.

Ctrl+Backspace
Delete from the caret position to the start of the
current word.

Ctrl+Delete
Delete from the caret position to the end of the
current word.

Ctrl+L Delete current line.

Ctrl+Alt+L
Delete from the caret position to the end of the
line.

Alt+Shift+L
Delete from the caret position to the next blank
line.

Tab

Edit |
Advanced |
Increase Line
Indent

Either advance the caret to the next indent
position or, if there is selected text, indent each
line of the selection.

Shift+Tab

Edit |
Advanced |
Decrease Line
Indent

Either move the caret to the previous indent
position or, if there is selected text, unindent
each line of the selection.

Alt+Right Indent the current line.

Alt+Left Unindent the current line.

Ctrl+S File | Save Save the current file.

File | Save As Save the current file under a different file name.

Ctrl+Shift+S File | Save All Save all the files.

Ctrl+P File | Print Print the current file.

Ctrl+U

Edit |
Advanced |
Make Selection
Lowercase

Either change the current character to
lowercase or, if there is selected text, change all
characters within the selection to lowercase.

Keystrokes Menu Description

366 Appendicies
Code editor command summary

Ctrl+Shift+U

Edit |
Advanced |
Make Selection
Uppercase

Either change the current character to
uppercase or, if there is selected text, change all
characters within the selection to uppercase.

Ctrl+/
Edit |
Advanced |
Comment

If there is a selection, adds a comment to the
start of each selected line. If there is no
selection, adds a comment to the start of the line
the caret is on.

Ctrl+Shift+/
Edit |
Advanced |
Uncomment

If there is a selection, removes any comment
from the start of each selected line. If there is no
selection, removes any comment fro the start of
the line the caret is on.

Ctrl+Z or
Alt+Backspace

Edit | Undo Undoes the last operation.

Ctrl+Y Edit | Redo Redoes the last operation.

Insert Enable or disable overwrite mode.

Ctrl+Shift+T
Swap the current word with the previous word
or, if there is no previous word, the next word.

Alt+Shift+T
Swap the current line with the previous line or,
if there is no previous line, the next line.

Ctrl+Alt+J
Appends the line below the caret onto the end
of the current line.

Edit |
Advanced |
Tabify Selection

Replace whitespace with appropriate tabs
within the current selection.

Edit |
Advanced
|Untabify
Selection

Remove tabs from within the current selection.

Edit |
Advanced
|Visible
Whitespace

Enable or disable visible whitespace.

Edit |
Advanced |
Toggle Read
Only

Toggle the write permissions of the current file.

Keystrokes Menu Description

367

Binary editor command summary

The following table summarizes the keystrokes and corresponding menu
items for binary editor commands:

Keystrokes Menu Action

Up Move the caret 16 bytes back.

Down Move the caret 16 bytes forward.

Left Move the caret one byte back.

Right Move the caret one byte forward.

Home
Move the caret to the start of the current line of
bytes.

End
Move the caret to the end of the current line of
bytes.

Page Up Move the caret one page up.

Page Down Move the caret one page down.

Ctrl+Home Move the caret to address 0.

Ctrl+End
Move the caret to the address of the last byte in
the file.

Ctrl+Up Move the view up one line.

Down Move the view down one line.

Ctrl+Left Move the caret 4 bytes back.

Ctrl+Right Move the caret 4 bytes forward.

Ctrl+F Edit | Find Display the find dialog.

F3
Find the next occurrence of the value most
recently searched for.

Backspace
Removes the byte in the address before the
caret position.

Delete Removes the currently selected byte.

Ctrl+S File | Save Save the current file.

368 Appendicies
Glossary

Glossary

The following terms are in common use and are used throughout the
CrossWorks documentation:

Active project. The project that is currently selected in the Project
Explorer. The Build tool bar contains a dropdown and the Project > Set
Active Project menu contains an item that display the active project. You
can change the active project using either of these elements.

Active configuration. The configuration that is currently selected for
building. The Build too bar contains a dropdown and the Build > Set

File | Save As

Save the current file under a different file name.
WARNING the current version of the binary
editor continues to display the original file
name after a "Save as" operation.

Ctrl+Z Edit | Undo Undoes the last operation.

Ctrl+Y Edit | Redo Redoes the last undone operation.

Insert Enable or disable overwrite mode.

Ctrl+T

When in text input mode the currently selected
byte will be replaced with the ASCII character
code for the input key. e.g. 0F would become 66
when 'f' is pressed. When not in text input
mode the currently selected byte is replaced
with the HEX value of the input keys. e.g. 00
would become 0F when 'f' is pressed. 00 would
become FA if the 'f' then 'a' keys were pressed.

Edit |
Advanced |
Toggle Read
Only

Toggle the write permissions of the current file.

Ctrl+E
Allows the file to be a fixed size or a variable
size

Down or Right
Extends the file when the last address is
selected and the file is write enabled. the new
bytes will be initialised to 00.

Keystrokes Menu Action

369

Active Build Configuration menu display the active configuration. You
can change the active configuration using either of these elements.

Assembler. A program that translates low-level assembly language
statements into executable machine code. See Assembler Reference.

Compiler. A program that translates high-level statement into executable
machine code. See C Compiler Reference.

Integrated development environment. A program that supports editing,
managing, building, and debugging your programs within a single
environment.

Linker. A program that combines multiple relocatable object modules and
resolves inter-module references to produce an executable program. See
Linker Reference.

Project explorer. A docking indow that contains a visual representation of
the project. See Project explorer (page 127).

370 Appendicies
Glossary

	CrossWorks for ARM
	Welcome to CrossWorks for ARM!

	Introduction
	What is CrossWorks?
	What we don't tell you...
	Release notes
	Changes in Release 1.6 Build 1
	Changes in Release 1.5 Build 2
	Changes in Release 1.5
	Changes in Release 1.4
	Changes in Release 1.3
	Changes in Release 1.2
	Changes in Release 1.1

	Activating your product
	Text conventions
	Standard syntactic metalanguage
	Requesting support and reporting problems

	CrossStudio Tutorial
	Creating a project
	Managing files in a project
	Setting project options
	Building projects
	Exploring projects
	Using Project Explorer features
	Using Symbol Browser features

	Using the debugger
	Low-level debugging

	CrossStudio Reference
	Overview
	CrossStudio standard layout
	The title bar
	The menu bar
	The status bar
	The editing workspace

	Project management
	Project system
	Creating a project
	Adding existing files to a project
	Adding new files to a project
	Removing a file, folder, project, or project link
	Project properties
	Project configurations
	Project dependencies and build order
	Project macros

	Building projects
	Build configurations and their uses
	Building your applications
	Correcting errors after building

	Source code control
	Configuring source control
	Using source control

	Debug expressions
	Source code editor
	Elements of the code editor
	Navigation
	Bookmarks
	Changing text
	Using the clipboard
	Drag and drop editing
	Undo and redo
	Indentation
	File management
	Find and replace
	Regular expressions
	Advanced editor features
	Code templates

	Memory map editor
	Section placement
	CrossStudio Windows
	Clipboard ring window
	Build log window
	Breakpoints window
	Call stack window
	Execution counts window
	Globals window
	Locals window
	Memory window
	Register windows
	Threads window
	Trace window
	Watch window
	Help window
	Output window
	Project explorer
	Properties window
	Source navigator window
	Symbol browser
	Targets window

	ARM Target Interfaces
	USB CrossConnect for ARM Target Interface
	Macraigor Wiggler (20 and 14 pin) Target Interface
	Segger J-Link
	CrossStudio ARM Simulator Target Interface

	ARM Target Support
	Target Startup Code
	crt0.s
	ARM Memory Map Files
	ARM Project Configurations
	ARM Target Script File
	ARM Program Loader
	ARM Device Specific Target Support

	Dialogs
	Debug file search editor
	Environment options

	CrossStudio menu summary
	File menu
	New menu
	Edit menu
	Clipboard menu
	Clipboard Ring menu
	Macros menu
	Edit Selection menu
	Bookmarks menu
	Advanced menu
	View menu
	Other Windows menu
	Browser menu
	Toolbars menu
	Search menu
	Project menu
	Build menu
	Debug menu
	Debug Control menu
	Breakpoint menu
	Debug Windows menu
	Tools menu
	Window menu
	Help menu

	Tasking Library Tutorial
	Overview
	Tasks
	Task synchronization and resource allocation
	Timer support
	Interrupt service routine support
	Memory block allocation support
	C library support

	Tasks
	Event sets
	Semaphores
	Message queues
	Byte queues
	Global interrupts control
	Timer support
	Programmable interrupt handling
	Low-level interrupt handling
	Memory areas

	ARM Library Reference
	<ctl_api.h> - Tasking functions
	ctl_byte_queue_init
	ctl_byte_queue_post
	ctl_byte_queue_post_nb
	ctl_byte_queue_receive
	ctl_byte_queue_receive_nb
	ctl_current_time
	ctl_events_init
	ctl_events_set_clear
	ctl_events_wait
	ctl_exit_isr
	ctl_get_current_time
	ctl_get_ticks_per_second
	ctl_global_interrupts_disable
	ctl_global_interrupts_enable
	ctl_global_interrupts_re_enable_from_isr
	ctl_global_interrupts_set
	ctl_global_interrupts_un_re_enable_from_isr
	ctl_handle_error
	ctl_increment_tick_from_isr
	ctl_interrupt_count
	ctl_libc_mutex
	ctl_mask_isr
	ctl_memory_area_allocate
	ctl_memory_area_free
	ctl_memory_area_init
	ctl_message_queue_init
	ctl_message_queue_post
	ctl_message_queue_post_nb
	ctl_message_queue_receive
	ctl_message_queue_receive_nb
	ctl_semaphore_init
	ctl_semaphore_signal
	ctl_semaphore_wait
	ctl_timeout_wait
	ctl_set_isr
	ctl_task_die
	ctl_task_executing
	ctl_task_init
	ctl_task_list
	ctl_task_remove
	ctl_task_reschedule
	ctl_task_run
	ctl_task_set_priority
	ctl_timeout_wait
	ctl_timeslice_period
	ctl_umask_isr

	<cross_studio_io.h> - Debug I/O library
	debug_break
	debug_clearerr
	debug_fclose
	debug_feof
	debug_ferror
	debug_fflush
	debug_fgetc
	debug_fgets
	debug_filesize
	debug_fopen
	debug_fprintf
	debug_fputc
	debug_fputs
	debug_fread
	debug_printf
	debug_fseek
	debug_ftell
	debug_fwrite
	debug_getch
	debug_getchar
	debug_getd
	debug_getf
	debug_geti
	debug_getl
	debug_getll
	debug_gets
	debug_getu
	debug_getul
	debug_getull
	debug_kbhit
	debug_printf
	debug_putchar
	debug_puts
	debug_rewind
	debug_runtime_error
	debug_scanf
	debug_time

	<__armlib.h> - Misc ARM functions
	__ARMLIB_enableIRQ
	__ARMLIB_disableIRQ
	__ARMLIB_isrEnableIRQ
	__ARMLIB_isrDisableIRQ
	__ARMLIB_enableFIQ
	__ARMLIB_disableFIQ
	__ARMLIB_commTX
	__ARMLIB_commRX
	__ARMLIB_runCommPortServer
	__ARMLIB_crc32

	Standard C Library Reference
	<assert.h> - Diagnostics
	assert

	<ctype.h> - Character handling
	isalnum
	isalpha
	isblank
	iscntrl
	isdigit
	isgraph
	isupper
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	tolower
	toupper

	<errno.h> - Errors
	errno

	<limits.h> - Integer numerical limits
	CHAR_BIT
	CHAR_MIN
	CHAR_MAX
	INT_MIN
	INT_MAX
	LLONG_MIN
	LLONG_MAX
	LONG_MIN
	LONG_MAX
	SCHAR_MIN
	SCHAR_MAX
	SHRT_MIN
	SHRT_MAX
	UCHAR_MAX
	UINT_MAX
	ULLONG_MAX
	ULONG_MAX
	USHRT_MAX

	<math.h> - Mathematics
	acos
	acosf
	acosh
	acoshf
	asin
	asinf
	asinh
	asinhf
	atan
	atan2
	atan2f
	atanf
	atanh
	atanhf
	cbrt
	cbrtf
	ceil
	ceilf
	cos
	cosf
	cosh
	coshf
	exp
	expf
	fabs
	fabsf
	floor
	floorf
	fmax
	fmaxf
	fmin
	fminf
	fmod
	fmodf
	frexp
	frexpf
	hypot
	hypotf
	isfinite
	isinf
	isnan
	ldexp
	ldexpf
	log
	log10
	log10f
	logf
	modf
	modff
	pow
	powf
	scalbn
	scalbnf
	sin
	sinf
	sinh
	sinhf
	sqrt
	sqrtf
	tan
	tanf
	tanh
	tanhf

	<setjmp.h> - Non-local jumps
	jmp_buf
	longjmp
	setjmp

	<stdarg.h> - Variable arguments
	va_arg
	va_copy
	va_end
	va_end

	<stdio.h> - Input/output functions
	Formatted output control strings
	Formatted input control strings
	getchar
	gets
	printf
	putchar
	puts
	scanf
	snprintf
	sprintf
	sscanf
	vprintf
	vscanf
	vsnprintf
	vsprintf
	vsscanf

	<stdlib.h> - General utilities
	atof
	atoi
	atol
	atoll
	calloc
	div
	div_t
	free
	itoa
	ldiv
	ldiv_t
	lldiv
	lldiv_t
	lltoa
	ltoa
	malloc
	rand
	RAND_MAX
	realloc
	srand
	strtol
	strtof
	strtol
	strtoll
	strtoul
	strtoull
	ultoa
	ultoa
	utoa

	<string.h> - String handling
	memchr
	memcmp
	memcpy
	memmove
	memset
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtok

	CrossBuild
	CrossLoad
	Appendicies
	Copyright, disclaimer, and trademarks
	Copyright
	Disclaimer
	Trademarks

	Activating your product
	Project file format
	Project Templates file format
	Project property reference
	Assembler and Compiler Properties
	External Build Properties
	Folder Properties
	Build Properties
	Preprocessor Options
	Section Properties
	Input/Output Properties
	Staging Properties
	Combining Properties
	Library Properties
	Linker Properties
	Target Properties

	Code editor command summary
	Binary editor command summary
	Glossary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

