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Introduction

This chapter introduces the Programming Techniques manual.

1.1 About this manual 1-2

1.2 Feedback 1-3
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1.1 About this manual

1.1.1 Overview

This manual is designed to help programmers rapidly exploit the power of the ARM processor for
embedded applications. The material has been written by ARM staff who have accumulated
considerable experience with software for the ARM and Thumb microprocessors.

We have targeted this manual at embedded systems programmers who have some experience
with other architectures, and who wish to quickly learn how to use an ARM chip.

A broad spectrum of topics is covered, from introductory illustrations through to complex
examples. It has been organised by theme, for example:

• Programmer’s Model
This chapter describes the ARM architecture. It includes details for system
programmers writing supervisor code and exception handlers.

• Programming in C for the ARM
This chapter is essential reading for developers who wish to optimise their code for high
performance and minimum size. It describes how to write C which compiles efficiently.
This approach can yield considerable gains without resorting to assembly language.

• Writing Code for ROM
This explains the issues involved in preparing code for ROM. It describes how the linker
can be used to link an image into a fragmented memory map, with RAM areas initialised
automatically on startup.

• ARMulator
This describes how the ARM emulator (ARMulator) can be modified to emulate an entire
system. The ARMulator can be used to develop and debug software while hardware
design proceeds in parallel.

• Writing SWI Handlers
This chapter describes how to use the SWI (Software Interrupt) instruction to interface
user code with an operating system (or other code which runs in Supervisor-mode).

• Benchmarking
This describes ways of obtaining high performance and minimum code size when
evaluating the ARM processor.

You should use this book in conjunction with the ARM Software Development Toolkit, as most of
the example programs are available on-line in the toolkit’s examples  directory

You will need to refer to the ARM Software Development Toolkit Reference Manual (ARM DUI
0020) for full details of the software tools. Also, the relevant ARM Datasheet will give you specific
details about the device with which you are working.
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1.1.2 Conventions

Typographical conventions

The following typographical conventions are used in this manual:

typewriter denotes text that may be entered at the keyboard: commands,
file and program names and assembler and C source.

typewriter-italic shows text which must be substituted with user-supplied
information: this is most often used in syntax descriptions

Oblique is used to highlight important notes and ARM-specific
terminology.

Filenames

Unless otherwise stated, filenames are quoted in Unix format—for example:

examples/basicasm/gcd1.s

If you are using the PC platform, you must translate them into their DOS equivalent:

EXAMPLES\BASICASM\GCD1.S

1.2 Feedback

1.2.1 Feedback on the Software Development Toolkit

If you have feedback on the Software Development Toolkit, please contact either your supplier
or ARM Ltd. You can send feedback via e-mail to: xdevt@armltd.co.uk.

In order to help us give a rapid and useful response, please give:

• details of which hosting and release of the ARM software tools you are using

• a small sample code fragment which reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

1.2.2 Feedback on this manual

If you have feedback on this manual, please send it via e-mail to: documentation@armltd.co.uk,
giving:

• the manual’s revision number

• the page number(s) to which your comments refer

• a concise explanation of the problem

General suggestions for additions and improvements are also welcome.
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Getting Started

This chapter introduces the components of the ARM software development toolkit, and
takes you through compiling, linking and running a simple ARM program.

2.1 Introducing the Toolkit 2-2

2.2 The Hello World Example 2-4
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2.1 Introducing the Toolkit
The ARM software development toolkit is a collection of utilities for producing programs written
in ARM code. The tools include emulators so that programs can be run even when real ARM
hardware is unavailable to the developer.

 Figure 2-1: ARM Software Development Toolkit

The toolkit supports two platforms:

• IBM compatible PCs

• Sun workstations

It comprises a set of command line tools and, in the case of the IBM PC platform, a pair of
applications which provide an interactive development environment in the Windows desktop.

The tools are used for two main purposes:

• Software development

This involves building either C, C++, or ARM assembler source code into ARM object
code, which is then debugged using the ARM source level debugger. The debugger has
facilities which include single stepping, setting breakpoints and watchpoints, and
viewing registers. Testing and debugging can be carried out on code running in a real
ARM processor, or using the integrated ARM processor emulator.

• Benchmarking

Once application code has been built, it can be benchmarked either on an ARM
processor attached to the host system, or under software emulation.
The ARM emulator can also be used to simulate the memory environment.

ARM
Software

Development
Toolkit

Code Development Tools

Re-targetable libraries

System Development Tools

Full documentation

Utilities
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2.1.1 Tools

The ARM software development toolkit consists of the following core command-line tools:

armcc The ARM C cross compiler. This is a mature, industrial-strength
compiler, tested against Plum Hall C Validation Suite for ANSI
conformance. It supports both Unix and PCC compatible modes. It
is highly optimising, with options to optimise for code size or
execution speed. The compiler is very fast, compiling 500 lines per
second on a SPARC 10/41. The compiler can also produce ARM
assembly language source.

tcc The Thumb C cross compiler. This is based on the ARM C compiler
but produces 16-bit Thumb instructions instead of 32-bit ARM
instructions.

armasm The ARM cross assembler. This compiles ARM assembly language
source into ARM object format object code.

tasm The Thumb and ARM cross assembler. This compiles both ARM
assembly and Thumb assembly language source into object code.
An assembler directive dictates whether the code following is ARM
(32-bits) or Thumb (16-bits).

armlink The Thumb and ARM linker. This combines the contents of one or
more object files (the output of a compilation of assembler) with
selected parts of one or more object libraries, to produce an
executable program.

decAOF The Thumb and ARM object file decoder/disassembler. This is used
to extract information from object files, such as the code size.

armsd The Thumb and ARM symbolic debugger. This is used to emulate
ARM processors, allowing ARM and Thumb executable programs to
be run on non-ARM hardware. It also allows source level debugging
of programs that have been compiled with debug information. This
consists of single stepping either C source or assembler source,
setting break points/ watchpoints, etc. armsd can also connect to
real hardware and allow source level debugging on that hardware.

These tools are documented in ➲The ARM Software Development Toolkit Reference Manual:
Chapter 1, Introduction.

On the IBM PC platform, the toolkit also comprises:

APM The ARM Project Manager. This is an integrated development
environment, which provides all the functions of a traditional make
file, along with source editing facilities and a link to the ARM
debugger.

Windbg The ARM windowed debugger. This is the Windows version of
armsd which integrates with the ARM Project Manager.

These applications are documented in the ARM Windows Toolkit Guide (ARM DUI 0022).
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2.2 The Hello World Example
This example shows you how to write, compile, link and execute a simple C program that prints
“Hello World” and a carriage return on the screen. The code will be generated on a text editor,
compiled and linked using armcc, and run on armsd.

 Figure 2-2: Compiling and linking C

2.2.1 Create, compile, link, and run

Generate the following code using any text editor, and save the file as hello.c .

#include <stdio.h>

int main(void)
{

printf("Hello World\n");
return 0;

}

Use the following command to compile and link the code:

armcc hello.c -o hello

The argument to the -o  flag gives the name of the file which will hold the final output of the link
step. The linker is automatically called after compilation (because in this instance the -c  flag has
not been specified). Note that flags are case-sensitive.

To execute the code under software emulation, enter:

armsd hello

at the system prompt. armsd will start, load in the file, and display the armsd:  prompt to indicate
that it is waiting for a command. Type

go

and press Return. The debugger should respond with “Hello World”, followed by a message
indicating that the program terminated normally.

C source module(s)

armcc

executable

C library

compile

link

.o

.c
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2.2.2 Timing

To find out how many microseconds this would take to run on real hardware, type the following:

print $clock

You can change the memory model and clock speed of the hardware being simulated—for more
information, see ➲Chapter 13, Benchmarking, Performance Analysis, and Profiling.

To load and run the program again, enter:

reload
go

To quit the debugger, enter:

quit

2.2.3 Debugging

Next, re-compile the program to include high-level debugging information, and use the debugger
to examine the code. Compile the program using:

armcc -g hello.c -o hello2

where the -g  option instructs the compiler to add debug information.

Load hello2  into armsd:

armsd hello2

and set a breakpoint on the first statement in main  by entering:

break main

at the armsd:  prompt.

To execute the program up to the breakpoint, enter:

go

The debugger reports that it has stopped at breakpoint #1, and displays the source line. To view
the ARM registers, enter:

reg

To list the C source, enter:

type

This displays the whole source file. type  can also display sections of code: for example if you
enter:

type 1,6

lines 1 to 6 of the source will be displayed.
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To show the assembly code rather than the C source, type:

list

This will produce the assembly around the current position in the program. You can also list
memory at a given address:

list 0x8080

2.2.4 Separating the compile and link stages

To separate the compile and link stages, use the -c  option when running armcc. Quit the
debugger and then type the following:

armcc -c hello.c

This will produce the object file hello.o , but no executable. To link the object file with a library,
and so generate an executable program, issue the command:

armlink hello.o libpath /armlib.32l -o hello3

replacing libpath  with the pathname of the toolkit’s lib  directory on your system. The
armlib.32l  file is the version of the library which uses the 32-bit ARM instruction set and runs
in a little endian memory model.

Run the program:

armsd hello3

hello3  contains no C source because hello.o  was compiled without the -g  option, so
attempting to view the source statements with the type  command will fail. However, it is still
possible to reference program locations and set breakpoints on them using the @ character to
reference the low-level symbols.

For example, to set a breakpoint on the first location in main , type:

break @main

2.2.5 Generating assembly language from C

The compiler can also generate assembly language from C. Quit the debugger and enter:

armcc -S hello.c

at the system prompt.

The -S  flag instructs armcc to write out an assembly language listing of the instructions that
would normally be compiled into executable code. By default the output file will have the same
name as the C source file, but with the extension .s .

To view the assembly language which was output by armcc, display the file hello.s  on screen
using the appropriate operating system command, or load it into a text editor. You should see the
following:
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; generated by Norcroft  ARM C vsn 4.65 (Advanced RISC Machines) [May
23 1995]

        AREA |C$$code|, CODE, READONLY
|x$codeseg| DATA

main
        MOV      ip,sp
        STMDB    sp!,{fp,ip,lr,pc}
        SUB      fp,ip,#4
        CMP      sp,sl
        BLMI     __rt_stkovf_split_small
        ADD      a1,pc,#L000024-.-8
        BL       _printf
        MOV      a1,#0
        LDMDB    fp,{fp,sp,pc}
L000024
        DCB     0x48,0x65,0x6c,0x6c
        DCB     0x6f,0x20,0x77,0x6f
        DCB     0x72,0x6c,0x64,0x0a
        DCB     00,00,00,00

        AREA |C$$data|,DATA

|x$dataseg|

        EXPORT main

        IMPORT _printf
        IMPORT __rt_stkovf_split_small

        END

Note Your code may differ slightly from the above, depending on the version of armcc in use.

2.2.6 For more information

For a description of the ARM C compiler options, see ➲The ARM Software Development Toolkit
Reference Manual: Chapter 2, C Compiler.

For a description of the ARM linker options, see ➲The ARM Software Development Toolkit
Reference Manual: Chapter 6, Linker.
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Programmer’s Model

This chapter describes the features of the ARM Processor which are of special interest to
the programmer.

3.1 Introduction 3-2

3.2 Memory Formats 3-3

3.3 Instruction Length 3-4

3.4 Data Types 3-4

3.5 Processor Modes 3-4

3.6 Processor States 3-5

3.7 The ARM Register Set 3-6

3.8 The Thumb Register Set 3-8

3.9 Program Status Registers 3-10

3.10 Exceptions 3-12
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3.1 Introduction
This chapter gives an overview of the ARM from the programmer’s point of view, and is designed
to provide you with some general background for the discussions in this book.

3.1.1  The ARM Architecture—a brief overview

ARM architecture has evolved considerably since its first development. There are four major
versions:

Architectures 1 and 2

The original architecture—Version 1—was implemented only by ARM1, and was never used in
a commercial product.

ARM Architecture Version 2 was the first to be used commerially. It  extended Version 1 by
adding:

• the multiply and multiply accumulate instructions (MUL and MLA)

• support for coprocessors

• a further two banked registers for FIQ mode

Version 2a introduced an Atomic Load and Store instruction (SWP) and the use of Coprocessor
15 as a system control coprocessor. Versions 1, 2 and 2a all supported a 26-bit address bus and
combined in register 15 a 24-bit Program Counter (PC) and 8 bits of processor status.

Architecture 3

Version 3 of the architecture extended the addressing range to 32 bits, defining a 30-bit Program
Counter value in register 15. The status information was moved from register 15 to a new 11-bit
status register (the Current Program Status Register or CPSR). Version 3 also added two new
privileged processing modes (Version 2 has just three: Supervisor, IRQ and FIQ). The new
modes, Undefined and Abort, allowed coprocessor emulation and virtual memory support in
Supervisor mode. In addition, a further five status registers (the Saved Program Status Registers
or SPSRs) were defined, one for each privileged processor mode, in which the CPSR contents
is preserved when the corresponding exception is taken.

A variant of the Version 3 architecture—Version 3M—added multiply and multiply accumulate
instructions that produce a 64 bit result (SMULL, UMULL, SMLAL, UMLAL).

Architecture 4

Version 4 added halfword load and store instructions and sign extended byte and halfword load
instructions. It also reserved some SWI instruction space for architecturally defined operations,
added a new privileged processor mode called System (that uses the User mode registers) and
defined several new undefined instructions.

A variant of Version 4 called 4T incorporates an instruction decoder for a 16-bit subset of the ARM
instruction set (known as Thumb). Processors which have this decoder are referred to as being
Thumb-aware.
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3.2 Memory Formats
The ARM views memory as a linear collection of bytes numbered upwards from zero. Bytes 0
to 3 hold the first stored word, bytes 4 to 7 the second and so on. The ARM can treat words in
memory as being stored either in Big Endian or Little Endian format.

3.2.1 Big endian format

In big endian format, the most significant byte of a word is stored at the lowest numbered byte
and the least significant byte at the highest numbered byte. Byte 0 of the memory system is
therefore connected to data lines 31 through 24.

3.2.2 Little endian format

In little endian format, the lowest numbered byte in a word is considered the word’s least
significant byte, and the highest numbered byte the most significant. Byte 0 of the memory
system is therefore connected to data lines 7 through 0.

Higher Address 31              24 23               16 15               8 7                0 Word Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address • Most significant byte is at lowest address
• Word is addressed by byte address of most significant byte

 Figure 3-1: Big endian addresses of bytes within words

Higher Address 31              24 23               16 15               8 7                0 Word Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address • Least significant byte is at lowest address
• Word is addressed by byte address of least significant byte

 Figure 3-2: Little endian addresses of bytes within words
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3.3 Instruction Length
ARM instructions are exactly one word (32 bits), and are aligned on a four-byte boundary. Thumb
instructions are exactly one halfword, and are aligned on a two-byte boundary.

3.4 Data Types
The ARM supports the following data types:

Byte 8 bits

Halfword 16 bits
halfwords must be aligned to 2-byte boundaries (Architecture 4 only)

Word 32 bits
words must be aligned to four-byte boundaries

Load and store operations can transfer bytes, halfwords and words to and from memory.

Signed operands are in two’s complement format.

3.5 Processor Modes
There are a number of different processor modes. These are shown in the following table:

Mode changes may be made under software control or may be caused by external interrupts or
exception processing. Most application programs will execute in User mode. The other modes,
known as privileged modes, will be entered to service interrupts or exceptions or to access
protected resources: see ➲3.10 Exceptions on page 3-12.

Processor mode Description

1 User (usr) the normal program execution mode

2 FIQ (fiq) designed to support a high-speed data transfer or channel process

3 IRQ (irq) used for general-purpose interrupt handling

4 Supervisor (svc)  a protected mode for the operating system

5 Abort (abt) used to implement virtual memory and/or memory protection

6 Undefined (und) used to support software emulation of hardware coprocessors

7 System (sys) used to run privileged operating system tasks
(Architecture Version 4 only)

 Table 3-1: ARM processor modes
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3.6 Processor States
Note This section applies to Architecture 4T only.

Thumb-aware processors can be in one of two processor states:

ARM state which executes 32-bit word-aligned ARM instructions

Thumb state which executes 16-bit halfword-aligned Thumb instructions. In this
state, the PC uses bit 1 to select between alternate halfwords.

3.6.1 Switching state

Entering Thumb state

Entry into Thumb state occurs on execution of a BX instruction with the state bit (bit 0) set in the
operand register.

Transition to Thumb state also occurs automatically on return from an exception (IRQ, FIQ,
RESET, UNDEF, ABORT, SWI etc) if the exception was entered from Thumb state.

Entering ARM state

Entry into ARM state happens:

1 On execution of the BX instruction with the state bit clear in the operand register.

2 On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT, SWI etc.).

In this case, the PC is placed in the exception mode’s link register, and execution
commences at the exception’s vector address. See ➲3.10 Exceptions on page 3-12
and ➲Chapter 11, Exceptions.
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3.7  The ARM Register Set
The ARM processor has a total of 37 registers, comprising:

• 30 general-purpose registers

• 6 status registers

• a program counter

However, not all of these registers can be seen at once. Depending on the processor mode,
fifteen general-purpose registers (R0 to R14), one or two status registers and the program
counter will be visible. The registers are arranged in partially overlapping banks with a different
register bank for each processor mode: ➲Table 3-2: The ARM register set on page 3-7 shows
how the registers are arranged, with the banked registers shaded. ➲Table 3-4: The mode bits
on page 3-11 lists which registers are visible in which mode.

3.7.1 Register roles

Registers 0-12 are always free for general-purpose use. Registers 13 and 14, although available
for general use, also have specific roles:

Register 13 (also known as the Stack Pointer or SP) is banked across all modes to provide
a private Stack Pointer for each mode (except System mode which shares the
user mode R13).

Register 14 (also known as the Link Register or LR) is used as the subroutine return
address link register. R14 is also banked across all modes (except System
mode which shares the user mode R14).

When a Subroutine call (Branch and Link instruction) is executed, R14 is set
to the subroutine return address. The banked registers R14_SVC, R14_IRQ,
R14_FIQ, R14_ABORT and R14_UNDEF are used similarly to hold the return
address when exceptions occur (or a subroutine return address if subroutine
calls are executed within interrupt or exception routines). R14 may be treated
as a general-purpose register at all other times.

Register 15 is used specifically to hold the Program Counter (PC). When R15 is read, bits
[1:0] are zero and bits [31:2] contain the PC. When R15 is written bits[1:0] are
ignored and bits[31:2] are written to the PC. Depending on how it is used, the
value of the PC is either the address of the instruction plus n (where n is 8 for
ARM state and 4 for Thumb state) or is unpredictable.

CPSR is the Current Program Status Register. This is accessible in all processor
modes, and contains the condition code flags, interrupt enable flags, and
current processor mode. In Architecture 4T, the CPSR also holds the
processor state. See ➲3.9 Program Status Registers on page 3-10 for more
information.
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3.7.2 The FIQ banked registers

FIQ mode has banked registers R8 to R12 (as well as R13 and R14). Regusters R8_FIQ,
R9_FIQ, R10_FIQ, R11_FIQ and R12_FIQ are provided to allow very fast interrupt processing
(without the need to preserve register contents by storing them to memory), and to preserve
values across interrupt calls (so that register contents do not need to be restored from memory).

User/
System

Supervi-
sor

Abort Undefined Interrupt Fast
interrupt

R0 R0 R0 R0 R0 R0

R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4

R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7

R8 R8 R8 R8 R8 R8_FIQ

R9 R9 R9 R9 R9 R9_FIQ

R10 R10 R10 R10 R10 R10_FIQ

R11 R11 R11 R11 R11 R11_FIQ

R12 R12 R12 R12 R12 R12_FIQ

R13 R13_SVC R13_ABORT R13_UNDEF R13_IRQ R13_FIQ

R14 R14_SVC R14_ABORT R14_UNDEF R14_IRQ R14_FIQ

PC PC PC PC PC PC

CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_SVC SPSR_ABORT SPSR_UNDEF SPSR_IRQ SPSR_FIQ

 Table 3-2: The ARM register set



Programmer’s Model

3-8 Programming Techniques
ARM DUI 0021A

3.8 The Thumb Register Set
Note This section applies to Architecture 4T only.

The Thumb state register set is a subset of the ARM state set. The programmer has direct access
to eight general registers, R0-R7, as well as the Program Counter (PC), a stack pointer register
(SP), a link register (LR), and the CPSR. There are banked Stack Pointers, Link Registers and
Saved Process Status Registers (SPSRs) for each privileged mode. This is shown in
➲Table 3-3: The Thumb register set.

The Thumb state registers relate to the ARM state registers in the following way:

• Thumb state R0-R7 and ARM state R0-R7 are identical

• Thumb state CPSR and SPSRs and ARM state CPSR and SPSRs are identical

• Thumb state SP maps onto ARM state R13

• Thumb state LR maps onto ARM state R14

• The Thumb state Program Counter maps onto the ARM state Program Counter (R15)

User/
System

Supervi-
sor

Abort Undefined Interrupt Fast
interrupt

R0 R0 R0 R0 R0 R0

R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4

R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7

SP SP_SVC SP_ABORT SP_UNDEF SP_IRQ SP_FIQ

LR LR_SVC LR_ABORT LR_UNDEF LR_IRQ LR_FIQ

PC PC PC PC PC PC

CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_SVC SPSR_ABORT SPSR_UNDEF SPSR_IRQ SPSR_FIQ

 Table 3-3: The Thumb register set
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This relationship is shown in ➲Figure 3-3: Mapping of Thumb state registers onto ARM state
registers.

 Figure 3-3: Mapping of Thumb state registers onto ARM state registers

3.8.1 Accessing Hi registers in Thumb state

In Thumb state, registers R8-R15 (the Hi registers) are not part of the standard register set.
However, the assembly language programmer has limited access to them, and can use them
for fast temporary storage.

A value may be transferred from a register in the range R0-R7 (a Lo register) to a Hi register,
and from a Hi register to a Lo register, using special variants of the MOV instruction. Hi register
values can also be compared against or added to Lo register values with the CMP and ADD
instructions. For more details on the use of Thumb instructions, see ➲The ARM Software
Development Toolkit Reference Manual: Chapter 5, Thumb Instruction Set.
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3.9 Program Status Registers
The ARM contains a Current Program Status Register (CPSR), plus five Saved Program Status
Registers (SPSRs) for use by exception handlers. The CPSR:

• holds information about the most recently performed ALU operation

• controls the enabling and disabling of interrupts

• sets the processor operating mode

• sets the processor state (Architecture 4T only)

The CPSR is saved to the appropriate SPSR when the processor enters an exception.

The arrangement of bits in these registers is shown in ➲Figure 3-4: Program Status Register
format, below.

 Figure 3-4: Program Status Register format

3.9.1 The condition code flags

The N, Z, C and V (Negative, Zero, Carry and oVerflow) bits are collectively known as the
condition code flags. The condition code flags in the CPSR can be changed as a result of
arithmetic and logical operations in the processor, and can be tested by all ARM instructions to
determine if the instruction is to be executed. All ARM instructions may be executed conditionally
in this way. Thumb instructions (only available in Architecture 4T) cannot be executed
conditionally, with the exception of the Branch instruction—see ➲The ARM Software
Development Toolkit Reference Manual: Chapter 5, Thumb Instruction Set.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V I F T M4 M3M2 M1 M0

Overflow
Carry/Borrow/Extend

Zero

Negative/Less Than

Mode bitsCondition code flags
State bit

 FIQ disable

 IRQ disable
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3.9.2 The control bits

The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known collectively as the
control bits. These change when an exception arises, and can be altered by software only when
the processor is in a privileged mode.

Interrupt disable bits The I and F bits are the interrupt disable bits. When set, these
disable the IRQ and FIQ interrupts respectively.

The state bit Bit T is the processor state bit. When the state bit is set to 0, this
indicates that the processor is in ARM state (ie. executing 32-bit
ARM instructions). When it is set to 1, this indicates that the
processor is in Thumb state (executing 16-bit Thumb instructions)

The state bit  is only implemented on Thumb-aware processors
(Architecture 4T). On non Thumb-aware processors the state bit will
always be zero.

The mode bits The M4, M3, M2, M1 and M0 bits (M[4:0]) are the mode bits. These
determine the mode in which the processor operates, as shown in
➲Table 3-4: The mode bits, below. Not all combinations of the mode
bits define a valid processor mode. Only those explicitly described
can be used.

..

User mode and System mode do not have an SPSR, since they are not entered on any
exception and therefore do not need a register in which to preserve the CPSR. In User mode or
System mode, reads from the SPSR return an unpredictable value, and writes to the SPSR are
ignored.

M[4:0] Mode Accessible Registers

10000 User PC, R14 to R0, CPSR

10001 FIQ PC, R14_fiq to R8_fiq, R7 to R0, CPSR, SPSR_fiq

10010 IRQ PC, R14_irq, R13_irq,R12 to R0, CPSR, SPSR_irq

10011 SVC PC, R14_svc, R13_svc,R12 to R0, CPSR, SPSR_svc

10111 Abort PC, R14_abt, R13_abt,R12 to R0, CPSR, SPSR_abt

11011 Undef PC, R14_und, R13_und,R12 to R0, CPSR, SPSR_und

11111 System PC, R14 to R0, CPSR (Architecture 4 only)

 Table 3-4: The mode bits
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3.10 Exceptions
Note This section is a brief overview of the ARM’s exceptions. For a detailed explanation of how they

operate and how to handle them please refer to ➲Chapter 11, Exceptions.

3.10.1 Exception types

Exceptions are generated by internal and external sources to divert the processor to handle an
event—for example an externally generated interrupt or an attempt to execute an undefined
instruction. The processor’s internal state just prior to handling the exception must be preserved
so that the original program can be resumed when the exception routine has completed. More
than one exception may arise at the same time.

The ARM processor supports seven types of exception, and has a privileged processor mode for
each type. ➲Table 3-5: Exception processing modes lists each type of exception and the
processor mode used to process that exception. When an exception occurs, execution is forced
from a fixed memory address corresponding to the type of exception. ARM collectively names
these fixed addresses the hard vectors.

Address 0x14  (omitted from the above table) holds the Address Exception vector, which is only
used when the processor is configured for a 26-bit address space.

Exception type Exception mode Vector address

Reset Supervisor 0x00000000

Undefined instructions Undefined 0x00000004

Software Interrupt (SWI) Supervisor 0x00000008

Prefetch Abort (Instruction fetch memory
abort)

Abort 0x0000000c

Data Abort (Data Access memory abort) Abort 0x00000010

IRQ (Interrupt) IRQ 0x00000018

FIQ (Fast Interrupt) FIQ 0x0000001c

 Table 3-5: Exception processing modes
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3.10.2 Action on entering an exception

When an exception occurs, the ARM makes use of the banked registers to save state, by:

1 copying the address of the next instruction into the appropriate Link Register

2 copying the CPSR into the appropriate SPSR

3 forcing the CPSR mode bits to a value corresponding to the exception

4 forcing the PC to fetch the next instruction from the relevant vector

It may also set the interrupt disable flags to prevent otherwise unmanageable nestings of
exceptions from taking place.

If the processor is Thumb-aware (Architecture 4T) and is operating in Thumb state, it will
automatically switch into ARM state.

3.10.3 Action on leaving an exception

On completion, the exception handler:

1 moves the Link Register, minus an offset where appropriate, to the PC. The offset will
vary depending on the exception type.

2 copies the SPSR back to the CPSR

3 clears the interrupt disable flags, if they were set on entry

If the processor is Thumb-aware (Architecture 4T), it will restore the operating state (ARM or
Thumb) which was in force at the time the exception occurred.
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ARM Assembly Language
Basics
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4.1 Introduction
The ARM instruction set has the following key features, some of which are common to other
processors, and some of which are not.

Load/store architecture

Only load and store instructions can access memory. This means that data processing
operations have to use intermediate registers, loading the data from memory beforehand and
storing it back again afterwards. However, this is not as inefficient as one might think. Most
operations actually require several instructions to carry out the required calculation, and each
instruction will run as fast as possible instead of being slowed down by external memory
accesses.

32-bit instructions

All instructions are of the same length, so the processor can fetch every instruction from memory
in one cycle. In addition, all instructions are stored word-aligned in memory, which means that
the bottom two bits of the program counter (r15) are always set zero.

32-bit and 8-bit data

All ARM processors have load and store instructions that handle data as 32-bit words or 8-bit
bytes. Words are always aligned on 4-byte boundaries.

Processors implementing Version 4 of the ARM Architecture also have instructions for loading
and storing halfwords (16-bit values).

32-bit addresses

Processors implementing Versions 1 and 2 of the ARM Architecture only had a 26-bit addressing
range. All later ARM processors have a 32-bit addressing. Those implementing ARM
Architectures 3 and 4 (but not 4T) have retained the ability to perform 26-bit addressing
backwards compatibility.

37 registers

These comprise:

• 30 general purpose registers, 15 of which are accessible at any one time

• 6 status registers, of which either one or two are accessible at any one time

• a program counter

The banking of registers gives rapid context switching for dealing with exceptions and privileged
operations: see ➲Chapter 3, Programmer’s Model for a summary of the ARM register set.

Flexible load and store multiple instructions

The ARM’s multiple load and store instructions allow any set of registers from a single bank to be
transferred to and from memory by a single instruction.
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No single instruction to move an immediate 32-bit value to a register

In general, a literal value must be loaded from memory. However, a large set of common 32-bit
values can be generated in a single instruction.

Conditional execution

All instructions are executed conditionally on the state of the Current Program Status Register
(CPSR). Only data processing operations with the S bit set change the state of the current
program status register.

Powerful barrel shifter

The second argument to all data-processing and single data-transfer operations can be shifted
in quite a general way before the operation is performed. This supports— but is not limited to—
scaled addressing, multiplication by a small constant, and the construction of constants, within
a single instruction.

Co-processor instructions

These support a general way to extend the ARM’s architecture in a customer-specific manner.
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4.2 Structure of an Assembler Module
The assembler is described fully in ➲The ARM Software Development Toolkit Reference
Manual: Chapter 3, Assembler. This section describes it in a simplified manner which gives you
the basics required for writing simple assembler programs. ARM Instructions are described in
➲The ARM Software Development Toolkit Reference Manual: Chapter 4, ARM Instruction Set.

The following is a simple example which illustrates some of the core constituents of an ARM
assembler module:

AREA Example, CODE, READONLY ; name this block of code
ENTRY ; mark first instruction

; to execute
start

MOV r0, #15 ; Set up parameters
MOV r1, #20
BL firstfunc ; Call subroutine
SWI 0x11 ; terminate

firstfunc ; Subroutine firstfunc
ADD r0, r0, r1 ; r0 = r0 + r1
MOV pc, lr ; Return from subroutine

; with result in r0
END ; mark end of file

4.2.1 The AREA directive

Areas are chunks of data or code that are manipulated by the linker. A complete application will
consist of one or more areas. The example above consists of a single area which contains code
and is marked as being read-only. A single CODE area is the minimum required to produce an
application.

4.2.2 The ENTRY directive

The first instruction to be executed within an application is marked by the ENTRY directive. An
application can contain only a single entry point and so in a multi-source-module application, only
a single module will contain an ENTRY directive. Note that when an application contains C code,
the entry point will usually be contained within the C library.

4.2.3 General layout

The general form of lines in an assembler module is:

label <whitespace> instruction <whitespace> ; comment

The important thing to note is that the three sections are separated by at least one whitespace
character (such as a space or a tab). Actual instructions never start in the first column, since they
must be preceded by whitespace, even if there is no label. All three sections are optional and the
assembler will also accept blank lines to improve the clarity of the code.
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4.2.4 Description of the module

The main routine of the program (labelled start ) loads the values 15 and 20 into registers 0
and 1. This is done because up to four word-length parameters can be passed to a subroutine
in registers r0 – r3. See ➲The ARM Software Development Toolkit Reference Manual: Chapter
19, ARM Procedure Call Standard for more information on this.

The program then calls the subroutine firstfunc  by using a branch with link instruction (BL).
This adds the offset required to reach the subroutine to the program counter, pc  (r15). It then
stores in the link register, lr  (r14), the address of the next instruction to be executed in the main
routine.

The subroutine adds together the two parameters it has received and places the result back into
r0, as required by the APCS. It then returns by simply restoring the program counter to the
address which was stored in the link register on entry.

Upon return from the subroutine, the main program simply terminates using software
interrupt 11. This instructs the program to exit cleanly and return control to the debugger.

4.2.5 Running the example

This module is available as example.s  in directory examples/basicasm . To assemble this,
first copy it to the current work directory and then issue the command:

armasm example.s

The object code can then be linked to produce an executable:

armlink example.o -o example

This can then be loaded into armsd and executed:

armsd example
go

Once the program has completed, you can check that it executed correctly by examining the
value returned in r0 by firstfunc :

registers

Register r0 should be 0x23.

You can then exit from armsd by typing:

quit
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4.3 Conditional Execution

4.3.1 The ARM’s ALU status flags

The ARM’s Program Status Register contains, among other flags, copies of the ALU status flags:

N Negative result from ALU flag

Z Zero result from ALU flag

C ALU operation Carried out

V ALU operation oVerflowed

See ➲Figure 3-4: Program Status Register format on page 3-10 for details.

Data processing instructions change the state of the ALU’s N, Z, C and V status outputs, but
these are latched in the PSR’s ALU flags only if a special bit (the S bit) is set in the instruction.

4.3.2 Execution conditions

Every ARM instruction has a 4-bit field that encodes the conditions under which it will be
executed. These conditions refer to the state of the ALU N, Z, C and V flags as shown in the
➲Table 4-1: Condition codes on page 4-7.

If the condition field indicates that a particular instruction should not be executed given the
current settings of the status flag, the instruction will simply soak up one cycle but will have no
other effect.

If the current instruction is a data processing instruction, and the flags are to be updated by it, the
instruction must be postfixed by an S. The exceptions to this are CMP, CMN, TST and TEQ, which
always update the flags (since this is their only effect).

Examples

ADD r0, r1, r2 ; ro = r1 + r2, don’t update flags
ADDS r0, r1, r2 ; r0 = r1 + r2 and UPDATE flags
ADDEQS r0, r1, r2 ; If Z flag set then r0 = r1 + r2,

; and UPDATE flags
CMP r0, r1 ; Update flags based on r0 - r1
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4.3.3 Using conditional execution

Most non-ARM processors only allow conditional execution of branch instructions. This means
that small sections of code that should only be executed under certain conditions will need to be
avoided by use of a branch statement. Consider Euclid’s Greatest Common Divisor algorithm:

function gcd (integer a, integer b) : result is integer
while (a<> b) do

if (a > b) then
a = a - b

else
b = b - a

Field mnemonic Condition

EQ Z set (equal)

NE Z clear (not equal)

CS/HS C set (unsigned >=)

CC/LO C clear (unsigned <)

MI N set (negative)

PL N clear (positive or zero)

VS V set (overflow)

VC V clear (no overflow)

HI C set and Z clear (unsigned >)

LS C clear and Z set (unsigned <=)

GE N and V the same (signed >=)

LT N and V differ (signed <)

GT Z clear, N and V the same (signed >)

LE Z set, N and V differ (signed <=)

AL Always execute (the default if none is specified)

 Table 4-1: Condition codes
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endif
endwhile
result = a

This might be coded as:

gcd
CMP r0, r1
BEQ end
BLT less
SUB r0, r0, r1
BAL gcd

less
SUB r1, r1, r0
BAL gcd

end

This will work correctly on an ARM, but every time a branch is taken, three cycles will be wasted
in refilling the pipeline and continuing execution from the new location. Also, because of the
number of branches in the code, the code will occupy seven words of memory. Using conditional
execution, ARM code can improve both its execution time and code density:

gcd
CMP r0, r1
SUBGT r0, r0, r1
SUBLT r1, r1, r0
BNE gcd

Not only has code size been reduced from seven words to four, but execution time has also
decreased, as can be seen from ➲Table 4-2: Only branches conditional and ➲Table 4-3: All
instructions conditional on page 4-9. These show the execution times for the simple case where
r0 equals 1 and r1 equals 2. In this case, replacing branches with conditional execution of all
instructions has given a saving of three cycles. With all inputs to the gcd algorithm, the conditional
version of the code will execute in the same number of cycles (when both inputs are the same),
or fewer cycles.

4.3.4 Running the gcd examples

Both assembler versions of the gcd algorithm can be found in directory examples/basicasm .
To assemble them, first copy them to your current work directory and then issue the commands:

armasm gcd1.s
armlink gcd1.o -o gcd1

This produces the version with conditional execution of branch statements only. To produce the
version with full conditional execution of all instructions use:

armasm gcd2.s
armlink gcd2.o -o gcd2

Run these using the debugger and examine the difference in the way they execute.
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r0:a r1: b Instruction Cycles

1 2 CMP r0, r1 1

1 2 BEQ end Not executed - 1

1 2 BLT less 3

1 2 SUB r1, r1, r0 1

1 1 BAL gcd 3

1 1 CMP r0, r1 1

1 1 BEQ end 3

Total = 13

 Table 4-2: Only branches conditional

r0:a r1: b Instruction Cycles

1 2 CMP r0, r1 1

1 2 SUBGT r0, r0, r1 Not executed -1

1 1 SUBLT r1, r1, r0 1

1 1 BNE gcd 3

1 1 CMP r0, r1 1

1 1 SUBGT r0, r0, r1 Not executed -1

1 1 SUBLT r1, r1, r0 Not executed -1

1 1 BNE gcd Not executed -1

Total = 10

 Table 4-3: All instructions conditional
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4.4 The ARM’s Barrel Shifter
The ARM core contains a barrel shifter which takes a value to be shifted or rotated, an amount
to shift or rotate by and the type of shift or rotate. This can be used by various classes of ARM
instructions to perform comparatively complex operations in a single instruction. Instructions take
no longer to execute by making use of the barrel shifter, unless the amount to be shifted is
specified by a register, in which case the instruction will take an extra cycle to complete.

The barrel shifter can perform the following types of operation:

LSL shift left by n bits (multiplication by 2n)

LSR logical shift right by n bits (unsigned division by 2n)

ASR arithmetic shift right by n bits. The bits fed into the top end of the
operand are copies of the original top—or sign—bit.

(signed division by 2n)

ROR rotate right by n bits

Destination 0CF

Destination..0 CF

Destination CF

Sign bit shifted in

Destination CF
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RRX rotate right extended by 1 bit. This is a 33-bit rotate, where the 33rd
bit is the PSR Carry flag

The barrel shifter can be used in several of the ARM’s instruction classes. The options available
in each case are described below.

4.4.1 Data processing operations

The last operand (the second for binary operations, and the first for unary operations) may be:

an 8 bit constant rotated right (ROR) through an even number of positions

For example:

ADD r0, r1, #0xC5, 10
MOV r5, #0xFC000003

Note that in the second example the assembler is left to work out how to split the constant
0xFC000003 into an 8-bit constant and an even rotate (in this case #0xFC000003  could be
replaced by #0xFF, 6 ). For more information, see ➲4.5 Loading Constants Into Registers on
page 4-14.

a register (optionally) shifted or rotated either by a 5-bit constant or by another register

For example:

ADD r0, r1, r2
SUB r0, r1, r2, LSR #10
CMP r1, r2, r1, ROR R5
MVN r3, r2, RRX

Note that in the last example, the rotate right extended does not take a parameter, but rather
rotates right by only a single bit. RRX is actually encoded by the assembler as ROR #0.

Example: Constant multiplication

The ARM core provides a powerful multiplication facility in the MUL and MLA instructions (plus
UMULL, UMAL, SMULL and SMLAL on processors that implement ARM Architectures 3M and
4M). These instructions make use of Booth’s Algorithm to perform integer multiplication, taking
up to 17 cycles to complete for MUL and MLA and up to 6 or 7 cycles to complete for UMULL,
UMAL, SMULL and SMLAL. In cases where the multiplication is by a constant, it can be quicker
to make use of the barrel shifter, as the operations it provides are effectively multiply / divide by
powers of two.

Destination CF
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For example:

r0 = r1 * 4 MOV r0, r1, LSL #2
r0 = r1 * 5 => r0 = r1 + (r1 * 4) ADD r0, r1, r1, LSL #2
r0  = r1 * 7 => r0 = (r1 * 8) - r1 RSB r0, r1, r1, LSL #3

Using a move/add/subtract combined with a shift, all multiplications by a constant which are a
power of two or a power of two +/– 1 can be carried out in a single cycle. See ➲Chapter 5,
Exploring ARM Assembly Language.

4.4.2 Single data transfer instructions

The single data transfer instructions LDR and STR load and store the contents of a single register
to and from memory. They make use of a base register (r0 in the examples below) plus an index
(or offset) which can be a register shifted by any 5-bit constant or an unshifted 12-bit constant.

STR r7, [r0], #24 ; Post-indexed
LDR r2, [r0], r4, ASR #4 ; Post-indexed
STR r3, [r0, r5, LSL #3] ; Pre-indexed
LDR r6, [r0, r1, ROR #6]! ; Pre-indexed + Writeback

In pre-indexed instructions, the offset is calculated and added to the base, and the resulting
address is used for the transfer. If writeback is selected, the transfer address is written back into
the base register.

In post-indexed instructions the offset is calculated and added to the base after the transfer. The
base register is always updated by post-indexed instructions.

Example: Addressing an entry in a table of words

The following fragment of code calculates the address of an entry in a table of words and then
loads the desired word:

; r0 holds the entry number [0,1,2,...]
LDR r1, =StartOfTable
MOV  r3, #4
MLA  r1, r0, r3, r1
LDR  r2, [r1]
...

StartOfTable
DCD <table data>

It first loads the start address of the table, then moves the immediate constant 4 into a register,
using the multiply and accumulate instruction to calculate the address, and finally loads the entry.
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However, this operation can be performed more efficiently with the barrel shifter, as follows:

; r0 holds the entry number [0,1,2,...]
LDR  r1, =StartOfTable
LDR  r2, [r1, r0, LSL #2]
...

StartOfTable
DCD <table data>

Here, the barrel shifter shifts r0 left 2 bits (so multiplying it by 4). This intermediate value is then
used as the index for the LDR instruction. Thus a single instruction is used to perform the whole
operation. Such significant savings can frequently be made by utilising the barrel shifter.

4.4.3 Program status register transfer instructions

It is possible to modify the N, Z, C and V flags of the PSRs by use of an MSR instruction of the
form:

MSR cpsr_flg , # expression ; OR spsr_flg in privileged mode

The assembler will attempt to generate a shifted 8-bit value to match the expression, the top four
bits of which can be loaded into the top four bits of the PSR. This will not disturb the control bits.
The flag bits are the only part of the CPSR which can be modified while in User mode (when no
SPSRs are visible).
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4.5 Loading Constants Into Registers

4.5.1 Why Is loading constants an issue?

Since all ARM instructions are precisely 32 bits long and since they do not use the instruction
stream as data, there is no single instruction which will load a 32-bit immediate constant into a
register without performing a data load from memory.

Although a data load will place any 32-bit value in a register, there are more direct—and therefore
more efficient—ways to load many commonly used constants.

4.5.2 Direct loading with MOV/MVN

The MOV instruction allows 8-bit constant values to be loaded directly into a register, giving a
range of 0x0 to 0xFF (255). The bitwise complement of these values can be constructed using
MVN, giving the added ability to load values in the range 0xFFFFFF00 to 0xFFFFFFFF.

We can construct even more constants by using MOV and MVN in conjunction with the barrel
shifter. These particular constants are 8-bit values rotated right through an even number of
positions (giving rotate rights of 0, 2, 4...28, 30):

0 - 255 0 - 0xFF with no rotate

256, 260, 264, ..., 1016, 1020 0x100 - 0x3FC in steps of 4 by rotating right by 30
bits

1024, 1040, 1056, ..., 4080 0x400 - 0xFF0 in steps of 16 by rotating right by 28
bits

4096, 4160, 4224, ..., 16320 0x1000 - 0x3FC0 in steps of 64 by rotating right by
26 bits

and so on, plus their bitwise complements. We can therefore load constants directly into registers
using instructions such as:

MOV r0, #0xFF ; r0 = 255
MOV r0, #0x1,30 ; r0 = 1020
MOV r0, #0xFF, 28 ; r0 = 4080
MOV r0, #0x1, 26 ; r0 = 4096

However, converting a constant into this form is an onerous task. The assembler therefore
attempts the conversion itself. If the supplied constant cannot be expressed as a shifted 8-bit
value or its bitwise complement, the assembler will report this as an error.

The following example illustrates how this works. The left-hand column lists the ARM instructions
entered by the user, while the right-hand column shows the assembler’s attempts to convert the
supplied constants to an acceptable form.
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MOV r0, #0 ; => MOV r0, #0
MOV r1, #0xFF000000; => MOV r1, #0xFF, 8
MOV r2, #0xFFFFFFFF; => MVN r2, #0
MVN r0, #1 ; => MVN r0, #1
MOV r1, #0xFC000003; => MOV r1, #0xFF, 6
MOV r2, #0x03FFFFFC; => MVN r2, #0xFF, 6
MOV r3, #0x55555555; => Error (cannot be constructed)

The above code is available as loadcon1.s  in directory examples/basicasm . To assemble
it, first copy it into your current working directory and then issue the command:

armasm loadcon1.s -o loadcon1.o

To confirm that the assembler has produced the correct code, you can disassemble it using the
ARM Object format decoder:

decaof -c loadcon1.o

4.5.3 Direct loading with LDR Rd, =numeric constant

The assembler provides a mechanism which, unlike MOV and MVN, can construct any 32-bit
numeric constant, but which may not result in a data processing operation to do it. This is the
LDR Rd, =  instruction.

If the constant which is specified in an LDR Rd, =  instruction can be constructed with either
MOV or MVN, the assembler will use the appropriate instruction, otherwise it will produce an LDR
instruction with a PC-relative address to read the constant from a literal pool.

Literal pools

A literal pool is a portion of memory set aside for constants. By default, a literal pool is placed at
every END directive. However, for large programs, this may not be accessible throughout the
program (due to the LDR offset being a 12-bit value, giving a 4Kbyte range), so further literal
pools can be placed using the LTORG directive.

When an LDR, Rd, =  instruction needs to access a constant in a literal pool, the assembler
first checks previously encountered literal pools to see whether the desired constant is already
available and addressable. If so, it addresses the existing constant, otherwise it will attempt to
place the constant in the next available literal pool. If this is not addressable—because it does
not exist or is further than 4Kbytes away—an error will result, and an additional LTORG should
be placed close to (but after) the failed LDR Rd,=  instruction.

To see how this works in practice, consider the following example. The instructions listed as
comments are the ARM instructions which are generated by the assembler:
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AREA Loadcon2, CODE
ENTRY ; Mark first instruction
BL func1 ; Branch to first subroutine
BL func2 ; Branch to second subroutine
SWI 0x11 ; Terminate

func1
LDR r0, =42 ; => MOV R0, #42
LDR r1, =0x55555555 ; => LDR R1, [PC, #offset to

; Literal Pool 1]
LDR r2, =0xFFFFFFFF ; => MVN R2, #0
MOV pc, lr
LTORG ; Literal Pool 1 contains

; literal &55555555
func2

LDR r3, =0x55555555 ; => LDR R3, [PC, #offset to
; Literal Pool 1]

; LDR r4, =0x66666666 ; If this is uncommented it
; will fail, as Literal Pool 2
; is not accessible (out of
; reach)

MOV pc, lr
 LargeTable %   4200 ; Clears a 4200 byte area of

; memory,
; starting at the current location,
; to zero.

END ; Literal Pool 2 is empty

Note that the literal pools must be placed outside sections of code, since otherwise they would
be executed by the processor as instructions. This will typically mean placing them between
subroutines as is done here if more pools than the default one at END is required.

The above code is available as loadcon2.s  in directory examples/basicasm . To assemble
this, first copy it into your current working directory and then issue the command:

armasm loadcon2.s

To confirm that the assembler has produced the correct code, the code area can be
disassembled using the ARM Object format decoder:

decaof -c loadcon2.o
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4.6 Loading Addresses Into Registers
It will often be necessary to load a register with an address—the location of a string constant
within the code segment or the start location of a jump table, for example. However, because
ARM code is inherently relocatable and because there are limitations on the values that can be
directly moved into a register, absolute addressing cannot be used for this purpose. Instead,
addresses must be expressed as offsets from the current PC. A register can either be directly
set by combining the current PC with the appropriate offset, or the address can be loaded from
a literal pool.

4.6.1 The ADR and ADRL pseudo instructions

Sometimes it is important for the purposes of efficiency that loading an address does not
perform a memory access. The assembler provides two pseudo instructions, ADR and ADRL,
which make it easier to do this. ADR and ADRL accept a PC-relative expression (a label within
the same code area) and calculate the offset required to reach that location.

ADR will attempt to produce a single instruction (either an ADD or a SUB) to load an address into
a register in the same way that the LDR Rd, =  mechanism produces instructions. If the desired
address cannot be constructed in a single instruction, an error will be raised. In typical usage
the offset range is 255 bytes for an offset to a non word-aligned address, and 1020 bytes (255
words) for an offset to a word-aligned address.

ADRL will attempt to produce two data processing instructions to load an address into a register.
Even if it is possible to produce a single data processing instruction to load the address, a
second, redundant instruction will be produced (this is a consequence of the strict two-pass
nature of the assembler). In cases where it is not possible to construct the address using two
data processing instructions ADRL will produce an error, and in such cases the LDR, =
mechanism is probably the best alternative. In typical usage the range of an ADRL is 64Kbytes
for a non-word aligned address and 256Kbytes for a word-aligned address.

The following example shows how this works. The instruction listed in the comment is the ARM
instruction which is generated by the assembler.

AREA Loadcon3, CODE
ENTRY ; Mark first instruction

Start
ADR r0, Start ; => SUB r0, PC, #offset to Start
ADR r1, DataArea ; => ADD r1, PC, #offset to DataArea
; ADR  r2, DataArea+4300 ; This would fail as the offset is

; cannot be expressed by operand2
; of an ADD

ADRL r3, DataArea+4300 ; => ADD r2, PC, #offset1
;    ADD r2, r2, #offset2

SWI 0x11 ; Terminate
DataArea% 8000

      END
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The above code is available as loadcon3.s  in directory examples/basicasm . To assemble
this, first copy it into your current working directory and then issue the command:

armasm loadcon3.s

To confirm that the assembler produced the correct code, the code area can be disassembled
using the ARM Object format decoder:

decaof -c loadcon3.o

4.6.2 LDR Rd, =PC-relative expression

As well as numeric constants, the LDR Rd, =  mechanism can cope with PC-relative expressions
such as labels. Even if a PC-relative ADD or SUB could be constructed, an LDR will be generated
to load the PC-relative expression.  If a PC-relative ADD or SUB is desired, ADR should be used
instead (see ➲4.6.1 The ADR and ADRL pseudo instructions on page 4-17). If no suitable literal
is already available, the literal placed into the next literal pool will be the offset into the AREA,
and an AREA-relative relocation directive will be added to ensure that the constant is appropriate
wherever the containing AREA gets located by the linker.

The following example illustrates how this works. The instruction listed in the comment is the
ARM instruction which is generated by the assembler.

AREA Loadcon4, CODE
ENTRY ; Mark first instruction

Start
BL func1 ; Branch to first subroutine
BL func2 ; Branch to second subroutine
SWI 0x11 ; Terminate

func1
LDR r0, =Start ; => LDR R0,[PC, #offset to

; Litpool 1]
LDR r1, =Darea +12 ; => LDR R1,[PC, #offset to

; Litpool 1]
LDR r2, =Darea + 6000 ; => LDR R2, [PC, #offset to

; Litpool 1]
MOV pc,lr ; Return

     LTORG ; Literal Pool 1 contains 3 literals
func2

LDR r3, =Darea +6000 ; => LDR r3, [PC, #offset to
;Litpool 1]
; (sharing with previous
; literal)



ARM Assembly Language Basics

4-19Programming Techniques
ARM DUI 0021A

; LDR r4, =Darea +6004 ; If uncommented will produce an
; error as Litpool 2 is out of range

MOV pc, lr ; Return
Darea % 8000
      END ; Literal Pool 2 is out of

; range of the LDR instructions
; above

The above code is available as loadcon4.s in directory examples/basicasm . To assemble
this, first copy it into your current working directory and then issue the command

armasm loadcon4.s

To confirm that the assembler produced the correct code, the code area can be disassembled
using the ARM Object format decoder:

decaof -c loadcon4.o

4.6.3 Loading addresses into registers—an example routine

Strings

The following program contains a function, strcopy , which copies a string from one memory
location to another. Two arguments are passed to the function: the address of the source string
and the address of the destination. The last character in the string is a zero, and will be copied.

AREA StrCopy, CODE
ENTRY ; mark the first instruction

main ADR r1, srcstr ; pointer to first string
ADR r0, dststr ; pointer to second string
BL strcopy ; copy the first into second
SWI 0x11 ; and exit

srcstr DCB "This is my first (source) string",0
dststr DCB "This is my second (destination) string",0

ALIGN ; realign address to word boundary

strcopy
LDRB r2, [r1], #1 ; load byte, then update address
STRB r2, [r0], #1 ; store byte, then update address
CMP r2, #0 ; check for zero terminator
BNE strcopy ; keep going if not
MOV pc, lr ; return
END

ADR is used to load the addresses of the two strings into registers r0 and r1, for passing to
strcopy . These two strings have been stored in memory using the assembler directive DCB
(Define Constant Byte). The first string is 33 bytes long, so the ADR offset to the second (as a
non-word aligned offset) is limited to 255 bytes, which is therefore within reach.
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Notice the use of an auto-indexing address mode to update the address registers in the LDR
instructions. Thus:

LDRB r2, [r1], #1

replaces a sequence like:

LDRB r2, [r1]
ADD r1, r1, #1

but takes only one cycle to execute rather than two.

The above code is available as strcopy1.s  in directory examples/basicasm . Copy this into
your current working directory and assemble it, with debug information included:

armasm strcopy1.s -g

Then link it and load it into the debugger

armlink strcopy1.o -o strcopy1 -d
armsd strcopy1

You can now view the source and destination strings using:

print/s @srcstr
print/s @dststr

Run the program and check that the destination string has been updated:

go
print/s @srcstr
print/s @dststr

Also in the examples  directory is a version of this program called strcopy2.s , which uses
LDR Rd,=PC-relative expression  rather than ADR. Assemble this and compare the code
and the code size with that of strcopy1.s , using the ARM Object format decoder:

armasm strcopy2.s
decaof -c strcopy2.o
decaof -c strcopy1.o

It is preferable to use ADR wherever possible, both because it results in shorter code (no storage
space is required for addresses to be placed in the literal pool) and because the resulting code
will run more quickly (a non-sequential fetch from memory to get the address from the literal pool
is not required).
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4.7 Jump Tables
Often it is necessary for an application to carry out one of a number of actions dependent upon
a certain condition. In C, for instance, this will often be implemented as a switch()  statement.
In assembly language this can be done using a jump table.

Suppose we have a function that implements a simple set of arithmetic operations whose first
argument controls a logic gate and whose second and third arguments are the gate’s inputs. The
gate’s output is passed as the function’s result.

The operations the gate function will respond to are:

0 result = argument1

1 result = argument2

2 result = argument1 + argument2

3 result = argument1 – argument2

4 result = argument2 – argument1

Values outside this range will have the same effect as value 0.

AREA ArithGate, CODE ; name this block of code
ENTRY ; mark the first instruction to call

main MOV r0, #2 ; set up three parameters
MOV r1, #5
MOV r2, #15
BL arithfunc ; call the function
SWI 0x11 ; terminate

arithfunc ; label the function
CMP r0, #4 ; Treat code as unsigned integer
BHI ReturnA1 ; If code > 4 then return first argument
ADR r3, JumpTable ; Load address of the jump table
LDR pc,[r3,r0,LSL #2] ; Jump to appropriate routine

JumpTable
DCD ReturnA1
DCD ReturnA2
DCD DoAdd
DCD DoSub
DCD DoRsb

ReturnA1
MOV r0, r1 ; Operation 0, >4
MOV pc,lr

ReturnA2
MOV r0, r2 ; Operation 1
MOV pc,lr
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DoAdd
ADD r0, r1, r2 ; Operation 2
MOV pc,lr

DoSub
SUB r0, r1, r2 ; Operation 3
MOV pc,lr

DoRsb
RSB r0, r1, r2 ; Operation 4
MOV pc,lr
END ; mark the end of this file

The ADR pseudo instruction loads the address of the jump table into r3. The following LDR then
multiplies the function code in r0 by 4 (using the barrel shifter) and adds this onto the address of
the jump table to give the address of the required entry within the jump table. The jump table itself
is set up using the DCD directive, which stores the address of the relevant routine (placed there
by the linker).

The above code is available as jump.s  in directory examples/basicasm . Copy this into your
current working directory and assemble and link it:

armasm jump.s
armlink jump.o -o jump

Then load the resulting program into the debugger:

armsd jump

If you now execute the program:

go

and display the registers:

reg

the value of r0 should be 0x14.
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4.8 Using the Load and Store Multiple Instructions

4.8.1 Multiple versus single transfers

The load and store multiple instructions LDM and STM provide an efficient way of moving the
contents of several registers to and from memory. The advantages of using a single load or store
multiple instruction over a series of single data transfer instructions are:

• smaller code size

• there is only a single instruction fetch overhead, rather than many instruction fetches

• only one register writeback cycle is required for a load multiple, as opposed to one for
every load single

• on uncached ARM processors, the first word of data transferred by a load or store
multiple is always a non-sequential memory cycle, but all subsequent words
transferred can be sequential (faster) memory cycles

4.8.2 The register list

The registers transferred by the load and store multiple instructions are encoded into the
instruction by one bit for each of the registers r0 to r15. A set bit indicates that the register will
be transferred, and a clear bit indicates that it will not be transferred. Thus it is possible to
transfer any subset of the registers in a single instruction.

The subset of registers to be transferred is specified by listing them in curly brackets. For
example:

{r1, r4-r6, r8, r10}

4.8.3 Increment/decrement, before/after

The base address for the transfer can either be incremented or decremented between register
transfers, and this can happen either before or after each register transfer:

STMIA r10, {r1, r3-r5, r8}

The suffix IA  could also have been IB , DA or DB, where I  indicates increment, D decrement, A
after and B before.

In all cases the lowest numbered register is transferred to or from the lowest memory address,
and the highest numbered register to or from the highest address. The order in which the
registers appear in the register list makes no difference. Also, the ARM always performs
sequential memory accesses in increasing memory address order. Therefore ‘decrementing’
transfers actually perform a subtraction first and then increment the transfer address register by
register.
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4.8.4 Base register writeback

Unless specifically requested, the base register will not be updated at the end of a multiple
register transfer instruction. To specify register writeback, you must use the !  character:

LDMDB r11!, {r9, r4-r7}

4.8.5 Stack notation

Since the load and store multiple instructions have the facility to update the base register (which
for stack operations can be the stack pointer), these instructions provide single instruction push
and pop operations for any number of registers (LDM being pop, and STM being push).

The Load and Store Multiple Instructions can be used with several types of stack:

• ascending or descending
A stack is able to grow upwards, starting from a low address and progressing to a higher
address—an ascending stack, or downwards, starting from a high address and
progressing to a lower one—a descending stack.

• empty or full
The stack pointer can either point to the top item in the stack (a full stack), or the next
free space on the stack (an empty stack).

As stated above, pop and push operations for these stacks can be implemented directly by load
and store multiple instructions. To make it easier for the programmer, special stack suffixes can
be added to the LDM and STM instructions (as an alternative to Increment/Decrement and
Before/After suffixes) as follows:

STMFA r13!, {r0-r5}; Push onto a Full Ascending Stack
LDMFA r13!, {r0-r5}; Pop from a Full Ascending Stack
STMFD r13!, {r0-r5}; Push onto a Full Descending Stack
LDMFD r13!, {r0-r5}; Pop from a Full Descending Stack
STMEA r13!, {r0-r5}; Push onto an Empty Ascending Stack
LDMEA r13!, {r0-r5}; Pop from an Empty Ascending Stack
STMED r13!, {r0-r5}; Push onto Empty Descending Stack
LDMED r13!, {r0-r5}; Pop from an Empty Descending Stack

Note the use of r13 as the base pointer here. By convention r13 is used as the system stack
pointer (sp ). In addition, the system stack will usually be Full Descending.

The addressing modes are summarised in ➲Table 4-4: Stack addressing modes, below.
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Name Stack Other

pre-increment load LDMED LDMIB

post-increment load LDMFD LDMIA

pre-decrement load LDMEA LDMDB

post-decrement load LDMFA LDMDA

pre-increment store STMFA STMIB

post-increment store STMEA STMIA

pre-decrement store STMFD STMDB

post-decrement store STMED STMDA

 Table 4-4: Stack addressing modes
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Exploring ARM Assembly
Language

This chapter presents some useful strategies for optimising the performance of your ARM
assembly language programs.

5.1 Introduction 5-2

5.2 Integer to String Conversion 5-3

5.3 Multiplication by a Constant 5-8

5.4 Division by a Constant 5-12

5.5 Using 16-bit Data on the ARM 5-17

5.6 Pseudo Random Number Generation 5-25

5.7 Loading a Word from an Unknown Alignment 5-27

5.8 Byte Order Reversal 5-28

5.9 ARM Assembly Programming Performance Issues 5-29

5



Exploring ARM Assembly Language

5-2 Programming Techniques
ARM DUI 0021A

5.1 Introduction
This chapter discusses some useful strategies for writing efficient ARM assembly language. It
presents algorithms which you can apply in your own programs, and makes extensive use of the
examples supplied with the Toolkit release.

It also shows you how to make of use the ARM assembler’s more sophisticated features, and
how to extract the maximum performance from ARM code.

The subject areas covered are:

• Making use of the stack and writing recursive routines: ➲5.2 Integer to String
Conversion on page 5-3

• Fast multiplication and division using constants: ➲5.3 Multiplication by a Constant on
page 5-8 and ➲5.4 Division by a Constant on page 5-12

• Manipulating 16-bit data on non Thumb-aware processors: ➲5.5 Using 16-bit Data on
the ARM on page 5-17

• Generating pseudo-random numbers: ➲5.6 Pseudo Random Number Generation on
page 5-25

• Loading non-aligned words: ➲5.7 Loading a Word from an Unknown Alignment on page
5-27

• Changing the endianness of a word:➲5.8 Byte Order Reversal on page 5-28

• Optimising performance: ➲5.9 ARM Assembly Programming Performance Issues on
page 5-29
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5.2 Integer to String Conversion
This section explains how to:

• convert an integer to a string in ARM assembly language

• use a stack in an ARM assembly language program

• write a recursive function in ARM assembly language

The example used can be found in file utoa1.s  in directory examples/explasm . Its dtoa
entry point converts a signed integer to a string of decimal digits (possibly with a leading '-'); its
utoa  entry point converts an unsigned integer to a string of decimal digits.

5.2.1 Algorithm

To convert a signed integer to a decimal string, generate a '-' and negate the number if it is
negative; then convert the remaining unsigned value.

To convert a given unsigned integer to a decimal string, divide it by 10, yielding a quotient and
a remainder. The remainder is in the range 0-9 and is used to create the last digit of the decimal
representation. If the quotient is non-zero it is dealt with in the same way as the original number,
creating the leading digits of the decimal representation; otherwise the process has finished.

5.2.2 Implementation

utoa
  STMFD  sp!, {v1, v2, lr}  ; function entry - save some v-registers
                            ; and the return address.
  MOV    v1, a1             ; preserve arguments over following
  MOV    v2, a2             ; function calls

  MOV    a1, a2
  BL     udiv10             ; a1 = a1 / 10

  SUB    v2, v2, a1, LSL #3 ; number - 8*quotient
  SUB    v2, v2, a1, LSL #1 ;        - 2*quotient = remainder

  CMP    a1, #0             ; quotient non-zero?
  MOVNE  a2, a1             ; quotient to a2...
  MOV    a1, v1             ; buffer pointer unconditionally to a1
  BLNE   utoa               ; conditional recursive call to utoa

  ADD    v2, v2, #'0'       ; final digit
  STRB   v2, [a1], #1       ; store digit at end of buffer

  LDMFD  sp!, {v1, v2, pc}  ; function exit - restore and return
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The implementation of utoa  employs the register naming and usage conventions of the ARM
Procedure Call Standard:

a1-a4 are argument or scratch registers (a1 is the function result register)
v1 -v5 are 'variable' registers (preserved across function calls)
sp is the stack pointer
lr holds the subroutine call return address at routine entry
pc is the program counter

Explanation

On entry, a2  contains the unsigned integer to be converted and a1  addresses a buffer to hold the
character representation of it.

On exit, a1  points immediately after the last digit written.

Both the buffer pointer and the original number have to be saved across the call to udiv10 . This
could be done by saving the values to memory. However, it turns out to be more efficient to use
two 'variable' registers, v1  and v2  (which, in turn, have to be saved to memory).

Because utoa  calls other functions, it must save its return link address passed in lr . The
function therefore begins by stacking v1 , v2  and lr  using STMFD sp!, {v1,v2,lr} .

In the next block of code, a1  and a2  are saved (across the call to udiv10 ) in v1  and v2
respectively and the given number (a2) is moved to the first argument register (a1) before calling
udiv10  with a BL (Branch with Link) instruction.

On return from udiv10 , 10 times the quotient is subtracted from the original number (preserved
in v2 ) by two SUB instructions. The remainder (in v2 ) is ready to be converted to character form
(by adding ASCII '0') and to be stored into the output buffer.

But first, utoa  has to be called to convert the quotient, unless that is zero. The next four
instructions do this, comparing the quotient (in a1) with 0, moving the quotient to the second
argument register (a2) if not zero, moving the buffer pointer to the first argument/result register
(a1), and calling utoa  if the quotient is not zero.

Note that the buffer pointer is moved to a1  unconditionally: if utoa  is called recursively, a1  will
be updated but will still identify the next free buffer location; if utoa  is not called recursively, the
next free buffer location is still needed in a1  by the following code which plants the remainder
digit and returns the updated buffer location (via a1).

The remainder (in a2) is converted to character form by adding '0' and is then stored in the
location addressed by a1 . A post-incrementing STRB is used which stores the character and
increments the buffer pointer in a single instruction, leaving the result value in a1 .

Finally, the function is exited by restoring the saved values of v1  and v2  from the stack, loading
the stacked link address into pc  and popping the stack using a single multiple-load instruction:

LDMFD sp!, {v1,v2,pc}
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5.2.3 Creating a runnable example

You can run the utoa  routine described here under armsd. To do this, you must assemble the
example and the udiv10  function, compile a simple test harness written in C, and link the
resulting objects together to create a runnable program.

Copy utua1.s , udiv10.s  and utuatest.c  from directory examples/explasm  to your
current working directory.Then issue the following commands:

armasm utoa1.s -o utoa1.o -li
armasm udiv10.s -o udiv10.o -li
armcc -c utoatest.c -apcs 3/32bit
armlink -o utoatest utoa1.o udiv10.o utoatest.o libpath /armlib.32l

where libpath is your release lib  directory.

The first two armasm commands assemble the utoa  function and the udiv10  function, creating
relocatable object files utoa1.o  and udiv10.o . The -li  flag tells armasm to assemble for a
little-endian memory. You can omit this flag if your armasm has been configured to do this by
default.

The armcc  command compiles the test harness. The -c  flag tells armcc not to link its output
with the C library; the -li  flag tells armcc to compile for a little-endian memory (as with
armasm).

The armlink  command links your three relocatable objects with the ARM C library to create a
runnable program (here called utoatest ).

If you have installed your ARM development tools in a standard way then you could use the
following shorter command to do the compilation and linking:

armcc utoatest.c utoa1.o udiv10.o -apcs 3/32bit -li

5.2.4 Running the example

You can run your example program under armsd using:

armsd -li utoatest

Note The -li  and -apcs 3/32bit  options can be omitted if the tools are configured appropriately.
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5.2.5 Stacks in assembly language

In this example, three words are pushed on to the stack on entry to utoa  and popped off again
on exit. By convention, ARM software uses r13, usually called sp , as a stack pointer pointing to
the last-used word of a downward growing stack (a so-called 'full, descending' stack). However,
this is only a convention and the ARM instruction set supports equally all four stacking
possibilities: FD, FA, ED, EA.

The instruction used to push values on the stack was:

STMFD  sp!, {v1, v2, lr}

The action of this instruction is as follows:

1 Subtract 4 * number-of-registers from sp

2 Store the registers named in {...} in ascending register number order to memory at [sp ],
[sp ,4], [sp ,8] ...

The matching pop instruction was:

LDMFD  sp!, {v1, v2, pc}

Its action is:

1 Load the registers named in {...} in ascending register number order from memory at
[sp ], [sp ,4], [sp ,8] ...

2 Add 4 * number-of-registers to sp .

Many, if not most, register-save requirements in simple assembly language programs can be met
using this approach to stacks.

A more complete treatment of run-time stacks requires a discussion of:

• stack-limit checking (and extension)

• local variables and stack frames

In the utoa  program, you must assume the stack is big enough to deal with the maximum depth
of recursion, and in practice this assumption will be valid. The biggest 32-bit unsigned integer is
about four billion, or ten decimal digits. This means that at most 10 x 3 registers = 120 bytes have
to be stacked. Because the ARM Procedure Call Standard guarantees that there are at least 256
bytes of stack available when a function is called, and because we can guess (or know) that
udiv10  uses no stack space, we can be confident that utoa  is quite safe if called by an
APCS-conforming caller such as a compiled C test harness.

The stacking technique illustrated here conforms to the ARM Procedure Call Standard only if the
function using it makes no function calls. Since utoa  calls both udiv10  and itself, it really ought
to establish a proper stack frame—see ➲The ARM Software Development Toolkit Reference
Manual: Chapter 19, ARM Procedure Call Standard. If you really want to write functions that can
'plug and play together' you will have to follow the APCS exactly.
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However, when writing a whole program in assembly language you often know much more than
when writing a program fragment for general, robust service. This allows you to gently break the
APCS in the following way:

• Any chain of function/subroutine calls can be considered compatible with the APCS
provided it uses less than 256 bytes of stack space.

So the utoa  example is APCS compatible, even though it is not APCS conforming.

Be aware however that if you call any function whose stack use is unknown (but which is
believed to be APCS-conforming), you court disaster unless you establish a proper APCS call
frame and perform APCS stack limit checking on function entry. Please refer to ➲The ARM
Software Development Toolkit Reference Manual: Chapter 19, ARM Procedure Call Standard
for further details.
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5.3 Multiplication by a Constant
Note Throughout the following discussion, registers are referred to using the names Rd, Rm, and Rs,

but when trying the examples out for yourself you should use the default register names r0-r15,
or names which have been declared using the RN assembler directive.

This section explains how to construct a sequence of ARM instructions to multiply by a constant.

For some applications in which speed is essential—Digital Signal Pocessing, for example—
multiply is used extensively.

In many cases where a multiply is used, one of the values is a constant (eg. weeks*7). A naive
programmer would assume that the only way to calculate this would be to use the MUL instruction,
but there is an alternative.

This section demonstrates how to improve the speed of multiply-by-constant by using a
sequence of arithmetic instructions instead of the general-purpose multiplier.

5.3.1 Introduction

The MUL instruction has the following syntax:

    MUL    Rd, Rm, Rs

The timing of this instruction depends on the value in Rs. The ARM6 datasheet specifies that for
Rs between 2^(2m-3) and 2^(2m-1)-1 inclusive takes 1S + mI cycles.

Note ARM 7M family processors have a different implementation of MUL. This leads to a different
relationship of cycle counts to values of Rs.

When multiplying by a constant value, it is possible to replace the general multiply with a fixed
sequence of adds and subtracts that have the same effect. For instance, multiply by 5 could be
achieved using a single instruction:

    ADD    Rd, Rm, Rm, LSL #2 ; Rd = Rm + (Rm * 4) = Rm * 5

This is obviously better than the MUL version:

    MOV    Rs, #5
    MUL    Rd, Rm, Rs

The cost of the general multiply includes the instructions needed to load the constant into a
register (up to four may be needed, or an LDR from a literal pool) as well as the multiply itself.



Exploring ARM Assembly Language

5-9Programming Techniques
ARM DUI 0021A

5.3.2 Finding the optimum sequence

The difficulty in using a sequence of arithmetic instructions is that the constant must be
decomposed into a set of operations which can be done by one instruction each. Consider
multiply by 105:

This could be achieved by decomposing, as follows:

    105 == 128 - 23
        == 128 - (16 + 7)
        == 128 - (16 + (8 - 1))

    RSB    Rd, Rm, Rm, LSL #3 ; Rd = Rm*7
    ADD    Rd, Rd, Rm, LSL #4 ; Rd = Rm*7 + Rm*16 = Rm*23
    RSB    Rd, Rd, Rm, LSL #7 ; Rd = -Rm*23 + Rm*128 = Rm*105

Or as follows:

    105 == 15 * 7
        == (16 - 1) * (8 - 1)

    RSB    Rt, Rm, Rm, LSL #4 ; Rt = Rm*15 (tmp reg)
    RSB    Rd, Rt, Rt, LSL #3 ; Rd = Rt*7 = Rm*105

The second method is the optimal solution (fairly easy to find for small values such as 105).
However, the problem of finding the optimum becomes much more difficult for larger constant
values. A program can be written to search exhaustively for the optimum, but it may take a long
time to execute. There are no known algorithms which solve this problem quickly.

Temporary registers can be used to store intermediate results to help achieve the shortest
sequence. For a large constant, more than one temporary may be needed, otherwise the
sequence will be longer.

The C compiler restricts the amount of searching it performs in order to minimise the impact on
compilation time. The current version of armcc has a cut-off so that it uses a normal MUL if the
number of instructions used in the multiply-by-constant sequence exceeds some number N.
This is to avoid the sequence becoming too long.



Exploring ARM Assembly Language

5-10 Programming Techniques
ARM DUI 0021A

5.3.3 Experimenting with armcc assembly output

When writing a speed-critical ARM assembler program, it is a good idea to code it in C first
(to check the algorithm) before converting it to hand-tuned assembler. It is helpful to see the ARM
code which the compiler generates as a starting point for your work.

Invoking armcc with the -S  flag will generate an assembly file instead of an object file.
For example, consider the following simple C code:

int mulby105( int num )
{
    return num * 105;
}

Compile this using:

armcc -li -S mulby105.c

Now, examine the file mulby105.s  which has been created.  (Your version of armcc may not
produce precisely this output, although it should be very similar):

; generated by Norcroft ARM C vsn 4.41 (Advanced RISC Machines)
    AREA |C$$code|, CODE, READONLY
|x$codeseg|

    EXPORT  mulby105
mulby105
    RSB    a1,a1,a1,LSL #4
    RSB    a1,a1,a1,LSL #3
    MOV    pc,lr

    AREA |C$$data|,DATA

|x$dataseg|

    END

Notice that the compiler has found the short multiply-by-constant sequence.
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5.3.4 Discussion of speed improvement

To evaluate the speed gains from using multiply-by-constant, consider multiplying by 11585
(which is 8192*sqr2):

In a normal multiply, the load-a-constant stage may take up to four instructions (in this case two)
or an LDR,=  and the multiply takes one instruction fetch plus a number of internal cycles to
calculate the multiply (on ARM6 based processors):

    MOV    Rs, #0x2D << 8 ; load constant
    ORR    Rs, Rs, #0x41 ; load constant, now Rs = 11585
    MUL    Rd, Rm, Rs ; do the multiply

The optimal multiply-by-constant sequence consists of just four data-processing instructions:

    ADD    Rd, Rm, Rm, LSL #1 ; Rd = Rm*3
    RSB    Rd, Rd, Rd, LSL #4 ; Rd = Rd*15 = Rm*45
    ADD    Rd, Rm, Rd, LSL #8 ; Rd = Rm + Rd*256 = Rm*11521
    ADD    Rd, Rd, Rm, LSL #6 ; Rd = Rd + Rm*64 = Rm*11585

The following table shows a comparison of these methods:

On ARM6 processors, the 2-bit Booth's Multiplier used by MUL takes a number of I-cycles
depending on the value in Rs (in this case m=8, as Rs lies between 8192 and 32767). In this
case, multiply-by-constant performs better. On the ARM60, an instruction fetch is an external
memory S-cycle, or a cache F-cycle (if there is a cache hit) on cached processors.

With slow memory systems and non-cached processors, I-cycles can be much faster than other
cycles because they are internal to the ARM core. So, the general multiply can sometimes be
the fastest option (for large constants where an efficient solution cannot be found). It should also
use less memory. If the load-a-constant stage could be moved outside a loop, this favours the
general multiply, as there is only the MUL to execute.

Method Cycles

MUL instruction 3 instructions + MUL internal cycles

Multiply by constant 4 instructions

 Table 5-1: Simple comparison of performance

Method Cycles on ARM60 Cycles on ARM610

MUL instruction 3S + 8I 11F

Multiply by constant 4S 4F

 Table 5-2: Comparison of performance on cached and uncached processors
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5.4 Division by a Constant
The ARM instruction set was designed following a RISC philosophy. One of the consequences
of this is that the ARM core has no divide instruction, so divides must be performed using a
subroutine. This means that divides can be quite slow, but this is not a major issue as divide
performance is rarely critical for applications.

It is possible to do better than the general divide in the special case when the divisor is a constant.
This section shows how the divide-by-constant technique works, and how to generate ARM
assembler code for divide-by-constant.

This section explains:

• how to improve on the general divide code for the case when the divisor is a constant

• the simple case for divide-by-2^n using the barrel shifter

• how to use divc.c  to generate ARM code for divide-by-constant

5.4.1 Special case for divide-by-2^n

In the special case when dividing by 2^n, a simple right shift is all that is required.

There is a small caveat which concerns the handling of signed and unsigned numbers.
For signed numbers, an arithmetic right shift is required, as this performs sign extension (to
handle negative numbers correctly). In contrast, unsigned numbers require a 0-filled logical shift
right:

    MOV    a2, a1, lsr #5 ; unsigned division by 32
    MOV    a2, a1, asr #10 ; signed division by 1024

5.4.2 Explanation of divide-by-constant ARM code

The divide-by-constant technique basically does a multiply in place of the divide, but is somewhat
more complicated than the multiply technique described in ➲5.3 Multiplication by a Constant.
Given that:

x/y == x * (1/y)

consider the underlined portion as a 0.32 fixed-point number (truncating any bits past the most
significant 32). 0.32 means 0 bits before the decimal point and 32 after it.

== (x * ( 2^32/y)) / 2^32

the underlined portion here is a 32.0 bit fixed-point number:

== (x * (2^32/y)) >> 32

This is effectively returning the top 32-bits of the 64-bit product of x and (2^32/y).

If y is a constant, then (2^32/y) is also a constant.

For certain y, the reciprocal (2^32/y) is a repeating pattern in binary:
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y (2^32/y)

   2      10000000000000000000000000000000    #
   3      01010101010101010101010101010101    *
   4      01000000000000000000000000000000    #
   5      00110011001100110011001100110011    *
   6      00101010101010101010101010101010    *
   7      00100100100100100100100100100100    *
   8      00100000000000000000000000000000    #
   9      00011100011100011100011100011100    *
  10      00011001100110011001100110011001    *
  11      00010111010001011101000101110100
  12      00010101010101010101010101010101    *
  13      00010011101100010011101100010011
  14      00010010010010010010010010010010    *
  15      00010001000100010001000100010001    *
  16      00010000000000000000000000000000    #
  17      00001111000011110000111100001111    *
  18      00001110001110001110001110001110    *
  19      00001101011110010100001101011110
  20      00001100110011001100110011001100    *
  21      00001100001100001100001100001100    *
  22      00001011101000101110100010111010
  23      00001011001000010110010000101100
  24      00001010101010101010101010101010    *
  25      00001010001111010111000010100011

The lines marked with a ’#’ are the special cases 2^n, which have already been dealt with.
The lines marked with a ’*’ have a simple repeating pattern.
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Note how regular the patterns are for y=2^n+2^m or y=2^n-2^m (for n>m):

  n m (2^n+2^m) n m (2^n-2^m)

  1 0 3 1 0 1
  2 0 5 2 1 2
  2 1 6 2 0 3
  3 0 9 3 2 4
  3 1 10 3 1 6
  3 2 12 3 0 7
  4 0 17 4 3 8
  4 1 18 4 2 12
  4 2 20 4 1 14
  4 3 24 4 0 15
  5 0 33 5 4 16
  5 1 34 5 3 24
  5 2 36 5 2 28
  5 3 40 5 1 30
  5 4 48 5 0 31

For the repeating patterns, it is a relatively easy matter to calculate the product by using a
multiply-by-constant method.

The result can be calculated in a small number of instructions by taking advantage of the
repetition in the pattern. This corresponds to the optimal solution in the multiply-by-constant
problem (see ➲5.3 Multiplication by a Constant on page 5-8).

The actual multiply is slightly unusual due to the need to return the top 32 bits of the 64-bit result.
It efficient to calculate just the top 32 bits. This can be achieved by modifying the multiply-by-
constant sequence so that the input value is shifted right rather than left.

Consider this fragment of the divide-by-ten code (x is the input dividend as used in the above
equations):

SUB  a1,  x,  x, lsr #2   ; a1 = x*%0.11000000000000000000000000000000
ADD  a1, a1, a1, lsr #4   ; a1 = x*%0.11001100000000000000000000000000
ADD  a1, a1, a1, lsr #8   ; a1 = x*%0.11001100110011000000000000000000
ADD  a1, a1, a1, lsr #16  ; a1 = x*%0.11001100110011001100110011001100
MOV  a1, a1, lsr #3       ; a1 = x*%0.00011001100110011001100110011001

The SUB calculates (for example):

a1 = x - x/4
   = x - x*%0.01
   = x*%0.11

Therefore, just five instructions are needed to perform the multiply.
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A small problem is caused by calculating just the top 32 bits, as this ignores any carry from the
low 32 bits of the 64-bit product. Fortunately, this can be corrected. A correct divide would round
down, so the remainder can be calculated by:

x - (x/10)*10 = 0..9

By making good use of the ARM’s barrel shifter, it takes just two ARM instructions to perform
this multiply-by-10 and subtract. In the case when (x/10) is too small by 1 (if carry has been lost),
the remainder will be in the range 10..19, in which case corrections must be applied. This test
would require a compare-with-10 instruction, but this can be combined with other operations to
save an instruction (see below).

When a lost carry is detected, both the quotient and remainder must be fixed up (one instruction
each).

The following fragment should explain the full divide-by-10 code:

div10
; takes argument in a1
; returns quotient in a1, remainder in a2
; cycles could be saved if only divide or remainder is required
    SUB    a2, a1, #10             ; keep (x-10) for later
    SUB    a1, a1, a1, lsr #2
    ADD    a1, a1, a1, lsr #4
    ADD    a1, a1, a1, lsr #8
    ADD    a1, a1, a1, lsr #16
    MOV    a1, a1, lsr #3
    ADD    a3, a1, a1, asl #2
    SUBS   a2, a2, a3, asl #1      ; calc (x-10) - (x/10)*10
    ADDPL  a1, a1, #1              ; fix-up quotient
    ADDMI  a2, a2, #10             ; fix-up remainder
    MOV    pc, lr

The optimisation which eliminates the compare-with-10 instruction is to keep (x-10) for use in
the subtraction to calculate the remainder. This means that compare-with-0 is required instead,
which is easily achieved by adding an S (to set the flags) to the SUB opcode. This also means
that the subtraction has to be undone if no rounding error occurred (which is why the ADDMI
instruction is used).
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5.4.3 How to generate divide-by-constant sequences

For suitable numbers, the details of the divide-by-constant technique can be avoided completely
by using the divc  program. This is supplied in ANSI C source in directory examples/explasm .
You can compile it either with your host system's C compiler, or with armcc in which case the
executable must be run using armsd.

You can get command-line help by running divc  with no arguments.

A Thumb version of divc  may be found in directory examples/thumb .

Usage: divc <n>
Generates optimal ARM code for divide-by-constant
where <n> is one of (2^n-2^m) or (2^n+2^m) eg. 10
Advanced RISC Machines [01 Jul 92]

To generate the ARM assembler code for divide-by-10, type:

 divc 10

The output is suitable for immediate use as an armasm source file.

The routine is called udiv10  for unsigned divide-by-10 (for example). It takes the unsigned
argument in a1 , and returns the quotient in a1  and the remainder in a2 . It conforms fully to the
APCS, but the remainder may not be  available when called from C.

The range of values covered by (2^n-2^m) and (2^n+2^m) contains some useful numbers such
as 7, 10, 24, 60.
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5.5 Using 16-bit Data on the ARM
Note This section will only be of interest to designers working with Architecture 3 ARM cores and

devices (eg. ARM6, ARM60, ARM610).

ARM processors designed using ARM Architecture 4 have instructions for loading and storing
halfword values. ARM processors designed using version 3 of the architecture, while lacking
halfword support, are still capable of handling16-bit data efficiently, as this section will
demonstrate.

This section covers several different approaches to 16-bit data manipulation on ARM
processors which do not have halfword support:

• Converting the 16-bit data to 32-bit data, and from then on treating it as 32-bit data

• Converting 16-bit data into 32-bit data when loading and storing, but using 32-bit data
within ARM's registers

• Loading 16-bit data into the top 16-bits of ARM registers, and processing it as 16-bit
data (ie. keeping the bottom 16-bits clear at all times)

Useful code fragments are given which can be used to help implement these different
approaches efficiently.

5.5.1 16-bit values in 32-bit words

Because data is 16-bit in size does not mean that it cannot be considered as 32-bit data and
thus be manipulated using the ARM instruction set in the normal way.

Any unsigned 16-bit value can be held as a 32-bit value in which the top 16 bits are all zero.
Similarly any signed 16-bit value can be held as a 32-bit value with the top 16 bits sign extended
(ie. copied from the top bit of the 16-bit value).

The main disadvantage of storing 16-bit data as 32-bit data in this way for ARM-based systems
is that it takes up twice as much space in memory or on disk. If the amount of memory taken up
by the 16-bit data is small, then simply treating it as 32-bit data is likely to be the easiest and
most efficient technique (ie. converting the data to 32-bit format and from then on treating it as
32-bit data.)

When the space taken by 16-bit data in memory or on disk is not small, an alternative method
can be used. The 16-bit data is loaded and converted to be 32-bit data for use within the ARM,
and then when processed, can either be output as 32-bit or 16-bit data. Useful code fragments
are given to perform the necessary conversions for this approach in ➲5.5.2 Little-endian loading
on page 5-18 to section ➲5.5.5 Big-endian storing on page 5-22.

Detecting 16-bit data

An issue which may arise when 16-bit data is converted to 32-bit data for use in the ARM and
then stored back out as 16-bit data is detecting whether the data is still 16-bit data, ie. whether
it has 'overflowed' into the top 16 bits of the ARM register. Code fragments which detect this are
given in section ➲5.5.6 Detecting overflow into the top 16 bits on page 5-23.
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Another approach which avoids having to use explicit code to check whether results have
overflowed into the top 16-bits is to keep 16-bit data as 16-bit data all the time, by loading it into
the top half of ARM registers, and ensuring that the bottom 16 bits are always 0. Useful code
sequences, and the issues involved when taking this approach are described in ➲5.5.7 Using
ARM registers as 16-bit registers on page 5-24.

5.5.2 Little-endian loading

Code fragments in this section which transfer a single 16-bit data item transfer it to the least
significant 16 bits of an ARM register. The byte offset referred to is the byte offset within a word
at the load address. eg. the address 0x4321 has a byte offset of 1.

One data item - any alignment (byte offsets 0,1,2 or 3)

The following code fragment loads a 16-bit value into a register, whether the data is byte,
halfword or word-aligned in memory, by using the ARM's load byte instruction.

This code is also optimal for the common case where the 16-bit data is half word-aligned, ie. at
either byte offset 0 or 2 (but the same code is required to deal with both cases). Optimisations
can be made when it is known that the data is at byte offset 0, and also when it is known to be at
byte offset 2 (but not when it could be at either offset).

    LDRB   R0, [R2, #0] ; 16-bit value is loaded from the
    LDRB   R1, [R2, #1] ; address in R2, and put in R0
    ORR    R0, R0, R1, LSL #8 ; R1 is required as a
;   MOV    R0, R0, LSL #16 ; temporary register
;   MOV   R0, R0, ASR #16

The two MOV instructions are only required if the 16-bit value is signed, and it may be possible to
combine the second MOV with another data-processing operation by specifying the second
argument as R0, ASR, #16  rather than just R0.

One data item - byte offset 2

If the data is aligned on a half word boundary, but not a word boundary (ie. the byte offset is 2),
then the following code fragment can be used (which is clearly much more efficient than the
general case given above):

    LDR    R0, [R2, #-2] ; 16-bit data is loaded from
; address in R2 into R0

    MOV    R0, R0, LSR #16 ; (R2 has byte offset 2)

The LSR should be replaced with ASR if the data is signed. Note that as in the previous example
it may be possible to combine the MOV with another data processing operation.
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One data item - byte offset 0

If the data is on a word boundary, the following code fragment will load a 16-bit value (again a
significant improvement over the general case):

    LDR    R0, [R2, #0] ; 16-bit value is loaded from the
    MOV    R0, R0, LSL #16 ; word-aligned address in R2
    MOV    R0, R0, LSR #16 ; into R0

As before, LSR should be replaced with ASR if the data is signed. Also, it may be possible to
combine the second MOV with another data processing operation.

This code can be further optimised if non-word-aligned word-loads are permitted (ie. alignment
faults are not enabled). This makes use of the way ARM rotates data into a register for
non-word-aligned word-loads (see the appropriate ARM Datasheet for more information):

    LDR    R0, [R2, #2] ; 16-bit value is loaded from the
    MOV    R0, R0, LSR #16 ; word-aligned address in R2

; into R0.

Two data items - byte offset 0

Two 16-bit values stored in one word can be loaded more efficiently than two separate values.
The following code loads two unsigned 16-bit data items into two registers from a word-aligned
address:

    LDR    R0, [R2, #0] ; 2 unsigned 16-bit values are
    MOV    R1, R0, LSR #16 ; loaded from one word of memory
    BIC    R0, R0, R1, LSL #16 ; [R2]. The 1st is put in R0, and

; the 2nd in R1.

The version of this for signed data is:

    LDR    R0, [R2, #0] ; 2 signed 16-bit values are
    MOV    R1, R0, ASR #16 ; loaded from one word of memory
    MOV    R0, R0, LSL #16 ; [R2]. The 1st is put in R0, and
    MOV    R0, R0, ASR #16 ; the 2nd in R1.

The address in R2 should be word-aligned (byte offset 0), in which case these code fragments
load the data item in bytes 0-1 into R0, and the data item in bytes 2-3 into R1.
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5.5.3 Little-endian storing

The code fragment in this section transfers a single 16-bit data item from the least-significant 16
bits of an ARM register. The byte offset referred to is the byte offset within a word of the store
address. For example, the address 0x4321 has a byte offset of 1.

One data item - any alignment (byte offsets 0,1,2 or 3)

The following code fragment saves a 16-bit value to memory, whatever the alignment of the data
address, by using the ARM's byte-saving instructions:

    STRB   R0, [R2, #0] ; 16-bit value is stored to the
    MOV    R0, R0, ROR #8 ; address in R2.
    STRB   R0, [R2, #1]
;   MOV    R0, R0, ROR #24

The second MOV instruction can be omitted if the data is no longer needed after being stored.

Unlike load operations, knowing the alignment of the destination address does not make
optimisations possible.

Two data items - byte offset 0

Two unsigned 16-bit values in two registers can be packed into a single word of memory very
efficiently, as the following code fragment demonstrates:

    ORR    R3, R0, R1, LSL #16 ; Two unsigned 16-bit values
    STR    R3, [R2, #0] ; in R0 and R1 are packed into

; the word addressed by R2
; R3 is a temporary register

If the values in R0 and R1 are not needed after they are saved, R3 need not be used as a
temporary register (one of R0 or R1 can be used instead).

The version for signed data is:

    MOV    R3, R0, LSL #16 ; Two signed 16-bit values
    MOV    R3, R3, LSR #16 ; in R0 and R1 are packed into
    ORR    R3, R3, R1, LSL #16 ; the word addressed by R2
    STR    R3, [R2, #0] ; R3 is a temporary register

Again, if the values in R0 and R1 are not needed after they are saved, R3 need not be used as
a temporary register (R0 can be used instead).
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5.5.4 Big-endian loading

Code fragments in this section transfer a single 16-bit data item to the least-significant 16 bits
of an ARM register. The byte offset referred to is the byte offset within a word at the load
address. Foe example, the address 0x4321 has a byte offset of 1.

One data item - any alignment (byte offsets 0,1,2 or 3)

The following code fragment loads a 16-bit value into a register using the load byte instruction
(LDRB). The data may be byte, halfword or word-aligned.

This code is also optimal for the common case where the 16-bit data is half word-aligned; ie. at
either byte offset 0 or 2 (but the same code is required to deal with both cases). Optimisations
can be made when it is known that the data is at byte offset 0, and also when it is known to be
at byte offset 2 (but not when it could be at either offset).

    LDRB   R0, [R2, #0] ; 16-bit value is loaded from the
    LDRB   R1, [R2, #1] ; address in R2, and put in R0
    ORR    R0, R1, R0, LSL #8 ; R1 is a temporary register
;   MOV    R0, R0, LSL #16
;   MOV    R0, R0, ASR #16

The two MOV instructions are only required if the 16-bit value is signed, and it may be possible
to combine the second MOV with another data-processing operation by specifying the second
argument as R0, ASR, #16  rather than simply R0.

One data item - byte offset 0

If the data is aligned on a word boundary, the following code fragment can be used (which is
clearly much more efficient than the general case given above):

    LDR    R0, [R2, #0] ; 16-bit value is loaded from the
    MOV    R0, R0, LSR #16 ; word-aligned address in R2

; into R0.

The LSR should be replaced with ASR if the data is signed. Note that as in the previous example
it may be possible to combine the MOV with another data-processing operation.

One data item - byte offset 2

If the data is aligned on a halfword boundary, but not a word boundary (ie. the byte offset is 2)
the following code fragment can be used (again a significant improvement over the general
case):

    LDR    R0, [R2, #-2] ; 16-bit value is loaded from the
    MOV    R0, R0, LSL #16 ; address in R2 into R0.  R2 is
    MOV    R0, R0, LSR #16 ; aligned to byte offset 2

As before, LSR should be replaced with ASR if the data is signed. Also, it may be possible to
combine the second MOV with another data-processing operation.
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This code can be further optimised if non-word-aligned word-loads are permitted (ie. alignment
faults are not enabled). This makes use of the way in which the ARM rotates data into a register
for non-word-aligned word loads:

    LDR    R0, [R2, #0] ; 16-bit value is loaded from the
    MOV    R0, R0, LSR #16 ; address in R2 into R0.  R2 is

; aligned to byte offset 2

Two data items - byte offset 0

Two 16-bit values stored in one word can be loaded more efficiently than two separate values.
The following code loads two unsigned 16-bit data items into two registers from a word-aligned
address:

    LDR    R0, [R2, #0] ; 2 unsigned 16-bit values are
    MOV    R1, R0, LSR #16 ; loaded from one word of memory.
    BIC    R0, R0, R1, LSL #16 ; The 1st in R0, the 2nd in R1.

The version of this for signed data is:

    LDR    R0, [R2, #0] ; 2 signed 16-bit values are
    MOV    R1, R0, ASR #16 ; loaded from one word of memory.
    MOV    R0, R0, LSL #16 ; The 1st in R0, the 2nd in R1.
    MOV    R0, R0, ASR #16 ; into R1.

5.5.5 Big-endian storing

The code fragment in this section which transfers a single 16-bit data item, transfers it from
the least-significant 16 bits of an ARM register. The byte offset referred to is the byte offset from
a word address of the store address; eg. the address 0x4321 has a byte offset of 1.

One data item - any alignment (byte offsets 0,1,2 or 3)

The following code fragment saves a 16-bit value to memory, whatever the alignment of the data
address:

    STRB   R0, [R2, #1] ; 16-bit value is stored to the
    MOV    R0, R0, ROR #8 ; address in R2.
    STRB   R0, [R2, #0]
;   MOV    R0, R0, ROR #24

The second MOV instruction can be omitted if the data is no longer needed after being stored.

Unlike load operations, knowing the alignment of the destination address does not make
optimisations possible.
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Two data items - byte offset 0

Two unsigned 16-bit values in two registers can be packed into a single word of memory very
efficiently, as the following code fragment demonstrates:

    ORR    R3, R0, R1, LSL #16 ; Two unsigned 16-bit values in
    STR    R3, [R2, #0] ; R0 and R1 are packed into the

; word addressed by R2
    ; R3 is used as a temporary register

If the values in R0 and R1 are not needed after they are saved, R3 need not be used as a
temporary register (one of R0 or R1 can be used instead).

The version for signed data is:

    MOV    R3, R0, LSL #16 ; Two signed 16-bit values in
    MOV    R3, R3, LSR #16 ; R0 and R1 are packed into the
    ORR    R3, R3, R1, LSL #16 ; word addressed by R2.
    STR    R3, [R2, #0] ; R3 is a temporary register

Again, if the values in R0 and R1 are not needed after they are saved, R3 need not be used as
a temporary register (R0 can be used instead).

5.5.6 Detecting overflow into the top 16 bits

If 16-bit data is converted to 32-bit data for use in the ARM, it may sometimes be necessary to
check explicitly whether the result of a calculation has 'overflowed' into the top 16 bits of an ARM
register. This is likely to be necessary because the ARM does not set its processor status flags
when this happens.

The following instruction sets the Z flag if the value in R0 is a 16-bit unsigned value. R1 is used
as a temporary register:

    MOVS   R1, R0, LSR #16

The following instructions set the Z flag if the value in R0 is a valid 16-bit signed value (ie. bit 15
is the same as the sign extended bits). R1 is used as a temporary register:

    MOVS   R1, R0, ASR #15
    CMNNE  R1, R1, #1
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5.5.7 Using ARM registers as 16-bit registers

The final method of handling 16-bit data is to load it into the top 16 bits of the ARM registers,
effectively making them 16-bit registers. This approach has several advantages:

• Some 16-bit data load instruction sequences are shorter. The loading and storing
sequences shown above will have to be modified, and in some cases shorter instruction
sequences will be possible. In particular, handling signed data will often be more
efficient, as the top bit does not have to be copied into the top 16 bits of the register.
However, note that the bottom 16 bits must be clear at all times.

• The ARM processor status flags will be set if the 'S' bit of a data processing instruction
is set and overflow or carry occurs out of the 16-bit value. Thus, explicit 'overflow'
checking instructions are not needed.

• Pairs of signed 16-bit integers can be saved more efficiently than in the previous
approach, since the sign-extended bits do not have to be cleared out before the two
values are combined.

There are also disadvantages:

• Instructions such as add with carry cannot be used. For example,. the instruction to
increment R0 if Carry is set:

ADC R0, R0, #0

must be replaced by:
ADDCS R0, R0, #&10000

Using this form of instruction reduces the chances of being able to combine several
data-processing operations into one by making use of the barrel shifter.

• Before two 16-bit values can be multiplied, they must be shifted into the bottom half of
the register

• Before combining a 16-bit value with a 32-bit value, the 16-bit value must be shifted into
the bottom half of the register. Note, however, that this may cost nothing if the barrel
shifter can be used in parallel.

The examples given above for loading and storing 16-bit data into the bottom half of ARM
registers can be easily adapted to load the data into the top half of the registers (and ensure the
bottom half is all zero), or save the data from the top half of the registers.
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5.6 Pseudo Random Number Generation
This section describes a 32-bit pseudo random number generator implemented efficiently in
ARM Assembly Language.

It is often necessary to generate pseudo random numbers, and the most efficient algorithms are
based on shift generators with exclusive-or feedback (rather like a cyclic redundancy check
generator). Unfortunately, the sequence of a 32-bit generator needs more than one feedback
tap to be maximal length (ie. 2^32-1 cycles before repetition), so this example uses a 33 bit
register with taps at bits 33 and 20.

The basic algorithm is:

• newbit:=bit33 EOR bit20

• shift left the 33 bit number

• put in newbit at the bottom

This operation is performed for all the newbits needed (ie. 32 bits). The entire operation can be
coded compactly by making maximal use of the ARM's barrel shifter:

; enter with seed in R0 (32 bits), R1 (1 bit in least significant bit)
; R2 is used as a temporary register.
; on exit the new seed is in R0 and R1 as before
; Note that a seed of 0 will always produce a new seed of 0.
; All other values produce a maximal length sequence.
;
    TST    R1, R1, LSR #1         ; top bit into Carry
    MOVS   R2, R0, RRX            ; 33 bit rotate right
    ADC    R1, R1, R1             ; carry into lsb of R1
    EOR    R2, R2, R0, LSL #12    ; (involved!)
    EOR    R0, R2, R2, LSR #20    ; (similarly involved!)

5.6.1 Using this example

This random number generation code is provided as random.s  in directory examples/
explasm . It is provided as ARM Assembly Language source which can be assembled and then
linked with C modules (see ➲Chapter 7, Interfacing C and Assembly Language for more
information).

The C test program randtest.c  (also in directory examples/explasm ) can be used to
demonstrate this.

In the following commands:

-li  indicates that the target ARM is little-endian

-apcs 3/32bit specifies that the 32-bit variant of the ARM Procedure Call Standard
should be used.

These options can be omitted if the tools have already been configured appropriately.
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First copy random.s  and randtest.c  from directory examples/explasm  to your current
directory, and enter the following commands to build an executable suitable for armsd:

armasm random.s -o random.o -li
armcc -c randtest.c -li -apcs 3/32bit
armlink randtest.o random.o -o randtest libpath /armlib.32l

Where libpath  is the path to the toolkit’s lib  directory on your system.

armsd can be used to run this program as follows:

> armsd -li randtest
A.R.M. Source-level Debugger, version 4.10 (A.R.M.) [Aug 26 1992]
ARMulator V1.20, 512 Kb RAM, MMU present, Demon 1.01, FPE, Little
endian.
Object program file randtest
armsd: go
randomnumber() returned 0b3a9965
randomnumber() returned ac0b1672
randomnumber() returned 6762ad4f
randomnumber() returned 1965a731
randomnumber() returned d6c1cef4
randomnumber() returned f78fa802
randomnumber() returned 8147fc15
randomnumber() returned 3f62adfc
randomnumber() returned b56e9da8
randomnumber() returned b36dc5e2
Program terminated normally at PC = 0x000082c8
      0x000082c8: 0xef000011 .... : >  swi     0x11
armsd: quit
Quitting
>
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5.7 Loading a Word from an Unknown Alignment
This section describes a code sequence which loads a word from memory at any byte
alignment. Although loading 32-bit data from non word-aligned addresses should be avoided
whenever possible, it may sometimes be necessary.

5.7.1 Aligned and misaligned data

The ARM Load and Store (single and multiple) instructions are designed to load word-aligned
data. Unless there is a very good reason for doing so, it is best not to have data at non word-
aligned addresses, as neither the Load or Store instruction can access such data unaided.

To deal with misaligned word fetches, two words must be read and the required data extracted
from these two words. The code below performs this operation for a little-endian ARM, making
good use of the barrel shifter:

; enter with address in R0
; R2 and R3 are used as temporary registers
; the word is loaded into R1
;
    BIC    R2, R0, #3 ; Get word-aligned address
    LDMIA  R2, {R1, R3} ; Get 64 bits containing data
    AND    R2, R0, #3 ; Get offset in bytes
    MOVS   R2, R2, LSL #3 ; Get offset in bits
    MOVNE  R1, R1, LSR R2 ; Extract data from bottom 32 bits
    RSBNE  R2, R2, #32 ; Get 32 - offset in bits
    ORRNE  R1, R1, R3, LSL R2 ; Extract data from top 32 bits

; and combine with the other data

This code can easily be modified for use on a big-endian ARM; the LSR R2 and LSL R2  must
be swapped over.

For details of what the Load and Store instructions do if used with non word-aligned addresses
refer to the appropriate datasheet. Note that non-word-aligned word loads are also used in
➲5.5 Using 16-bit Data on the ARM on page 5-17.
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5.8 Byte Order Reversal
Changing the endianness of a word can be a common operation in certain applications—
for example when communicating word-sized data as a stream of bytes to a receiver of the
opposite endianness.

This section describes a compact ARM Instruction Sequence to perform byte order reversal;
ie. reversing the endianness of a word.

This operation can be performed efficiently on the ARM, using just four instructions. The word to
be reversed is held in a1  both on entry and exit of this instruction sequence. ip  is used as a
temporary register (For more information about these register names see ➲Table 7-1: ACPS
Registers on page 7-4):

    EOR    ip, a1, a1, ror #16
    BIC    ip, ip, #&ff0000
    MOV    a1, a1, ror #8
    EOR    a1, a1, ip, lsr #8

A demonstration program which should help explain how this works has been provided in source
form in directory examples/explasm . To compile this program and run it under armsd, first copy
bytedemo.c  from directory examples/explasm  to your current working directory, and then
use the following commands:

>armcc bytedemo.c -o bytedemo -li -apcs 3/32bit
>armsd -li bytedemo
A.R.M. Source-level Debugger, version 4.10 (A.R.M.) [Aug 26 1992]
ARMulator V1.20, 512 Kb RAM, MMU present, Demon 1.01, FPE, Little
endian.
Object program file bytedemo
armsd: go

Note This program uses ANSI control codes, so should work on most terminal types under Unix and
also on the PC. It will not work on HP-UX if the terminal emulator used is an HPTERM.
An XTERM should be used to run this program on the HP-UX.
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5.9 ARM Assembly Programming Performance Issues
This section outlines many performance-related issues of which the ARM Assembly Language
Programmer should be aware. It also provides useful background for C programmers using
armcc, as some of these issues can also apply to programming in C.

Not all of the issues discussed here apply to every ARM-processor-based system. However,
unless otherwise stated, all relate to processors based on ARM6 and ARM7, with or without
cache and/or write buffer.

5.9.1 LDM / STM

Use LDM and STM instead of a sequence of LDR or STR instructions wherever possible.
This provides several benefits:

• The code is smaller (and thus will cache better on an ARM processor with a cache)

• An instruction fetch cycle and a register copy back cycle is saved for each LDR or STR
eliminated

• On an uncached ARM processor (for LDM) or an unbuffered ARM processor (for STM),
non-sequential memory cycles can be turned into faster memory sequential cycles

5.9.2 Conditional execution

In many situations, branches around short pieces of code can be avoided by using conditionally
executed instructions. This reduces the size of code and may avoid a pipeline break.

5.9.3 Using the barrel shifter

Combining shift operations with other operations can significantly increase the code density
(and thus performance) of much ARM code.

5.9.4 Addressing modes

The ARM instruction set provides a useful selection of addressing modes, which can often be
used to improve the performance of code; eg. using LDR or STR pre- or post-indexed with a
non-zero offset increments the base register and performs the data transfer. For full details of
the addressing modes available, refer to the appropriate ARM datasheet.

5.9.5 Multiplication

Be aware of the time taken by the ARM multiply and multiply accumulate instructions.

When multiplying by a constant value note that using the multiply instruction is often not the
optimal solution. The issues involved are discussed in the ➲5.3 Multiplication by a Constant on
page 5-8.
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5.9.6 Optimising register usage

Examine your code and see if registers can be reused for another value during parts of a long
calculation which uses many registers. Doing this will reduce the amount of 'register spillage'
(ie. the number of times a value has to be reloaded or an intermediate value saved and then
reloaded).

Because much can be achieved in a single data-processing instruction, keeping a calculated
result in a register for use a considerable time later may be less efficient than recalculating it
when it is next needed. This is because it may allow the freed register to be used for another
purpose in the meantime, thus reducing the amount of register spillage.

5.9.7 Loop unrolling

Loop unrolling can be a useful technique, but detailed analysis is often necessary before using
it. in some situations can reduce performance.

Loop unrolling involves using more than one copy of the inner loop of an algorithm. The following
benefits may be gained by loop unrolling:

• the branch back to the beginning of the loop is executed less frequently

• it may be possible to combine some of one iteration with some of the next iteration, and
thereby significantly reduce the cost of each iteration.
A common case of this is combining LDR or STR instructions from two or more iterations
into single LDM or STM instructions. This reduces code size, the number of instruction
fetches, and in the case of LDM, the number of register writeback cycles.

As an example to illustrate the issues involved in loop unrolling, consider calculating the following
over an array: x[i] = y[i] - y[i+1]. Below is a code fragment which performs this:

    LDR    R2, [R0] ; Preload y[i]
Loop
    LDR    R3, [R0, #4]!! ; Load y[i+1]
    SUB    R2, R2, R3 ; x[i] = y[i] - y[i+1]
    STR    R2, [R1], #4 ; Store x[i]
    MOV    R2, R3 ; y[i+1] is the next y[i]
    CMP    R0, R4 ; Finished ?
    BLT    Loop

First examine the number of execution cycles this will take on an ARM6 based processor, where:

IF stands for Instruction Fetch

WB stands for Register Write Back

R stands for Read

W stands for Write
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The loop will execute in the following cycles: 6 IF, 1 R, 1 WB, 1 W, and the branch costs an
additional 2 IF cycles. Therefore the total cycle count for processing a 100 element x[] array is:

799 IF (198 caused by branching), 101 R, 101 WB, 100 W (1198 cycles)
Code size: 7 instructions

The effects of unrolling the loop

1 Branch overhead cycles
In the above example there are 198 IF s caused by branching. Unrolling the loop can
clearly reduce this, and the table below shows how progressively unrolling the loop
gives reducing returns for the increase in code size. If code size is an issue of any
importance, unrolling any more than around 3 times is unlikely to pay off with regard
to branch overhead elimination:

2 Combining LDRs and STRs into LDM and STM
The number of LDRs or STRs which can be combined into a single LDM or STM is
restricted by the number of available registers. In this instance 10 registers is the most
which are likely to be usable. This would result in unrolling the loop 10 times for the
above example. Another case to consider is unrolling 3 times, as this seems to be a
good compromise for branch overhead reduction.

3 Other optimisations
Upon examining the unrolled code below, it can be seen that it is only necessary to
execute the MOV once per loop, thus saving another 2 IF cycles per loop for the 3 times
unrolled code, and another 9 IF cycles per loop for the 10 times unrolled code.

Times unrolled IFs caused by branching IF saving

2 98 100

3 66 134

4 48 150

5 38 160

10 18 180

100 0 198

 Table 5-3: Effects of loop unrolling on instruction fetches
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Unrolling the loop three times

Here is the code unrolled three times and then optimised as described above:

    LDR     R2, [R0], #4 ; Preload y[i]
Loop
    LDMIA   R0!, {R3-R5} ; Load y[i+1] to y[i+3]
    SUB     R2, R2, R3 ; x[i]   = y[i]   - y[i+1]
    SUB     R3, R3, R4 ; x[i+1] = y[i+1] - y[i+2]
    SUB     R4, R4, R5 ; x[i+2] = y[i+2] - y[i+3]
    STMIA   R1!, {R2-R4} ; Store x[i] to x[i+2]
    MOV     R2, R5 ; y[i+3] is the next y[i]
    CMP     R0, R6 ; Finished ?
    BLT     Loop

Analysing how this code executes for a y[] array of size 100, as described above for the unrolled
code produces the following results:

339 IF (66 caused by branching), 101 R, 34 WB, 100 W (574 cycles)
Code size: 9 instructions
Saving over unrolled code: 460 IF, 67 WB

Unrolling the loop ten times

Here is the code unrolled ten times and then optimised in the same way:

    LDR     R2, [R0], #4 ; Preload y[i]
Loop
    LDMIA   R0!, {R3-R12} ; Load y[i+1] to y[i+10]
    SUB     R2,  R2,  R3 ; x[i]   = y[i]   - y[i+1]
    SUB     R3,  R3,  R4 ; x[i+1] = y[i+1] - y[i+2]
    SUB     R4,  R4,  R5 ; x[i+2] = y[i+2] - y[i+3]
    SUB     R5,  R5,  R6 ; x[i+3] = y[i+3] - y[i+4]
    SUB     R6,  R6,  R7 ; x[i+4] = y[i+4] - y[i+5]
    SUB     R7,  R7,  R8 ; x[i+5] = y[i+5] - y[i+6]
    SUB     R8,  R8,  R9 ; x[i+6] = y[i+6] - y[i+7]
    SUB     R9,  R9,  R10 ; x[i+7] = y[i+7] - y[i+8]
    SUB     R10, R10, R11 ; x[i+8] = y[i+8] - y[i+9]
    SUB     R11, R11, R12 ; x[i+9] = y[i+9] - y[i+10]
    STMIA   R1!, {R2-R11} ; Store x[i] to x[i+9]
    MOV     R2,  R12 ; y[i+10] is the next y[i]
    CMP     R0,  R13 ; Finished ?
    BLT     Loop

Analysing how this code executes for a y[] array of size 100, produces the following results:

169 IF (18 caused by branching), 101 R, 10 WB, 100 W (380 cycles)
Code size: 16 instructions
Saving over unrolled code: 630 IF, 91 WB

Thus for this problem, unless the extra seven instructions make the code too large unrolling ten
times is likely to be the optimum solution.
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Where loop unrolling is not appropriate

Loop unrolling is not always a good idea, especially when the optimisation between one iteration
and the next is small. Consider the following loop which copies an area of memory:

Loop
    LDMIA  R0!,{R3-R14}
    STMIA  R1!,{R3-R14}
    CMP    R0, #LimitAddress
    BNE    Loop

This could be unrolled as follows:

Loop
    LDMIA  R0!,{R3-R14}
    STMIA  R1!,{R3-R14}
    LDMIA  R0!,{R3-R14}
    STMIA  R1!,{R3-R14}
    LDMIA  R0!,{R3-R14}
    STMIA  R1!,{R3-R14}
    LDMIA  R0!,{R3-R14}
    STMIA  R1!,{R3-R14}
    CMP    R0, #LimitAddress
    BLT    Loop

In this code the CMP and BNE will be executed only a quarter as often, but this will give only a
small saving. However, other issues should be taken into account:

• If in the above case the amount of data to be transferred was not a multiple of 48, then
this amount of loop unrolling will copy too much data. This may be catastrophic, or may
merely be inefficient.

• On a cached ARM processor, the larger the inner loop, the more likely it is that the loop
will not stay entirely in the cache. In this case, it is not obvious at what point the
performance gain due to unrolling is offset by the performance loss due to cache
misses, or the disadvantage of larger code.

• On an ARM processor with a write buffer, the loop unrolling in the above example is
unlikely to help. If the data being copied is not in the cache, then every LDMIA will be
stalled while the write buffer empties. Thus the time the CMP and BNE take is irrelevant,
as the processor will be stalled on the following LDMIA.

5.9.8 The floating-point emulator

Note This advice is not applicable to systems which use the ARM FPA co-processor nor to code using
the software floating-point library.

If the software-only floating-point emulator is being used, floating-point instructions should
placed sequentially, as the floating-point emulator will detect that the next instruction is also a
floating-point instruction, and will emulate it without leaving the undefined instruction code.
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5.9.9 Stalling the write buffer

On ARM processors with a write buffer, performance can be maximised by writing code which
avoids stalling due to the write buffer.  For a write buffer with 2 tags and 8 words such as the
ARM610, no three STR or STM instructions should be close together (as the third will be stalled
until the first has finished). Similarly no two STR or STM instructions which together store more
than 8 words should be close together, as the second will be stalled until there is space in the
write buffer.

Rearranging code so that the write buffer does not cause a stall in this way is often hard, but is
frequently worth the effort, and in any case it is always wise to be aware of this performance
factor.

5.9.10 16-bit data

Note The following applies to ARM Architecture 3 only.

If possible treat 16-bit data as 32-bit data. However, if this cannot be done, be aware that you can
make use of the barrel shifter and non-word-aligned LDRs in order to make working with 16-bit
data more efficient. See ➲5.5 Using 16-bit Data on the ARM on page 5-17 for a full discussion of
this topic.

5.9.11 8-bit data

When processing a sequence of byte-sized objects (eg. strings), the number of loads and stores
can be reduced if the data is loaded a word at a time and then processed a byte at a time by
extracting the bytes using the barrel shifter.

5.9.12 Making full use of cache lines

In order to help the cache on a cached ARM processor maintain a high hit rate for data, place
frequently accessed data values together so that they are loaded into the same cache line, rather
scattering them around memory, as this will require more cache lines to be loaded and kept in
the cache.

Commonly-used subroutines (especially short ones) will often run more quickly on a cached ARM
processor if the entry address is aligned so that it will be loaded into the first word of a cache line.
For example, on the ARM610 this means quad-word-aligned. This ensures that all four words of
the first line fetch will be subsequently used by instruction fetches before another line fetch is
caused by an instruction fetch.

This technique is most useful for large programs which do not cache well, as the number of times
the code will have to be fetched from memory is not likely to be significant if the program does
cache well.
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5.9.13 Minimising non-sequential cycles

Note This technique is only appropriate to uncached ARM processors, and is intended for memory
systems in which non-sequential memory accesses take longer than sequential memory
accesses.

Consider a system where the length of memory bursts is B. That is, if executing a long sequence
of data operations, the memory accesses which result are: one non-sequential memory cycle
followed by B – 1 sequential memory cycles. An example of this is DRAM controlled by the ARM
memory manager MEMC1a.

This sequence of memory accesses will be broken up by several ARM instruction types:

• Load or Store (single or multiple)

• Data Swap, Branch instructions

• SWIs

• Other instructions which modify the PC

By placing these instructions carefully, so that they break up the normal sequence of memory
cycles only where a non-sequential cycle was about to occur anyway, the number of sequential
cycles which are turned into longer non-sequential cycles can be minimised.

For a memory system which has memory bursts of length B, the optimal position for instructions
which break up the memory cycle sequence is 3 words before the next B-word boundary.

To help explain this, consider a memory system with memory bursts of length 4 (ie. quad-word
bursts), the optimal position for these break-up instructions is 16-12=4 bytes from a quad-word
offset.

The following code demonstrates this:

0x0000  Data Instr 1
0x0004  STR
0x0008  Data Instr 2
0x000C  Data Instr 3
0x0010  Data Instr 4

Taking into account the ARM instruction pipeline, the memory cycles executing this code will
produce:

Instruction Fetch 0x0000 (Non Seq)
Instruction Fetch 0x0004 (Seq)
Instruction Fetch 0x0008 (Seq)      + Execute Data Instr 1
Instruction Fetch 0x000C (Seq)      + Execute STR
Data Write               (Non Seq)
Instruction Fetch 0x0010 (Non Seq)  + Execute Data Instr 2
Instruction Fetch 0x0014 (Seq)      + Execute Data Instr 3

The instruction fetch after the Data Write cycle had to be non-sequential cycle, but since the
instruction fetch was of a quad-word-aligned address, it had to be non-sequential anyway.
Therefore, the STR is optimally positioned to avoid changing sequential instruction fetches into
non-sequential instruction fetches.
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Programming in C for the ARM

This chapter explains some techniques for optimising the output of the ARM C compiler, and
gives details of how to build code for deeply embedded applications.
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6.1 Introduction
This chapter:

• explains how you can maximise the efficiency of your applications by writing your C
source in such a way as to make the compiler generate fast and compact machine code

• gives advice on which command line switches to use with the C compiler to optimise the
resulting program, and shows you how to identify and eliminate unused sections of code

• describes how to compile and link C code for deeply embedded applications, using the
components of the standalone C runtime system

You can find related information in ➲Chapter 13, Benchmarking, Performance Analysis, and
Profiling.

A full description of the ARM C compiler is given in ➲The ARM Software Development Toolkit
Reference Manual: Chapter 2, C Compiler.
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6.2 Writing Efficient C for the ARM
The ARM C compiler can generate very good machine code for if you present it with the right
sort of input. In this section we explain:

• what the C compiler compiles well and why

• how to help the C compiler generate efficient machine code

Some of the rules presented here are quite general; some are quite specific to the ARM or the
ARM C compiler. It should be clear from context which rules are portable.

When writing C, there are a number of considerations which, if handled intelligently, will result
in more compact and efficient ARM code:

• The way functions are written, their size, and the way in which they call each other.
This is discussed in ➲6.2.1 Function design, below.

• The distribution of variables within functions, and their scoping.
This affects the register allocation of variables, and the frequency with which they are
spilled to memory: see ➲6.2.2 Register allocation and how to help it on page 6-6.

• The use of alternatives to the switch()  statement
Under certain circumstances, reductions in code size can be achieved by avoiding the
use of switch() , as discussed in ➲6.2.4 The switch() statement on page 6-8.

6.2.1 Function design

Function call overhead on the ARM is small, and is often in proportion to the work done by the
called function. Several features contribute to this:

• the minimal ARM call-return sequence is BL... MOV pc, lr , which is extremely
economical

• the multiple load and store instructions, STM and LDM, which reduce the cost of entry
to and exit from functions that must create a stack frame and/or save registers

• the ARM Procedure Call Standard, which has been carefully designed to allow two
very important types of function call to be optimised so that the entry and exit
overheads are minimal.

In general, it is a good idea to keep functions small, because this will help keep function calling
overheads low. This section describes the conditions under which function call overhead is
minimised, how small functions help the ARM C compiler, and explains how to assist the C
compiler when functions cannot be kept small.

Leaf functions

In 'typical' programs, about half of all function calls made are to leaf functions (a leaf function is
one that makes no calls from within its body).

Often, a leaf function is rather simple. On the ARM, if it is simple enough to compile using just
five registers (a1-a4  and ip ), it will carry no function entry or exit overhead. A surprising
proportion of useful leaf functions can be compiled within this constraint.
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Once registers have to be saved, it is efficient to save them using STM. In fact, the more you can
save at one go the better. In a leaf function, all the registers which need to be saved will be saved
by a single STMFD sp!,{regs,lr}  on entry and a matching LDMFD sp!,{regs,pc}  on exit.

In general, the cost of pushing some registers on entry and popping them on exit is very small
compared to the cost of the useful work done by a leaf function that is complicated enough to
need more than five registers.

Overall, you should expect a leaf function to carry virtually no function entry and exit overhead,
and at worst, a small overhead, most likely in proportion to the useful work done by it.

Veneer Functions (Simple Tail Continued Functions)

Historically, abstraction veneers have been relatively expensive. The kind of veneer function
which merely changes the types of its arguments, or which calls a low-level implementation with
an extra argument (say), has often cost much more in entry and exit overhead than it was worth
in useful work.

On the ARM, if a function ends with a call to another function, that call can be converted to a tail
continuation. In functions that do not need to save any registers, the effect can be dramatic.
Consider, for example:

extern void *__sys_alloc(unsigned type, unsigned n_words);
#define  NOTGCable   0x80000000
#define  NOTMovable  0x40000000

void *malloc(unsigned n_bytes)
{   return __sys_alloc(NOTGCable+NOTMovable, n_bytes/4);
}

From this input, armcc generates:

malloc
    MOV     a2,a1,LSR #2
    MOV     a1,#&c0000000
    B       |__sys_alloc|

(Note that your version of armcc may produce slightly different code.)

Here there is no function entry or exit overhead, and the function return has disappeared entirely
—return is direct from __sys_alloc  to malloc 's caller. In this case, the basic call-return cost
for the function pair has been reduced from:

 BL + BL + MOV pc,lr + MOV pc,lr

to:

 BL + B  +             MOV pc,lr

which works out as a saving of 25%.
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More complicated functions in which the only function calls are immediately before a return,
collapse equally well. An artificial example is:

extern int f1(int), int f2(int, int);

int f(int a, int b)
{   if (b == 0)
        return a;
    else if (b < 0)
        return f2(a, -b);
    else
        return f2(b, a);  /* argument order swapped */
}

armcc generates the following, extremely efficient code (the version of armcc supplied with your
release may produce slightly different output):

f   CMP     a2,#0
    MOVEQS  pc,lr
    RSBLT   a2,a2,#0
    BLT     f2
    MOV     a3,a1
    MOV     a1,a2
    MOV     a2,a3
    B       f2

Function arguments and argument passing

The final aspect of function design which influences low-level efficiency is argument passing.

Under the ARM Procedure Call Standard, up to four argument words can be passed to a
function in registers. Functions of up to four integral (not floating point) arguments are
particularly efficient and incur very little overhead beyond that required to compute the argument
expressions themselves (there may be a little register juggling in the called function, depending
on its complexity).

If more arguments are needed, then the 5th, 6th, etc., words will be passed on the stack. This
incurs the cost of an STR in the calling function and an LDR in the called function for each
argument word beyond four.

To minimise argument passing:

• Try to ensure that small functions take four or fewer arguments. These will compile
particularly well.

• If a function needs many arguments, try to ensure that it does a significant amount of
work on every call, so that the cost of passing arguments is amortised.

• Factor out read-mostly global control state and make this static. If it has to be passed
as an argument (to support multiple clients, for example), wrap it up in a struct and pass
a pointer to it.
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Such control state is:
• logically global to the compilation unit or program

• read-mostly, often read-only except in response to user input, and for almost
all functions cannot be changed by them or any function called from them

• referenced throughout the program, but relatively rarely in any given function.
Frequent references inside a function should be replaced by references to a
local, non-static copy.

Note Don't confuse control state with computational arguments, the values of which
differ on every call.

• Collect related data into structs. Decide whether to pass pointers or struct values based
on the use of each struct in the called function:

• If few fields are read or written, passing a pointer is best.

• The cost of passing a struct via the stack is typically a share in an LDM-STM pair
for each word of the struct. This can be better than passing a pointer if on
average each field is used at least once, and the register pressure in the
function is high enough to force a pointer to be repeatedly re-loaded.

As a general rule, you cannot lose much efficiency if you pass pointers to structs rather
than struct values. To gain efficiency by passing struct values rather than pointers
usually requires careful study of a function's machine code.

6.2.2 Register allocation and how to help it

It is well known that register allocation is critical to the efficiency of code compiled for RISC
processors. It is particularly critical for the ARM, which has only 16 registers rather than the
'traditional' 32.

The ARM C compiler has a highly efficient register allocator which operates on complete
functions and which tries to allocate the most frequently used variables to registers (taking loop
nesting into account). It produces very good results unless the demand for registers seriously
outstrips supply.

As code generation proceeds for a function, new variables are created for expression
temporaries. These are never reused in later expressions and cannot be spilled to memory.
Usually, this causes no problems. However, a particularly pathological expression could, in
principle, occupy most of the allocatable registers, forcing almost all program variables to
memory. Because the number of registers required to evaluate an expression is a logarithmic
function of the number terms in it, it takes an expression of more than 32 terms to threaten the
use of any variable register.

As a general rule, avoid very large expressions (more than 30 terms).
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6.2.3 Static and extern variables—minimising access costs

A variable in a register costs nothing to access: it is simply there, waiting to be used. A local
(auto) variable is addressed via the sp  register, which is always available for the purpose.

A static variable, on the other hand, can only be accessed after the static base for the
compilation unit has been loaded. So the first such use in a function always costs two LDR
instructions or an LDR and an STR. However, if there are many uses of static variables within a
function, there is a good chance that the static base will become a global common
subexpression (CSE) and that, overall, access to static variables will be no more expensive than
to auto variables on the stack.

Extern variables are fundamentally more expensive: each has its own base pointer. Thus each
access to an extern is likely to cost two LDR instructions or an LDR and an STR. It is much less
likely that a pointer to an extern will become a global CSE—and almost certain that there cannot
be several such CSEs—so if a function accesses lots of extern variables, it is bound to incur
significant access costs.

A further cost occurs when a function is called: the compiler has to assume—in the absence of
inter-procedural data flow analysis—that any non- const static or extern variable could be side-
effected by the call. This severely limits the scope across which the value of a static or extern
variable can be held in a register.

Sometimes a programmer can do better than a compiler could do, even a compiler that did
interprocedural data flow analysis. An example in C is given by the standard streams: stdin,
stdout and stderr. These are not pointers to const objects (the underlying FILE  structs are
modified by I/O operations), nor are they necessarily const pointers (they may be assignable in
some implementations). Nonetheless, a function can almost always safely slave a reference to
a stream in a local FILE *  variable.

It is a common practice to mimic the standard streams in applications. Consider, for example,
the shape of a typical non-leaf printing function:

extern FILE *out;                  extern FILE *out;
    /* the output stream */            /* the output stream */

void print_it(Thing *t)            void print_it(Thing *t)
{                                  {   FILE *f = out;
    fprintf(out, ...);                 fprintf(f, ...);
    print_1(t->first);                 print_1(t->first);
    fprintf(out, ...);                 fprintf(f, ...);
    print_2(t->second);                print_2(t->second);
    fprintf(out, ...);                 fprintf(f, ...);
    ...                                ...
}                                  }
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In the left-hand case, out  has to be re-computed or re-loaded after each call to print_...  (and
after each fprintf... ). In the right-hand case, f  can be held in a register throughout the
function (and probably will be).

Uniform application of this transformation to the disassembly module of the ARM C compiler
saved more than 5% of its code space.

In general, it is difficult and potentially dangerous to assert that no function you call (or any
functions they in turn call) can affect the value of any static or extern variables of which you
currently have local copies. However, the rewards can be considerable so it is usually worthwhile
to work out at the program design stage which global variables are slavable locally and which are
not. Trying to retrofit this improvement to existing code is usually hazardous, except in very
simple cases like the above.

6.2.4 The switch() statement

The switch()  statement can be used:

1 to transfer control to one of several destinations—effectively implementing an indexed
transfer of control

2 to generate a value related to the controlling expression—in effect computing an in-line
function of the controlling expression

In the first role, switch()  is hard to improve upon: the ARM C compiler does a good job of
deciding when to compile jump tables and when to compile trees of if-then-elses. It is rare for a
programmer to be able to improve upon this by writing if-then-else trees explicitly in the source.

In the second role, however, use of switch()  is often mistaken. You can probably do better by
being more aware of what is being computed and how.

The example below is a simplified version of a function taken from an early version of the ARM
C compiler’s disassembly module. Its purpose is to map a 4-bit field of an ARM instruction to a
2-character condition code mnemonic. We will use it to demonstrate:

• the cost of implementing an in-line function using switch()

• how to implement the same function more economically

Here is the source:

char *cond_of_instr(unsigned instr)
{   char *s;‘
    switch (instr & 0xf0000000)
    {
case 0x00000000:  s = "EQ";  break;
case 0x10000000:  s = "NE";  break;
     ...          ...        ...
case 0xF0000000:  s = "NV";  break;
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    }
    return s;
}

The compiler handles this code fragment well, generating 276 bytes of code and string literals.
But we could do better. If performance is not critical (and in disassembly it never is) we could
look up the code in a table, using something like:

char *cond_of_instr(unsigned instr)
{
    static struct {char name[3];  unsigned code;}
        conds[] = {
            "EQ", 0x00000000,
            "NE", 0x10000000,
            ....
            "NV", 0xf0000000,
        };
    int j;
    for (j = 0;  j < sizeof(conds)/sizeof(conds[0]);  ++j)
        if ((instr & 0xf0000000) == conds[j].code)
            return conds[j].name;
    return "";
}

This fragment compiles to 68 bytes of code and 128 bytes of table data. Already this is a 30%
improvement on the switch()  case, but this schema has other advantages: it copes well with
a random code-to-string mapping and, if the mapping is not random, admits further optimisation.
For example, if the code is stored in a byte (char) instead of an unsigned and the comparison is
with (instr >> 28)  rather than (instr & 0xF0000000) then only 60 bytes of code and 64
bytes of data are generated for a total of 124 bytes.

Another advantage for table lookup is that is possible to share the same table between a
disassembler and an assembler—the assembler looks up the mnemonic to obtain the code
value, rather than the code value to obtain the mnemonic. Where performance is not critical, the
symmetric property of lookup tables can sometimes be exploited to yield significant space
savings.

Finally, by exploiting the denseness of the indexing and the uniformity of the returned value it is
possible to do better again, both in size and performance, by direct indexing:

char *cond_of_instr(unsigned instr)
{
    return "\
EQ\0\0NE\0\0CC\0\0CS\0\0MI\0\0PL\0\0VS\0\0VC\0\0\
HI\0\0LS\0\0GE\0\0LT\0\0GT\0\0LE\0\0AL\0\0NV" + (instr >> 28)*4;
}
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This expression of the problem causes a miserly 16 bytes of code and 64 bytes of string literal to
be generated and is probably close to what an experienced assembly language programmer
would naturally write if asked to code this function. This was the solution finally adopted in the
ARM C compiler's disassembler module.

The uniform application of this transformation to the disassembler module of the ARM C compiler
saved between 5% and 10% of its code space.

You should therefore think hard before using switch()  to compute an in-line function, especially
if code size is an important consideration. Although switch()  compiles to high-performance
code, table lookup will often be smaller; where the function's domain is dense (or piecewise
dense) direct indexing into a table will often be both faster and smaller.
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6.3 Improving Code Size and Performance
Once you have optimised your source code, you may be able to obtain further performance
benefits by using the appropriate command line options when you come to compile and link your
program.

This section gives advice on which options to use and which to avoid, and explains how to
identify and remove unused functions from your C source.

6.3.1 Compiler options

The ARM C compiler has a number of command line options which control the way in which
code is generated. You can find a full list in ➲The ARM Software Development Toolkit
Reference Manual: Chapter 2, C Compiler. There are a number of compiler options which can
affect the size and/or the performance of generated code.

–g

-g  severely impacts the size and performance of generated code, since it turns off all compiler
optimisations. You should use it only when actually debugging your code, and it should never
be enabled for a release build.

–Ospace -Otime

These options are complementary:

-Ospace optimises for code size at the expense of performance

-Otime optimises for performance at the expense of size

They can be used together on different parts of a build. For example, -Otime  could be used on
time critical source files, with -Ospace  being used on the remainder.

If neither is specified, the compiler will attempt a balance between optimising for code size and
optimising for performance.

–zpj0

This disables crossjump optimisation. Crossjump optimisation is a space-saving optimisation
whereby common sections of code at the end of each element in a switch()  statement are
identified and commoned together, each occurrence of the code section being replaced with a
branch to the commoned code section.

However, this optimisation can lead to extra branches being executed which may decrease
performance, especially in interpreter-like applications which typically have large switch()
statements.

Use the -zpj0  option to disable this optimisation if you have a time-critical switch()
statement.

Alternatively, you can use:

#pragma nooptimise_crossjump
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before the function containing the switch()  and:

#pragma optimise_crossjump

after the function to re-enable the optimisation for the remainder of the functions in the file.

–apcs /nofp

By default, armcc generates code which uses a dedicated frame pointer register. This register
holds a pointer to the stack frame and is used by the generated code to access a function’s
arguments.

A dedicated frame pointer can make the code slightly larger. By specifying -apcs/nofp  on the
command line, you can force armcc to generate code which does not use a frame pointer, but
which accesses the function’s arguments via offsets from the stack pointer instead.

Note tcc never uses a frame pointer, so this option does not apply when compiling Thumb code.

–apcs /noswst

By default, armcc generates code which checks that the stack has not overflowed at the head of
each function. This code can contribute several percent to the code size, so it may be worthwhile
disabling this option with -apcs /noswst .

Be careful, however, to ensure that your program’s stack is not going to overflow, or that you have
an alternative stack checking mechanism such as an MMU-based check.

Note tcc has stack checking disabled by default.

–ARM7T

This option applies to armcc only.

By default, armcc generates code which is suitable for running on processors that implement
ARM Architecture 3 (eg. ARM6, ARM7). If you know that the code is going to be run on a
processor with halfword support, you can use the -ARM7T option to instruct the compiler to use
the ARM Architecture 4 halfword and signed byte instructions. This can result in significantly
improved code density and performance when accessing 16-bit data.

–pcc

The code generated by the compiler can be slightly larger when compiling with the -pcc  switch.
This is because of extra restrictions on the C language in the ANSI standard which the compiler
can take advantage of when compiling in ANSI mode.

Note If your code will compile in ANSI mode, do not use the -pcc  switch.
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6.3.2 Identifying and eliminating unused code sections

During program development it can happen that functions which were used at an earlier stage
of development are no longer called, and may therefore be eliminated.

The compiler and linker provide facilities to enable you to identify and eliminate such functions.
This section explains how these facilities work, taking as an example the unused.c  program in
directory examples/unused.

Stage 1—allocating a code segment to each function

The first stage in eliminating unused functions is to compile all your sources with the -zo  option.
This instructs the compiler to place each function in a separate code segment:

armcc -c -zo unused.c

Stage 2—removing unreferenced segments

The second stage is to instruct the linker to remove those segments which are unreferenced by
code in any other segment. This is done with the -Remove  command line option. You can also
specify -info unused  to get the linker to tell you which code segments are unused:

armlink -info unused -remove -o unused unused.o armlib.32l

Note If armlib.32l is not in the current directory, you will need to specify the full pathname.

In this instance, the linker will produce the following output:

ARM Linker: Unreferenced AREA unused.o(C$$code) (file unused.o)
omitted from output.

Stage 3—identifying unused functions

The linker has removed the unused function from the output file. If you wish to find the name of
this function so that you can remove it from your source, instruct the compiler to generate
assembler output with the -S  option.

armcc -c -zo -S unused.c

Edit the assembler output file unused.s  and search for the AREA name which was given in the
linker output (in this case C$$code ). This will give the name of the unused function, as shown
in the following extract from the file:

        AREA |C$$code|, CODE, READONLY
|x$codeseg| DATA

unused_function                      <<<< Name of unused function
        ADD      a1,pc,#L000008-.-8
        B        _printf
L000008
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6.4 Choosing a Division Implementation
In some applications it is important that a general-purpose divide executes as quickly as possible.
This section shows how to choose between different divide implementations for the ARM.

This section describes:

• how to select a divide implementation for the C library

• how to use the fast divide routines from the examples  directory

• a comparison of the speeds of the divide routines

6.4.1 Divide implementations in the C library

The C library offers a choice between two divide variants. This choice is basically a speed vs.
space tradeoff. The options are:

• unrolled

• small

In the C library build directory (eg. directory semi  for the semi-hosted library), the options  file
is used to select variants of the C library.

The supplied file contains the following:

memcpy = fast
divide = unrolled
stdfile_redirection = off
fp_type = module
stack = contiguous
backtrace = off
thumb = false

Unrolled divide

The default divide implementation 'unrolled' is fast, but occupies a total of 416 bytes
(55 instructions for the signed version plus 49 instructions for the unsigned version).  This is
an appropriate default for most Toolkit users who are interested in obtaining maximum
performance.

Small divide

Alternatively you can change this file to select 'small' divide which is more compact at
136 bytes(20 instructions for signed plus 14 instructions for unsigned) but somewhat slower,
as there is considerable looping overhead.

For a comparison of the speed difference between these two routines, see ➲Table 6-1: Signed
division example timings on page 6-15 (the speed of divide is data-dependent).
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Signed division example timings

Cycle times are F-cycles on a cached ARM6 series processor excluding call and return

If you have a specific requirement, you can modify the supplied routines to suit your application.
For instance, you could write an unrolled-2-times version or you could combine the signed and
unsigned versions to save more space.

6.4.2 Guaranteed-performance divide routines for real-time applications

The C library also contains two fully unwound divide routines. These have been carefully
implemented for maximum speed. They are useful when a guaranteed performance is required,
eg. for real-time feedback control routines or DSP. The long maximum division time of the
standard C library functions may make them unsuitable for some real-time applications.

The supplied routines implement signed division only; it would be possible to modify them for
unsigned division if required.  The routines are described by the standard header file
"stdlib.h " which contains the following declarations:

ARM real-time divide functions for guaranteed performance

typedef struct __sdiv32by16 { int quot, rem; } __sdiv32by16;
/* used int so that values return in regs, although 16-bit */
typedef struct __sdiv64by32 { int rem, quot; } __sdiv64by32;

__value_in_regs extern __sdiv32by16 __rt_sdiv32by16(
     int /*numer*/,
     short int /*denom*/);
/*
 * Signed div: (16-bit quot), (16-bit rem) = (32-bit) / (16-bit)
 */
__value_in_regs extern __sdiv64by32 __rt_sdiv64by32(
     int /*numer_h*/, unsigned int /*numer_l*/,
     int /*denom*/);
/*
 * Signed div: (32-bit quot), (32-bit rem) = (64-bit) / (32-bit)

Calc Unrolled cycles Rolled cycles

0/100 22 19

9/7 22 19

4096/2 70 136

1000000/3 99 240

1000000000/1 148 370

 Table 6-1: Signed division example timings
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These routines both have guaranteed performance:

108 cycles for __rt_sdiv64by32 (excluding call & return)
44 cycles for __rt_sdiv32by16

Currently the C compiler does not automatically use these routines, as the default routines have
early-termination which yields good performance for small values.

In order to use these new divide routines, you should explicitly call the relevant function.  The
__rt_div64by32  function is complicated by the fact that our C compiler does not currently
support 64-bit integers, as you have to split a 64-bit value between two 32-bit variables.

The following example program shows how to use these routines.  This is available as dspdiv.c
in directory examples/progc . Once the program has been compiled and linked, type the
following line to calculate 1000/3:

armsd dspdiv 1000 3

divdsp.c source code

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
  if (argc != 3)
    puts("needs 2 numeric args");
  else
  {
    __sdiv32by16 result;

    result = __rt_sdiv32by16(atoi(argv[1]), atoi(argv[2]));

    printf("quotient %d\n", result.quot);
    printf("remainder %d\n", result.rem);
  }
  return 0;
}

6.4.3 Summary

The standard division routine used by the C library can be selected by using the options file in
the C library build area. If the supplied variants are not suitable, you can write your own.

For real-time applications, the maximum division time must be as short as possible to ensure that
the calculation can complete in time.  In this case, the functions __rt_sdiv64by32  and
__rt_sdiv32by16  are useful.
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6.5 Using the C Library in Deeply Embedded Applications
This section discusses the Toolkit’s standalone runtime support system for C programming in
deeply embedded applications. In particular it explains:

• what rtstand.s  supports

• how to make use of it

• how to extend it by adding extra functionality from the C library

• the size of the standalone run time library

6.5.1 The standalone runtime system

The semi hosted ANSI C library provides all the standard C library facilities and is thus quite
large. This is acceptable when running under emulation with plenty of memory, or when running
on development hardware with access to a real debugging channel. However, in a deeply
embedded application many of its facilities—file access functions or time and date functions, for
example—may no longer be relevant, and its size may be prohibitive if memory is severely
limited.

For deeply embedded applications a minimal C runtime system is needed which takes up as
little memory as possible, is easily portable to the target hardware, and only supports those
functions that are required for such an application.

The ARM Software Development Toolkit comes with a minimal runtime system in source form.
The ’behind the scenes’ jobs which it performs are:

• setting up the initial stack and heap, and calling main()

• program termination—either automatic (returning from main() ) or forced (explicitly
calling __rt_exit )

• simple heap allocation (__rt_alloc )

• stack limit checking

• setjmp  and longjmp  support

• divide and remainder functions (calls to which can be generated by armcc)

• high level error handler support (__err_handler )

• optional floating point support, and a means to detect whether floating point support is
available (__rt_fpavailable )

The source code rtstand.s  documents the options which you may want to change for your
target. These are not covered here. The header file rtstand.h  documents the functions which
rtstand.s  provides to the C programmer.

A Thumb version of this file is located in thumb/rtstand.s .

Note No support is provided for outputting data down the debugging channel. This can be done, but
is specific to the target application. The example C programs described below use the ARM
Debug Monitor available under armsd to output messages using in-line SWIs. See ➲The ARM
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Software Development Toolkit Reference Manual: Chapter 17, Demon for full details of the
facilities provided by the Debug Monitor, and see also ➲12.4 Calling SWIs from your Application
on page 12-11 for more information about in-line SWIs.

6.5.2 Using the standalone runtime system

In this section the main features of the standalone runtime system are demonstrated by example
programs.

Before attempting any of the demonstrations below, proceed as follows:

1 Create a working directory, and make this your current directory.

2 Copy the contents of directory examples/clstand   into your working directory.

3 Copy the files fpe*.o  from directory cl/fpe  into your working directory.

You are now ready to experiment with the C standalone runtime system.

In the examples below, the following options are passed to armcc, armasm, and in the first case
armsd:

-li specifies that the target is a little endian ARM.

-apcs 3/32bit/hardfp specifies that the 32-bit variant of APCS 3 should be used. For
armasm this is used to set the built-in variable {CONFIG} to
32.
ARM FPA instructions are used for floating point operations.

These arguments can be changed if the target hardware differs from this configuration, or omitted
if your tools have been configured to have these options by default.

You may find it useful to study the sources to rtstand.s , errtest.c  and memtest.c  while
working through the example programs.

6.5.3 A simple program

Let us first compile the example program errtest.c , and assemble the standalone runtime
system. These can then be linked together to provide an executable image, errtest :

armcc -c errtest.c -li -apcs 3/32bit/hardfp
armasm rtstand.s -o rtstand.o -li -apcs 3/32bit
armlink -o errtest errtest.o rtstand.o

We can then execute this image using armsd as follows:

> armsd -li - size 512K errtest
A.R.M. Source-level Debugger, version 4.10 (A.R.M.) [Aug 26 1992]
ARMulator V1.20, 512 Kb RAM, MMU present, Demon 1.01, FPE, Little
endian.
Object program file errtest
armsd: go
(the floating point instruction-set is not available)
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Using integer arithmetic ...
10000 / 0X0000000A = 0X000003E8
10000 / 0X00000009 = 0X00000457
10000 / 0X00000008 = 0X000004E2
10000 / 0X00000007 = 0X00000594
10000 / 0X00000006 = 0X00000682
10000 / 0X00000005 = 0X000007D0
10000 / 0X00000004 = 0X000009C4
10000 / 0X00000003 = 0X00000D05
10000 / 0X00000002 = 0X00001388
10000 / 0X00000001 = 0X00002710
Program terminated normally at PC = 0x00008550
      0x00008550: 0xef000011 .... : >  swi     0x11
armsd: quit
Quitting
>

The > prompt is the Operating System prompt, and the armsd:  prompt is output by armsd to
indicate that user input is required.

Already several of the standalone runtime system's facilities have been demonstrated:

• the C stack and heap have been set up

• main()  has clearly been called

• the fact that floating point support is not available has been detected

• the integer division functions have been used by the compiler

• program termination was successful

6.5.4 Error handling

The same program, errtest , can also be used to demonstrate error handling, by recompiling
errtest.c  and predefining the DIVIDE_ERROR macro:

armcc -c errtest.c -li -apcs 3/32bit/hardfp -DDIVIDE_ERROR
armlink -o errtest errtest.o rtstand.o

Again, we can now execute this image under the armsd as follows:

> armsd -li -size 512K errtest
A.R.M. Source-level Debugger, version 4.10 (A.R.M.) [Aug 26 1992]
ARMulator V1.20, 512 Kb RAM, MMU present, Demon 1.01, FPE, Little
endian.
Object program file errtest
armsd: go
(the floating point instruction-set is not available)
Using integer arithmetic ...
10000 / 0X0000000A = 0X000003E8
10000 / 0X00000009 = 0X00000457
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10000 / 0X00000008 = 0X000004E2
10000 / 0X00000007 = 0X00000594
10000 / 0X00000006 = 0X00000682
10000 / 0X00000005 = 0X000007D0
10000 / 0X00000004 = 0X000009C4
10000 / 0X00000003 = 0X00000D05
10000 / 0X00000002 = 0X00001388
10000 / 0X00000001 = 0X00002710
10000 / 0X00000000 = errhandler called: code = 0X00000001: divide by 0
caller's pc = 0X00008304
returning...

run time error: divide by 0
program terminated

Program terminated normally at PC = 0x0000854c
      0x0000854c: 0xef000011 .... : >  swi     0x11
armsd: quit
Quitting
>

This time an integer division by zero has been detected by the standalone runtime system, which
called __err_handler() . __err_hander()  output the first set of error messages in the
above output. Control was then returned to the runtime system which output the second set of
error messages and terminated execution.

6.5.5 longjmp and setjmp

A further demonstration can be made using errtest  by predefining the macro LONGJMP to
perform a longjmp  out of __err_handler  back into the user program, thus catching and
dealing with the error. First recompile and link errtest :

armcc -c errtest.c -li -apcs 3/32bit hardfp -DDIVIDE_ERROR -DLONGJMP
armlink -o errtest errtest.o rtstand.o

Then rerun errtest  under armsd.  We expect the integer divide by zero to occur once again:

> armsd -li -size 512K errtest
A.R.M. Source-level Debugger, version 4.10 (A.R.M.) [Aug 26 1992]
ARMulator V1.20, 512 Kb RAM, MMU present, Demon 1.01, FPE, Little
endian.
Object program file errtest
armsd: go
(the floating point instruction-set is not available)
Using integer arithmetic ...
10000 / 0X0000000A = 0X000003E8
10000 / 0X00000009 = 0X00000457
10000 / 0X00000008 = 0X000004E2
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10000 / 0X00000007 = 0X00000594
10000 / 0X00000006 = 0X00000682
10000 / 0X00000005 = 0X000007D0
10000 / 0X00000004 = 0X000009C4
10000 / 0X00000003 = 0X00000D05
10000 / 0X00000002 = 0X00001388
10000 / 0X00000001 = 0X00002710
10000 / 0X00000000 = errhandler called: code = 0X00000001: divide by 0
caller's pc = 0X00008310
returning...

Returning from __err_handler() with errnum = 0X00000001

Program terminated normally at PC = 0x00008558
      0x00008558: 0xef000011 .... : >  swi     0x11
armsd: quit
Quitting
>

The runtime system detected the integer divide by zero, and as before __err_handler()  was
called, which produced the error messages. However, this time __err_handler()  used
longjmp  to return control to the program, rather than the runtime system.

6.5.6 Floating point support

Using errtest  we can also demonstrate floating point support. You should already have
copied the appropriate floating point emulator object code into your working directory. For the
configuration used in this example fpe_32l.o  is the correct object file.

However, in addition to this it is also necessary to link with an fpe stub, which we must compile
from the source given (fpestub.s ).

armasm fpestub.s -o fpestub.o -li -apcs 3/32bit
armlink -o errtest errtest.o rtstand.o fpestub.o fpe_32l.o -d

The resulting executable, errtest , can be run under armsd as before:

> armsd -li -size 512K errtest
A.R.M. Source-level Debugger, version 4.10 (A.R.M.) [Aug 26 1992]
ARMulator V1.20, 512 Kb RAM, MMU present, Demon 1.01, FPE, Little
endian.
Object program file errtest
armsd: go
(the floating point instruction-set is available)
Using Floating point, but casting to int ...
10000 / 0X0000000A = 0X000003E8
10000 / 0X00000009 = 0X00000457
10000 / 0X00000008 = 0X000004E2
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10000 / 0X00000007 = 0X00000594
10000 / 0X00000006 = 0X00000682
10000 / 0X00000005 = 0X000007D0
10000 / 0X00000004 = 0X000009C4
10000 / 0X00000003 = 0X00000D05
10000 / 0X00000002 = 0X00001388
10000 / 0X00000001 = 0X00002710
10000 / 0X00000000 = errhandler called: code = 0X80000202: Floating
Point
Exception : Divide By Zero

caller's pc = 0XE92DE000
returning...

Returning from __err_handler() with errnum = 0X80000202

Program terminated normally at PC = 0x00008558 (__rt_exit + 0x10)
+0010 0x00008558: 0xef000011 .... : >  swi     0x11
armsd: quit
Quitting
>

This time the floating point instruction set is found to be available, and when a floating point
division by zero is attempted, __err_handler  is called with the details of the floating point
divide by zero exception.

Note that if you have compiled errtest.c  other than as in ➲6.5.5 longjmp and setjmp on page
6-20, you will not see precisely this dialogue with armsd.
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6.5.7 Running out of heap

A second example program, memtest.c  demonstrates how the standalone runtime system
copes with allocating stack space, and also demonstrates the simple memory allocation function
__rt_alloc . Let us first compile this program so that it should repeatedly request more
memory, until there is none left:

armcc -li -apcs 3/32bit memtest.c -c
armlink -o memtest memtest.o rtstand.o

This can be run under armsd in the usual way:

> armsd -li -size 512K memtest
A.R.M. Source-level Debugger, version 4.10 (A.R.M.) [Aug 26 1992]
ARMulator V1.20, 512 Kb RAM, MMU present, Demon 1.01, FPE, Little
endian.
Object program file memtest
armsd: go
kernel memory management test
force stack to 4KB
request 0 words of heap - allocate 256 words at 0X000085A0
force stack to 8KB
..
force stack to 60KB
request 33211 words of heap - allocate 33211 words at 0X00049388
force stack to 64KB
request 49816 words of heap - allocate 5739 words at 0X00069A74
memory exhausted, 105376 words of heap, 64KB of stack
Program terminated normally at PC = 0x0000847c
      0x0000847c: 0xef000011 .... : >  swi     0x11
armsd: quit
Quitting
>

This demonstrates that allocating space on the stack is working correctly, and also that the
__rt_alloc()  routine is working as expected.  The program terminated because in the end
__rt_alloc()  could not allocate the requested amount of memory.

6.5.8 Stack overflow checking

memtest  can also be used to demonstrate stack overflow checking by recompiling with the
macro STACK_OVERFLOW defined. In this case the amount of stack required is increased until
there is not enough stack available, and stack overflow detection causes the program to be
aborted.

To recompile and link memtest.c , issue the following commands:

armcc -li -apcs 3/32bit memtest.c -c -DSTACK_OVERFLOW
armlink -o memtest memtest.o rtstand.o
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Running this program under armsd produces the following output:

> armsd -li -size 512K memtest
A.R.M. Source-level Debugger, version 4.10 (A.R.M.) [Aug 26 1992]
ARMulator V1.20, 512 Kb RAM, MMU present, Demon 1.01, FPE, Little
endian.
Object program file memtest
armsd: go
kernel memory management test
force stack to 4KB
...
force stack to 256KB
request 1296 words of heap - allocate 1296 words at 0X0000AE20
force stack to 512KB

run time error: stack overflow
program terminated

Program terminated normally at PC = 0x0000847c
      0x0000847c: 0xef000011 .... : >  swi     0x11
armsd: quit
Quitting
>

Clearly stack overflow checking did indeed catch the case where too much stack was required,
and caused the runtime system to terminate the program after giving an appropriate diagnostic.

6.5.9 Extending the standalone runtime system

For a many applications it may be desirable to have access to more of the standard C library than
is provided by the minimal runtime system. This section demonstrates how to take out a part of
the standard C library and plug it into the standalone runtime system.

The function which we will add to rtstand  is memmove(). Although this is small, and easily
extracted from the C library source, the same methodology can be applied to larger sections of
the C library, eg. the dynamic memory allocation system (malloc() , free() , etc.).

The source of the C library can be found in directory cl . The source for the memmove() function
is in cl/string.c . The extracted source for memmove() has been put into memmove.c, and
the compile time option _copywords  has been removed. The function declaration for
memmove() and a typedef for size_t  (extracted from include/stddef.h ) have been put into
examples/clstand/memmove.h .

Our module can be compiled using:

armcc -c memmove.c -li -apcs 3/32bit

The output, memmove.o can be linked with the user’s other object modules together with
rtstand.o  in the normal way (see previous examples in this section).
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The files rtstand1.s  and rtstand1.h  are modified version of rtstand.s  and rtstand.h
respectively. rtstand1.s  has the assembler code generated for __rt_memmore  included in
it. memmore.h has been merged with rtstand1.h  to produce rtstand1.h .

6.5.10 The size of the standalone runtime library

rtstand.s  has been separated into several code Areas. This allows armlink to detect any
unreferenced Areas and then eliminate them from the output image.

The table below shows the typical size of the Areas in rtstand.o :

If floating point support is definitely not required, then the EnsureNoFPSupport variable can be
set to {TRUE}, and some extra space will be saved. After making any modifications to
rtstand.s , the size of the various areas can be found using one of the following commands:

decaof -b rtstand.o
decaof -q rtstand.o

From the above table it is clear that for many applications the standalone runtime library will be
roughly 0.5Kb.

Area Size in
bytes

Functions

C$$data 4

C$$code$$__main 96 __main, __rt_exit

C$$code$$__rt_fpavailable 8 __rt_fpavailable

C$$code$$__rt_trap 128 __rt_trap

C$$code$$__rt_alloc 68 __rt_alloc

C$$code$$__rt_stkovf 76 __rt_stkovf_split_*

C$$code$$__jmp 100 longjmp, setjmp

C$$code$$__divide 256 __rt_sdiv, __rt_udiv,
__rt_udiv10,__rt_udiv10,
__rt_divtest

TOTAL 736

 Table 6-2: Typical Area sizes in rtstand.o
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Interfacing C and Assembly
Language

This chapter explains how to write programs that contain routines written both in C and
assembly language, and how to use the ARM Procedure Call Standard to pass arguments
and results between them.

7.1 Introduction 7-2

7.2 Using the ARM Procedure Call Standard 7-3

7.3 Passing and Returning Structures 7-9

7
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7.1 Introduction
In some situations you may find it necessary to mix C and assembly language in the same
program. For example, a program may require particular routines which are performance-critical,
and which must therefore be hand-coded in order to run at optimum speed.

The ARM Software Development Toolkit enables AOF object files to be generated from C and
assembly language source by the appropriate tools (compiler and assembler, respectively), and
then linked with one or more libraries to produce an executable file, as shown below:

 Figure 7-1: Mixing C and assembly language

Irrespective of the language in which they are written, routines that make cross-calls to other
modules need to observe a common convention of argument and result passing. For the ARM,
this convention is called the ARM Procedure Call Standard, or APCS. In this chapter, we
introduce the APCS, and discuss its role in ARM assembly language for passing and returning
values and pointers to structures for use by C routines.

ASM source module

executable

armasm

armlink

.o
.s

C library

armcc -c
.c

.oC source module(s)
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7.2 Using the ARM Procedure Call Standard
The ARM Procedure Call Standard, or APCS, is a set of rules which govern calls between
functions in separately compiled or assembled code fragments.

The APCS defines:

• constraints on the use of registers

• stack conventions

• the format of a stack backtrace data structure

• argument passing and result return

• support for the ARM shared library mechanism

Code which is produced by compilers is expected to adhere to the APCS at all times. Such code
is said to be strictly conforming.

Handwritten code is expected to adhere to the APCS when making calls to externally visible
functions. Such code is said to be conforming.

The ARM Procedure Call Standard comprises a family of variants. Each variant is exclusive, so
that code which conforms to one cannot be used with code that conforms to another. Your choice
of variant will depend on whether:

• the Program Counter is 32-bit or 26-bit

• stack limit checking is explicit (performed by code) or implicit (performed by memory
management hardware)

• floating point values are passed in floating point registers

• code is reentrant or non-reentrant

For the full specification of the APCS, see ➲The ARM Software Development Toolkit Reference
Manual: Chapter 19, ARM Procedure Call Standard.
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7.2.1 Register names and usage

The following table summarises the names and uses allocated to the ARM and Floating Point
registers under the APCS (note that not all ARM systems support floating point).

Simplistically:

a1-a4 , f0-f3 are used to pass arguments to functions. a1  is also used to return
integer results, and f0  to return FP results. These registers can be
corrupted by a called function.

v1-v5 , f4-f7 are used as register variables. They must be preserved by called
functions.

Register
Number

APCS
Name

APCS Role

0
1
2
3

a1
a2
a3
a4

argument 1 / integer result / scratch register
argument 2 / scratch register
argument 3 / scratch register
argument 4 / scratch register

4
5
6
7
8

v1
v2
v3
v4
v5

register variable
register variable
register variable
register variable
register variable

9
10
11
12
13
14
15

sb/v6
sl/v7
fp
ip
sp
lr
pc

static base / register variable
stack limit / stack chunk handle / reg. variable
frame pointer
scratch register / new-sb in inter-link-unit calls
lower end of current stack frame
link address / scratch register
program counter

f0
f1
f2
f3

0
1
2
3

FP argument 1 / FP result / FP scratch register
FP argument 2 / FP scratch register
FP argument 3 / FP scratch register
FP argument 4 / FP scratch register

 Table 7-1: ACPS Registers
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sb, sl, fp, ip, sp, lr, pc

have a dedicated role in some APCS variants some of the time, ie.
there are times when some of these registers can be used for other
purposes even when strictly conforming to the APCS. In some
variants of the APCS sb  and sl  are available as additional variable
registers v6  and v7  respectively.

As stated previously, hand-coded assembler routines need not conform strictly to the APCS, but
need only conform. This means that all registers which do not need to be used in their APCS
role by an assembler routine (eg. fp ) can be used as working registers provided that their value
on entry is restored before returning.

7.2.2 An example of APCS register usage: 64-bit integer addition

This example illustrates how to code a small function in ARM assembly language, such that it
can be used from C modules.

First, however, we will write the function in C, and examine the compiler’s output.

The function will perform a 64-bit integer addition using a two-word data structure to store each
64-bit operand. In assembler, the obvious way to code the addition of double-length integers
would be to use the Carry flag from the low word addition in the high word addition. However, in
C there is no way of specifying the Carry flag, so we have to use a workaround, as follows:

void add_64(int64 *dest, int64 *src1, int64 *src2)
{ unsigned hibit1=src1->lo >> 31, hibit2=src2->lo >> 31, hibit3;
  dest->lo=src1->lo + src2->lo;
  hibit3=dest->lo >> 31;
  dest->hi=src1->hi + src2->hi +
           ((hibit1 & hibit2) || (hibit1!= hibit3));
  return;
}

The highest bits of the low words in the two operands are calculated (shifting them into bit 0,
while clearing the rest of the register). These are then used to determine the value of the carry
bit (in the same way as the ARM itself does).

Examining the compiler's output

If the addition routine were to be used a great deal, a poor implementation such as this would
probably be inadequate. To see just how good or bad it is, let us look at the actual code which
the compiler produces.

Copy file add64_1.c  from directory examples/candasm  to your current working directory
and compile it to ARM assembly language source as follows:

armcc -li -apcs 3/32bit -S add64_1.c
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The -S  flag tells the compiler to produce ARM assembly language source (suitable for armasm)
instead of object code. The -li  flag tells it to compile for little-endian memory and the -apcs
option specifies the 32-bit version of APCS 3. You can omit these options if your compiler is
configured to have them as defaults.

Looking at the output file, add64_1.s , we can see that this is indeed an inefficient
implementation.

add_64
        STMDB    sp!,{v1,lr}
        LDR      v1,[a2,#0]
        MOV      a4,v1,LSR #31
        LDR      ip,[a3,#0]
        MOV      lr,ip,LSR #31
        ADD      ip,v1,ip
        STR      ip,[a1,#0]
        MOV      ip,ip,LSR #31
        LDR      a2,[a2,#4]
        LDR      a3,[a3,#4]
        ADD      a2,a2,a3
        TST      a4,lr
        TEQEQ    a4,ip
        MOVNE    a3,#1
        MOVEQ    a3,#0
        ADD      a2,a2,a3
        STR      a2,[a1,#4]!
        LDMIA    sp!,{v1,pc}

Modifying the compiler's output

Let us return to our original intention of coding the 64-bit integer addition using the Carry flag.
Since use of the Carry flag cannot be specified in C, we must get the compiler to produce almost
the right code, and then modify it by hand. Let us start with (incorrect) code which does not
perform the carry addition:

void add_64(int64 *dest, int64 *src1, int64 *src2)
{ dest->lo=src1->lo + src2->lo;
  dest->hi=src1->hi + src2->hi;
  return;
}

You will find this in file examples/candasm/add64_2.c.  Copy it to your current working
directory, and then compile it to assembler source with the command:

armcc -li -apcs 3/32bit -S add64_2.c

This produces source in add64_2.s , which will include something like the following code
(though yours may be slightly different, depending on the version of armcc supplied with your
release):
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add_64
    LDR    a4,[a2,#0]
    LDR    ip,[a3,#0]
    ADD    a4,a4,ip
    STR    a4,[a1,#0]
    LDR    a2,[a2,#4]
    LDR    a3,[a3,#4]
    ADD    a2,a2,a3
    STR    a2,[a1,#4]
    MOV    pc,lr

Comparing this to the C source we can see that the first ADD instruction produces the low order
word, and the second produces the high order word. All we need to do to get the carry from the
low to high word right is change the first ADD to ADDS (add and set flags), and the second ADD
to an ADC (add with carry). This modified code is available in directory examples/candasm   as
add64_3.s .

What effect did the APCS have?

The most obvious way in which the APCS has affected the above code is that the registers have
all been given APCS names.

a1  holds a pointer to the destination structure, while a2  and a3  hold pointers to the operand
structures. Both a4  and ip  are used as temporary registers which are not preserved. The
conditions under which ip  can be corrupted will be discussed later in this chapter.

This is a simple leaf function, which uses few temporary registers, so none are saved to the
stack and restored on exit. Therefore a simple MOV pc,lr  can be used to return.

If we wished to return a result—perhaps the carry out from the addition—this would be loaded
into a1  prior to exit. We could do this by changing the second ADD to ADCS (add with carry and
set flags), and adding the following instructions to load a1  with 1 or 0 depending on the carry
out from the high order addition.

    MOV    a1, #0
    ADC    a1, a1, #0

Back to the first implementation

Although the first C implementation is inefficient, it shows us more about the APCS than the
hand-modified version.

We have already seen a4  and ip  being used as non-preserved temporary registers. However,
here v1  and lr  are also used as temporary registers. v1  is preserved by being stored (together
with lr ) on entry. lr  is corrupted, but a copy is saved onto the stack and then reloaded into pc
when v1  is restored.

Thus there is still only a single exit instruction, but now it is:

    LDMIA  sp!,{v1,pc}
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7.2.3  A more detailed look at APCS register usage

We stated initially that sb , sl , fp , ip , sp  and lr  are dedicated registers, but the example
showed ip and lr  being used as temporary registers. Indeed, there are times when these
registers are not used for their APCS roles. It will be useful for you to know about these situations,
so that you can write efficient (but safe) code which uses as many of the registers as possible
and so avoids unnecessary saving and restoring of registers.

ip is used only during function calls. It is conventionally used as a local code
generation temporary register. At other times it can be used as a corruptible
temporary register.

lr holds the address to which control must return on function exit. It can be (and
often is) used as a temporary register after pushing its contents onto the stack.
This value can then be reloaded straight into the PC.

sp is the stack pointer, which is always valid in strictly conforming code, but need
only be preserved in handwritten code. Note, however, that if any use of the
stack is to be made by handwritten code, sp  must be available.

sl is the stack limit register. If stack limit checking is explicit (ie. is performed by
code when stack pushes occur, rather than by memory management hardware
causing a trap on stack overflow), sl  must be valid whenever sp  is valid. If
stack checking is implicit sl  is instead treated as v7 , an additional register
variable (which must be preserved by called functions).

fp is the frame pointer register. It contains either zero, or a pointer to the most
recently created stack backtrace data structure. As with the stack pointer this
must be preserved, but in handwritten code does not need to be available at
every instant. However It should be valid whenever any strictly conforming
functions are called.

sb is the static base register. If the variant of the APCS in use is reentrant, this
register is used to access an array of static data pointers to allow code to
access data reentrantly. However, if the variant being used is not reentrant, sb
is instead available as an additional register variable, v6  (which must be
preserved by called functions).

sp , sl , fp  and sb  must all be preserved on function exit for APCS conforming code.

For more information refer to ➲The ARM Software Development Toolkit Reference Manual:
Chapter 19, ARM Procedure Call Standard.
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7.3 Passing and Returning Structures
This section covers:

• the default method for passing structures to and from functions

• cases in which this is automatically optimised

• telling the compiler to return a struct value in several registers

7.3.1 The default method

Unless special conditions apply (detailed in following sections), C structures are passed in
registers which if necessary overflow onto the stack and are returned via a pointer to the
memory location of the result

For struct-valued functions, a pointer to the location where the struct result is to be placed is
passed in a1(the first argument register). The first argument is then passed in a2 , the second
in a3 , and so on.

It is as if:

struct s f(int x)

were compiled as:

void f(struct s *result, int x)

Consider the following code:

typedef struct two_ch_struct
{ char ch1;
  char ch2;
} two_ch;

two_ch max( two_ch a, two_ch b )
{ return (a.ch1>b.ch1) ? a : b;
}

This is available in the directory examples/candasm  as two_ch.c.  It can be compiled to
produce assembly language source using:

armcc -S two_ch.c -li -apcs 3/32bit

where -li  and -apcs 3/32bit  can be omitted if armcc has been configured appropriately.

Here is the code which armcc produced (the version of armcc supplied with your release may
produce slightly different output to that listed here):
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max
    MOV    ip,sp
    STMDB  sp!,{a1-a3,fp,ip,lr,pc}
    SUB    fp,ip,#4
    LDRB   a3,[fp,#-&14]
    LDRB   a2,[fp,#-&10]
    CMP    a3,a2
    SUBLE  a2,fp,#&10
    SUBGT  a2,fp,#&14
    LDR    a2,[a2,#0]
    STR    a2,[a1,#0]
    LDMDB  fp,{fp,sp,pc}

The STMDB instruction saves the arguments onto the stack, together with the frame pointer, stack
pointer, link register and current pc value (this sequence of values is the stack backtrace data
structure).

a2  and a3  are then used as temporary registers to hold the required part of the structures
passed, and a1  is a pointer to an area in memory in which the resulting struct is placed—all as
expected.

7.3.2 Returning integer-like structures

The ARM Procedure Call Standard specifies different rules for returning integer-like structures.
An integer-like structure:

• is no larger than one word in size

• exclusively has sub-fields whose byte offset is 0

The following structures are integer-like:

struct

{ unsigned a:8, b:8, c:8, d:8;
}

union polymorphic_ptr
{ struct A *a;
  struct B *b;
  int      *i;
}

whereas the structure used in the previous example is not:

struct { char ch1, ch2; }

An integer-like structure has its contents returned in al . This means that a1  is not needed to pass
a pointer to a result struct in memory, and is instead used to pass the first argument.
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For example, consider the following code:

typedef struct half_words_struct
{ unsigned field1:16;
  unsigned field2:16;
} half_words;

half_words max( half_words a, half_words b )

{ half_words x;
  x= (a.field1>b.field1) ? a : b;
  return x;
}

Arguments a and b will be passed in registers a1  and a2 , and since half_word_struct  is
integer-like we expect a1  to return the result structure directly, rather than a pointer to it.

The above code is available in directory examples/candasm  as half_str.c . It can be
compiled to produce assembly language source using:

armcc -S half_str.c -li -apcs 3/32bit

where -li  and -apcs 3/32bit  can be omitted if armcc has been configured appropriately.
Here is the code which armcc produced (your version may produce slightly different output to
that listed here):

max
    MOV    a3,a1,LSL #16
    MOV    a3,a3,LSR #16
    MOV    a4,a2,LSL #16
    MOV    a4,a4,LSR #16
    CMP    a3,a4
    MOVLE  a1,a2
    MOV    pc,lr

From this we can see that the contents of the half_words  structure is returned directly in a1
as expected.

7.3.3 Returning non integer-like structures in registers

There are occasions when a function needs to return more than one value. The normal way to
achieve this is to define a structure which holds all the values to be returned, and return this.

This will result in a pointer to the structure being passed in a1 , which will then be dereferenced
to store the values returned.

For some applications in which such a function is time-critical, the overhead involved in
“wrapping” and then “unwrapping” the structure can be significant. However, there is a way to
tell the compiler that a structure should be returned in the argument registers a1  - a4 . Clearly
this is only useful for returning structures that are no larger than four words.

The way to tell the compiler to return a structure in the argument registers is to use the keyword
__value_in_regs .
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Example: returning a 64-bit Result

To illustrate how to use __value_in_regs , let us consider writing a function which multiplies
two 32-bit integers together and returns a 64-bit result.

The way this function must work is to split the two 32-bit numbers (a, b) into high and low 16-bit
parts (a_hi , a_lo , b_hi , b_lo ). The four multiplications a_lo  * b_lo , a_hi  * b_lo , a_lo  *
b_hi , a_hi  * b_lo  must be performed and the results added together, taking care to deal with
carry correctly.

Since the problem involves manipulation of the Carry flag, writing this function in C will not
produce optimal code (see ➲7.2.2 An example of APCS register usage: 64-bit integer addition
on page 7-5). We will therefore have to code the function in ARM assembly language. The
following performs the algorithm just described:

; On entry a1 and a2 contain the 32-bit integers to be multiplied (a, b)
; On exit a1 and a2 contain the result (a1 bits 0-31, a2 bits 32-63)

mul64
    MOV    ip, a1, LSR #16        ; ip = a_hi
    MOV    a4, a2, LSR #16        ; a4 = b_hi
    BIC    a1, a1, ip, LSL #16    ; a1 = a_lo
    BIC    a2, a2, a4, LSL #16    ; a2 = b_lo
    MUL    a3, a1, a2             ; a3 = a_lo * b_lo        (m_lo)
    MUL    a2, ip, a2             ; a2 = a_hi * b_lo        (m_mid1)
    MUL    a1, a4, a1             ; a1 = a_lo * b_hi        (m_mid2)
    MUL    a4, ip, a4             ; a4 = a_hi * b_hi        (m_hi)
    ADDS   ip, a2, a1             ; ip = m_mid1 + m_mid2    (m_mid)
    ADDCS  a4, a4, #&10000        ; a4 = m_hi + carry       (m_hi')
    ADDS   a1, a3, ip, LSL #16    ; a1 = m_lo + (m_mid<<16)
    ADC    a2, a4, ip, LSR #16    ; a2 = m_hi' + (m_mid>>16) + carry
    MOV    pc, lr

This code is fine for use with assembly language modules, but in order to use it from C we need
to tell the compiler that this routine returns its 64-bit result in registers. This can be done by
making the following declarations in a header file:

typedef struct int64_struct

{ unsigned int lo;
  unsigned int hi;
} int64;

__value_in_regs extern int64 mul64(unsigned a, unsigned b);

The above assembly language code and declarations, together with a test program, are all in
directory examples/candasm  as the files mul64.s , mul64.h , int64.h  and multest.c . To
compile, assemble and link these to produce an executable image suitable for armsd, first copy
them to your current directory, and then execute the following commands:
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armasm mul64.s -o mul64.o -li
armcc -c multest.c -li -apcs 3/32bit
armlink mul64.o multest.o libpath /armlib.32l -o multest

where libpath  is the directory in which the semi-hosted C libraries reside (eg. the lib
directory of the ARM Software Tools Release).

Note that -li  and -apcs 3/32bit  can be omitted if armcc and armasm (and armsd, below)
have been configured appropriately.

multest  can then be run under armsd as follows:

> armsd -li multest
A.R.M. Source-level Debugger, version 4.10 (A.R.M.) [Aug 26 1992]
ARMulator V1.20, 512 Kb RAM, MMU present, Demon 1.01, FPE, Little
endian.
Object program file multest
armsd: go
Enter two unsigned 32-bit numbers in hex eg.(100 FF43D)
12345678 10000001
Least significant word of result is 92345678
Most  significant word of result is  1234567
Program terminated normally at PC = 0x00008418
      0x00008418: 0xef000011 .... : >  swi     0x11
armsd: quit
Quitting
>

To convince yourself that __value_in_regs  is being used, try removing it from mul64.h ,
recompile multest.c , relink multest , and re-run armsd. This time the answers returned will
be incorrect, since the result is no longer being returned in registers, but in a block of memory
instead (ie. the code now has a bug).
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Advanced Linking

This chapter explains how to generate programs which use overlays, and the linker’s scatter
loading facility, and describes the use of the ARM shared libraries.

8.1 Using Overlays 8-2

8.2 ARM Shared Libraries 8-8
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8.1 Using Overlays
The ARM linker has two different methods of generating applications that use overlays. These
are selectable from the command line using the -OVERLAY and -SCATTER linker options. Note
that these options are mutually exclusive.

-OVERLAY causes the linker to compute the size of the overlay segments automatically,
and to abut distinct memory partitions.

The linker generates a set of files in a directory specified by the -OUTPUT
option. Overlay segments to be forced to specific memory addresses in a
simple form of scatter loading. However, PCIT entries will be generated even
for non-clashing overlays, producing extra overheads in terms of code size and
execution speed. For this reason the -OVERLAY option is not recommended
for generating scatter loaded images, and -SCATTER should be used instead.

-SCATTER instructs the linker to create either an extended AIF file or a directory of files.
The overlays will be placed into load regions and the linker will add information
to the executable to allow the overlay manager to copy the overlay segments
from the correct load region. The directory of output files will be suitable for use
in a ROM-based system.

All the overlay segments must have an execution address specified in the
scatter load description file. The linker will not place overlay segments
automatically. The scatter loading scheme does not support dynamic overlays.
With scatter loading, PCIT information is not generated for execution regions
not marked as overlays, so these regions do not have any overlay overhead
associated with them.

8.1.1 Segment clash detection

In both cases, clash detection relies on the name of an overlay segment rather than its base
address and size. The linker will attempt to find an underscore character ('_') in the name, and
on finding one will take the preceding string to be the partition name. Two segments are deemed
to clash if they have the same partition names: for example, seg_test  and seg_eval  will clash
as the partition name is seg  in both cases, while the names alt_reset  and pri_reset  will
not.

Note The overlay system’s underlying mechanisms such as the PCIT rely on the processor executing
in ARM state. Therefore Thumb-aware processors cannot call overlays while operating in Thumb
state.
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8.1.2 The overlay manager

The overlay manager for scatter loaded overlays and the conventional overlay scheme are very
similar. Indeed, only the code for loading a segment need be different. For a scatter loaded
application, the code will be of the form:

Retry
;
; Use the overlay table generated by the linker. The table format
: is as follows:
; The first word in the table is contains the number of entries in
; the table.
; There follows that number of table entries. Each entry is 3 words
: long:
; Word 1 Length of the segment in bytes.
; Word 2 Execution address of the PCIT section address. This is
; compared against the value in R8. If the values are
; equal we have found the entry for the called overlay.
; Word 3  Load address of the segment.
; Segment names are not used.
;

IMPORT  |Root$$OverlayTable|
LDR     r0,=|Root$$OverlayTable|
LDR     r1,[r0],#4

search_loop
CMP     r1,#0
MOVEQ   r0,#2 ; The end the table has been reached
BEQ     SevereErrorHandler ; and the segment has not been found

LDMIA   r0!,{r2,r3,r4}
CMP     r8,r3
SUBNE   r1,r1,#1
BNE     search_loop

LDR     r0,[ r8, #PCITSect_Base ]
MOV     r1,r4
MOV     r4,r2
BL      MemCopy

where:

• Root$$OverlayTable  is a symbol bound to the address of the linker generated
overlay information table.

• SevereErrorHandler  is a routine called when the overlay manager detects an error.

• MemCopy is a system-specific memory copy routine where r0 points to the destination
area, r1 points to the source area, and r2 is the block size in bytes.
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In the scatter loaded example supplied with the toolkit (in the scatter.s  file in directory
examples/scatter ), the overlay manager initialisation routine has no work to do, as all
memory copying and initialisation is done as part of the scatter loaded image initialisation.

When using the -OVERLAY option, the overlay manager code would be:

Retry
;
;       Call a routine to load the overlay segment.
;       First parameter is the length of the segment name.
;       The second parameter is the address of the segment name
;       The third parameter is the base address of the segment.
;       The routine returns the segment length in r0.
;
        MOV     r0,#12
        ADD     r1, r8, #PCITSect_Name
        LDR     r2, [ r8, #PCITSect_Base]
        BL      LoadOverlaySegment

        TEQ     r0,#0
        MOVEQ   r0,#2
        BEQ     SevereErrorHandler

LoadOverlaySegment  loads the named segment. In a nonembedded environment, this routine
would be implemented to load the segment from a file somewhere on the file system. This is the
case in the overlmgrs.s  file in directory examples/overlay . In an embedded environment
where the code is in some form of nonvolatile memory, the overlay segments would need to be
packaged up with sufficient information for a LoadOverlaySegment  implementation to load the
segments correctly.

For example, the overlay could be put into a pseudo file system in nonvolatile memory and the
segments accessed by name. This 'packaging up' operation would need to be carried out after
linking. The ARM software development toolkit does not do this, as it will be highly specific to the
application’s run time environment. In the overlay example supplied with the toolkit, the overlay
manager initialisation routine is used to copy read/write data from the load address to the
execution address.

8.1.3 Scatter loading initialisation

The linker generates sufficient information for an initialisation routine to be written which will
initialise all the execution regions that have base addresses not equal to their load addresses.

The linker will generate symbols specifying the length, execution addresses and load addresses.
A simple initialisation routine is listed below. This uses two tables to control the initialisation
process. The first table lists the lengths and execution addresses of zero initialised data. The
second specifies the lengths, load and execution addresses of the execution regions that need
to be copied. Both tables are terminated by a word containing zero.
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       AREA InitApp, CODE , READONLY
       EXPORT InitialiseApp
InitialiseApp
       ADR    r0,ziTable
       MOV    R3,#0
ziLoop
       LDR    r1,[r0],#4
       CMP    r1,#0
       BEQ    initLoop
       LDR    r2,[r0],#4
ziFillLoop
       STR    r3,[r2],#4
       SUBS   r1,r1,#4
       BNE    ziFillLoop
       B      ziLoop

initLoop
       LDR    r1,[r0],#4
       CMP    r1,#0
       MOVEQ  pc,lr
       LDMIA  r0!,{r2,r3}
       CMP    r1,#16
       BLT    copyWords
copy4Words
       LDMIA  r3!,{r4,r5,r6,r7}
       STMIA  r2!,{r4,r5,r6,r7}
       SUBS   r1,r1,#16
       BGT    copy4Words
       BEQ    initLoop
copyWords
       SUBS r1,r1,#8
       LDMIAGE r3!,{r4,r5}
       STMIAGE r2!,{r4,r5}
       BEQ   initLoop

       LDR    r4,[r3]
       STR    r4,[r2]

       B      initLoop

;
; A couple of MACROS to make the table entries easier to add.
; The execname parameter is the name of execution to initialise or copy.
;
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       MACRO
       ZIEntry  $execname
       LCLS   lensym
       LCLS   basesym
       LCLS   namecp
namecp SETS   "$execname"
lensym SETS   "|Image$$":CC:namecp:CC:"$$ZI$$Length|"
basesym SETS  "|Image$$":CC:namecp:CC:"$$ZI$$Base|"
       IMPORT $lensym
       IMPORT $basesym
       DCD    $lensym
       DCD    $basesym
       MEND

       MACRO
       InitEntry  $execname
       LCLS   lensym
       LCLS   basesym
       LCLS   loadsym
       LCLS   namecp
namecp SETS   "$execname"
lensym SETS   "|Image$$":CC:namecp:CC:"$$Length|"
basesym SETS   "|Image$$":CC:namecp:CC:"$$Base|"
loadsym SETS   "|Load$$":CC:namecp:CC:"$$Base|"
       IMPORT $lensym
       IMPORT $basesym
       IMPORT $loadsym
       DCD    $lensym
       DCD    $basesym
       DCD    $loadsym
       MEND
ziTable
       ZIEntry root    ; Zero initialised data from the root read/write
                     ; region
       DCD    0

InitTable
       InitEntry root ; Initialised data from the root read/write region
       DCD    0
       END
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Each execution region that needs zero-initialised data to be initialised must have an entry in
ziTable  of the form:

       ZIEntry name

where name is the name of the execution region. Similarly, each execution region that needs to
be copied must have an entry in InitTable  of the form:

       InitEntry name

The InitialiseApp  routine is not called automatically at startup: it must be called explicitly
before the application main program is entered.

This code can be found in the initapp.s  file in directory examples/scatter .
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8.2 ARM Shared Libraries
This section explains:

• what an ARM shared library is

• how the shared library mechanism works

• how to instruct the ARM linker to make a shared library

• how to make a toy shared library from the string section of the ANSI C library

8.2.1 About ARM shared libraries

ARM shared libraries support the sharing of utility, service or library functions between several
concurrently executing client applications in a single address space. Such shared code is
necessarily reentrant.

If a function is reentrant, each of its concurrently active clients must have a separate copy of the
data it manipulates for them. The data cannot be associated with the code itself unless the data
is read-only. In the ARM shared library architecture, a dedicated register called sb  is used to
address (indirectly) the static data associated with a client.

An ARM shared library is read only, reentrant and usually position-independent. A shared library
made exclusively from object code compiled by the ARM C compiler will have all three of these
attributes. Library components implemented in ARM assembly Language do not need to be
reentrant and position-independent, but in practice only position independence is inessential.

A library with all three of these attributes in an ideal candidate for packing into a system ROM.

Some shared library mechanisms associate a shared library's data with the library itself and put
only a place holder in the stub. At run time, a copy of the library's initialised static data is copied
into the client's place holder by the dynamic linker or by library initialisation code.

The ARM shared library mechanism supports these ways of working provided the data is free of
values which require link time (or run time) relocation. In other words, it can be supported
provided the input data areas are free of relocation directives.

8.2.2 How ARM shared libraries work

Stubs and proxy functions

When a client application is linked with a shared library, it is linked not with the library itself but
with a stub object containing:

• an entry vector

• a copy of the library's static data or a place holder for it

Each member of the entry vector is a proxy for a function in the matching shared library.
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When a client first calls a proxy function, the call is directed to a dynamic linker. This is a small
function (typically about 50-60 ARM instructions) which:

• locates the matching shared library

• if required, copies an initial image of the library's static data from the library to the place
holding area in the stub

• patches the entry vector so each proxy function points at the corresponding library
function

• resumes the call

Once an entry vector has been patched, all future proxy calls proceed directly to the target
library function with only minimal indirection delay and no intervention by the dynamic linker.

Making an inter-link-unit call like this is more expensive than making a straightforward local
procedure call, but not by much. It is also the only supported way to call a function more than
32MBytes away.

8.2.3 Locating a library which matches the stub

Locating a matching shared library is specific to a target system and you must provide code to
do the location, but the remainder of the dynamic linking process is generic to all target systems.
Consequently, in order to use ARM shared libraries, you have to design and implement a library
location mechanism and adapt the dynamic linker to it. In practice this is quite straightforward,
since:

• the ARM Linker provides support for parameterising a location mechanism

• a basic dynamic linker with neither location nor failure reporting mechanisms is a mere
42 ARM instructions

Please refer to ➲The ARM Software Development Toolkit Reference Manual: Chapter 6, Linker
for a full explanation of parameter blocks.

8.2.4 How the dynamic linker works

The dynamic linker is entered via a proxy call with r0 pointing at the dynamic linker's 16-byte
entry stub. Following this stub code is a copy of the parameter block for the shared library.

Stored in the parameter block is the identity of the library—this will be a 32-bit unique identifier
or perhaps a string name. Either way, this can be passed to the library location mechanism. It is
up to you to decide how to identify your shared libraries and, hence, what to put in their
parameter blocks.

The library location function is required to return the address of the start of the library's offset
table.
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A primitive location mechanism might be to search a ROM for a matching string. This would
identify the start of the parameter block of the matching shared library. Immediately preceding it
will be negative offsets to library entry points and a non-negative count word containing the
number of entry points. By working backwards through memory and counting, you can be sure
you have found the entry vector and can return the address of its count word to the dynamic
linker.

More sophisticated location schemes are possible, for example:

• You might include in your library a header containing code to be executed when the
library is first loaded (into RAM) or initialised (in ROM) which registers the library's name
with a library manager. Since the library manager has to be locatable without using the
library manager, either its address has to be known or its function has to be supported
by an underlying system call.

• You might adopt a scheme similar to that which is used by Acorn’s RISC OS operating
system. This supports a module mechanism which is often used to implement shared
libraries. A RISC OS module may, by declaring so in its module header, be called when
software interrupts (SWIs) in a specified range occur. When such a module is loaded, it
extends the range of SWIs interpreted by the operating system. This mechanism can
be used to locate a shared library by storing the identity of a library location SWI in the
library's parameter block, and by implementing this SWI in the library module's header.

8.2.5 Instructing the linker to make a shared library

Prerequisites

You can make a shared library from any number of object files, including reentrant stubs of other
shared libraries, provided that:

• each object file conforms to a reentrant version of the ARM Procedure Call Standard
and each code area has the REENTRANT attribute

• there are no unresolved references resulting from the linking together of the component
objects

An immediate consequence of the second rule is that it is impossible to make two shared libraries
which refer to one another: to make the second library and its stub would require the stub of the
first, but to make the first and its stub would require the stub of the second.

The first rule is not 100% necessary, and is difficult to enforce. The linker warns you if it finds a
non-reentrant code area in the list of objects to be linked into a shared library, but will build the
library and its matching stub anyway. You must decide whether the warning is real, or merely a
formality.
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Linker outputs

The ARM linker generates a shared library as two files:

• a plain binary file containing the read-only, reentrant, usually position independent,
shared code

• an AOF format stub file with which client applications can be linked.

The linker can also generate a reentrant stub suitable for inclusion in another shared library.

The library image file contains, in order:

• read only code sections from your input objects

• if requested, a read only copy of the initialised static data from the input objects

• a table of (negative) offsets from the end of the library to its entry points

• if requested, the size and offset of the static data image

• a copy of the library's parameter block

You request a copy of the initialised static data to be included in a library when you describe to
the linker how to make a shared library. If you request this, the linker writes the length and offset
of the data image immediately after the entry vector. During linking, armlink defines symbols
SHL$$data$$Size and SHL$$data$$Base to have these values; components of your library
may refer to these symbols. Instead of including the static data in the stub, armlink includes a
zero initialised place holding area of the same size. It also writes the length and (relocatable)
address of this area immediately after the dynamic linker's entry veneer, giving the dynamic
linker sufficient information to initialise the place holder at run time. During linking, the linker
symbols SHL$$data$$Size and $$0$$Base describe this length and relocatable address.

Any data included in your shared library must be free of relocation directives. Please refer to
➲The ARM Software Development Toolkit Reference Manual: Chapter 6, Linker for a full
explanation of what kind of data can be included in a shared library.

You specify a parameter block when you describe to the linker how to make a shared library.
You might, for example, include the name of the library in its parameter block, to aid its location.
An identical copy of the parameter block is included in the library's entry vector in the stub file.

Describing a shared library to the linker

To describe a shared library to the linker you have to prepare a file which describes:

• the name of the library

• the library parameter block

• what data areas to include

• what entry points to export
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For precise details of how to do this, please refer to ➲The ARM Software Development Toolkit
Reference Manual: Chapter 6, Linker. Below is an intuitive example you can work with and adapt:

; First, give the name of the file to contain the library -
; strlib - and its parameter block - the single word 0x40000...
> strlib \
  0x40000
; ...then include all suitable data areas...
+ ()
; ... finally export all the entry points...
; ... mostly omitted here for brevity of exposition.
memcpy
...
strtok

The name of this file is passed to armlink as the argument to the -SHL  command line option: see
➲The ARM Software Development Toolkit Reference Manual: Chapter 6, Linker for further
details.

8.2.6 Making a toy string library

This section refers to the files collected in directory examples/reent .

The header files config.h  and interns.h  let you compile cl/string.c  locally. Little-endian
code is assumed. If you want to make a big-endian string library you should edit config.h .
Similarly, if you want to alter which functions are included or whether static data is initialised by
copying from the library, you should edit config.h . You do not need to edit interns.h . If you
use config.h  unchanged you will build a little-endian library which includes a data image and
which exports all of its functions.

Compiling the string library

To compile string.c , use the following command:

armcc -li -apcs /reent -zps1 -c -I. ../../cl/string.c

where:

-li  tells armcc to compile for a little-endian ARM.

-apcs /reent tells armcc to compile reentrant code.

-zps1 turns off software stack limit checking and allows the string library to be
independent of all other objects and libraries. With software stack limit
checking turned on, the library would depend on the stack limit checking
functions which, in turn, depend on other sections of the C run time library.
While such dependencies do not much obstruct the construction of full scale,
production quality shared libraries, they are major impediments to a simple
demonstration of the underlying mechanisms.

-I. tells armcc to look for needed header files in the current directory.
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Linking the string library

To make a shared library and matching stub from string.o, use

armlink -o strstub.o -shl strshl -s syms string.o

where:

-o instructs the linker to put strlib ’s stub in strstub.o

-shl points to the file which contains instructions for making a shared library called
strlib

-s asks for a listing of symbol values in a file called syms

You may later need to look up the value of EFT$$Offset. As supplied, the dynamic linker expects
a library's external function table (EFT) to be at address 0x40000. So, unless you extend the
dynamic linker with a library location mechanism, you will have to load strlib  at the address
0x40000-EFT$$Offset.

Making the test program and dynamic linker

 You should now assemble the dynamic linker and compile the test code:

armasm -li dynlink.s dynlink.o
armcc -li -c strtest.c

To make the test program you must link together the test code, the dynamic linker, the string
library stub and the appropriate ARM C library (so that references to library members other than
the string functions can be resolved):

armlink -d -o strtest strtest.o dynlink.o strstub.o ../../lib/
armlib.32l

Running the test program with the shared string library

Now you are ready to try everything under the control of command-line armsd. For this example
the value of EFT$$offset is assumed to be 0xa38.

>armsd strtest
A.R.M. Source-level Debugger version ...
ARMulator V1.30, 4 Gb memory, MMU present, Demon 1.1,...
Object program file strtest
armsd: getfile strlib 0x40000-0xa38
armsd: go

strerror(42) returns unknown shared string-library error 0x0000002A

Program terminated normally at PC = 0x00008354 (__rt_exit + 0x24)
+0024 0x00008354: 0xef000011 .... :    swi      0x11
armsd: q
Quitting
>
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Before starting strtest  you must load the shared string library with the command:

getfile strlib 0x40000-0xa38

where strlib  is the name of the file containing the library, 0x40000 is the hard-wired address
at which the dynamic linker expects to find the external function table, and 0xa38 is the value of
EFT$$Offset, the offset of the external function table from the start of the library.

When strtest  runs, it calls strerror(42)  which causes the dynamic linker to be entered, the
static data to be copied, the stub vector to be patched and the call to be resumed. You can watch
this is more detail by setting a breakpoint on __rt_dynlink  and single stepping.
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9.1 Introduction
This chapter describes how to construct simple ROM images which contain C code. It presents
the necessary assembler glue to initialise the memory system before any C code can be called.

The following subjects are covered:

• how your application in ROM is initialised and how it passes control to C

• how to include standalone functions from the C library in your ROM

• troubleshooting hints and tips

9.2 Application Startup
One of the main considerations with C code in ROM is the way in which the application initialises
itself and starts executing. If there is an operating system present this causes no problem as the
application is entered automatically via the main()  function.

In an embedded system there are a number of ways an image may be entered:

• via the RESET vector at location 0

• at the base address of the image

Applications entered via the RESET vector

The simplest case is where the application ROM is located at address 0 in the address map. The
first instruction of your application will then be a branch instruction to the real entry point.

Applications entered at the base address

An application may be entered at its base address in one of two ways:

• The hardware can fake a branch at address 0 to the base address of the ROM.

• On RESET the ROM is mapped to address 0 by the memory management. When the
application initialises the MMU it remaps the ROM to its correct address and performs
a jump to the copy of itself running at the correct address.

9.2.1 Initialisation on RESET

Nothing is initialised on RESET so the entry point will have to perform some initialisation before
it can call any C code.

Typically, the initialisation code may perform some or all of the following:

• define the entry point

The assembler directive ENTRY marks the entry point.
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• setup interrupt/exception vectors

If the ROM is located at address 0, this will consist of a sequence of hard-coded branch
instructions to the handler for each interrupt/exception.
If the ROM is located elsewhere, the vectors will have to be dynamically initialised by
the initialisation code. Some standard code for doing this is given in the first example
later in the chapter.

• initialise the Stack Pointer registers

Some or all of the following Stack pointers may require initialisation depending on
which interrupts and exceptions are used.

SP_irq if interrupt requests are used

SP_fiq if fast interrupt requests are used

The above must be initialised before interrupts are enabled.

SP_abt for data abort handling

SP_und for undefined instruction handling

Generally, the above two will not be used in a simple embedded system, however you
may wish to initialise them for debugging purposes.

SP_svc must always be initialised

• initialise the memory system

If your system has an MMU, the memory mapping must be initialised at this point
before interrupts are enabled and before any code is called which might rely on RAM
being present at particular address, either explicitly, or implicitly via the use of stack
space.

• initialise any critical IO devices

Critical IO devices are any devices which must be initialised before interrupts are
enabled. Typically these devices will need to be initialised at this point. If they are not,
they may cause spurious interrupts when interrupts are enabled.

• initialise any RAM variables required by the interrupt system

For example, if your interrupt system has buffer pointers to read data into memory
buffers, the pointers must be initialised at this point before interrupts are enabled.

• enable interrupts and change processor mode/state if necessary

At this stage the processor will be in Supervisor mode. If your application runs in User
mode, you should change to User mode at this point. You will also need to initialise the
User mode SP register.

• initialise memory required by C code

The initial values for any initialised variables must be copied from ROM to RAM. All
other variables must be initialised to zero.
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If the application uses scatter loading, see ➲8.1.3 Scatter loading initialisation on page
8-4 for details of how to initialise these areas.
If scatter loading is not being used, the code to do this is given below:

IMPORT |Image$$RO$$Limit| ; End of ROM code (=start of ROM data)
IMPORT |Image$$RW$$Base| ; Base of RAM to initialise
IMPORT |Image$$ZI$$Base| ; Base and limit of area
IMPORT |Image$$ZI$$Limit| ; to zero initialise

LDR r0, =|Image$$RO$$Limit|; Get pointer to ROM data
LDR r1, =|Image$$RW$$Base| ; and RAM copy
LDR r3, =|Image$$ZI$$Base| ; Zero init base => top of

; initialised data
CMP r0, r1 ; Check that they are different
BEQ %1

0 CMP r1, r3 ; Copy init data
LDRCC r2, [r0], #4
STRCC r2, [r1], #4
BCC %0

1 LDR r1, =|Image$$ZI$$Limit|; Top of zero init segment
MOV r2, #0

2 CMP r3, r1 ; Zero init
STRCC r2, [r3], #4
BCC %2

• enter C code

If your application runs in Thumb state, you should change to Thumb state using:
ORR     lr, pc, #1
BX      lr

It is now safe to call C code provided that it does not rely on any memory being
initialised. For example:

IMPORT  C_Entry
BL      C_Entry

9.2.2 Example 1 - Building a ROM to be entered at its base address

The following example shows how to construct a simple piece of code suitable for ROM. In a real
example much more would have to go into the initialisation section, but this is very hardware
specific and is therefore not appropriate for this example.

The following sections of code may be found in the files init.s  and ex.c  in directory
examples/rom .
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The commands necessary to build the image are given at the end of the code.

--- init.s -----------------------------------------------------------
;
; The AREA must have the attribute READONLY, otherwise the linker will
; not place it in ROM.
;
; The AREA must have the attribute CODE, otherwise the assembler will
; not let us put any code in this AREA
;
; Note the '|' character is used to surround any symbols which contain
; non standard characters like '!'.

AREA    Init, CODE, READONLY

; Now some standard definitions...

Mode_IRQ EQU 0x12
Mode_SVC EQU 0x13

I_Bit EQU 0x80
F_Bit EQU 0x40

SWI_Exit EQU 0x11

; Locations of various things in our memory system

RAM_Base EQU 0x10000000 ; 64k RAM at this base
RAM_Limit EQU 0x10010000

IRQ_Stack EQU RAM_Limit ; 1K IRQ stack at top of memory
SVC_Stack EQU RAM_Limit-1024 ; followed by SVC stack

; --- Define entry point
EXPORT  __main; The symbol '__main' is defined here to ensure

__main ; the C runtime system is not linked in.
ENTRY

; --- Setup interrupt / exception vectors
IF :DEF: ROM_AT_ADDRESS_ZERO

; If the ROM is at address 0 this is just a sequence of branches
B Reset_Handler
B Undefined_Handler
B SWI_Handler
B Prefetch_Handler
B Abort_Handler
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NOP ; Reserved vector
B IRQ_Handler
B FIQ_Handler

ELSE
; Otherwise we copy a sequence of LDR PC instructions over the vectors
; (Note: We copy LDR PC instructions because branch instructions
; could not simply be copied, the offset in the branch instruction
; would have to be modified so that it branched into ROM. Also, a
; branch instructions might not reach if the ROM is at an address
; > 32M).

MOV R8, #0
ADR R9, Vector_Init_Block
LDMIA R9!, {R0-R7}
STMIA R8!, {R0-R7}
LDMIA R9!, {R0-R7}
STMIA R8!, {R0-R7}

; Now fall into the LDR PC, Reset_Addr instruction which will continue
; execution at 'Reset_Handler'

Vector_Init_Block
LDR PC, Reset_Addr
LDR PC, Undefined_Addr
LDR PC, SWI_Addr
LDR PC, Prefetch_Addr
LDR PC, Abort_Addr
NOP
LDR PC, IRQ_Addr
LDR PC, FIQ_Addr

Reset_Addr DCD Reset_Handler
Undefined_Addr DCD Undefined_Handler
SWI_Addr DCD SWI_Handler
Prefetch_Addr DCD Prefetch_Handler
Abort_Addr DCD Abort_Handler
DCD     0  ; Reserved vector
IRQ_Addr DCD IRQ_Handler
FIQ_Addr DCD FIQ_Handler

ENDIF

; The following handlers do not do anything useful in this example.
;
Undefined_Handler

B       Undefined_Handler
SWI_Handler
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B       SWI_Handler
Prefetch_Handler

B       Prefetch_Handler
Abort_Handler

B       Abort_Handler
IRQ_Handler

B       IRQ_Handler
FIQ_Handler

B       FIQ_Handler

; The RESET entry point
Reset_Handler

; --- Initialise stack pointer registers
; Enter IRQ mode and set up the IRQ stack pointer

MOV     R0, #Mode_IRQ:OR:I_Bit:OR:F_Bit ; No interrupts
MSR     CPSR, R0
LDR     R13, =IRQ_Stack

; Set up other stack pointers if necessary
; ...

; Set up the SVC stack pointer last and return to SVC mode
MOV     R0, #Mode_SVC:OR:I_Bit:OR:F_Bit ; No interrupts
MSR     CPSR, R0
LDR     R13, =SVC_Stack

; --- Initialise memory system
; ...

; --- Initialise critical IO devices
; ...

; --- Initialise interrupt system variables here
; ...

; --- Enable interrupts
; Now safe to enable interrupts, so do this and remain in SVC mode

MOV     R0, #Mode_SVC:OR:F_Bit  ; Only IRQ enabled
MSR     CPSR, R0

; --- Initialise memory required by C code

IMPORT |Image$$RO$$Limit| ; End of ROM code (=start of ROM data)
IMPORT |Image$$RW$$Base| ; Base of RAM to initialise
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IMPORT |Image$$ZI$$Base| ; Base and limit of area
IMPORT |Image$$ZI$$Limit| ; to zero initialise

LDR r0, =|Image$$RO$$Limit| ; Get pointer to ROM data
LDR r1, =|Image$$RW$$Base| ; and RAM copy
LDR r3, =|Image$$ZI$$Base| ; Zero init base => top of

; initialised data
CMP r0, r1 ; Check that they are different
BEQ %1

0 CMP r1, r3 ; Copy init data
LDRCC r2, [r0], #4
STRCC r2, [r1], #4
BCC %0

1 LDR r1, =|Image$$ZI$$Limit| ; Top of zero init segment
MOV r2, #0

2 CMP r3, r1 ; Zero init
STRCC r2, [r3], #4
BCC %2

; --- Now we enter the C code

IMPORT  C_Entry
[ :DEF:THUMB

ORR     lr, pc, #1
BX      lr
CODE16 ; Next instruction will be Thumb

]
BL C_Entry

; In a real application we wouldn't normally expect to return, however
; this example does so the debug monitor swi SWI_Exit is used to halt the
; application.

SWI SWI_Exit

END
--- ex.c -----------------------------------------------------------
/* We use the following Debug Monitor SWIs to write things out
* in this example
*/
extern __swi(0) WriteC(char c); /* Write a character */
extern __swi(2) Write0(char *s); /* Write a string */

/* The following symbols are defined by the linker and define
* various memory regions which may need to be copied or initialised
*/
extern char Image$$RO$$Limit[];
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extern char Image$$RW$$Base[];

/* We define some more meaningful names here */
#define rom_data_base Image$$RO$$Limit
#define ram_data_base Image$$RW$$Base

/* This is an example of a pre-initialised variable. */
static unsigned factory_id = 0xAA55AA55;  /* Factory set ID */

/* This is an example of an uninitialised (or 0 initialised) variable */
static char display[8][40];               /* Screen buffer */

static const char hex[16] = "0123456789ABCDEF";

static void pr_hex(unsigned n)
{

int i;

for (i = 0; i < 8; i++) {
WriteC(hex[n >> 28]);
n <<= 4;
}

}

void C_Entry(void)
{
if (rom_data_base == ram_data_base) {
Write0("Warning: Image has been linked as an application. To link as a
ROM image\r\n");
Write0("         link with the options -RO <rom-base> -RW <ram-
base>\r\n");
}

Write0("'factory_id' is at address ");
pr_hex((unsigned)&factory_id);
Write0(", contents = ");
pr_hex((unsigned)factory_id);
Write0("\r\n");

Write0("'display' is at address ");
pr_hex((unsigned)display);
Write0("\r\n");
}
---------------------------------------------------------------------
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To build the ROM image

1 Compile the C file ex.c  with the following command. The compiler will generate one
warning which may be ignored.

armcc -c -fc -apcs 3/noswst/nofp ex.c

-fc Tells the compiler to allow the $ character in variables.

-apcs 3/noswst/nofp Tells the compiler not to include code to do software
stack checking (noswst ) and not to use a frame pointer
(nofp ).

2 Assemble the initialisation code init.s .

armasm -apcs 3/noswst init.s

-apcs 3/noswst Tells the assembler that this code is only suitable for
use with other code which does not have software stack
checking. Code which uses software stack checking
cannot generally be mixed with code which does not.
The assembler will mark the object file as containing
code which does not perform software stack checking
so that the linker can give an error if it is mixed with
code which does.

3 Build the ROM image using armlink.

armlink -o ex1_rom -Bin -RO 0xf0000000 -RW 0x10000000 -First
init.o(Init) -Remove -NoZeroPad -Map -Info Sizes init.o ex.o

-Bin Tells the linker to produce a plain binary image with no
header. This is the most suitable form of image for
putting in ROM.

-RO 0xf0000000 Tells the linker that the ReadOnly or code segment will
be placed at 0xf0000000  in the address map.This is
the base of the ROM in this example.

-RW 0x10000000 Tells the linker that the ReadWrite or data segment will
be placed at 0x10000000  in the address map. This is
the base of the RAM in this example.

-First init.o(Init) Tells the linker to place this area first in the image. Note
that on Unix systems you may need to put a backslash
\  before each bracket.

-Remove Tells the linker to remove any unused code areas. In
this example there are no unused areas, however this
is a useful option for larger ROM builds.
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-NoZeroPad Tells the linker not to pad the end of the image with
zeros to make space for the variables. This option
should always be used when building ROM images.

-Map

-Info Sizes These two options tell the linker to output various sorts
of information during the link process. Neither of these
options are necessary to build the ROM but are
included here as an example. The output generated by
each option is given below.

-Map  tells the linker to print an AREA map or listing showing where each code or data section
will be placed in the address space. The output from the above example is given below.

AREA map of ex1_rom:

Base Size Type RO? Name
f0000000 e4 CODE RO !!! from object file init.o
f00000e4 238 CODE RO C$$code from object file ex.o
f000031c 10 CODE RO C$$constdata from object file ex.o
10000000 4 DATA RW C$$data from object file ex.o
10000004 140 ZERO RW C$$zidata from object file ex.o

This shows that the linker places three code areas at successive locations starting from
0xf0000000  (where our ROM is based) and two data areas starting at address 0x10000000
(where our RAM is based).

-Info Sizes  tells the linker to print information on the code and data sizes of each object file
along with the totals for each type of code or data.

object file code inline  inline 'const'  RW  0-Init  debug
size data strings data data data data

init.o 228 0 0 0 0 0 0
ex.o 184 28 356 16 4 320 0

code inline inline 'const' RW 0-Init debug
size data strings data data data data

Object totals 412 28 356 16 4 320 0

The required ROM size will be the sum of the code size (412), the inline data size (28), the inline
strings (356), the const  data (16) and the RW data (4). In this example the required ROM size
would be 816 bytes. This should be exactly the same as the size of the ex1_rom  image
produced by the linker.

The required RAM size will be the sum of the RW data (4) and the 0-Init data (320), in this case
324 bytes. Note that the RW data is included in both the ROM and the RAM counts. This is
because the ROM contains the initialisation values for the RAM data.
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Running the ROM image

You can now run the ROM image using the ARMulator.

Start up armsd by typing armsd  and enter the following commands at the armsd:  prompt.

getfile ex1_rom 0xf0000000

This tells armsd to load the ex1_rom  file at address 0xf0000000  in the ARMul memory map.

Check that the ROM has indeed been loaded correctly by disassembling the first section of it:

l 0xf0000000

This should produce output like the following, which is a disassembly of the first part of init.s .
If it produces output which has each word reversed (ie. the word at 0xf0000000  is 0x0080a0e3
instead of 0xe3a08000 ) then there is a problem with endianness. Check than your compiler and
armsd are both configured for the same endianness.

0xf0000000: 0xe3a08000  .... :mov r8,#0
0xf0000004: 0xe28f900c  .... :add r9,pc,#0xc
0xf0000008: 0xe8b900ff  .... :ldmia r9!,{r0-r7}
0xf000000c: 0xe8a800ff  .... :stmia r8!,{r0-r7}
0xf0000010: 0xe8b900ff  .... :ldmia r9!,{r0-r7}
0xf0000014: 0xe8a800ff  .... :stmia r8!,{r0-r7}
0xf0000018: 0xe59ff018  .... :ldr pc,0xf0000038 ; = #0xf0000070
0xf000001c: 0xe59ff018  .... :ldr pc,0xf000003c ; = #0xf0000058
0xf0000020: 0xe59ff018  .... :ldr pc,0xf0000040 ; = #0xf000005c
0xf0000024: 0xe59ff018  .... :ldr pc,0xf0000044 ; = #0xf0000060
0xf0000028: 0xe59ff018  .... :ldr pc,0xf0000048 ; = #0xf0000064
0xf000002c: 0xe1a00000  .... :nop
0xf0000030: 0xe59ff018  .... :ldr pc,0xf0000050 ; = #0xf0000068
0xf0000034: 0xe59ff018  .... :ldr pc,0xf0000054 ; = #0xf000006c
0xf0000038: 0xf0000070  ...p :andnv r0,r0,r0,ror r0
0xf000003c: 0xf0000058  ...X :andnv r0,r0,r8,asr r0

You should now be able to execute the ROM image. Set the PC to the base of the ROM image,
then run it.

pc=0xf0000000
go

This should produce the following output:

'factory_id' is at address 10000000, contents = AA55AA55
'display' is at address 10000004
Program terminated normally at PC = 0xf00000c8
0xf00000c8: 0xef000011  .... :    swi      0x11
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9.2.3 Example 2 - Building a ROM to be loaded at address 0

Using the same files as in example 1 (ex.c  and init.s ) reassemble the init.s  file using the
following command:

armasm -apcs 3/noswst -PD 'ROM_AT_ADDRESS_ZERO SETL {TRUE}' init.s

-PD 'ROM_AT_ADDRESS_ZERO SETL {TRUE}'

This option tells the assembler to PreDefine the symbol ROM_AT_ADDRESS_ZERO
and to give it the logical (or boolean) value TRUE.
The assembler file init.s  tests this symbol and generates different code depending
on whether or not the symbol is set.
If the symbol is set, it generates a sequence of branches to be loaded directly over the
vector area at address 0.

If you have not already compiled the C file ex.c  do that now (see ➲ To build the ROM image
on page 9-10) then relink the image using the following command:

armlink -o ex2_rom -Bin -RO 0 -RW 0x10000000 -First init.o(Init)
-Remove -NoZeroPad -Map -Info Sizes init.o ex.o

The only difference between this and the command used in example 1 is that here we use
-RO 0 to specify the ROM is based at address 0.

Load and execute the ROM image under ARMul/armsd as follows.

armsd
getfile ex2_rom 0
pc=0
go

9.2.4 Example 3 - Building a ROM using scatter loading

Examples 1 and 2 are simple examples of scatter loading. Hence they can be modified to use
the scatter loading mechanisms provided by the linker. The initialisation code init.s  would be
modified to use the scatter loading initialisation code described in ➲8.1.3 Scatter loading
initialisation on page 8-4.

The Image$$  symbols used in ex.c  will still be bound to the same values as in the non scatter
loading case.

The linker command would be modified to be:

armlink -o ex3_rom -Bin  -Scatter scatdes -First init.o(Init)  -Remove
-Map -info Sizes init.o ex.o

In this case, the -o  option will create a subdirectory called ex3_rom  containing a single binary
file called root .

Note that -Scatter  tells the linker not to pad the end of the output binary files with zeros.
Hence the -NoZeroPad  option is not required when using -Scatter .
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scatdes  is the scatter loading description file. For example 1, this file would be:

ROOT 0xf0000000
ROOT-DATA 0x10000000

For example 2, the file would be:

ROOT 0x0
ROOT-DATA 0x10000000

The procedure for running the scatter loaded versions of these examples is identical to the non
scatter loaded versions, except that the filename used in the armsd getfile commands would be
ex3_rom/root .

In these cases, scatter loading does not offer a significant advantage over the non scatter loading
case. However if we have more than one execution region that needs to be initialised, scatter
loading is the easiest method to use.

9.3 Using the C Library in ROM
Although it is possible to link all of the C library into a ROM application there are several reasons
why you may not wish to do this.

• The C library relies on the Debug Monitor (Demon) SWIs for its operation. Unless your
ROM supports these SWIs in its SWI handler, the C library will not work in ROM.

• For the C library to run, the memory system must be configured in the way in which the
C library expects. This may not be easy to support in your system.

• There is a minimum overhead of about 10K when the C library is included.

You are more likely to want to include particular standalone functions from the C library in your
ROM.

Note Standalone functions are functions which do not rely on any part of the operating system
environment. The functions memcpy()  and strcpy()  are examples of standalone functions.
fopen()  is not standalone, since it relies on being able to open files which are part of the
operating system. Only standalone functions can be included easily in ROM. See ➲9.3.2
Standalone C functions on page 9-17 for a list of which functions in the C library are standalone.

No special code is necessary in your C code to use a standalone C function, just use the function
as normal.

See ➲6.5 Using the C Library in Deeply Embedded Applications on page 6-17 for further details
of runtime support for deeply embedded applications.

9.3.1 Example 4 - Using sprintf in ROM

Example 4 involves the following steps:

1 Compile the C source file using the Thumb compiler.

2 Assemble the init.s  file using the Thumb/ARM assembler tasm.
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3 Build the ROM image.

4 Run the ROM image under ARMul/armsd.

Compiling the C source file

Compile the C source file shown below using the Thumb compiler. This file may be found in
directory examples/rom .

tcc -c -fc -apcs 3/noswst/nofp sprintf.c

--- sprintf.c --------------------------------------------------------
#include <stdio.h>

/* We use the following Debug Monitor SWI to write things out
* in this example
*/
extern __swi(2) Write0(char *s);        /* Write a character */

/* The following symbols are defined by the linker and define
* various memory regions which may need to be copied or initialised
*/
extern char Image$$RO$$Limit[];
extern char Image$$RW$$Base[];

/* We define some more meaningful names here */
#define rom_data_base Image$$RO$$Limit
#define ram_data_base Image$$RW$$Base

void C_Entry(void)
{

char s[80];

if (rom_data_base == ram_data_base) {
Write0("Warning: Image has been linked as an application.
To link as a ROM image\r\n");
Write0("         link with the options -RO <rom-base> -RW
<ram-base>\r\n");

}

sprintf(s, "ROM is at address %p, RAM is at address %p\n",
rom_data_base, ram_data_base);

Write0(s);
}
---------------------------------------------------------------------
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Assembling the init.s file

Assemble the init.s  file using the Thumb/ARM assembler tasm:

tasm -32 -apcs 3/noswst/nofp -PD 'THUMB SETL {TRUE}' init.s

-32 By default the Thumb assembler assembles
Thumb code. init.s  contains a mixture of ARM
and Thumb code, however it starts with ARM code
so we tell the assembler to expect ARM code to
start with.

-PD 'THUMB SETL {TRUE}' This sets the THUMB variable to TRUE. The
variable is tested by init.s  which generates
extra code to switch to Thumb state before calling
the C entry point.

Building the ROM image

Build the ROM image with the following armlink command:

armlink -o ex4_rom -Bin -RO 0xf0000000 -RW 0x10000000 -First init.o(Init)
-Remove -NoZeroPad -Info Sizes init.o sprintf.o armlib.16l

If armlib.16l  is not in the current directory, you will need to specify the directory on the
command line.

This will produce the following output:

object file code inline inline 'const' RW 0-Init debug
size data strings data data data data

init.o 236 0 0 0 0 0 0
sprintf.o 40 12 184 0 0 0 0

library membercode inline inline 'const' RW 0-Init debug
size data strings data data data data

_sprintf.o 56 8 0 0 0 0 0
_sputc.o 16 0 0 0 0 0 0
nofpdisp.o 4 0 0 0 0 0 0
__vfpntf.o 1828 4 68 0 0 0 0
rtudiv10.o 40 0 0 0 0 0 0
strlen.o 68 0 0 0 0 0 0
ctype.o 0 0 0 0 260 0 0
ferror.o 8 0 0 0 0 0 0

code inline inline 'const' RW 0-Init debug
size data strings data data data data

Object totals 276 12 184 0 0 0 0
Library totals2020 12 68 0 260 0 0
Grand totals 2296 24 252 0 260 0 0
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Running the ROM image

Run the ROM image under ARMul/armsd as follows:

armsd
getfile ex4_rom 0xf0000000
pc=0xf0000000
go

This should produce the following output:

ROM is at address f0000000, RAM is at address 10000000

9.3.2 Standalone C functions

The following functions are standalone functions and may be safely used in standalone ROM
code.

<string.h>

memcpy  memmove memset  memcmp  strcpy  strncpy strcat  strncat
strcmp  strncmp strcoll strxfrm memchr  strchr  strcspn strpbrk
strrchr strspn  strstr  strtok

<ctype.h>

You must call the _ctype_init()  function in your initialisation if you wish to use any of the
ctype.h  functions.

isalnum isalpha iscntrl isdigit isgraph islower isprint ispunct
isspace tolower toupper isxdigit

<math.h>
acos    asin    atan    atan2   cos     sin     tan     cosh
sinh    tanh    exp     frexp   ldexp   log     log10   modf
pow     sqrt    ceil    fabs    floor   fmod

<setjmp.h>
setjmp  longjmp

<stdlib.h>
atof    atoi     atol   strtod  strtol  strtoul rand    srand
bsearch qsort    abs    div     labs    ldiv    mblen   mbtowc
wctomb  mbstowcs wcstombs

<locale.h>

You must call the _locale_init()  function in your initialisation if you wish to use any of the
locale.h  functions.

setlocale       localeconv
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<stdio.h>
sprintf sscanf  vsprintf

<time.h>
mktime  asctime ctime   gmtime  difftime localtime strftime

9.4 Troubleshooting Hints and Tips

Problem

The linker reports one of the symbols __rt_stkovf_split_big  or
__rt_stkovf_split_small  as being undefined.

Cause

You have compiled your C code with stack checking enabled. The C compiler generates code
which calls one of the above functions when stack overflow is detected.

Solution

This problem may be fixed in one of the following ways:

• Recompile your C code with the -apcs 3/noswst  option to disable stack checking.

• Link with a C library which provides support for stack limit checking (of the pre-built C
libraries provided with the release only armlib_n.32x  does not support stack limit
checking)

Note: This is usually only possible in an application environment as the C libraries stack
overflow handling code relies heavily on the application environment.

• Write a pair of functions __rt_stkovf_split_big  and
__rt_stkovf_split_smal l. This will usually just generate an error for debugging
purposes.

The code might look similar to the following:

    EXPORT  __rt_stkovf_split_big
    EXPORT  __rt_stkovf_split_small
__rt_stkovf_split_big
__rt_stkovf_split_small
    ADR     R0, stack_overflow_message
    SWI     Debug_Message ; System dependent SWI to
                          ; write a debugging message
    B       .             ; and loop forever.
stack_overflow_message
DCB     "Stack overflow", 0
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Problem

The linker generates an error similar to the following:

ARM Linker: (Warning) Attribute conflict between AREA
test2.o(C$$code) and image code.
ARM Linker: (attribute difference = {NO_SW_STACK_CHECK}).
ARM Linker: (Warning) Attribute conflict within AREA C$$code
(conflict first found with test2.o(C$$code)).
ARM Linker: (attribute difference = {NO_SW_STACK_CHECK}).

Cause

Parts of your code have been compiled or assembled with software stack checking enabled and
parts without. Alternatively, you have linked with a library which has software stack checking
enabled whereas your code has it disabled or vice versa.

Solution

Make sure all your code is compile/assembled with either -apcs 3/noswst or -apcs 3/
swst .

Link with the correct library, of the pre-built libraries provided with the release the libraries
armlib.16x  and armlib_i.32x  have stack checking disabled, all others have stack
checking enabled.

Problem

The linker reports __main  as being undefined.

Cause

When the compiler compiles the function main  it generates a reference to the symbol __main
to force the linker to include the basic C run time system from the C library. If you are not linking
with a C library and have a function main  you may get this error.

Solution

This problem may be fixed in one of the following ways:

• If the main  function is only used when building an application version of your ROM
image for debugging purposes, you should comment it out with a #ifdef  when
building a ROM image.

Usually when building a ROM image you will call the C entry point something other than
main  such as C_Entry  or ROM_Entry  to avoid confusion.
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• If you do need to have a function called main  simply define a symbol __main  in your
ROM initialisation code.

Usually this is defined to be the entry point of the ROM image so you should define it
just before the ENTRY directive as follows.

EXPORT __main
__main

ENTRY

• If you are building an application simply link with the appropriate C library.

Problem

The linker reports a number of undefined symbols of the form:

__rt_... or __16__rt_...

Cause

These are run time support functions which are called by code generated by the compiler to
perform tasks which cannot be performed simply in ARM or Thumb code such as integer division
or floating point operations.

For example, the following code will generate a call to the run time support function __rt_sdiv
to perform a division.

int test(int a, int b)
{

return a/b;
}

Solution

You should assemble file examples/clstand/rtstand.s  and link this in. A Thumb version
of this file is available in the thumb  subdirectory.

Note The divide routines in rtstand.s  use Demon SWIs to report division be zero. You may need to
edit rtstand.s  to change these SWIs if your system does not support them.

Problem

The linker produces the error message:

ARM Linker: (Fatal) No entry point for image.
ARM Linker: garbage output file aif removed

Cause

You have not defined an entry point. You must define the entry point even if the entry point is the
start of the ROM image.
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Solution

To define an entry point, use the assemblers ENTRY directive as shown in the example file
init.s  previously in this chapter.

Problem

The compiler produces errors of the form:

Serious error: illegal character (0x24 = '$') in source

Cause

The $ character is not allowed in variable names as standard by ANSI although many compilers
allow this.

Solution

Use the -fc  option on the C compiler to tell it to allow $ in variable names.

Problem

When loading an image into the ARMulator and trying to run it, the following error occurs:

*** Error: Can't go

Cause

armsd does not know the location at which it should begin executing your image.

Solution

Tell armsd where to start executing using the command:

pc = <address in hex>

Re-enter the go  command.

If your image is to be executed from its base address, the address you specify above should be
the same address as that used in the getfile  command with which you loaded the image.

Problem

The image is bigger than expected (bigger than the size given by -info sizes ).

This problem may also be caused by the image having a large section of zeros on the end of it.

Cause

By default, when generating a plain binary image, the linker expands zero initialised areas with
zero bytes in the image.

The area will then be zero initialised when the image is loaded directly into memory.

Solution

Use the -NoZeroPad  option to tell the linker not to expand the zero init area.
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Problem

The image compiles and links without problem, but when loaded and disassembled from the
base address, no initialisation code is present.

Causes

There are a number of possible causes:

• If the hex words look as though they are reversed instruction words, armsd may be
using the wrong endianness.

Solution
Reconfigure your copy of armsd to the opposite endianness and try again.

• You may have linked it as an application image instead of a plain binary image. If the
disassembly looks something like the following, then this is the case.

0x10000000: 0xe1a00000  .... :    nop
0x10000004: 0xe1a00000  .... :    nop
0x10000008: 0xeb00000c  .... :    bl       0x10000040
0x1000000c: 0xeb00001b  .... :    bl       0x10000080
0x10000010: 0xef000011  .... :    swi      0x11

Solution
Relink with the -bin  flag and without any -aif  flag.

• The initialisation code may not be at the start of the image because you have omitted
the -First  option.

Solution
Try relinking with the -First  option to see if this resolves the problem.

Problem

The image loads without problem but when trying to run, it crashes/hangs immediately.

Causes

Any of the causes in the previous problem may also apply here.

Another possibility is that it has been linked or loaded at the wrong address.

Solution

Check that the address is the same on each of the following:

• The linker’s -RO option

• The GetFile  command in armsd

• The PC= command in armsd

If all this is correct, try setting the PC to the start and using the Step In  command to step through
all the initialisation code to see if it is going wrong in the initialisation.
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The ARMulator

This chapter describes the ARM processor software emulator, ARMulator.

10.1 The ARMulator 10-2

10.2 Using the ARMulator Rapid Prototype Memory Model 10-4

10.3 Writing Custom Serial Drivers for ARM Debuggers 10-11

10.4 Rebuilding the ARMulator 10-13
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10.1 The ARMulator
The ARMulator is a software emulator of the ARM processor forming part of ARM's debugger. It
allows you to debug ARM programs on an emulated system. It can emulate any current ARM
processor at the instruction level, including Thumb-aware processors.

The ARMulator consists of four parts:

• the model of the ARM processor, together with various utility functions to support
system modelling

This part of the ARMulator is not customisable and handles all communication with the
debugger. It is supplied in object form only, on Unix hosts, and is built into the debugger
in the Windows Toolkit.

• a memory interface which transfers data between the ARM model and the memory
model or memory management unit model

The memory model is fully customisable. Example implementations are provided with
the ARMulator. Features such as models of memory-mapped I/O can be provided
through the memory interface.
Three memory models are provided with the ARMulator. armfast  (a fast model of
512Kb of RAM) and armvirt  (a slower model which models a full 4Gb of physical
memory) use the full-blown memory interface (as described in the Software
Development Toolkit Reference Manual). armproto  provides a simpler memory
interface allowing more rapid prototyping of memory models. An example of building
such a model is provided in ➲10.4 Rebuilding the ARMulator on page 10-13.

• a coprocessor interface to optional ARM coprocessor models

Although the ARM floating-point instruction set is implemented using ARM
coprocessors, the ARMulator does not use a coprocessor model to emulate these on
the host. The coprocessor model does not handle such instructions, so they are passed
through the undefined instruction vector, and the ARM-code floating-point emulator
(FPE400) emulates the operations.
The default coprocessor model (armproto.c ) provides a cut-down coprocessor #15
model, allowing software control of the processor's endianness, abort behaviour, etc.
This model is fully customisable, and models of other co-processors can be added
easily.

• an operating system interface to provide an execution environment

The operating system model (supplied in armos.c ) directly implements some operating
system calls (such as open file, read the clock etc.) on the debugger host. These calls
form the basis for the library calls (eg. fopen()  and time() ) provided by the ANSI C
library.
This part of the ARMulator is also fully customisable. Extra SWIs can be added to
provide more host system functionality to the debuggee. SWIs that are not handled by
this model take the SWI trap and can be handled by ARM SWI handler code running on
the ARMulator.
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By modifying or rewriting the supplied default models, you can make a model of almost any ARM
system, and use it to debug code.

For simple modelling systems with different RAM types and access speeds, the armvirt.c
memory model supports memory map files. See ➲The ARM Software Development Toolkit
Reference Manual: Chapter 14, ARMulator for further details. User supplied memory models
can also support map files using armvirt.c  as a template.

A complete description of the API between the ARM debugger and the memory model,
coprocessor model and operating system, and some additional calls for setting timed callbacks
etc., can be found in ➲The ARM Software Development Toolkit Reference Manual: Chapter 14,
ARMulator.
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10.2 Using the ARMulator Rapid Prototype Memory Model

10.2.1 Overview

This section gives an example implementation of a memory system using the rapid prototype
ARMulator memory model. The starting point for this model is the ARMulator armproto.c
model.

It gives the implementation of an example ARMul_MemAccess function, and discusses methods
for improving the efficiency of this model.

10.2.2 The memory model

This example considers a device where memory is split into two 128Kb pages. The bottom page
is read-only, and the top page has one of eight 128Kb memory pages mapped into it, page 0
being the low page. This type of system might be used to implement a small number of user
tasks.

Addresses wrap around above 256Kb for the first 1gigabyte of memory, as if bits 29:18 of the
address bus are ignored.

Bits 31:30 are statically decoded as follows:

bit 31 bit 30

0 0 is a memory access

0 1 bits 18:16 of the address select the physical page
mapped in to the top page

1 0 single byte I/O port (bits 23:16 of the address are
written to the debugger's display)

1 1 generates an abort
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This produces the following memory map:

10.2.3 Model data structures

There are eight banks of 128Kb of RAM, one of which is currently mapped in to the top page.
The memory model has two pieces of information describing the state:

• An array representing the model of memory

• The number of the page currently mapped into the top page resulting in the use of a
simple datastructure to store the memory model state. This datastructure is attached
to the MemDataPtr  in the ARMulator's state.

#define PAGESIZE (1<<17)

typedef union {
char byte[PAGESIZE];
ARMword word[PAGESIZE/4];

} page;

typedef struct {
page *p[8];       /* eight pages of memory */
int mapped_in;

} ModelState;

The example does not consider different endian modes. It assumes that the ARM is configured
to be the same endianness as the host architecture.

     #define OFFSET(addr) ((addr) & 0x7fff)
     #define WORDOFF(addr) (OFFSET(addr)>>2)
     unsigned ARMul_MemoryInit(ARMul_State *state,
                                unsigned long initmemsize)

Abort

I/O port

Page select

Paged RAM

Read-only RAM

Paged RAM

Read-only RAM

Paged RAM

Read-only RAM

FFFFFFFF

80000000

40000000

00040000

00020000

00000000

C0000000
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     {
       ModelState *s;
       int i;

       s=(ModelState *)malloc(sizeof(ModelState));
       if (memory==NULL) return FALSE;

       for (i=0;i<8;i++) {
s->p[i]=(page *)malloc(sizeof(page));
if (s->p[i]==NULL) return FALSE;
memset(s->p[i], 0, sizeof(page));

        }

       state->MemDataPtr=(unsigned char *)s;
       s->mapped_in=0;

       state->MemSize=8*PAGESIZE;  /* ignore initmemsize */
       ARMul_ConsolePrint(state, ", 1Mb memory");

       /* Ask ARMulator to clear aborts for us regularly */
       state->clearAborts=TRUE;

       return TRUE;
     }

The Exit function is shown below:

     void ARMul_MemoryExit(ARMul_State *state)
     {
       free(state->MemDataPtr);
     }

Finally you need to write the generic access function:

     ARMword ARMul_MemAccess(ARMul_State *state,
                             ARMword address,
                             ARMword dataOut,
                             ARMword mas1,
                             ARMword mas0,
                             ARMword Nrw,
                             ARMword seq,
                             ARMword Nmreq,
                             ARMword Nopc,
                             ARMword lock,
                             ARMword trans,
                             ARMword account)
     {
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       int highpage=(address & (1<<17));
       ModelState *s=(ModelState *)(state->MemDataPtr);
       page *mem;

       if (highpage)
         mem=s->p[s->mapped_in];
       else
         mem=s->p[0];

       if (Nmreq==LOW) {     /* memory request */

The memory models must track the numbers of N, S, I and C cycles that occur in the ARMulator.
These counts are used to provide the $statistics  and $statistics_inc  variables in
armsd.

         if (account) {      /* an ARMulator request */
           if (seq==LOW) state->NumNcycles++;
           else state->NumScycles++;
         }

         switch ((address>>30)&0x3) {
         case 0:             /* 00 - memory access */
           if (Nrw==LOW)
             return mem->word[WORDOFF(address)];

You do not need to extract the relevant byte or halfword presented on the data bus for byte or
half-word loads, as the ARM will do this for you. Note that this is not true of the high speed
memory interface.

           else              /* write - need to do right width access */
             /* Ignore writes out of supervisor mode to the "low" page */
             if (highpage || account==FALSE || state->NtransSig==LOW) {

Note The trans  value supplied is not correct. Use the NtransSig  in the ARMul_State  instead.

               if (mas0==LOW) {      /* byte or word */
                 if (mas1==LOW)      /* byte */
                   mem->byte[OFFSET(address)]=dataOut;
                 else
                   mem->word[WORDOFF(address)]=dataOut;
               } else {              /* half-word */
                 ARMword offset=OFFSET(address) & ~1;
                 mem->byte[offset]=dataOut>>8;
                 mem->byte[offset+1]=dataOut;
               }
             }
           break;
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case 1:             /* 01 - page select in SVC mode */

To change the mapped in page:

              if (state->NtransSig==LOW || account==FALSE) {
                s->mapped_in=(address>>16) & 7;
              }
              break;

case 2:             /* 10 - single byte I/O */
              ARMul_ConsolePrint(state,"%c",(address>>16) & 0xff);
              break;

case 3:             /* 11 - generate an abort */

There are two types of abort:

• prefetch abort

• data abort

Use the appropriate macro. (A real ARM has only one abort pin.)

              if (Nopc==LOW) {
                ARMul_PREFETCHABORT(address);
              } else {
                ARMul_DATAABORT(address);
              }
              return ARMul_ABORTWORD;
              break;
            }
          } else {              /* not a memory request */

MemAccess is called for all ARM cycles, not just memory cycles, and must keep count of these
I and C cycles.

            if (seq==LOW)       /* I-cycle */
              state->NumIcycles++;
            else
              state->NumCcycles++;
          }

          return 0;
        }
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10.2.4 Improving performance

Whilst running an emulation of the ARM, the ARMulator spends a lot of time in the memory
access functions. Small improvements in the efficiency of the memory model can give significant
performance boosts.

In the simple case of this memory model, removing the need to look up the number of the
currently mapped in top page on each access optimises the code. Instead, you can retain a
pointer to it in the ARMul_State , on the MemSparePtr .

The modified MemoryInit  is shown below:

        unsigned ARMul_MemoryInit(ARMul_state *state,
                                  unsigned long initmemsize)
        {
          page *memory;

          memory=(page *)calloc(8, sizeof(page));
          if (memory==NULL) return FALSE;

          state->MemDataPtr=(unsigned char *)memory;

          /* attach page zero to the top page pointer */
          state->MemSparePtr=(unsigned char *)(&memory[0]);

          ...
        }

MemAccess is similar to the following:

        ...
        {
          int highpage=(address & (1<<17));
          page *mem;

          mem=(page *)(highpage ? state->MemDataPtr    /* high */
                                 : state->MemSparePtr); /* low */
          ...

Only one load from memory is required to get the address of the page giving great improvement
in performance.
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In other memory models, you can also improve performance by:

• Using a form of tree to model the memory map.

The memory-model performs access checks on memory cycles and these access
permissions can be encoded by using multiple trees: one that maps the real physical
memory, one that maps pages that are readable, and one that maps pages that are
writable.
Using such a system, the model need not look up whether a page is read/write-able
before an access takes place. It can gain a handle onto the page from the appropriate
tree structure, and test it's validity. This may improve performance of the common case,
where there is no exception, at the cost of slowing down the uncommon cases where
an exception occurs, or where a page has yet to be allocated in the memory model.
A similar trick can be used for distinguishing between cached and uncached memory,
or for modelling memory-mapped I/O devices.

• Using the distinction between S- and N-cycles, and caching a pointer into the memory
model on non-sequential cycles which is used on sequential cycles. This is similar to the
page-mode access provided by DRAM hardware.

Take care because in some circumstances the ARM will perform an I-cycle followed by
an S cycle and not the expected N cycle. On ARM6 and ARM7 these merged I-S cycles
occur for the N-cycle instruction prefetch following a data load. The ARM (and
ARMulator) will perform a cycle marked as sequential where the address is not actually
sequential from the previous memory access. However the address will be sequential
from the previous instruction fetch, so a sequential instruction fetch will always be
sequential from the previous instruction fetch, on current processors.
On a model which uses, for example, a deep tree structure or a hash table, this trick can
be used to remove the need to search the model, instead allowing the program to
immediately find the appropriate page.

Using these and similar techniques ARM have developed a complete model of the ARM610
memory system (physical memory, cache and MMU based translation unit) which only has a 25%
overhead over the standard armvirt  memory model.
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10.3 Writing Custom Serial Drivers for ARM Debuggers
In addition to the ARMulator target, the ARM debuggers can be used to debug a remote target,
using the remote debug protocol (RDP). RDP is a byte-stream protocol, allowing communication
to take place over any kind of channel, providing that drivers are written for both ends of the link.

At the DEMON end, the drivers should be written in C or ARM assembler as part of the port of
DEMON to your target hardware.

At the debugger end of the link, the new drivers must be included as part of armsd/windbg. This
involves adding a module into armsd/windbg, using the supplied prebuilt objects and makefile.
For Win32 tools (Windows95 and Windows NT), the remote drivers are packaged into a DLL so
they can be easily replaced with a user-supplied DLL. This is because the debugger
(armsd.exe  or windbg.exe ) will not need to be rebuilt, and the same DLL will be used for both
debuggers. Under Unix/DOS the entire tool needs to be rebuilt. See ➲10.4 Rebuilding the
ARMulator on page 10-13 for further details.

It is possible to rebuild the RDP drivers for the following hosts:

SunOS

HP/UX

Macintosh

Windows 95 & Windows NT

DOS

It is NOT possible to rebuild the RDP drivers for:

Windows 3.1 the Windows 3.1 serial/parallel drivers are complicated by extra
'thunking' between the 32-bit application and 16-bit Windows. Users
wishing to rebuild the RDP drivers should upgrade to Windows 95 or
Windows NT.

10.3.1 Supplied serial/parallel driver source files

In the Software Development Toolkit, sources are supplied (in the armsd/source  directory) for
serial and parallel drivers. These are described below.

In the Windows Toolkit, sources are supplied for Win32 serial and parallel drivers. The source
for the supplied combined 16-bit and 32-bit drivers is not supplied.

The API to the drivers is the same on both systems:

serdrive.h This is a header file for the RDP I/O interface. It defines a
DriverDesc  struct which contains function pointers for
routines to open, close, read, write the comms link. This is the
official interface between the debugger and the RDP comms
link.
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serdrive.c This is an implementation of the serial driver.

spdrive.c This is an implementation of the serial/parallel driver.

drivers.c New drivers are added to the debugger by including a pointer to
their DriverDesc  in the drivers  array defined by drivers.c

pirdi.h Defines functions used by hostos.c  to read and write bytes
across the RDP link.

In addition the DOS serial drivers include code for interrupt-driven serial I/O (in the file
comsisr.c ).

Any new driver must provide a DriverDesc  structure, defined in serdrive.h  and add this
structure to the DriverList  defined in drivers.h . The elements of this structure are:

name This should be a unique name for the driver, which is used by
armsd as a command-line argument. For example the standard
serial driver defines the name "SERIAL".

OpenProc This function opens a connection, and returns a handle onto it.
This handle is passed into the other driver functions. On the
standard Unix serial port drivers it merely opens the appropriate
serial port and returns the (Unix) file handle.

ConfigProc The configuration function is used to set the linespeed on the
connection and it initialise it.

ReadProc WriteProc These functions read and write data across the link. The RDP
assumes that the link is error free, and that characters are not
lost (must have flow-control or adequate buffering).

CloseProc The CloseProc  is called when the RDP wishes to close the
connection.

LoggingProc This is called when the level of RDP logging is changed. (e.g.
when the $rdi_log  variable is changed in armsd). For a
description of the meaning of the logging values, see ➲The ARM
Software Development Toolkit Reference Manual: Chapter 7,
Symbolic Debugger.
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10.4 Rebuilding the ARMulator
Under Unix, DOS, and on the Macintosh the ARMulator is linked onto a core debugger, to
produce an armsd executable image. Under Windows, the ARMulator exists as a Windows DLL.

10.4.1 Rebuilding armsd under Unix/DOS

The following diagram shows the ARMulator source tree for Unix and DOS:

New sources, e.g. memory models, serial drivers, etc., should be placed in the source
directory.

Any new memory models can be added to the ARMulator Makefile  by adding a rule to it for
the model. For example:

example.o: $(SRC)example.c $(HFILES)
$(CC) $(CFLAGS) -c $(SRC)example.c

Any new serial drivers also need rules adding (similar to the above), but also need to be added
to the OFILES list of object files at the top of the Makefile to be linked into the resulting armsd.
You also need to declare the driver in drivers.c .

An ARMulator can then be built using make:

make MODEL=example

This compiles to an ARMulator based armsd which uses the example  memory model. By
default, armsd will be rebuilt with the armvirt  memory model.

build

source

armul

obj

Source files

armsd object files etc.

Makefile, and build objects



The ARMulator

10-14 Programming Techniques
ARM DUI 0021A

10.4.2 Rebuilding ARMULATE.DLL under Windows

The process required to rebuild the ARMULATE.DLL component is very similar to that described
above.

There is a choice of compilers for rebuilding the ARMulator DLL, Microsoft Visual C++ (produces
the fastest code, but only runs under 32-bit Windows - Windows NT or Windows 95) and Watcom
C/C++ V10.0a; the rebuild kit provides makefiles for both these compilers.

As described above, new rules may be added to the ARMulator DLL makefile ARMULATE.MAK.

When complete, the make procedure will produce a file called ARMULATE.DLL, this should be
placed in the BIN sub-directory of the ARM Tools200 installation directory, typically
C:\ARM200\BIN .

WIN32

ARMBG

ARMUL

MSVC20

WATCOM10

DLL

DLL

CLX

CUSTOM

REMOTE

MSVC20

WATCOM10

DLL

DLL

Rebuild parent directory for WIN32 components

ARM Debugger toolbox components

ARMulator components

Microsoft Visual C++ V2.0+ DLL rebuild directory

Watcom C/C++ V10.0a DLL rebuild directory

Customisable resources for Windows Tools

WIN32 serial driver components

Microsoft Visual C++ V2.0+ DLL rebuild directory

Watcom C/C++ V10.0a DLL rebuild directory
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The new DLL will automatically be used on the next invocation of either the ARM Debugger for
Windows or armsd (on 32-bit Windows operating systems).

Rebuilding the serial driver DLL REMOTE.DLL is accomplished in the same way (using
REMOTE.MAK). However, it should be noted that the rebuild kit provided is for 32-bit Windows
operating systems only, i.e. Windows NT or Windows 95.
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Exceptions

This chapter explains how the ARM deals with exceptions, and discusses the issues
involved in writing exception handlers.

11.1 Overview 11-2

11.2 Entering and Leaving an Exception 11-5

11.3 The Return Address and Return Instruction 11-6

11.4 Writing an Exception Handler 11-8

11.5 Installing an Exception Handler 11-12

11.6 Exception Handling on Thumb-Aware Processors 11-14

11
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11.1 Overview
During the normal flow of execution through a user program, the program counter generally
increases sequentially through the address space, with branches to nearby labels or
branch-with-links to subroutines.

Exceptions occur when this normal flow of execution is diverted, so that the processor can handle
events generated by internal or external sources. Examples of such events are:

• externally generated interrupts

• an attempt by the processor to execute an undefined instruction

It is necessary for the handling of such exceptions to preserve the previous processor state so
that execution of the original user program can resume once the appropriate exception routine
has been completed.

The ARM recognises seven different types of exception, as shown below:

Exception Description

Reset Occurs when the CPU reset pin is asserted. Only expected to
occur for signalling power-up, or for resetting as if the CPU has
just powered up. It can therefore be useful for producing soft
resets.

Undefined Instruction Occurs if neither the CPU nor any attached coprocessor
recognises the currently executing instruction.

Software Interrupt
(SWI)

Is a user-defined synchronous interrupt instruction, so that a
program running in User mode can request privileged operations
which need to be run in Supervisor mode.

Prefetch Abort Occurs when the CPU attempts to execute an instruction which
has prefetched from an illegal address, ie. an address that the
memory management subsystem has determined as inaccessible
to the CPU in its current mode.

Data Abort Occurs when a data transfer instruction attempts to load or store
data at an illegal address.

IRQ Occurs when the CPU’s external interrupt request pin is asserted
(low) and the I bit in the CPSR is clear.

FIQ Occurs when the CPU’s external fast interrupt request pin is
asserted (low) and the F bit in the CPSR is clear.

 Table 11-1: Exception types
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11.1.1 The vector table

Exception handling is controlled by a vector table. This is a reserved area of 32 bytes at the
bottom of the memory map with one word of space allocated to each exception type (plus one
word currently reserved for handling address exceptions when the processor is configured for a
26-bit address space). This is not enough space to contain the full code for a handler, so the
vector entry for each exception type typically contains a branch or load PC instruction to
continue execution with the appropriate handler.

11.1.2 Use of modes and registers by exceptions

As a rule, the user program runs in User mode, but the servicing of the exceptions requires
privileged (ie. non-user mode) operation. An exception changes the processor mode, and this
in turn means that each exception handler has access to a certain subset of the banked
registers:

• its own r13 or Stack Pointer (SP_<mode>)

• its own r14 or Link Register (LR_<mode>)

• its own Saved Program Status Register (SPSR_<mode>)

• and in the case of FIQ, five other general purpose registers (r8_FIQ to r12_FIQ)

Each exception handler must ensure that other registers are restored to their original state upon
exit. This can be done by storing the contents of any registers the handler needs to use onto its
stack and restoring them before returning.

Note You must ensure that the required stacks have been set up. If you are using Demon or
ARMulator, this is done for you.

11.1.3 Exception priorities

Several exceptions can occur simultaneously, and they are serviced in a fixed order of priority.
Each exception is handled in turn before execution of the user program continues. However, it
is not possible for all exceptions to occur concurrently. For instance, the undefined instruction
and SWI exceptions are mutually exclusive as they both correspond to particular decodings of
the current instruction.

Placing the Data Abort exception above the FIQ exception in the priority list ensures that the
Data Abort is actually registered before the FIQ is handled. The Data Abort handler is entered,
but control is then passed immediately to the FIQ handler. Once the FIQ has been handled,
control returns to the Data Abort Handler. This means that the data transfer error does not
escape detection as it would if the FIQ were handled first.

➲Table 11-2: The exception vectors on page 11-4 shows the processor modes, the exceptions
that give rise to them and the priority in which the exceptions are handled.
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Vector Address Exception Type Exception Mode Priority (1=High, 6=Low)

0x0 Reset svc 1

0x4 Undefined Instruction undef 6

0x8 Software Interrupt (SWI) svc 6

0xC Prefetch Abort abort 5

0x10 Data Abort abort 2

0x14 Reserved Not applicable Not applicable

0x18 Interrupt (IRQ) irq 4

0x1C Fast Interrupt (FIQ) fiq 3

 Table 11-2: The exception vectors
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11.2 Entering and Leaving an Exception

11.2.1 The processor’s response to an exception

When an exception is generated, the processor:

1 Copies the Current Program Status Register (CPSR) into the Saved Program Status
Register (SPSR) for the mode in which the exception will be handled.

This saves the current mode, interrupt mask and condition flags.

2 Sets the appropriate CPSR mode bits:

a) to change to the appropriate mode, also mapping in the appropriate banked
registers for that mode.

b) to disable interrupts.
IRQs are disabled once any other exception occurs, and FIQs are also disabled
when a FIQ occurs.

3 Stores the return address (PC – 4) in LR_<mode>.

4 Sets the PC to the appropriate vector address.

This forces the branch to the appropriate exception handler.

11.2.2 Returning from an exception handler

Two actions need to take place to return execution to the place where the exception occurred:

1 Restore the CPSR from the SPSR_<mode>.

2 Restore the PC using the return address stored in LR_<mode>.

These can be achieved in a single instruction, because adding the S flag (update condition
codes) to a data-processing instruction when in a privileged mode with the PC as the destination
register, also transfers the SPSR to CPSR as required. This also applies to the Load Multiple
instruction (using the ^ qualifier).
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11.3 The Return Address and Return Instruction
The actual value in the PC which causes a return from a handler varies with the exception type.
When an exception is taken, the PC may or may not have been updated, and the return address
may not necessarily be the next instruction pointed to by the PC, because of the way the ARM
loads its instructions.

When loading the instructions it needs to execute a program, the ARM uses a pipeline with a
fetch, decode and execute stage.

At any one time, there will be one instruction in each stage of the pipeline. The PC actually points
to the instruction being fetched. Since each instruction is a word long, the instruction being
decoded is at address PC – 4 and the instruction being executed is at PC – 8.

11.3.1 Returning from SWI and undefined instruction

The SWI and Undefined Instruction exceptions are generated by the instruction itself, so the PC
has not been updated when the exception is taken. Therefore storing PC – 4 in LR_<mode>
makes LR_<mode> point to the next instruction to be executed. Restoring the PC from the LR
returns control from the handler:

MOVS pc, lr

11.3.2 Returning from FIQ and IRQ

After executing each instruction, the CPU checks the interrupt pins and interrupt disable bits in
the CPSR. This means that an IRQ or FIQ exception is only ever generated after the PC has been
updated, and consequently storing PC – 4 in LR_<mode> causes LR_<mode> to point two
instructions beyond where the exception occurred. When the handler has finished, execution
must continue from the instruction prior to the one pointed to by LR_<mode>. The address to
continue from is one word (or four bytes) less than that in LR_<mode>, so the return instruction is:

SUBS pc, lr, #4

11.3.3 Returning from prefetch abort

A prefetch abort is not generated at the time the CPU attempts to fetch an instruction from an
illegal address. Instead, the instruction is flagged as invalid, and the execution of instructions
already in the pipeline continues until the invalid instruction reaches the execute stage, when the
exception is generated.

The handler gets the MMU to load the appropriate virtual memory locations into physical memory.
Having done this, it must return to the offending address and reload the instruction, which should
now load and execute correctly.

As the PC will not have been updated at the time the prefetch abort was issued, LR_ABORT will
point to the instruction following the one that caused the exception. The handler must therefore
return to LR_ABORT – 4 using:

SUBS pc, lr, #4
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11.3.4 Returning from data abort

When a load or store instruction tries to access memory, the PC has already been updated, so
that storing PC – 4 in LR_ABORT makes it point to two instructions beyond the address where
the exception was generated. Once the MMU has loaded the appropriate address into physical
memory, the handler should return to the original, aborted instruction so a second attempt can
be made to execute it. The return address is therefore two words (or eight bytes) less than that
in LR_ABORT, making the return instruction:

SUBS pc, lr, #8
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11.4 Writing an Exception Handler
This section explains the functions performed by the code that handles each type of exception.

11.4.1 SWI handler

When the SWI handler is entered, it decides which SWI is being called. This information is stored
in bits 0-23 of the instruction itself (see ➲Figure 12-2: The SWI instruction on page 12-4).

The handler must load the SWI instruction that caused the exception so that it can examine these
bits. It does this using the address stored in LR_SVC, which is the address of the instruction
which follows the SWI. Therefore the SWI is loaded into a register (in this case r0) using:

LDR r0, [lr,#-4]

and the SWI number is extracted by clearing the top eight bits of the opcode:

BIC r0, r0, #0xff000000

The resulting value can then be used in a C switch()  statement or an assembly language
lookup table to branch to the routine which implements the relevant SWI.

Note Because of the need to access the link register and load in the actual SWI instruction,
the top-level SWI handler must be written in assembly language. However, the individual routines
that implement each SWI can be written in C if required: see ➲Chapter 12, Implementing SWIs.

11.4.2 Interrupt handlers

The ARM has two levels of external interrupt:

• FIQ

• IRQ

FIQs have higher priority than IRQs in two ways:

1 FIQs are serviced first when multiple interrupts occur.

2 Servicing an FIQ causes IRQs to be disabled, preventing them from being serviced until
after the FIQ handler has re-enabled them (usually by restoring the CPSR from the
SPSR at the end of the handler).

You can set up C functions as interrupt handlers by using the special function declaration
keyword __irq .

This keyword:

• preserves all registers (excluding floating-point)

• exits the function by setting the PC to LR – 4 and restoring the CPSR to its original
value.
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The simple example handler below reads a byte from location 0xc0000000 and writes it to
location 0xc0000004:

void __irq IRQHandler (void)
{ volatile char *base = (char *) 0xc0000000;

*(base+4) = *base;
}

Installing the FIQ handler

The FIQ vector is the last entry in the vector table, at address 0x1C. It is situated there so that
the FIQ handler can be placed directly at the vector location and run sequentially from that
address. This removes the need for a branch and its associated delays, and also means that if
the system has a cache, the vector table and FIQ handler may all be locked down in one block
within it. This is important because FIQs are designed to service interrupts as quickly as
possible.

The simplest way to place the FIQ handler at 0x1c is to copy it there. ARM code is inherently
relocatable, but note that:

• the code should not use any absolute addresses

• PC-relative addresses are allowable as long as the data is copied as well as the code
(so that it remains in the same relative place)

The five extra FIQ mode banked registers mean that status can be held between calls to the
handler

A simple FIQ handler is shown below. This takes some data and copies it out to an i/o port, using
the following registers:

r8 points to the i/o port (with an interrupt flag at r8 + 4)

r9 points to the current word in the data

r10 points to the end of data

r11 is used as temporary storage

r12 points to a semaphore which is set when the copy is complete

FIQ_Start; Note no stack usage - banked registers
STR r8, [r8,#4];set int_flag in port
CMP r9, r10;End of data reached?
LDRNE r11,[r9],#4;Read in next word
STRNE r11, [r8];Copy it to port
STREQ r8,[r12];Set semaphore when finished
SUBS pc,lr,#4; Return

FIQ_End

This can be copied to the bottom of the vector table with:

memcpy (0x1c, FIQ_Start, FIQ_End-FIQ_Start);
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11.4.3 Reset handler

The operations carried out by the Reset handler depend upon the system that the software is part
of. It might, for example:

• do a hardware self test

• detect how much memory is available

• initialise stacks and registers

• initialise peripheral hardware such as i/o ports

• initialise the MMU if one is being used (ARM cached processors)

• call the main body of code (__main()  if using C)

See ➲Chapter 9, Writing Code for ROM for a detailed example.

11.4.4 Undefined instruction handler

Any instructions that are not recognised by the CPU are first of all offered to any coprocessors
attached to the system. If the instruction remains unrecognised, an undefined instruction
exception is generated. It is still possible that the instruction is intended for a coprocessor, but the
relevant coprocessor (eg. Floating Point Accelerator) is not attached to the system. However, a
software emulator for such a coprocessor might be available. Such an emulator should:

1 Attach itself to the undefined instruction vector, storing the old contents.

2 Examine the undefined instruction to see if it should be emulated.

This is similar way to the way a SWI handler extracts the number of a SWI, but rather
than extracting the bottom 24 bits, the emulator must extract bits 24 to 27, which
determine if the instruction is a coprocessor operation:

• If bits 27-24 = 1110 or 110x, the instruction is a coprocessor instruction.

• If bits 8-11 show that this coprocessor emulator should handle the instruction,
the emulator should process the instruction and return to the user program.

• Otherwise the emulator should pass the exception onto the original handler (or
the next emulator in the chain) using the vector stored when the emulator was
installed.

Once any chain of emulators is exhausted, no further processing of the instruction can take
place, so the undefined instruction handler should report an error and quit.
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11.4.5 Prefetch abort handler

If the system contains no MMU, the Prefetch Abort handler can simply report the error and quit.
If there is an MMU, the address that caused the abort needs to be restored into physical
memory. LR_ABORT points to the instruction at the address following the one that caused the
abort, so the address that needs restoring is at LR_ABORT – 4. Thus the virtual memory fault
for that address can be dealt with and the instruction fetch re-attempted. The handler should
therefore return to the same instruction, rather than the following one.

11.4.6 Data abort handler

If there is no MMU, the Data Abort handler should simply report the error and quit. If there is an
MMU, the virtual memory fault needs dealing with.

The instruction which caused the abort is at LR_ABORT – 8 (since LR_ABORT points two
instructions beyond the instruction that caused the abort).

There are three possible cases of instruction that can cause this abort:

1 Single Register Load or Store:

a) If the CPU is in early abort mode (ARM6 only), the address register will not have
been updated (if writeback was requested).

b) If the CPU is in late abort mode, if writeback was requested the address register
will have been updated. The change will need to be undone.

2 Swap:

There is no address register update involved with this instruction.

3 Load / Store Multiple:

If writeback is enabled, the base register will have been updated as if the whole transfer
had taken place. (In the case of an LDM with the base register in the register list, the
processor will handle replacing the overwritten value with the modified base value in
such a way that recovery is possible.) The number of registers involved will therefore
need to be used to recalculate the original base address.

In each case, the MMU can load the required virtual memory into physical memory (the address
which caused the abort being stored in the MMU’s Fault Address Register (FAR)). Once this is
done, the handler can return and retry executing the instruction.
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11.5 Installing an Exception Handler
Once a handler for a particular exception has been written, it must be installed in the vector table
so that it will be executed when the exception occurs.

11.5.1 Branching to the handler

The simplest method of installing a handler is to place a branch to it in the vector table. The
limitation of this method is that the branch instruction only has a range of 32Mbytes.

The required instruction can be constructed as follows:

1 Take the address of the exception handler.

2 Subtract the address of the corresponding vector.

3 Subtract 0x8 to allow for the pipeline.

4 Shift the result right by two to give a word offset, rather than a byte offset.

5 Test that the top eight bits of this are clear, thus ensuring that the result is only 24 bits
long (as the offset for the branch is limited to this).

6 Logically OR this with 0xea000000 (the opcode for the BAL instruction) to produce the
value to be placed in the vector.

A C function which implements this algorithm is provided below. This takes as its arguments the
address of the handler and the address of the vector in which the handler is to be to installed.
The function installs the handler and returns the original contents of the vector. This result might
be used for creating a chain of handlers for a particular exception.

unsigned Install_Handler (unsigned routine, unsigned *vector)
/* Updates contents of 'vector' to contain branch instruction */
/* to reach 'routine' from 'vector'. Function return value is */
/* original contents of 'vector'.*/
/* NB: 'Routine' must be within range of 32Mbytes from 'vector'.*/
{ unsigned vec, oldvec;

vec = ((routine - (unsigned)vector - 0x8)>>2);
if (vec & 0xff000000)
{ printf ("Installation of Handler failed");

exit (0);
}
vec = 0xea000000 | vec;
oldvec = *vector;
*vector = vec;
return (oldvec);

}
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Code to call this to install an IRQ handler might be:

unsigned *irqvec = (unsigned *)0x18;
Install_Handler ((unsigned)IRQHandler,(unsigned)irqvec);

In this case the returned, original contents of the IRQ vector are discarded.

11.5.2 Long-distance branches

In most circumstances, the branch instruction’s 32Mbyte range will be sufficient to reach the
appropriate handler from the vector table. In cases where the handler routine is further than
32Mbytes from the vector table, the PC can be forced to the required address by:

1 Storing the address of the handler in a suitable memory location.

2 Placing in the vector, the encoding of an instruction to load the PC with the contents of
the chosen memory location.

The following C routine implements this:

unsigned Install_Handler (unsigned *location, unsigned *vector)
/* Updates contents of 'vector' to contain LDR pc, [pc, #offset] */
/* instruction to cause long branch to address in ‘location’. */
/* Function return value is original contents of 'vector'.*/
{ unsigned vec, oldvec;

vec = ((unsigned)location - (unsigned)vector) | 0xe59ff000

oldvec = *vector;
*vector = vec;
return (oldvec);

}

Code to call this to install an IRQ handler might be:

unsigned *irqvec = (unsigned *)0x18;
unsigned *irqaddr = (unsigned *)0x38; /* For example */
*irqaddr = (unsigned)IRQHandler;
Install_Handler (irqaddr,irqvec);

Again in this case the returned, original contents of the IRQ vector are discarded.
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11.6 Exception Handling on Thumb-Aware Processors
Note This section only applies to processors that implement ARM Architecture 4T.

When writing exception handlers suitable for use on Thumb-aware processors, there are some
further considerations to those already described in this chapter.

The basic exception handling mechanism on Thumb-aware processors is the same as that of
non-Thumb-aware processors, where an exception causes the next instruction to be fetched
from the appropriate vector table entry.

The same vector table is used for both Thumb state and ARM state exceptions. This means that
an initial step must be added at the top of the exception handling procedure described in ➲11.2.1
The processor’s response to an exception on page 11-5. The procedure now reads:

1 Check the processor’s state. If it is operating in Thumb state, switch to ARM state.

2 Copy the CPSR into SPSR_<mode>

3 Set the CPSR mode bits:

4 Store the return address (PC – 4) in LR_<mode>.

5 Set the PC to the appropriate vector address

The switch from Thumb state to ARM state in step 1ensures that the ARM instruction installed at
the appropriate vector (either a branch or a PC-relative load) is correctly fetched, decoded and
executed. Execution then moves to a top-level veneer, also written in ARM code, which saves
the processor status and any registers. The programmer then has two choices.

1 Write the whole exception handler in ARM code.

2 Make the top-level veneer store any necessary status, and then perform a BX (branch
and exchange) to a Thumb code routine which handles the exception.

Such a routine will need to return to an ARM code veneer in order to return from the
exception, since the Thumb instruction set does not have the instructions required for
restoring the CPSR from the SPSR.

This second strategy is shown in ➲Figure 11-1: Handling an exception in Thumb state on
page 11-15.

11.6.1 Returning from exceptions

When an exception is taken, the processor computes the LR_<mode> value in such a way that
the instruction used to exit the handler will be independent of the state in which the exception
occurred.

For example, the following instruction always exits from a FIQ handler correctly, regardless of
whether the FIQ was raised in ARM state (with 32-bit instructions in the pipeline) or in Thumb
state (with 16-bit instructions in the pipeline).

SUBS pc, lr, #4
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 Figure 11-1: Handling an exception in Thumb state

11.6.2 Handling SWIs in Thumb state

Some handlers need to decide what state the processor was in when the exception occurred.
This can be done by examining the T bit in the SPSR:

T_bit EQU 0x20 ; Thumb bit of CPSR/SPSR, ie. bit 5.
:
:
MRS r0, spsr ; move SPSR into general-purpose register
TST r0, #T_bit; Test if bit 5 is set
BEQ T_handle ; T bit set - exception occurred in Thumb

; state
BNE A_handle ; T bit clear - exception occurred in ARM

; state

An example of where this would be needed would be in a SWI handler. Both ARM and Thumb
instruction sets contain SWI instructions. See ➲11.4.1 SWI handler on page 11-8 and in
➲Chapter 12, Implementing SWIs for more information.

When handling a Thumb SWI instruction, three things need to be taken into account:

1 The address of the instruction will be at LR – 2, rather than LR – 4.

2 A halfword load is required to fetch the instruction.

3 There are only 8 bits available for the SWI number instead of the ARM version’s 24
bits.

Switch to
ARM state

Switch to
Thumb state

Switch to
ARM state

Switch to Thumb
state and return

Thumb-coded application Vector table Arm-coded veneers Thumb-coded handler

Save CPU and
register state

Restore CPU and
register state

Entry veneer

Exit veneer

Handle the
exception
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The following fragment of ARM code will handle a SWI from either source:

     MRS     r0, spsr ; move SPSR into general purpose register
     TST     r0, #T_bit ; Test if bit 5 is set
     LDRHEQ  r0,[lr,#-2] ; T_bit set so load halfword (Thumb)
     BICEQ   r0,r0,#0xff00 ; and clear top 8 bits of halfword

; (LDRH clears top 16 bits of word)
     LDRNE   r0,[lr,#-4] ; T_bit clear so load word (ARM)
     BICNE   r0,r0,#0xff000000; and clear top 8 bits of word
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12.1 Introduction
This chapter explains the steps involved in writing and installing a Software Interrupt (SWI)
handler that is able to deal with SWIs in your application code.

It also examines the additions required to allow a user SWI handler to cooperate with the Debug
Monitor (Demon) SWI handler when developing on a PIE card.

For additional information, refer to:

• ➲Chapter 3, Programmer’s Model, which explains the ARM’s usage of modes and
banked registers

• ➲Chapter 11, Exceptions, which gives a general guide to writing exception handlers

12.1.1 What is a SWI?

A SWI is a user-defined synchronous interrupt instruction. It provides the means for a program
running in User mode to request privileged operations which need to be run in Supervisor mode.
The services provided by an operating system to the user for input/output are examples of such
operations. To the CPU, a SWI is an exception.

12.1.2 What happens when a SWI instruction is executed?

When the CPU executes a SWI, it:

1 copies the Current Program Status Register (CPSR) into the Supervisor mode Saved
Program Status Register (SPSR_SVC)

This saves the current mode, interrupt mask and condition flags.

2 sets the CPSR mode bits to cause a change to Supervisor mode

This maps in the banked Stack Pointer (SP_SVC) and Link Register (LR_SVC).

3 sets the CPSR IRQ disable bit

This means that the SWI handler will execute without ordinary interrupts being taken.
The FIQ disable bit is not set, so fast interrupts can still be taken. You can choose to
turn IRQs back on, or disable FIQs, within the handler itself.

4 stores the value (PC – 4) into LR_SVC

This means that the link register now points to the next instruction to be executed when
the SWI has been handled. The SWI itself is located at PC – 8.

5 forces the PC to 0x8

Address 0x8 is the SWI entry in the vector table. Typically, this will contain a branch
instruction to the handler.
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 Figure 12-1: SWI execution path

12.1.3 Returning from a SWI

Once it has finished, the SWI handler returns control to the calling program by:

• copying SPSR_SVC into the CPSR

This restores the condition codes, interrupt mask and the mode which were in force
when the SWI was encountered.

• restoring the PC from LR_SVC

This resumes execution of the program from the instruction following the SWI.

These two operations must be carried out in one instruction. If the return address is held in the
link register (r14), the instruction:

MOVS pc, lr

not only moves the address to the PC, but also restores the processor status. This is because
in privileged modes the MOVS instruction, with the PC as the destination register, causes the
SPSR to be copied to the CPSR.

If the return address was previously saved on the stack, the SWI handler can use an instruction
of the form:

LDMFD sp! {r0-r12, pc}^

to exit the SWI. The use of ^  in a privileged mode, with the PC as a destination register as shown
above, causes the SPSR to be copied to the CPSR.

User Program Vector Table

B R_Handler
B U_Handler
B S_Handler
B P_Handler
B D_Handler

B I_Handler
B F_Handler

Reset
Undefined instruction
SWI

Prefetch Abort
Data Abort

IRQ
FIQ

Reserved

0x0
0x4
0x8
0xC

0x10

0x18
0x1C

0x14

ADD r0,r0,r1
SWI 0x10
SUB r2,r2,r0

SWI Handler
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12.1.4 Decoding the SWI instruction

The handler’s first task is to decode the SWI number to decide which function to perform. The
SWI number is stored within the SWI instruction itself as a 24-bit field, giving a range of 0 to
0xFFFFFF. This is shown in ➲Figure 12-2: The SWI instruction, below.

 Figure 12-2: The SWI instruction

The handler’s first task is therefore to locate the instruction, so it can read the SWI number. When
a SWI instruction is executed, LR_SVC is set to PC – 4, so the instruction is located at
LR_SVC –4.

Because LR_SVC can only be accessed via assembly language, so the code that obtains the
SWI number must be written in assembler. The following two lines extract the SWI number and
place it in r0:

LDR r0,[lr,#-4] ; Load the SWI instruction into r0

BIC r0, r0, #0xff000000 ; Mask out the top 8 bits.

The part of the handler that actually implements the SWIs can be written in assembly language
(using r0 to control execution through a jump table) or as a C subroutine (with r0 being passed
as a parameter that controls a switch()  statement). The last part of the handler will again need
to be in assembly language because of the need to restore the CPSR from SPSR_SVC.

12.1.5 Stack and register usage

The system’s SWI calling standard (defined by the system designer) will specify which registers
have to be preserved across calls. The SWI handler must adhere to the standard, and avoid
corrupting the specified registers, otherwise the behaviour of the user program will be
unpredictable.

Since the handler will require working registers, it needs to save all the non-banked registers
which must be preserved (Supervisor mode has banked SP and LR only). This description
assumes that all registers must be preserved except for those which pass back a result. On a
real system this might result in too much of a performance overhead, and the number of saved
registers would have to be reduced accordingly.

31 28 27 24 23 0

cond 1 1 1 1 24-bit comment field (ignored by the processor)

SWI numberCondition field
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12.1.6 Re-entrant SWI handling

Unless your SWI handler is written to be re-entrant, it will be unable to use SWIs itself because
taking another exception while in Supervisor mode will corrupt both SPSR_SVC and LR_SVC.
The second exception will return correctly to the first, but the first will be unable to return to the
calling program.

If the handler stores SPSR_SVC and LR_SVC, along with the non-banked registers each time
it is called and then retrieves them again each time it exits, this problem will not arise, as each
instance will have access to the correct return address and status information.

 Figure 12-3: Ensuring re-entrancy

Supervisor mode has its own banked SP pointing to its own stack, so the registers can all be
stored there. However, note that the SPSR cannot be stored on the stack directly, but must be
copied onto the stack using an intermediate general purpose register. The following fragment of
code shows how this is done:

SUB sp, sp, #4 ; Leave room on stack for storing SPSR

STMFD sp!, {r0-r12,lr} ; Store gp registers

MOV r1,sp ; Pointer to parameters on stack

MRS r2, spsr ; Get SPSR into gp register

;

; Extract SWI number and place in r0 as above

;

STR r2, [sp,#14*4]; Store SPSR above gp registers

;

; Handle this particular SWI

;

LDR r2, [sp,#14*4] ; Restore SPSR from stack

MSR spsr, r2

LDMFD sp!, {r0-r12,lr} ; Unstack registers

ADD sp, sp, #4 ; Remove space used for storing SPSR

MOVS pc, lr ; Return from handler.

Top level SWI Handler

Store registers
Extract SWI Number

Restore registers
Return

SWI Routine

Handle a SWI

Return
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Passing parameters via the stack

Storing the registers has another advantage. A SWI will often be executed with a set of
parameters, passed in registers. These can be accessed easily in assembly language, but you
may have written your SWI handler in C. In this case, you can pass the SWI number in r0 (as
extracted above), with r1 pointing to the location of the registers on the stack. See ➲12.2.1
Implementing a SWI handler in C on page 12-7.

Note that the stack used here is the Supervisor stack so before the SWI Handler is called, it must
have been set up to point to a dedicated area of memory. In a final system this might be done in
the __main  routine within rtstand.s , the standalone C library. It might also be necessary to
add code for stack overflow checking to the top level SWI Handler, as follows:

SVCStackBase     EQU 0xA00 ; Full descending stack so base

SVCStackEnd      EQU 0x800 ; is higher in memory than end.

SVCStackHeadroom EQU 0x40 ;Allow headroom of 16 words, even

; though maximum handler places on

; stack is 15 words, because can then

; use (8 bit shifted) immediate value

; in the CMP.

SVCStackLimit    EQU SVCStackEnd + SVCStackHeadroom

:

:

:

MOV sp, #SVCStackBase ; Set up SVC stack pointer

: ; (in rtstand.s, say)

:

:

SWIHandler

CMP sp, #SVCStackLimit ; Check if enough room on stack to

BLS stack_overflow ; store registers, if not report error

;

; Rest of SWI Handler code
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12.2 Implementing a SWI Handler

12.2.1 Implementing a SWI handler in C

The easiest way of implementing the SWI handling mechanism is to write it in C, using a
switch()  statement. Suppose we have the following function:

void C_SWI_handler (unsigned number, unsigned *reg)

{ /* Handle the SWIs */

}

the actual body of which is in the format:

switch (number)

{ case 0 : /* SWI number 0 code */

break;

case 1 : /* SWI number 1 code */

break;

/* Rest of SWI routines */

}

The code implementing each SWI must be kept as short as possible and in particular should not
call routines from the C library, as these can make many nested procedure calls which can
exhaust the stack space and cause the application to crash.

This C function is called from the top-level assembly language routine, which places the number
of the SWI to be handled into r0, and a pointer to the registers as they were when the SWI was
encountered (ie. the Supervisor stack) in r1. It then invokes the C function with a branch with
link:

BL C_SWI_Handler

Passing arguments from the top-level routine

The APCS ensures that when C_SWI_Handler  is called, r0 is allocated to its first argument and
r1 to the second. To read the values in registers r0 to r12 from C_SWI_Handler , access the
integer values pointed to by reg , for example:

value_in_reg_0 = reg [0];

value_in_reg_1 = reg [1];

value_in_reg_2 = reg [2];

value_in_reg_3 = reg [3];

:

:

value_in_reg_12 = reg [12];

How reg relates to the stack is shown in ➲Figure 12-4: Accessing the Supervisor stack.
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 Figure 12-4: Accessing the Supervisor stack

Returning a result to the top-level routine

To return a result from the function to the calling assembly language routine, place the result
value back on the stack with a simple assignment, for example:

reg [0] = result_of_SWI_call;

12.2.2 Implementing a SWI handler in assembly language

In assembly language, choosing which SWI to execute can be done with a jump table:

ADR r2, SWIJumpTable
LDR pc, [r2,r0,LSL #2]

SWIJumpTable
DCD SWInum0
DCD SWInum1
;
; DCD for each of other SWI routines
;

SWInum0 ; SWI number 0 code
B EndofSWI

SWInum1 ; SWI number 1 code
B EndofSWI
;
; Rest of SWI handling code
;

EndofSWI
; Return execution to top level SWI handler
; so as to restore registers and go back to user program

Previous sp_svc
spsr_svc

lr_svc

r12

r0
sp_svc reg[0]

reg[12]

*reg
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12.3 Loading the Vector Table
Finally, having written your SWI handler, install an instruction in the vector table so that
encountering a SWI causes it to be called. To do this, place a branch instruction in the table. The
instruction can be generated using the following method:

1 Take the address of the top level SWI handler.

2 Subtract the address of the SWI vector (ie. 0x8).

3 Subtract 0x8 to allow for the pipeline.

4 Shift the result right by two to give a word offset rather than a byte offset.

5 Test that the top eight bits of this offset are clear to ensure that the offset is only 24 bits
long (as the branch is limited to this).

6 Logically OR this with 0xea000000 (BAL instruction) to produce the complete
instruction for placing in the vector.

In C this could be coded as:

unsigned Install_Handler (unsigned routine, unsigned *vector)

/* Updates contents of 'vector' to contain branch */

/* instruction to reach 'routine' from 'vector'. */

/* Function return value is original contents of */

/* ’vector’. */

/* NB: 'Routine' must be within range of 32Mbytes */

{ unsigned vec, oldvec;

vec = ((routine - (unsigned)vector - 0x8)>>2);

if (vec & 0xff000000)

{ printf ("Installation of Handler failed");

exit (0);

}

vec = 0xea000000 | vec;

oldvec = *vector;

*vector = vec;

return (oldvec);

}

Notice that the contents of the vector are updated by the routine itself; the return value is the
previous contents of the vector. The reason for returning this value will be examined shortly. For
now, as no use is made of the previous contents, this could be called from your C program with:

Install_Handler((unsigned)SWIHandler,swivec);

where

unsigned *swivec = (unsigned *)0x8;
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In most circumstances, the branch instruction’s 32 Mbyte range will be sufficient to reach the SWI
handler from the vector table. Sometimes, however, an alternate method is needed. This is to
directly force the PC to the handler’s start address. For this to work:

• the address of the handler must be stored in a suitable memory location

• the vector must contain the encoding of an instruction to load the PC with the contents
of that memory location

This can be implemented as:

unsigned Install_LDR_Handler (unsigned *vector, unsigned address)

/* Updates contents of 'vector' to contain 'LDR pc,[pc,#offset]'*/

/* to cause branch from vector to location contained within     */

/* 'address'. Function return value is original contents of     */

/* 'vector'.                                                    */

/* NB: 'address' must be within 4k of vector                    */

{ unsigned vec, oldvec;

vec = ((address - (unsigned)vector - 0x8);

if (vec & 0xfffff000)

{ printf ("Installation of Handler failed");

exit (0);

}

vec = 0xe59ff000 | vec;  /* LDR pc, [pc,#offset] */

oldvec = *vector;

*vector = vec;

return (oldvec);

}

This again returns the original contents of the vector. Temporarily ignoring this returned value,
this routine could be called from the user’s C program by:

Install_LDR_Handler(swivec,(unsigned)swiaddr);

where

unsigned *swivec = (unsigned *) 0x8;

unsigned *swiaddr= (unsigned*)0x38; /*An address<=4k from vector*/

*swiaddr = (unsigned)SWIHandler;
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12.4 Calling SWIs from your Application
This is very simple in assembly language. Set up your registers as required and then call the
relevant SWI:

SWI 700

In C, things are slightly more complicated. Onto each SWI, you must map a call to a function in
your code using the __swi compiler directive.This allows a SWI to be compiled in-line, without
additional calling overhead, provided that:

• its arguments (if any) are passed in r0-r3 only

• its results (if any) are returned in r0-r3 only

The following sections demonstrate how to use the compiler’s in-line SWI facility for a variety of
different SWIs that conform to these rules. These SWIs are taken from the ARM Debug Monitor
interface. For more information see ➲The ARM Software Development Toolkit Reference
Manual: Chapter 17, Demon.

In the examples below, the following options are used with armcc:

-li specifies that the target is a little endian ARM

-apcs 3/32bit specifies that the 32-bit variant of APCS 3 should be used

12.4.1 Calling SWIs that return no result

Consider an example SWI_WriteC . This SWI, which you can declare to be SWI number 0,
writes a byte to the debugging channel, with the byte to be written being passed in r0.

The following C code writes a Carriage Return / Line Feed sequence to the debugging channel.
You can find it in directory examples/swi  as newline.c :

void __swi(0) SWI_WriteC(int ch);

void output_newline(void)
{ SWI_WriteC(13);
  SWI_WriteC(10);
}

In the declaration of SWI_WriteC , notice how __swi(0)  declares the SWI_WriteC  'function'
to be in-line SWI number 0.

Compile this to ARM assembly language source using:

armcc -S -li -apcs 3/32bit newline.c -o newline.s
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This generates the following:

output_newline
    MOV    a1,#&d
    SWI    &0
    MOV    a1,#&a
    SWI    &0
    MOV    pc,lr

Note that your version of armcc may produce slightly different output to that listed here.

12.4.2 Calling SWIs that return one result

Consider SWI_ReadC, which you want to be SWI number 4. This reads a byte from the debug
channel and returns it in r0.

The following C code, a naive routine for reading a line, can be found in directory examples/swi
as readline.c :

char __swi(4) SWI_ReadC(void);

void readline(char *buffer)
{ char ch;
  do {
    *buffer++=ch=SWI_ReadC();
  } while (ch!=13);
  *buffer=0;
}

Note the declaration SWI_ReadC is a function which takes no arguments and returns a char, and
is implemented as in-line SWI number 4.

Compile this code to produce ARM Assembler source using:

armcc -S -li -apcs 3/32bit readline.c -o readline.s

The code produced is:

readline
    STMDB  sp!,{lr}
    MOV    lr,a1
|L000008.J4.readline|
    SWI    &4
    STRB   a1,[lr],#1
    CMP    a1,#&d
    BNE    |L000008.J4.readline|
    MOV    a1,#0
    STRB   a1,[lr,#0]
    LDMIA  sp!,{pc}

Note that your version of armcc may produce slightly different output to that listed here.
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12.4.3 Calling a SWI which returns 2-4 results

If a SWI returns two, three or four results, its declaration must specify that it is a struct-valued
SWI, and the special keyword __value_in_regs  must also be used. This is because a struct
valued function is usually treated as if it were a void function whose first argument is the address
where the result structure should be placed. See ➲7.3 Passing and Returning Structures on
page 7-9 for more details.

As an example, consider SWI_InstallHandler , which we want to be SWI number 0x70.

On entry r0 contains the exception number, r1 contains the workspace pointer and r2 contains
the address of the handler.

On exit r0 is undefined, r2 contains the address of the previous handler and r1 the previous
handler's workspace pointer.

The following fragment demonstrates how this SWI could be declared and used in C:

typedef struct SWI_InstallHandler_struct
{ unsigned exception;
  unsigned workspace;
  unsigned handler;
} SWI_InstallHandler_block;

SWI_InstallHandler_block
  __value_in_regs
    __swi(0x70) SWI_InstallHandler(unsigned r0, unsigned r1,
unsigned r2);

void InstallHandler(SWI_InstallHandler_block *regs_in,
                    SWI_InstallHandler_block *regs_out)
{ *regs_out=SWI_InstallHandler(regs_in->exception,
                               regs_in->workspace,
                               regs_in->handler);
}

This code is provided in directory examples/swi  as installh.c , and can be compiled to
produce ARM assembler source using:

armcc -S -li -apcs 3/32bit installh.c -o installh.s

The code which armcc produces is:

InstallHandler
    STMDB  sp!,{lr}
    MOV    lr,a2
    LDMIA  a1,{a1-a3}
    SWI    &70
    STMIA  lr,{a1-a3}
    LDMIA  sp!,{pc}

 Note that your version of armcc may produce slightly different output to that listed here.
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12.4.4 Dealing with a SWI whose number is not known until run time

If you need to call a SWI whose number is not known until run time, the mechanisms discussed
above are not appropriate.

This situation might occur when there are a number of related operations that can be performed
on an object, and each operation has its own SWI.

There are several ways of dealing with this. For example:

• constructing the SWI instruction from the SWI number, storing it somewhere and then
executing it

• using a 'generic' SWI which takes as an extra argument a code for the actual operation
to be performed on its arguments. This 'generic' SWI would then decode the operation
and perform it.

A mechanism has been added to armcc to support the second method outlined here. The
operation is specified by a value which is passed in r12 (ip ). The arguments to the 'generic' SWI
are passed in registers r0-r3, and values optionally returned in r0-r3 using the mechanisms
described above. The operation number passed in r12 could be, but need not be, the number of
the SWI to be called by the 'generic' SWI.

Here is an C fragment which uses a 'generic', or 'indirect' SWI:

unsigned __swi_indirect(0x80)
    SWI_ManipulateObject(unsigned operationNumber,

unsigned object,unsigned parameter);

unsigned DoSelectedManipulation(unsigned object,
unsigned parameter, unsigned operation)

{ return SWI_ManipulateObject(operation, object, parameter);
}

This code is provided in directory examples/swi  as swimanip.c , and can be compiled to
produce ARM Assembler source using:

armcc -S -li -apcs 3/32bit swimanip.c -o swimanip.s

This produces the following code:

DoSelectedManipulation
    MOV    ip,a3
    SWI    &80
    MOV    pc,lr

Note that the your version of armcc may produce output which is slightly different from that listed
here.
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12.5 Development Issues: SWI Handlers and Demon
When developing an application for ARM, the initial testing ground for the code is liable to be
armsd using either the ARMulator or a PIE card.

The ARM debug monitor (Demon) reserves SWIs in the range 0–255. These implement many
of the semi-hosted functions which, among other things, are needed for armsd to work correctly.
You should therefore avoid defining SWIs that overlap this range.

If you are using an ARMulator, installing your own handler will not stop Demon’s SWIs still being
accessible. However, if you are using a PIE card, Demon’s SWI facilities will disappear.

You can prevent this from happening by intercepting Demon’s SWI handler before installing your
own. If your handler does not deal with a particular SWI, it can pass the SWI on to Demon’s. To
do this, move Demon’s installation instruction out of the vector table and replace it with one
pointing to your own handler, putting Demon’s instruction at an address where your own handler
can call it if required. Bear in mind that Demon installs its SWI handler using the LDR method
described above, since on a PIE card the SWI handler code is in ROM some 3 Gbytes above
the vector table. You will therefore have to adjust the instruction’s PC-relative offset value to take
account of its new location.

First you need a location in which to store the original Demon SWI vector instruction. This might
be:

unsigned *Dswivec = (unsigned *) 0x20;

The Install_Handler()  routine described in ➲12.3 Loading the Vector Table on page 12-9
returns the original contents of the vector being installed into, so the following call will store the
original Demon SWI vector instruction at its new location as well as installing our own handler:

*Dswivec = Install_Handler ((unsigned)SWIHandler, swivec);

Next update the PC-relative offset in the original Demon instruction, to allow for the fact that it
now occupies a different memory location. The following call will do this:

Update_Demon_Vec (swivec, Dswivec);

where:

void Update_Demon_Vec (unsigned *original, unsigned *Dvec)

/* Returns updated instruction 'LDR pc, [pc,#offset]' when   */

/* moved from 'original' to 'Dvec' (ie recalculates offset). */

/* Assumes 'Dvec' is higher in memory than 'original'.       */

{

*Dvec = ((*Dvec &0xfff)

- ((unsigned) Dvec - (unsigned) original))

| (*Dvec & 0xfffff000);

}
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The C SWI handler function must be updated so that it can report whether or not it has handled
this SWI:

unsigned C_SWI_Handler (unsigned number, unsigned *reg)

{ unsigned done = 1;

switch (number)

{ case 256: /* SWI number 256 code */

break;

case 257: /* SWI number 257 code */

break;

default: done = 0;

}

return (done);

}

The result passed back can be used by the top-level assembly language handler to determine
whether the SWI has been handled, or whether it should be handed on to Demon‘s handler:

BL  C_SWI_Handler ; Call C routine to handle SWI

CMP r0, #0 ; Has C routine handled SWI ?

;  0 = no, 1 = yes

;

; Restore registers and cpsr from stack

;

; Now need to decide whether to return from handler or to

; call the next handler in the chain (the debugger's).

MOVNES pc,lr ; return from handler if SWI handled

BEQ Dswivec ; else jump to address containing

; instruction to branch to address of

; debugger's SWI handler.

Note The BEQ Dswivec  instruction would not actually branch to the required stored vector, but would
instead jump to the address where the location of that pointer is stored in the data area. It is cited
here to illustrate the location to which the handler is attempting to branch. The easiest way to
write it is as a branch to a known address, which in this case would be:

BEQ 0x20

However, this can be done more flexibly by importing the Dswivec  label into the assembly
language module. You can then store the address where the Demon vector is stored within the
module and force the PC to that address.
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This requires a short piece of code (MakeChain ) which can be called from the main program
after it has set up the new vector and stored the old vector.

LDR pc, swichain ; else jump to address containing

; instruction to branch to address of

; debugger's SWI handler.

 :

 :

swichain

DCD 0

MakeChain

LDR r0, =swichain ; Load address of swichain into r0.

LDR r1, =Dswivec ; Load address of Dswivec into r1.

LDR r2, [r1] ; Load contents of Dswivec, i.e. the

; location of the stored Demon vector.

STR r2, [r0] ; Store vector location within range

; of PC relative load.

MOV pc,lr ; Return from routine.

Note that while developing under Demon, you will not need to set up a stack in Supervisor mode,
as Demon creates a 512 byte stack for you.

Once development is finished, you will need to do two further things before producing the code
for your final system:

• set up the Supervisor mode stack (as described earlier)

• remove the additions that patch your handler in front of Demon’s



Implementing SWIs

12-18 Programming Techniques
ARM DUI 0021A

12.6 Example SWI Handler
The following two program listings implement an example SWI handler that can be run on a PIE
card, via armsd. To produce this program, enter the listings, then type:

armcc -li -c install.c
armasm -li handle.s
armlink install.o handle.o /work/arm/lib/armlib.32l -o swi
armsd -serial swi
go

Note that you should use the pathname of the library on your system at the link stage. In addition,
Demon only installs its vectors on start up of armsd, so the updating of the Demon SWI vector
will only work correctly during the first execution of the application.

The C SWI handler actually stores the values it is passed in the memory locations pointed to by
called_256 , param_257 , param_258  and param_259 . After running the program you can
check that the parameters were passed correctly by examining these locations.

12.6.1 install.c

/***************************/
/* File: install.c         */
/* Author: Andy Beeson     */
/* Date: 7th February 1994 */
/***************************/
#include <stdio.h>
#include <stdlib.h>

extern void SWIHandler (void);
extern void MakeChain (void);

unsigned *Dswivec =(unsigned *)0x20; /*ie place to store old one*/

struct four_results
{ unsigned a;

unsigned b;
unsigned c;
unsigned d;

};

__swi (256) void  my_swi_256 (void);
__swi (257) void my_swi_257 (unsigned);
__swi (258) unsigned my_swi_258

(unsigned,unsigned,unsigned,unsigned);
__swi (259) __value_in_regs struct four_results

my_swi_259 (unsigned, unsigned, unsigned,unsigned);

unsigned Install_Handler (unsigned routine, unsigned *vector)
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/* Updates contents of 'vector' to contain branch instruction */
/* to reach 'routine' from 'vector'. Function return value is */
/* original contents of 'vector'. */
/* NB: 'Routine' must be within range of 32Mbytes from 'vector'. */
{ unsigned vec, oldvec;

vec = ((routine - (unsigned)vector - 0x8)>>2);
if (vec & 0xff000000)
{ printf ("Installation of Handler failed");

exit (0);
}
vec = 0xea000000 | vec;
oldvec = *vector;
*vector = vec;
return (oldvec);

}

void Update_Demon_Vec (unsigned *original, unsigned *Dvec)
/* Returns updated instruction 'LDR pc, [pc,#offset]' when   */
/* moved from 'original' to 'Dvec' (ie recalculates offset). */
/* Assumes 'Dvec' is higher in memory than 'original'.       */
{

*Dvec = ((*Dvec &0xfff)
- ((unsigned) Dvec - (unsigned) original))
| (*Dvec & 0xfffff000);

}

unsigned C_SWI_Handler (unsigned number, unsigned *reg)
{ unsigned done = 1;

/* Set up parameter storage block pointers */
unsigned *called_256 = (unsigned *) 0x24;
unsigned *param_257 = (unsigned*) 0x28;
unsigned *param_258 = (unsigned*) 0x2c; /* + 0x30,0x34,0x38 */
unsigned *param_259 = (unsigned*) 0x3c; /* + 0x40,0x44,0x48 */
switch (number)
{ case 256:

*called_256 = 256; /* Store a value to show that */
break;             /* SWI was handled correctly. */

case 257:
*param_257 = reg [0]; /* Store parameter */
break;

case 258:
*param_258++ = reg [0]; /* Store parameters */
*param_258++ = reg [1];
*param_258++ = reg [2];
*param_258 = reg [3];
/* Now calculate result */
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reg [0] += reg [1] + reg [2] + reg [3];
break;

case 259:
*param_259++ = reg [0]; /* Store parameters */
*param_259++ = reg [1];
*param_259++ = reg [2];
*param_259 = reg [3];
reg [0] *= 2; /* Calculate results */
reg [1] *= 3;
reg [2] *= 4;
reg [3] *= 5;
break;

default: done = 0; /* SWI not handled */
}
return (done);

}

int main ()
{

struct four_results r_259; /* Results from SWI 259 */
unsigned *swivec = (unsigned *)0x8; /* Pointer to SWI vector */
*Dswivec = Install_Handler ((unsigned)SWIHandler, swivec);
Update_Demon_Vec (swivec, Dswivec);
MakeChain ();

printf("Hello 256\n");
my_swi_256 ();
printf("Hello 257\n");
my_swi_257 (257);
printf("Hello 258\n");
printf(" Result = %u\n",my_swi_258 (1,2,3,4));
printf ("Hello 259\n");
r_259 = my_swi_259 (10,20,30,40);
printf (" Results are: %u %u %u %u\n",

r_259.a,r_259.b,r_259.c,r_259.d);
printf("The end\n");
return (0);

}
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12.6.2 handle.s

/***************************/
/* File: handle.s          */
/* Author: Andy Beeson     */
/* Date: 7th February 1994 */
/***************************/

AREA TopSwiHandler, CODE ; name this block of code

EXPORT  SWIHandler
EXPORT  MakeChain
IMPORT  C_SWI_Handler
IMPORT  Dswivec

SWIHandler
SUB r13, r13, #4 ; leave space to store spsr
STMFD r13!,{r0-r12,r14} ; store registers
MOV r1, r13 ; second parameter to C routine

; is register values.
LDR r0,[r14,#-4] ; Calculate address of SWI instruction

; and load it into r0
BIC r0,r0,#0xff000000 ; mask off top 8 bits of instruction
MRS r2, spsr
STR r2,[r13,#14*4] ; store spsr on stack at original r13
BL  C_SWI_Handler ; Call C routine to handle SWI
CMP r0, #0 ; Has C routine handled SWI ?

;  0 = no, 1 = yes
LDR r2, [r13,#14*4] ; extract spsr from stack
MSR spsr,r2 ; and restore it
LDMFD r13!, {r0-r12,lr} ; Restore original registers
ADD r13,r13,#4
; Now need to decide whether to return from handler or to call
; the next handler in the chain (the debugger's).
MOVNES pc,lr ; return from handler if SWI handled
LDR pc, swichain ; else jump to address containing

; instruction to branch to address of
; debugger's SWI handler.

swichain
DCD 0

MakeChain
LDR r0, =swichain ; Load address of swichain into r0.
LDR r1, =Dswivec ; Load address of Dswivec into r1.
LDR r2, [r1] ; Load contents of Dswivec, i.e. the

; location of the stored Demon vector.
STR r2, [r0] ; Store vector location within range

; of PC relative load.
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MOV pc,lr ; Return from routine.

END ; mark end of this file
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Benchmarking, Performance
Analysis, and Profiling

This chapter explains how to run benchmarks on the ARM processor, and how to use the
profiling facilities to help improve the size and performance of your code.

13.1 Introduction 13-2

13.2 Measuring Code and Data size 13-3

13.3 Timing Program Execution Using the ARMulator 13-5

13.4 Profiling Programs using the ARMulator 13-9
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13.1 Introduction
It is often useful to obtain the following information about a piece of application software:

• code size

• overall execution time

• time spent in specific parts of an application

Such information can allow the you to:

• compare the ARM’s performance against other processors in benchmark tests

• make decisions about required clock speed and memory configuration of a projected
system

• pinpoint where an application can be streamlined, leading to a reduction in the system’s
memory requirements

• identify performance-critical sections of code which can then be optimised using a
different algorithm, or by rewriting in assembler

This chapter shows you how to measure code size and execution time, and how to generate an
execution profile to discover where the time is being spent in your application.
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13.2 Measuring Code and Data size
To measure the code size of an ARM image, use armlink’s -info sizes  or -info totals
option:

-info sizes gives a breakdown of the code and data sizes of each object file or
library member making up an image.

-info totals gives a summary of the total code and data sizes of all object files
and all library members making up an image.

13.2.1 Example: Measuring the code and data size of Dhrystone

To show how these options work in practice, the example uses the Dhrystone benchmark
program. You can find this in directory examples/dhry . Compile it with the command:

armcc -c -Ospace -DMSC_CLOCK dhry_1.c dhry_2.c

As armcc carries out the compilation, it will issue a number of warning messages. You can
ignore these, or, if you prefer, suppress them by including the -w  option on the command line.

Notice the use of the -Ospace  option, which optimises for space. You would normally use the
-Otime  option with Dhrystone, as it is primarily a performance benchmark.

Now link the program:

armlink -o dhry -info totals dhry_1.o dhry_2.o armlib.32l

Note If armlib.32l  is not in the current directory, you need to specify its full path name.

The -info totals  option causes armlink to produce output similar to the following—the exact
figures may vary since these are dependent on the version of the compiler and library being
used:

code inline inline'const' RW 0-Init debug
size data strings data data data data

Object totals 2272 28 1540 0 48 10200 0
Library totals 34408 400 764 128 700 1176 0
Grand totals 36680 428 2304 128 748 11376 0

The columns in the table have the following meanings:

code size gives the code size, excluding any data which has been placed in
the code segment (see inline data , below).

inline data reports the size of the data included in the code segment by the
compiler. Typically, this data will contain the addresses of variables
which are accessed by the code, plus any floating point immediate
values or immediate values that are too big to load directly into a
register. In does not include inlined strings, which are listed
separately (see inline strings , below).
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inline strings shows the size of read-only strings placed in the code segment. The
compiler will put such strings here whenever possible, since this has
the effect of reducing run-time RAM requirements.

const lists the size of any variables explicitly declared as const . These
variables are guaranteed to be read only and so are placed in the
code segment by the compiler.

RW data gives the size of Read/Write data. This is data which is read/write and
also has an initialising value (which may be 0 if none is explicitly
given). RW data will consume the displayed amount of RAM at run
time, but will also require the same amount of ROM to hold the
initialising values which are copied into RAM on image startup.

0-init data shows the size of Read/Write data which is zero-initialised at image
startup. Typically this will contain arrays which are not initialised in the
C source code. 0-init data  requires the displayed amount of RAM
at run-time but does not require any space in ROM, since its
initialising value is 0.

debug data reports the size of any debugging data if the files are compiled with
the -g  option.

The ROM and RAM requirements for the Dhrystone program would be:

ROM = code size + inline data + inline strings + const data + RW data

= 36680 + 428 + 2304 + 128 + 748

=  40278

RAM = RW data + 0-Init data

= 748 + 11376

= 12124

To repeat this experiment with the Thumb compiler, issue the command:

tcc -c -Ospace -DMSC_CLOCK dhry_1.c dhry_2.c

This time use armlink’s -info sizes  option to give a complete breakdown of the code and
data sizes:

armlink -o dhry -info sizes dhry_1.o dhry_2.o armlib.16l
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13.3 Timing Program Execution Using the ARMulator
The ARMulator provides facilities for real time simulation. As it executes your program it counts
the total number of clock ticks taken, and is then able to report this figure either directly through
the debugger’s $clock  variable, or indirectly through a C library function such as clock() .

This section explains how to time a program on a simulated system. You can find a detailed
description of the available real time simulation facilities in ➲The ARM Software Development
Toolkit Reference Manual: Chapter 14, ARMulator and ➲The ARM Software Development
Toolkit Reference Manual: Chapter 7, Symbolic Debugger.

13.3.1 Example 1: sorts.c

Before you can use ARMulator’s real time simulation facilities of the ARMulator, you must tell
armsd or the Windows Debugger:

• the processor speed

• the type and speed of memory attached to the processor

This information is conveyed via a file called armsd.map , which must be in the current directory
when the debugger is run. You can find the following example map file in directory
examples/sorts :

0 80000000 RAM 4 rw 135/80 135/80

This describes a single contiguous section of memory from 0 up to 0x80000000. The memory
system is 32 bits wide, and has an N cycle access time of 135nS and an S cycle access time of
80nS. The cycle times for reads and writes are the same.

The following steps investigate how changing the armsd.map  file parameters alters the
processor’s performance.

Compile the sorts.c  example program in directory examples/sorts , as follows:

armcc -Otime -o sorts sorts.c

This program sorts 1000 strings using three different algorithms—insertion, shell and quick
sort—and reports the time taken by each.

Run the program under armsd using the command:

armsd -clock 33MHz sorts

where -clock 33MHz  specifies the processor speed. When armsd starts up, it will report the
following:

Memory map ...
00000000..80000000, 32-Bit, rw,  R(N/S) = 135/80, W(N/S) = 135/80
Clock speed = 33.33Mhz

If this information does not appear, armsd has failed to read the map file—check that it is in the
current directory.
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Next, run the sorts example by entering:

go

at the armsd:  prompt.

The program may take a couple of minutes to run, depending on the speed of your machine. If it
takes an inordinately long time, try changing the line:

#define N 1000

in sorts.c  to define N as 500 or 100.

When the program has finished, it should print the following (where one clock tick is one
centisecond):

Insertion sort took 162 clock ticks
Shell sort took 11 clock ticks
Quick sort took 12 clock ticks

Now find out how long the program took to execute in total using the $clock  variable:

print $clock

This should report a value of about 2072176 (the exact value may be different, depending on the
versions of the ARM compiler and C libraries you are using).

The $clock  variable reports the time in microseconds, so the obtained value is equivalent to
about 207 centiseconds. Adding the time taken by the three sort algorithms we get 185
centiseconds. The remaining 22 centiseconds is spent initialising the array of strings before each
sort and checking that the strings have been sorted correctly after calling each sort routine.

Try re-running the program on a 50MHz ARM to see what difference this makes to the
performance. Use the command:

armsd -clock 50MHz sorts

This time you should obtain the following result:

Insertion sort took 145 clock ticks
Shell sort took 10 clock ticks
Quick sort took 10 clock ticks

Modify armsd.map  to simulate some fast on-chip memory: change it to specify an N and S cycle
access time of 20nS:

0 80000000 RAM 4 rw 20/20 20/20

Re-run the sorts example using the command:

armsd -clock 50MHz sorts

armsd should now report:

Insertion sort took 33 clock ticks
Shell sort took 3 clock ticks
Quick sort took 2 clock ticks
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13.3.2 Example 2: Dhrystone

One of the main uses for real time simulation is running performance benchmarks such as
Dhrystone.

Compile the Dhrystone program in directory examples/dhry  with both ARM and Thumb
compilers.

To compile the program for ARM, use:

armcc -o dhry_32 -Otime -DMSC_CLOCK dhry_1.c dhry_2.c

To compile it for Thumb, use:

tcc -o dhry_16 -Otime -DMSC_CLOCK dhry_1.c dhry_2.c

Create the following armsd.map  file:

00000000 80000000 RAM 4 rw 135/85 135/85

Load the benchmark into armsd with:

armsd -clock 20MHz dhry_32

and enter

go

at the armsd:  prompt to start execution.

When prompted for the number of Dhrystones enter:

35000

The program will report the number of Dhrystones per second. Record the value and repeat the
simulation with the Thumb version of Dhrystone (dhry_16 ).

You may obtain slightly different figures depending on the version of compiler and library you are
using. Try varying the clock speed, the memory access speeds and the data bus width to see
the effect of these on performance.

When measuring Thumb on a 32-bit memory system, try placing a *  after the memory access
rw  (ie. enter rw* ) to see the performance gain from putting a 16-bit latch on such a system. Here
are some example results. Your results may vary depending on compiler version, compiler
options and the library version.
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Note These results are for Dhrystone version 2.1

Clock speed = 20MHz, Memory access times (N = 135nS, S = 85nS)

ARM Thumb

32-bit memory 14204.5 11876.5

32-bit memory 14204.5 13636.4 (with 16 bit latch)

16-bit memory 7894.7 10067.1

8-bit memory 4731.9 5703.4

Clock speed = 33MHz, Memory access times (N = 115nS, S = 85nS)

ARM Thumb

32-bit memory 16759.8 14018.7

32-bit memory 16759.8 17142.9 (with 16 bit latch)

16-bit memory 9063.4 11718.7

8-bit memory 4724.4 6237.0

Clock speed = 33MHz, Memory access times (N = 30nS, S = 30nS)

ARM Thumb

32-bit memory 52083.3 43478.3

32-bit memory 52083.3 43478.3 (with 16 bit latch)

16-bit memory 27624.3 35971.2

8-bit memory 14285.7 18939.4
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13.4 Profiling Programs using the ARMulator
If you find that your application is running unacceptably slowly, you may wish to use the
ARMulator’s profiling facilities to determine exactly where your program is spending its time.

For a full description of the toolkit’s profiling facilities see ➲The ARM Software Development
Toolkit Reference Manual: Chapter 8, ARM Profiler. This section shows you how to profile an
application using armsd, and explains the format of the profile report.

13.4.1 An example profile

Compile the sorts.c  example program in directory examples/sorts  as follows. Note that no
special options are needed to compile a program for profiling:

armcc -Otime -o sorts sorts.c

Now start up armsd:

armsd

Load the sorts  program into armsd with the /callgraph  option.  /callgraph  tells armsd to
prepare an image for profiling by adding code that counts the number of function calls. Enter

load/callgraph sorts

at the armsd:  prompt, and turn profiling on:

ProfOn

Next, run the program as normal:

go

and write the profile data to a file using the ProfWrite  command:

ProfWrite sorts.prf

Exit armsd with the Quit  command, and display a profile from the collected profile data by
entering:

armprof -Parent sorts.prf > profile

at the system prompt, where -Parent  instructs the profile displayer to include information about
the callers of each function.

The debugger will generate the profile report and output it to the profile  file, an extract from
which is shown at the end of this section
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13.4.2 Layout of the profile report

The report is divided into sections, each of which gives information about a function in the
program. A section’s function (called the current function) is indicated by having its name start at
the left-hand edge of the Name column. For example, the current function in the first section is
main . Functions listed below the current function are child functions, ie. functions called by the
current function. Those listed above the current function are parents, ie. functions that call it.

The columns in the report have the following meanings:

Name Displays the function names. The current function in a section starts
at the column’s left-hand edge: parent and child functions are shown
indented.

cum% Shows the total percentage time spent in the current function plus the
time spent in any functions which it called. In the case of main , the
program spent 96.04% of its time in main  and its children.

self% Shows the percentage time spent in the current function on each
parent function’s behalf.

desc% Shows the percentage time spent in children of the current function
on the current function’s behalf. For example, in the case of main
only 0.16% of the time is spent in main  itself, whereas 95.88% of the
time is spent in functions called by main .

calls Reports the number of times a function is called from the current
function. The call count for main  is 0 because main  is the top-level
function, and is not called by any other functions.

The section for insert_sort  shows that it made 243432 calls to strcmp,  and that this
accounted for 59.44% of the time spent in strcmp  (the desc% column shows 0 in this case
because strcmp  does not call any functions).

In the case of strcmp , qs_string_compare  (which is called by qsort ), shell_sort  and
insert_sort  made respectively 13021, 14059 and 243432 calls to strcmp  and the time spent
in strcmp  is shared out between the functions in the ratio 3.17% to 3.43% to 59.44%.
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Name                            cum%     self%    desc%    calls
main                           96.04%    0.16%   95.88%        0
  qsort                                  0.44%    0.75%        1
  _printf                                0.00%    0.00%        3
  clock                                  0.00%    0.00%        6
  _sprintf                               0.34%    3.56%     1000
  check_order                            0.29%    5.28%        3
  randomise                              0.12%    0.69%        1
  shell_sort                             1.59%    3.43%        1
  insert_sort                           19.91%   59.44%        1
----------------------------------------------------------------
  main                                  19.91%   59.44%        1
insert_sort                    79.35%   19.91%   59.44%        1
  strcmp                                59.44%    0.00%   243432
----------------------------------------------------------------
  qs_string_compare                      3.17%    0.00%    13021
  shell_sort                             3.43%    0.00%    14059
  insert_sort                           59.44%    0.00%   243432
strcmp                         66.05%   66.05%    0.00%   270512
----------------------------------------------------------------
  main                                   0.29%    5.28%        3
check_order                     5.57%    0.29%    5.28%        3
  atoi                                   0.49%    4.78%     3000
----------------------------------------------------------------
  check_order                            0.49%    4.78%     3000
atoi                            5.28%    0.49%    4.78%     3000
  strtol                                 0.92%    3.86%     3000
----------------------------------------------------------------
  main                                   1.59%    3.43%        1
shell_sort                      5.02%    1.59%    3.43%        1
  __rt_sdiv                              0.00%    0.00%        6
  strcmp                                 3.43%    0.00%    14059
----------------------------------------------------------------
  atoi                                   0.92%    3.86%     3000
strtol                          4.78%    0.92%    3.86%     3000
  _strtoul                               2.44%    1.41%     3000
----------------------------------------------------------------
  main                                   0.34%    3.56%     1000
_sprintf                        3.91%    0.34%    3.56%     1000
  putc                                   0.09%    0.00%     1000
  __vfprintf                             0.95%    2.27%     1000
  memset                                 0.25%    0.00%     1000
----------------------------------------------------------------
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  strtol                                 2.44%    1.41%     3000
_strtoul                        3.86%    2.44%    1.41%     3000
  _chval                                 1.41%    0.00%    18000
----------------------------------------------------------------
qs_string_compare               3.69%    0.51%    3.17%        0
  strcmp                                 3.17%    0.00%    13021
----------------------------------------------------------------
  _printf                                0.00%    0.00%        3
  _sprintf                               0.95%    2.27%     1000
__vfprintf                      3.24%    0.95%    2.28%     1003
  ferror                                 0.03%    0.00%     1003
  putc                                   0.00%    0.00%       91
  printf_display                         1.49%    0.75%     1003
----------------------------------------------------------------
  __vfprintf                             1.49%    0.75%     1003
printf_display                  2.24%    1.49%    0.75%     1003
  strlen                                 0.14%    0.00%     1003
  _kernel_udiv10                         0.00%    0.00%     2896
  putc                                   0.57%    0.03%     6007
----------------------------------------------------------------
  _strtoul                               1.41%    0.00%    18000
_chval                          1.41%    1.41%    0.00%    18000
----------------------------------------------------------------
  main                                   0.44%    0.75%        1
qsort                           1.19%    0.44%    0.75%        1
  partition_sort                         0.72%    0.03%        1
----------------------------------------------------------------
  main                                   0.12%    0.69%        1
randomise                       0.81%    0.12%    0.69%        1
  rand                                   0.21%    0.00%     1000
  __rt_sdiv                              0.48%    0.00%     1000
----------------------------------------------------------------
  qsort                                  0.72%    0.03%        1
partition_sort                  0.75%    0.72%    0.03%        1
  __rt_udiv                              0.03%    0.00%      167
----------------------------------------------------------------

Remainder of file omitted for brevity
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Using the Thumb Instruction Set

This chapter offers advice on exploiting the features of the Thumb instruction set.

14.1 Working with Thumb Assembly Language 14-2

14.2 Hand-optimising the Thumb Compiler’s Output 14-5

14.3 ARM/Thumb Interworking 14-8

14.4 Division by a Constant in Thumb Code 14-12
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14.1 Working with Thumb Assembly Language
To assemble Thumb code you must use tasm, which is able to assemble ARM assembly
language into 32-bit ARM instructions, and Thumb assembly language into 16-bit Thumb
instructions. By default tasm assembles Thumb code, but it can be forced to produce ARM code
with the -32  command-line switch or the CODE32 assembler directive. (Another directive,
CODE16, enables you to switch between ARM and Thumb code in the same source file).

For a comprehensive description of the Thumb instruction set, see ➲The ARM Software
Development Toolkit Reference Manual: Chapter 5, Thumb Instruction Set.

For details of how to use armasm and tasm, please refer to ➲The ARM Software Development
Toolkit Reference Manual: Chapter 3, Assembler.

14.1.1 A simple example program

The following example shows how to write a simple program in Thumb which prints out some
values in hex.

Create the following file and call it hex.s , or use the copy of this file in directory
examples/thumb .

--- hex.s --------------------------------------------------------
; All assembler files must have at least one AREA directive at
; the start. The AREA directive passes information to the linker
; telling it where to place the code in memory (for example,
; READONLY areas would be placed in a ROM segment).
;

AREA hex, CODE, READONLY
; Some definitions for system calls or SWIs supported by
; 'armos'
;
OS_WriteC EQU 0x00; Write a character
OS_Exit EQU 0x11; Exit program
;
; ENTRY tells the linker where the entry point of an image is.
; The linker in turn encodes this information in the image
; header so the armulator knows where the application image
; starts.
;

ENTRY
;
; All applications are entered initially in ARM state so we
; must write a couple of lines of ARM assembler to switch to
; Thumb state. We tell the assembler we are going to do this
; with the 'CODE32' directive.
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;
CODE32

;
; Use the ARM BX instruction to switch into Thumb state. The
; BX instruction will branch to the Thumb entry point. Add
; one to the entry point to force the switch into Thumb state.
;

ADR R0, Thumb_Entry+1 BXR0
; The next section of code is Thumb code so tell the assembler
; to assemble it as Thumb.
;

CODE16
Thumb_Entry
; Now load several values in turn into R0 and call the Hex
; Print routine.
;

MOV R0, #0xED
BL Hex_Print

; The number 0xAA55AA55 is too big to load into a register
; using an immediate constant so we tell the assembler to
; load it from memory by placing an '=' symbol before the
; number. We do not need to tell the assembler where to
; store the number in memory, it will decide that for us.
;

LDR R0, =0xAA55AA55
BL Hex_Print

; To load a negative number it is often easier to load the
; positive value and then negate it as negative numbers cannot
; be loaded using immediate constants.
;

MOV R0, #10
NEG R0, R0
BL Hex_Print

; Now exit the program cleanly
;

SWI OS_Exit
;
Hex_Print
; Save registers used by this routine. Also save the link
; register which contains the return address as this may be
; destroyed by the call to SWI OS_WriteC if the code is
; executing in supervisor mode.

PUSH {R0, R1, R2, LR}
MOV R1, R0 ; Enter with value to print in R0

; Mov it to R1 as R0 needed for call
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; to OS_WriteC.
MOV R2, #8 ; Loop counter for 8 digits

 Loop1 LSR R0, R1, #28; Extract digits from R1 starting with
; the most significant digit.

LSL R1, #4 ; Shift up the digit to be used next
; time round the loop.

CMP R0, #10 ; Convert R0 to a hex digit
BLT Loop2
ADD R0, #'A'-'0'-10 ; Value >10 => add in extra to convert

; to range 'A' to 'F'.
Loop2 ADD R0, #'0' ; Add in ASCII value for '0'.

SWI OS_WriteC ; Write the hex digit
SUB R2, #1 ; Loop for each digit
BNE Loop1 ; (SUB implicitly sets the condition codes)
MOV R0, #0x0D SWI OS_WriteC ; Write a CR
MOV R0, #0x0A SWI OS_WriteC ; Followed by a newline
POP {R0, R1, R2, PC}; Recover registers and return

; An END directive is always needed.
;

END

Assemble this file using the command:

tasm hex.s

This will produce an object file called hex.o . Link this file using armlink  as follows:

armlink -o hex hex.o

Now try running this using armsd or the Windows debugger. To run the program using armsd
enter:

armsd -pr arm7tdm hex

and then enter:

go

at the armsd:  prompt. The -pr arm7tdm  option tells armsd to emulate an ARM7TDM
processor: you must specify this option whenever you run Thumb code—see ➲The ARM
Software Development Toolkit Reference Manual: Chapter 7, Symbolic Debugger for a full list of
the command line options which you can use with armsd.
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14.2 Hand-optimising the Thumb Compiler’s Output
The Thumb compiler, tcc, produces reasonably optimal code—so much so that re-coding a
routine in assembler to improve performance is very rarely necessary. However, on some
occasions it may be possible to make small improvements to the compiler’s output. Here we
show what to look for when examining tcc’s assembler output, and how to go about making
changes to it.

14.2.1 Optimising multiple loads and stores

First examine how tcc’s use of the multiple load and store instructions can be made more
efficient, taking as an example a block copy routine.

This copies a block of memory, with R1 pointing to the start of the block, R0 pointing to the target
area, and R2 holding the number of bytes to copy. On entry, R0 and R1 are assumed to be
word-aligned, and R2 is assumed to be a multiple of 4.

In C, the routine looks like this:

void block_copy(void *dest, void *source, int n)
{
    int *dest_ip, *source_ip;

    dest_ip = (int *)dest;/* Move function arguments into integer  */
    source_ip = (int *)source;  /* integer for use in following loop*/
   while (n > 0) {

*dest_ip++ = *source_ip++;
n -= 4;

     }
}

You can find this in file bcopy.c  in directory examples/thumb . To translate it into Thumb
assembler, use the command:

tcc -Otime -S bcopy.c

This produces the following in file bcopy.s :

; generated by Norcroft  Thumb C vsn 1.00 (Advanced RISC Machines)
; [Mar 31 1995]
|block_copy|
  CMP      __r2,#0
  BLE      F1L13
 F1L4
  LDMIA    __r1!,{__r3}
  STMIA    __r0!,{__r3}
  SUB      __r2,#4
  BGT      F1L4
 F1L13
  MOV      __pc,__lr
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This is fairly optimal, but notice that the LDMIA/STMIA pair are being used to transfer only one
word at a time. You can improve on this by making them handle four words at once, as follows:

block_copy
PUSH {R4, R5} ; C expects these to be saved
SUB R2, #16 ; Fewer than 16 bytes to start with?
BCC %FT1

 0
LDMIA R1!, {R2, R3, R4, R5}; Transfer 16 bytes
STMIA R0!, {R2, R3, R4, R5}
SUB R2, #16 ; Decrement count
BCS %BT0
; R2 is now 16 less than number of bytes to go

 1 ADD R2, #12 ; See if at least 4 bytes to go (-16+12)
BCC %FT3

 2 LDMIA R1!, {R2} ; Transfer 4 bytes
STMIA R0!, {R2}
SUB R2, #4
BCS %BT2

 3 POP {R4, R5} ; Recover C's variable registers
MOV PC, LR

14.2.2 Testing the carry flag

There is no way of expressing operations on the processor’s Carry flag in C. This means that a
C programmer is sometimes forced to use algorithms which, when translated into machine code,
are clumsy when compared with those employed by the assembly language programmer to solve
the same problem.

A good example can be found in the file bits.c  in directory examples/thumb . This contains
three bit manipulation routines, the last of which reverses the order of bits in a word:

unsigned reverse_bits(unsigned n)
{
    unsigned r, old_r;
    r = 1;
    do {

old_r = r;
r <<= 1;
if (n & 1) r++;
n >>= 1;

    } while (r > old_r);
    return r;
}
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This routine, like the others in the file, make use of the (n & (-n)) paradigm, which evaluates to
the first set bit in a word. For example, if n = 6 then (n & (-n)) evaluates to 2, which is the value
of the first set bit in n.

We can obtain an assembly language listing from the file by issuing the command:

tcc -Otime -S bits.c

The code which has been generated for reverse_bits()  is as follows:

  |reverse_bits|
  MOV      __r1,#1
 F3L4
  MOV      __r2,__r1
  LSL      __r1,#1
  LSR      __r3,__r0,#1
  BCC      F3L13
  ADD      __r1,#1
 F3L13
  LSR      __r0,#1
  CMP      __r1,__r2
  BHI      F3L4
  MOV      __r0,__r1
  MOV      __pc,__lr

By taking advantage of the ability to test the Carry flag directly, you can recode this in Thumb
assembly language much more efficiently, reducing the main loop from eight instructions to just
three:

reverse_bits
MOV R1, #1

0 LSR R0, R0, #1
ADC R1, R1
BCC %BT0
MOV R0, R1
MOV PC, LR
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14.3 ARM/Thumb Interworking
You may sometimes wish to compile parts of your program as ARM code to benefit from ARM
code’s better performance in 32-bit systems, while leaving the bulk of your program compiled as
Thumb code to take advantage of its better code density.

See the section on ARM/Thumb Interworking in ➲The ARM Software Development Toolkit
Reference Manual: Chapter 2, C Compiler for a detailed explanation of how to compile programs
that mix Thumb code and ARM code.

14.3.1 A simple example

The following example shows a sort routine which you may wish to compile into ARM code, and
a main program containing the rest of the application which we wish to compile into Thumb code.

The source for this example can be found in directory examples/thumb/interwork . The files
are called sort.c  and main.c .

--- sort.c--------------------------------------------------------

void sort(char *strings[], int n)
{   int h, i, j;
    char *v;
    strings--;        /* Make array 1 origin */
     h = 1;
     do {h = h * 3 + 1;} while (h <= n);
     do {

h = h / 3;
         for (i = h + 1; i <= n; i++) {

    v = strings[i];
             j = i;
             while (j > h && strcmp(strings[j-h], v) > 0) {

strings[j] = strings[j-h];
                 j = j-h;
             }
             strings[j] = v;
         }
     } while (h > 1);
 }
--- main.c --------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define N 1000
extern void sort(char **strings, int n);
static void randomise(char *strings[], int n)
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{
     int i;
     int v;
     char *t;
    for (i = 0; i < N; i++) {

v = rand() % N;
t = strings[v];
strings[v] = strings[i];
strings[i] = t;

     }
}
int main(void)
{
    char *strings[N];
    char buffer[1000*(3+1)];
    char *p;
    int i;
    p = buffer;
    for (i = 0; i < 1000; i++) {

sprintf(p, "%03d", i);
strings[i] = p;
p += 3+1;

     }
     randomise(strings, N);
     sort(strings, N);
}

Compile sort.c  using the command:

armcc -arm7tm -apcs 3/noswst/nofp/interwork -Otime -c sort.c

and compile main.c  with the command:

tcc -Ospace -c main.c

You do not need to use the -apcs 3/interwork  flag when compiling the Thumb section of this
example, as it is never called from ARM code. You must, however, specify the flag when
compiling sort.c , since this function is called from Thumb code in main.c .

Next link the ARM and Thumb sections of code with a C library. Generally, you will want to link
the interworked code with the Thumb C library, since this reduces the overall size of the
program. In this particular case, however, the sort routine, which has been compiled as ARM
code, uses the library function strcmp() . The interworking code required to call a Thumb
library routine from ARM code will introduce an overhead in the routine’s main loop.

To avoid this overhead, you can force the linker to use the ARM C library version of strcmp()
by specifying the name of module which contains it after the library name on the command line,
as follows:

armlink -o sort main.o sort.o armlib.32l(strcmp.o) armlib.16l
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14.3.2 Calling ARM instructions from Thumb code

There may be times when you want to make use of features in a Thumb program that are
unavailable from its instruction set—the SWP instruction, or the long multiply facilities, for
example. This section shows you how to access the ARM 64-bit multiply instructions from Thumb
code.

There are four example functions, each of which corresponds to one of the long multiply
instructions. The types Int64  and Unsigned64  are defined to hold 64-bit ints and unsigned ints
respectively.

You can find the examples in directory examples/thumb/multiply .

--- mul.h ---------------------------------------------------------
/* This header file contains various definitions for the 64 bit mul
   instructions. It must be included in any C source wishing to use
   these functions. */

typedef struct Int64 { int lo, hi } Int64;
typedef struct Unsigned64 { unsigned lo, hi } Unsigned64;

/* Return 64 bit signed result of 'a' * 'b' */
extern __value_in_regs Int64 smull(int a, int b);
/* Return 64 bit signed result of 'a' * 'b' + 'acc' */
extern __value_in_regs Int64 smlal(Int64 acc, int a, int b);
/* Return 64 bit unsigned result of 'a' * 'b' */
extern __value_in_regs Unsigned64 umull(unsigned a, unsigned b);
/* Return 64 bit unsigned result of 'a' * 'b' + 'acc' */
extern __value_in_regs Unsigned64 umlal(Unsigned64 acc, unsigned a,
unsigned b);
--- mul.s --------------------------------------------------------

AREA mul, CODE, READONLY, INTERWORK
EXPORT smull
EXPORT smlal
EXPORT umull
EXPORT umlal

smull MOV R2, R0 ; Ensure RdLo != RdHi != Rm
SMULL R0, R1, R2, R1
BX LR ; Return using BX for interworking

smlal SMLAL R0, R1, R2, R3
BX LR

umull MOV R2, R0 ; Ensure RdLo != RdHi != Rm
UMULL R0, R1, R2, R1
BX LR

umlal UMLAL R0, R1, R2, R3
BX LR
END
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--- main.c--------------------------------------------------------
#include <stdio.h>
#include "mul.h"
int main(void)
{
   Unsigned64 u;
   Int64 s;
   u = umull(0xA0000000, 0x10101010);
    printf("umull (0xA0000000*0x10101010) = 0x%08x%08x\n", u.hi, u.lo);
   u = umlal(u, 0x00500000, 0x10101010);
    printf("umlal (+0x00500000*0x10101010) = 0x%08x%08x\n", u.hi,
u.lo);
   s = smull(0xA0000000, 0x10101010);
    printf("smull (0xA0000000*0x10101010) = 0x%08x%08x\n", s.hi, s.lo);
   s = smlal(s, 0x00500000, 0x10101010);
    printf("smlal (+0x00500000*0x10101010) = 0x%08x%08x\n", s.hi,
s.lo);
}

The presence of INTERWORK in the AREA declaration of the assembler section tells the linker
that it is safe for functions in this code segment to be called from Thumb.

These functions are safe to call from Thumb state because they return with the BX LR  instruction
instead of the more usual MOV PC, LR . When a function is called from Thumb code, bit 0 of the
link register will be set. BX LR  will therefore return correctly to Thumb state, whereas MOV
PC,LR, while returning to the correct address, would remain in ARM state.

These routines may also be called from ARM code. In this case, bit 0 of the link register will be
clear on entry and the BX LR  instruction will therefore correctly return to ARM state.

Compile the example as follows:

armasm -cpu arm7m mul.s n
tcc -c main.c
armlink -o mul main.o mul.o armlib.16l

Run the program using armsd or the Windows debugger. You should obtain the following output:

umull (0xA0000000*0x10101010) = 0x0a0a0a0a00000000
umlal (+0x00500000*0x10101010) = 0x0a0f0f0f05000000
smull (0xA0000000*0x10101010) = 0xf9f9f9fa00000000
smlal (+0x00500000*0x10101010) = 0xf9fefeff05000000

Recompile main.c  with armcc and re-run it to check that you get the same results:

armcc -c main.c armlink -o mul main.o mul.o armlib.32l
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14.4 Division by a Constant in Thumb Code
➲5.4 Division by a Constant on page 5-12 describes a method for performing fast division using
constants, and this can also be coded in Thumb assembler. Directory examples/thumb
contains a version of the program divc.c  which will generate code to divide by a constant of the
form (2^n – 2^m) or (2^n + 2^m).

Compile the divc  example using your system’s host compiler, using a command of the form:

cc  -o divc divc.c

where cc is the appropriate compiler command.

Run the resulting the program, giving as the argument the constant you wish to divide by—for
example, to generate code to divide by 3, enter

divc 3

This will produce the following assembly output.

; generated by Thumb divc 1.00 (Advanced RISC Machines) [4 Apr 95]
CODE16
AREA |div3$code|, CODE, READONLY
EXPORT udiv3

udiv3
; takes argument in a1
; returns quotient in a1, remainder in a2
; cycles could be saved if only divide or remainder is required

MOV     a2, a1
LSR     a1, #1
LSR     a3, a1, #2
ADD     a1, a3
LSR     a3, a1, #4
ADD     a1, a3
LSR     a3, a1, #8
ADD     a1, a3
LSR     a3, a1, #16
ADD     a1, a3
LSR     a1, #1
ASL     a3, a1, #2
SUB     a3, a3, a1
ASL     a3, #0
SUB     a2, a3
CMP     a2, #3
BLT     %FT0
ADD     a1, #1
SUB     a2, #3

0
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CMP     a2, #3
BLT     %FT0
ADD     a1, #1
SUB     a2, #3

0
MOV     pc, lr
END
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