
Advanced RISC Machines

ARM

Document Number: ARM DDI 0020C

Issued: Dec 1994

Copyright Advanced RISC Machines Ltd (ARM) 1994

All rights reserved

ARM7
Data Sheet

Proprietary Notice
ARM, the ARM Powered logo, BlackICE and ICEbreaker are trademarks of Advanced RISC
Machines Ltd.

Neither the whole nor any part of the information contained in, or the product described in, this
datasheet may be adapted or reproduced in any material form except with the prior written
permission of the copyright holder.

The product described in this datasheet is subject to continuous developments and
improvements. All particulars of the product and its use contained in this datasheet are given by
ARM in good faith. However, all warranties implied or expressed, including but not limited to
implied warranties or merchantability, or fitness for purpose, are excluded.

This datasheet is intended only to assist the reader in the use of the product. ARM Ltd shall not
be liable for any loss or damage arising from the use of any information in this datasheet, or any
error or omission in such information, or any incorrect use of the product.

Change Log
Issue Date By Change

A Nov 93 TP Created.
B Aug 94 BJH Updated exception timing diagram and instruction cycles.
C Dec 94 PB Edited.

Preface

ii ARM7 Data Sheet

The ARM7 is a low-power, general purpose 32-bit RISC microprocessor macrocell for use in application or
customer-specific integrated circuts (ASICs or CSICs). Its simple, elegant and fully static design is
particularly suitable for cost and power-sensitive applications. The ARM7’s small die size makes it ideal for
integrating into a larger custom chip that could also contain RAM, ROM, logic, DSP and other cells.

Enhancements
The ARM7 is similar to the ARM6 but with the following enhancements:

■ fabrication on a sub-micron process for increased speed and reduced power consumption
■ 3V operation, for very low power consumption, as well as 5V operation for system compatibility
■ higher clock speed for faster program execution.

Applications
The ARM7 is ideally suited to those applications requiring RISC performance from a compact,
power-efficient processor. These include:

Telecomms GSM terminal controller

Datacomms Protocol conversion

Portable Computing Palmtop computer

Portable Instrument Handheld data acquisition unit

Automotive Engine management unit

Information Systems Smart cards

Imaging JPEG controller

Feature Summary
■ 32-bit RISC processor (32-bit data & address bus)
■ Big and Little Endian operating modes
■ High performance RISC

17 MIPS sustained @ 25 MHz (25 MIPS peak) @ 3V

■ Low power consumption
0.6mA/MHz @ 3V fabricated in .8µm CMOS

■ Fully static operation
ideal for power-sensitive applications

■ Fast interrupt response
for real-time applications

■ Virtual Memory System Support
■ Excellent high-level language support
■ Simple but powerful instruction set

Instruction
Decoder

&
Logic

Control

Address Register

Address
Incrementer

Register Bank

Barrel
Shifter

32 bit ALU

Write Data Register

Instruction
Pipeline &
Read Data
Register

 Booth’s
Multiplier

vii

 Table of Contents

1.0 Introduction 1
1.1 ARM7 Block diagram 2
1.2 ARM7 Functional Diagram 3

2.0 Signal Description 5

3.0 Programmer's Model 9
3.1 Hardware Configuration Signals 9
3.2 Operating Mode Selection 10
3.3 Registers 11
3.4 Exceptions 14
3.5 Reset 18

4.0 Instruction Set 19
4.1 Instruction Set Summary 19
4.2 The Condition Field 20
4.3 Branch and Branch with link (B, BL) 21
4.4 Data processing 23
4.5 PSR Transfer (MRS, MSR) 30
4.6 Multiply and Multiply-Accumulate (MUL, MLA) 34
4.7 Single data transfer (LDR, STR) 36
4.8 Block data transfer (LDM, STM) 42
4.9 Single data swap (SWP) 49
4.10 Software interrupt (SWI) 51
4.11 Coprocessor data operations (CDP) 53
4.12 Coprocessor data transfers (LDC, STC) 55
4.13 Coprocessor register transfers (MRC, MCR) 58
4.14 Undefined instruction 60
4.15 Instruction Set Examples 61

5.0 Memory Interface 65
5.1 Cycle types 65
5.2 Byte addressing 66
5.3 Address timing 68
5.4 Memory management 68
5.5 Locked operations 69
5.6 Stretching access times 69

6.0 Coprocessor Interface 71
6.1 Interface signals 71
6.2 Data transfer cycles 72
6.3 Register transfer cycle 72
6.4 Privileged instructions 72
6.5 Idempotency 72
6.6 Undefined instructions 73

7.0 Instruction Cycle Operations 75
7.1 Branch and branch with link 75
7.2 Data Operations 75
7.3 Multiply and multiply accumulate 77
7.4 Load register 77
7.5 Store register 78

ARM7 Data Sheet

viii

7.6 Load multiple registers 79
7.7 Store multiple registers 81
7.8 Data swap 81
7.9 Software interrupt and exception entry 82
7.10 Coprocessor data operation 83
7.11 Coprocessor data transfer (from memory to coprocessor) 83
7.12 Coprocessor data transfer (from coprocessor to memory) 85
7.13 Coprocessor register transfer (Load from coprocessor) 86
7.14 Coprocessor register transfer (Store to coprocessor) 86
7.15 Undefined instructions and coprocessor absent 87
7.16 Unexecuted instructions 88
7.17 Instruction Speed Summary 88

8.0 DC Parameters 91
8.1 Absolute Maximum Ratings 91
8.2 DC Operating Conditions 91

9.0 AC Parameters 93
9.1 Notes on AC Parameters 99

10.0 Appendix - Backward Compatibility 101

Introduction

1

1.0 Introduction

The ARM7 is part of the Advanced RISC Machines (ARM) family of general purpose 32-bit
microprocessors, which offer very low power consumption and price for high performance devices. The
architecture is based on Reduced Instruction Set Computer (RISC) principles, and the instruction set and
related decode mechanism are much simpler in comparison with microprogrammed Complex Instruction
Set Computers. This results in a high instruction throughput and impressive real-time interrupt response
from a small and cost-effective chip.

The instruction set comprises eleven basic instruction types:

• Two of these make use of the on-chip arithmetic logic unit, barrel shifter and multiplier to perform
high-speed operations on the data in a bank of 31 registers, each 32 bits wide;

• Three classes of instruction control data transfer between memory and the registers, one optimised
for flexibility of addressing, another for rapid context switching and the third for swapping data;

• Three instructions control the flow and privilege level of execution; and

• Three types are dedicated to the control of external coprocessors which allow the functionality of
the instruction set to be extended off-chip in an open and uniform way.

The ARM instruction set is a good target for compilers of many different high-level languages. Where
required for critical code segments, assembly code programming is also straightforward, unlike some RISC
processors which depend on sophisticated compiler technology to manage complicated instruction
interdependencies.

Pipelining is employed so that all parts of the processing and memory systems can operate continuously.
Typically, while one instruction is being executed, its successor is being decoded, and a third instruction is
being fetched from memory.

The memory interface has been designed to allow the performance potential to be realised without
incurring high costs in the memory system. Speed critical control signals are pipelined to allow system
control functions to be implemented in standard low-power logic, and these control signals facilitate the
exploitation of the fast local access modes offered by industry standard dynamic RAMs.

ARM7 has a 32 bit address bus. All ARM processors share the same instruction set, and ARM7 can be
configured to use a 26 bit address bus for backwards compatibility with earlier processors.

ARM7 is a fully static CMOS implementation of the ARM which allows the clock to be stopped in any part
of the cycle with extremely low residual power consumption and no loss of state.

Notation:

0x - marks a Hexadecimal quantity
BOLD - external signals are shown in bold capital letters
binary - where it is not clear that a quantity is binary it is followed by the word binary

ARM7 Data Sheet

2

1.1 ARM7 Block diagram

 Figure 1: ARM7 Block Diagram

LATEABT
A

nRESET

nMREQ

SEQ

ABORT

nIRQ

nFIQ

nRW

nBW

LOCK
nCPI

CPA

CPB

nWAIT

MCLK

nOPC

nTRANS

DATA32

BIGEND

PROG32

Instruction
Decoder

&
Control
Logic

Instruction Pipeline
& Read Data Register

DBE

D[31:0]

32 bit ALU

Barrel
Shifter

A

Address
Incrementer

Address Register

Register Bank
(31 x 32bit registers)
(6 status registers)

A[31:0]

ALE

I
n
c
r
e
m
e
n
t
e
r

B
u
s

P
C

B
u
s

L
U

B
u
s

b
u
s

B

b
u
s

Multiplier

ABE

Write Data Register

TCK

TMS

TDI

nTRST

TDO

Boundary
Scan
Logic

nM[4:0]

Booth’s

nENOUT nENIN

TBE

nENOUTDOUT[31:0] DATA[31:0]
DBE

nEXEC

Introduction

3

1.2 ARM7 Functional Diagram

 Figure 2: ARM7 Functional Diagram

DBE

ABE

nIRQ

nFIQ

Bus

Interrupts

nRESET

MCLK

nWAIT
Clocks

VDD

VSS
Power

nRW

nBW

LOCK

A[31:0]

nMREQ

SEQ

ABORT

Memory
Management

nOPC

nCPI

CPA

CPB

Controls

Coprocessor
Interface

nTRANS

Memory
Interface

Interface

PROG32

DATA32

BIGEND

LATEABT

Configuration

D[31:0]

ALE

TCK

TMS

TDI

nTRST

Boundary
Scan

TDO

ARM7

DOUT[31:0]

DATA[31:0]

A[31:0]

nENOUT

nM[4:0]
Processor
Mode

nEXEC

ARM7 Data Sheet

4

Signal Description

5

2.0 Signal Description

Name Type Description

A[31:0] O Addresses. This is the processor address bus. If ALE (address latch enable) is HIGH,
the addresses become valid during phase 2 of the cycle before the one to which they
refer and remain so during phase 1 of the referenced cycle. Their stable period may
be controlled by ALE as described below.

ABORT I Memory Abort. This is an input which allows the memory system to tell the
processor that a requested access is not allowed.

ALE I Address latch enable. This input is used to control transparent latches on the
address outputs. Normally the addresses change during phase 2 to the value
required during the next cycle, but for direct interfacing to ROMs they are required
to be stable to the end of phase 2. Taking ALE LOW until the end of phase 2 will
ensure that this happens. This signal has a similar effect on the following control
signals: nBW, nRW, LOCK, nOPC and nTRANS. If the system does not require
address lines to be held in this way, ALE must be tied HIGH. The address latch is
static, so ALE may be held LOW for long periods to freeze addresses.

BIGEND I Big Endian configuration. When this signal is HIGH the processor treats bytes in
memory as being in Big Endian format. When it is LOW memory is treated as Little
Endian. ARM processors which do not have selectable Endianism (ARM2,
ARM2aS, ARM3, ARM61) are Little Endian.

CPA I Coprocessor absent. A coprocessor which is capable of performing the operation
that ARM7 is requesting (by asserting nCPI) should take CPA LOW immediately.
If CPA is HIGH at the end of phase 1 of the cycle in which nCPI went LOW, ARM7
will abort the coprocessor handshake and take the undefined instruction trap. If
CPA is LOW and remains LOW, ARM7 will busy-wait until CPB is LOW and then
complete the coprocessor instruction.

CPB I Coprocessor busy. A coprocessor which is capable of performing the operation
which ARM7 is requesting (by asserting nCPI), but cannot commit to starting it
immediately, should indicate this by driving CPB HIGH. When the coprocessor is
ready to start it should take CPB LOW. ARM7 samples CPB at the end of phase 1 of
each cycle in which nCPI is LOW.

DATA[31:0] I Data bus in. During read cycles (when nRW = 0), the input data must be valid
before the end of phase 2 of the transfer cycle

DATA32 I 32 bit Data configuration. When this signal is HIGH the processor can access data
in a 32 bit address space using address lines A[31:0]. When it is LOW the processor
can access data from a 26 bit address space using A[25:0]. In this latter configuration
the address lines A[31:26] are not used. Before changing DATA32, ensure that the
processor is not about to access an address greater that 0x3FFFFFF in the next cycle.

DBE I Data bus enable. When DBE is LOW the write data buffer is disabled. When DBE
goes HIGH the write data buffer is free to be enabled during the next actual write
cycle. DBE facilitates data bus sharing for DMA and so on.

Table 1: Signal Description

ARM7 Data Sheet

6

DOUT[31:0] O Data bus out. During write cycles (when nRW = 1), the output data will become
valid during phase 1 and remain so throughout phase 2 of the transfer cycle.

LOCK O Locked operation. When LOCK is HIGH, the processor is performing a “locked”
memory access, and the memory controller must wait until LOCK goes LOW
before allowing another device to access the memory. LOCK changes while MCLK
is HIGH, and remains HIGH for the duration of the locked memory accesses. It is
active only during the data swap (SWP) instruction. The timing of this signal may
be modified by the use of ALE in a similar way to the address, please refer to the
ALE description. This signal may also be driven to a high impedance state by
driving ABE LOW.

MCLK I Memory clock input. This clock times all ARM7 memory accesses and internal
operations. The clock has two distinct phases - phase 1 in which MCLK is LOW and
phase 2 in which MCLK (and nWAIT) is HIGH. The clock may be stretched indefi-
nitely in either phase to allow access to slow peripherals or memory. Alternatively,
the nWAIT input may be used with a free running MCLK to achieve the same
effect.

nBW O Not byte/word. This is an output signal used by the processor to indicate to the
external memory system when a data transfer of a byte length is required. The sig-
nal is HIGH for word transfers and LOW for byte transfers and is valid for both
read and write cycles. The signal will become valid during phase 2 of the cycle
before the one in which the transfer will take place. It will remain stable through-
out phase 1 of the transfer cycle. The timing of this signal may be modified by the
use of ALE in a similar way to the address, please refer to the ALE description.
This signal may also be driven to a high impedance state by driving ABE LOW.

nCPI O Not Coprocessor instruction. When ARM7 executes a coprocessor instruction, it
will take this output LOW and wait for a response from the coprocessor. The action
taken will depend on this response, which the coprocessor signals on the CPA and
CPB inputs.

nENOUT O Not enable data outputs.This is an output signal used by the processor to indicate
that a write cycle is taking place, so the DOUT[31:0] data should be sent to the
memory system. It may be used to enable the DOUT[31:0] bus through tri-state
buffers onto the DATA[31:0] bus if the system requirement is for a bidirectional
data bus.

nENIN I NOT enable input. This signal may be used in conjunction with nENOUT to control
the data bus during write cycles. See Chapter 5.0 Memory Interface.

nFIQ I Not fast interrupt request. This is an asynchronous interrupt request to the
processor which causes it to be interrupted if taken LOW when the appropriate
enable in the processor is active. The signal is level sensitive and must be held LOW
until a suitable response is received from the processor.

nIRQ I Not interrupt request. As nFIQ, but with lower priority. May be taken LOW
asynchronously to interrupt the processor when the appropriate enable is active.

nM[4:0] O Not processor mode. These are output signals which are the inverses of the internal
status bits indicating the processor operation mode.

Name Type Description

Table 1: Signal Description (Continued)

Signal Description

7

nMREQ O Not memory request. This signal, when LOW, indicates that the processor requires
memory access during the following cycle. The signal becomes valid during phase
1, remaining valid through phase 2 of the cycle preceding that to which it refers.

nOPC O Not op-code fetch. When LOW this signal indicates that the processor is fetching an
instruction from memory; when HIGH, data (if present) is being transferred. The
signal becomes valid during phase 2 of the previous cycle, remaining valid through
phase 1 of the referenced cycle. The timing of this signal may be modified by the use
of ALE in a similar way to the address, please refer to the ALE description. This
signal may also be driven to a high impedance state by driving ABE LOW.

nRESET I Not reset. This is a level sensitive input signal which is used to start the processor
from a known address. A LOW level will cause the instruction being executed to
terminate abnormally. When nRESET becomes HIGH for at least one clock cycle,
the processor will re-start from address 0. nRESET must remain LOW (and nWAIT
must remain HIGH) for at least two clock cycles. During the LOW period the
processor will perform dummy instruction fetches with the address incrementing
from the point where reset was activated. The address will overflow to zero if
nRESET is held beyond the maximum address limit.

nRW O Not read/write.When HIGH this signal indicates a processor write cycle; when
LOW, a read cycle. It becomes valid during phase 2 of the cycle before that to which
it refers, and remains valid to the end of phase 1 of the referenced cycle. The timing
of this signal may be modified by the use of ALE in a similar way to the address,
please refer to the ALE description. This signal may also be driven to a high
impedance state by driving ABE LOW.

nTRANS O Not memory translate. When this signal is LOW it indicates that the processor is in
user mode. It may be used to tell memory management hardware when translation
of the addresses should be turned on, or as an indicator of non-user mode activity.
The timing of this signal may be modified by the use of ALE in a similar way to the
address, please refer to the ALE description. This signal may also be driven to a high
impedance state by driving ABE LOW.

nWAIT I Not wait. When accessing slow peripherals, ARM7 can be made to wait for an
integer number of MCLK cycles by driving nWAIT LOW. Internally, nWAIT is
ANDed with MCLK and must only change when MCLK is LOW. If nWAIT is not
used it must be tied HIGH.

PROG32 I 32 bit Program configuration. When this signal is HIGH the processor can fetch
instructions from a 32 bit address space using address lines A[31:0]. When it is LOW
the processor fetches instructions from a 26 bit address space using A[25:0]. In this
latter configuration the address lines A[31:26] are not used for instruction fetches.
Before changing PROG32, ensure that the processor is in a 26 bit mode, and is not
about to write to an address in the range 0 to 0x1F (inclusive) in the next cycle.

Name Type Description

Table 1: Signal Description (Continued)

ARM7 Data Sheet

8

Key to Signal Types:

I - Input

O - Output

P - Power

SEQ O Sequential address. This output signal will become HIGH when the address of the
next memory cycle will be related to that of the last memory access. The new
address will either be the same as or 4 greater than the old one.

The signal becomes valid during phase 1 and remains so through phase 2 of the
cycle before the cycle whose address it anticipates. It may be used, in combination
with the low-order address lines, to indicate that the next cycle can use a fast
memory mode (for example DRAM page mode) and/or to bypass the address
translation system.

VDD P Power supply. These connections provide power to the device.

VSS P Ground. These connections are the ground reference for all signals.

Name Type Description

Table 1: Signal Description (Continued)

Programmer's Model

9

3.0 Programmer's Model

ARM7 supports a variety of operating configurations. Some are controlled by inputs and are known as the
hardware configurations. Others may be controlled by software and these are known as operating modes.

3.1 Hardware Configuration Signals

The ARM7 processor provides 3 hardware configuration signals which may be changed while the processor
is running and which are discussed below.

3.1.1 Big and Little Endian (the bigend bit)

The BIGEND input sets whether the ARM7 treats words in memory as being stored in Big Endian or Little
Endian format Memory is viewed as a linear collection of bytes numbered upwards from zero. Bytes 0 to 3
hold the first stored word, bytes 4 to 7 the second and so on.

In the Little Endian scheme the lowest numbered byte in a word is considered to be the least significant byte
of the word and the highest numbered byte is the most significant. Byte 0 of the memory system should be
connected to data lines 7 through 0 (D[7:0]) in this scheme.

In the Big Endian scheme the most significant byte of a word is stored at the lowest numbered byte and the
least significant byte is stored at the highest numbered byte. Byte 0 of the memory system should therefore
be connected to data lines 31 through 24 (D[31:24]). Load and store are the only instructions affected by the
endianism, see section 4.7.3 on page 37 for more detail on them.

Little Endian

Higher Address 31 24 23 16 15 8 7 0 Word Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address

 • Least significant byte is at lowest address

 • Word is addressed by byte address of least significant byte

 Figure 3: Little Endian addresses of bytes within words

ARM7 Data Sheet

10

3.1.2 Configuration Bits for Backward Compatibility

The other two inputs, PROG32 and DATA32 are used for backward compatibility with earlier ARM
processors (see 10.0 Appendix - Backward Compatibility) but should normally be set to 1. This configuration
extends the address space to 32 bits, introduces major changes in the programmer's model as described
below and provides support for running existing 26 bit programs in the 32 bit environment. This mode is
recommended for compatibility with future ARM processors and all new code should be written to use
only the 32 bit operating modes.

Because the original ARM instruction set has been modified to accommodate 32 bit operation there are
certain additional restrictions which programmers must be aware of. These are indicated in the text by the
words shall and shall not. Reference should also be made to the ARM Application Notes “Rules for ARM Code
Writers” and “Notes for ARM Code Writers” available from your supplier.

3.2 Operating Mode Selection

ARM7 has a 32 bit data bus and a 32 bit address bus. The data types the processor supports are Bytes (8 bits)
and Words (32 bits), where words must be aligned to four byte boundaries. Instructions are exactly one
word, and data operations (e.g. ADD) are only performed on word quantities. Load and store operations
can transfer either bytes or words.

Big Endian

Higher Address 31 24 23 16 15 8 7 0 Word Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address

 • Most significant byte is at lowest address

 • Word is addressed by byte address of most significant byte

 Figure 4: Big Endian addresses of bytes within words

Programmer's Model

11

ARM7 supports six modes of operation:

(1) User mode (usr): the normal program execution state

(2) FIQ mode (fiq): designed to support a data transfer or channel process

(3) IRQ mode (irq): used for general purpose interrupt handling

(4) Supervisor mode (svc): a protected mode for the operating system

(5) Abort mode (abt): entered after a data or instruction prefetch abort

(6) Undefined mode (und): entered when an undefined instruction is executed

Mode changes may be made under software control or may be brought about by external interrupts or
exception processing. Most application programs will execute in User mode. The other modes, known as
privileged modes, will be entered to service interrupts or exceptions or to access protected resources.

3.3 Registers

 The processor has a total of 37 registers made up of 31 general 32 bit registers and 6 status registers. At any
one time 16 general registers (R0 to R15) and one or two status registers are visible to the programmer. The
visible registers depend on the processor mode and the other registers (the banked registers) are switched in
to support IRQ, FIQ, Supervisor, Abort and Undefined mode processing. The register bank organisation is
shown in Figure 5: Register Organisation. The banked registers are shaded in the diagram.

 In all modes 16 registers, R0 to R15, are directly accessible. All registers except R15 are general purpose and
may be used to hold data or address values. Register R15 holds the Program Counter (PC). When R15 is
read, bits [1:0] are zero and bits [31:2] contain the PC. A seventeenth register (the CPSR - Current Program
Status Register) is also accessible. It contains condition code flags and the current mode bits and may be
thought of as an extension to the PC.

R14 is used as the subroutine link register and receives a copy of R15 when a Branch and Link instruction
is executed. It may be treated as a general purpose register at all other times. R14_svc, R14_irq, R14_fiq,
R14_abt and R14_und are used similarly to hold the return values of R15 when interrupts and exceptions
arise, or when Branch and Link instructions are executed within interrupt or exception routines.

ARM7 Data Sheet

12

 Figure 5: Register Organisation

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). Many FIQ programs will not need
to save any registers. User mode, IRQ mode, Supervisor mode, Abort mode and Undefined mode each have
two banked registers mapped to R13 and R14. The two banked registers allow these modes to each have a
private stack pointer and link register. Supervisor, IRQ, Abort and Undefined mode programs which
require more than these two banked registers are expected to save some or all of the caller's registers (R0 to
R12) on their respective stacks. They are then free to use these registers which they will restore before
returning to the caller. In addition there are also five SPSRs (Saved Program Status Registers) which are
loaded with the CPSR when an exception occurs. There is one SPSR for each privileged mode.

General Registers and Program Counter Modes

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

R15 (PC)

User32 FIQ32 Supervisor32 Abort32 IRQ32 Undefined32

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

Program Status Registers

Programmer's Model

13

 Figure 6: Format of the Program Status Registers (PSRs)

The format of the Program Status Registers is shown in Figure 6: Format of the Program Status Registers
(PSRs). The N, Z, C and V bits are the condition code flags. The condition code flags in the CPSR may be
changed as a result of arithmetic and logical operations in the processor and may be tested by all
instructions to determine if the instruction is to be executed.

The I and F bits are the interrupt disable bits. The I bit disables IRQ interrupts when it is set and the F bit
disables FIQ interrupts when it is set. The M0, M1, M2, M3 and M4 bits (M[4:0]) are the mode bits, and these
determine the mode in which the processor operates. The interpretation of the mode bits is shown in Table
2: The Mode Bits. Not all combinations of the mode bits define a valid processor mode. Only those explicitly
described shall be used.

The bottom 28 bits of a PSR (incorporating I, F and M[4:0]) are known collectively as the control bits. The
control bits will change when an exception arises and in addition can be manipulated by software when the
processor is in a privileged mode. Unused bits in the PSRs are reserved and their state shall be preserved
when changing the flag or control bits. Programs shall not rely on specific values from the reserved bits
when checking the PSR status, since they may read as one or zero in future processors.

M[4:0] Mode Accessible register set

 10000 User PC, R14..R0 CPSR

 10001 FIQ PC, R14_fiq..R8_fiq, R7..R0 CPSR, SPSR_fiq

 10010 IRQ PC, R14_irq..R13_irq, R12..R0 CPSR, SPSR_irq

 10011 Supervisor PC, R14_svc..R13_svc, R12..R0 CPSR, SPSR_svc

 10111 Abort PC, R14_abt..R13_abt, R12..R0 CPSR, SPSR_abt

 11011 Undefined PC, R14_und..R13_und, R12..R0 CPSR, SPSR_und

Table 2: The Mode Bits

0123456782728293031

M0M1M2M3M4.FIVCZN

Overflow
Carry / Borrow / Extend
Zero
Negative / Less Than

Mode bits
FIQ disable
IRQ disable

. ..

flags control

ARM7 Data Sheet

14

3.4 Exceptions

Exceptions arise whenever there is a need for the normal flow of program execution to be broken, so that
(for example) the processor can be diverted to handle an interrupt from a peripheral. The processor state
just prior to handling the exception must be preserved so that the original program can be resumed when
the exception routine has completed. Many exceptions may arise at the same time.

ARM7 handles exceptions by making use of the banked registers to save state. The old PC and CPSR
contents are copied into the appropriate R14 and SPSR and the PC and mode bits in the CPSR bits are forced
to a value which depends on the exception. Interrupt disable flags are set where required to prevent
otherwise unmanageable nestings of exceptions. In the case of a re-entrant interrupt handler, R14 and the
SPSR should be saved onto a stack in main memory before re-enabling the interrupt; when transferring the
SPSR register to and from a stack, it is important to transfer the whole 32 bit value, and not just the flag or
control fields. When multiple exceptions arise simultaneously, a fixed priority determines the order in
which they are handled. The priorities are listed later in this chapter.

3.4.1 FIQ

The FIQ (Fast Interrupt reQuest) exception is externally generated by taking the nFIQ input LOW. This
input can accept asynchronous transitions, and is delayed by one clock cycle for synchronisation before it
can affect the processor execution flow. It is designed to support a data transfer or channel process, and has
sufficient private registers to remove the need for register saving in such applications (thus minimising the
overhead of context switching). The FIQ exception may be disabled by setting the F flag in the CPSR (but
note that this is not possible from User mode). If the F flag is clear, ARM7 checks for a LOW level on the
output of the FIQ synchroniser at the end of each instruction.

When a FIQ is detected, ARM7 performs the following:

(1) Saves the address of the next instruction to be executed plus 4 in R14_fiq; saves CPSR in SPSR_fiq

(2) Forces M[4:0]=10001 (FIQ mode) and sets the F and I bits in the CPSR

(3) Forces the PC to fetch the next instruction from address 0x1C

To return normally from FIQ, use SUBS PC, R14_fiq,#4 which will restore both the PC (from R14) and the
CPSR (from SPSR_fiq) and resume execution of the interrupted code.

3.4.2 IRQ

The IRQ (Interrupt ReQuest) exception is a normal interrupt caused by a LOW level on the nIRQ input. It
has a lower priority than FIQ, and is masked out when a FIQ sequence is entered. Its effect may be masked
out at any time by setting the I bit in the CPSR (but note that this is not possible from User mode). If the I
flag is clear, ARM7 checks for a LOW level on the output of the IRQ synchroniser at the end of each
instruction. When an IRQ is detected, ARM7 performs the following:

(1) Saves the address of the next instruction to be executed plus 4 in R14_irq; saves CPSR in SPSR_irq

(2) Forces M[4:0]=10010 (IRQ mode) and sets the I bit in the CPSR

(3) Forces the PC to fetch the next instruction from address 0x18

Programmer's Model

15

To return normally from IRQ, use SUBS PC,R14_irq,#4 which will restore both the PC and the CPSR and
resume execution of the interrupted code.

3.4.3 Abort

An ABORT can be signalled by the external ABORT input. ABORT indicates that the current memory
access cannot be completed. For instance, in a virtual memory system the data corresponding to the current
address may have been moved out of memory onto a disc, and considerable processor activity may be
required to recover the data before the access can be performed successfully. ARM7 checks for ABORT
during memory access cycles. When successfully aborted ARM7 will respond in one of two ways:

(1) If the abort occurred during an instruction prefetch (a Prefetch Abort), the prefetched instruction is
marked as invalid but the abort exception does not occur immediately. If the instruction is not
executed, for example as a result of a branch being taken while it is in the pipeline, no abort will
occur. An abort will take place if the instruction reaches the head of the pipeline and is about to be
executed.

(2) If the abort occurred during a data access (a Data Abort), the action depends on the instruction type.

(a) Single data transfer instructions (LDR, STR) will write back modified base registers and the Abort
handler must be aware of this.

(b) The swap instruction (SWP) is aborted as though it had not executed, though externally the read
access may take place.

(c) Block data transfer instructions (LDM, STM) complete, and if write-back is set, the base is updated.
If the instruction would normally have overwritten the base with data (i.e. LDM with the base in
the transfer list), this overwriting is prevented. All register overwriting is prevented after the Abort
is indicated, which means in particular that R15 (which is always last to be transferred) is preserved
in an aborted LDM instruction.

When either a prefetch or data abort occurs, ARM7 performs the following:

(1) Saves the address of the aborted instruction plus 4 (for prefetch aborts) or 8 (for data aborts) in
R14_abt; saves CPSR in SPSR_abt.

(2) Forces M[4:0]=10111 (Abort mode) and sets the I bit in the CPSR.

(3) Forces the PC to fetch the next instruction from either address 0x0C (prefetch abort) or address 0x10
(data abort).

To return after fixing the reason for the abort, use SUBS PC,R14_abt,#4 (for a prefetch abort) or SUBS
PC,R14_abt,#8 (for a data abort). This will restore both the PC and the CPSR and retry the aborted
instruction.

The abort mechanism allows a demand paged virtual memory system to be implemented when suitable
memory management software is available. The processor is allowed to generate arbitrary addresses, and
when the data at an address is unavailable the MMU signals an abort. The processor traps into system
software which must work out the cause of the abort, make the requested data available, and retry the
aborted instruction. The application program needs no knowledge of the amount of memory available to
it, nor is its state in any way affected by the abort.

ARM7 Data Sheet

16

3.4.4 Software interrupt

The software interrupt instruction (SWI) is used for getting into Supervisor mode, usually to request a
particular supervisor function. When a SWI is executed, ARM7 performs the following:

(1) Saves the address of the SWI instruction plus 4 in R14_svc; saves CPSR in SPSR_svc

(2) Forces M[4:0]=10011 (Supervisor mode) and sets the I bit in the CPSR

(3) Forces the PC to fetch the next instruction from address 0x08

To return from a SWI, use MOVS PC,R14_svc. This will restore the PC and CPSR and return to the
instruction following the SWI.

3.4.5 Undefined instruction trap

When the ARM7 comes across an instruction which it cannot handle (see Chapter 4.0 Instruction Set), it offers
it to any coprocessors which may be present. If a coprocessor can perform this instruction but is busy at that
time, ARM7 will wait until the coprocessor is ready or until an interrupt occurs. If no coprocessor can
handle the instruction then ARM7 will take the undefined instruction trap.

The trap may be used for software emulation of a coprocessor in a system which does not have the
coprocessor hardware, or for general purpose instruction set extension by software emulation.

When ARM7 takes the undefined instruction trap it performs the following:

(1) Saves the address of the Undefined or coprocessor instruction plus 4 in R14_und; saves CPSR in
SPSR_und.

(2) Forces M[4:0]=11011 (Undefined mode) and sets the I bit in the CPSR

(3) Forces the PC to fetch the next instruction from address 0x04

To return from this trap after emulating the failed instruction, use MOVS PC,R14_und. This will restore the
CPSR and return to the instruction following the undefined instruction.

Programmer's Model

17

3.4.6 Vector Summary

These are byte addresses, and will normally contain a branch instruction pointing to the relevant routine.

The FIQ routine might reside at 0x1C onwards, and thereby avoid the need for (and execution time of) a
branch instruction.

3.4.7 Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system determines the order in which they
will be handled:

(1) Reset (highest priority)

(2) Data abort

(3) FIQ

(4) IRQ

(5) Prefetch abort

(6) Undefined Instruction, Software interrupt (lowest priority)

Note that not all exceptions can occur at once. Undefined instruction and software interrupt are mutually
exclusive since they each correspond to particular (non-overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (i.e. the F flag in the CPSR is clear),
ARM7 will enter the data abort handler and then immediately proceed to the FIQ vector. A normal return
from FIQ will cause the data abort handler to resume execution. Placing data abort at a higher priority than
FIQ is necessary to ensure that the transfer error does not escape detection; the time for this exception entry
should be added to worst case FIQ latency calculations.

Address Exception Mode on entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 -- reserved -- --

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ

Table 3: Vector Summary

ARM7 Data Sheet

18

3.4.8 Interrupt Latencies

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time the request can take
to pass through the synchroniser (Tsyncmax), plus the time for the longest instruction to complete (Tldm, the
longest instruction is an LDM which loads all the registers including the PC), plus the time for the data abort
entry (Texc), plus the time for FIQ entry (Tfiq). At the end of this time ARM7 will be executing the instruction
at 0x1C.

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texc is 3 cycles, and Tfiq is 2 cycles. The total time is
therefore 28 processor cycles. This is just over 1.4 microseconds in a system which uses a continuous 20
MHz processor clock. The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ
has higher priority and could delay entry into the IRQ handling routine for an arbitrary length of time. The
minimum latency for FIQ or IRQ consists of the shortest time the request can take through the synchroniser
(Tsyncmin) plus Tfiq. This is 4 processor cycles.

3.5 Reset

When the nRESET signal goes LOW, ARM7 abandons the executing instruction and then continues to fetch
instructions from incrementing word addresses.

When nRESET goes HIGH again, ARM7 does the following:

(1) Overwrites R14_svc and SPSR_svc by copying the current values of the PC and CPSR into them.
The value of the saved PC and CPSR is not defined.

(2) Forces M[4:0]=10011 (Supervisor mode) and sets the I and F bits in the CPSR.

(3) Forces the PC to fetch the next instruction from address 0x00

Instruction Set - Summary

19

4.0 Instruction Set

4.1 Instruction Set Summary

A summary of the ARM7 instruction set is shown in Figure 7: Instruction Set Summary.

Note: some instruction codes are not defined but do not cause the Undefined instruction trap to be taken,
for instance a Multiply instruction with bit 6 changed to a 1. These instructions shall not be used,
as their action may change in future ARM implementations.

 Figure 7: Instruction Set Summary

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0

Cond 0 0 Opcode

21

S Rn Rd Operand 2
Data Processing
PSR Transfer

Multiply

Single Data Swap

Single Data Transfer

Undefined

Block Data Transfer

Coproc Data Transfer

Branch

Coproc Data Operation

Coproc Register Transfer

Software Interrupt

26 25 22

I

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

0 0 0 0 0 0 SA Rd Rn Rs 1 0 0 1 Rm

1 0 0 1 Rm0 0 0 0RdRn0 0 0 1 0 B 0 0

offsetRdRnB W LI P U0 1

0 1 1 XXXXXXXXXXXXXXXXXXXX 1 XXXX

1 0 0 S W LP U Rn Register List

1 0 1 L

1 1 0

offset

1 1 1 0 0 CRm

1 1 1 0 LCP Opc

N W LP U Rn offset CRd CP#

1 1 1 1

CP Opc CRn CRd

 CRn Rd

 CP#

 CP#

 CP

 CP 1 CRm

ignored by processor

ARM7 Data Sheet

20

4.2 The Condition Field

 Figure 8: Condition Codes

All ARM7 instructions are conditionally executed, which means that their execution may or may not take
place depending on the values of the N, Z, C and V flags in the CPSR. The condition encoding is shown in
Figure 8: Condition Codes.

If the always (AL) condition is specified, the instruction will be executed irrespective of the flags. The never
(NV) class of condition codes shall not be used as they will be redefined in future variants of the ARM
architecture. If a NOP is required it is suggested that MOV R0,R0 be used. The assembler treats the absence
of a condition code as though always had been specified.

The other condition codes have meanings as detailed in Figure 8: Condition Codes, for instance code 0000
(EQual) causes the instruction to be executed only if the Z flag is set. This would correspond to the case
where a compare (CMP) instruction had found the two operands to be equal. If the two operands were
different, the compare instruction would have cleared the Z flag and the instruction will not be executed.

Cond

31 28 27 0

Condition field
0000 = EQ - Z set (equal)
0001 = NE - Z clear (not equal)
0010 = CS - C set (unsigned higher or same)
0011 = CC - C clear (unsigned lower)
0100 = MI - N set (negative)
0101 = PL - N clear (positive or zero)
0110 = VS - V set (overflow)
0111 = VC - V clear (no overflow)
1000 = HI - C set and Z clear (unsigned higher)
1001 = LS - C clear or Z set (unsigned lower or same)
1010 = GE - N set and V set, or N clear and V clear (greater or equal)
1011 = LT - N set and V clear, or N clear and V set (less than)
1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 = LE - Z set, or N set and V clear, or N clear and V set (less than or equal)
1110 = AL - always
1111 = NV - never

Instruction Set - B, BL

21

4.3 Branch and Branch with link (B, BL)

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 9: Branch Instructions.

Branch instructions contain a signed 2's complement 24 bit offset. This is shifted left two bits, sign extended
to 32 bits, and added to the PC. The instruction can therefore specify a branch of +/- 32Mbytes. The branch
offset must take account of the prefetch operation, which causes the PC to be 2 words (8 bytes) ahead of the
current instruction.

 Figure 9: Branch Instructions

Branches beyond +/- 32Mbytes must use an offset or absolute destination which has been previously
loaded into a register. In this case the PC should be manually saved in R14 if a Branch with Link type
operation is required.

4.3.1 The link bit

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank. The PC value
written into R14 is adjusted to allow for the prefetch, and contains the address of the instruction following
the branch and link instruction. Note that the CPSR is not saved with the PC.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register is still valid or
LDM Rn!,{..PC} if the link register has been saved onto a stack pointed to by Rn.

4.3.2 Instruction Cycle Times

Branch and Branch with Link instructions take 2S + 1N incremental cycles, where S and N are as defined in
section 5.1 Cycle types on page 65.

4.3.3 Assembler syntax

B{L}{cond} <expression>

{L} is used to request the Branch with Link form of the instruction. If absent, R14 will not be affected by the
instruction.

{cond} is a two-char mnemonic as shown in Figure 8: Condition Codes (EQ, NE, VS etc). If absent then AL
(ALways) will be used.

Cond 101 L offset

31 28 27 25 24 23 0

Link bit
0 = Branch
1 = Branch with Link

Condition field

ARM7 Data Sheet

22

<expression> is the destination. The assembler calculates the offset.

Items in {} are optional. Items in <> must be present.

4.3.4 Examples

here BAL here ; assembles to 0xEAFFFFFE (note effect of PC offset)
B there ; ALways condition used as default

CMP R1,#0 ; compare R1 with zero and branch to fred if R1
BEQ fred ; was zero otherwise continue to next instruction

BL sub+ROM ; call subroutine at computed address

ADDS R1,#1 ; add 1 to register 1, setting CPSR flags on the
BLCC sub ; result then call subroutine if the C flag is clear,

; which will be the case unless R1 held 0xFFFFFFFF

Instruction Set - Data processing

23

4.4 Data processing

The instruction is only executed if the condition is true, defined at the beginning of this chapter. The
instruction encoding is shown in Figure 10: Data Processing Instructions.

The instruction produces a result by performing a specified arithmetic or logical operation on one or two
operands. The first operand is always a register (Rn). The second operand may be a shifted register (Rm) or
a rotated 8 bit immediate value (Imm) according to the value of the I bit in the instruction. The condition
codes in the CPSR may be preserved or updated as a result of this instruction, according to the value of the
S bit in the instruction. Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are
used only to perform tests and to set the condition codes on the result and always have the S bit set. The
instructions and their effects are listed in Table 4: ARM Data Processing Instructions.

 Figure 10: Data Processing Instructions

Cond 00 I OpCode Rn Rd Operand 2

011121516192021242526272831

Destination register
1st operand register
Set condition codes

Operation Code

0 = do not alter condition codes
1 = set condition codes

0000 = AND - Rd:= Op1 AND Op2

0010 = SUB - Rd:= Op1 - Op2
0011 = RSB - Rd:= Op2 - Op1
0100 = ADD - Rd:= Op1 + Op2
0101 = ADC - Rd:= Op1 + Op2 + C
0110 = SBC - Rd:= Op1 - Op2 + C
0111 = RSC - Rd:= Op2 - Op1 + C
1000 = TST - set condition codes on Op1 AND Op2
1001 = TEQ - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2
1100 = ORR - Rd:= Op1 OR Op2
1101 = MOV - Rd:= Op2
1110 = BIC - Rd:= Op1 AND NOT Op2
1111 = MVN - Rd:= NOT Op2

Immediate Operand
0 = operand 2 is a register

1 = operand 2 is an immediate value

Shift Rm

Rotate

S

Unsigned 8 bit immediate value

2nd operand register
shift applied to Rm

shift applied to Imm

Imm

Condition field

11 8 7 0

03411

0001 = EOR - Rd:= Op1 EOR Op2

- 1
- 1

ARM7 Data Sheet

24

4.4.1 CPSR flags

The data processing operations may be classified as logical or arithmetic. The logical operations (AND,
EOR, TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action on all corresponding bits of the operand
or operands to produce the result. If the S bit is set (and Rd is not R15, see below) the V flag in the CPSR will
be unaffected, the C flag will be set to the carry out from the barrel shifter (or preserved when the shift
operation is LSL #0), the Z flag will be set if and only if the result is all zeros, and the N flag will be set to
the logical value of bit 31 of the result.

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each operand as a 32 bit
integer (either unsigned or 2's complement signed, the two are equivalent). If the S bit is set (and Rd is not
R15) the V flag in the CPSR will be set if an overflow occurs into bit 31 of the result; this may be ignored if
the operands were considered unsigned, but warns of a possible error if the operands were 2's complement
signed. The C flag will be set to the carry out of bit 31 of the ALU, the Z flag will be set if and only if the
result was zero, and the N flag will be set to the value of bit 31 of the result (indicating a negative result if
the operands are considered to be 2's complement signed).

Assembler
Mnemonic

OpCode Action

AND 0000 operand1 AND operand2

EOR 0001 operand1 EOR operand2

SUB 0010 operand1 - operand2

RSB 0011 operand2 - operand1

ADD 0100 operand1 + operand2

ADC 0101 operand1 + operand2 + carry

SBC 0110 operand1 - operand2 + carry - 1

RSC 0111 operand2 - operand1 + carry - 1

TST 1000 as AND, but result is not written

TEQ 1001 as EOR, but result is not written

CMP 1010 as SUB, but result is not written

CMN 1011 as ADD, but result is not written

ORR 1100 operand1 OR operand2

MOV 1101 operand2 (operand1 is ignored)

BIC 1110 operand1 AND NOT operand2 (Bit clear)

MVN 1111 NOT operand2 (operand1 is ignored)

Table 4: ARM Data Processing Instructions

Instruction Set - Shifts

25

4.4.2 Shifts

When the second operand is specified to be a shifted register, the operation of the barrel shifter is controlled
by the Shift field in the instruction. This field indicates the type of shift to be performed (logical left or right,
arithmetic right or rotate right). The amount by which the register should be shifted may be contained in
an immediate field in the instruction, or in the bottom byte of another register (other than R15). The
encoding for the different shift types is shown in Figure 11: ARM Shift Operations.

 Figure 11: ARM Shift Operations

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which may take any value
from 0 to 31. A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified amount
to a more significant position. The least significant bits of the result are filled with zeros, and the high bits
of Rm which do not map into the result are discarded, except that the least significant discarded bit becomes
the shifter carry output which may be latched into the C bit of the CPSR when the ALU operation is in the
logical class (see above). For example, the effect of LSL #5 is shown in Figure 12: Logical Shift Left.

 Figure 12: Logical Shift Left

Note that LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C flag. The
contents of Rm are used directly as the second operand.

A logical shift right (LSR) is similar, but the contents of Rm are moved to less significant positions in the
result. LSR #5 has the effect shown in Figure 13: Logical Shift Right.

0 0 1Rs

11 8 7 6 5 411 7 6 5 4

Shift type

Shift amount
5 bit unsigned integer

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift type

Shift register

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift amount specified in
bottom byte of Rs

0 0 0 0 0

contents of Rm

value of operand 2

31 27 26 0

carry out

ARM7 Data Sheet

26

 Figure 13: Logical Shift Right

The form of the shift field which might be expected to correspond to LSR #0 is used to encode LSR #32,
which has a zero result with bit 31 of Rm as the carry output. Logical shift right zero is redundant as it is
the same as logical shift left zero, so the assembler will convert LSR #0 (and ASR #0 and ROR #0) into LSL
#0, and allow LSR #32 to be specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits are filled with bit 31
of Rm instead of zeros. This preserves the sign in 2's complement notation. For example, ASR #5 is shown
in Figure 14: Arithmetic Shift Right.

 Figure 14: Arithmetic Shift Right

The form of the shift field which might be expected to give ASR #0 is used to encode ASR #32. Bit 31 of Rm
is again used as the carry output, and each bit of operand 2 is also equal to bit 31 of Rm. The result is
therefore all ones or all zeros, according to the value of bit 31 of Rm.

Rotate right (ROR) operations reuse the bits which 'overshoot' in a logical shift right operation by
reintroducing them at the high end of the result, in place of the zeros used to fill the high end in logical right
operations. For example, ROR #5 is shown in Figure 15: Rotate Right.

contents of Rm

value of operand 2

31 0

carry out

0 0 0 0 0

5 4

contents of Rm

value of operand 2

31 0

carry out

5 430

Instruction Set - Shifts

27

 Figure 15: Rotate Right

The form of the shift field which might be expected to give ROR #0 is used to encode a special function of
the barrel shifter, rotate right extended (RRX). This is a rotate right by one bit position of the 33 bit quantity
formed by appending the CPSR C flag to the most significant end of the contents of Rm as shown in Figure
16: Rotate Right Extended.

 Figure 16: Rotate Right Extended

Register specified shift amount

Only the least significant byte of the contents of Rs is used to determine the shift amount. Rs can be any
general register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second operand, and the old value of
the CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an instruction specified
shift with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift described above:

(1) LSL by 32 has result zero, carry out equal to bit 0 of Rm.

(2) LSL by more than 32 has result zero, carry out zero.

(3) LSR by 32 has result zero, carry out equal to bit 31 of Rm.

(4) LSR by more than 32 has result zero, carry out zero.

(5) ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.

contents of Rm

value of operand 2

31 0

carry out

5 4

contents of Rm

value of operand 2

31 0

carry
out

1

C
in

ARM7 Data Sheet

28

(6) ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

(7) ROR by n where n is greater than 32 will give the same result and carry out as ROR by n-32;
therefore repeatedly subtract 32 from n until the amount is in the range 1 to 32 and see above.

Note that the zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit
will cause the instruction to be a multiply or undefined instruction.

4.4.3 Immediate operand rotates

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift operation on the 8 bit
immediate value. This value is zero extended to 32 bits, and then subject to a rotate right by twice the value
in the rotate field. This enables many common constants to be generated, for example all powers of 2.

4.4.4 Writing to R15

When Rd is a register other than R15, the condition code flags in the CPSR may be updated from the ALU
flags as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation is placed in R15 and
the CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and the SPSR corresponding
to the current mode is moved to the CPSR. This allows state changes which atomically restore both PC and
CPSR. This form of instruction shall not be used in User mode.

4.4.5 Using R15 as an operand

If R15 (the PC) is used as an operand in a data processing instruction the register is used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction prefetching. If the
shift amount is specified in the instruction, the PC will be 8 bytes ahead. If a register is used to specify the
shift amount the PC will be 12 bytes ahead.

4.4.6 TEQ, TST, CMP & CMN opcodes

These instructions do not write the result of their operation but do set flags in the CPSR. An assembler shall
always set the S flag for these instructions even if it is not specified in the mnemonic.

The TEQP form of the instruction used in earlier processors shall not be used in the 32 bit modes, the PSR
transfer operations should be used instead. If used in these modes, its effect is to move SPSR_<mode> to
CPSR if the processor is in a privileged mode and to do nothing if in User mode.

4.4.7 Instruction Cycle Times

Data Processing instructions vary in the number of incremental cycles taken as follows:

Normal Data Processing 1S

Data Processing with register specified shift 1S + 1IData Processing with PC written2S + 1N

Data Processing with register secified shift and PC written 2S + 1N + 1I

Instruction Set - TEQ, TST, CMP & CMN

29

S, N and I are as defined in section 5.1 Cycle types on page 65.

4.4.8 Assembler syntax

(1) MOV,MVN - single operand instructions

<opcode>{cond}{S} Rd,<Op2>

(2) CMP,CMN,TEQ,TST - instructions which do not produce a result.

<opcode>{cond} Rn,<Op2>

(3) AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC

<opcode>{cond}{S} Rd,Rn,<Op2>

where <Op2> is Rm{,<shift>} or,<#expression>

{cond} - two-character condition mnemonic, see Figure 8: Condition Codes

{S} - set condition codes if S present (implied for CMP, CMN, TEQ, TST).

Rd, Rn and Rm are expressions evaluating to a register number.

If <#expression> is used, the assembler will attempt to generate a shifted immediate 8-bit field to match the
expression. If this is impossible, it will give an error.

<shift> is <shiftname> <register> or <shiftname> #expression, or RRX (rotate right one bit with extend).

<shiftname>s are: ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL, they assemble to the same code.)

4.4.9 Examples

ADDEQ R2,R4,R5 ; if the Z flag is set make R2:=R4+R5

TEQS R4,#3 ; test R4 for equality with 3
; (the S is in fact redundant as the
; assembler inserts it automatically)

SUB R4,R5,R7,LSR R2 ; logical right shift R7 by the number in
; the bottom byte of R2, subtract result
; from R5, and put the answer into R4

MOV PC,R14 ; return from subroutine

MOVS PC,R14 ; return from exception and restore CPSR
 from SPSR_mode

ARM7 Data Sheet

30

4.5 PSR Transfer (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter.

The MRS and MSR instructions are formed from a subset of the Data Processing operations and are
implemented using the TEQ, TST, CMN and CMP instructions without the S flag set. The encoding is
shown in Figure 17: PSR Transfer.

These instructions allow access to the CPSR and SPSR registers. The MRS instruction allows the contents of
the CPSR or SPSR_<mode> to be moved to a general register. The MSR instruction allows the contents of a
general register to be moved to the CPSR or SPSR_<mode> register.

The MSR instruction also allows an immediate value or register contents to be transferred to the condition
code flags (N,Z,C and V) of CPSR or SPSR_<mode> without affecting the control bits. In this case, the top
four bits of the specified register contents or 32 bit immediate value are written to the top four bits of the
relevant PSR.

4.5.1 Operand restrictions

In User mode, the control bits of the CPSR are protected from change, so only the condition code flags of
the CPSR can be changed. In other (privileged) modes the entire CPSR can be changed.

The SPSR register which is accessed depends on the mode at the time of execution. For example, only
SPSR_fiq is accessible when the processor is in FIQ mode.

R15 shall not be specified as the source or destination register.

A further restriction is that no attempt shall be made to access an SPSR in User mode, since no such register
exists.

Instruction Set - MRS, MSR

31

 Figure 17: PSR Transfer

Cond

01112151621272831

Condition field

P

2223

0 = CPSR
1 = SPSR_<current mode>

00010 000000000000s 001111 Rd

Destination register

Source PSR

Condition field

MRS

021272831 2223

MSR

RmPdCond 00010

4 3

Condition field

272831 2223

MSR

PdCond

1010011111 00000000

12 11

Source register

21 12

101000111100 I 10

011

Source operand

Immediate Operand

Rm

Rotate

Unsigned 8 bit immediate value

shift applied to Imm

Imm

11 8 7 0

03411

Destination PSR
0 = CPSR
1 = SPSR_<current mode>

Destination PSR
0 = CPSR
1 = SPSR_<current mode>

0 = Source operand is a register

1 = Source operand is an immediate value

00000000

Source register

(transfer PSR contents to a register)

(transfer register contents to PSR)

(transfer register contents or immediate value to PSR flag bits only)

ARM7 Data Sheet

32

4.5.2 Reserved bits

Only eleven bits of the PSR are defined in ARM7 (N,Z,C,V,I,F & M[4:0]); the remaining bits (= PSR[27:8,5])
are reserved for use in future versions of the processor. To ensure the maximum compatibility between
ARM7 programs and future processors, the following rules should be observed:

(1) The reserved bits shall be preserved when changing the value in a PSR.

(2) Programs shall not rely on specific values from the reserved bits when checking the PSR status,
since they may read as one or zero in future processors.

A read-modify-write strategy should therefore be used when altering the control bits of any PSR register;
this involves transferring the appropriate PSR register to a general register using the MRS instruction,
changing only the relevant bits and then transferring the modified value back to the PSR register using the
MSR instruction.

e.g. The following sequence performs a mode change:

MRS R0,CPSR ; take a copy of the CPSR
BIC R0,R0,#0x1F ; clear the mode bits
ORR R0,R0,#new_mode ; select new mode
MSR CPSR,R0 ; write back the modified CPSR

When the aim is simply to change the condition code flags in a PSR, a value can be written directly to the
flag bits without disturbing the control bits. e.g. The following instruction sets the N,Z,C & V flags:

MSR CPSR_flg,#0xF0000000 ; set all the flags regardless of
; their previous state (does not
; affect any control bits)

No attempt shall be made to write an 8 bit immediate value into the whole PSR since such an operation
cannot preserve the reserved bits.

4.5.3 Instruction Cycle Times

PSR Transfers take 1S incremental cycles, where S is as defined in section 5.1 Cycle types on page 65.

4.5.4 Assembler syntax

(1) MRS - transfer PSR contents to a register

MRS{cond} Rd,<psr>

(2) MSR - transfer register contents to PSR

MSR{cond} <psr>,Rm

(3) MSR - transfer register contents to PSR flag bits only

MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C & V flags respectively.

Instruction Set - MRS, MSR

33

(4) MSR - transfer immediate value to PSR flag bits only

MSR{cond} <psrf>,<#expression>

The expression should symbolise a 32 bit value of which the most significant four bits are written
to the N,Z,C & V flags respectively.

{cond} - two-character condition mnemonic, see Figure 8: Condition Codes

Rd and Rm are expressions evaluating to a register number other than R15

<psr> is CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are synonyms as are SPSR and SPSR_all)

<psrf> is CPSR_flg or SPSR_flg

Where <#expression> is used, the assembler will attempt to generate a shifted immediate 8-bit field to
match the expression. If this is impossible, it will give an error.

4.5.5 Examples

In User mode the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] <- 0xA
; (i.e. set N,C; clear Z,V)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5
; (i.e. set Z,V; clear N,C)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

MSR SPSR_all,Rm ; SPSR_<mode>[31:0] <- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <- Rm[31:28]

MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] <- 0xC
; (i.e. set N,Z; clear C,V)

MRS Rd,SPSR ; Rd[31:0] <- SPSR_<mode>[31:0]

ARM7 Data Sheet

34

4.6 Multiply and Multiply-Accumulate (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 18: Multiply Instructions.

The multiply and multiply-accumulate instructions use a 2 bit Booth's algorithm to perform integer
multiplication. They give the least significant 32 bits of the product of two 32 bit operands, and may be used
to synthesize higher precision multiplications.

 Figure 18: Multiply Instructions

The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be set to zero for
compatibility with possible future upgrades to the instruction set.

The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which can save an explicit ADD instruction in some
circumstances.

The results of a signed multiply and of an unsigned multiply of 32 bit operands differ only in the upper 32
bits - the low 32 bits of the signed and unsigned results are identical. As these instructions only produce the
low 32 bits of a multiply, they can be used for both signed and unsigned multiplies.

For example consider the multiplication of the operands:

Operand A Operand B Result

0xFFFFFFF6 0x00000014 0xFFFFFF38

If the operands are interpreted as signed, operand A has the value -10, operand B has the value 20, and the
result is -200 which is correctly represented as 0xFFFFFF38

If the operands are interpreted as unsigned, operand A has the value 4294967286, operand B has the value
20 and the result is 85899345720, which is represented as 0x13FFFFFF38, so the least significant 32 bits are
0xFFFFFF38.

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

034781112151619202122272831

Operand registers
Destination register
Set condition code

Accumulate

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

Condition Field

Instruction Set - MUL, MLA

35

4.6.1 Operand restrictions

Due to the way multiplication was implemented in other ARM processors, certain combinations of operand
registers should be avoided. The ARM7’s advanced multiplier can handle all operand combinations but by
observing these restrictions code written for the ARM7 will be more compatible with other ARM
processors. (The assembler will issue a warning if these restrictions are overlooked.)

The destination register Rd shall not be the same as the operand register Rm. R15 shall not be used as an
operand or as the destination register.

All other register combinations will give correct results, and Rd, Rn and Rs may use the same register when
required.

4.6.2 CPSR flags

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N (Negative) and Z
(Zero) flags are set correctly on the result (N is made equal to bit 31 of the result, and Z is set if and only if
the result is zero). The C (Carry) flag is set to a meaningless value and the V (oVerflow) flag is unaffected.

4.6.3 Instruction Cycle Times

The Multiply instructions take 1S + mI cycles to execute, where S and I are as defined in section 5.1 Cycle
types on page 65.

m is the number of cycles required by the multiply algorithm, which is determined by the contents of
Rs. Multiplication by any number between 2^(2m-3) and 2^(2m-1)-1 takes 1S+mI m cycles for
1<m>16. Multiplication by 0 or 1 takes 1S+1I cycles, and multiplication by any number greater than
or equal to 2^(29) takes 1S+16I cycles. The maximum time for any multiply is thus 1S+16I cycles.

4.6.4 Assembler syntax

MUL{cond}{S} Rd,Rm,Rs

MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} - two-character condition mnemonic, see Figure 8: Condition Codes

{S} - set condition codes if S present

Rd, Rm, Rs and Rn are expressions evaluating to a register number other than R15.

4.6.5 Examples

MUL R1,R2,R3 ; R1:=R2*R3
MLAEQS R1,R2,R3,R4 ; conditionally R1:=R2*R3+R4,

; setting condition codes

ARM7 Data Sheet

36

4.7 Single data transfer (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 19: Single Data Transfer Instructions.

The single data transfer instructions are used to load or store single bytes or words of data. The memory
address used in the transfer is calculated by adding an offset to or subtracting an offset from a base register.
The result of this calculation may be written back into the base register if `auto-indexing' is required.

 Figure 19: Single Data Transfer Instructions

Cond I Rn Rd

011121516192021242526272831

01 P U B W L Offset

2223

011

Source/Destination register
Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit

Byte/Word bit

0 = no write-back
1 = write address into base

0 = transfer word quantity
1 = transfer byte quantity

Up/Down bit

Pre/Post indexing bit

0 = offset is an immediate value
Immediate offset

Immediate offset

Unsigned 12 bit immediate offset
1 = offset is a register

11 0

shift applied to Rm

34

Condition field

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

Offset register

Shift Rm

Instruction Set - LDR, STR

37

4.7.1 Offsets and auto-indexing

The offset from the base may be either a 12 bit unsigned binary immediate value in the instruction, or a
second register (possibly shifted in some way). The offset may be added to (U=1) or subtracted from (U=0)
the base register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after
(post-indexed, P=0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified base value may
be written back into the base (W=1), or the old base value may be kept (W=0). In the case of post-indexed
addressing, the write back bit is redundant and is always set to zero, since the old base value can be retained
by setting the offset to zero. Therefore post-indexed data transfers always write back the modified base. The
only use of the W bit in a post-indexed data transfer is in privileged mode code, where setting the W bit
forces non-privileged mode for the transfer, allowing the operating system to generate a user address in a
system where the memory management hardware makes suitable use of this hardware.

4.7.2 Shifted register offset

The 8 shift control bits are described in the data processing instructions section. However, the register
specified shift amounts are not available in this instruction class. See 4.4.2 Shifts.

4.7.3 Bytes and words

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between an ARM7 register and
memory.

The action of LDR(B) and STR(B) instructions is influenced by the BIGEND control signal. The two possible
configurations are described below.

Little Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied address is on a word
boundary, on data bus inputs 15 through 8 if it is a word address plus one byte, and so on. The selected byte
is placed in the bottom 8 bits of the destination register, and the remaining bits of the register are filled with
zeros. Please see Figure 3: Little Endian addresses of bytes within words.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) will normally use a word aligned address. However, an address offset from a word
boundary will cause the data to be rotated into the register so that the addressed byte occupies bits 0 to 7.
This means that half-words accessed at offsets 0 and 2 from the word boundary will be correctly loaded into
bits 0 through 15 of the register. Two shift operations are then required to clear or to sign extend the upper
16 bits. This is illustrated in Figure 20: Little Endian Offset Addressing.

ARM7 Data Sheet

38

 Figure 20: Little Endian Offset Addressing

A word store (STR) should generate a word aligned address. The word presented to the data bus is not
affected if the address is not word aligned. That is, bit 31 of the register being stored always appears on data
bus output 31.

Big Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied address is on a word
boundary, on data bus inputs 23 through 16 if it is a word address plus one byte, and so on. The selected
byte is placed in the bottom 8 bits of the destination register and the remaining bits of the register are filled
with zeros. Please see Figure 4: Big Endian addresses of bytes within words.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) should generate a word aligned address. An address offset of 0 or 2 from a word
boundary will cause the data to be rotated into the register so that the addressed byte occupies bits 31
through 24. This means that half-words accessed at these offsets will be correctly loaded into bits 16 through
31 of the register. A shift operation is then required to move (and optionally sign extend) the data into the
bottom 16 bits. An address offset of 1 or 3 from a word boundary will cause the data to be rotated into the
register so that the addressed byte occupies bits 15 through 8.

A

B

C

D

memory

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

register

24

16

8

0

LDR from word aligned address

A

B

C

D

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

24

16

8

0

LDR from address offset by 2

Instruction Set - LDR, STR

39

A word store (STR) should generate a word aligned address. The word presented to the data bus is not
affected if the address is not word aligned. That is, bit 31 of the register being stored always appears on data
bus output 31.

4.7.4 Use of R15

Write-back shall not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 shall not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored value will be address
of the instruction plus 12.

4.7.5 Restriction on the use of base register

When configured for late aborts, the following example code is difficult to unwind as the base register, Rn,
gets updated before the abort handler starts. Sometimes it may be impossible to calculate the initial value.

For example:

LDR R0,[R1],R1

 <LDR|STR> Rd, [Rn],{+/-}Rn{,<shift>}

Therefore a post-indexed LDR|STR where Rm is the same register as Rn shall not be used.

4.7.6 Data Aborts

A transfer to or from a legal address may cause problems for a memory management system. For instance,
in a system which uses virtual memory the required data may be absent from main memory. The memory
manager can signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap
will be taken. It is up to the system software to resolve the cause of the problem, then the instruction can be
restarted and the original program continued.

4.7.7 Instruction Cycle Times

Normal LDR instructions take 1S + 1N + 1I and LDR PC take 2S + 2N +1I incremental cycles, where S,N
and I are as defined in section 5.1 Cycle types on page 65.

STR instructions take 2N incremental cycles to execute.

4.7.8 Assembler syntax

<LDR|STR>{cond}{B}{T} Rd,<Address>

LDR - load from memory into a register

STR - store from a register into memory

ARM7 Data Sheet

40

{cond} - two-character condition mnemonic, see Figure 8: Condition Codes

{B} - if B is present then byte transfer, otherwise word transfer

{T} - if T is present the W bit will be set in a post-indexed instruction, forcing non-privileged mode for the
transfer cycle. T is not allowed when a pre-indexed addressing mode is specified or implied.

Rd is an expression evaluating to a valid register number.

<Address> can be:

(i) An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the PC as a base and a corrected
immediate offset to address the location given by evaluating the expression. This will be a PC
relative, pre-indexed address. If the address is out of range, an error will be generated.

(ii) A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index register, shifted by <shift>

(iii) A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

[Rn],{+/-}Rm{,<shift>} offset of +/- contents of index register, shifted as by <shift>.

Rn and Rm are expressions evaluating to a register number. If Rn is R15 then the assembler will subtract 8
from the offset value to allow for ARM7 pipelining. In this case base write-back shall not be specified.

<shift> is a general shift operation (see section on data processing instructions) but note that the shift
amount may not be specified by a register.

{!} writes back the base register (set the W bit) if ! is present.

4.7.9 Examples

STR R1,[R2,R4]! ; store R1 at R2+R4 (both of which are
; registers) and write back address to R2

STR R1,[R2],R4 ; store R1 at R2 and write back
; R2+R4 to R2

LDR R1,[R2,#16] ; load R1 from contents of R2+16
; Don't write back

LDR R1,[R2,R3,LSL#2] ; load R1 from contents of R2+R3*4

Instruction Set - LDR, STR

41

LDREQB R1,[R6,#5] ; conditionally load byte at R6+5 into
; R1 bits 0 to 7, filling bits 8 to 31
; with zeros

STR R1,PLACE ; generate PC relative offset to address
• ; PLACE
•

PLACE

ARM7 Data Sheet

42

4.8 Block data transfer (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 21: Block Data Transfer Instructions.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of the currently visible
registers. They support all possible stacking modes, maintaining full or empty stacks which can grow up or
down memory, and are very efficient instructions for saving or restoring context, or for moving large blocks
of data around main memory.

4.8.1 The register list

The instruction can cause the transfer of any registers in the current bank (and non-user mode programs
can also transfer to and from the user bank, see below). The register list is a 16 bit field in the instruction,
with each bit corresponding to a register. A 1 in bit 0 of the register field will cause R0 to be transferred, a
0 will cause it not to be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction is that the register list
should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM instruction plus 12.

 Figure 21: Block Data Transfer Instructions

4.8.2 Addressing modes

The transfer addresses are determined by the contents of the base register (Rn), the pre/post bit (P) and the
up/down bit (U). The registers are transferred in the order lowest to highest, so R15 (if in the list) will
always be transferred last. The lowest register also gets transferred to/from the lowest memory address. By
way of illustration, consider the transfer of R1, R5 and R7 in the case where Rn=0x1000 and write back of

Cond Rn

015161920212425272831

P U W L

2223

100 S Register list

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

Up/Down bit

Pre/Post indexing bit

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

PSR & force user bit
0 = do not load PSR or force user mode
1 = load PSR or force user mode

Condition field

Instruction Set - LDM, STM

43

the modified base is required (W=1). Figure 22: Post-increment addressing, Figure 23: Pre-increment addressing,
Figure 24: Post-decrement addressing and Figure 25: Pre-decrement addressing show the sequence of register
transfers, the addresses used, and the value of Rn after the instruction has completed.

In all cases, had write back of the modified base not been required (W=0), Rn would have retained its initial
value of 0x1000 unless it was also in the transfer list of a load multiple register instruction, when it would
have been overwritten with the loaded value.

4.8.3 Address Alignment

The address should normally be a word aligned quantity and non-word aligned addresses do not affect the
instruction. However, the bottom 2 bits of the address will appear on A[1:0] and might be interpreted by
the memory system.

 Figure 22: Post-increment addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

ARM7 Data Sheet

44

 Figure 23: Pre-increment addressing

 Figure 24: Post-decrement addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

Instruction Set - LDM, STM

45

 Figure 25: Pre-decrement addressing

4.8.4 Use of the S bit

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not R15 is in the transfer
list and on the type of instruction. The S bit should only be set if the instruction is to execute in a privileged
mode.

LDM with R15 in transfer list and S bit set (Mode changes)

If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same time as R15 is loaded.

STM with R15 in transfer list and S bit set (User bank transfer)

The registers transferred are taken from the User bank rather than the bank corresponding to the current
mode. This is useful for saving the user state on process switches. Base write-back shall not be used when
this mechanism is employed.

R15 not in list and S bit set (User bank transfer)

For both LDM and STM instructions, the User bank registers are transferred rather than the register bank
corresponding to the current mode. This is useful for saving the user state on process switches. Base write-
back shall not be used when this mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register during the following
cycle (inserting a NOP after the LDM will ensure safety).

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

ARM7 Data Sheet

46

4.8.5 Use of R15 as the base

R15 shall not be used as the base register in any LDM or STM instruction.

4.8.6 Inclusion of the base in the register list

When write-back is specified, the base is written back at the end of the second cycle of the instruction.
During a STM, the first register is written out at the start of the second cycle. A STM which includes storing
the base, with the base as the first register to be stored, will therefore store the unchanged value, whereas
with the base second or later in the transfer order, will store the modified value. A LDM will always
overwrite the updated base if the base is in the list.

4.8.7 Data Aborts

Some legal addresses may be unacceptable to a memory management system, and the memory manager
can indicate a problem with an address by taking the ABORT signal HIGH. This can happen on any
transfer during a multiple register load or store, and must be recoverable if ARM7 is to be used in a virtual
memory system.

Aborts during STM instructions

If the abort occurs during a store multiple instruction, ARM7 takes little action until the instruction
completes, whereupon it enters the data abort trap. The memory manager is responsible for preventing
erroneous writes to the memory. The only change to the internal state of the processor will be the
modification of the base register if write-back was specified, and this must be reversed by software (and the
cause of the abort resolved) before the instruction may be retried.

Aborts during LDM instructions

When ARM7 detects a data abort during a load multiple instruction, it modifies the operation of the
instruction to ensure that recovery is possible.

(i) Overwriting of registers stops when the abort happens. The aborting load will not take place but
earlier ones may have overwritten registers. The PC is always the last register to be written and so
will always be preserved.

(ii) The base register is restored, to its modified value if write-back was requested. This ensures
recoverability in the case where the base register is also in the transfer list, and may have been
overwritten before the abort occurred.

The data abort trap is taken when the load multiple has completed, and the system software must undo any
base modification (and resolve the cause of the abort) before restarting the instruction.

4.8.8 Instruction Cycle Times

Normal LDM instructions take nS + 1N + 1I and LDM PC takes (n+1)S + 2N + 1I incremental cycles, where
S,N and I are as defined in section 5.1 Cycle types on page 65.

STM instructions take (n-1)S + 2N incremental cycles to execute.
n is the number of words transferred.

Instruction Set - LDM, STM

47

4.8.9 Assembler syntax

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{^}

{cond} - two character condition mnemonic, see Figure 8: Condition Codes

Rn is an expression evaluating to a valid register number

<Rlist> is a list of registers and register ranges enclosed in {} (eg {R0,R2-R7,R10}).

{!} if present requests write-back (W=1), otherwise W=0

{^} if present set S bit to load the CPSR along with the PC, or force transfer of user bank when in privileged
mode

Addressing mode names

There are different assembler mnemonics for each of the addressing modes, depending on whether the
instruction is being used to support stacks or for other purposes. The equivalences between the names and
the values of the bits in the instruction are shown in the following table:

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form of stack required.
The F and E refer to a “full” or “empty” stack, i.e. whether a pre-index has to be done (full) before storing
to the stack. The A and D refer to whether the stack is ascending or descending. If ascending, a STM will go
up and LDM down, if descending, vice-versa.

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply mean Increment
After, Increment Before, Decrement After, Decrement Before.

name stack other L bit P bit U bit

pre-increment load LDMED LDMIB 1 1 1

post-increment load LDMFD LDMIA 1 0 1

pre-decrement load LDMEA LDMDB 1 1 0

post-decrement load LDMFA LDMDA 1 0 0

pre-increment store STMFA STMIB 0 1 1

post-increment store STMEA STMIA 0 0 1

pre-decrement store STMFD STMDB 0 1 0

post-decrement store STMED STMDA 0 0 0

Table 5: Addressing Mode Names

ARM7 Data Sheet

48

4.8.10 Examples

LDMFD SP!,{R0,R1,R2} ; unstack 3 registers

STMIA R0,{R0-R15} ; save all registers

LDMFD SP!,{R15} ; R15 <- (SP),CPSR unchanged
LDMFD SP!,{R15}^ ; R15 <- (SP), CPSR <- SPSR_mode (allowed

; only in privileged modes)
STMFD R13,{R0-R14}^ ; Save user mode regs on stack (allowed

; only in privileged modes)

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the
calling routine:

STMED SP!,{R0-R3,R14} ; save R0 to R3 to use as workspace
; and R14 for returning

BL somewhere ; this nested call will overwrite R14

LDMED SP!,{R0-R3,R15} ; restore workspace and return

Instruction Set - SWP

49

4.9 Single data swap (SWP)

 Figure 26: Swap Instruction

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 26: Swap Instruction.

The data swap instruction is used to swap a byte or word quantity between a register and external memory.
This instruction is implemented as a memory read followed by a memory write which are “locked”
together (the processor cannot be interrupted until both operations have completed, and the memory
manager is warned to treat them as inseparable). This class of instruction is particularly useful for
implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The processor first reads the
contents of the swap address. Then it writes the contents of the source register (Rm) to the swap address,
and stores the old memory contents in the destination register (Rd). The same register may be specified as
both the source and destination.

The LOCK output goes HIGH for the duration of the read and write operations to signal to the external
memory manager that they are locked together, and should be allowed to complete without interruption.
This is important in multi-processor systems where the swap instruction is the only indivisible instruction
which may be used to implement semaphores; control of the memory must not be removed from a
processor while it is performing a locked operation.

4.9.1 Bytes and words

This instruction class may be used to swap a byte (B=1) or a word (B=0) between an ARM7 register and
memory. The SWP instruction is implemented as a LDR followed by a STR and the action of these is as
described in the section on single data transfers. In particular, the description of Big and Little Endian
configuration applies to the SWP instruction.

4.9.2 Use of R15

R15 shall not be used as an operand (Rd, Rn or Rs) in a SWP instruction.

0111215161920272831 23 78 4 3

Condition field

Cond Rn Rd 10010000 Rm00B00010

22 21

Destination register
Source register

Base register
Byte/Word bit

0 = swap word quantity
1 = swap byte quantity

ARM7 Data Sheet

50

4.9.3 Data Aborts

If the address used for the swap is unacceptable to a memory management system, the internal MMU or
external memory manager can flag the problem by driving ABORT HIGH. This can happen on either the
read or the write cycle (or both), and in either case, the Data Abort trap will be taken. It is up to the system
software to resolve the cause of the problem, then the instruction can be restarted and the original program
continued.

4.9.4 Instruction Cycle Times

Swap instructions take 1S + 2N +1I incremental cycles to execute, where S,N and I are as defined in section
5.1 Cycle types on page 65.

4.9.5 Assembler syntax

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} - two-character condition mnemonic, see Figure 8: Condition Codes

{B} - if B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn are expressions evaluating to valid register numbers

4.9.6 Examples

SWP R0,R1,[R2] ; load R0 with the word addressed by R2, and
; store R1 at R2

SWPB R2,R3,[R4] ; load R2 with the byte addressed by R4, and
; store bits 0 to 7 of R3 at R4

SWPEQ R0,R0,[R1] ; conditionally swap the contents of R1
; with R0

Instruction Set - SWI

51

4.10 Software interrupt (SWI)

 Figure 27: Software Interrupt Instruction

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 27: Software Interrupt Instruction.

The software interrupt instruction is used to enter Supervisor mode in a controlled manner. The instruction
causes the software interrupt trap to be taken, which effects the mode change. The PC is then forced to a
fixed value (0x08) and the CPSR is saved in SPSR_svc. If the SWI vector address is suitably protected (by
external memory management hardware) from modification by the user, a fully protected operating system
may be constructed.

4.10.1 Return from the supervisor

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC adjusted to point to the
word after the SWI instruction. MOVS PC,R14_svc will return to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use software interrupts
within itself it must first save a copy of the return address and SPSR.

4.10.2 Comment field

The bottom 24 bits of the instruction are ignored by the processor, and may be used to communicate
information to the supervisor code. For instance, the supervisor may look at this field and use it to index
into an array of entry points for routines which perform the various supervisor functions.

4.10.3 Instruction Cycle Times

Software interrupt instructions take 2S + 1N incremental cycles to execute, where S and N are as defined
in section 5.1 Cycle types on page 65.

4.10.4 Assembler syntax

SWI{cond} <expression>

{cond} - two character condition mnemonic, see Figure 8: Condition Codes

<expression> is evaluated and placed in the comment field (which is ignored by ARM7).

31 28 27 24 23 0

Condition field

1111Cond Comment field (ignored by Processor)

ARM7 Data Sheet

52

4.10.5 Examples

SWI ReadC ; get next character from read stream
SWI WriteI+”k” ; output a “k” to the write stream
SWINE 0 ; conditionally call supervisor

; with 0 in comment field

The above examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point

EntryTable ; addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn

 . . .

Zero EQU 0
ReadC EQU 256
WriteI EQU 512

Supervisor

; SWI has routine required in bits 8-23 and data (if any) in bits 0-7.
; Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14} ; save work registers and return address
LDR R0,[R14,#-4] ; get SWI instruction
BIC R0,R0,#0xFF000000 ; clear top 8 bits
MOV R1,R0,LSR#8 ; get routine offset
ADR R2,EntryTable ; get start address of entry table
LDR R15,[R2,R1,LSL#2] ; branch to appropriate routine

WriteIRtn ; enter with character in R0 bits 0-7
.

LDMFD R13,{R0-R2,R15}^ ; restore workspace and return
; restoring processor mode and flags

Instruction Set - CDP

53

4.11 Coprocessor data operations (CDP)

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 28: Coprocessor Data Operation Instruction.
This class of instruction is used to tell a coprocessor to perform some internal operation. No result is
communicated back to ARM7, and it will not wait for the operation to complete. The coprocessor could
contain a queue of such instructions awaiting execution, and their execution can overlap other ARM72S +
1N incremental cycles, where S and N are as defined in section 5.1 Cycle types on page 65. activity allowing
the coprocessor and ARM7 to perform independent tasks in parallel.

 Figure 28: Coprocessor Data Operation Instruction

4.11.1 The Coprocessor fields

Only bit 4 and bits 24 to 31 are significant to ARM7; the remaining bits are used by coprocessors. The above
field names are used by convention, and particular coprocessors may redefine the use of all fields except
CP# as appropriate. The CP# field is used to contain an identifying number (in the range 0 to 15) for each
coprocessor, and a coprocessor will ignore any instruction which does not contain its number in the CP#
field.

The conventional interpretation of the instruction is that the coprocessor should perform an operation
specified in the CP Opc field (and possibly in the CP field) on the contents of CRn and CRm, and place the
result in CRd.

4.11.2 Instruction Cycle Times

Coprocessor data operations take 1S + bI incremental cycles to execute, where S and I are as defined in
section 5.1 Cycle types on page 65.

b is the number of cycles spent in the coprocessor busy-wait loop.

Cond

011121516192024272831 23

CRd CP#

78

1110 CP Opc CRn CP 0 CRm

5 4 3

Coprocessor number

Condition field

Coprocessor information
Coprocessor operand register

Coprocessor destination register
Coprocessor operand register
Coprocessor operation code

ARM7 Data Sheet

54

4.11.3 Assembler syntax

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} - two character condition mnemonic, see Figure 8: Condition Codes

p# - the unique number of the required coprocessor

<expression1> - evaluated to a constant and placed in the CP Opc field

cd, cn and cm evaluate to the valid coprocessor register numbers CRd, CRn and CRm respectively

<expression2> - where present is evaluated to a constant and placed in the CP field

4.11.4 Examples

CDP p1,10,c1,c2,c3 ; request coproc 1 to do operation 10
; on CR2 and CR3, and put the result in CR1

CDPEQ p2,5,c1,c2,c3,2 ; if Z flag is set request coproc 2 to do
; operation 5 (type 2) on CR2 and CR3,
; and put the result in CR1

Instruction Set - LDC, STC

55

4.12 Coprocessor data transfers (LDC, STC)

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 29: Coprocessor Data Transfer Instructions.
This class of instruction is used to load (LDC) or store (STC) a subset of a coprocessors’s registers directly
to memory. ARM7 is responsible for supplying the memory address, and the coprocessor supplies or
accepts the data and controls the number of words transferred.

 Figure 29: Coprocessor Data Transfer Instructions

4.12.1 The Coprocessor fields

The CP# field is used to identify the coprocessor which is required to supply or accept the data, and a
coprocessor will only respond if its number matches the contents of this field.

The CRd field and the N bit contain information for the coprocessor which may be interpreted in different
ways by different coprocessors, but by convention CRd is the register to be transferred (or the first register
where more than one is to be transferred), and the N bit is used to choose one of two transfer length options.
For instance N=0 could select the transfer of a single register, and N=1 could select the transfer of all the
registers for context switching.

Cond Rn

0111215161920212425272831

P U W L

2223

110 N CRd CP# Offset

78

Coprocessor number
Unsigned 8 bit immediate offset

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

Coprocessor source/destination register

Pre/Post indexing bit

Up/Down bit
0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer

Transfer length

Condition field
1 = pre; add offset before transfer

ARM7 Data Sheet

56

4.12.2 Addressing modes

ARM7 is responsible for providing the address used by the memory system for the transfer, and the
addressing modes available are a subset of those used in single data transfer instructions. Note, however,
that the immediate offsets are 8 bits wide and specify word offsets for coprocessor data transfers, whereas
they are 12 bits wide and specify byte offsets for single data transfers.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or subtracted from (U=0)
the base register (Rn); this calculation may be performed either before (P=1) or after (P=0) the base is used
as the transfer address. The modified base value may be overwritten back into the base register (if W=1), or
the old value of the base may be preserved (W=0). Note that post-indexed addressing modes require
explicit setting of the W bit, unlike LDR and STR which always write-back when post-indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is used as the address for
the transfer of the first word. The second word (if more than one is transferred) will go to or come from an
address one word (4 bytes) higher than the first transfer, and the address will be incremented by one word
for each subsequent transfer.

4.12.3 Address Alignment

The base address should normally be a word aligned quantity. The bottom 2 bits of the address will appear
on A[1:0] and might be interpreted by the memory system.

4.12.4 Use of R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base write-back to R15 shall
not be specified.

4.12.5 Data aborts

If the address is legal but the memory manager generates an abort, the data trap will be taken. The write-
back of the modified base will take place, but all other processor state will be preserved. The coprocessor is
partly responsible for ensuring that the data transfer can be restarted after the cause of the abort has been
resolved, and must ensure that any subsequent actions it undertakes can be repeated when the instruction
is retried.

4.12.6 Instruction Cycle Times

All LDC instructions are emulated in software: the number of cycles taken will depend on the coprocessor
support software.
Coprocessor data transfer instructions take (n-1)S + 2N + bI incremental cycles to execute, where S, N and
I are as defined in section 5.1 Cycle types on page 65.

n is the number of words transferred.

b is the number of cycles spent in the coprocessor busy-wait loop.

4.12.7 Assembler syntax

<LDC|STC>{cond}{L} p#,cd,<Address>

Instruction Set - LDC, STC

57

LDC - load from memory to coprocessor

STC - store from coprocessor to memory

{L} - when present perform long transfer (N=1), otherwise perform short transfer (N=0)

{cond} - two character condition mnemonic, see Figure 8: Condition Codes

p# - the unique number of the required coprocessor

cd is an expression evaluating to a valid coprocessor register number that is placed in the CRd field

<Address> can be:

(i) An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the PC as a base and a corrected
immediate offset to address the location given by evaluating the expression. This will be a PC
relative, pre-indexed address. If the address is out of range, an error will be generated.

(ii) A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

(iii) A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

Rn is an expression evaluating to a valid ARM7 register number. Note, if Rn is R15 then the assembler will
subtract 8 from the offset value to allow for ARM7 pipelining.

{!} write back the base register (set the W bit) if ! is present

4.12.8 Examples

LDC p1,c2,table ; load c2 of coproc 1 from address table,
; using a PC relative address.

STCEQL p2,c3,[R5,#24]! ; conditionally store c3 of coproc 2 into
; an address 24 bytes up from R5, write this
; address back to R5, and use long transfer
; option (probably to store multiple words)

Note that though the address offset is expressed in bytes, the instruction offset field is in words. The
assembler will adjust the offset appropriately.

ARM7 Data Sheet

58

4.13 Coprocessor register transfers (MRC, MCR)

The is only executed if the condition is true. The various conditions are defined at the beginning of this
chapter. The instruction encoding is shown in Figure 30: Coprocessor Register Transfer Instructions.

This class of instruction is used to communicate information directly between ARM7 and a coprocessor. An
example of a coprocessor to ARM7 register transfer (MRC) instruction would be a FIX of a floating point
value held in a coprocessor, where the floating point number is converted into a 32 bit integer within the
coprocessor, and the result is then transferred to ARM7 register. A FLOAT of a 32 bit value in ARM7
register into a floating point value within the coprocessor illustrates the use of ARM7 register to coprocessor
transfer (MCR).

An important use of this instruction is to communicate control information directly from the coprocessor
into the ARM7 CPSR flags. As an example, the result of a comparison of two floating point values within a
coprocessor can be moved to the CPSR to control the subsequent flow of execution.

 Figure 30: Coprocessor Register Transfer Instructions

4.13.1 The Coprocessor fields

The CP# field is used, as for all coprocessor instructions, to specify which coprocessor is being called upon.

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the interpretation presented
here is derived from convention only. Other interpretations are allowed where the coprocessor
functionality is incompatible with this one. The conventional interpretation is that the CP Opc and CP fields
specify the operation the coprocessor is required to perform, CRn is the coprocessor register which is the
source or destination of the transferred information, and CRm is a second coprocessor register which may
be involved in some way which depends on the particular operation specified.

21

Cond

011121516192024272831 23

CP#

78

1110 CRn CP CRm

5 4 3

1LCP Opc Rd

Coprocessor number
Coprocessor information
Coprocessor operand register

Coprocessor operation mode
Condition field

Load/Store bit
0 = Store to Co-Processor
1 = Load from Co-Processor

ARM source/destination register
Coprocessor source/destination register

Instruction Set - MRC, MCR

59

4.13.2 Transfers to R15

When a coprocessor register transfer to ARM7 has R15 as the destination, bits 31, 30, 29 and 28 of the
transferred word are copied into the N, Z, C and V flags respectively. The other bits of the transferred word
are ignored, and the PC and other CPSR bits are unaffected by the transfer.

4.13.3 Transfers from R15

A coprocessor register transfer from ARM7 with R15 as the source register will store the PC+12.

4.13.4 Instruction Cycle Times

MRC instructions take 1S + (b+1)I +1C incremental cycles to execute, where S, I and C are as defined in
section 5.1 Cycle types on page 65.

MCR instructions take 1S + bI +1C incremental cycles to execute.

b is the number of cycles spent in the coprocessor busy-wait loop.

4.13.5 Assembler syntax

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC - move from coprocessor to ARM7 register (L=1)

MCR - move from ARM7 register to coprocessor (L=0)

{cond} - two character condition mnemonic, see Figure 8: Condition Codes

p# - the unique number of the required coprocessor

 <expression1> - evaluated to a constant and placed in the CP Opc field

Rd is an expression evaluating to a valid ARM7 register number

cn and cm are expressions evaluating to the valid coprocessor register numbers CRn and CRm respectively

<expression2> - where present is evaluated to a constant and placed in the CP field

4.13.6 Examples

MRC 2,5,R3,c5,c6 ; request coproc 2 to perform operation 5
; on c5 and c6, and transfer the (single
; 32 bit word) result back to R3

MCR 6,0,R4,c6 ; request coproc 6 to perform operation 0
; on R4 and place the result in c6

MRCEQ 3,9,R3,c5,c6,2 ; conditionally request coproc 2 to perform
; operation 9 (type 2) on c5 and c6, and
; transfer the result back to R3

ARM7 Data Sheet

60

4.14 Undefined instruction

 Figure 31: Undefined Instruction

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction format is shown in Figure 31: Undefined Instruction.

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering this instruction to any coprocessors which
may be present, and all coprocessors must refuse to accept it by driving CPA and CPB HIGH.

4.14.1 Assembler syntax

At present the assembler has no mnemonics for generating this instruction. If it is adopted in the future for
some specified use, suitable mnemonics will be added to the assembler. Until such time, this instruction
shall not be used.

Cond

024272831 5 4 3

1011 xxxx

25

xxxxxxxxxxxxxxxxxxxx

Instruction Set - Examples

61

4.15 Instruction Set Examples

The following examples show ways in which the basic ARM7 instructions can combine to give efficient
code. None of these methods saves a great deal of execution time (although they may save some), mostly
they just save code.

4.15.1 Using the conditional instructions

(1) using conditionals for logical OR

CMP Rn,#p ; if Rn=p OR Rm=q THEN GOTO Label
BEQ Label
CMP Rm,#q
BEQ Label

can be replaced by

CMP Rn,#p
CMPNE Rm,#q ; if condition not satisfied try other test
BEQ Label

(2) absolute value

TEQ Rn,#0 ; test sign
RSBMI Rn,Rn,#0 ; and 2's complement if necessary

(3) multiplication by 4, 5 or 6 (run time)

MOV Rc,Ra,LSL#2 ; multiply by 4
CMP Rb,#5 ; test value
ADDCS Rc,Rc,Ra ; complete multiply by 5
ADDHI Rc,Rc,Ra ; complete multiply by 6

(4) combining discrete and range tests

TEQ Rc,#127 ; discrete test
CMPNE Rc,#” “-1 ; range test
MOVLS Rc,#”.” ; IF Rc<=” “ OR Rc=ASCII(127)

; THEN Rc:=”.”

(5) division and remainder

A number of divide routines for specific applications are provided in source form as part of the ANSI C
library provided with the ARM Cross Development Toolkit, available from your supplier. A short general
pupose divide routine follows.

ARM7 Data Sheet

62

; enter with numbers in Ra and Rb
;

MOV Rcnt,#1 ; bit to control the division
Div1 CMP Rb,#0x80000000 ; move Rb until greater than Ra

CMPCC Rb,Ra
MOVCC Rb,Rb,ASL#1
MOVCC Rcnt,Rcnt,ASL#1
BCC Div1
MOV Rc,#0

Div2 CMP Ra,Rb ; test for possible subtraction
SUBCS Ra,Ra,Rb ; subtract if ok
ADDCS Rc,Rc,Rcnt ; put relevant bit into result
MOVS Rcnt,Rcnt,LSR#1 ; shift control bit
MOVNE Rb,Rb,LSR#1 ; halve unless finished
BNE Div2

;
; divide result in Rc
; remainder in Ra

4.15.2 Pseudo random binary sequence generator

It is often necessary to generate (pseudo-) random numbers and the most efficient algorithms are based on
shift generators with exclusive-OR feedback rather like a cyclic redundancy check generator. Unfortunately
the sequence of a 32 bit generator needs more than one feedback tap to be maximal length (i.e. 2^32-1 cycles
before repetition), so this example uses a 33 bit register with taps at bits 33 and 20. The basic algorithm is
newbit:=bit 33 eor bit 20, shift left the 33 bit number and put in newbit at the bottom; this operation is
performed for all the newbits needed (i.e. 32 bits). The entire operation can be done in 5 S cycles:

; enter with seed in Ra (32 bits),
 Rb (1 bit in Rb lsb), uses Rc
;

TST Rb,Rb,LSR#1 ; top bit into carry
MOVS Rc,Ra,RRX ; 33 bit rotate right
ADC Rb,Rb,Rb ; carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12 ; (involved!)
EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!)

;
; new seed in Ra, Rb as before

4.15.3 Multiplication by constant using the barrel shifter

(1) Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

(2) Multiplication by 2^n+1 (3,5,9,17..)

ADD Ra,Ra,Ra,LSL #n

Instruction Set - Examples

63

(3) Multiplication by 2^n-1 (3,7,15..)

RSB Ra,Ra,Ra,LSL #n

(4) Multiplication by 6

ADD Ra,Ra,Ra,LSL #1 ; multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

(5) Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2 ; multiply by 5
ADD Ra,Rc,Ra,LSL#1 ; multiply by 2 and add in next digit

(6) General recursive method for Rb := Ra*C, C a constant:

 (a) If C even, say C = 2^n*D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}

MOV Rb,Rb,LSL #n

 (b) If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:

D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

ADD Rb,Ra,Rb,LSL #n

 (c) If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:

D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; multiply by 3
RSB Rb,Ra,Rb,LSL#2 ; multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2 ; multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; multiply by 5*9 = 45

ARM7 Data Sheet

64

4.15.4 Loading a word from an unknown alignment

; enter with address in Ra (32 bits)
; uses Rb, Rc; result in Rd.
; Note d must be less than c e.g. 0,1
;

BIC Rb,Ra,#3 ; get word aligned address
LDMIA Rb,{Rd,Rc} ; get 64 bits containing answer
AND Rb,Ra,#3 ; correction factor in bytes
MOVS Rb,Rb,LSL#3 ; ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; produce bottom of result word

; (if not aligned)
RSBNE Rb,Rb,#32 ; get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb ; combine two halves to get result

4.15.5 Loading a halfword (Little Endian)

LDR Ra, [Rb,#2] ; Get halfword to bits 15:0
MOV Ra,Ra,LSL #16 ; move to top
MOV Ra,Ra,LSR #16 ; and back to bottom

; use ASR to get sign extended version

4.15.6 Loading a halfword (Big Endian)

LDR Ra, [Rb,#2] ; Get halfword to bits 31:16
MOV Ra,Ra,LSR #16 ; and back to bottom

; use ASR to get sign extended version

Memory Interface

65

5.0 Memory Interface

ARM7 communicates with its memory system via a bidirectional data bus (D[31:0]). A separate 32 bit
address bus specifies the memory location to be used for the transfer, and the nRW signal gives the
direction of transfer (ARM7 to memory or memory to ARM7). Control signals give additional information
about the transfer cycle, and in particular they facilitate the use of DRAM page mode where applicable.
Interfaces to static RAM based memories are not ruled out and, in general, they are much simpler than the
DRAM interface described here.

5.1 Cycle types

All memory transfer cycles can be placed in one of four categories:

(1) Non-sequential cycle. ARM7 requests a transfer to or from an address which is unrelated to the
address used in the preceding cycle.

(2) Sequential cycle. ARM7 requests a transfer to or from an address which is either the same as the
address in the preceding cycle, or is one word after the preceding address.

(3) Internal cycle. ARM7 does not require a transfer, as it is performing an internal function and no
useful prefetching can be performed at the same time.

(4) Coprocessor register transfer. ARM7 wishes to use the data bus to communicate with a
coprocessor, but does not require any action by the memory system.

These four classes are distinguishable to the memory system by inspection of the nMREQ and SEQ control
lines (see Table 6: Memory Cycle Types). These control lines are generated during phase 1 of the cycle before
the cycle whose characteristics they forecast, and this pipelining of the control information gives the
memory system sufficient time to decide whether or not it can use a page mode access.

Figure 32: ARM Memory Cycle Timing shows the pipelining of the control signals, and suggests how the
DRAM address strobes (nRAS and nCAS) might be timed to use page mode for S-cycles. Note that the N-
cycle is longer than the other cycles. This is to allow for the DRAM precharge and row access time, and is
not an ARM7 requirement.

nMREQ SEQ Cycle type

0 0 Non-sequential cycle (N-cycle)

0 1 Sequential cycle (S-cycle)

1 0 Internal cycle (I-cycle)

1 1 Coprocessor register transfer (C-cycle)

Table 6: Memory Cycle Types

ARM7 Data Sheet

66

 Figure 32: ARM Memory Cycle Timing

When an S-cycle follows an N-cycle, the address will always be one word greater than the address used in
the N-cycle. This address (marked “a” in the above diagram) should be checked to ensure that it is not the
last in the DRAM page before the memory system commits to the S-cycle. If it is at the page end, the S-cycle
cannot be performed in page mode and the memory system will have to perform a full access.

The processor clock must be stretched to match the full access. When an S-cycle follows an I- or C-cycle, the
address will be the same as that used in the I- or C-cycle. This fact may be used to start the DRAM access
during the preceding cycle, which enables the S-cycle to run at page mode speed whilst performing a full
DRAM access. This is shown in Figure 33: Memory Cycle Optimization.

5.2 Byte addressing

The processor address bus gives byte addresses, but instructions are always words (where a word is 4
bytes) and data quantities are usually words. Single data transfers (LDR and STR) can, however, specify
that a byte quantity is required. The nBW control line is used to request a byte from the memory system;
normally it is HIGH, signifying a request for a word quantity, and it goes LOW during phase 2 of the
preceding cycle to request a byte transfer.

When the processor is fetching an instruction from memory, the state of the bottom two address lines A[1:0]
is undefined.

When a byte is requested in a read transfer (LDRB), the memory system can safely ignore that the request
is for a byte quantity and present the whole word.

ARM7 will perform the byte extraction internally. Alternatively, the memory system may activate only the
addressed byte of the memory. This may be desirable in order to save power, or to enable the use of a
common decoding system for both read and write cycles.

MCLK

A[31:0]

nMREQ

SEQ

nCAS

a a+4

I-cycleS-cycle C-cycleN-cycle

nRAS

D[31:0]

a+8

Memory Interface

67

 Figure 33: Memory Cycle Optimization

If a byte write is requested (STRB), ARM7 will broadcast the byte value across the data bus, presenting it at
each byte location within the word. The memory system must decode A[1:0] to enable writing only to the
addressed byte.

One way of implementing the byte decode in a DRAM system is to separate the 32 bit wide block of DRAM
into four byte wide banks, and generate the column address strobes independently as shown in Figure 34:
Decoding Byte Accesses to Memory.

When the processor is configured for Little Endian operation byte 0 of the memory system should be
connected to data lines 7 through 0 (D[7:0]) and strobed by nCAS0. nCAS1 drives the bank connected to
data lines 15 though 8, and so on. This has the added advantage of reducing the load on each column strobe
driver, which improves the precision of this time critical signal.

In the Big Endian case, byte 0 of the memory system should be connected to data lines 31 through 24.

MCLK

A[31:0]

nMREQ

SEQ

nCAS

I-cycle S-cycle

nRAS

D[31:0]

ARM7 Data Sheet

68

 Figure 34: Decoding Byte Accesses to Memory

5.3 Address timing

Normally the processor address changes during phase 2 to the value which the memory system should use
during the following cycle. This gives maximum time for driving the address to large memory arrays, and
for address translation where required. Dynamic memories usually latch the address on chip, and if the
latch is timed correctly they will work even though the address changes before the access has completed.

Static RAMs and ROMs will not work under such circumstances, as they require the address to be stable
until after the access has completed. Therefore, for use with such devices, the address transition must be
delayed until after the end of phase 2. An on-chip address latch, controlled by ALE, allows the address
timing to be modified in this way. In a system with a mixture of static and dynamic memories (which for
these purposes means a mixture of devices with and without address latches), the use of ALE may change
dynamically from one cycle to the next, at the discretion of the memory system.

5.4 Memory management

The ARM7 address bus may be processed by an address translation unit before being presented to the
memory, and ARM7 is capable of running a virtual memory system. The abort input to the processor may
be used by the memory manager to inform ARM7 of page faults. Various other signals enable different page
protection levels to be supported:

(1) nRW can be used by the memory manager to protect pages from being written to.

(2) nTRANS indicates whether the processor is in user or a privileged mode, and may be used to
protect system pages from the user, or to support completely separate mappings for the system and
the user.

(3) nM[4:0] can give the memory manager full information on the processor mode.

A[0] A[1] nBW MCLK CAS

NCAS0

NCAS1

NCAS2

NCAS3

G

D Q

Quad
Latch

Memory Interface

69

Address translation will normally only be necessary on an N-cycle, and this fact may be exploited to reduce
power consumption in the memory manager and avoid the translation delay at other times. The times when
translation is necessary can be deduced by keeping track of the cycle types that the processor uses.

If an N-cycle is matched to a full DRAM access, it will be longer than the minimum processor cycle time.
Stretching phase 1 rather than phase 2 will give the translation system more time to generate an abort
(which must be set up to the end of phase 1).

5.5 Locked operations

ARM7 includes a data swap (SWP) instruction that allows the contents of a memory location to be swapped
with the contents of a processor register. This instruction is implemented as an uninterruptable pair of
accesses; the first access reads the contents of the memory, and the second writes the register data to the
memory. These accesses must be treated as a contiguous operation by the memory controller to prevent
another device from changing the affected memory location before the swap is completed. ARM7 drives
the LOCK signal HIGH for the duration of the swap operation to warn the memory controller not to give
the memory to another device.

5.6 Stretching access times

All memory timing is defined by MCLK, and long access times can be accommodated by stretching this
clock. It is usual to stretch the LOW period of MCLK, as this allows the memory manager to abort the
operation if the access is eventually unsuccessful.

Either MCLK can be stretched before it is applied to ARM7, or the nWAIT input can be used together with
a free-running MCLK. Taking nWAIT LOW has the same effect as stretching the LOW period of MCLK,
and nWAIT must only change when MCLK is LOW.

ARM7 does not contain any dynamic logic which relies upon regular clocking to maintain its internal state.
Therefore there is no limit upon the maximum period for which MCLK may be stretched, or nWAIT held
LOW.

ARM7 Data Sheet

70

Coprocessor Interface

71

6.0 Coprocessor Interface

The functionality of the ARM7 instruction set may be extended by the addition of up to 16 external
coprocessors. When the coprocessor is not present, instructions intended for it will trap, and suitable
software may be installed to emulate its functions. Adding the coprocessor will then increase the system
performance in a software compatible way. Note that some coprocessor numbers have already been
assigned. Contact ARM Ltd for up to date information.

6.1 Interface signals

Three dedicated signals control the coprocessor interface, nCPI, CPA and CPB. The CPA and CPB inputs
should be driven high except when they are being used for handshaking.

6.1.1 Coprocessor present/absent

ARM7 takes nCPI LOW whenever it starts to execute a coprocessor (or undefined) instruction. (This will
not happen if the instruction fails to be executed because of the condition codes.) Each coprocessor will have
a copy of the instruction, and can inspect the CP# field to see which coprocessor it is for. Every coprocessor
in a system must have a unique number and if that number matches the contents of the CP# field the
coprocessor should drive the CPA (coprocessor absent) line LOW. If no coprocessor has a number which
matches the CP# field, CPA and CPB will remain HIGH, and ARM7 will take the undefined instruction
trap. Otherwise ARM7 observes the CPA line going LOW, and waits until the coprocessor is not busy.

6.1.2 Busy-waiting

If CPA goes LOW, ARM7 will watch the CPB (coprocessor busy) line. Only the coprocessor which is
driving CPA LOW is allowed to drive CPB LOW, and it should do so when it is ready to complete the
instruction. ARM7 will busy-wait while CPB is HIGH, unless an enabled interrupt occurs, in which case it
will break off from the coprocessor handshake to process the interrupt. Normally ARM7 will return from
processing the interrupt to retry the coprocessor instruction.

When CPB goes LOW, the instruction continues to completion. This will involve data transfers taking place
between the coprocessor and either ARM7 or memory, except in the case of coprocessor data operations
which complete immediately the coprocessor ceases to be busy.

All three interface signals are sampled by both ARM7 and the coprocessor(s) on the rising edge of MCLK.
If all three are LOW, the instruction is committed to execution, and if transfers are involved they will start
on the next cycle. If nCPI has gone HIGH after being LOW, and before the instruction is committed,
ARM7 has broken off from the busy-wait state to service an interrupt. The instruction may be restarted
later, but other coprocessor instructions may come sooner, and the instruction should be discarded.

6.1.3 Pipeline following

In order to respond correctly when a coprocessor instruction arises, each coprocessor must have a copy of
the instruction. All ARM7 instructions are fetched from memory via the main data bus, and coprocessors
are connected to this bus, so they can keep copies of all instructions as they go into the ARM7 pipeline. The
nOPC signal indicates when an instruction fetch is taking place, and MCLK gives the timing of the transfer,
so these may be used together to load an instruction pipeline within the coprocessor.

ARM7 Data Sheet

72

6.2 Data transfer cycles

Once the coprocessor has gone not-busy in a data transfer instruction, it must supply or accept data at the
ARM7 bus rate (defined by MCLK). It can deduce the direction of transfer by inspection of the L bit in the
instruction, but must only drive the bus when permitted to by DBE being HIGH. The coprocessor is
responsible for determining the number of words to be transferred; ARM7 will continue to increment the
address by one word per transfer until the coprocessor tells it to stop. The termination condition is indicated
by the coprocessor driving CPA and CPB HIGH.

There is no limit in principle to the number of words which one coprocessor data transfer can move, but by
convention no coprocessor should allow more than 16 words in one instruction. More than this would
worsen the worst case ARM7 interrupt latency, as the instruction is not interruptible once the transfers have
commenced. At 16 words, this instruction is comparable with a block transfer of 16 registers, and therefore
does not affect the worst case latency.

6.3 Register transfer cycle

The coprocessor register transfer cycle is the one case when ARM7 requires the data bus without requiring
the memory to be active. The memory system is informed that the bus is required by ARM7 taking both
nMREQ and SEQ HIGH. When the bus is free, DBE should be taken HIGH to allow ARM7 or the
coprocessor to drive the bus, and an MCLK cycle times the transfer.

6.4 Privileged instructions

The coprocessor may restrict certain instructions for use in privileged modes only. To do this, the
coprocessor will have to track the nTRANS and/or nM[4:0] outputs.

As an example of the use of this facility, consider the case of a floating point coprocessor (FPU) in a multi-
tasking system. The operating system could save all the floating point registers on every task switch, but
this is inefficient in a typical system where only one or two tasks will use floating point operations. Instead,
there could be a privileged instruction which turns the FPU on or off. When a task switch happens, the
operating system can turn the FPU off without saving its registers. If the new task attempts an FPU
operation, the FPU will appear to be absent, causing an undefined instruction trap. The operating system
will then realise that the new task requires the FPU, so it will re-enable it and save FPU registers. The task
can then use the FPU as normal. If, however, the new task never attempts an FPU operation (as will be the
case for most tasks), the state saving overhead will have been avoided.

6.5 Idempotency

A consequence of the implementation of the coprocessor interface, with the interruptible busy-wait state, is
that all instructions may be interrupted at any point up to the time when the coprocessor goes not-busy. If
so interrupted, the instruction will normally be restarted from the beginning after the interrupt has been
processed. It is therefore essential that any action taken by the coprocessor before it goes not-busy must be
idempotent, ie must be repeatable with identical results.

Coprocessor Interface

73

For example, consider a FIX operation in a floating point coprocessor which returns the integer result to an
ARM7 register. The coprocessor must stay busy while it performs the floating point to fixed point
conversion, as ARM7 will expect to receive the integer value on the cycle immediately following that where
it goes not-busy. The coprocessor must therefore preserve the original floating point value and not corrupt
it during the conversion, because it will be required again if an interrupt arises during the busy period.

The coprocessor data operation class of instruction is not generally subject to idempotency considerations,
as the processing activity can take place after the coprocessor goes not-busy. There is no need for
ARM7 to be held up until the result is generated, because the result is confined to stay within the
coprocessor.

6.6 Undefined instructions

Undefined instructions are treated by ARM7 as coprocessor instructions. All coprocessors must be absent
(ie CPA and CPB must be HIGH) when an undefined instruction is presented. ARM7 will then take the
undefined instruction trap. Note that the coprocessor need only look at bit 27 of the instruction to
differentiate undefined instructions (which all have 0 in bit 27) from coprocessor instructions (which all
have 1 in bit 27).

ARM7 Data Sheet

74

Instruction Cycle Operations

75

7.0 Instruction Cycle Operations

In the following tables nMREQ and SEQ (which are pipelined up to one cycle ahead of the cycle to which
they apply) are shown in the cycle in which they appear, so they predict the type of the next cycle. The
address, nBW, nRW, and nOPC (which appear up to half a cycle ahead) are shown in the cycle to which
they apply.

7.1 Branch and branch with link

A branch instruction calculates the branch destination in the first cycle, whilst performing a prefetch from
the current PC. This prefetch is done in all cases, since by the time the decision to take the branch has been
reached it is already too late to prevent the prefetch.

During the second cycle a fetch is performed from the branch destination, and the return address is stored
in register 14 if the link bit is set.

The third cycle performs a fetch from the destination + 4, refilling the instruction pipeline, and if the branch
is with link R14 is modified (4 is subtracted from it) to simplify return from SUB PC,R14,#4 to MOV PC,R14.
This makes the STM..{R14} LDM..{PC} type of subroutine work correctly. The cycle timings are shown
below in Table 7: Branch Instruction Cycle Operations

pc is the address of the branch instruction

alu is an address calculated by ARM7

(alu) are the contents of that address, etc

7.2 Data Operations

A data operation executes in a single datapath cycle except where the shift is determined by the contents of
a register. A register is read onto the A bus, and a second register or the immediate field onto the B bus. The
ALU combines the A bus source and the shifted B bus source according to the operation specified in the
instruction, and the result (when required) is written to the destination register. (Compares and tests do not
produce results, only the ALU status flags are affected.)

An instruction prefetch occurs at the same time as the above operation, and the program counter is
incremented.

Cycle Address nBW nRW Data nMREQ SEQ nOPC

1 pc+8 1 0 (pc + 8) 0 0 0

2 alu 1 0 (alu) 0 1 0

3 alu+4 1 0 (alu + 4) 0 1 0

alu+8

Table 7: Branch Instruction Cycle Operations

ARM7 Data Sheet

76

When the shift length is specified by a register, an additional datapath cycle occurs before the above
operation to copy the bottom 8 bits of that register into a holding latch in the barrel shifter. The instruction
prefetch will occur during this first cycle, and the operation cycle will be internal (ie will not request
memory). This internal cycle can be merged with the following sequential access by the memory manager
as the address remains stable through both cycles.

The PC may be one or more of the register operands. When it is the destination external bus activity may
be affected. If the result is written to the PC, the contents of the instruction pipeline are invalidated, and the
address for the next instruction prefetch is taken from the ALU rather than the address incrementer. The
instruction pipeline is refilled before any further execution takes place, and during this time exceptions are
locked out.

PSR Transfer operations exhibit the same timing characteristics as the data operations except that the PC is
never used as a source or destination register. The cycle timings are shown below Table 8: Data Operation
Instruction Cycle Operations.

Cycle Address nBW nRW Data nMREQ SEQ nOPC

normal 1 pc+8 1 0 (pc+8) 0 1 0

pc+12

dest=pc 1 pc+8 1 0 (pc+8) 0 0 0

2 alu 1 0 (alu) 0 1 0

3 alu+4 1 0 (alu+4) 0 1 0

alu+8

shift(Rs) 1 pc+8 1 0 (pc+8) 1 0 0

2 pc+12 1 0 - 0 1 1

pc+12

shift(Rs) 1 pc+8 1 0 (pc+8) 1 0 0

dest=pc 2 pc+12 1 0 - 0 0 1

3 alu 1 0 (alu) 0 1 0

4 alu+4 1 0 (alu+4) 0 1 0

alu+8

Table 8: Data Operation Instruction Cycle Operations

Instruction Cycle Operations

77

7.3 Multiply and multiply accumulate

The multiply instructions make use of special hardware which implements a 2 bit Booth's algorithm with
early termination. During the first cycle the accumulate Register is brought to the ALU, which either
transmits it or produces zero (depending on the instruction being MLA or MUL) to initialise the destination
register. During the same cycle, the multiplier (Rs) is loaded into the Booth's shifter via the A bus.

The datapath then cycles, adding the multiplicand (Rm) to, subtracting it from, or just transmitting, the
result register. The multiplicand is shifted in the Nth cycle by 2N or 2N+1 bits, under control of the Booth's
logic. The multiplier is shifted right 2 bits per cycle, and when it is zero the instruction terminates (possibly
after an additional cycle to clear a pending borrow).

All cycles except the first are internal. The cycle timings are shown below in Table 9: Multiply Instruction
Cycle Operations.

m is the number of cycles required by the Booth's algorithm; see the section on instruction speeds.

7.4 Load register

The first cycle of a load register instruction performs the address calculation. The data is fetched from
memory during the second cycle, and the base register modification is performed during this cycle (if
required). During the third cycle the data is transferred to the destination register, and external memory is
unused. This third cycle may normally be merged with the following prefetch to form one memory N-cycle.
The cycle timings are shown below in Table 10: Load Register Instruction Cycle Operations.

Cycle Address nBW nRW Data nMREQ SEQ nOPC

(Rs)=0,1 1 pc+8 1 0 (pc+8) 1 0 0

2 pc+12 1 0 - 0 1 1

pc+12 (pc+8)

(Rs)>1 1 pc+8 1 0 (pc+8) 1 0 0

2 pc+12 1 0 - 1 0 1

• pc+12 1 0 - 1 0 1

m pc+12 1 0 - 1 0 1

m+1 pc+12 1 0 - 0 1 1

pc+12

Table 9: Multiply Instruction Cycle Operations

ARM7 Data Sheet

78

Either the base or the destination (or both) may be the PC, and the prefetch sequence will be changed if the
PC is affected by the instruction.

The data fetch may abort, and in this case the destination modification is prevented.

7.5 Store register

The first cycle of a store register is similar to the first cycle of load register. During the second cycle the base
modification is performed, and at the same time the data is written to memory. There is no third cycle. The
cycle timings are shown below in Table 11: Store Register Instruction Cycle Operations.

 Cycle Address nBW nRW Data nMREQ SEQ nOPC

 normal 1 pc+8 1 0 (pc+8) 0 0 0

2 alu b/w 0 (alu) 1 0 1

3 pc+12 1 0 - 0 1 1

pc+12

dest=pc 1 pc+8 1 0 (pc+8) 0 0 0

2 alu b/w 0 pc’ 1 0 1

3 pc+12 1 0 - 0 0 1

4 pc’ 1 0 (pc’) 0 1 0

 5 pc’+4 1 0 (pc’+4) 0 1 0

pc’+8

Table 10: Load Register Instruction Cycle Operations

Cycle Address nBW nRW Data nMREQ SEQ nOPC

1 pc+8 1 0 (pc+8) 0 0 0

2 alu b/w 1 Rd 0 0 1

pc+12

Table 11: Store Register Instruction Cycle Operations

Instruction Cycle Operations

79

7.6 Load multiple registers

The first cycle of LDM is used to calculate the address of the first word to be transferred, whilst performing
a prefetch from memory. The second cycle fetches the first word, and performs the base modification.
During the third cycle, the first word is moved to the appropriate destination register while the second
word is fetched from memory, and the modified base is latched internally in case it is needed to patch up
after an abort. The third cycle is repeated for subsequent fetches until the last data word has been accessed,
then the final (internal) cycle moves the last word to its destination register. The cycle timings are shown in
Table 12: Load Multiple Registers Instruction Cycle Operations.

The last cycle may be merged with the next instruction prefetch to form a single memory N-cycle.

If an abort occurs, the instruction continues to completion, but all register writing after the abort is
prevented. The final cycle is altered to restore the modified base register (which may have been overwritten
by the load activity before the abort occurred).

When the PC is in the list of registers to be loaded the current instruction pipeline must be invalidated.

Note that the PC is always the last register to be loaded, so an abort at any point will prevent the PC from
being overwritten.

ARM7 Data Sheet

80

 Cycle Address nBW nRW Data nMREQ SEQ nOPC

1 register 1 pc+8 1 0 (pc+8) 0 0 0

2 alu 1 0 (alu) 1 0 1

3 pc+12 1 0 - 0 1 1

pc+12

1 register 1 pc+8 1 0 (pc+8) 0 0 0

dest=pc 2 alu 1 0 pc’ 1 0 1

3 pc+12 1 0 - 0 0 1

4 pc’ 1 0 (pc’) 0 1 0

 5 pc’+4 1 0 (pc’+4) 0 1 0

pc’+8

n registers 1 pc+8 1 0 (pc+8) 0 0 0

(n>1) 2 alu 1 0 (alu) 0 1 1

• alu+• 1 0 (alu+•) 0 1 1

n alu+• 1 0 (alu+•) 0 1 1

n+1 alu+• 1 0 (alu+•) 1 0 1

n+2 pc+12 1 0 - 0 1 1

pc+12

n registers 1 pc+8 1 0 (pc+8) 0 0 0

(n>10) 2 alu 1 0 (alu) 0 1 1

incl pc • alu+• 1 0 (alu+•) 0 1 1

n alu+• 1 0 (alu+•) 0 1 1

n+1 alu+• 1 0 pc’ 1 0 1

n+2 pc+12 1 0 - 0 0 1

n+3 pc’ 1 0 (pc’) 0 1 0

n+4 pc’+4 1 0 (pc’+4) 0 1 0

pc’+8

Table 12: Load Multiple Registers Instruction Cycle Operations

Instruction Cycle Operations

81

7.7 Store multiple registers

Store multiple proceeds very much as load multiple, without the final cycle. The restart problem is much
more straightforward here, as there is no wholesale overwriting of registers to contend with. The cycle
timings are shown in Table 13: Store Multiple Registers Instruction Cycle Operations.

7.8 Data swap

This is similar to the load and store register instructions, but the actual swap takes place in cycles 2 and 3.
In the second cycle, the data is fetched from external memory. In the third cycle, the contents of the source
register are written out to the external memory. The data read in cycle 2 is written into the destination
register during the fourth cycle. The cycle timings are shown below in Table 14: Data Swap Instruction Cycle
Operations.

The LOCK output of ARM7 is driven HIGH for the duration of the swap operation (cycles 2 & 3) to indicate
that both cycles should be allowed to complete without interruption.

The data swapped may be a byte or word quantity (b/w).

The swap operation may be aborted in either the read or write cycle, and in both cases the destination
register will not be affected.

 Cycle Address nBW nRW Data nMREQ SEQ nOPC

1 register 1 pc+8 1 0 (pc+8) 0 0 0

2 alu 1 1 Ra 0 0 1

pc+12

n registers 1 pc+8 1 0 (pc+8) 0 0 0

(n>1) 2 alu 1 1 Ra 0 1 1

• alu+• 1 1 R• 0 1 1

n alu+• 1 1 R• 0 1 1

n+1 alu+• 1 1 R• 0 0 1

pc+12

Table 13: Store Multiple Registers Instruction Cycle Operations

ARM7 Data Sheet

82

7.9 Software interrupt and exception entry

Exceptions (and software interrupts) force the PC to a particular value and refill the instruction pipeline
from there. During the first cycle the forced address is constructed, and a mode change may take place. The
return address is moved to R14 and the CPSR to SPSR_svc.

During the second cycle the return address is modified to facilitate return, though this modification is less
useful than in the case of branch with link.

The third cycle is required only to complete the refilling of the instruction pipeline. The cycle timings are
shown below in Table 15: Software Interrupt Instruction Cycle Operations.

where C represents the current mode-dependent value

For software interrupts, pc is the address of the SWI instruction. For interrupts and reset, pc is the address
of the instruction following the last one to be executed before entering the exception. For prefetch abort, pc
is the address of the aborting instruction. For data abort, pc is the address of the instruction following the
one which attempted the aborted data transfer. Xn is the appropriate trap address.

Cycle Address nBW nRW Data nMREQ SEQ nOPC LOCK

1 pc+8 1 0 (pc+8) 0 0 0 0

2 Rn b/w 0 (Rn) 0 0 1 1

3 Rn b/w 1 Rm 1 0 1 1

4 pc+12 1 0 - 0 1 1 0

pc+12

Table 14: Data Swap Instruction Cycle Operations

Cycle Address nBW nRW Data nMREQ SEQ nOPC nTRANS Mode

1 pc+8 1 0 (pc+8) 0 0 0 C old mode

2 Xn 1 0 (Xn) 0 1 0 1 exception
mode

3 Xn+4 1 0 (Xn+4) 0 1 0 1 exception
mode

Xn+8

Table 15: Software Interrupt Instruction Cycle Operations

Instruction Cycle Operations

83

7.10 Coprocessor data operation

A coprocessor data operation is a request from ARM7 for the coprocessor to initiate some action. The action
need not be completed for some time, but the coprocessor must commit to doing it before driving CPB
LOW.

If the coprocessor can never do the requested task, it should leave CPA and CPB HIGH. If it can do the task,
but can't commit right now, it should drive CPA LOW but leave CPB HIGH until it can commit. ARM7 will
busy-wait until CPB goes LOW. The cycle timings are shown in Table 16: Coprocessor Data Operation
Instruction Cycle Operations.

7.11 Coprocessor data transfer (from memory to coprocessor)

Here the coprocessor should commit to the transfer only when it is ready to accept the data. When CPB goes
LOW, ARM7 will produce addresses and expect the coprocessor to take the data at sequential cycle rates.
The coprocessor is responsible for determining the number of words to be transferred, and indicates the last
transfer cycle by driving CPA and CPB HIGH.

ARM7 spends the first cycle (and any busy-wait cycles) generating the transfer address, and performs the
write-back of the address base during the transfer cycles. The cycle timings are shown in Table 17:
Coprocessor Data Transfer Instruction Cycle Operations.

 Cycle Address nBW nRW Data nMREQ SEQ nOPC nCPI CPA CPB

ready 1 pc+8 1 0 (pc+8) 0 0 0 0 0 0

pc+12

not ready 1 pc+8 1 0 (pc+8) 1 0 0 0 0 1

2 pc+8 1 0 - 1 0 1 0 0 1

• pc+8 1 0 - 1 0 1 0 0 1

n pc+8 1 0 - 0 0 1 0 0 0

pc+12

Table 16:Coprocessor Data Operation Instruction Cycle Operations

ARM7 Data Sheet

84

 Cycle Address nBW nRW Data nMREQ SEQ nOPC nCPI CPA CPB

1 register 1 pc+8 1 0 (pc+8) 0 0 0 0 0 0

ready 2 alu 1 0 (alu) 0 0 1 1 1 1

pc+12

1 register 1 pc+8 1 0 (pc+8) 1 0 0 0 0 1

not ready 2 pc+8 1 0 - 1 0 1 0 0 1

• pc+8 1 0 - 1 0 1 0 0 1

n pc+8 1 0 - 0 0 1 0 0 0

n+1 alu 1 0 (alu) 0 0 1 1 1 1

pc+12

n registers 1 pc+8 1 0 (pc+8) 0 0 0 0 0 0

(n>1) 2 alu 1 0 (alu) 0 1 1 1 0 0

ready • alu+• 1 0 (alu+•) 0 1 1 1 0 0

n alu+• 1 0 (alu+•) 0 1 1 1 0 0

n+1 alu+• 1 0 (alu+•) 0 0 1 1 1 1

pc+12

m registers 1 pc+8 1 0 (pc+8) 1 0 0 0 0 1

(m>1) 2 pc+8 1 0 - 1 0 1 0 0 1

not ready • pc+8 1 0 - 1 0 1 0 0 1

n pc+8 1 0 - 0 0 1 0 0 0

n+1 alu 1 0 (alu) 0 1 1 1 0 0

• alu+• 1 0 (alu+•) 0 1 1 1 0 0

n+m alu+• 1 0 (alu+•) 0 1 1 1 0 0

n+m+1 alu+• 1 0 (alu+•) 0 0 1 1 1 1

pc+12

Table 17: Coprocessor Data Transfer Instruction Cycle Operations

Instruction Cycle Operations

85

7.12 Coprocessor data transfer (from coprocessor to memory)

The ARM7 controls these instructions exactly as for memory to coprocessor transfers, with the one
exception that the nRW line is inverted during the transfer cycle. The cycle timings are show in Table 18:
Coprocessor Data Transfer Instruction Cycle Operations.

Cycle Address nBW nRW Data nMREQ SEQ nOPC nCPI CPA CPB

1 register 1 pc+8 1 0 (pc+8) 0 0 0 0 0 0

ready 2 alu 1 1 CPdata 0 0 1 1 1 1

pc+12

1 register 1 pc+8 1 0 (pc+8) 1 0 0 0 0 1

not ready 2 pc+8 1 0 - 1 0 1 0 0 1

• pc+8 1 0 - 1 0 1 0 0 1

n pc+8 1 0 - 0 0 1 0 0 0

n+1 alu 1 1 CPdata 0 0 1 1 1 1

pc+12

n registers 1 pc+8 1 0 (pc+8) 0 0 0 0 0 0

(n>1) 2 alu 1 1 CPdata 0 1 1 1 0 0

ready • alu+• 1 1 CPdata 0 1 1 1 0 0

n alu+• 1 1 CPdata 0 1 1 1 0 0

n+1 alu+• 1 1 CPdata 0 0 1 1 1 1

pc+12

m registers 1 pc+8 1 0 (pc+8) 1 0 0 0 0 1

(m>1) 2 pc+8 1 0 - 1 0 1 0 0 1

not ready • pc+8 1 0 - 1 0 1 0 0 1

n pc+8 1 0 - 0 0 1 0 0 0

n+1 alu 1 1 CPdata 0 1 1 1 0 0

• alu+• 1 1 CPdata 0 1 1 1 0 0

n+m alu+• 1 1 CPdata 0 1 1 1 0 0

n+m+1 alu+• 1 1 CPdata 0 0 1 1 1 1

pc+12

Table 18: Coprocessor Data Transfer Instruction Cycle Operations

ARM7 Data Sheet

86

7.13 Coprocessor register transfer (Load from coprocessor)

Here the busy-wait cycles are much as above, but the transfer is limited to one data word, and ARM7 puts
the word into the destination register in the third cycle. The third cycle may be merged with the following
prefetch cycle into one memory N-cycle as with all ARM7 register load instructions. The cycle timings are
shown in Table 19: Coprocessor register transfer (Load from coprocessor).

7.14 Coprocessor register transfer (Store to coprocessor)

As for the load from coprocessor, except that the last cycle is omitted. The cycle timings are shown below
in Table 20: Coprocessor register transfer (Store to coprocessor).

 Cycle Address nBW nRW Data nMREQ SEQ nOPC nCPI CPA CPB

ready 1 pc+8 1 0 (pc+8) 1 1 0 0 0 0

2 pc+12 1 0 CPdata 1 0 1 1 1 1

3 pc+12 1 0 - 0 1 1 1 - -

pc+12

not ready 1 pc+8 1 0 (pc+8) 1 0 0 0 0 1

2 pc+8 1 0 CPdata 1 0 1 0 0 1

• pc+8 1 0 - 1 0 1 0 0 1

n pc+8 1 0 - 1 1 1 0 0 0

n+1 pc+12 1 0 CPdata 1 0 1 1 1 1

n+2 pc+12 1 0 - 0 1 1 1 - -

pc+12

Table 19: Coprocessor register transfer (Load from coprocessor)

Instruction Cycle Operations

87

7.15 Undefined instructions and coprocessor absent

When a coprocessor detects a coprocessor instruction which it cannot perform, and this must include all
undefined instructions, it must not drive CPA or CPB LOW. These will remain HIGH, causing the
undefined instruction trap to be taken. Cycle timings are shown in Table 21: Undefined Instruction Cycle
Operations.

 Cycle Address nBW nRW Data nMREQ SEQ nOPC nCPI CPA CPB

ready 1 pc+8 1 0 (pc+8) 1 1 0 0 0 0

2 pc+12 1 1 Rd 0 0 1 1 1 1

pc+12

not ready 1 pc+8 1 0 (pc+8) 1 0 0 0 0 1

2 pc+8 1 0 - 1 0 1 0 0 1

• pc+8 1 0 - 1 0 1 0 0 1

n pc+8 1 0 - 1 1 1 0 0 0

n+1 pc+12 1 1 Rd 0 0 1 1 1 1

pc+12

Table 20: Coprocessor register transfer (Store to coprocessor)

Cycle Address nBW nRW Data nMREQ SEQ nOPC nCPI CPA CPB nTRANS Mode

1 pc+8 1 0 (pc+8) 1 0 0 0 1 1 Old Old

2 pc+8 1 0 - 0 0 0 1 1 1 Old Old

 3 Xn 1 0 (Xn) 0 1 0 1 1 1 1 00100

4 Xn+4 1 0 (Xn+4) 0 1 0 1 1 1 1 00100

Xn+8

Table 21: Undefined Instruction Cycle Operations

ARM7 Data Sheet

88

7.16 Unexecuted instructions

Any instruction whose condition code is not met will fail to execute. It will add one cycle to the execution
time of the code segment in which it is embedded (see Table 22: Unexecuted Instruction Cycle Operations).

7.17 Instruction Speed Summary

Due to the pipelined architecture of the CPU, instructions overlap considerably. In a typical cycle one
instruction may be using the data path while the next is being decoded and the one after that is being
fetched. For this reason the following table presents the incremental number of cycles required by an
instruction, rather than the total number of cycles for which the instruction uses part of the processor.
Elapsed time (in cycles) for a routine may be calculated from these figures which are shown in Table 23:
ARM Instruction Speed Summary. These figures assume that the instruction is actually executed. Unexecuted
instructions take one cycle.

Cycle Address nBW nRW Data nMREQ SEQ nOPC

1 pc+8 1 0 (pc+8) 0 1 0

pc+12

Table 22: Unexecuted Instruction Cycle Operations

Instruction Cycle count Additional

Data Processing 1S + 1I for SHIFT(Rs)
+ 1S + 1N if R15 written

MSR, MRS 1S

LDR 1S + 1N + 1I + 1S + 1N if R15 loaded

STR 2N

LDM nS + 1N + 1I + 1S + 1N if R15 loaded

STM (n-1)S + 2N

SWP 1S + 2N + 1I

B,BL 2S + 1N

SWI, trap 2S + 1N

CDP 1S + bI

LDC,STC (n-1)S + 2N + bI

MCR 1N + bI + 1C

MRC 1S + (b+1)I + 1C

Table 23: ARM Instruction Speed Summary

Instruction Cycle Operations

89

n is the number of words transferred.m is the number of cycles required by the multiply algorithm,
which is determined by the contents of Rs. Multiplication by any number between 2^(2m-3) and
2^(2m-1)-1 takes 1S+mI m cycles for 1<m>16. Multiplication by 0 or 1 takes 1S+1I cycles, and
multiplication by any number greater than or equal to 2^(29) takes 1S+16I cycles. The maximum
time for any multiply is thus 1S+16I cycles.

m is 2 if bits[32:16] of the multiplier operand are all zero or one.

m is 4 otherwise.

b is the number of cycles spent in the coprocessor busy-wait loop.

If the condition is not met all the instructions take one S-cycle. The cycle types N, S, I, and C are defined in
Chapter 5.0 Memory Interface

ARM7 Data Sheet

90

DC Parameters

91

8.0 DC Parameters

Subject to Change

8.1 Absolute Maximum Ratings

Note:

These are stress ratings only. Exceeding the absolute maximum ratings may permanently damage the
device. Operating the device at absolute maximum ratings for extended periods may affect device
reliability.

8.2 DC Operating Conditions

Notes:

1. Voltages measured with respect to VSS.

Symbol Parameter Min Max Units Note

VDD Supply voltage VSS-0.3 VSS+7.0 V 1

Vin Input voltage applied to any pin VSS-0.3 VDD+0.3 V 1

 Ts Storage temperature -40 125 deg C 1

Table 24: ARM7 DC Maximum Ratings

Symbol Parameter Min Typ Max Units Notes

VDD Supply voltage 4.5 5.0 5.5 V

Vihc Input HIGH voltage 3.5 VDD V 1

Vilc Input LOW voltage 0.0 1.5 V 1

Ta Ambient operating temperature 0 70 deg.C

Table 25: ARM7 DC Operating Conditions

92

ARM7 Data Sheet

AC Parameters

93

9.0 AC Parameters

*** Important Note - Provisional Figures ***

The timing parameters given here are preliminary data and subject to change when device characterisation
is complete.

The AC timing diagrams presented in this section assume that the outputs of the ARM7 cell have been
loaded with the capacitive loads shown in the `Test Load' column of Table 26: AC Test Loads. These loads
have been chosen as typical of the type of system in which ARM7 cell might be employed.

The output drivers of the ARM7 cell are CMOS inverters which exhibit a propagation delay that increases
linearly with the increase in load capacitance. An `Output derating' figure is given for each output driver,
showing the approximate rate of increase of output time with increasing load capacitance.

Output
Signal

Test
Load
(pF)

Output
derating
(ns/pF)

D[31:0] 5 0.5

A[31:0] 5 0.5

LOCK 2 0.5

nCPI 2 0.5

nMREQ 2 0.5

SEQ 2 0.5

nRW 2 0.5

nBW 2 0.5

nOPC 2 0.5

nTRANS 2 0.5

Table 26: AC Test Loads

94

ARM7 Data Sheet

 Figure 35: General Timings

Note: nWAIT and ALE are both HIGH during the cycle shown.

 Figure 36: Address Timing

Note: Tald is the time by which ALE must be driven LOW in order to latch the current address in phase
2. If ALE is driven low after Tald, then a new address will be latched.

MCLK

A[31:0]

nRW

nBW,
LOCK

nM[4:0],
nTRANS

nOPC

nMREQ,
SEQ

Tah
Taddr

Trwh
Trwd

Tblh
Tbld

Tmdh
Tmdd

Topch
Topcd

Tmsh
Tmsd

MCLK

ALE

A[31:0]

Tald

Tale

AC Parameters

95

 Figure 37: Data Write Cycle

Note: DBE is high during the cycle shown.

 Figure 38: Data Read Cycle

Note: DBE is high during the cycle shown.

 Figure 39: Data Bus Control

Note: The cycle shown is a data write cycle since nENOUT was driven low during phase 1. Here, DBE
has been used to modify the behaviour of nENOUT.

MCLK

nENOUT

DOUT[31:0]

Tnen

Tdout Tdoh

MCLK

nENOUT

DATA[31:0]

Tnen

Tdis Tdih

MCLK

nENOUT

DBE

Tnen Tnen

Tdbn Tdbn

96

ARM7 Data Sheet

 Figure 40: Configuration Pin Timing

 Figure 41: Coprocessor Timing

Note: Normally, nMREQ and SEQ become valid Tmsd after the falling edge of MCLK. In this cycle the
ARM has been busy-waiting, waiting for a coprocessor to complete the instruction. If CPA and CPB
change during phase 1, the timing of nMREQ and SEQ will depend on Tcpms. Most systems
should be able to generate CPA and CPB during the previous phase 2, and so the timing of nMREQ
and SEQ will always be Tmsd.

MCLK

LATEABT,
BIGEND,
DATA32,
PROG32 Tcth Tcts

MCLK

nCPI

CPA, CPB

nMREQ,
SEQ

Tcpi Tcpih

Tcps
Tcph

Tcpms

AC Parameters

97

 Figure 42: Exception Timing

Note: Tirs guarantees recognition of the interrupt (or reset) source by the corresponding clock edge. Tirm
guarantees non-recognition by that clock edge. These inputs may be applied fully asynchronously
where the exact cycle of recognition is unimportant.

 Figure 43: Clock Timing

Note: The ARM core is not clocked by the HIGH phase of MCLK enveloped by nWAIT. Thus, during the
cycles shown, nMREQ and SEQ change once, during the first LOW phase of MCLK, and A[31:0]
change once, during the second HIGH phase of MCLK. For reference, ph2 is shown. This is the
internal clock from which the core times all its activity. This signal is included to show how the high
phase of the external MCLK has been removed from the internal core clock.

MCLK

ABORT

nRESET

nFIQ, nIRQ

Tabts Tabth

Tirs Tirm

Tirs Tirm

MCLK

nWAIT

ph2

nMREQ/
SEQ

A[31:0]

Tclkl Tclkh

Tws Twh

Tmsd

Taddr

98

ARM7 Data Sheet

Symbol Parameter Min Max

Tckl clock LOW time 21

Tckh clock HIGH time 21

Tws nWAIT setup to CKr 3

Twh nWAIT hold from CKf 3

Tale address latch open 4

Tald address latch time 4

Taddr CKr to address valid 12

Tah address hold time 5

Tnen nENOUT output delay 2

Tdbn DBE to nENOUT delay 11

Tdout data out delay 17

Tdoh data out hold 5

Tdis data in setup 0

Tdih data in hold 5

Tabts ABORT setup time 10

Tabth ABORT hold time 5

Tirs interrupt setup 6

Tirm Interrupt non-recognition time TBD

Trwd CKr to nRW valid 21

Trwh nRW hold time 5

Tmsd CKf to nMREQ & SEQ 23

Tmsh nMREQ & SEQ hold time 5

Tbld CKr to nBW & LOCK 21

Tblh nBW & LOCK hold 5

Tmdd CKr to nTRANS/nM[4:0] 21

Tmdh nTRANS/nM[4:0] hold 5

Topcd CKr to nOPC valid 11

Topch nOPC hold time 5

Tcps CPA, CPB setup 7

Tcph CPA,CPB hold time 2

Tcpms CPA, CPB to nMREQ, SEQ 15

Tcpi CKf to nCPI delay 11

Tcpih nCPI hold time 5

Tcts Config setup time 10

Tcth Config hold time 5

Table 27: Provisional AC Parameters (units of ns)

AC Parameters

99

9.1 Notes on AC Parameters

All figures are provisional, and assume that 1 micron CMOS technology is used to fabricate the ASIC
containing the ARM7.

100

ARM7 Data Sheet

Appendix - Backward Compatibility

101

10.0 Appendix - Backward Compatibility

Two inputs, PROG32 and DATA32, allow one of three processor configurations to be selected as follows:

(1) 26 bit program and data space - (PROG32 LOW, DATA32 LOW). This configuration forces
ARM7 to operate like the earlier ARM processors with 26 bit address space. The programmer's
model for these processors applies, but the new instructions to access the CPSR and SPSR registers
operate as detailed elsewhere in this document. In this configuration it is impossible to select a 32
bit operating mode, and all exceptions (including address exceptions) enter the exception handler
in the appropriate 26 bit mode.

(2) 26 bit program space and 32 bit data space - (PROG32 LOW, DATA32 HIGH). This is the same as
the 26 bit program and data space configuration, but with address exceptions disabled to allow
data transfer operations to access the full 32 bit address space.

(3) 32 bit program and data space - (PROG32 HIGH, DATA32 HIGH). This configuration extends the
address space to 32 bits, introduces major changes in the programmer's model as described below
and provides support for running existing 26 bit programs in the 32 bit environment.

The fourth processor configuration which is possible (26 bit data space and 32 bit program space) should
not be selected.

When configured for 26 bit program space, ARM7 is limited to operating in one of four modes known as
the 26 bit modes. These modes correspond to the modes of the earlier ARM processors and are known as:

User26

FIQ26

IRQ26 and

Supervisor26.

These are the normal operating modes in this configuration and the 26 bit modes are only provided for
backwards compatibility to allow execution of programs originally written for earlier ARM processors.

The differences between ARM7 and the earlier ARM processors are documented in an ARM Application
Note 11 - “Differences between ARM6 and earlier ARM Processors”

ARM7 Data Sheet

102

