ARM Architecture
Reference Manual

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved.

Copyright © 1996-2000 ARM Limited. All rights reserved.
Release Information

The following changes have been made to this document.

Change History

Date Issue Change

February 1996 A First edition.

July 1997 B Updated and index added.

April 1998 C Updated.

February 2000 D Updated for ARM architecture v5.

June 2000 E Updated for ARM architecture v5TE and

corrections to Part B.

Proprietary Notice
ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, Embeddedl CE, M odelGen, Multi-ICE, PrimeCell, ARM7TDMI,
ARM7TDMI-S, ARM9TDMI, ARM9E-S, ETM7, ETM9, TDMI, STRONG, are trademarks of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither thewhole nor any part of theinformation contained in, or the product described in, thisdocument may be adapted
or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in thisdocument is subject to continuous devel opments and i mprovements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, al warrantiesimplied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

Thisdocument isintended only to assist the reader in the use of the product. ARM Limited shall not beliablefor any loss
or damage arising from the use of any information in this document, or any error or omissionin such information, or any
incorrect use of the product.

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Preface

This preface describes the versions of the ARM architecture and the contents of this manual, then lists the
conventions and terminology it uses.

. About this manual on page iv

. Architecture versions and variants on page v
. Using this manual on page x

. Conventions on page Xii.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. iii

Preface

About this manual

The purpose of this manual is to describe the ARM instruction set architecture, including its high code
density Thumb subset, and two of its standard coprocessor extensions:

. The standard System Control coprocessor (coprocessor 15), which is used to control memory system
components such as caches, write buffers, Memory Management Units, and Protection Units.

. TheVector Floating-point (VFP) architecture, which uses coprocessors 10 and 11 to supply a
high-performance floating-point instruction set.

These instruction sets are described primarily from the viewpoint of the instruction being a 32-bit word or
16-bit halfword. The precise effects of each instruction are described, including any restrictions on its use.
This information is of primary importance to authors of compilers, assemblers, and other programs that
generate ARM machine code.

Assembler syntax is given for most of the instructions described in this manual, allowing instructions to be
specified in textual form. This is of considerable use to assembly code writers, and also when debugging
either assembler or high-level language code at the single instruction level.

However, this manual is not intended as tutorial material for ARM assembler language, nor does it describe
ARM assembler language at anything other than a very basic level. To make effective use of ARM
assembler language, consult the documentation supplied with the assembler being used. Different
assemblers vary considerably with respect to many aspects of assembler language, such as which assembler
directives are accepted and how they are coded.

A considerable amount of generic information is also included about how ARM processors access memory
and other system components. Although this usually needs to be supplemented by detailed
implementation-specific information from the technical reference manual of the device being used, this
information is of use to designers of ARM-based systems.

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Preface

Architecture versions and variants

The ARM instruction set architecture has evolved significantly since it was first developed, and will
continueto be developed in the future. In order to be precise about which instructions exist in any particul ar
ARM implementation, five major versions of the instruction set have been defined to date. These are
denoted by the version numbers 1 to 5.

Many of the versions can be qualified with variant letters to specify collections of additional instructions
that are included in that version. These collections vary from being very small (the M variant denotes the
addition of just four extrainstructions) to very large (the T variant denotes the addition of the entire Thumb
instruction set).

Thefive versions of the ARM instruction set architecture to date are as follows:

Version 1 Thisversionwasimplemented only by ARM1, and was never used inacommercial product.

It contained:

. the basic data-processing instructions (not including multiplies)

. byte, word, and multi-word load/store instructions

. branch instructions, including a branch-and-link instruction designed for subroutine
calls

. a software interrupt instruction, for use in making Operating System calls.

Version 1 only had a 26-bit address space, and is now obsolete.

Version 2 This version extended architecture version 1 by adding:

. multiply and multiply-accumulate instructions

. coprocessor support

. two more banked registers in fast interrupt mode

. atomic load-and-store instructions call®dP andSWPB (in a slightly later variant

called version 2a).
Versions 2 and 2a still only had a 26-bit address space, and are now obsolete.

Version 3 This architecture version extended the addressing range to 32 bits. Program status
information which had previously been stored in R15 was moved to @umeent Program
Satus Register (CPSR), an@®aved Program Status Registers (SPSRs) were added to
preserve the CPSR contents when an exception occurred. As a result, the following changes
occurred to the instruction set:

. two instructions YRS andVSR) were added to allow the new CPSR and SPSRs to be
accessed.

. the functionality of instructions previously used to return from exceptions was
modified to allow them to continue to be used for that purpose.

Version 3 also added two new processor modes in order to make it possible to use Data
Abort, Prefetch Abort and Undefined Instruction exceptions effectively in Operating
System code.

Backwards-compatibility support for the 26-bit architectures was obligatory in version 3,
except in a variant called version 3G. The distinction between versions 3 and 3G is how
obsolete.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. %

Preface

Version 4 This version extended architecture version 3 by adding:

. halfword load/store instructions

. instructions to load and sign-extend bytes and halfwords

. in T variants, an instruction to transfer to Thumb state

. a new privileged processor mode that uses the User mode registers.

Version 4 also made it clearer which instructions should cause the Undefined Instruction
exception to be taken.

Backwards-compatibility support for 26-bit architectures ceased to be obligatory in version
4.

Version 5 This version extends architecture version 4 by adding instructions and slightly modifying
the definitions of some existing instructions to:

. improve the efficiency of ARM/Thumb interworking in T variants
. allow the same code generation techniques to be used for non-T variants as for T
variants.

Version 5 also:

. adds acount leading zeros instruction, which (among other things) allows more
efficient integer divide and interrupt prioritization routines

. adds a software breakpoint instruction

. adds more instruction options for coprocessor designers

. tightens the definition of how flags are set by multiply instructions.

The Thumb instruction set (T variants)

The Thumb instruction set is a re-encoded subset of the ARM instruction set. Thumb instructions are half
the size of ARM instructions (16 bits compared with 32), with the result that greater code density can usually
be achieved by using the Thumb instruction set instead of the ARM instruction set. The Thumb instruction
setis described in detail in Chapter e Thumb Instruction Set and Chapter AThumb Instructions.

Two limitations of the Thumb instruction set compared with the ARM instruction set are:

. Thumb code usually uses more instructions for the same job, so ARM code is usually best for
maximizing the performance of time-critical code.

. The Thumb instruction set does not include some instructions that are needed for exception handling,
so ARM code needs to be used for at least the top-level exception handlers.

Because of the second of these, the Thumb instruction set is always used in conjunction with a suitable
version of the ARM instruction set. Its presence is denoted by the variant letter T, and it is not valid prior to
ARM architecture version 4.

Vi

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Preface

Thumb instruction set versions

There are two versions of the Thumb instruction set:

. Thumb version 1 is used in T variants of ARM architecture version 4
. Thumb version 2 is used in T variants of ARM architecture version 5.
Compared with Thumb version 1, Thumb version 2:

. adds instructions and slightly modifies the definition of some existing instructions to improve the
efficiency of ARM/Thumb interworking

. adds a software breakpoint instruction
. tightens the definition of how the Thumb multiply instruction sets the flags.

These improvements are closely related to the changes between ARM architecture versions 4 and 5.

Note

In general, the Thumb instruction set version number is not used in this manual. Instead, the version number
of the associated version of the ARM instruction set is used, to allow easy use with the naming scheme
described ifNaming of ARM/Thumb architecture versions on page Vviii.

Long multiply instructions (M variants)

M variants of the ARM instruction set include four extra instructions which perform322- 64
multiplications and 3% 32+ 64 —. 64 multiply-accumulates. These instructions imply the existence of a
multiplier that is significantly larger than minimum, and so are sometimes omitted in implementations for
which a small die size is very important and multiply performance is not very important. Their presence is
denoted by the use of the variant letter M.

These instructions were first defined as a variant of architecture version 3, and are included in similar
variants of later architecture versions. Because the combination of requirements that leads to them being
excluded does not arise very often in practice, inclusion of these instructions is standard in architecture
versions 4 and above.

Enhanced DSP instructions (E variants)

E variants of the ARM instruction set include a number of extra instructions which enhance the performance
of an ARM processor on typicdigital signal processing (DSP) algorithms. These instructions are
described in detail in Chapter AEhhanced DSP Extension, and include:

. Several new multiply and multiply-accumulate instructions that act on 16-bit data items

. Addition and subtraction instructions that perfaaturated signed arithmetic. This is a form of
integer arithmetic that produces the maximum negative or positive value instead of wrapping around
if the calculation overflows the normal integer range.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. vii

Preface

Naming

. Load (LDRD), store ETRD) and coprocessor register transtdCiRR andVRRC) instructions that act
on 2 words of data.

. A cache preload instructidpLD.

These instructions were first defined as a variant of architecture version 5T. Their presence is denoted by
the variant letter E, and they are not valid prior to architecture version 5. They are also not valid in non-T
or non-M variants of the architecture.

The ARMV5TEXP architecture version

Some early implementations of the enhanced DSP variant of the ARM architecture omittB&Ehe
STRD, MCRR, MRRC andPLD instructions. Apart from this omission, all the ARM implementations
concerned implemented the ARMV5TE architecture.

In order to be able to name this architecture variant, the letter P can be used to exclude these five instructions
from architecture version ARMV5TE, according to the ruledaming of ARM/Thumb architecture

versions on page Viii. The resulting architecture variant is therefore named ARMV5TEXP. This is the only
use of the P variant letter.

of ARM/Thumb architecture versions

To name a precise version and variant of the ARM/Thumb architecture, the following strings are
concatenated:

1. The stringARM/ .
The version number of the ARM instruction set.

3. Variant letters of the included variants, except thaMftariant is standard in architecture versions
4 and above, and therefore not normally listed.
4. If any variants described asndard in 3 above are not present, the leitdpllowed by the letters

of the excluded variants. In addition, the letter P can be used after x to denote the exclusion of certain
instructions from architecture version ARMV5TE, as describdthéARMV5TEXP architecture
version.

The tableArchitecture versions on page ix lists the standard names of the current (not obsolete)
ARM/Thumb architecture versions described in this manual. These names provide a shorthand way of
describing the precise instruction set implemented by an ARM processor. However, this manual normally
uses descriptive phrases such Msvariants of architecture version 3 and above” to avoid the use of lists

of architecture names which are already long and will grow further in the future.

Obsolete architecture names are ARMv1, ARMv2, ARMv2a, and ARMv3G. These are the versions 1, 2,
2a, and 3G described Architecture versions and variants on page v.

viii

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Preface

Architecture versions

Name ARMinstruction Thumbinstruction Longmultiply Enhanced DSP

set version set version instructions? instructions
ARMv3 3 None No No
ARMv3M 3 None Yes No
ARMv4XM 4 None No No
ARMv4 4 None Yes No
ARMVATXM 4 1 No No
ARMvVAT 4 1 Yes No
ARMvV5xM 5 None No No
ARMvV5 5 None Yes No
ARMV5TXM 5 2 No No
ARMVS5T 5 2 Yes No
ARMVSTEXP 5 2 Yes All but LDRD,
MCRR, MRRC,
PLD, and STRD
ARMVS5TE 5 2 Yes Yes

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. ix

Preface

Using this manual

Theinformation in this manual is organized into three parts, as described below.

Part A - CPU Architectures

Part A describes the ARM and Thumb instruction sets, and contains the following chapters:

Chapter Al
Chapter A2

Chapter A3
Chapter A4

Chapter A5

Chapter A6

Chapter A7

Chapter A8

Chapter A9
Chapter A10

Gives aquick overview of the ARM instruction set.

Describesthetypesof value that ARM instructions operate on, the genera -purposeregisters
that contain those val ues, and the Program Status Registers. This chapter a so describeshow
ARM processors handle interrupts and other exceptions, and contains general information
about the memory interface of an ARM processor.

Gives adescription of the ARM instruction set, organized by type of instruction.

Contains detailed reference material on each ARM instruction, arranged al phabetically by
instruction mnemonic.

Contains detailed reference material on the addressing modes used by ARM instructions.
The term addressing mode isinterpreted broadly in this manual, to mean a procedure shared
by many different instructions, for generating values used by the instructions. For four of
the addressing modes described in this chapter, the values generated are memory addresses
(which is the traditional role of an addressing mode). The remaining addressing mode
generates values to be used as operands by data-processing instructions.

Gives adescription of the Thumb instruction set, organized by type of instruction. This
chapter also contains information about how to switch between the ARM and Thumb
instruction sets, and how exceptions that arise during Thumb state execution are handled.

Contains detailed reference material on each Thumb instruction, arranged al phabetically by
instruction mnemonic.

Givesinformation on the 26-bit architectures (ARMv1, ARMv2, and ARMv2a), and about
the backwards-compatibility support for these architectures that is built into some later
ARM processors. All of these features are now obsol ete, and information about themisonly
relevant to historical systems.

Contains some examples of using the ARM instruction set.

Gives adescription of the extrainstructions added in the enhanced DSP extension (see
Enhanced DSP instructions (E variants) on page vii).

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Preface

Part B - Memory and System Architectures

Part B describes standard memory system features that are normally implemented by the System Control
coprocessor (coprocessor 15) in an ARM-based system. It contains the following chapters:

Chapter B1
Chapter B2
Chapter B3

Chapter B4

Chapter B5

Chapter B6

Gives abrief overview of this part of the manual.
Gives a general description of the System Control coprocessor and its use.

Describesthe standard ARM memory and system architecture based on the use of aMemory
Management Unit (MMU). (Chapter B2 and Chapter B5 are also relevant to this
architecture.)

Givesadescription of the simpler standard ARM memory and system architecture based on
the use of a Protection Unit. (Chapter B2 and Chapter B5 are a so relevant to this
architecture.)

Gives a description of the standard ways to control caches and write buffersin ARM
memory systems. This chapter isrelevant both to systems based on an MM U and to systems
based on a Protection Unit.

Describes the Fast Context Switch Extension (FCSE), which allows switching between
multiple small processes (< 32M B in size) without incurring large performance costs due to
cache flushing and similar overheads.

Part C - Vector Floating-point Architecture

Part C describes the Vector Floating-point (VFP) architecture. Thisisa coprocessor extension to the ARM
architecture designed for high floating-point performance on typical graphics and DSP algorithms.

Chapter C1

Chapter C2

Chapter C3
Chapter C4

Chapter C5

Gives abrief overview of the VFP architecture and information about its compliance with
the |EEE 754-1985 floating-point arithmetic standard.

Describes the floating-point formats supported by the V FP instruction set, the floating-point
general-purpose registers that hold those values, and the VFP system registers.

Describes the VFP coprocessor instruction set, organized by type of instruction.

Contains detailed reference materia on the VFP coprocessor instruction set, organized
alphabetically by instruction mnemonic.

Contains detailed reference materia on the addressing modes used by VFP instructions.
One of these is atraditional addressing mode, generating addresses for load/store
instructions. The remainder specify how the fl oating-point general-purpose registers and
instructions can be used to hold and perform cal culations on vectors of floating-point
vaues.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. Xi

Preface

Conventions

This manual employs typographic and other conventions intended to improve its ease of use.

General typographic conventions

typewriter Isused for assembler syntax descriptions, pseudo-code descriptions of instructions,
and source code examples. In the cases of assembler syntax descriptions and
pseudo-code descriptions, see the additional conventions bel ow.

Thet ypewri t er fontisalso usedinthe maintext for instruction mnemonicsand
for references to other items appearing in assembler syntax descriptions,
pseudo-code descriptions of instructions and source code examples.

italic Highlights important notes, introduces special terminology, and denotes internal
cross-references and citations.

bold Is used for emphasisin descriptive lists and elsewhere, where appropriate.

SMALL CAPITALS Are used for afew terms which have specific technical meanings. Their meanings

can be found in the Glossary.

Pseudo-code descriptions of instructions

A form of pseudo-codeis used to provide precise descriptions of what instructions do. This pseudo-codeis

writteninat ypewr i t er font, and uses the following conventions for clarity and brevity:

. Indentation is used to indicate structure. For example, the range of statementothataement
loops over, goes from tHeor statement to the next statement at the same or lower indentation level
as thef or statement (both ends exclusive).

. Comments are bracketed by and*/ , as in the C language.

. English text is occasionally used outside comments to describe functionality that is hard to describe
otherwise.

. All keywords and special functions used in the pseudo-code are describeGlotzey.

. Assignment and equality tests are distinguished by asfogan assignment ard: for an equality
test, as in the C language.

. Instruction fields are referred to by the names shown in the encoding diagram for the instruction.

When an instruction field denotes a register, a reference to it means the value in that register, rather
than the register number, unless the context demands otherwise. For exdnpleza0 test is
checking whether the value in the specified register is O, Rdt s R15 test is checking whether
the specified register is register 15.

. When an instruction uses an addressing mode, the pseudo-code for that addressing mode generates
one or more values that are used in the pseudo-code for the instruction. For examplb, the
instruction described iIAND on page A48 uses ARM addressing mode 1 fglgieessing Mode 1 -
Data-processing operands on page A52). The pseudo-code for the addressing mode generates two
valuesshi ft er _operand andshi fter_carry_out, which are used by the pseudo-code for
the AND instruction.

Xii Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Preface

Assembler syntax descriptions

This manual contains numerous syntax descriptions for assembler instructions and for components of
assembler instructions. These are showninat ypew i t er font, and are asfollows:

< > Any item bracketed by < and > isa short description of atype of value to be supplied by the
user in that position. A longer description of the item is normally supplied by subsequent
text. Such items often correspond to a similarly named field in an encoding diagram for an
instruction. When the correspondence simply requires the binary encoding of an integer
value or register number to be substituted into the instruction encoding, it is not described
explicitly. For example, if the assembler syntax for an ARM instruction contains an item
<Rn> and theinstruction encoding diagram contains a4-bit field named Rn, the number of
the register specified in the assembler syntax is encoded in binary in the instruction field.

If the correspondence between the assembler syntax item and the instruction encoding is
more complex than simple binary encoding of an integer or register number, the item
description indicates how it is encoded.

{1} Any item bracketed by { and} isoptional. A description of theitem and of how itspresence
or absence is encoded in the ingtruction is normally supplied by subsequent text.

[Thisindicates an aternative character string. For example, LDM STMiseither LDMor STM

spaces Single spaces are used for clarity, to separate items. When a space is obligatory in the
assembler syntax, two or more consecutive spaces are used.

+ - Thisindicates an optional + or - sign. If neither is coded, + is assumed.

* When used in acombination like <i mmed_8> * 4, this describesan immediate value

which must be a specified multiple of avalue taken from a numeric range. In thisinstance,
thenumeric rangeis0 to 255 (the set of valuesthat can berepresented as an 8-bitimmediate)
and the specified multiple is 4, so the value described must be a multiple of 4 in the range
4*0 = 0 to 4* 255 = 1020.

All other characters must be encoded precisely asthey appear in the assembler syntax. Apart from{ and},
the special characters described above do not appear in the basic forms of assembler instructions
documented in thismanual. The{ and} characters need to be encoded in afew places as part of avariable
item. When this happens, the long description of the variable item indicates how they must be used.

Note

This manual only attempts to describe the most basic forms of assembler instruction syntax. In practice,
assemblers normally recognize amuch wider range of instruction syntaxes, aswell as various directivesto
control the assembly process and additiona features such as symbolic manipulation and macro expansion.
All of these are beyond the scope of this manual.

For descriptions of the extra facilities provided by the assemblersincluded in ARM Development Systems,
see the ARM Softwar e Development Toolkit Reference Guide (ARM DUI 0041) for SDT 2.50, or the ARM
Developer Suite Tools Guide (ARM DUI 0067) for ADS 1.0.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. Xiii

Preface

Xiv Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Contents

ARM Architecture Reference Manual

Preface
ADOUL this MAaNUAL ...t iv
Architecture versions and VariantSoooiiiiiiiieaee et \Y
Using this manual
Conventions

Part A: CPU Architecture

Chapter Al

Chapter A2

Introduction to the ARM Architecture

Al.l
Al.2

About the ARM architecture
ARM INSIIUCLION ST ..o e e e e e e e e e aaas

Programmer’s Model

A2.1
A2.2
A2.3
A2.4
A2.5
A2.6
A2.7

DAL TYPES it te e e e e e a bbb e e e e e as A2-2
ProCESSOr MOAESoiiiiiiiie et A2-3
(R EET0 1 (=] £ U OPPPTPR A2-4
GENEral-pUrPOSE FEOISTEISiiiiiiiiiieiie ettt e e e e e ettt aeaae e e e e aneees A2-5
Program status registers

EXCEPLIONS ..ottt e e e e e e eeeeeas

Memory and memory-mapped 1O ... A2-22

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. XV

Chapter A3 The ARM Instruction Set

A3.1
A3.2
A3.3
A3.4
A3.5
A3.6
A3.7
A3.8
A3.9
A3.10
A3.11
A3.12
A3.13

INStruction SEt €NCOAINGuiiiiiiiiiiiee e A3-2
The condition fieldoooiiiiiii e A3-5
Branch iNStrUCLIONSoviiiiiiieiic e A3-7
Data-processing INSIUCHIONSuuiiiiiirieiei ettt ee e e A3-9
MUILIPIY INSTFUCLIONS ...ttt e e e e A3-12
Miscellaneous arithmetic INStrUCHIONScccvviiiiiiiiiei e A3-14
Status register acCess INSLIUCHIONSeiiiiiiiiiiiiiiie e A3-15
Load and Store iNSrUCIONSccuuveeiiiiiiie et A3-17
Load and Store Multiple INStrUCtIONScooiiiiiiiiiiiiiiiie e A3-21
Semaphore instructionscc......

Exception-generating instructions

COProCeSSOr INSIUCHIONS ...oiiiiiiiieee ittt e eeeaaaaeas

Extending the instruction set

Chapter A4 ARM Instructions

A4l
A4.2

Alphabetical list of ARM instructions
ARM instructions and architecture versions

Chapter A5 ARM Addressing Modes

A5.1
A5.2
A5.3
A5.4
A5.5

Addressing Mode 1 - Data-processing OPerandsccoeeeeeeieeeeiiiieesiinineniiiinees A5-2
Addressing Mode 2 - Load and Store Word or Unsigned Byteccccccevvuene A5-18
Addressing Mode 3 - Miscellaneous Loads and Storesccoooeeeiiiiiiiiinnnne A5-34
Addressing Mode 4 - Load and Store Multiple ... A5-48
Addressing Mode 5 - Load and Store COProCeSSOrccooveeeeiiiivvivineeriiieeeeeens A5-56

Chapter A6 The Thumb Instruction Set

AB.1 About the Thumb iNStrUCtiON SEteeiiiiiiiiie e A6-2

AB.2 INSrUCtiON SEt ENCOINGeiiiiiiiiiiiaeii it e e e e e s A6-4

AB.3 Branch iNSIIUCHIONSccoiiiiiiiiiiiiiiie e e A6-6

A6.4 Data-processing iINSIIUCLIONScoiiiiiiiiiiiiiiiiiie ettt A6-8

A6.5 Load and Store Register iNStrUCLIONSoviiiiiiiiiiiiiiiiieeeeeee e A6-15

A6.6 Load and Store Multiple instructions

A6.7 Exception-generating iNStrUCLIONSc.uuviiiiiiiiiiiiiiiiieieee e

A6.8 Undefined iNStrUCtiON SPACEoiiiiiiiiiieeeee e
Chapter A7 Thumb Instructions

A7.1 Alphabetical list of Thumb inStruCtionsccuuiiiiiiiiiii e

A7.2 Thumb instructions and architecture versions

Xvi

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter A8 The 26-bit Architectures

A8.1 Overview of the 26-bit architeCturesccccviiiiiiiiiieiiieec e A8-2
AB.2 FOrmat Of reQISTEr 15 ..o A8-4
A8.3 26-bit PSR update INSrUCLIONSuiiiiiiiiiieeeeeiie e A8-6
AB.4 AJAreSS EXCEPLIONS ..uuiiiiiiiiiii ittt e e et e e ee e e e e e e e e e et aeaaaaeeaeeeeaae A8-8
A8.5 Backwards compatibility from 32-bit architectures ..., A8-9

Chapter A9 ARM Code Sequences
A9. 1 ArithmetiC INSITUCHIONSivieiiiiiiie et
A9.2 Branch iNSIIUCHIONSoviiiiiiieiiiiie e
A9.3 Load and Store instructions
A9.4 Load and Store Multiple instructions
A9.5 Semaphore INSIIUCHIONScooiiiiiiiieiiii e
A9.6 Other code examples

Chapter A10 Enhanced DSP Extension
A10.1 About the enhanced DSP instructions
A10.2 Saturated integer arithmetiC ..o
A10.3 Saturated Q15 and Q31 arithmMetiCeueiiiiiiiiiiiiiiieeeeee e
AL0.4 The Q flag oooiiiiii ettt a e e e
A10.5 Enhanced DSP INSIUCIONScooiiiiiiiieiiiiieieiiiee e
A10.6 Alphabetical list of enhanced DSP INStruCtionsccccooviiiiiiiiiiiiiiiineee s A10-8

Part B: Memory and System Architectures

Chapter B1 Introduction to Memory and System Architectures
B1.1 ADbout the MEemOrY SYSIEIMccoiiiiiiiiiiiii ettt e e e e B1-2
B1.2 SyStEM-IEVEIISSUESuiiiiiiiiiiiii et a s B1-4
Chapter B2 The System Control Coprocessor
B2.1 About the System Control COPrOCESSOrcccoiiiuiiiiiiiiiiieaeeaeaaeaaaeiiiieeeiiieeeeeee s B2-2
B2.2 REQISIEIS ittt e e e e e e bbb e e aeae s B2-3
B2.3 REQIStEr 0: ID COUESuiiiiiiiiiiiieeie ittt ettt e e e e s B2-6
B2.4 Register 1: Control regiStercooo i B2-13
B2.5 REQISIEIS 2-15 ..oeiiiiiiiiiii ettt a e e e e e B2-17

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. Xvii

Chapter B3 Memory Management Unit

B3.1 About the MMU arChiteCturecccocviiiiiiiiiieiiee e B3-2
B3.2 MEMOrY GCCESS SEUUEBNCEuuveiiiiiieiieiiaaaaaaiaaa e attttbabeeeeeeaaaaaaaaaaaaainnnnnnsssssbeaeeeeeens B3-4
B3.3 TranSlation PrOCESSccciiiiiiiiiiiiiiiiieie ettt ae e e e e e e B3-6
B3.4 ACCESS PEIMISSIONS ..eeiiiiiiiiiiiiiiiiiiie et ie e e e et e et e e e e eeeeeaaaaae e e e B3-16
B3.5 DOMAINS ettt e et e e B3-17
B3.6 ADOITS .o B3-18
B3.7 CPL5 rEISIEIS .euieiiiiiiieie ettt ae e e e e e B3-23
Chapter B4 Protection Unit

B4.1 About the Protection Unit

B4.2 OVErlapping rEIONSciiiiiiiiiiiiiiiiii ittt e e e e e teaaeaaa e e e aae

B4.3 CPL5 rEISIEIS ..uiieiiiiiiieiei ettt e e et ae e e e e e e

Chapter B5 Caches and Write Buffers

B5.1 About caches and write BUffers ... B5-2
B5.2 Cache organization ... B5-3
B5.3 TYPES Of CACNE ...eieiiiiiieiiii e B5-5
B5.4 Cachability and bufferability ... B5-8
B5.5 MEMOIY CONEIENCY ...eeiiiiiiiiiiiiiiiit ettt e e eee e e e e eae e B5-10
B5.6 CPL5 rEISIEIS ..uiieiiiiiiiieiiie ettt e e e e e B5-14
Chapter B6 Fast Context Switch Extension
B6.1 ADOULTNE FCSE ..o B6-2
B6.2 Modified virtual @ddreSSESccciiiiiiiiiiiie e B6-3
B6.3 ENabliNg the FCSE ...t B6-5
BB.4 CPL5 rEISIEIS ..uiieiiiiiiieiie ittt e et ae e e e e e e B6-6
Part C: Vector Floating-point Architecture
Chapter C1 Introduction to the Vector Floating-point Architecture
Cl1l.1 Aboutthe Vector Floating-point architectureccccoceeiiiiiiiiiiiiiiiiieiie e, C1-2
C1.2 Overview of the VFP architeCturecccoceiiiiiiiiiiiie e C1-3
C1.3 Compliance with the IEEE 754 standardcooooiiiiiiiiiiiininniiiiiciie e C1-7
Cl.4 |EEE 754 implementation ChOICESooviiiiiiiiiiiiiiiiiiie e C1-8

xviii Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter C2 VFP Programmer’s Model

C2.1 Floating-point fOrMALScooiiiiiiiiiiiiiie e C2-2
(@23 = (010 o To [To TR C2-9
C2.3 Floating-point @XCEPLIONSuvuiiiiiiieeeee ettt ee e e e e e eeeaes C2-10
C2.4 FIUSh-10-ZEIr0O MOUEooiiiiiiiiiciie e C2-13
C2.5 Floating-point general-purpoSe regiStersooooiioiiiiiiieeiiineeeeeee e eiiiieeeeeens C2-14
C2.6 SYSIEM FEOISIEIS .eiiiiiiiiiii ittt e e e e et e et ee e e e e e ea e nananeaes C2-19
C2.7 Reset behavior and initializationccccooviiiiiiiie e C2-26
Chapter C3 VFP Instruction Set Overview

C3.1 Data-processing instructions
C3.2 Load and Store instructions
C3.3 Register transfer INStrUCLIONSoooiiiiiiieeie e C3-17

Chapter C4 VFP Instructions
C4.1 Alphabetical list of VFP INSIrUCLIONScccooiiiiiiiiiiiiiee e C4-2

Chapter C5 VFP Addressing Modes

C5.1 Addressing Mode 1 - Single-precision vectors (non-monadiC)ccccceeeeen... C5-2
C5.2 Addressing Mode 2 - Double-precision vectors (non-monadic)ccccceeeeen... C5-8
C5.3 Addressing Mode 3 - Single-precision vectors (monadic)c.cooovcciiiiiinnnnes C5-14
C5.4 Addressing Mode 4 - Double-precision vectors (monadiC)ccovceveveeeeeen. C5-19
C5.5 Addressing Mode 5 - VFP load/store multiple ..., C5-24
Glossary
Index

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. XiX

XX

Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

Part A

CPU Architecture

Chapter Al
Introduction to the ARM Architecture

This chapter introduces the ARM architecture and contains the following sections:
. About the ARM architecture on page Al-2
. ARM instruction set on page Al-5.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved.

Introduction to the ARM Architecture

1.1 About the ARM architecture
The ARM architecture has been designed to allow very small, yet high-performance implementations. The
architectural simplicity of ARM processorsleadsto very small implementations, and small implementations
allow devices with very low power consumption.
The ARM isaReduced Instruction Set Computer (RISC), asit incorporatesthesetypical RISC architecture
features:
. a large uniform register file
. aload/store architecture, where data-processing operations only operate on register contents, not
directly on memory contents
. simple addressing modes, with all load/store addresses being determined from register contents and
instruction fields only
. uniform and fixed-length instruction fields, to simplify instruction decode.
In addition, the ARM architecture gives you:
. control over both thérithmetic Logic Unit (ALU) and shifter in every data-processing instruction
to maximize the use of an ALU and a shifter
. auto-increment and auto-decrement addressing modes to optimize program loops
. Load and Store Multiple instructions to maximize data throughput
. conditional execution of all instructions to maximize execution throughput.
These enhancements to a basic RISC architecture allow ARM processors to achieve a good balance of high
performance, low code size, low power consumption and low silicon area.
1.1.1 ARM registers
ARM has 31 general-purpose 32-bit registers. At any one time, 16 of these registers are visible. The other
registers are used to speed up exception processing. All the register specifiers in ARM instructions can
address any of the 16 visible registers.
The main bank of 16 registers is used by all unprivileged code. These are the User mode registers. User
mode is different from all other modes as it is unprivileged, which means:
. User mode is the only mode which cannot switch to another processor mode without generating an
exception
. memory systems and coprocessors might allow User mode less access to memory and coprocessor
functionality than a privileged mode.
Al-2 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Introduction to the ARM Architecture

Two of the 16 visible registers have specid roles:

Link register Register 14 isthe Link Register (LR). This register holds the address of the next
instruction after a Branch and Link (BL) instruction, which is the instruction used
to make a subroutine call. At all other times, R14 can be used as a general-purpose
register.

Program counter Register 15 isthe Program Counter (PC). It can be used in most instructions as
a pointer to the instruction which is two instructions after the instruction being
executed. All ARM instructions are four byteslong (one 32-bit word) and are
always aligned on aword boundary. This means that the bottom two bits of the PC
are always zero, and therefore the PC contains only 30 non-constant hits.

The remaining 14 registers have no special hardware purpose. Their uses are defined purely by software.
Software normally uses R13 as a Stack Pointer (SP).

For more details on registers, please refer to Registers on page A2-4.

1.1.2 Exceptions

ARM supports five types of exception, and a privileged processing mode for each type. The five types of
exceptions are:

. fast interrupt

. normal interrupt

. memory aborts, which can be used to implement memory protection or virtual memory

. attempted execution of an undefined instruction

. software interrupt@W) instructions which can be used to make a call to an operating system.

When an exception occurs, some of the standard registers are replaced with registers specific to the
exception mode. All exception modes have replaceibanked registers for R13 and R14. The fast
interrupt mode has more registers for fast interrupt processing.

When an exception handler is entered, R14 holds the return address for exception processing. This is used
to return after the exception is processed and to address the instruction that caused the exception.

Register 13 is banked across exception modes to provide each exception handler with a private stack pointer.
The fast interrupt mode also banks registers 8 to 12 so that interrupt processing can begin without the need
to save or restore these registers.

There is a sixth privileged processing mode, System mode, which uses the User mode registers. This is used
to run tasks that require privileged access to memory and/or coprocessors, without limitations on which
exceptions can occur during the task.

For more details on exceptions, please reféxtmptions on page A2-13.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. Al-3

Introduction to the ARM Architecture

The exception process

When an exception occurs, the ARM processor halts execution after the current instruction and begins
execution at one of a number of fixed addressesin memory, known as the exception vectors. Thereis
a separate vector |ocation for each exception.

An operating system installsahandler on every exception at initialization. Privileged operating system tasks
are normally run in System mode to alow exceptions to occur within the operating system without state
loss.

1.1.3 Status registers
All processor state other than the general-purpose register contents is held in status registers. The current
operating processor statusisin the Current Program Status Register (CPSR). The CPSR holds:
. 4 condition code flags (Negative, Zero, Carry and oVerflow)
. 2 interrupt disable bits, one for each type of interrupt
. 5 bits which encode the current processor mode
. 1 bit which encodes whether ARM or Thumb instructions are being executed.
Each exception mode also haSaaed Program Status Register (SPSR) which holds the CPSR of the task
immediately before the exception occurred. The CPSR and the SPSRs are accessed with special
instructions.
For more details on status registers, please referogram status registers on page A2-9.
Al-4 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Introduction to the ARM Architecture

1.2 ARM instruction set

The ARM instruction set can be divided into six broad classes of instruction:

. Branch instructions

. Data-processing instructions on page Al-6

. Statusregister transfer instructions on page A1-7
. Load and store ingtructions on page Al1-7

. Coprocessor instructions on page A1-8

. Exception-generating instructions on page A1-9.

Most data-processing instructions and one type of coprocessor instruction can update the four condition
code flags in the CPSR (Negative, Zero, Carry and oVerflow) according to their result.

Almost all ARM instructions contain a 4-kiondition field. One value of this field specifies that the
instruction is executed unconditionally.

Fourteen other values specdynditional execution of the instruction. If the condition code flags indicate
that the corresponding condition is true when the instruction starts executing, it executes normally.
Otherwise, the instruction does nothing. The 14 available conditions allow:

. tests for equality and non-equality
. tests for <, <=, >, and >= inequalities, in both signed and unsigned arithmetic
. each condition code flag to be tested individually.

The sixteenth value of the condition field is used for a few instructions which do not allow conditional
execution.

1.2.1 Branch instructions

As well as allowing many data-processing or load instructions to change control flow by writing the PC, a
standard Branch instruction is provided with a 24-bit signed offset, allowing forward and backward
branches of up to 32MB.

There is a Branch and LinBL) option that also preserves the address of the instruction after the branch in
R14, the LR. This provides a subroutine call which can be returned from by copying the LR into the PC.

There are also branch instructions which can switch instruction set, so that execution continues at the branch
target using the Thumb instruction set. These allow ARM code to call Thumb subroutines, and ARM
subroutines to return to a Thumb caller. Similar instructions in the Thumb instruction set allow the
corresponding Thumb. ARM switches. An overview of the Thumb instruction set is provided in Chapter

A6 The Thumb Instruction Set.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. Al-5

Introduction to the ARM Architecture

1.2.2 Data-processing instructions
The data-processing instructions perform calcul ations on the general -purpose registers. There arefour types
of data-processing instructions:
. Arithmetic/logic instructions
. Comparison instructions
. Multiply instructions
. Count Leading Zerosinstruction on page Al-7.
Arithmetic/logic instructions
There are twelve arithmetic/logic instructions which share a common instruction format. These perform an
arithmetic or logical operation on up to two source operands, and write the result to a destination register.
They can also optionally update the condition code flags based on the result.
Of the two source operands:
. one is always a register
. the other has two basic forms:

— animmediate value
— aregister value, optionally shifted.

If the operand is a shifted register, the shift amount can be either an immediate value or the value of another
register. Four types of shift can be specified. Every arithmetic/logic instruction can therefore perform an
arithmetic/logic and a shift operation. As a result, ARM does not have dedicated shift instructions.
Because th@rogram Counter (PC) is a general-purpose register, arithmetic/logic instructions can write
their results directly to the PC. This allows easy implementation of a variety of jump instructions.
Comparison instructions
There are four comparison instructions which use the same instruction format as the arithmetic/logic
instructions. These perform an arithmetic or logical operation on two source operands, but do not write the
result to a register. They always update the condition flags based on the result.
The source operands of comparison instructions take the same forms as those of arithmetic/logic
instructions, including the ability to incorporate a shift operation.
Multiply instructions
Multiply instructions come in two classes. Both types multiply two 32-bit register values and store their
result:
32-bit result Normal. Stores the 32-bit result in a register.
64-bit result Long. Stores the 64-bit result in two separate registers.
Both types of multiply instruction can optionally perform an accumulate operation.

Al-6 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

1.2.3

1.2.4

Introduction to the ARM Architecture

Count Leading Zeros instruction

The Count Leading Zeros (CLZ) instruction determines the number of zero bits at the most significant end
of aregister value, up to the first 1 bit. This number iswritten to the destination register of the CLZ
instruction.

Status register transfer instructions

The status register transfer instructions transfer the contents of the CPSR or an SPSR to or from a
general-purpose register. Writing to the CPSR can:

. set the values of the condition code flags
. set the values of the interrupt enable bits
. set the processor mode.

Load and store instructions

The following load and store instructions are available:
. Load and Sore Register

. Load and Sore Multiple registers on page Al1-8

. Swap register and memory contents on page Al-8.

Load and Store Register

Load Register instructions can load a 32-bit word, a 16-bit halfword or an 8-bit byte from memory into a
register. Byte and halfword loads can be automatically zero-extended or sign-extended as they are loaded.

Store Register instructions can store a 32-bit word, a 16-bit halfword or an 8-bit byte from a register to
memory.

Load and Store Register instructions have three primary addressing modes, all of whibasasegster
and aroffset specified by the instruction:

. In offset addressing, the memory address is formed by adding or subtracting an offset to or from the
base register value.

. In pre-indexed addressing, the memory address is formed in the same way as for offset addressing.
As a side-effect, the memory address is also written back to the base register.

. In post-indexed addressing, the memory address is the base register value. As a side-effect, an offset
is added to or subtracted from the base register value and the result is written back to the base register.

In each case, the offset can be either an immediate or the valuend&aregister. Register-based offsets
can also be scaled with shift operations.

As the PC is a general-purpose register, a 32-bit value can be loaded directly into the PC to perform a jump
to any address in the 4GB memory space.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. Al1-7

Introduction to the ARM Architecture

Load and Store Multiple registers

Load Multiple (LDM) and Store Multiple (STM instructions perform a block transfer of any number of
the general -purpose registers to or from memory. Four addressing modes are provided:

. pre-increment

. post-increment
. pre-decrement

. post-decrement.

The base address is specified by a register value, which can be optionally updated after the transfer. As the
subroutine return address and PC values are in general-purpose registers, very efficient subroutine entry and
exit sequences can be constructed WM andSTM

. A singleSTMinstruction at subroutine entry can push register contents and the return address onto
the stack, updating the stack pointer in the process.

. A singleLDMinstruction at subroutine exit can restore register contents from the stack, load the PC
with the return address, and update the stack pointer.

LDMandSTMinstructions also allow very efficient code for block copies and similar data movement
algorithms.
Swap register and memory contents

A swap GWP) instruction performs the following sequence of operations:

1. It loads a value from a register-specified memory location.
2. It stores the contents of a register to the same memory location.
3. It writes the value loaded in step 1 to a register.

By specifying the same register for steps 2 and 3, the contents of a memory location and a register are
interchanged.

The swap operation performs a special indivisible bus operation that allows atomic update of semaphores.
Both 32-bit word and 8-bit byte semaphores are supported.

1.2.5 Coprocessor instructions
There are three types of coprocessor instructions:
Data-processing instructions
These start a coprocessor-specific internal operation.
Datatransfer instructions
These transfer coprocessor data to or from memory. The address of the transfer is calculated
by the ARM processor.
Register transfer instructions
These allow a coprocessor value to be transferred to or from an ARM register.
Al-8 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

1.2.6

Introduction to the ARM Architecture

Exception-generating instructions
Two types of instruction are designed to cause specific exceptions to occur.

Softwar e interrupt instructions

SW instructions cause a software interrupt exception to occur. These are normally used to
make callsto an operating system, to request an OS-defined service. The exception entry
caused by a SW instruction also changes to a privileged processor mode. This alows an
unprivileged task to gain access to privileged functions, but only in ways permitted by the
Oos.

Softwar e breakpoint instructions

BKPT instructions cause an abort exception to occur. If suitable debugger softwareis
installed on the abort vector, an abort exception generated in this fashion istreated asa
breakpoint. If debug hardware is present in the system, it can instead treat a BKPT
instruction directly as a breakpoint, preventing the abort exception from occurring.

In addition to the above, the following types of instruction cause an Undefined Instruction exception to
occur:

. coprocessor instructions which are not recognized by any hardware coprocessor
. most instruction words that have not yet been allocated a meaning as an ARM instruction.

In each case, this exception is normally used either to generate a suitable error or to initiate software
emulation of the instruction.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. Al1-9

Introduction to the ARM Architecture

Al1-10 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter A2
Programmer’s Model

This chapter introduces the ARM programmer’s model. It contains the following sections:
. Data types on page A2-2

. Processor modes on page A2-3
. Registers on page A2-4
. General-purpose registers on page A2-5

. Program status registers on page A2-9
. Exceptions on page A2-13
. Memory and memory-mapped /O on page A2-22.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A2-1

Programmer’s Model

2.1 Data types
ARM processors support the following data types:
Byte 8 hits.
Halfword 16 bits (halfwords must be aligned to two-byte boundaries).
Word 32 bits (words must be aligned to four-byte boundaries).
Note
. All three types are supported in ARM architecture version 4 and above. Only bytes and words were
supported prior to ARM architecture version 4.
. When any of these types is describedrasgned, the N-bit data value represents a non-negative
integer in the range 0 to Nan, using normal binary format.
. When any of these types is describedgised, the N-bit data value represents an integer in the range
21t +2NV1.1 using two's complement format.
. All data operations, for examphDD, are performed on word quantities.
. Load and store operations can transfer bytes, halfwords and words to and from memory,
automatically zero-extending or sign-extending bytes or halfwords as they are loaded.
. ARM instructions are exactly one word (and are aligned on a four-byte boundary). Thumb
instructions are exactly one halfword (and are aligned on a two-byte boundary).
A2-2 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Programmer’s Model

2.2 Processor modes

The ARM architecture supports the seven processor modes shown in Table 2-1.

Table 2-1 ARM version 4 processor modes

Processor mode Description

User usr Normal program execution mode
FIQ fiq Supports a high-speed data transfer or channel process
IRQ irq Used for general-purpose interrupt handling

Supervisor svc A protected mode for the operating system

Abort abt Implements virtual memory and/or memory protection

Undefined und Supports software emulation of hardware coprocessors

System sys Runs privileged operating system tasks (ARM architecture version 4 and above)

Mode changes can be made under software control, or can be caused by external interrupts or exception
processing.

Most application programs execute in User mode. While the processor is in User mode, the program being
executed is unable to access some protected system resources or to change mode, other than by causing an
exception to occur (see Exceptions on page A2-13). This alows a suitably written operating system to
control the use of system resources.

The modes other than User mode are known as privileged modes. They have full accessto system resources
and can change mode freely. Five of them are known as exception modes:

. FIQ

. IRQ

. Supervisor
. Abort

. Undefined.

These are entered when specific exceptions occur. Each of them has some additional registers to avoid
corrupting User mode state when the exception occursgggers on page A2-4 for details).

The remaining mode is System mode, and is only present in ARM architecture version 4 and above. Itis not
entered by any exception and has exactly the same registers available as User mode. However, it is a
privileged mode and is therefore not subject to the User mode restrictions. It is intended for use by operating
system tasks which need access to system resources, but wish to avoid using the additional registers
associated with the exception modes. Avoiding such use ensures that the task state is not corrupted by the
occurrence of any exception.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A2-3

Programmer’s Model

2.3 Registers
The ARM processor has atotal of 37 registers:
. 31 general-purpose registers, including a program counter. These registers are 32 bits wide and are
described irGeneral-purpose registers on page A2-5.
. 6 status registers. These registers are also 32 bits wide, but only 12 of the 32 bits are allocated or need
to be implemented. These are describerogram status registers on page A2-9.
Registers are arranged in partially overlapping banks, with a different register bank for each processor
mode, as shown in Figure 2-1. At any time, 15 general-purpose registers (RO to R14), one or two status
registers and the program counter are visible. Each column of Figure 2-1 shows which general-purpose and
status registers are visible in the indicated processor mode.
Modes
Privileged modes
Exception modes
User System Supervisor Abort Undefined Interrupt Fast interrupt
RO RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7 R7
R8 R8 R8 R8 R8 R8 \\ R8_fi
R9 R9 R9 RO R9 RO \\ R9_fig
R10 R10 R10 R10 R10 R10 \ R10_fiq
R11 R11 R11 R11 R11 R11 \\ R11_fig
R12 R12 R12 R12 R12 R12 \ R12_fiq
R13 R13 R13_svc \‘x R13_abt R13_und = R13.irq \\ R13_fiq
R14 R14 R14_svc ‘\ R14_abt R14_und %\ Rid_iq \\ R14_fiq
PC PC PC PC PC PC PC
‘ CPSR CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_svc SPSR_abt \\; SPSR_und SPSR_irq SPSR_fiq
indicates that the normal register used by User or System mode has
been replaced by an alternative register specific to the exception mode
Figure 2-1 Register organization
A2-4 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

2.4

24.1

24.2

Programmer’s Model

General-purpose registers

The general-purpose registers RO-R15 can be split into three groups. These groups differ in the way they
are banked and in their special-purpose uses:

. The unbanked registers, RO-R7

. The banked registers, R8-R14

. Register 15, the PC, is describedr'me program counter, R15 on page A2-7.

The unbanked registers, RO-R7

Registers RO to R7 atmbanked registers. This means that each of them refers to the same 32-bit physical
register in all processor modes. They are completely general-purpose registers, with no special uses implied
by the architecture, and can be used wherever an instruction allows a general-purpose register to be
specified.

The banked registers, R8-R14

Registers R8 to R14 abanked registers. The physical register referred to by each of them depends on the
current processor mode. Where a particular physical register is intended, without depending on the current
processor mode, a more specific name (as described below) is used. Almost all instructions allow the banked
registers to be used wherever a general-purpose register is allowed.

Note

A few exceptions to this rule are noted in the individual instruction descriptions. Where a restriction exists
on the use of banked registers, it always applies to all of R8 to R14. For example, R8 to R12 are subject to
such restrictions even in systems in which FIQ mode is never used and so only one physical version of the
register is ever in use.

Registers R8 to R12 have two banked physical registers each. One is used in all processor modes other than
FIQ mode, and the other is used in FIQ mode. Where it is necessary to be specific about which version is
being referred to, the first group of physical registers are referred to as R8_usr to R12_usr and the second
group as R8_fig to R12_fiq.

Registers R8 to R12 do not have any dedicated special purposes in the architecture. However, for interrupts
that are simple enough to be processed using registers R8 to R14 only, the existence of separate FIQ mode
versions of these registers allows very fast interrupt processing. Examples of this usage can be found in
Single-channel DMA transfer on page A9-13 anBual-channel DMA transfer on page A9-13.

Registers R13 and R14 have six banked physical registers each. One is used in User and System modes,
while each of the remaining five is used in one of the five exception modes. Where it is necessary to be
specific about which version is being referred to, you use names of the form:

R13_<node>
R14 <node>

where<node> is the appropriate one obr , svc (for Supervisor modegbt ,und, i rq andf i q.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A2-5

Programmer’s Model

Register R13 is normally used as a stack pointer and is also known as the SP. In the ARM instruction set,
thisis by convention only, as there are no defined instructions or other functionality which use R13ina
special-case manner. However, there are such instructions in the Thumb instruction set, as described in
Chapter A6 The Thumb I nstruction Set.

Each exception mode has its own banked version of R13, which should normally beinitialized to point to a
stack dedicated to that exception mode. On entry, the exception handler typically storesto this stack the
values of other registers to be used. By reloading these values into the registers when it returns, the
exception handler can ensure that it does not corrupt the state of the program that was being executed when
the exception occurred.

Register R14 (also known as the Link Register or LR) has two specia functions in the architecture:

. In each mode, the mode's own version of R14 is used to hold subroutine return addresses. When a
subroutine call is performed byBa or BLX instruction, R14 is set to the subroutine return address.
The subroutine return is performed by copying R14 back to the program counter. This is typically
done in one of the two following ways:

— Execute either of these instructions:
MOV PC, LR
BX LR
— On subroutine entry, store R14 to the stack with an instruction of the form:

STMFD SP!, {<regi sters>, LR}
and use a matching instruction to return:
LDMFD SP!, { <regi st er s>, PC}

. When an exception occurs, the appropriate exception mode's version of R14 is set to the exception
return address (offset by a small constant for some exceptions). The exception return is performed in
a similar way to a subroutine return, but using slightly different instructions to ensure full restoration
of the state of the program that was being executed when the exception occurkedefams on
page A2-13 for more details.

Register R14 can be treated as a general-purpose register at all other times.

Note

When nested exceptions are possible, the two special-purpose uses might conflict. For example, if an IRQ
interrupt occurs when a program is being executed in User mode, none of the User mode registers are
necessarily corrupted. But if an interrupt handler running in IRQ mode re-enables IRQ interrupts and a
nested IRQ interrupt occurs, any value the outer interrupt handler is holding in R14_irq at the time is
overwritten by the return address of the nested interrupt.

System programmers need to be careful about such interactions. The usual way to deal with them is to
ensure that the appropriate version of R14 does not hold anything significant at times that nested exceptions
can occur. When this is hard to do in a straightforward way, it is usually best to change to another processor
mode during entry to the exception handler, before re-enabling interrupts or otherwise allowing nested
exceptions to occur. (In ARM architecture version 4 and above, System mode is usually the best mode to
use for this purpose.)

A2-6

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Programmer’s Model

24.3 The program counter, R15

Register R15 holds the Program Counter (PC). It can often be used in place of one of the general-purpose
registers RO to R14, and is therefore considered one of the general-purpose registers. However, there are
also many instruction-specific restrictions or specia cases about its use. These are noted in the individual
instruction descriptions. Usually, the instruction is UNPREDICTABLE if R15 is used in a manner that breaks
these restrictions.

The Program Counter is always used for a special purpose, as described in:
. Reading the program counter
. Writing the program counter on page A2-8.

Reading the program counter

When an instruction reads R15 without breaking any of the restrictions on its use, the value read is the
address of the instruction plus 8 bytes. As ARM instructions are always word-aligned, bits[1:0] of the
resulting value are always zero. (In T variants of the architecture, this behavior changes during Thumb state
execution - see Chapter A®ie Thumb Instruction Set for details.)

This way of reading the PC is primarily used for quick, position-independent addressing of nearby
instructions and data, including position-independent branching within a program.

An exception to the above rule occurs wherS&R or STMinstruction stores R15. Such instructions can
store either the address of the instruction plus 8 bytes, like other instructions that read R15, or the
instruction's own address plus 12 bytes. Whether the offset of 8 or the offset of 12 is used is
IMPLEMENTATION DEFINED. An implementation must use the same offset foB8R andSTMinstructions
that store R15. It cannot use 8 for some of them and 12 for others.

Because of this exception, it is usually best to avoid the uSERANASTMinstructions that store R15. If
this is difficult, use a suitable instruction sequence in the program to ascertain which offset the
implementation uses. For example, if RO points to an available word of memory, then the following
instructions put the offset of the implementation in RO:

SUB Rl1, PC, #4 ; Rl = address of following STR instruction

STR PC, [RO] ; Store address of STR instruction + offset,

LDR RO, [RO] ; then reload it

SUB RO, RO, R1 ; Calculate the offset as the difference
Note

The rules about how R15 is read apply only to reads by instructions. In particular, they do not necessarily
describe the values placed on a hardware address bus during instruction fetches. Like all other details of
hardware interfaces, such values IBrBLEMENTATION DEFINED.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A2-7

Programmer’s Model

Writing the program counter

When an instruction writes R15 without breaking any of therestrictions on its use, the normal result isthat
the value written to R15 istreated as an instruction address and a branch occurs to that address.

Since ARM ingtructions are required to be word-aligned, values written to R15 are normally expected to
have bits[1:0] == 0b00. The precise rules for this depend on the architecture version:

. In ARM architecture versions 3 and below, bits[1:0] of a value written to R15 are ignored, so that the
actual destination address of the instruction is (value written to R15) P FFFFFC.

. In ARM architecture versions 4 and above, bits[1:0] of a value written to R15 in ARM state must be
0b0O0. If they are not, the results anePREDICTABLE.

Similarly, in T variants of ARM architecture versions 4 and above, Thumb instructions are required to be
halfword-aligned. Bit[0] of a value written to R15 in Thumb state is ignored, so that the actual destination
address of the instruction is (value written to R15) ANFFFFFFFE.

Several instructions have their own rules for interpreting values written to R15. For exBxhatel other
instructions designed to transfer between ARM and Thumb states use bit[0] of the value to select whether
to execute the code at the destination address in ARM state or Thumb state. Special rules of this type are
described on the individual instruction pages, and override the general rules in this section.

A2-8

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

2.5

251

Programmer’s Model

Program status registers

The current program statusregister (CPSR) is accessiblein all processor modes. It contains condition code
flags, interrupt disable bits, the current processor mode, and other status and control information. Each
exception mode also has a saved program status register (SPSR), that is used to preserve the val ue of the
CPSR when the associated exception occurs.

Note

User mode and System mode do not have an SPSR, because they are not exception modes. All instructions
which read or write the SPSR are UNPREDICTABLE when executed in User mode or System mode.

The format of the CPSR and the SPSRs is shown below.

31 30 29 28 27 26 8 76 543210
M{M{M|M|M
N[Z|C|V|Q DNM(RAZ) I{F|T alal211l0

The condition code flags

TheN, Z, C,and V (Negative, Zero, Carry and oV erflow) bits are collectively known as the condition code
flags, often referred to as flags. The condition code flagsin the CPSR can be tested by most instructionsto
determine whether the instruction is to be executed.

The condition code flags are usually modified by:

. Execution of a comparison instructio@\N, CVP, TEQ or TST).

. Execution of some other arithmetic, logical or move instruction, where the destination register of the
instruction is not R15. Most of these instructions have both a flag-preserving and a flag-setting
variant, with the latter being selected by addin@a&ualifier to the instruction mnemonic. Some of
these instructions only have a flag-preserving version. This is noted in the individual instruction

descriptions.

In either case, the new condition code flags (after the instruction has been executed) usually mean:

N Is set to bit 31 of the result of the instruction. If this resultis regarded as a two's complement

signed integer, then N = 1 if the result is negative and N = 0 if it is positive or zero.

z Is set to 1 if the result of the instruction is zero (which often indicateguah result from
a comparison), and to 0 otherwise.

C Is set in one of four ways:

. For an addition, including the comparison instructid, C is set to 1 if the addition
produced a carry (that is, an unsigned overflow), and to 0 otherwise.

. For a subtraction, including the comparison instruc@®, C is set to 0 if the

subtraction produced a borrow (that is, an unsigned underflow), and to 1 otherwise.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A2-9

Programmer’s Model

252

. For non-addition/subtractions that incorporate a shift operation, C is set to the last bit
shifted out of the value by the shifter.

. For other non-addition/subtractions, C is normally left unchanged (but see the
individual instruction descriptions for any special cases).
\% Is set in one of two ways:
. For an addition or subtraction, V is set to 1 if signed overflow occurred, regarding the

operands and result as two's complement signed integers.

. For non-addition/subtractions, V is normally left unchanged (but see the individual
instruction descriptions for any special cases).

The flags can be modified in these additional ways:
. Execution of aMSR instruction, as part of its function of writing a new value to the CPSR or SPSR.

. Execution ofVRC instructions with destination register R15. The purpose of such instructions is to
transfer coprocessor-generated condition code flag values to the ARM processor.

. Execution of some variants of th®Minstruction. These variants copy the SPSR to the CPSR, and
their main intended use is for returning from exceptions.

. Execution of flag-setting variants of arithmetic and logical instructions whose destination register is
R15. These also copy the SPSR to the CPSR, and are mainly intended for returning from exceptions.
The Q flag

In E variants of ARM architecture 5 and above, bit[27] of the CPSR is known as the Q flag and is used to
indicate whether overflow and/or saturation has occurred in some of the enhanced DSP instructions.
Similarly, bit[27] of each SPSR is a Q flag, and is used to preserve and restore the CPSR Q flag if an
exception occurs. For more details of the Q flag, see ChapteEwhced DSP Extension.

In architecture versions prior to version 5, and in non-E variants of architecture version 5 and above, bit[27]
of the CPSR and SPSRs should be treated as descriddtkirbits on page A2-12.

The control bits

The bottom eight bits of Brogram Status Register (PSR), incorporating I, F, T and M[4:0], are known
collectively as theontrol bits. The control bits change when an exception arises and can be altered by
software only when the processor is in a privileged mode.

Interrupt disable bits

| and F are the interrupt disable bits:

| bit Disables IRQ interrupts when it is set.

F bit Disables FIQ interrupts when it is set.

A2-10

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Programmer’s Model

The T bit

The T bit should be zero (sBz) on ARM architecture version 3 and below, and on non-T variants of ARM
architecture version 4. No instructions exist in these architectures that can switch between ARM and Thumb
states.

On T variants of ARM architecture 4 and above, the T bit has the following meanings:
T=0 Indicates ARM execution.
T=1 Indicates Thumb execution.

Instructions that switch between ARM and Thumb states can be used freely on implementations of these
architectures.

On non-T variants of ARM architecture version 5 and above, the T hit has the following meanings:
T=0 Indicates ARM execution.

T=1 Forces the next instruction executed to cause an undefined instruction exception (see
Undefined Instruction exception on page A2-15).

Instructions that switch between ARM and Thumb states can be used on implementations of these
architectures, but only function correctly as long as the program remainsin ARM state. If the program
attempts to switch to Thumb state, the first instruction executed after the attempted switch causes an
undefined instruction exception. Entry into that exception then switches back to ARM state. The exception
handler can detect that this was the cause of the exception from the fact that the T bit of SPSR_und is set.

Mode bits

MO, M1, M2, M3, and M4 (M[4:0]) are the mode bits, and these determine the mode in which the processor
operates. Their interpretation is shown in Table 2-2.

Table 2-2 The mode bits

M[4:0] Mode Accessible registers

0b10000 User PC, R14 to RO, CPSR

0b10001 FIQ PC, R14 fiqto R8 fig, R7 to RO, CPSR, SPSR_fiq
0b10010 IRQ PC, R14 irg, R13_irqg, R12 to RO, CPSR, SPSR_irq
0b10011 Supervisor PC, R14 svc, R13 svc, R12 to RO, CPSR, SPSR_svc
0b10111 Abort PC, R14 _aht, R13 abt, R12 to RO, CPSR, SPSR_abt
0b11011 Undefined PC, R14 und, R13 und, R12 to RO, CPSR, SPSR_und
0Ob11111 System PC, R14 to RO, CPSR (ARM architecture v4 and above)

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A2-11

Programmer’s Model

Not all combinations of the mode bits define a valid processor mode. Only those combinations explicitly
described can be used. If any other valueis programmed into the mode bits M[4:0], the result is
UNPREDICTABLE. See dso Table 8-1 on page A8-9 for details of the mode bits in the 26-bit architectures.

2.5.3 Other bits

Other bitsin the program status registers are reserved for future expansion. In general, programmers must
take care to write code in such away that these bits are never modified. Failure to do this might result in
code which has unexpected side-effects on future versions of the architecture. See the usage notes for the
MSRinstruction on page A4-62 for more details.

A2-12 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

2.6

Programmer’s Model

Exceptions

Exceptions are generated by internal and external sourcesto causethe processor to handle an event, such as
an externally generated interrupt or an attempt to execute an undefined instruction. The processor state just
before handling the exception must be preserved so that the original program can be resumed when the
exception routine has completed. M ore than one exception can arise at the same time.

ARM supports seven types of exception. Table 2-3 lists the types of exception and the processor mode that
is used to process that exception. When an exception occurs, execution is forced from afixed memory
address corresponding to the type of exception. These fixed addresses are called the exception vectors.

Note

The normal vector at address0x00000014 and the high vector at address Ox FFFF0014 are not normally
used and are reserved for future expansion. The reserved vector at address 0x00000014 was used for an
Address Exception vector in earlier versions of the ARM architecture which had a26-bit address space. See

Chapter A8 The 26-bit Architectures for more information.

Table 2-3 Exception processing modes

Exception type Mode :g(;rrgzls :(;%P:evsesctor

Reset Supervisor 0x00000000 OxFFFFO0O00
Undefined instructions Undefined 0x00000004 OxFFFF0004
Software interrupt (SWI) Supervisor 0x00000008 OxFFFFO008
Prefetch Abort (instruction fetch memory abort) Abort 0x0000000C OxFFFFOOOC
Data Abort (data access memory abort) Abort 0x00000010 OxFFFF0010
IRQ (interrupt) IRQ 0x00000018 OxFFFF0018
FIQ (fast interrupt) FIQ 0x0000001C OxFFFF0OO1C

When an exception occurs, the banked versions of R14 and the SPSR for the exception mode are used to

save state as follows:

R14_<exception_node> = return |link
SPSR_<excepti on_npde> = CPSR

CPSR[4: 0] = exception node numnber
CPSR[5] =0 /* Execute in ARM state */
i f <exception_node> == Reset or FIQ then
CPSR[6] =1 /* Disable fast interrupts */

/* else CPSR[6] is unchanged */

CPSR[7] =1 /* Di sabl e nor mal

PC = exception vector address

interrupts */

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

A2-13

Programmer’s Model

To return after handling the exception, the SPSR is moved into the CPSR, and R14 ismoved to the PC. This
can be done atomically in two ways:

. using a data-processing instruction with the S bit set, and the PC as the destination

. using the Load Multiple with Restore CPSR instruction, as descrilddNh(3) on page A4-34.

The following sections show what happens automatically when the exception occurs, and also show the
recommended data-processing instruction to use to return from each exception. This instruction is always a
MOVS or SUBS instruction with the PC as its destination.

Note

When the recommended data-processing instructio®i¥88& and a Load Multiple with Restore CPSR
instruction is used to return from the exception handler, the subtraction must still be performed. This is
usually done at the start of the exception handler, before the return link is stored to memory.

For example, an interrupt handler that wishes to store its return link on the stack might use instructions of
the following form at its entry point:

SUB R14, Rl14, #4
STMFD SP!, {<other_registers>, R14}

and return using the instruction:

LDMFD SP!, {<other_registers> PC"

2.6.1 Reset
When the Reset input is asserted on the processor, the ARM processor immediately stops execution of the
current instruction. When Reset is de-asserted, the following actions are performed:
R14_svc = UNPREDI CTABLE val ue
SPSR svc = UNPREDI CTABLE val ue
CPSR[4: 0] = 0b10011 /* Enter Supervisor npde */
CPSR] 5] =0 /* Execute in ARMstate */
CPSR] 6] =1 /* Disable fast interrupts */
CPSR[7] =1 /* Disable normal interrupts */
i f high vectors configured then
PC = OxFFFF0000
el se
PC = 0x00000000
After Reset, the ARM processor begins execution at addr€s3000000 orOx FFFFO000 in Supervisor
mode with interrupts disabled. S&leout the MMU architecture on page B3-2 for more information on the
effects of Reset.
Note
There is no architecturally defined way of returning from a Reset.
A2-14 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

2.6.2

Programmer’s Model

Undefined Instruction exception

If the ARM processor executes a coprocessor instruction, it waits for any external coprocessor
to acknowledge that it can execute the instruction. If no coprocessor responds, an Undefined Instruction
exception occurs.

If an attempt is made to execute an instruction that is UNDEFINED, an Undefined | nstruction exception occurs
(see Extending the instruction set on page A3-27).

The Undefined Instruction exception can be used for software emulation of acoprocessor in a system that
does not have the physical coprocessor (hardware), or for general-purpose instruction set extension by
software emulation.

When an Undefined Instruction exception occurs, the following actions are performed:

R14_und = address of next instruction after the undefined instruction
SPSR_und = CPSR
CPSR[4: 0] = 0b11011 /* Enter Undefined node */
CPSR] 5] =0 /* Execute in ARMstate */
/* CPSR[6] is unchanged */
CPSR[7] =1 /* Disable normal interrupts */
i f high vectors configured then
PC = OxFFFF0004
el se
PC = 0x00000004

To return after emulating the undefined instruction use:
MOVS PC, R14

Thisrestoresthe PC (from R14_und) and CPSR (from SPSR_und) and returns to the instruction following
the undefined instruction.

In some coprocessor designs, an internal exceptional condition caused by one coprocessor instruction is
signaled imprecisely by refusing to respond to alater coprocessor instruction. In these circumstances, the
Undefined Instruction handler takes whatever action is necessary to clear the exceptional condition, then
returns to the second coprocessor instruction. To do this use:

SUBS PC, R14, #4

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A2-15

Programmer’s Model

2.6.3 Software Interrupt exception
The Software Interrupt instruction (SW) enters Supervisor mode to request a particular supervisor
(operating system) function. When a SW is executed, the following actions are performed:
R14_svc = address of next instruction after the SW instruction
SPSR_svc = CPSR
CPSR[4: 0] = 0b10011 /* Enter Supervisor npde */
CPSR] 5] =0 /* Execute in ARMstate */
/* CPSR[6] is unchanged */
CPSR[7] =1 /* Disable normal interrupts */
i f high vectors configured then
PC = OxFFFF0008
el se
PC = 0x00000008
To return after performing the SWI operation, use the following instruction to restore the PC
(from R14_svc) and CPSR (from SPSR_svc) and return to the instruction following the SWI:
MOVS PC, R14
26.4 Prefetch Abort (instruction fetch memory abort)
A memory abort is signaled by the memory system. Activating an abort in response to an instruction fetch
marks the fetched instruction asinvalid. A Prefetch Abort exception is generated if the processor tries to
execute theinvalid instruction. If the instruction is not executed (for example, asaresult of abranch being
taken whileit isin the pipeline), no Prefetch Abort occurs.
In ARM architecture version 5 and above, a Prefetch Abort exception can also be generated as the result of
executing a BKPT instruction. For details, see BKPT on page A4-14 (ARM instruction) and BKPT on
page A7-24 (Thumb instruction).
When an attempt is made to execute an aborted instruction, the following actions are performed:
R14_abt = address of the aborted instruction + 4
SPSR _abt = CPSR
CPSR[4: 0] = 0b10111 /* Enter Abort nopde */
CPSR] 5] =0 /* Execute in ARMstate */
/* CPSR[6] is unchanged */
CPSR[7] =1 /* Disable normal interrupts */
i f high vectors configured then
PC = OxFFFFOOOC
el se
PC = 0x0000000C
To return after fixing the reason for the abort, use:
SUBS PC, R14, #4
This restores both the PC (from R14_abt) and CPSR (from SPSR_abt), and returns to the aborted
instruction.
A2-16 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Programmer’s Model

2.6.5 Data Abort (data access memory abort)

A memory abort is signaled by the memory system. Activating an abort in response to a data access (load
or store) marks the data asinvalid. A Data Abort exception occurs before any following instructions or
exceptions have atered the state of the CPU. The following actions are performed:

R14_abt = address of the aborted instruction + 8
SPSR_abt = CPSR
CPSR[4: 0] = 0b10111 /* Enter Abort nopde */
CPSR] 5] =0 /* Execute in ARM state */
/* CPSR[6] is unchanged */
CPSR[7] =1 /* Disable normal interrupts */
i f high vectors configured then
PC = OxFFFF0010
el se
PC = 0x00000010

To return after fixing the reason for the abort use:
SUBS PC, R14, #8

Thisrestores both the PC (from R14_abt) and CPSR (from SPSR_abt), and returnsto re-execute the aborted
instruction.

If the aborted instruction does not need to be re-executed use:

SUBS PC, R14, #4

Effects of data-aborted instructions

Instructions that access data memory can modify memory by storing one or more values. If a Data Abort
occurs in such an instruction, the value of each memory |ocation that the instruction storesto is:

. unchanged if the memory system does not permit write access to the memory location
. UNPREDICTABLE otherwise.

Instructions that access data memory can modify registers in three ways:
. By loading values into one or more of the general-purpose registers, which can include the PC.

. By specifyingbase register writeback, in which the base register used in the address calculation has
a modified value written to it. All instructions that allow this to be specified b&?REDICTABLE
results if base register writeback is specified and the base register is the PC, so only general-purpose
registers other than the PC can legitimately be modified in this way.

. By loading values into coprocessor registers.
If a Data Abort occurs, the values left in these registers are determined by the following rules:

1. The PC value on entry to the data abort handBer@® 000010 orOxFFFF0010, and the R14_abt
value is determined from the address of the aborted instruction. Neither is affected in any way by the
results of any PC load specified by the instruction.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A2-17

Programmer’s Model

2. If base register writeback is not specified, the base register value is unchanged. This applies even if
theingtruction loaded its own base register and the memory accessto load the base register occurred
earlier than the aborting access.

For example, suppose the ingtruction is:
LDM A RO, {RO, R1, R2}

and the implementation |oads the new RO value, then the new R1 value and finally the new R2 value.
If a Data Abort occurs on any of the accesses, the value in the base register RO of the instruction is
unchanged. This applies even if it was the load of R1 or R2 that aborted, rather than the load of RO.

3. If base register writeback is specified, the value | eft in the base register is determined by the abort
model of the implementation, as described in Abort models.

4. If the instruction only |0ads one general-purpose register, the vaue in that register is unchanged.

5. If the instruction |oads more than one generd -purpose register, UNPREDICTABLE values are left in
destination registers which are neither the PC nor the base register of the instruction.

6. If the instruction | oads coprocessor registers, UNPREDICTABLE values are | eft in the destination
coprocessor registers, unless otherwise specified in the instruction set description of the specific
COProcessor.

Abort models

The abort model used by an ARM implementation iSIMPLEMENTATION DEFINED, and is one of the
following:
Base Restored Abort Model
If aData Abort occursin an instruction which specifies base register writeback, thevaluein
the base register is unchanged.
Base Updated Abort M odel
If aData Abort occursin an instruction which specifies base register writeback, the base
register writeback still occurs.

In either case, the abort model applies uniformly acrossall instructions. An implementation does not use the
Base Restored Abort Model for some instructions and the Base Updated Abort Model for others.

Note

In some ARMv3 and earlier implementations, athird abort model (the Early Abort Model) was used. Inthis
model, base register writeback occurred for LDC, LDM STCand STMinstructions, and the baseregister was
unchanged for al other instructions.

The Early Abort Model is not vaid in ARM architecture versions 3M, 4 and above.

Some of these implementations optionally allowed a Late Abort Model to be selected. Thisisidentical to
the Base Updated Abort Model.

A2-18 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

2.6.6

2.6.7

Programmer’s Model

Interrupt request (IRQ) exception

The IRQ exception is generated externally by asserting the IRQ input on the processor. It has alower
priority than FIQ (see Table 2-4 on page A2-20), and is masked out when an FIQ sequence is entered.

Interrupts are disabled when the | bit in the CPSR is set. If the | bit is clear, ARM checks for an IRQ at
instruction boundaries.

Note
The | bit can only be changed from a privileged mode.

When an |RQ is detected, the following actions are performed:

R14_irq = address of next instruction to be executed + 4
SPSR_irq = CPSR
CPSR[4: 0] = 0b10010 /* Enter | RQ node */
CPSR] 5] =0 /* Execute in ARM state */
/* CPSR[6] is unchanged */
CPSR[7] =1 /* Disable normal interrupts */
i f high vectors configured then
PC = OxFFFF0018
el se
PC = 0x00000018

To return after servicing the interrupt, use:
SUBS PC, R14, #4

This restores both the PC (from R14_irg) and CPSR (from SPSR _irq), and resumes execution of the
interrupted code.

Fast interrupt request (FIQ) exception

The FIQ exception is generated externally by asserting the FIQ input on the processor. FIQ is designed to
support adatatransfer or channel process, and hassufficient private registersto remove the need for register
saving in such applications, therefore minimizing the overhead of context switching.

Fast interrupts are disabled when the F bit in the CPSR is set. If the F bit is clear, ARM checks for an FIQ
at instruction boundaries.

Note
The F bit can only be changed from a privileged mode.

When an FIQ is detected, the following actions are performed:

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A2-19

Programmer’s Model

R14_fiq = address of next instruction to be executed + 4
SPSR figq = CPSR
CPSR[4: 0] = 0b10001 /* Enter FIQ node */
CPSR] 5] =0 /* Execute in ARMstate */
CPSR] 6] =1 /* Disable fast interrupts */
CPSR[7] =1 /* Disable normal interrupts */
i f high vectors configured then

PC = OxFFFF001C
el se

PC = 0x0000001C

To return after servicing the interrupt, use:
SUBS PC, R14, #4

This restores both the PC (from R14_fig) and CPSR (from SPSR_fiq), and resumes execution of the
interrupted code.

The FIQ vector is deliberately the last vector to allow the FIQ exception-handler software to be placed
directly at address0x0000001Cor Ox FFFFO01C, without requiring abranch instruction from the vector.

2.6.8 Exception priorities
Table 2-4 shows the exception priorities:
Table 2-4 Exception priorities
Priority Exception
Highest 1 Reset
2 Data Abort
3 FIQ
4 IRQ
5 Prefetch Abort
Lowest 6 Undefined instruction
Swi
Undefined instruction and software interrupt cannot occur at the same time, as they each correspond to
particular (non-overlapping) decodings of the current instruction, and both must be lower priority than
prefetch abort, as a prefetch abort indicates that no valid instruction was fetched.
The priority of a Data Abort exception is higher than FIQ, which ensures that the data abort handler is
entered before the FIQ handler is entered (so that the Data Abort is resolved after the FIQ handler has
completed).
A2-20 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Programmer’s Model

2.6.9 High vectors

Some ARM implementations allow the exception vector locations to be moved from their normal address
range 0x00000000-0x0000001 C at the bottom of the 32-bit address space, to an aternative address
range Ox FFFFO000-0x FFFFO01 C near the top of the address space. These aternative locations are
known as the high vectors.

It is IMPLEMENTATION DEFINED whether the high vectors are supported. When they are, a hardware
configuration input selects whether the normal vectors or the high vectors are to be used.

The ARM instruction set does not contain any instructions which can directly change whether normal or
high vectors are configured. However, if the standard System Control coprocessor is attached to an ARM
processor which supports the high vectors, bit[13] of coprocessor 15 register 1 can be used to switch
between using the normal vectors and the high vectors (see Register 1: Control register on page B2-13).

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A2-21

Programmer’s Model

2.7 Memory and memory-mapped I/O

This section discusses memory and memory-mapped 1/0O, mainly with regard to the assumptions ARM
processor implementati ons make about how their memory systems behave and how programs should access
memory. As aresult, it describes the memory system from the outside, specifying how it should behave
without going into much detail of how this behavior can or should be implemented. More detail s of how
some standard memory systems behave can be found in Part B: Memory and System Ar chitectures.

The ARM architecture allows awide variety of memory system designs, using the range of memory and I/0
devices which are available. This makes it difficult to specify absolute rules about how a memory system
should behave.

Many of the rules below can be broken if the hardware and software are designed appropriately. However,
breaking these rules is discouraged, for the following reasons:

. It might make implementing the memory system more difficult.

. It might cause difficulties in porting the system (hardware and/or software) to future ARM
processors.

. Standard software (such as compilers and other software toolkit components) might not work with

the rule-breaking system.

2.7.1 Address space

The ARM architecture uses a single, flat address spac?@ 8f13it bytes. Byte addresses are treated as
unsigned numbers, running from 0 21.

This address space is regarded as consistinﬁ)dﬂzbit words, each of whose addressegoigl-aligned,

which means that the address is divisible by 4. The word whose word-aligned address is A consists of the

four bytes with addresses A, A+1, A+2 and A+3.

In ARM architecture version 4 and above, the address space is also regarded as cons‘?’étﬂnghn't 2
halfwords, each of whose addressesaléword-aligned (divisible by 2). The halfword whose
halfword-aligned address is A consists of the two bytes with addresses A and A+1.

Note

Prior to ARM architecture version 3, the address space was %ﬁ"hy@s, with addresses running from 0

to 26 - 1. This address space was split intd@ords.

Some implementations of subsequent non-T variants of the ARM architecture include

backwards-compatibility features to allow execution of code written for this address space. These features
are described in Chapter ABe 26-bit Architectures. Their use for any purpose other than executing old

code is strongly discouraged.

These backwards-compatibility features are not compatible with T variants of the architecture, due to

conflicting uses of bits[1:0] of R15.

A2-22 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

2.7.2

Programmer’s Model

Address calculations are normally performed using ordinary integer instructions. This means that they
normally wrap around if they overflow or underflow the address space. This meansthat the result of the
calculation is reduced modul o 232. However, to minimize the chances of incompatibility if the address space
is extended in the future, programs should not be written so that they rely on this behavior. Address
calculations should be written so that their results would till liein the range O to 2%2_1if they were
calculated without wrap-around.

Most branch instructions calcul ate their targets by adding an instruction-specified offset to the value of the
PC and writing the result back to the PC. If the overall effect of this calculation of:

(address_of _current _instruction) + 8 + offset

isto overflow or underflow the address space, theinstruction istechnically UNPREDICTABLE becauseit relies
on address wrap-around. The result of thisis that forward branches past address 0x FFFFFFFF and
backward branches past address 0x00000000 should not be used.

Also, normal sequentia execution of instructions effectively calculates:
(address_of _current _instruction) + 4

after each instruction to determine which instruction to execute next. If this cal culation overflowsthe top of
the address space, the result is again technicaly UNPREDICTABLE. |n other words, programs should not rely
on sequential execution of the instruction at address 0x00000000 after the instruction at address
OxFFFFFFFC.

Note

The above only applies to instructions that are executed, including those which fail their condition code
check. Most ARM implementations prefetch instructions ahead of the currently-executing instruction. If
this prefetching overflows the top of the address space, it does not cause the implementation’s behavior to
become UNPREDICTABLE until and unless the prefetched instructions are actually executed.

LDC, LDM STC, and STMinstructions access a sequence of words at increasing memory addresses,
effectively incrementing amemory address by 4 for each load or store. If this calculation overflows the top
of the address space, the result is again technically UNPREDICTABLE. In other words, programs should not
use these ingtructions in such a way that they access the word at address 0x00000000 sequentially after
the word at address OxFFFFFFFC.

Endianness

The rulesin Address space on page A2-22 require that for aword-aigned address A:

. The word at address A consists of the bytes at addresses A, A+1, A+2 and A+3.

. The halfword at address A consists of the bytes at addresses A and A+1.

. The halfword at address A+2 consists of the bytes at addresses A+2 and A+3.

. The word at address A therefore consists of the halfwords at addresses A and A+2.

However, this does not totally specify the mappings between words, halfwords and bytes.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A2-23

Programmer’s Model

A memory system uses one of the two foll owing mapping schemes. This choiceis known asthe endianness
of the memory system.

. In alittle-endian memory system:

— ahbyte or halfword at a word-aligned address is the least significant byte or halfword within
the word at that address

— abyte at a halfword-aligned address is the least significant byte within the halfword at that
address.

. In abig-endian memory system:
— ahbyte or halfword at a word-aligned address is the most significant byte or halfword within
the word at that address
— ahbyte at a halfword-aligned address is the most significant byte within the halfword at that
address.

For a word-aligned address A, Table 2-5 and Table 2-6 show how the word at address A, the halfwords at
addresses A and A+2, and the bytes at addresses A, A+1, A+2 and A+3 map on to each other for each

endianness.

Table 2-5 Big-endian memory system

31 24 23 16 15 8 7 0
Word at address A

Halfword at address A Halfword at address A+2
Byte at address A Byte at address A+l Byte at address A+2 Byte at addresq A+3

Table 2-6 Little-endian memory system

31 20 19 12 11 10 9 8 543210
Word at address A

Halfword at address A+2 Halfword at address A
Byte at address A+3 Byte at address A+2 Byte at address A+1 Byte at addregs A

It is IMPLEMENTATION DEFINED wWhether an ARM implementation supports little-endian memory systems,
big-endian memory systems, or both.

A2-24 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Programmer’s Model

The ARM instruction set does not contain any instructions that directly select the endianness. Instead, an
ARM implementation which supports both endiannesses has a hardware input to configure it to match the
endianness of the attached memory system. If astandard System Control coprocessor is attached to such an
ARM implementation, this configuration input can be changed by writing to bit[7] of register 1 of the
System Control coprocessor (see Register 1: Control register on page B2-13).

If an ARM implementation is configured for amemory system of one endianness but isactually attached to
amemory system of the opposite endianness, only word-si zed instruction fetches, dataloadsand data stores
can be relied upon. Other memory accesses have UNPREDICTABLE resullts.

When the standard System Control coprocessor is attached to an ARM processor that supports both
endiannesses, bit[7] of the coprocessor'sregister 1 is cleared on reset. This means that the ARM processor
is configured for alittle-endian memory system immediately after reset. If it is attached to a big-endian
memory system, one of the first thingsthe reset handler must do is switch the configured endianness to
big-endian, using an instruction sequence like:

MRC p15, 0, r0, cl1, cO ; r0 := CP15 register 1
ORR ro, r0, #0x80 ; Set bit[7] inrO0
MCR p15, 0, r0, cl1, cO ; CP15 register 1 :=7r0

Thismust be done beforethere is any possibility of abyte or halfword data access occurring, or of aThumb
instruction being executed.

Note

The rules on endianness imply that word loads and stores are not affected by the configured endianness.
Because of this, it is not possible to reverse the order of the bytesin aword by storing it, changing the
configured endianness, and rel oading the stored word. Instead, use one of the code sequences in Swapping
endianness on page A9-4.

More generally, thereis no point in changing the configured endianness of an ARM processor to be different
from that of the memory system it is attached to, because no additional architecturally defined operations
become available as aresult of doing so. So normally, the only time the configured endianness is changed
is at reset to make it match the memory system endianness.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A2-25

Programmer’s Model

2.7.3

Unaligned memory accesses

The ARM architecture normally expects all memory accesses to be suitably aligned. In particular, the
address used for aword access should normally be word-aligned, and the address used for ahalfword access
should normally be hal fword-aigned. Memory accesses which are not aligned in thisway are called
unaligned memory accesses.

Unaligned instruction fetches

If an addresswhichisnot word-aigned iswritten to R15 during ARM state execution, theresult isnormally
either UNPREDICTABLE or that bits[1:0] of the address are ignored. If an address which is not
halfword-aligned iswritten to R15 during Thumb state execution, bit[0] of the addressis normally ignored.
See Writing the program counter on page A2-8 and individual instruction descriptions for more details. As
aresult, avalue which is read from R15 during execution of valid code always has bitg[1:0] zero for ARM
state execution and bit[0] zero for Thumb state execution.

When it is specified that these bits are ignored, ARM implementations are not required to ensure that they
are cleared from the address sent to memory for the instruction fetch. They can instead send the value
written to R15 unchanged to memory, and require the memory system to ignore bits[1:0] of the address for
an ARM instruction fetch and bit[0] for a Thumb instruction fetch.

Unalighed data accesses

The architecturally defined behavior of aload/store instruction which generates an unaligned accessis one
of the following:

. It iS UNPREDICTABLE.

. It ignores the low-order address bits that make the access unaligned. This means it effectively uses
the formula(addr ess AND OxFFFFFFFE) for a halfword access, and uses the formula
(address AND OxFFFFFFFC) for a word access.

. Itignores the low-order address bits that make the access unaligned for the memory access itself, but
then uses those low-order bits to control a rotation of the loaded data. (This behavior applies only to
theLDR andSWP instructions.)

Which of these three options applies to a load/store instruction depends on which instruction it is, and is
documented on the individual instruction pages.

ARM implementations are not required to ensure that the low-order address bits that make an access
unaligned are cleared from the address they send to memory. They can instead send the address as calculated
by the load/store instruction unchanged to memory, and require the memory system to ignore address[0] for

a halfword access and address[1:0] for a word access.

Note

When an instruction ignores the low-order address bits that make an access unaligned, the pseudo-code in
the instruction description does not mask them out explicitly. Instead, the Memory[<address>,<size>]
function used in the pseudo-code masks them out implicitly. This function is defined3tothary.

A2-26

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Programmer’s Model

2.7.4 Prefetching and self-modifying code

Many ARM implementations fetch instructions from memory before execution of the instructions that
precede them has completed. This behavior is known as prefetching the instruction.

Prefetching an instruction does not commit the ARM implementation to actually executing the instruction.
Two typical casesin which the instruction is not subsequently executed are:

. When an exception occurs, execution of the current instruction is completed, all further prefetched
instructions are discarded, and execution of the instructions at the exception vector is started.

. When a branch is taken, any instructions that have already been prefetched from sequential locations
beyond the branch are discarded.

ARM implementations are free to choose how far ahead of the current point of execution they prefetch
instructions, or even to have a dynamically varying number of prefetched instructions. The original ARM
implementation prefetched two instructions ahead of the instruction currently being executed, but
implementations are free to choose to prefetch more or less than this.

Note
When an instruction reads the PC, it gets the address of the instruction that is two after itself:
. for ARM instructions, it gets its own address plus 8
. for Thumb instructions, it gets its own address plus 4.

Historically, there is a link between this two-instruction offset for PC reads and the two-instruction prefetch
of the original ARM implementation. However, this link is not architectural. An implementation which
prefetches a different number of instructions still ensures that an instruction which reads the PC gets the
address of the instruction two after itself.

As well as being free to choose how many instructions to prefetch, an ARM implementation can choose
which possible future execution path to prefetch along. For example, after a branch instruction, it can choose
to prefetch either the instruction following the branch or the instruction at the branch target. This is known
asbranch prediction.

A potential problem with all forms of instruction prefetching is that the instruction in memory might be
changed after it was prefetched but before it is executed. If this happens, the modification to the instruction
in memory does not normally prevent the already prefetched copy of the instruction from executing to
completion.

For example, in the following code sequence ShR instruction replaces tH&UB instruction that follows
it by a copy of theADD instruction:

LDR r0, Addlnstr

STR r0, Nextlnstr
Next I nstr

SuUB ri, rl, #1
AddI nstr

ADD rl, rl, #1

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A2-27

Programmer’s Model

However, the instruction executed after the STRinstruction is normally the SUB instruction on the first
occasion that this code is executed, because the SUB instruction was prefetched before the instruction in
memory was changed. The ADD instruction is not executed until the second time that the code sequenceis
executed.

Furthermore, even this behavior cannot be guaranteed, because:

. On the first occasion that the code sequence is executed, it is possible that an interrupt will occur
immediately after th8TR. If it does, theSUB instruction that had been prefetched is discarded. When
the interrupt handler returns, the instructioiNext | nst r is prefetched again, and is thBD
instruction this time. So while tH&JB instruction is normally executed on the first occasion that the
code is executed, it is possible that AP instruction is executed instead.

. Either the ARM processor or the memory system is allowed to keep copies of instructions fetched
from memory and use those copies instead of repeating the instruction fetch if the instruction is
executed again. If this occurs, a copy of 8B instruction can be executed on the second or
subsequent occasion that the code sequence is executed.

The main reason that this might occur is that the memory system contains separate instruction and
data caches (séwestruction cache coherency on page B5-11). However, other possibilities also exist.

For example, some forms of branch prediction hardware keep copies of the instructions at branch
targets.

The overall result is that code which writes one or more instructions to memory and then executes them
(known asself-modifying code) cannot be executed reliably on ARM processors without special
precautions. Programming technigues that involve the use of self-modifying code are to be avoided as far
as possible.

Instruction Memory Barriers (IMBSs)

In many systems, however, it is impossible to avoid the use of self-modifying code entirely. For example,
any system which allows a program to be loaded into memory and then executed is using self-modifying
code.

Each implementation therefore defines a sequence of operations that can be used in the middle of a
self-modifying code sequence to make it execute reliably. This sequence is calistuation Memory

Barrier (IMB), and often depends both on the ARM processor implementation and on the memory system
implementation.

The IMB sequence must be executed after the new instructions have been stored to memory and before they
are executed, for example, after a program has been loaded and before its entry point is branched to. Any
self-modifying code sequence which does not use an IMB in this wayNPREDICTABLE behavior.

Because the exact sequence of operations to be performed by an IMB depends on the ARM and memory
system implementations, it is recommended that software is designed so that the IMB sequence is provided
as a call to an easily replaceabjstem dependencies module, rather than being included in-line where it is
needed. This eases porting to other ARM processors and memory systems.

A2-28 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Programmer’s Model

Also, in many implementations, the IM B sequence includes operations that are only usable from privileged
processor modes, such as the cache cleaning and invalidation operations supplied by the standard System
Control coprocessor (see Chapter B5 Caches and Write Buffers). To alow User mode programs to use the
IMB sequence, it is recommended that it is supplied as an operating system call, invoked by a SW
instruction.

In systems that use the 24-bit immediate in a SW instruction to specify the required operating system
service, it is recommended that the IMB sequence is requested by the instruction:

SW 0xF00000

This call takes no parameters and does not return aresult, and should use the same calling conventions as a
call to a C function with prototype:

void | MB(void);
apart from the fact that a SW instruction is used for the call, rather than a BL instruction.

Some implementations can use knowledge of the range of addressesto which new instructions have been

stored to reduce the execution time cost of an IMB. It istherefore a so recommended that a second operating
system cdl is supplied which does an IMB with respect to a specified address range only. On systems that
use the 24-bit immediate in a SW instruction to specify the required operating system service, this should
be requested by the instruction:

SW 0xF00001
and should use similar calling conventions to those used by a call to a C function with prototype:
voi d | MB_Range(unsi gned | ong start_addr, unsigned |ong end_addr);
where the address range runsfrom st ar t _addr (inclusive) to end_addr (exclusive).

Note

. When the standard ARM Procedure Calling Standard is used, this measisahat addr is
passed in RO anehd_addr in R1.

. On some ARM implementations, the execution time cost of an IMB can be very large (many
thousands of clock cycles), even when a small address range is specified. For small scale uses of
self-modifying code, this is likely to lead to a major loss of performance. It is therefore recommended
that self-modifying code is only used where it is unavoidable and/or it produces sufficiently large
execution time benefits to offset the cost of the IMB.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A2-29

Programmer’s Model

Other uses for IMBs

Some memory systems allow virtual -to-physica address mapping, in which the physical memory location
corresponding to an address generated by the ARM processor can be changed. If this address mapping is
changed after an instruction has been prefetched but beforeit isexecuted, and the address of the instruction
is affected by the change of address mapping, then the wrong instruction is executed.

Thisisvery similar to the situation that arisesif a store occursto an instruction address after it has been
prefetched but before it is executed. In both cases, the instruction held at the memory addressis being
changed, either because a value is being stored to it or because a different physical memory location
becomes associated with the address. The same sol ution is therefore used when the virtual-to-physical
address mapping is changed. The IMB sequence must be executed after a change of virtual-to-physica
address mapping and before any attempt to execute an instruction from a memory area whose address
mapping has been changed.

Another similar case occursif memory access permissions are changed between prefetching and executing
an instruction. If access was not permitted when the instruction was prefetched but is permitted when it is
executed, an unexpected Prefetch Abort exception might occur. In the opposite case that access was
permitted when the instruction was prefetched and is no longer permitted when it is executed, there might
be a security hole in the system.

Memory access permissions can typically be changed either by explicitly writing new access permission
settings to the memory system, or because the memory system supports different access permissions for
User mode and privileged modes and one of the following occurs:

. An exception occurs in User mode, causing the processor to switch to a privileged mode.
. Privileged code changes mode to User mode.

All ARM implementations ensure that the following events do not cause any instructions to be executed
after having been prefetched with the wrong access permissions:

. An exception occurring in User mode.

. Execution of one of the instructions designed for exception return causing a change from a privileged
mode to User mode. These instructions are the ones which have a side-effect of copying the SPSR of
the current mode to the CPSR, namely:

— The data processing instructiohBCS, ADDS, ANDS, Bl CS, EORS, MOVS, MVNS, CRRS,
RSBS, RSCS, SBCS andSUBS when their destination register is R15. (However, dfily'S
andSUBS are commonly used for exception return.)

— The form of the.DMinstruction described ihDM (3) on page A4-34.

The same is not guaranteed in the remaining cases where memory access permissions might change between
prefetching and executing an instruction. These are:

. Explicitly writing new access permission settings to the memory system.
. Changing from a privileged mode to User mode by means BBRrinstruction.

In these cases, an IMB sequence needs to be executed shortly after the change of access permissions, and
none of the instructions executed after the change of access permissions and before the Instruction Memory
Barrier should be affected by the change of access permissions.

A2-30

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

2.7.5

Programmer’s Model

However, the cost of afull IMB can often be avoided in these cases. In particular, the instruction word
associated with any particular address has not changed, so it is usually possible to avoid cache flushes. An
implementation can therefore define restricted versions of the IMB sequence to be used in these cases.

In the case of an MSR instruction changing from a privileged mode to User mode, arestricted version of the
IMB sequence that works on all ARM processorsto dateis simply to execute any instruction that writesto
the PC, other than the branch instructions described in the following sections:

. B, BL on page A4-10

. BLX (1) on page A4-16

. B (1) on page A7-18

. B (2) on page A7-20

. BL, BLX(1) on page A7-26.

In other words, the mode change should not affect the access permissions of any instructions that can be
reached from th&BR instruction by any combination of:

. Normal sequential execution of instructions.

. For each branch from the above list that can be reached in this way, execution of the instruction at its
target. (The branch instructions in the list are precisely those that have a fixed, statically determined
target.)

This set of instructions is occasionally referred to elsewhere in this manual as the set of instructions that can
be reached bpredictable subsequent execution from theMSR instruction.

Memory-mapped I/O

The standard way to perform I/O functions on ARM systems is by the asofy-mapped I/O. This uses

special memory addresses which supply I/O functions when they are loaded from or stored to. Typically,
loading from a memory-mapped I/O address is used for input, and storing to a memory-mapped I/O address
is used for output. Both loads and stores can also be used to perform control functions, either instead of or
in addition to their normal input or output function.

The behavior of a memory-mapped I/O location usually differs from that expected of a normal memory
location. For example, two successive loads from a normal memory location return the same value each time
unless there has been an intervening store to that location. For a memory-mapped 1/O location, the value
returned by the second load can be different from the value returned by the first load. Typically, this is
because the first load has a side-effect (such as removing the loaded value from a buffer) or because of a
side-effect of an intervening load or store to another memory-mapped 1/O location.

These differences in behavior mainly affect the use of caches and write buffers in the memory system. This
is discussed in Chapter Bzchesand Write Buffers. In short, memory-mapped 1/O locations are normally
marked as uncachable and unbufferable, to avoid changes to the number, type, order, or timing of the
accesses made to them.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A2-31

Programmer’s Model

Instruction fetches from memory-mapped I/O

As described in Prefetching and self-modifying code on page A2-27, ARM implementations can vary
considerably with regard to when they fetch instructions from memory. As aresult, it is strongly
recommended that memory-mapped |/O locations are only used for dataloads and stores, not for instruction
fetches. Any system design which relies on executing instructions fetched from a memory-mapped 1/0
location islikely to be hard to port to future ARM implementations.

Data accesses to memory-mapped I/O

Aninstruction sequence accesses data memory at various pointsduring its execution, generating asequence
of load and store accesses. Provided these loads and stores access normal memory locations, they only
interact with each other if they access the same memory location. As aresult, loads and stores to distinct
normal memory locations can be performed in a different order to that implied by the instruction sequence,
without changing the final result of the sequence. This freedom to change the order of memory accesses can
be exploited by a memory system to improve performance (for example, by the use of caches and write
buffers).

Furthermore, data accesses to the same normal memory location have other properties that can be exploited
to improve performance. These include:

. Successive loads from the same location without an intervening store generate identical results.
. A load from a location returns the last value stored to that location.
. Multiple accesses of one data size can sometimes be merged into a single, larger size access. For

example, separate stores to the two halfwords contained within a word can be merged to produce a
single word store.

However, if the memory words, halfwords or bytes accessed by the code sequence are memory-mapped 1/0
locations, one access can generate a side-effect which changes the results of a subsequent access to a
different location. If this happens, the time order of individual accesses makes a difference to the final
results of the code sequence. Also, a load access to a memory-mapped 1/O location can have a side-effect
that changes the result of a subsequent access to the same location. Accesses to memory-mapped 1/O
locations must therefore not be optimized away, and their time order must not be changed.

It is also important that for memory-mapped I/O, the data size of each memory access is maintained. For
example, a code sequence that specifies 4 byte reads from 4 sequential byte addresses must not be merged
into a single word read when accessing memory-mapped I/O. Such a system might cause the final results of
the code sequence to be different from that intended. Similarly a system which splits word accesses up into
many byte accesses might cause memory-mapped I/O devices not to operate as expected.

Each ARM implementation provides a mechanism to ensure that no changes are made to the number of
accesses in a sequence of data memory accesses, or to their data sizes, or time order. This mechanism
consists ofMPLEMENTATION DEFINED requirements on the memory accesses whose number, data sizes, and
time order are to be preserved. If these requirements are not adhered to for accesses to memory-mapped 1/0
locations, unexpected behavior might occur.

A2-32

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Programmer’s Model

Typical requirements include:

Constraints on memory attributes of the memory-mapped I/O locations. For example, in the standard
memory system architectures describeBant B: Memory and System Architectures, the memory
locations must be uncachable and unbufferable.

Constraints on the sizes or alignments of the accesses to the memory-mapped I/O locations. For
example, if an ARM implementation has a 16-bit external data bus, it might prohibit the use of 32-bit
accesses to memory-mapped I/O locations, since they cannot be performed in a single bus cycle.

A requirement for additional external hardware. For example, an alternative possibility for an ARM
implementation with a 16-bit external bus is to allow 32-bit accesses to memory-mapped 1/O
locations, but require external hardware to re-assemble the two 16-bit bus accesses into a single
32-bit access to the 1/0 device.

If a sequence of data memory accesses includes some accesses which meet the requirements for
memory-mapped I/O accesses and some which do not, then:

The number and data sizes of the accesses that meet the requirements are preserved. In particular,
they are not merged with each other or with the accesses that do not meet the requirements in any
way. The accesses which do not meet the requirements can be merged with each other.

The time order of the accesses which meet the requirements are preserved relative to each other. Their
time order relative to accesses which do not meet the requirements is not guaranteed.

Time ordering of LDM and STM instructions

The LDMinstruction performs a sequence of loads from successive words in memory, 8itithe

instruction performs a similar sequence of stores. The rules described above for accessing memory-mapped
I/0O apply to the sequence of word accesses within one of these instructions in the same way as they do to a
series of separate memory access instructions.

The time order of the sequence of memory accesses performed Bivan STMinstruction is only
architecturally defined under limited circumstances. The rules for this are:

If the register list in the instruction includes the PC, the time order of the sequence of memory
accesses is not defined. (This means thatsDbandSTMinstructions are not suitable for accessing
memory-mapped 1/0.)

If the register list in the instruction does not include the PC, the time order of the sequence of memory
accesses is in order of memory address, starting with the lowest address and ending with the highest
address. (This order is identical to ascending register number order within the list of registers to be
loaded or stored.)

If all of the memory accesses generated bly@Bvior STMmeet theMPLEMENTATION DEFINED
requirements to be treated as memory-mapped I/O locations, then their number, data sizes and time
order are preserved.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A2-33

Programmer’s Model

If some of the memory accesses generated thDMor STMmeet theMPLEMENTATION DEFINED
requirements to be treated as memory-mapped /O locations, but others do not, then their number,
data sizes and time order are not guaranteed to be preserved. In particular, the ARM processor and
memory system do not even necessarily preserve the relative time order of the accesses that do meet
the requirements. This is an exception to the normal rules that govern what happens when some
accesses meet the requirements and others do not.

For example, with the standard memory systems descrilieattiB: Memory and System

Architectures, the time order of the memory accesses is not guaranteed to be preservebidone
STMcrosses the boundary between a cachable area of memory and an uncachable, unbufferable area.
SuchLDMandSTMinstructions are therefore not suitable for memory-mapped 1/O.

A2-34

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter A3
The ARM Instruction Set

This chapter describes the ARM instruction set and contains the following sections:

Instruction set encoding on page A3-2

The condition field on page A3-5

Branch instructions on page A3-7

Data-processing instructions on page A3-9

Multiply instructions on page A3-12

Miscellaneous arithmetic instructions on page A3-14
Status register accessinstructions on page A3-15
Load and store ingtructions on page A3-17

Load and Sore Multipleinstructions on page A3-21
Semaphore instructions on page A3-23
Exception-generating instructions on page A3-24
Coprocessor instructions on page A3-25

Extending the instruction set on page A3-27.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

A3-1

The ARM Instruction Set

3.1 Instruction set encoding
Figure 3-1 shows the ARM instruction set encoding.

All other bit patterns are UNPREDICTABLE Or UNDEFINED. See Extending the instruction set on page A3-27
for a description of the cases where instructions are UNDEFINED.

An entry in square brackets, for example [1], indicates that more information is given after the figure.

313029282726 25242322212019 1817161514 13121110 9 8 7 6 5 4 3 2 1 0

shift | 0 Rm

Data processing immediate shift cond[1] |0 O O| opcode |S Rn ‘ Rd ‘ shift amount

M|sceIIaneotéselen'ls:tirguucrt(leog_sé cond[1] [0 0 0|1 0 x x[0|Xx X X X X X X X X X X X X X x|0|x x X X

o
o

Data processing register shift [2] cond[1] |0 O opcode |S Rn ‘ Rd ‘ Rs shift | 1 Rm

Miscellaneous instructions:

See Figure 3-3 cond[1] [0 0 0|1 0 x x[0|x x x X X X X X x X x x|0|x x|1|x X X X

Multiplies, extra load/stores: cond[1] |0 0 0

See Figure 3-2 X X X X X X X X X XXX X XXX X[TIxx[1[xXx X X

-

Data processing immediate [2] cond[1] |0 O

opcode ‘S Rn ‘ Rd ‘ rotate immediate

Undefined instruction [3] cond[1] {0 O 1|1 O[x|0 O] x X X X X X X X X X X X X X X X X X X X

Move immediate to status register cond[1] |0 O 1|1 O|R|1 O Mask SBO rotate ‘ immediate
Load/store immediate offset cond[1] |0 1 O|P|U|BW]|L Rn Rd immediate
Load/store register offset cond[1] |0 1 1|P|U|BW|L Rn Rd shift amount | shift | 0 Rm

Undefined instruction cond[1] |0 1 1|x X X X X X X X X X X X X X X X X X X x|1|x x X X

Undefined instruction [4,7] {1 1 1 1{0x X

Load/store multiple cond [1] register list

_.
o
o
o
(e
(%]
=

i
e

Undefined instruction[4] |1 1 1 1]1 0 O|x X

Branch and branch with link cond[1] |1 0 1|L 24-bit offset
Branch and branch with link .
and change to Thumb [4] 1711 110 1|H 24-bit offset
Coprocessor load/store and double | cond[5] |1 1 0|P|U ‘N ‘W‘ L Rn CRd cp_num 8-bit offset
register transfers [6]
Coprocessor data processing cond[5] |1 1 1 0| opcodel CRn CRd cp_num |opcode2| 0 CRm
Coprocessor register transfers cond[5] |1 1 1 O|opcodel|L CRn Rd cp_num |opcode2| 1 CRm
Software interrupt cond[1] |1 1 1 1 swi number
Undefined instruction[4] |1 1 1 1|1 1 1 1|x X

Figure 3-1 ARM instruction set summary

A3-2 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The ARM Instruction Set

1. The cond field is not allowed to be 1111 in this line. Other lines dea with the cases where
bits[31:28] of the instruction are 1111.

2. If theopcode fieldisof theform 10xx and the S field is 0, one of the following lines appliesinstead.

3. UNPREDICTABLE prior to ARM architecture version 4.

4. UNPREDICTABLE prior to ARM architecture version 5.

5. If the cond field is 1111, thisinstruction is UNPREDICTABLE prior to ARM architecture version 5.

6. The coprocessor double register transfer instructions are described in Chapter A10 Enhanced DSP
Extension.

7. In E variants of architecture version 5 and above, the cache preload instruction PLD uses a small

number of these instruction encodings.

3.1.1 Multiplies and extra load/store instructions

Figure 3-2 shows extra multiply and load/store instructions. An entry in square brackets, for example [1],
indicates that more information is given below the figure.

313029 28272625242322212019 181716151413 121110 9 8 7 6 5 4 3 2 1 0
Multiply (accumulate) cond 00O0O0|0O0|AlS Rd Rn Rs 100 1 Rm
Multiply (accumulate) long cond 00 O0O0[1|U|AIS RdHi RdLo Rs 100 1 Rm
Swap/swap byte cond 00O010|B|0OO Rn Rd SBzZ 100 1 Rm
Load/store halfword
register offset [1] cond 00 O/P|lU|OW|L Rn Rd SBZ 1011 Rm
Load/store halfword :
immediate offset [1] cond 00 O/PU[TW|L Rn Rd HiOffset |1 0 1 1| LoOffset
Load/store two words
register offset [2] cond 00 O0/PU|O|W|O Rn Rd SBZ 1 1]S|1 Rm
Load signed halfword/byte
register offset [1] cond 00 O|PU|OW|1 Rn Rd SBZ 1 1|H1 Rm
Load/store t d
Cmmediate offeet[2] | cond |0 0 0|P|U|1|w|0| Rn Rd HiOffset |1 1|S|1| LoOffset
Load signed halfword/byte .
immediate offset [1] cond 00 O|PlU|1T|W|1 Rn Rd HiOffset |1 1|H| 1| LoOffset

Figure 3-2 Multiplies and extra load/store instructions

1 UNPREDICTABLE prior to ARM architecture version 4.
2. These instructions are described in Chapter A10 Enhanced DSP Extension.

Note

Any instruction with bitg[27:25] = 000, bit[7] = 1, bit[4] =1, and cond not equal to 1111, and which is not
specified in Figure 3-2 or its notes, is an undefined instruction (or UNPREDICTABLE prior to ARM
architecture version 4).

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A3-3

The ARM Instruction Set

3.1.2 Miscellaneous instructions

Figure 3-3 shows the remaining ARM instruction encodings. An entry in square brackets, for example[1],
indicates that more information is given bel ow the figure.

313029282726 25242322212019 1817 16151413121110 9 8 7 6 5 4 3 2 1 0
Move status register to register cond 00O01O0|RIO|O SBO Rd SBZ 00O00O0 SBzZ
Move register to status register cond 00O01O0|R[T1|O0 mask SBO SBZ 00O00O Rm
Branch/exchange instruction set [1] cond 000100 1]0 SBO SBO SBO 0001 Rm
Count leading zeros [2] cond 00O0T1TO0|1T 1|0 SBO Rd SBO 0001 Rm
Branch and link/exchange instruction set [2] cond 00O0T1TO0|0 1|0 SBO SBO SBO 0011 Rm
Enhanced DSP add/subtracts [4] cond 000 1O0|o0p |0 Rn Rd SBZ 0101 Rm
Software breakpoint [2,3] cond 00O010(0 1|0 immed 0111 immed
Enhanced DSP multiplies[4] cond 00O0T1TO0| op|O Rd ‘ Rn ‘ Rs 1y xO0 Rm

Figure 3-3 Miscellaneous instructions

1. Defined in ARM architecture version 5 and above, and in T variants of ARM architecture version 4.

Thisisan undefined instruction isARM architecture version 4, and iS UNPREDICTABLE prior to ARM
architecture version 4.

3. If thecond field of thisinstruction is not 1110, it iS UNPREDICTABLE.
4. The enhanced DSP instructions are described in Chapter A10 Enhanced DSP Extension.

Note

Any instruction with bits[27:23] = 00010, hit[20] = 0, bit[7] and bit[4] not both 1, and cond is not equal to
1111, and which is not specified in Figure 3-3 or its notes, is an undefined instruction (or UNPREDICTABLE
prior to architecture version 4).

A3-4 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

3.2

3.2.1

The ARM Instruction Set

The condition field

Almost all ARM instructions can be conditionally executed, which means that they only have their normal
effect on the programmer’s model state, memory and coprocessors if the N, Z, C and V flags in the CPSR
satisfy acondition specified in the instruction. If the flags do not satisfy this condition, the instruction acts
as aNOP: that is, execution advances to the next instruction as normal, including any relevant checks for

interrupts and prefetch aborts, but has no other effect.

Prior to ARM architecture version 5, all ARM instructions could be conditionally executed. A few
instructions have been introduced subsequently which can only be executed unconditionally.

Every instruction contains a 4-bit condition code field in bits 31 to 28:

31 28 27 0

cond

Thisfield contains one of the 16 values described in Table 3-1 on page A3-6. Most instruction mnemonics
can be extended with the letters defined in the mnemonic extension field.

If the always (AL) condition is specified, the instruction is executed irrespective of the value of the
condition codeflags. The absence of acondition code on an instruction mnemonic impliesthe AL condition
code.

Condition code Ob1111

Asindicated in Table 3-1 on page A3-6, if the condition field is 0b1111, the behavior depends on the
architecture version:

. Prior to ARM architecture version 3, a condition field of Ob1111 meant that the instruction was never

executed. The mnemonic extension for this condition was NV.

Note
Use of this condition is now obsolete and unsupported.

. In ARM architecture version 3 and version 4, any instruction with a condition field of 0b1111 is

UNPREDICTABLE.

. In ARM architecture version 5 and above, a condition field of 0b1111 is used to encode various

additional instructions which can only be executed unconditionally. All instruction encoding

diagrams which show bits[31:28] asnd only match instructions in which these bits are not equal

to 0b1111, unless otherwise stated in the individual instruction description.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A3-5

The ARM Instruction Set

Table 3-1 Condition codes

[Osquog]e g/lxr;:nmsc;cr:inc Meaning Condition flag state

0000 EQ Equal Z set

0001 NE Not equal Z clear

0010 CSHS Carry set/unsigned higher or same Cset

0011 CC/LO Carry clear/unsigned lower Cclear

0100 M Minus/negative N set

0101 PL Plug/positive or zero N clear

0110 VS Overflow V set

0111 VC No overflow V clear

1000 HI Unsigned higher Csetand Z clear

1001 LS Unsigned lower or same Cclear or Z set

1010 GE Signed greater than or equal N set and V set, or
N clear and V clear (N == V)

1011 LT Signed less than N set and V clear, or
N clear and V set (N I=V)

1100 GT Signed greater than Z clear, and either N set and V set, or
N clear and V clear (Z ==0,N == V)

1101 LE Signed less than or equal Z set, or N set and V clear, or
NclearandV set (Z==1o0r N!=V)

1110 AL Always (unconditional) -

111 (NV) See Condition code 0b1111 on page A3-5 -

A3-6 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The ARM Instruction Set

3.3 Branch instructions

All ARM processors support a branch instruction that allows a conditional branch forwards or backwards
upto 32MB. Asthe PCisoneof the general-purpose registers (R15), abranch or jump can also be generated
by writing avalue to R15.

A subroutine call can be performed by a variant of the standard branch instruction. Aswell as allowing a
branch forward or backward up to 32MB, the Branch with Link (BL) instruction preserves the address of
the instruction after the branch (the return address) in the LR (R14).

In T variants of ARM architecture version 4, and in ARM architecture version 5 and above, the Branch and
Exchange (BX) instruction copies the contents of a general-purpose register Rm to the PC (like a MOV

PC, Rminstruction), with the additional functionality that if bit[0] of thetransferred valueis 1, the processor
shifts to Thumb state. Together with the corresponding Thumb instructions, this allows interworking
branches between ARM and Thumb code.

Interworking subroutine calls can be generated by combining BX with an instruction to write a suitable
return address to the LR, such as an immediately preceding MOV LR, PCinstruction.

In ARM architectureversion 5 and above, there are also two types of Branch with Link and Exchange (BL X)
instruction:

. One type takes a register operand Rm, liBXanstruction. This instruction behaves lik&4
instruction, and additionally writes the address of the next instruction into the LR. This provides a
more efficient interworking subroutine call than a sequendddf LR, PC followed byBX Rm

. The other type behaves likeBh instruction, branching backwards or forwards by up to 32MB and
writing a return link to the LR, but shifts to Thumb state rather than staying in ARM sBltedags.
This provides a more efficient alternative to loading the subroutine address into Rm followed by a
BLX Rminstruction when it is known that a Thumb subroutine is being called and that the subroutine
lies within the 32MB range.

A load instruction provides a way to branch anywhere in the 4GB address space (kndony &samch).

A 32-bit value is loaded directly from memory into the PC, causing a branch. A long branch can be preceded
by MOV LR, PC or another instruction that writes the LR to generate a long subroutine call. In ARM
architecture version 5 and above, bit[0] of the value loaded by a long branch controls whether the subroutine
is executed in ARM state or Thumb state, just like bit[0] of the value moved to the PBXbgstruction.

Prior to ARM architecture version 5, bits[1:0] of the value loaded into the PC are ignored, and a load into
the PC can only be used to call a subroutine in ARM state.

In non-T variants of ARM architecture version 5, the instructions described above can cause an entry into
Thumb state despite the fact that the Thumb instruction set is not present. This causes the instruction at the
branch target to enter the undefined instruction trapTBeeontrol bits on page A2-10 for more details.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A3-7

The ARM Instruction Set

3.3.1 Examples
B | abel branch unconditionally to I abel
BCC | abel branch to label if carry flag is clear
BEQ | abel branch to label if zero flag is set
MoV PC, #0 R15 = 0, branch to location zero
BL func subroutine call to function
func
W PC, LR ; R15=R14, return to instruction after the BL
MoV LR, PC ; store the address of the instruction
after the next one into Rl4 ready to return
LDR PC, =func load a 32-bit value into the program counter
3.3.2 List of branch instructions
B, BL Branch, and Branch with Link. See B, BL on page A4-10.
BLX Branch with Link and Exchange. See BLX (1) on page A4-16 and BLX (2) on page A4-18.
BX Branch and Exchange Instruction Set. See BX on page A4-19.
A3-8 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The ARM Instruction Set

3.4 Data-processing instructions
ARM has 16 data-processing instructions, shown in Table 3-2.
Table 3-2 Data-processing instructions
Opcode Mnemonic Operation Action
0000 AND Logical AND Rd := Rn AND shifter_operand
0001 EOR Logical Exclusive OR Rd := Rn EOR shifter_operand
0010 SUB Subtract Rd := Rn - shifter_operand
0011 RSB Reverse Subtract Rd := shifter_operand - Rn
0100 ADD Add Rd := Rn + shifter_operand
0101 ADC Add with Carry Rd := Rn + shifter_operand + Carry Flag
0110 SBC Subtract with Carry Rd := Rn - shifter_operand - NOT(Carry Flag)
0111 RSC Reverse Subtract with Carry Rd := shifter_operand - Rn - NOT(Carry Flag)
1000 TST Test Update flags after Rn AND shifter_operand
1001 TEQ Test Equivalence Update flags after Rn EOR shifter_operand
1010 CMP Compare Update flags after Rn - shifter_operand
1011 CMN Compare Negated Update flags after Rn + shifter_operand
1100 ORR Logical (inclusive) OR Rd := Rn OR shifter_operand
1101 MOV Move Rd := shifter_operand (no first operand)
1110 BIC Bit Clear Rd := Rn AND NOT (shifter_operand)
1111 MVN Move Not Rd := NOT shifter_operand (no first operand)

Most data-processing i nstructions take two source operands, though Move and Move Not take only one. The
compare and test instructions only update the condition flags. Other data-processing instructions store a
result to aregister and optionally update the condition flags as well.

Of the two source operands, one is always aregister. The other is called a shifter operand and is either an
immediate value or aregister. If the second operand is aregister value, it can have a shift applied to it.

CMP, CWN, TST and TEQaways update the condition code flags. The assembler automatically setsthe S

bit in the instruction for them, and the corresponding instruction with the S bit clear is not a data-processing
instruction, but instead lies in one of the instruction extension spaces (see Extending the instruction set on
page A3-27). The remaining instructions update the flagsif an Sis appended to the instruction mnemonic
(which setsthe S bit in the instruction). See The condition code flags on page A2-9 for more details.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A3-9

The ARM Instruction Set

3.4.1 Instruction encoding

<opcodel>{<cond>}{S} <Rd>, <shifter_operand>
<opcodel> := MOV | MVN

<opcode2>{<cond>} <Rn>, <shifter_operand>
<opcode2> := CMP | CW | TST | TEQ

<opcode3>{<cond>}{S} <Rd>, <Rn>, <shifter_operand>
<opcode3> := ADD| SUB| RSB| ADC| SBC| RSC| AND| BIC| EOR| ORR

31 28 27 26 25 24 21 20 19 16 15 12 11 0
cond 0 0|l opcode |S Rn Rd shifter_operand
| bit Distinguishes between the immediate and register forms of
<shi fter_operand>.
S bit Signifies that the instruction updates the condition codes.
Rn Specifies the first source operand register.
Rd Specifies the destination register.
shifter_operand Specifies the second source operand. See Addressing Mode 1 - Data-processing

operands on page A5-2 for details of the shifter operands.

A3-10 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

3.4.2 List of data-processing instructions

Add with Carry. See ADC on page A4-4.
Add. See ADD on page A4-6.

Logical AND. See AND on page A4-8.
Logical Bit Clear. See BIC on page A4-12.
Compare Negative. See CMN on page A4-23.
Compare. See CMP on page A4-25.
Logical EOR. See EOR on page A4-26.
Move. See MOV on page A4-56.

Move Negative. See MVN on page A4-68.
Logical OR. See ORR on page A4-70.
Reverse Subtract. See RSB on page A4-72.

Reverse Subtract with Carry. See RSC on page A4-74.

Subtract with Carry. See SBC on page A4-76.
Subtract. See SUB on page A4-98.

Test Equivalence. See TEQ on page A4-106.
Test. See TST on page A4-107.

The ARM Instruction Set

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

A3-11

The ARM Instruction Set

3.5

3.5.1

3.5.2

3.5.3

Multiply instructions

ARM has two classes of Multiply instruction:
. normal, 32-bit result
. long, 64-bit result.

All Multiply instructions take two register operands as the input to the multiplier. The ARM processor does
not directly support a multiply-by-constant instruction due to the efficiency of shift and add, or shift and
reverse subtract instructions.

Normal multiply

There are two Multiply instructions that produce 32-bit results:

MUL Multiplies the values of two registers together, truncates the result to 32 bits, and stores the
result in a third register.

M_A Multiplies the values of two registers together, adds the value of a third register, truncates
the result to 32 bits, and stores the result in a fourth register. This can be used to perform
multiply-accumulate operations.

Both Multiply instructions can optionally set the N (Negative) and Z (Zero) condition code flags.
No distinction is made between signed and unsigned variants. Only the least significant 32 bits of the result
are stored in the destination register, and the sign of the operands does not affect this value.

Long multiply
There are four Multiply instructions that produce 64-bit results (long multiply).

Two of the variants multiply the values of two registers together and store the 64-bit result in third and fourth
registers. There are signe®MULL) and unsignedyMULL) variants. The signed variants produce a
different result in the most significant 32 bits if either or both of the source operands is negative.

The remaining two variants multiply the values of two registers together, add the 64-bit value from the third
and fourth registers and store the 64-bit result back into those registers (third and fourth). There are signed
(SMLAL) and unsignedWM_AL) variants. These instructions perform a long multiply and accumulate.

All four long multiply instructions can optionally set the N (Negative) and Z (Zero) condition code flags.

Examples

MJL R4, R2
MILS R4, R2,
MLA R7, R8
SMULL R4, RS,

Set R4 to value of R2 nultiplied by R1
R4 R2 x Rl, set N and Z flags

R7 R8 x RO + R3

R4 bits 0 to 31 of R2 x R3

R8 bits 32 to 63 of R2 x R3

R8, R6 = RO x Rl

R8, R5 = RO x R1 + R8, R5

UMILL R6, RS,
UMLAL R5, RS,

88 R8R2A
RR 33

A3-12

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The ARM Instruction Set

354 List of multiply instructions

M.A Multiply Accumulate. See MLA on page A4-54.

MUL Multiply. See MUL on page A4-66.

SMLAL Signed Multiply Accumulate Long. See SMLAL on page A4-78.
SMULL Signed Multiply Long. See SMULL on page A4-80.

UMLAL Unsigned Multiply Accumulate Long. See UMLAL on page A4-1009.
UMULL Unsigned Multiply Long. See UMULL on page A4-111.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A3-13

The ARM Instruction Set

3.6 Miscellaneous arithmetic instructions
In addition to the normal data-processing and multiply instructions, versions 5 and above of the ARM
architecture include a Count L eading Zeros (CLZ) instruction. Thisinstruction returns the number of 0 bits
at the most significant end of its operand before the first 1 bit is encountered (or 32 if its operand is zero).
Two typical applications for this are:
. To determine how many bits the operand should be shifted left in ordermtalize it, so that its

most significant bit is 1. (This can be used in integer division routines.)

. To locate the highest priority bit in a bit mask.

3.6.1 Instruction encoding
CLZ{<cond>} <Rd> <R
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0001011 (SBO Rd SBO 0 0O0]1 Rm

Rd Specifies the destination register.
Rm Specifies the operand register.

3.6.2 List of miscellaneous arithmetic instructions
CLZ Count Leading Zeros. S&:.Z on page A4-22.

A3-14 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

3.7

3.7.1

The ARM Instruction Set

Status register access instructions

There aretwo instructions for moving the contents of a program status register to or from a general -purpose
register. Both the CPSR and SPSR can be accessed.

Each status register is split into four 8-bit fields that can be individually written:

Bitg31:24] Theflagsfield.
Bitg23:16] The status field.
Bitq15:8] The extension field.
Bitg7:0] The control field.

To date, the ARM architecture does not use the status and extension fields, and three bits are unused in the
flagsfield. The four condition code flags occupy bitg[31:28]. In E variants of architecture versions 5 and
above, the Q flag occupies hit[27]. See The Q flag on page A10-5 for more information on the Q flag. The
control field contains two interrupt disable bits, five processor mode bits, and the Thumb bit on ARM
architecture version 5 and above and on T variants of ARM architecture version 4 (see The T bit on

page A2-11).

The unused bits of the status registers might be used in future ARM architectures, and must not be modified
by software. Therefore, aread-modify-write strategy must be used to update the value of a status register to
ensure future compatibility.

The status registers are readabl e to alow the read part of the read-modify-write operation, and to allow all
processor state to be preserved (for instance, during process context switches).

The status registers are writable to allow the write part of the read-modify-write operation, and allow all
processor state to be restored.

CPSR value
Altering the vdue of the CPSR has three uses:
. sets the value of the condition code flags (and of the Q flag when it exists) to a known value
. enables or disable interrupts
. changes processor mode (for instance, to initialize stack pointers).
Note

The T bit must not be changed directly by writing to the CPSR, but only vBXfrestruction, and in the
implicit SPSR to CPSR moves in instructions designed for exception return. Attempts to enter or leave
Thumb state by directly altering the T bit can haMe@REDICTABLE consequences.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A3-15

The ARM Instruction Set

3.7.2 Examples

These examples assume that the ARM processor is already in a privileged mode. If the ARM processor
starts in User mode, only the flag update has any effect.

MRS RO, CPSR ; Read the CPSR

BI C RO, RO, #0xF0000000 ; Clear the N, Z, Cand V bits

MSR CPSR f, RO ; Update the flag bits in the CPSR
; N, Z, Cand V flags now all clear

MRS RO, CPSR ; Read the CPSR

ORR RO, RO, #0x80 ; Set the interrupt disable bit

MSR CPSR c, RO ; Update the control bits in the CPSR
; interrupts (1 RQ now di sabl ed

MRS RO, CPSR ; Read the CPSR
Bl C RO, RO, #Ox1F ; Clear the node bits
ORR RO, RO, #0x11 ; Set the npde bits to FIQ node

MSR CPSR c, RO ; Update the control bits in the CPSR
; now in FlIQ node
3.7.3 List of status register access instructions
MRS Move PSR to General-purpose Register. See MRS on page A4-60.
MSR Move General-purpose Register to PSR. See MSR on page A4-62.

A3-16 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The ARM Instruction Set

3.8 Load and store instructions

The ARM architecture supports two broad types of instruction which load or store the value of asingle
register from or to memory:

. The first type can load or store a 32-bit word or an 8-bit unsigned byte.

. The second type can load or store a 16-bit unsigned halfword, and can load and sign extend a 16-bit
halfword or an 8-bit byte. This type of instruction is only available in ARM architecture version 4
and above.

3.8.1 Addressing modes

In both types of instruction, the addressing mode is formed from two parts:
. the base register
. the offset.

The base register can be any one of the general-purpose registers (including the PC, which allows
PC-relative addressing for position-independent code).

The offset takes one of three formats:

Immediate The offset is an unsigned number that can be added to or subtracted from the base
register. Immediate offset addressing is useful for accessing data elements that are
a fixed distance from the start of the data object, such as structure fields, stack
offsets and input/output registers.

For the word and unsigned byte instructions, the immediate offset is a 12-bit
number. For the halfword and signed byte instructions, it is an 8-bit number.

Register The offset is a general-purpose register (not the PC), that can be added to or
subtracted from the base register. Register offsets are useful for accessing arrays or
blocks of data.

Scaled register The offset is a general-purpose register (not the PC) shifted by an immediate value,
then added to or subtracted from the base register. The same shift operations used
for data-processing instructions can be used (Logical Shift Left, Logical Shift Right,
Arithmetic Shift Right and Rotate Right), but Logical Shift Left is the most useful
as it allows an array indexed to be scaled by the size of each array element.

Scaled register offsets are only available for the word and unsigned byte
instructions.

As well as the three types of offset, the offset and base register are used in three different ways to form the
memory address. The addressing modes are described as follows:

Offset The base register and offset are added or subtracted to form the memory address.

Pre-indexed The base register and offset are added or subtracted to form the memory address.
The base register is then updated with this new address, to allow automatic indexing
through an array or memory block.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A3-17

The ARM Instruction Set

Post-indexed The value of the baseregister aloneis used asthe memory address. The base register
and offset are added or subtracted and this value is stored back in the base register,
to allow automatic indexing through an array or memory block.

3.8.2 Load and Store word or unsigned byte instructions
Load instructions load a single value from memory and write it to a general-purpose register.
Store instructions read a value from a genera -purpose register and store it to memory.
Load and Store ingtructions have a single instruction format:
LDR| STR{ <cond>}{B}{T} Rd, <addressing_node>
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
cond 0 1|1 |P|U|B|W|L Rn Rd addressing_mode_specific
I,P,U, W Are bits that distinguish between different types of <addr essi ng_node>.
L bit Distinguishes between a Load (L==1) and a Store instruction (L==0).
B bit Distinguishes between an unsigned byte (B==1) and a word (B==0) access.
Rn Specifies the base register used by <addr essi ng_node>.
Rd Specifies the register whose contents are to be loaded or stored.
3.8.3 Load and Store Halfword and Load Signhed Byte
Load instructions load a single value from memory and write it to a general-purpose register.
Store instructions read a value from a genera -purpose register and store it to memory.
Load and Store Halfword and Load Signed Byte instructions have a single instruction format:
LDR| STR{ <cond>} H SH| SB Rd, <addressi ng_node>
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 0 0 O|P|U|I |W|L Rn Rd addr mode |1 |S|H| 1|addr_mode
addr_mode Are addressing-mode-specific bits.
I,P, U, W Are bits that specify the type of addressing mode (see Addressing Mode 3 - Miscellaneous
Loads and Stores on page A5-34).
L bit Distinguishes between a Load (L==1) and a Store instruction (L==0).
S bit Distinguishes between a signed (S==1) and an unsigned (S==0) halfword access. If the L
bit is zero and S hit is one, the instruction iS UNPREDICTABLE.
A3-18 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

H bit

Rn
Rd

3.8.4 Examples

LDR
LDR
LDR
STR
LDRB
LDRB
STRB

LDR
STRB

LDR

LDR
STRB

LDR

STR

LDR

LDR

LDRH

LDRH

LDRH

STRH

LDRSH

LDRSB

LDRSB

LDRH

STRH

LDRSH

The ARM Instruction Set

Distinguishes between ahalfword (H==1) and a signed byte (H==0) access. If the S bit and
H bit are both zero, this instruction encodes a SWP or Multiply instruction.

Specifies the base register used by the addressing mode.

Specifies the register whose contents are to be loaded or stored.

R1, [RO]

RS, [R3, #4]
R12, [RL3, #-4]
R2, [Rl, #0x100]

R5, [R9]
R3, [R8, #3]
R4, [RLO, #0x200]

R11, [RL, R2]
R10, [R7, -R4]

R11, [R3, R5, LSL #2]
Rl, [RO, #4]!
R7, [R6, #-1]!

[RO], #4
[R5], #8

[PC, #40]

[R1], R2

R 3 3 R”B

[RO]

RS, [R3, #2]
R12, [RL3, #-6]
R2, [RL, #0x80]
R5, [R9]

R3, [R8, #3]
R4, [RL0, #O0xCl]
R11, [RL, R2]
R10, [R7, -R4]

Rl, [RO, #2]!

Load RL fromthe address in RO

Load R8 fromthe address in R3 + 4
Load R12 fromR13 - 4

Store R2 to the address in RL + 0x100

Load byte into R5 from R9

(zero top 3 bytes)

Load byte to R3 fromR8 + 3
(zero top 3 bytes)

Store byte fromR4 to RIO + 0x200

Load R11 fromthe address in Rl + R2
Store byte fromR10 to addr in R7 - R4

Load R11 fromR3 + (R5 x 4)

Load Rl1 fromRO + 4, then RO = RO + 4
Store byte fromR7 to R6 - 1,

then R6 = R6 - 1

Load R3 fromR9, then RO = R9 + 4
Store R to R5, then R5 = R5 + 8

Load RO from PC + 0x40 (= address of
the LDR instruction + 8 + 0x40)
Load RO fromRl, then RlL = Rl + R2

Load hal fword to RL from RO

(zero top 2 bytes)

Load hal fword into RB fromR3 + 2
Load hal fword into R12 fromR1l3 - 6
Store halfword fromR2 to RL + 0x80

Load signed halfword to R5 from RO
Load signed byte to R3 fromR8 + 3
Load signed byte to R4 from R1O + OxCl

Load hal fword into R11 from address
in RL + R2
Store halfword fromR10O to R7 - R4

Load signed hal fword RL from R0 + 2,
then RO = RO + 2

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A3-19

The ARM Instruction Set

LDRSB

LDRH

STRH

R7, [R6, #-1]! ; Load signed byte to R7 fromR6 - 1,

; then R6 = R6 - 1
R3, [RO], #2 ; Load hal fword to R3 fromR9,
; then R9 = RO + 2

R2, [R5], #8 ; Store halfword fromR2 to R5,

then R = R5 + 8

3.8.5 List of load and store instructions
LDR Load Word. See LDR on page A4-37.
LDRB Load Byte. See LDRB on page A4-40.
LDRBT Load Byte with User Mode Privilege. See LDRBT on page A4-42.
LDRH Load Unsigned Halfword. See LDRH on page A4-44.
LDRSB Load Signed Byte. See LDRSB on page A4-46.
LDRSH Load Signed Halfword. See LDRSH on page A4-48.
LDRT Load Word with User Mode Privilege. See LDRT on page A4-50.
STR Store Word. See STR on page A4-88.
STRB Store Byte. See STRB on page A4-90.
STRBT Store Byte with User Mode Privilege. See STRBT on page A4-92.
STRH Store Halfword. See STRH on page A4-94.
STRT Store Word with User Mode Privilege. See STRT on page A4-96.
A3-20 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

3.9 Load and Stor
Load Multiple instruct

Store Multiple instruct

The ARM Instruction Set

e Multiple instructions
ions load a subset, or possibly al, of the genera -purpose registers from memory.

ions store a subset, or possibly all, of the general-purpose registers to memory.

Load and Store Multiple instructions have a single instruction format:

LDM <cond>} <add
STM <cond>} <add

where:

<addr essi ng_node>

ressing_mode> Rn{!}, <registers>{"}
ressing_mode> Rn{!}, <registers>{"}

=IA| IB| DA| DB| FD| FA| ED| EA

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 100

PlU|S|W|L Rn register list

register list

P, U, and W bits

Shit

L bit
Rn

3.9.1 Examples

STMFD R13!
LDMFD R13!
LDM A RO,

STMVDA R1!,

Thelist of <r egi st er s> hasonebit for each general-purpose register. Bit Oisfor
RO, and bit 15 isfor R15 (the PC).

Theregister syntax list is an opening bracket, followed by a comma-separated list
of registers, followed by aclosing bracket. A sequence of consecutive registers can
be specified by separating the first and last registers in the range with a minus sign.

These distinguish between the different types of addressing mode (see Addressing
Mode 4 - Load and Store Multiple on page A5-48).

For LDVsthat | oad the PC, the Shit indi catesthat the CPSR isloaded from the SPSR
after all the registers have been loaded. For all STMs, and LDVs that do not load the
PC, it indicates that when the processor is in a privileged mode, the User mode
banked registers are transferred and not the registers of the current mode.

This distinguishes between a Load (L==1) and a Store (L==0) instruction.

This specifies the base register used by the addressing mode.

, {RO - R12, LR}
, {RO - R12, PG}

{R5 - R8}

{R2, R5, R7 - R9, Rl1}

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A3-21

The ARM Instruction Set

3.9.2 List of Load and Store Multiple instructions
LDM Load Multiple. See LDM (1) on page A4-30.
LDM User Registers Load Multiple. See LDM (2) on page A4-32.
LDM Load Multiple with Restore CPSR. See LDM (3) on page A4-34.
STM Store Multiple. See STM(1) on page A4-84.
STM User Registers Store Multiple. See STM (2) on page A4-86.
A3-22 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The ARM Instruction Set

3.10 Semaphore instructions

The ARM instruction set has two semaphore instructions:
. Swap SWP)
. Swap Byte $VPB).

These instructions are provided for process synchronization. Both instructions generate an atomic load and
store operation, allowing a memory semaphore to be loaded and altered without interruption.

SWP andSWPB have a single addressing mode, whose address is the contents of a register. Separate registers
are used to specify the value to store and the destination of the load. If the same register is specified for both
of these SWP exchanges the value in the register and the value in memory.

The semaphore instructions do not provide a compare and conditional write facility. If wanted, this must be
done explicitly.
3.10.1 Examples

SWP R12, R10, [R9] ; load R12 from address R9 and
; store RLO to address R9

SWPB R3, R4, [R8] ; load byte to R3 from address R8 and
; store byte fromR4 to address R8

SWP Rl, R1, [R2] ; Exchange value in Rl and address in R2

3.10.2 List of semaphore instructions
SWP Swap. Se&WP on page A4-102.
SWPB Swap Byte. Se&VPB on page A4-104.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A3-23

The ARM Instruction Set

3.11 Exception-generating instructions

The ARM instruction set provides two types of instruction whose main purpose is to cause a processor
exception to occur:

. The Software InterrupSW) instruction is used to cause a SWI exception to occur(sfegare
Interrupt exception on page A2-16). This is the main mechanism in the ARM instruction set by which
User mode code can make calls to privileged Operating System code.

. The BreakpointBKPT) instruction is used for software breakpoints in ARM architecture versions 5
and above. Its default behavior is to cause a Prefetch Abort exception to océrrefatel Abort
(instruction fetch memory abort) on page A2-16). A debug monitor program which has previously
been installed on the Prefetch Abort vector can handle this exception.

If debug hardware is present in the system, it is allowed to override this default behavior. Details of
whether and how this happens BmMeLEMENTATION DEFINED.

3.11.1 Instruction encodings
SW {<cond>} <i med_24>

31 28 27 26 25 24 23 0

cond 1111 immed_24

BKPT <i medi at e>

31 28 27 26 25 24 23 22 21 20 19 8 7 4 3 0

11100001001 (immed 01 1|1 immed

In bothSW andBKPT, the immediate fields of the instruction are ignored by the ARM processor. The SWI
or Prefetch Abort handler can optionally be written to load the instruction that caused the exception and
extract these fields. This allows them to be used to communicate extra information about the Operating
System call or breakpoint to the handler.

3.11.2 List of exception-generating instructions
BKPT Breakpoint. Se8KPT on page A4-14.
SW Software Interrupt. Se®M on page A4-100.

A3-24 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

3.12

3.12.1

The ARM Instruction Set

Coprocessor instructions

The ARM instruction set provides three types of instruction for communicating with coprocessors. These
alow:

. the ARM processor to initiate a coprocessor data processing operation
. ARM registers to be transferred to and from coprocessor registers
. the ARM processor to generate addresses for the coprocessor Load and Store instructions.

The instruction set distinguishes up to 16 coprocessors with a 4-bit field in each coprocessor instruction, so
each coprocessor is assigned a particular number.

Note
One coprocessor can use more than one of the 16 numbers if a large coprocessor instruction set is required.

Coprocessors execute the same instruction stream as ARM, ignoring ARM instructions and coprocessor
instructions for other coprocessors. Coprocessor instructions that cannot be executed by coprocessor
hardware cause an undefined instruction trap, allowing software emulation of coprocessor hardware.

A coprocessor can partially execute an instruction and then cause an exception. This is useful for handling
run-time-generated exceptions, like divide-by-zero or overflow. However, the partial execution is internal
to the coprocessor and is not visible to the ARM processor. As far as the ARM processor is concerned, the
instruction is held at the start of its execution and completes without exception if allowed to begin execution.
Any decision on whether to execute the instruction or cause an exception is taken within the coprocessor
before the ARM processor is allowed to start executing the instruction.

Not all fields in coprocessor instructions are used by the ARM processor. Coprocessor register specifiers
and opcodes are defined by individual coprocessors. Therefore, only generic instruction mnemonics are
provided for coprocessor instructions. Assembler macros can be used to transform custom coprocessor
mnemonics into these generic mnemonics, or to regenerate the opcodes manually.

Examples
CDP p5, 2, c¢12, cl0, c3, 4 ; Coproc 5 data operation
; opcode 1 = 2, opcode 2 = 4
destination register is 12
source registers are 10 and 3
MRC pl5, 5, R4, c0, c2, 3 ; Coproc 15 transfer to ARMregister
; opcode 1 =5, opcode 2 = 3
ARM destination register = R4
coproc source registers are 0 and 2
MCR pl4, 1, R7, c7, cl12, 6 ; ARMregister transfer to Coproc 14

opcode 1 = 1, opcode 2 = 6
ARM source register = R7
coproc dest registers are 7 and 12

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A3-25

The ARM Instruction Set

LDC p6, CR1l, [R4] ; Load fromnenory to coprocessor 6
; ARMregister 4 contains the address
Load to CP reg 1

LDC p6, CR4, [R2, #4] ; Load fromnenory to coprocessor 6
; ARMregister R2 + 4 is the address
Load to CP reg 4

STC p8, CR8, [R2, #4]! ; Store from coprocessor 8 to nenory
; ARMregister R2 + 4 is the address
after the transfer R2 = R2 + 4
Store fromCP reg 8

STC p8, CR9, [R2], #-16 ; Store from coprocessor 8 to nenory
; ARMregister R2 holds the address
after the transfer R2 = R2 - 16
Store fromCP reg 9

3.12.2 List of coprocessor instructions

CDP Coprocessor Data Operations. See CDP on page A4-20.
LDC Load Coprocessor Register. See LDC on page A4-28.
MCR Move to Coprocessor from ARM Register. See MCR on page A4-52.
MRC Moveto ARM Register from Coprocessor. See MRC on page A4-58.
STC Store Coprocessor Register. See STC on page A4-82.

Note

Coprocessor instructions are not implemented in ARM architecture version 1.

A3-26 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

3.13

The ARM Instruction Set

Extending the instruction set

Successive versions of the ARM architecture have extended the instruction set in anumber of areas. This
section describes the six areas where extensions have occurred, and where further extensions might occur
in the future:

. Undefined instruction space on page A3-28
. Arithmetic instruction extension space on page A3-29

. Control instruction extension space on page A3-30

. Load/store instruction extension space on page A3-32

. Coprocessor instruction extension space on page A3-33

. Unconditional instruction extension space on page A3-34.

Instructions in these areas which have not yet been allocated a meaning ateneheED or
UNPREDICTABLE. To determine which, use the following rules:

1. Thedecode bits of an instruction are defined to be bits[27:20] and bits[7:4].

In ARM architecture version 5 and above, the result of ANDing bits[31:28] together is also a decode
bit. This bit determines whether the condition field is 0b1111, which is used in ARM architecture
version 5 and above to encode various instructions which can only be executed unconditionally. See
Condition code 0b1111 on page A3-5 antnconditional instruction extension space on page A3-34

for more information.

2. If the decode bits of an instruction are equal to those of a defined instruction, but the whole instruction
is not a defined instruction, then the instructiooN®REDICTABLE.
For example, suppose an instruction has:
. bits[31:28] not equal to Ob1111
. bits[27:20] equal to 0b00010000
. bits[7:4] equal to 0b0000

but where:
. bit[11] of the instruction is 1.
Here, the instruction is in the control instruction extension space and has the same decode bits as an

MRS instruction, but is not a valiiRS instruction because bit[11] of &RS instruction should be
zero. Using the above rule, this instructiowigREDICTABLE.

3. In ARM architecture version 4 and above, if the decode bits of an instruction are not equal to those
of any defined instruction, then the instructiowiEFINED.

4. In ARM architecture version 3 and below, if the decode bits of an instruction are not equal to those
of any defined instruction, then the instruction is:
. UNDEFINED if it is in the undefined instruction space
. UNPREDICTABLE if it is in any of the other five areas.

Each of rules 2 to 4 above applies separately to each ARM architecture version. As a result, the status of an
instruction might differ between architecture versions. Usually, this happens because an instruction which
WasUNPREDICTABLE Or UNDEFINED in an earlier architecture version becomes a defined instruction in a later
version.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A3-27

The ARM Instruction Set

3.13.1 Undefined instruction space
Instructions with the following opcodes are undefined instruction space:
opcode[27: 25] = 0b011
opcode[4] =1
31 28 27 26 25 24 5 4 3 0
cond 01 1|x X X X X X X X X X X X X X X X X X X X[1|x X X X
The meaning of instructions in the undefined instruction space is UNDEFINED on all versions of the ARM
architecture.
In general, undefined instructions might be used to extend the ARM instruction set in the future. However,
it isintended that instructions with the following encoding will not be used for this:
31 28 27 26 25 24 23 22 21 20 19 8 76 543210
cond 0111111 1|x X X X XXXXXXXNX|1111{x x X X
If a programmer wants to use an undefined instruction for software purposes, with minimal risk that future
hardware will treat it as a defined instruction, one of the instructions with this encoding must be used.
A3-28 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

3.13.2

The ARM Instruction Set

Arithmetic instruction extension space

Instructions with the following opcodes are the arithmetic instruction extension space:

opcode[27: 24] == 0b0000
opcode[7: 4] == 0b1001
opcode[31:28] != 0b1111 /* Only required for version 5 and above */

The field names given are guidelines suggested to simplify implementation.

31 28 27 26 25 24 23 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 00O00O0 opl Rn Rd Rs 1001 Rm

Table 3-3 summari zes the instructions that have aready been allocated in this area

Table 3-3 Arithmetic instruction space

Instructions opl Architecture versions
MJL, MULS 000S Version 2 and above
MLA, MLAS 001S Version 2 and above

UMULL, UMJLLS 100S All M variants

UMLAL, UMLALS 101S All M variants

SMULL, SMULLS 110S All M variants

SMLAL, SMLALS 111S All M variants

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A3-29

The ARM Instruction Set

3.13.3 Control instruction extension space

Instructions with the following opcodes are the control instruction space.

opcode[27: 26] ==
opcode[24: 23] ==
opcode[20] ==

0b00
0b10

0

opcode[31: 28] != 0b111l1

and not:

opcode[25] == 0
opcode[7] =1
opcode[4] =1

/* Only required for version 5 and above */

The field names given are guidelines suggested to simplify implementation.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 0 0/0|1 O|op1|0O Rn Rd Rs op2 |0 Rm
cond 0 0/0|1 O|op1|O Rn Rd Rs 0O|op2 |1 Rm
cond 0 0|11 0|op1|0O Rn Rd rotate_imm immed_8

Table 3-4 summarizes the ingtructions that have already been allocated in this area.

Table 3-4 Control extension space instructions

Instruction Bit[25] Bits[7:4] opl Architecture versions

MRS 0 0000 x0 Version 3 and above

MSR (register form) 0 0000 x1 Version 3 and above

BX 0 0001 01 Version 5 and above, plus T variants of
version 4

CLz 0 0001 11 Version 5 and above

BLX (register form) 0 0011 01 Version 5 and above

QADD 0 0101 00 E variants of version 5 and above

QsuB 0 0101 01 E variants of version 5 and above

QDADD 0 0101 10 E variants of version 5 and above

QDbsuB 0 0101 11 E variants of version 5 and above

A3-30 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The ARM Instruction Set

Table 3-4 Control extension space instructions (continued)

Instruction Bit[25] Bits[7:4] opl Architecture versions

BKPT 0 0111 01 Version 5 and above
SMLA<X><y > 0 1yx0 00 E variants of version 5 and above
SMLAVyY > 0 1y00 01 E variants of version 5 and above
SMULWky > 0 1y10 01 E variants of version 5 and above
SMLAL<x><y> 0 1yx0 10 E variants of version 5 and above
SMUL<x><y> 0 1yx0 1 E variants of version 5 and above
MBR (immediateform) 1 XXXX x1 Version 3 and above

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A3-31

The ARM Instruction Set

3.13.4 Load/store instruction extension space
Instructions with the following opcodes are the load/store instruction extension space:
opcode[27: 25] == 0b000
opcode[7] =1
opcode[4] =1
opcode[31: 28] != 0b1111 /* Only required for version 5 and above */
and not:
opcode[24] == 0
opcode[6:5] == 0
The field names given are guidelines suggested to simplify implementation.
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 0 0 O|P|U|B|W|L Rn Rd Rs 1|opl|1l Rm
Table 3-5 summarizes the instructions that have already been allocated in this area.
Table 3-5 Load/store instructions
Instruction Bits[24:20] opl Architecture versions
SWP/SWPB 1 0 B O 0 0 O Version 3 and above, plus ARMv2a
STRH P U I W 0 0 1 Version 4 and above
LDRD P U | W 0 1 O E variants of version 5 and above,
except VSTEXP
STRD P U | W 0 1 1 E variants of version 5 and above,
except VSTEXP
LDRH P U I W 1 0 1 Version 4 and above
LDRSB P U I W 1 1 0 Version 4 and above
LDRSH P U I W 1 1 1 Version 4 and above
A3-32 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The ARM Instruction Set

3.13.5 Coprocessor instruction extension space
Instructions with the following opcodes are the coprocessor instruction extension space:

opcode[27: 23] == 0b11000
opcode[21] =0

The field names given are guidelines suggested to simplify implementation.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 110040X Q X Rn CRd cmum offset

In ARM architecture version 3 and below, all instructionsin the coprocessor instruction extension space are
UNPREDICTABLE.

In all variants of architecture version 4, and in non-E variants of architecture 5, al instructionsin the
COProcessor instruction extension space are UNDEFINED. It iSIMPLEMENTATION DEFINED how an ARM
processor achieves this. The options are:

. The ARM processor might take the undefined instruction trap directly.
. The ARM processor might require attached coprocessors not to respond to such instructions. This
causes the undefined instruction trap to be takenlgdefined Instruction exception on
page A2-15).
In E variants of architecture version 5, instructions in the coprocessor instruction extension space are treated
as follows:
. Instructions with bit[22] == 0 areNDEFINED and are handled in precisely the same way as described

above for non-E variants.

. Instructions with bit[22] ==1 are tHe&CRR andMRRC instructions described in Chapter A10
Enhanced DSP Extension.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A3-33

The ARM Instruction Set

3.13.6 Unconditional instruction extension space
In ARM architecture version 5 and above, instructions with the following opcode are the unconditional
instruction space:
opcode[31: 28] == 0b1111
31 30 29 28 27 20 19 8 7 4 3 0
1111 opcodel X X X X X X X X X X X X| opcode2 |x X X X
Table 3-6 summarizes the instructions that have already been allocated in this area.
Table 3-6 Unconditional instruction extension space
Instruction opcodel opcode2 Architecture versions
E variants of version 5 and
PLD 0 11 1 U1l o0 1 X X X X above, except VSTEXP
BLX .
(address form) 0 1 x X X X X X X X X Version 5 and above
STC2 1 1 0 x x x x O X X X X Version 5 and above
LDC2 1 1 0 x x x x 1 X X X X Version 5 and above
CDP2 1 1 1 0 x x X X X X x 0 Version 5 and above
MCR2 1 1 1 0 x x x O X x x 1 Version 5 and above
MRC2 1 1 1 0 x x x 1 X x x 1 Version 5 and above
A3-34 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter A4
ARM Instructions

This chapter describes the syntax and usage of every ARM instruction, in the sections:
. Alphabetical list of ARM instructions on page A4-2
. ARM instructions and architecture versions on page A4-113.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-1

ARM Instructions

4.1 Alphabetical list of ARM instructions

Every ARM instruction is listed on the following pages. Each instruction description shows:

. the instruction encoding

. the instruction syntax

. the version of the ARM architecture where the instruction is valid
. any exceptions that apply

. an example in pseudo-code of how the instruction operates

. notes on usage and special cases.

4.1.1 General notes

These notes explain the types of information and abbreviations used on the instruction pages.

Syntax abbreviations
The following abbreviations are used in the instruction pages:

i med_n This is an immediate value, wharés the number of bits. For example, an 8-bit immediate
value is represented by:

i med_8

of fset_n Thisis an offset value, whereis the number of bits. For example, an 8-bit offset value is
represented by:
of fset_8

The same construction is used for signed offsets. For example, an 8-bit signed offset is
represented by:

si gned_of fset _8

Encoding diagram and assembler syntax

For the conventions used, s&ssembler syntax descriptions on page Preface-xiii.

Architecture versions

This gives details of architecture versions where the instruction is valid. For detafschigeture
versions and variants on page Preface-v.

Exceptions

This gives details of which exceptions can occur during the execution of the instruction. Prefetch Abort is
not listed in general, both because it can occur for any instruction and because if an abort occurred during
instruction fetch, the instruction bit pattern is not known. (Prefetch Abort is however lis@&{Hdr since

it can generate a Prefetch Abort exception without these considerations applying.)

A4-2 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Operation

This gives a pseudo-code description of what the instruction does. For details of conventions used in this
pseudo-code, see Pseudo-code descriptions of instructions on page Preface-xii.

Information on usage

Usage sections are included where appropriate to supply suggestions and other information about how to
use the instruction effectively.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-3

ARM Instructions

4.1.2 ADC

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 00 1/010 19 Rn Rd shifter_operand

The ADC (Add with Carry) instruction adds the value of <shi ft er _oper and> and the Carry flag to the
value of <Rn> and stores the result in <Rd>. The condition code flags are optionally updated, based on the
result.

Syntax
ADC{ <cond>}{S} <Rd>, <Rn>, <shifter_operand>
where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

S Causes the S hit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR. If S is omitted, the S hit is set to 0 and the CPSR is not changed by the
instruction. Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, thé\ andZ flags are set according to the result of the addition,
and theC andV flags are set according to whether the addition generated a carry
(unsigned overflow) and a signed overflow, respectively. The rest of the CPSR is
unchanged.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of
the instruction i&NPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register of the instruction.
<Rn> Specifies the register that contains the first operand for the addition.

<shi fter_operand>

Specifies the second operand for the addition. The options for this operand are described in
Addressing Mode 1 - Data-processing operands on page A5-2, including how each option
causes the | bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the | bitis 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction ADat
Instead, seExtending theinstruction set on page A3-27 to determine which instruction it is.

Architecture version

All

Ad-4 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Exceptions

None

Operation

i f ConditionPassed(cond) then
Rd = Rn + shifter_operand + C Fl ag
if S==1and Rd == R15 then

CPSR = SPSR
else if S ==1 then
N Flag = Rd[31]
Z Fl ag if Rd == 0 then 1 else 0

C Fl ag CarryFrom(Rn + shifter_operand + C Fl ag)
V Flag = OverflowFrom(Rn + shifter_operand + C Fl ag)

Usage

ADCisused to synthesize multi-word addition. If register pairsR0, R1 and R2, R3 hold 64-bit values (where
RO and R2 hold the least significant words) the following instructions leave the 64-bit sum in R4, R5:

ADDS R4, RO, R2
ADC R5,R1, R3

If the second instruction is changed from:
ADC R5,R1,R3

to:
ADCS R5, R1, R3

the resulting values of the flags indicate:

N The 64-hit addition produced a negative result.
C An unsigned overflow occurred.

\% A signed overflow occurred.

z The most significant 32 bits are all zero.

The following instruction produces asingle-bit Rotate L eft with Extend operation (33-bit rotate through the
Carry flag) on RO:

ADCS RO, RO, RO

See Data-processing operands - Rotate right with extend on page A5-17 for information on how to perform
asimilar rotation to the right.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-5

ARM Instructions

4.1.3 ADD

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 00 1l010Q4QHd Rn Rd shifter operand

The ADD ingtruction adds the value of <shi f t er _oper and> to the value of register <Rn>, and stores
the result in the destination register <Rd>. The condition code flags are optionally updated, based on the
result.

Syntax
ADD{ <cond>} {S} <Rd>, <Rn>, <shifter_operand>
where:

<cond> Is the condition under which the instruction is executed. The condition field on page A3-5.
If <cond> isomitted, the AL (always) condition is used.

S Causes the S hit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR. If S is omitted, the S hit is set to 0 and the CPSR is not changed by the
instruction. Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, thé\ andZ flags are set according to the result of the addition,
and theC andV flags are set according to whether the addition generated a carry
(unsigned overflow) and a signed overflow, respectively. The rest of the CPSR is
unchanged.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of
the instruction i&NPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register of the instruction.
<Rn> Specifies the register that contains the first operand for the addition.

<shi fter_operand>

Specifies the second operand for the addition. The options for this operand are described in
Addressing Mode 1 - Data-processing operands on page A5-2, including how each option
causes the | bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the | bitis 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction ADibt
Instead, seExtending theinstruction set on page A3-27 to determine which instruction it is.

Architecture version

All

A4-6 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Exceptions

None

Operation

i f ConditionPassed(cond) then
Rd = Rn + shifter_operand
if S==1and Rd == R15 then

CPSR = SPSR
else if S ==1 then
N Flag = Rd[31]
Z Flag = if Rd == 0then 1 else O

C Flag = CarryFronm{Rn + shifter_operand)

V Flag = Overfl owFrom(Rn + shifter_operand)
Usage
The ADDinstruction is used to add two values together to produce a third.
To increment aregister valuein Rx use:
ADD Rx, Rx, #1
Constant multiplication of Rx by 2"+1 into Rd can be performed with:
ADD Rd, Rx, Rx, LSL #n
To form a PC-relative address use:
ADD Rs, PC, #offset

where the offset must be the difference between the required address and the address held in the PC, where
the PC is the address of the ADD instruction itself plus 8 bytes.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-7

ARM Instructions

4.1.4 AND
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
cond 0 0 I|]0OO0O0Q(Q 9 Rn Rd shifter_operand

The AND instruction performs a bitwise AND of the value of register <Rn> with the value of

<shi ft er _oper and>, and stores the result in the destination register <Rd>. The condition code flags

are optionally updated, based on the result.

Syntax

AND{ <cond>} {S} <Rd>, <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

S Causes the S hit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR. If S is omitted, the S hit is set to 0 and the CPSR is not changed by the
instruction. Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, the N and Z flags are set according to the result of the operation,
and the C flag is set to the carry output bit generated by the shiftekddesssing
Mode 1 - Data-processing operands on page A5-2). The V flag and the rest of the
CPSR are unaffected.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of
the instruction iNPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register of the instruction.

<Rn> Specifies the register that contains the first operand for the operation.

<shi fter_operand>
Specifies the second operand for the operation. The options for this operand are described
in Addressing Mode 1 - Data-processing operands on page A5-2, including how each
option causes the | bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the
instruction.

If the | bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction A\mbt

Instead, seExtending theinstruction set on page A3-27 to determine which instruction it is.

Architecture version

All

A4-8 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Exceptions

None

Operation

i f ConditionPassed(cond) then
Rd = Rn AND shifter_operand
if S==1and Rd == R15 then

CPSR = SPSR
else if S ==1 then
N Flag = Rd[31]
Z Flag = if Rd == 0then 1 else O

C Flag = shifter_carry_out
V Flag = unaffected

Usage

ANDis most useful for extracting afield from aregister, by ANDing the register with amask value that has
1sin the field to be extracted, and Os elsewhere.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-9

ARM Instructions

4.1.5 B, BL
31 28 27 26 25 24 23 0
cond 10 1|L signed_immed_24

TheB (Branch) and BL (Branch and Link) instructions cause a branch to atarget address, and provide both

conditiona and unconditional changes to program flow.

Syntax

B{L}{<cond>} <target_address>

where:

L Causes the L bit (bit 24) in the instruction to be set to 1. The resulting instruction stores a
return address in the link register (R14). If L is omitted, the L bit is 0 and the instruction
simply branches without storing a return address.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<target _address>
Specifies the address to branch to. The branch target addressis calculated by:

1 Sign-extending the 24-bit signed (two'’s complement) immediate to 32 bits.

2. Shifting the result | eft two bits.

3. Adding this to the contents of the PC, which contains the address of the branch
instruction plus 8.

The instruction can therefore specify a branch of approximately +32MB.

Architecture version

All

Exceptions

None

Operation

i f ConditionPassed(cond) then

if L ==1then
LR = address of the instruction after the branch instruction
PC = PC + (SignExtend(signed_i med_24) << 2)
A4-10 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Usage

The BL instruction is used to perform a subroutine call. The return from subroutine is achieved by copying
the LR to the PC. Typicaly, thisis done by one of the following methods:

. Executing aBX R14 instruction, on architecture versions that support that instruction.
. Executing aMOV PC, R14 instruction.

. Storing a group of registers and R14 to the stack on subroutine entry, using an instruction of the form:
STMFD R13!, {<regi st er s>, R14}
and then restoring the register values and returning with an instruction of the form:
LDMFD R13!, {<regi st ers>, PC}

To calculate the correct value of signed_immed_24, the assembler (or other toolkit component) needs to:

1. Form the base address for this branch instruction. This is the address of the instruction, plus 8. In
other words, this base address is equal to the PC value used by the instruction.

2. Subtract the base address from the target address to form a byte offset. This offset is always a multiple
of four, because all ARM instructions are word-aligned.

3. If the byte offset is outside the rang@3554432 t0+33554428, use an alternative code-generation
strategy or produce an error as appropriate.

4. Otherwise, set the signed_immed_24 field of the instruction to bits{25:2] of the byte offset.

Notes

Memory bounds Branching backwards past location zero and forwards over the end of the 32-bit
address space iB\PREDICTABLE.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-11

ARM Instructions

4.1.6 BIC

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 00 I1/1 11409 Rn Rd shifter_operand

TheBI C(Bit Clear) instruction performsabitwise AND of the value of register <Rn> with the complement
of thevalue of <shi ft er _oper and>, and stores the result in the destination register <Rd>. The
condition code flags are optionally updated, based on the result.

Syntax
Bl ¢{<cond>}{S} <Rd>, <Rn>, <shifter_operand>
where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

S Causes the S hit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR. If S is omitted, the S hit is set to 0 and the CPSR is not changed by the
instruction. Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, the N and Z flags are set according to the result of the operation,
and the C flag is set to the carry output bit generated by the shiftekddesssing
Mode 1 - Data-processing operands on page A5-2). The V flag and the rest of the
CPSR are unaffected.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of
the instruction iNPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register of the instruction.
<Rn> Specifies the register that contains the first operand for the operation.

<shi fter_operand>

Specifies the second operand for the operation. The options for this operand are described
in Addressing Mode 1 - Data-processing operands on page A5-2, including how each

option causes the | bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the
instruction.

If the | bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction B i@t
Instead, seExtending theinstruction set on page A3-27 to determine which instruction it is.

Architecture version

All

A4-12 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Exceptions

None

Operation

i f ConditionPassed(cond) then
Rd = Rn AND NOT shifter_operand
if S==1and Rd == R15 then
CPSR = SPSR
else if S ==1 then

Usage

N Fl ag
Z Fl ag
C Fl ag
V Fl ag

Rd[31]

if Rd == 0 then 1 else 0
shifter_carry_out
unaf f ect ed

ARM Instructions

Bl Ccan be used to clear selected bitsin aregister. For each bit, Bl Cwith 1 clears the hit, and Bl Cwith 0
leaves it unchanged.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

A4-13

ARM Instructions

4.1.7 BKPT
31 28 27 26 25 24 23 22 21 20 19 8 7 4 3 0
111000010010 immed 011 1| immed
The BKPT (Breakpoint) instruction causes a software breakpoint to occur. This breakpoint can be handled
by an exception handler installed on the prefetch abort vector. Inimplementati ons which also include debug
hardware, the hardware can optionally override this behavior and handle the breakpoint itself. When this
occurs, the prefetch abort vector is not entered.
Syntax
BKPT <i medi at e>
where:
<i nmedi at e> Is a 16-bit immediate value, the top 12 bits of which are placed in bits[19:8] of the
instruction, and the bottom 4 bits of which are placed in bits[3:0] of the instruction.
Thisvalueisignored by the ARM hardware, but can be used by adebugger to store
additional information about the breakpoint.
Architecture version
Version 5 and above
Exceptions
Prefetch Abort
Operation
if (not overridden by debug hardware)
R14_abt = address of BKPT instruction + 4
SPSR _abt = CPSR
CPSR[4: 0] = 0b10111 /* Enter Abort npde */
CPSR] 5] =0 /* Execute in ARMstate */
/* CPSR[6] is unchanged */
CPSR[7] =1 /* Disable normal interrupts */
i f high vectors configured then
PC = OxFFFFOOOC
el se
PC = 0x0000000C
A4-14 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Usage

The exact usage of the BKPT instruction depends on the debug system being used. A debug system can use
the BKPT instruction in two ways:

. Debug hardware, if present, does not override the normal behaviorBEieinstruction, and so
the prefetch abort vector is entered. If the system also allows real prefetch aborts to occur, the
prefetch abort handler determines, in a system-dependent manner, whether the vector entry occurred
as a result of BKPT instruction or as a result of a real prefetch abort, and branches to debug code or
prefetch abort code accordingly. Otherwise, the prefetch abort handler just branches straight to debug
code.

When used in this manner, tBEPT instruction must be avoided within abort handlers, as it corrupts
R14 abt and SPSR_abt. For the same reason, it must also be avoided within FIQ handlers, since an
FIQ interrupt can occur within an abort handler.

. Debug hardware does override the normal behavior &KP& instruction and handles the software
breakpoint itself. When finished, it typically either resumes execution at the instruction following the
BKPT, or replaces thBKPT in memory with another instruction and resumes execution at that
instruction.

WhenBKPT is used in this manner, R14_abt and SPSR_abt are not corrupted, and so the above
restrictions about its use in abort and FIQ handlers do not apply.

Notes

Condition field TheBKPT instruction must be unconditional. If bits[31:28] of the instruction
encode a valid condition other than #ie (always) condition, the instruction is
UNPREDICTABLE.

Hardwareoverride Debug hardware in an implementation is specifically permitted to override the
normal behavior of thBKPT instruction. Because of this, software must not use this
instruction for purposes other than those documented by the debug system being
used (if any). In particular, software cannot rely on the Prefetch Abort exception
occurring, unless either there is guaranteed to be no debug hardware in the system
or the debug system specifies that it will occur.

For more information, consult the documentation for the debug system being used.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-15

ARM Instructions

4.1.8 BLX (1)
31 30 29 28 27 26 25 24 23 0
111 1|10 1|H signed_immed_24
Thisform of the BLX (Branch with Link and Exchange) instruction is used to call a Thumb subroutine from
the ARM instruction set at an address specified in the instruction. Thisinstruction is unconditiona (always
causing achange in program flow) and preserves the address of the instruction following the branch in the
link register (R14). Execution of Thumb instructions begins at the target address.
Syntax
BLX <target_addr>
where:
<target _addr> Specifiesthe address of the Thumb instruction to branch to. The branch target
addressis calculated by:
1 Sign-extending the 24-bit signed (two's complement) immediate to 32 bits
2. Shifting the result left two bits
3. Setting bit[1] of the result of step 2 to the H bit
4. Adding the result of step 3 to the contents of the PC, which contains the
address of the branch instruction plus 8.
The instruction can therefore specify a branch of approximately +32MB.
Architecture version
Version 5 and above
Exceptions
None
Operation
LR = address of the instruction after the BLX instruction
T Flag = 1
PC = PC + (SignExtend(signed_i med_24) << 2) + (H << 1)
A4-16 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Usage
To return from a Thumb subroutine called via BL X to the ARM caller, use the Thumb instruction:
BX R14
as described in BX on page A7-32, or use this ingtruction on subroutine entry:
PUSH {<regi sters>, R14}
and thisinstruction to return:
POP {<registers>, PC}
To calculate the correct value of signed_immed_24, the assembler (or other toolkit component) needs to:

1. Form the base address for this branch instruction. Thisis the address of the instruction, plus 8. In
other words, this base addressis equal to the PC value used by the instruction.

2. Subtract the base address from the target address to form a byte offset. This offset is adways even,
because al ARM instructions are word-aligned and al Thumb instructions are halfword-aligned.

3. If the byte offset is outside the range —33554432 to +33554430, use an aternative code-generation
strategy or produce an error as appropriate.

4, Otherwise, set the signed_immed_24 field of the instruction to bits{ 25:2] of the byte offset, and the
H bit of the instruction to bit[1] of the byte offset.

Notes

Condition Unlike most other ARM ingtructions, thisinstruction cannot be executed conditionally.

Bit[24] This bit isused as bit[1] of the target address.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-17

ARM Instructions

419 BLX(2)

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 00010010 SBO SBO SBO 0011 Rm

Thisform of BLXisused to call an ARM or Thumb subroutine from the ARM instruction set, at an address
specified in aregister. The branch target address is the value of register Rm, with its bit[0] forced to zero.
Theinstruction set to be used at the branch target is chosen by setting the CPSR T bit to bit[0] of Rm.

Register 14 isset to areturn address. To return from the subroutine, useaBX R14 instruction, or store R14
on the stack and re-load the stored value into the PC.

Syntax

BLX{<cond>} <Rnp

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rn® Isthe register containing the address of the target instruction. Bit[0] of RmisO to select a

target ARM instruction, or 1 to select atarget Thumb instruction. If R15 is specified for
<R, the results are UNPREDICTABLE.
Architecture version

Version 5 and above

Exceptions

None

Operation

i f ConditionPassed(cond) then
LR = address of instruction after the BLX instruction

T Flag = R 0]
PC = Rm AND OxFFFFFFFE

Notes

ARM/Thumb statetransfers

If Rm[1:0] == 0b10, the result is UNPREDICTABLE, as branches to non word-aligned
addresses are impossible in ARM state.

A4-18 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

4.1.10

ARM Instructions

BX

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 00010010 SBO SBO SBO 0001 Rm

The BX (Branch and Exchange) instruction branches to an address held in a register Rm, with an optional
switch to Thumb execution. The branch target addressis the value of register Rm, with its bit[0] forced to
zero. The instruction set to be used at the branch target is chosen by setting the CPSR T bit to bit[0] of Rm.

Syntax

BX{<cond>} <Rnp

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rn® Holds the value of the branch target address. Bit[0] of Rm is 0 to select atarget ARM

instruction, or 1 to select atarget Thumb instruction.

Architecture version

Version 5 and above, plus T variants of version 4

Exceptions

None

Operation

i f ConditionPassed(cond) then

T Flag = R 0]
PC = Rm AND OxFFFFFFFE

Notes

ARM/Thumb statetransfers

If Rm[1:0] == 0b10, the result is UNPREDICTABLE, as branches to non word-aligned
addresses are impossible in ARM state.

Useof R15 Register 15 can be specified for <Rn®, but doing so is discouraged.

InaBX R15 instruction, R15 isread as normal for ARM code, that is, it is the address of
the BX instruction itself plus 8. The result is to branch to the second following word,
executing in ARM state. Thisis precisely the same effect that would have been obtained if
aB instruction with an offset field of 0 had been executed, or an ADD PC, PC, #0 or MOV
PC, PCinstruction. In new code, use these instructionsin preference to the more complex
BX PCingtruction.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-19

ARM Instructions

4.1.11 CDP
31 28 27 26 25 24 23 20 19 16 15 12 11 8 7 5 4 3 0
cond 1 1 1 0] opcode 1 CRn CRd cp_nhum |opcode 2 O CRm

The CDP (Coprocessor Data Processing) instruction tells the coprocessor whose number is cp_num to

perform an operation that isindependent of ARM registers and memory. If no coprocessors indicate that

they can execute the instruction, an Undefined I nstruction exception is generated.

Syntax

CDP{ <cond>} <coproc>, <opcode_1>, <CRd> <CRn>, <CRnp, <opcode_2>

CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm, <opcode_2>

where:

<cond> Isthe condition under which theinstruction is executed. The conditions are defined
in The condition field on page A3-5. If <cond> is omitted, the AL (always)
condition is used.

CDP2 Causes the condition field of the instruction to be set to Ob1111. This provides
additional opcode space for coprocessor designers. The resulting instructions can
only be executed unconditionally.

<copr oc> Specifies the name of the coprocessor, and causes the corresponding coprocessor
number to be placed in the cp_num field of the instruction. The standard generic
coprocessor names are po, p1, ..., p15.

<opcode_1> Specifies (in a coprocessor-specific manner) which coprocessor operation isto be
performed.

<CRd> Specifies the destination coprocessor register for the instruction.

<CRn> Specifies the coprocessor register that contains the first operand for the instruction.

<CRnw Specifies the coprocessor register that contains the second operand for the
instruction.

<opcode_2> Specifies (in a coprocessor-specific manner) which coprocessor operation isto be
performed.

Architecture version

CDPisin Version 2 and above.

CDP2 isin Version 5 and above.

Exceptions

Undefined Instruction

A4-20 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Operation

i f ConditionPassed(cond) then
Coprocessor [cp_nuni - dependent operation

Usage

CDP is used to initiate coprocessor instructions that do not operate on valuesin ARM registers or in main
memory. An exampleis afloating-point multiply instruction for a floating-point coprocessor.

Notes

Coprocessor fields Only instruction bits[31:24], bitg[11:8], and bit[4] are architecturally defined. The
remaining fields are recommendations, for compatibility with ARM Development
Systems.

Unimplemented copr ocessor instructions

Hardware coprocessor support is optional, regardless of the architecture version.
An implementation can choose to implement a subset of the coprocessor
instructions, or no coprocessor instructionsat all. Any coprocessor instructionsthat
are not implemented instead cause an undefined instruction trap.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-21

ARM Instructions

4.1.12 CLzZ
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 00010110 SBO Rd SBO 0001 Rm
The CLZ (Count Leading Zeros) instruction returns the number of binary zero bits before the first binary
one bit in aregister value. The source register is scanned from the most significant bit (bit[31]) towards the
least significant bit (bit[0]). The result valueis 32 if no bits are set in the source register, and zero if bit[31]
isset.
This instruction does not update the condition code flags.
Syntax
CLZ{<cond>} <Rd> <R
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Rd> Specifies the destination register for the operation. If R15 is specified for <Rd>, the result
iS UNPREDICTABLE.
<Rn® Specifies the source register for this operation. If R15 is specified for <Rne, theresult is
UNPREDICTABLE.
Architecture version
Version 5 and above
Exceptions
None
Operation
if Rm==
Rd = 32
el se
Rd = 31 - (bit position of nbst significant '1" in Rm
Usage
To normalizethe vaue of register Rm use CLZ followed by aleft shift of Rmby the resulting Rd value. This
shifts Rmso that its most significant 1 bit isin bit[31]. Using MOVS rather than MOV setsthe Z flag in the
special case that Rmis zero and so does not have amost significant 1 bit:
CLz Rd, Rm
MWVS Rm Rm LSL Rd
A4-22 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

41.13 CMN

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 00

10111 Rn SBZ shifter_operand

The CMN (Compare Negative) instruction compares aregister value with the negative of another arithmetic
value. The condition flags are updated, based on the result of adding the second arithmetic value to the
register value, so that subsequent instructions can be conditionally executed.

Syntax

CWMN{ <cond>} <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rn> Specifies the register that contains the first operand for the operation.

<shi ft er _operand>

Specifies the second operand for the operation. The options for this operand are described
in Addressing Mode 1 - Data-processing operands on page A5-2, including how each
option causes the | bit (bit[25]) and the shifter_operand bits (bitg[11:0]) to be set in the
instruction.

If thel bitis0 and both bit[7] and bit[4] of shifter_operand are 1, theinstructionisnot CM\.
Instead, see Extending theinstruction set on page A3-27 to determinewhich instructionit is.

Architecture version

All

Exceptions

None

Operation

i f ConditionPassed(cond) then
alu_out = Rn + shifter_operand

N Flag = al u_out[31]

Z Flag = if alu_out == 0 then 1 else O

C Flag = CarryFron{Rn + shifter_operand)

V Flag = Overfl owFrom(Rn + shifter_operand)

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-23

ARM Instructions

Usage

CMN performs acomparison by adding the value of <shi f t er _oper and> to thevalue of register <Rn>,
and updates the condition code flags (based on the result). Thisisamost equivalent to subtracting the
negative of the second operand from the first operand, and setting the flags on the result.

The differenceisthat the flag values generated can differ when the second operand is 0 or 0x80000000.
For example, thisinstruction always leaves the C flag = 1:

CWMP Rn, #0
while thisinstruction always leaves the C flag = 0:

CWN Rn, #0

A4-24 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

4114 CMP

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0|I|2 010]1 Rn SBZ shifter_operand

The CVP (Compare) instruction comparesaregister valuewith another arithmetic value. The condition flags
are updated, based on the result of subtracting the second arithmetic value from the register value, so that
subsequent instructions can be conditionally executed.

Syntax

CMP{ <cond>} <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rn> Specifies the register that contains the first operand for the operation.

<shi fter_operand>

Specifies the second operand for the operation. The options for this operand are described
in Addressing Mode 1 - Data-processing operands on page A5-2, including how each
option causes the | bit (bit[25]) and the shifter_operand bits (bitg11:0]) to be set in the
instruction.

If thel bitis0 and both bit[7] and bit[4] of shifter_operand are 1, theinstruction isnot C\VP.
Instead, see Extending theinstruction set on page A3-27 to determinewhich instructionit is.

Architecture version

All

Exceptions

None

Operation

i f ConditionPassed(cond) then
alu_out = Rn - shifter_operand

N Flag = al u_out[31]

Z Flag = if alu_out == 0 then 1 else O

C Flag = NOT BorrowrFrom(Rn - shifter_operand)
V Flag = OverflowFrom(Rn - shifter_operand)

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-25

ARM Instructions

4.1.15 EOR
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
cond 00 I|]0OO0O0 1 9 Rn Rd shifter_operand
The EOR (Exclusive OR) instruction performs a bitwise Exclusive-OR of the value of register <Rn> with
thevalueof <shi ft er _oper and>, and storestheresult in the destination register <Rd>. The condition
code flags are optionally updated, based on the resullt.
Syntax
EOR{<cond>}{S} <Rd>, <Rn>, <shifter_operand>
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
S Setsthe S hit (bit[20]) in the ingtruction to 1 and specifiesthat the instruction updates the

CPSR. If Sisomitted, the Sbit is set to 0 and the CPSR is not changed by the instruction.

Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, the N and Z flags are set according to the result of the operation,
and the C flag is set to the carry output bit generated by the shiftekddesssing
Mode 1 - Data-processing operands on page A5-2). The V flag and the rest of the
CPSR are unaffected.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of
the instruction i®NPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register of the instruction.
<Rn> Specifies the register that contains the first operand for the operation.
<shi fter_operand>

Specifies the second operand for the operation. The options for this operand are described

in Addressing Mode 1 - Data-processing operands on page A5-2, including how each

option causes the | bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the

instruction.

If the | bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction ROt

Instead, seExtending theinstruction set on page A3-27 to determine which instruction it is.

Architecture version
All
A4-26 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Exceptions

None

Operation

i f ConditionPassed(cond) then
Rd = Rn EOR shifter_operand
if S==1and Rd == R15 then

CPSR = SPSR
else if S ==1 then
N Flag = Rd[31]
Z Flag = if Rd == 0then 1 else O

C Flag = shifter_carry_out
V Flag = unaffected

Usage

EOR can be used to invert selected bitsin aregister. For each bit, EORwith 1 invertsthat bit, and EORwith
0 leaves it unchanged.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-27

ARM Instructions

4.1.16 LDC
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0
cond 11 0|P|[UNW|L1 Rn CRd cp_num 8 bit word offset

The LDC (Load Coprocessor) instruction loads memory data from the sequence of consecutive memory

addresses calculated by <addr essi ng_node> to the coprocessor whose number is cp_num. If no

coprocessorsindicatethat they can execute theinstruction, an Undefined I nstruction exception is generated.

Syntax

LDC{ <cond>}{L} <coproc> <CRd>, <addressing_node>

LDC2{ L} <coproc>, <CRd>, <addressing_node>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

LDC2 Causes the condition field of the instruction to be set to Ob1111. This provides additional
opcode space for coprocessor designers. The resulting instructions can only be executed
unconditionally.

L Setsthe N bit (bit[22]) in the instruction to 1 and specifies along load (for example,
double-precisioninstead of single-precision datatransfer). If L isomitted, the N bitis0 and
the ingtruction specifies a short load.

<coproc> Specifiesthe name of the coprocessor, and causes the corresponding coprocessor number to
be placed in the cp_num field of the instruction. The standard generic coprocessor names
arep0, pl, ..., p15.

<CRd> Specifies the coprocessor destination register of the instruction.

<addr essi ng_node>
Is described in Addressing Mode 5 - Load and Store Coprocessor on page A5-56. It
determinesthe P, U, Rn, W and 8_hit word_offset bits of the instruction.

The syntax of al forms of <addr essi ng_nopde> includes a base register <Rn>. Some
forms al so specify that the instruction modifies the base register value (thisisknown as base
register writeback).

Architecture version

LDCisin Version 2 and above.

LDC2 isin Verson 5 and above.

A4-28 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Exceptions

Undefined Instruction, Data Abort

Operation

i f ConditionPassed(cond) then
address = start_address
| oad Menory[address, 4] for Coprocessor[cp_num
whi | e (Not Fi ni shed(Coprocessor[cp_nuni))
address = address + 4
| oad Menory[address, 4] for Coprocessor[cp_numni
assert address == end_address

Usage

LDCisuseful for loading coprocessor data from memory.

Notes

Coprocessor fields Only instruction bits[31:23], bitg[21:16], and bits[11:0] are ARM
architecture-defined. The remaining fields (bit[22] and bitg15:12]) are
recommendations, for compatibility with ARM Development Systems.

In the case of the Unindexed addressing mode (P==0, U==1, W==0), instruction
bitg[7:0] are also not defined by the ARM architecture, and can be used to specify
additional coprocessor options.

Data abort For details of the effects of the instruction if a Data Abort occurs, see Effects of
data-aborted instructions on page A2-17.

Non wor d-aligned addresses

L oad coprocessor register instructionsignore the least significant two bits of
address.

Alignment If an implementation includes a System Control coprocessor (see Chapter B2 The
System Control Coprocessor), and alignment checking is enabled, an address with
bitg[1:0] !'= 0b00 causes an alignment exception.

Unimplemented copr ocessor instructions

Hardware coprocessor support is optional, regardless of the architecture version.
An implementation can choose to implement a subset of the coprocessor
instructions, or no coprocessor instructionsat all. Any coprocessor instructionsthat
are not implemented instead cause an undefined instruction trap.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-29

ARM Instructions

4.1.17 LDM (1)

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 10 0|P|lUOW|1 Rn register_list

This form of the LDM(Load Multiple) instruction is useful for block loads, stack operations and procedure

exit sequences. It loads anon-empty subset, or possibly al, of the general-purpose registers from sequential

memory locations.

The general-purpose registers loaded can include the PC. If they do, the word loaded for the PC istreated

as an address and a branch occursto that address. In ARM architecture version 5 and above, bit[0] of the

|oaded value determines whether execution continues after this branch in ARM state or in Thumb state, as
though aBX (| oaded_val ue) instruction had been executed. In earlier versions of the architecture,
bitg1:0] of the loaded value are ignored and execution continuesin ARM state, as though the instruction

MOV PC, (| oaded_val ue) had been executed.

Syntax

LDM <cond>} <addr essi ng_nmode> <Rn>{!}, <registers>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<addr essi ng_node>
Is described in Addressing Mode 4 - Load and Store Multiple on page A5-48. It determines
the P, U, and W bits of the instruction.

<Rn> Specifiesthe baseregister used by <addr essi ng_node>. Using R15 asthe baseregister
<Rn> gives an UNPREDICTABLE result.

! Setsthe W bit, causing the instruction to write a modified value back to its base register Rn
as specified in Addressing Mode 4 - Load and Store Multiple on page A5-48. If | isomitted,
the W bit is 0 and the instruction does not change its base register in thisway. (However, if
the base register isincluded in <r egi st er s>, it changes when avalueisloaded into it.)

<regi sters>
Isalist of registers, separated by commas and surrounded by { and} . It specifiesthe set of
registersto be loaded by the LDMinstruction.

Theregisters are loaded in sequence, the lowest-numbered register from the lowest memory
address (st art _addr ess), through to the highest-numbered register from the highest
memory address (end_addr ess). If the PC is specified in the register list (opcode bit[15]
is set), the instruction causes a branch to the address (data) |oaded into the PC.
For each of i=0to 15, bit[i] intheregister_list field of theinstructionis 1if Ri isin thelist
and 0 otherwise. If bits[15:0] are al zero, the result iS UNPREDICTABLE.

A4-30 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Architecture version

All

Exceptions

Data Abort

Operation

i f ConditionPassed(cond) then
address = start_address

for i =0to 14
if register_list[i] == 1 then
Ri = Menory[address, 4]
address = address + 4

if register_list[15] == 1 then

val ue = Menory[address, 4]

if (architecture version 5 or above) then
pc = val ue AND OxFFFFFFFE
T Bit = val ue[0]

el se
pc = val ue AND OxFFFFFFFC

address = address + 4

assert end_address = address - 4

Notes

Operand restrictions
If the base register <Rn> is specified in <r egi st er s>, and base register writeback is
specified, the fina value of <Rn> is UNPREDICTABLE.

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Non wor d-aligned addresses
Load Multipleinstructionsignore the | east significant two bits of addr ess (thewordsare
not rotated as for Load Word).

Alignment If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor), and alignment checking isenabled, an addresswith bits[1:0] != 0b00
causes an aignment exception.

ARM/Thumb statetransfers (ARM architectureversion 5 and above)

If bitg1:0] of avalueloaded for R15 are 0b10, the result is UNPREDICTABLE, as branches to
non word-aligned addresses are impossiblein ARM state.

Timeorder Thetimeorder of the accessesto individua words of memory generated by thisinstruction
is only defined in some circumstances. See Data accesses to memory-mapped 1/0 on
page A2-32 for details.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-31

ARM Instructions

4.1.18 LDM (2)
31 28 27 26 25 24 23 22 21 20 19 16 15 14 0
cond 1 00|P|U|L1|O|1 Rn 0 register_list

This form of LDMloads User mode registers when the processor isin a privileged mode (useful when

performing process swaps, and in instruction emulators). The instruction loads a non-empty subset of

the User mode general -purpose registers from sequential memory locations.

Syntax

LDM <cond>} <addr essi ng_node> <Rn>, <registers_w thout pc>"

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<addr essi ng_node>
Is described in Addressing Mode 4 - Load and Store Multiple on page A5-48. It determines
the Pand U bits of the instruction. Only the forms of this addressing mode with W == 0 are
available for this form of the LDMinstruction.

<Rn> Specifies the base register used by <addr essi ng_node>. Using R15 as <Rn> givesan
UNPREDICTABLE result.

<regi sters_without _pc>
Isalist of registers, separated by commas and surrounded by { and } . Thislist must not
include the PC, and specifies the set of registersto be loaded by the LDMinstruction.
Theregisters are loaded in sequence, the lowest-numbered register from the lowest memory
address (st art _addr ess), through to the highest-numbered register from the highest
memory address (end_addr ess).
For each of i=0to 15, bit[i] intheregister_list field of the instructionis 1if Ri isin thelist
and O otherwise. If bits[15:0] are al zero, the result is UNPREDICTABLE.

n For an LDMinstruction that does not load the PC, thisindicatesthat User moderegistersare
to be loaded.

Architecture version

All

Exceptions

Data Abort

A4-32 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Operation

i f ConditionPassed(cond) then
address = start_address
for i =0to 14
if register_list[i] ==
Ri _usr = Menory[address, 4]
address = address + 4
assert end_address == address - 4

Notes

Banked registers This form of LDMmust not be followed by an instruction which accesses banked
registers (afollowing NOP is a good way to ensure this).

Writeback Setting bit[21] (the W bit) has UNPREDICTABLE resullts.

User and System mode
This form of LDMis UNPREDICTABLE in User mode or System mode.

Baseregister mode The baseregister isread from the current processor mode registers, not the User
mode registers.

Data abort For details of the effects of the instruction if a data abort occurs, see Effects of
data-aborted instructions on page A2-17.

Non wor d-aligned addresses

LDMinstructions ignore the least significant two bits of addr ess (words are not
rotated as for Load Word).

Alignment If an implementation includes a System Control coprocessor (see Chapter B2 The
System Control Coprocessor), and alignment checking is enabled, an address with
bitg[1:0] !'= 0b00 causes an alignment exception.

Time order Thetime order of the accesses to individual words of memory generated by this
instruction is only defined in some circumstances. See Data accessesto
memory-mapped 1/0 on page A2-32 for details.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-33

ARM Instructions

4.1.19 LDM(3)
31 28 27 26 25 24 23 22 21 20 19 16 15 14 0
cond 10 0|/PlU1TW1 Rn 1 register_list

This form of isuseful for returning from an exception. It loads a subset (or possibly all) of the

general -purpose registers and the PC from sequential memory locations. Also, the SPSR of the current

mode is copied to the CPSR.

Thevalueloaded for the PC istreated asan address and abranch occursto that address. In ARM architecture

version 5 and above, and in T variants of version 4, the value copied fromthe SPSR T bit to the CPSR T bit

determines whether execution continues after the branch in ARM state or in Thumb state. In earlier

architecture versions, it continues after the branch in ARM state (the only possibility in those architecture

versions).

Syntax

LDM <cond>} <addr essi ng_node> <Rn>{!}, <registers_and_pc>"

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<addr essi ng_node>
Is described in Addressing Mode 4 - Load and Store Multiple on page A5-48. It determines
the P, U, and W bits of the instruction.

<Rn> Specifies the base register used by <addr essi ng_node>. Using R15 as <Rn> givesan
UNPREDICTABLE resullt.

! Sets the W bit, and the instruction writes a modified val ue back to its base register Rn (see
Addressing Mode 4 - Load and Sore Multiple on page A5-48). If ! is omitted, the W bit is
0 and the instruction does not change its base register in thisway. (However, if the base
register isincluded in <r egi st er s>, it changeswhen avdue isloaded into it.)

<regi sters_and_pc>
Isalist of registers, separated by commas and surrounded by { and} . Thislist mustinclude
the PC, and specifies the set of registers to be loaded by the L DMinstruction.
Theregisters are loaded in sequence, the lowest-numbered register from the lowest memory
address (st art _addr ess), through to the highest-numbered register from the highest
memory address (end_addr ess).
For each of i=0to 15, bit[i] intheregister_list field of the instructionis 1if Ri isin thelist
and O otherwise.

n For an LDMinstruction that loads the PC, this indicates that the SPSR of the current mode
is copied to the CPSR.

A4-34 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Architecture version

All

Exceptions

Data Abort

Operation

i f ConditionPassed(cond) then
address = start_address

for i =0to 14
if register_list[i] == 1 then
Ri = Menory[address, 4]
address = address + 4

CPSR = SPSR

val ue = Menory[address, 4]

if (architecture version 4T, 5 or above) and (T Bit == 1) then
pc = val ue AND OxFFFFFFFE

el se
pc = val ue AND OxFFFFFFFC

address = address + 4

assert end_address = address - 4

Notes

User and System mode
Thisinstruction is UNPREDICTABLE in User or System mode.

Operand restrictions
If the base register <Rn> is specified in <r egi st er s_and_pc>, and base register
writeback is specified, the final value of <Rn> isS UNPREDICTABLE.

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Non wor d-aligned addresses
Load Multipleinstructionsignore the | east significant two bits of addr ess (thewordsare
not rotated as for Load Word).

Alignment If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor), and alignment checking isenabled, an addresswith bits[1:0] != 0b00
causes an aignment exception.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-35

ARM Instructions

ARM/Thumb state transfers (ARM ar chitecture versions 4T, 5 and above)
If the SPSR T bit is 0 and bit[1] of the value loaded into the PC is 1, the results are
UNPREDICTABLE because it is not possible to branch to an ARM instruction at a non
word-aligned address. Note that no special precautions against this are needed on normal
exception returns, because exception entries always either set the T bit of the SPSR to 1 or
bit[1] of the return link valuein R14 to 0.

Timeorder Thetime order of the accessesto individual words of memory generated by thisinstruction
is not defined. See Data accesses to memory-mapped 1/O on page A2-32 for details.

A4-36 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

4.1.20

ARM Instructions

LDR

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0O 1|I|P|UlOW|L1 Rn Rd addr_mode

The LDR (Load Register) instruction loads a word from the memory address cal culated by

<addr essi ng_node> and writesit to register <Rd>. If the addressis not word-aligned, the loaded value
isrotated right by 8 times the value of bitg1:0] of the address. For alittle-endian memory system, this
rotation causes the addressed byte to occupy the least significant byte of the register. For abig-endian
memory system, it causes the addressed byte to occupy bitg[31:24] or bitg15:8] of the register, depending
on whether bit[0] of the addressis O or 1 respectively.

If the PC is specified asregister <Rd>, the instruction loads a data word which it treats as an address, then
branches to that address. In ARM architecture version 5 and above, bit[0] of the loaded value determines

whether execution continues after this branch in ARM state or in Thumb state, as though a BX

(1 oaded_val ue) ingtruction had been executed. In earlier versions of the architecture, bits[1:0] of the
loaded value areignored and execution continuesin ARM state, asthoughaMOV PC, (| oaded_val ue)

instruction had been executed.

Syntax

LDR{ <cond>} <Rd>, <addressi ng_node>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register for the loaded value.

<addr essi ng_node>

Is described in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page A5-18.
It determinesthel, P, U, W, Rn and addr_mode bits of the instruction.

The syntax of all forms of <addr essi ng_node> includes abase register <Rn>. Some
formsalso specify that theinstruction modifiesthe baseregister value (thisis known as base
register writeback).

Architecture version

All

Exceptions

Data Abort

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-37

ARM Instructions

Operation
i f ConditionPassed(cond) then
i f address[1:0] == 0b00 then
val ue = Menory[address, 4]
else if address[1:0] == 0b01 then
val ue = Menory[address, 4] Rotate_Right 8
else if address[1:0] == 0bl10 then
val ue = Menory[address, 4] Rotate_Right 16
el se /* address[1:0] == 0bl1 */

val ue = Menory[address, 4] Rotate_Right 24

if (Rd is R15) then
if (architecture version 5 or above) then
PC = val ue AND OxFFFFFFFE
T Bit = val ue[0]
el se
PC = val ue AND OxFFFFFFFC
el se
Rd = val ue

Usage

Using the PC as the base register allows PC-rel ative addressing, which facilitates position-independent
code. Combined with a suitable addressing mode, L DR allows 32-bit memory data to be loaded into a
general-purpose register where its value can be manipulated. If the destination register is the PC, this

instruction loads a 32-bit address from memory and branches to that address.

To synthesize a Branch with Link, precede the LDR instruction with MOV LR, PC.

A4-38

Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

ARM Instructions

Notes

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Operand restrictions
If <addr essi ng_node> specifies base register writeback, and the same register is
specified for <Rd> and <Rn>, the results are UNPREDICTABLE.

Alignment If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor), and alignment checking isenabled, an addresswith bits[1:0] != 0b00
causes an aignment exception.

Useof R15 If register 15is specified for <Rd>, address[1:0] must be 0bOO. If not, the result is
UNPREDICTABLE.

ARM/Thumb statetransfers (ARM architectureversion 5 and above)

If bitg1:0] of the loaded value are 0b10, the result is UNPREDICTABLE, as branches to non
word-aligned addresses are not possiblein ARM state.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-39

ARM Instructions

4.1.21 LDRB
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
cond 0 1|1|PjU|1|W|1 Rn Rd addr_mode

The LDRB (Load Register Byte) instruction loads a byte from the memory address calculated by

<addr essi ng_node>, zero-extends the byte to a 32-bit word, and writes the word to register <Rd>.

Syntax

LDR{ <cond>}B <Rd>, <addressi ng_node>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register for the loaded value. If register 15 is specified for <Rd>,
the result is UNPREDICTABLE.

<addr essi ng_node>
Isdescribed in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page A5-18.
It determinesthel, P, U, W, Rn and addr_mode bits of the instruction.
The syntax of al forms of <addr essi ng_nopde> includes a base register <Rn>. Some
forms also specify that the instruction modifies the base register value (thisisknown as base
register writeback).

Architecture version

All

Exceptions

Data Abort

Operation

i f ConditionPassed(cond) then

Rd = Menory[address, 1]

Usage

Combined with a suitable addressing mode, LDRB allows 8-bit memory datato be loaded into a

general-purpose register where it can be manipulated.

Using the PC as the base register dlows PC-relative addressing, to facilitate position-independent code.

A4-40 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Notes

Operand restrictions

If <addr essi ng_node> specifies base register writeback, and the same register is
specified for <Rd> and <Rn>, the results are UNPREDICTABLE.

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-41

ARM Instructions

4.1.22

LDRBT

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0O 1|1|ofjU|1|1|1 Rn Rd addr_mode

The LDRBT (Load Register Byte with Translation) instruction loads a byte from the memory address
calculated by <post _i ndexed_addr essi ng_node>, zero-extends the byte to a 32-bit word, and
writes the word to register <Rd>.

If the instruction is executed when the processor isin a privileged mode, the memory system is signaled to
treat the access as if the processor were in User mode.

Syntax
LDR{<cond>} BT <Rd>, <post_i ndexed_addressi ng_node>
where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register for the loaded value. If R15 is specified for <Rd>, the
result iS UNPREDICTABLE.
<post _i ndexed_addr essi ng_node>

Isdescribed in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page A5-18.
It determinesthe |, U, Rn and addr_maode bits of the instruction. Only post-indexed forms
of Addressing Mode 2 areavailablefor thisinstruction. These formshaveP==0and W ==
0, where P and W are hit[24] and bit[21] respectively. Thisinstruction uses P ==0and W
== 1 instead, but the addressing mode is the samein dl other respects.

The syntax of dl forms of <post _i ndexed_addr essi ng_node> includes abase
register <Rn>. All forms also specify that the instruction modifies the base register value
(thisis known as base register writeback).

Architecture version

All

Exceptions

Data Abort

Operation

i f ConditionPassed(cond) then
Rd = Menory[address, 1]

A4-42

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Usage

LDRBT can be used by a (privileged) exception handler that is emulating a memory access instruction that
would normally execute in User mode. The accessis restricted as if it had User mode privilege.

Notes

User mode If thisinstruction is executed in User mode, an ordinary User mode access is performed.

Operand restrictions
If the same register is specified for <Rd> and <Rn>, the results are UNPREDICTABLE.

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-43

ARM Instructions

41.23 LDRH

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 O|P|U|I'|W|1 Rn Rd addr mode|(1 O 1 1|addr mode

The LDRH (Load Register Halfword) instruction loads a halfword from the memory address cal culated by
<addr essi ng_node>, zero-extends the halfword to a 32-bit word, and writes the word to
register <Rd>. If the address is not halfword-aligned, the result is UNPREDICTABLE.

Syntax

LDR{ <cond>}H <Rd>, <addressing_node>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register for the loaded value. If R15 is specified for <Rd>, the

result is UNPREDICTABLE.

<addr essi ng_node>

Is described in Addressing Mode 3 - Miscellaneous Loads and Sores on page A5-34. It
determinesthe P, U, I, W, Rn and addr_maode bits of the instruction.

The syntax of al forms of <addr essi ng_nopde> includes a base register <Rn>. Some
forms also specify that the instruction modifies the base register value (thisisknown as base
register writeback).

Architecture version

Version 4 and above

Exceptions
Data Abort
Operation
i f ConditionPassed(cond) then
if address[0] ==
data = Menory[address, 2]
else /* address[0] == 1 */
data = UNPREDI CTABLE
Rd = data

A4d-44 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Usage

Used with a suitable addressing mode, LDRH allows 16-bit memory datato be loaded into ageneral-purpose
register where its value can be manipulated.

Using the PC asthe base register allows PC-relative addressing to facilitate position-independent code.

Notes

Operand restrictions

If <addr essi ng_node> specifies base register writeback, and the same register is
specified for <Rd> and <Rn>, the results are UNPREDICTABLE.

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Non halfwor d-aligned addr esses
If the load address is not halfword-aligned, the loaded value is UNPREDICTABLE.

Alignment If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor), and alignment checking is enabled, an address with bit[0] '=0
causes an aignment exception.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-45

ARM Instructions

41.24 LDRSB

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 O|P|U|I'|W|1 Rn Rd addr mode|1 1 O 1|addr mode

The LDRSB (Load Register Signed Byte) instruction |oads a byte from the memory address calculated by
<addr essi ng_node>, sign-extends the byte to a 32-bit word, and writes the word to register <Rd>.

Syntax

LDR{ <cond>} SB <Rd>, <addressing_node>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register for the loaded value. If R15 is specified for <Rd>, the

result is UNPREDICTABLE.

<addr essi ng_node>

Is described in Addressing Mode 3 - Miscellaneous Loads and Sores on page A5-34. It
determinesthe P, U, I, W, Rn and addr_maode bits of the instruction.

The syntax of al forms of <addr essi ng_nopde> includes a base register <Rn>. Some
forms also specify that the instruction modifies the base register value (thisisknown as base
register writeback).

Architecture version

Version 4 and above

Exceptions

Data Abort

Operation

i f ConditionPassed(cond) then
data = Menory[address, 1]
Rd = Si gnExt end(dat a)

Usage

Used with a suitable addressing mode, LDRSB allows 8-bit signed memory datato be loaded into a
general-purpose register where it can be manipulated. Using the PC as the base register allows PC-relative
addressing, which facilitates position-independent code.

A4-46 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Notes

Operand restrictions

If <addr essi ng_node> specifies base register writeback, and the same register is
specified for <Rd> and <Rn>, the results are UNPREDICTABLE.

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-47

ARM Instructions

4.1.25 LDRSH
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 0 0 O|P|U|I'|W|1 Rn Rd addr mode|1 1 1 1|addr mode
The LDRSH (Load Register Signed Halfword) instruction loads a halfword from the memory address
calculated by <addr essi ng_nopde>, sign-extends the halfword to a 32-bit word, and writes the word to
register <Rd>. If the address is not halfword-aligned, the result is UNPREDICTABLE.
Syntax
LDR{ <cond>} SH <Rd>, <addressing_node>
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Rd> Specifies the destination register for the loaded value. If R15 is specified for <Rd>, the
result iS UNPREDICTABLE.
<addr essi ng_node>
Is described in Addressing Mode 3 - Miscellaneous Loads and Sores on page A5-34. It
determinesthe P, U, I, W, Rn and addr_maode bits of the instruction.
The syntax of al forms of <addr essi ng_nopde> includes a base register <Rn>. Some
forms also specify that the instruction modifies the base register value (thisisknown as base
register writeback).
Architecture version
Version 4 and above
Exceptions
Data Abort
Operation
i f ConditionPassed(cond) then
if address[0] ==
data = Menory[address, 2]
else /* address[0] == 1 */
data = UNPREDI CTABLE
Rd = Si gnExt end(dat a)
A4-48 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Usage

Used with a suitable addressing mode, LDRSH allows 16-bit signed memory data to be loaded into
a general-purpose register where its value can be manipulated.

Using the PC asthe base register allows PC-relative addressing, which facilitates position-independent
code.

Notes

Operand restrictions

If <addr essi ng_node> specifies base register writeback, and the same register is
specified for <Rd> and <Rn>, the results are UNPREDICTABLE.

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Non halfwor d-aligned addr esses
If the load address is not halfword-aligned, the loaded value is UNPREDICTABLE.
Alignment If an implementation includes a System Control coprocessor (see Chapter B2 The System

Control Coprocessor), and alignment checking is enabled, an address with bit[0] '=0
causes an aignment exception.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-49

ARM Instructions

4.1.26 LDRT
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
cond 0O 1|1|ofjU|0O|1]|1 Rn Rd addr_mode

The LDRT (Load Register with Trandation) instruction loads a word from the memory address cd culated

by <addr essi ng_nbde> and writes it to register <Rd>. If the address is not word-aligned, the loaded

dataisrotated as for the LDR instruction (see LDR on page A4-37).

If the instruction is executed when the processor isin a privileged mode, the memory systemis signaled to

treat the access as if the processor were in User mode.

Syntax

LDR{<cond>} T <Rd>, <post_indexed_addressi ng_node>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register for the loaded value. If R15 is specified for <Rd>, the
result iS UNPREDICTABLE.

<post _i ndexed_addr essi ng_node>
Isdescribed in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page A5-18.
It determinesthe |, U, Rn and addr_maode bits of the instruction. Only post-indexed forms
of Addressing Mode 2 areavailablefor thisinstruction. These formshaveP==0and W ==
0, where P and W are hit[24] and bit[21] respectively. Thisinstruction uses P ==0and W
== 1 instead, but the addressing mode is the samein dl other respects.
The syntax of dl forms of <post _i ndexed_addr essi ng_node> includes abase
register <Rn>. All forms also specify that the instruction modifies the base register value
(thisis known as base register writeback).

Architecture version

All

Exceptions

Data Abort

A4-50 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Operation

i f ConditionPassed(cond) then
i f address[1:0] == 0b0O
Rd = Menory[address, 4]
else if address[1:0] == 0b01
Rd = Menory[address, 4] Rotate_Right 8
else if address[1:0] == 0Obl0
Rd = Menory[address, 4] Rotate_Right 16
el se /* address[1:0] == Obl1l */
Rd = Menory[address, 4] Rotate_Right 24

Usage

LDRT can be used by a (privileged) exception handler that is emulating a memory access instruction that
would normally execute in User mode. The accessisrestricted as if it had User mode privilege.

Notes

User mode If thisinstruction is executed in User mode, an ordinary User mode access is performed.

Operand restrictions
If the same register is specified for <Rd> and <Rn> the results are UNPREDICTABLE.

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Alignment If an implementation includes a System Control coprocessor (See Chapter B2 The System
Control Coprocessor), and alignment checking isenabled, an addresswith bits[1:0] != 0b00
causes an aignment exception.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-51

ARM Instructions

4127 MCR

31 28 27 26 25 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

cond 1 1 1 Olopcode 1f 0 CRn Rd cp_num |opcode 2 1 CRm

The MCR (Move to Coprocessor from ARM Register) instruction passes the value of register <Rd> to the
coprocessor whose number iscp_num. If no coprocessors indicate that they can execute the instruction, an
Undefined Instruction exception is generated.

Syntax

MCR{ <cond>} <coproc>, <opcode_1>, <Rd> <CRn>, <CRr>{, <opcode_2>}
MCR2 <coproc>, <opcode_1>, <Rd>, <CRn>, <CRn»{, <opcode_2>}
where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The

condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

MCR2 Causes the condition field of the instruction to be set to Ob1111. This provides additional
opcode space for coprocessor designers. The resulting instructions can only be executed
unconditionally.

<coproc> Specifiesthe name of the coprocessor, and causes the corresponding coprocessor number to
be placed in the cp_num field of the instruction. The standard generic coprocessor names
arep0, pl, ..., p15.

<opcode_1> |Isa coprocessor-specific opcode.

<Rd> Isthe ARM register whose value is transferred to the coprocessor. If R15 is specified for
<Rd>, theresult iS UNPREDICTABLE.

<CRn> Is the destination coprocessor register.

<CRnw Is an additional destination or source coprocessor register.

<opcode_2> |Isa coprocessor-specific opcode. If it is omitted, <opcode_2> isassumed to be 0.

Architecture version
MCRisin version 2 and above.

MCR2 isin version 5 and above.

Exceptions

Undefined Instruction

A4-52 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Operation

i f ConditionPassed(cond) then
send Rd val ue to Coprocessor[cp_num

Usage

MCRis used to initiate coprocessor instructions that operate on valuesin ARM registers. An exampleis
afixed-point to floating-point conversion instruction for a floating-point coprocessor.

Notes

Coprocessor fields Only instruction bitg31:24], bit[20], bitg 15:8], and bit[4] are defined by the ARM
architecture. The remaining fields are recommendations, for compatibility with
ARM Development Systems.

Unimplemented copr ocessor instructions

Hardware coprocessor support is optional, regardless of the architecture version.
An implementation can choose to implement a subset of the coprocessor
instructions, or no coprocessor instructionsat all. Any coprocessor instructionsthat
are not implemented instead cause an undefined instruction trap.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-53

ARM Instructions

4.1.28

MLA

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 000O0OO0O0T1|S Rd Rn Rs 1001 Rm

The MLA (Multiply Accumulate) multiplies signed or unsigned operands to produce a 32-bit result, which
is then added to athird operand, and written to the destination register. The condition code flags are
optionally updated, based on the result.

Syntax

MLA{ <cond>}{S} <Rd>, <Rnp, <Rs>, <Rn>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

S Causes the S hit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR by setting the N and Z flags according to the result of the
multiply-accumulate. If Sisomitted, the S bit of the instruction is set to 0 and the entire
CPSR is unaffected by the instruction.

<Rd> Specifies the destination register of the instruction.
<Rn® Holds the value to be multiplied with the value of <Rs>.
<Rs> Holds the value to be multiplied with the value of <Rn®.

<Rn> Contains the value that is added to the product of <Rs> and <Rn.

Architecture version

Version 2 and above

Exceptions

None

Operation

i f ConditionPassed(cond) then
Rd = (Rm* Rs + Rn)[31:0]
if S==1then
N Fl ag Rd[31]
Z Fl ag if Rd == 0then 1 else O
C Fl ag unaf f ect ed /* See "C flag" note */
V Fl ag unaf f ect ed

A4-54

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes

Use of R15

Operand restriction

Early termination

Signed and unsigned

C flag

ARM Instructions

Specifying R15 for register <Rd>, <Rn®, <Rs>, or <Rn> has UNPREDICTABLE
results.

Specifying the same register for <Rd> and <Rn®> has UNPREDICTABLE results.

If the multiplier implementati on supportsearly termination, it must beimplemented
on the value of the <Rs > operand. The type of early termination used (signed or
unsigned) iSIMPLEMENTATION DEFINED.

Because the MLA instruction produces only the lower 32 hits of the 64-bit product,
MLA givesthe same answer for multiplication of both signed and unsigned numbers.

TheMLAS instruction isdefined to leave the C flag unchanged in ARM architecture
version 5 and above. In earlier versions of the architecture, the value of the C flag
was UNPREDICTABLE after a MLAS instruction.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A4-55

ARM Instructions

4.1.29 MOV
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
cond 001110 1Hd SBZ Rd shifter_operand
The MOV (Move) instruction movesthevalueof <shi f t er _oper and> to the destination register <Rd>.
The condition code flags are optionally updated, based on the result.
Syntax
MOV{<cond>}{S} <Rd>, <shifter_operand>
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
S Setsthe S hit (bit[20]) in the ingtruction to 1 and specifiesthat the instruction updates the

CPSR. If Sisomitted, the Sbit is set to 0 and the CPSR is not changed by the instruction.

Two types of CPSR update can occur when S is specified:

. If <Rd>is not R15, the N and Z flags are set according to the value moved (post-shift
if a shift is specified), and the C flag is set to the carry output bit generated by the
shifter (seeAddressing Mode 1 - Data-processing operands on page A5-2). The V
flag and the rest of the CPSR are unaffected.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of
the instruction i®NPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register of the instruction.
<shi fter_operand>

Specifies the operand for the operation. The options for this operand are described in

Addressing Mode 1 - Data-processing operands on page A5-2, including how each option

causes the | bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the | bitis 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction lMONot

Instead, seExtending theinstruction set on page A3-27 to determine which instruction it is.

Architecture version
All
Exceptions
None
A4-56 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Operation

i f ConditionPassed(cond) then
Rd = shifter_operand
if S==1and Rd == R15 then

CPSR = SPSR
else if S==1 then
N Flag = Rd[31]
Z Flag = if Rd == 0then 1 else O

C Flag = shifter_carry_out
V Flag = unaffected

Usage

MOV is used to:

. Move a value from one register to another.

. Put a constant value into a register.

. Perform a shift without any other arithmetic or logical operation. A left shift tgn be used to
multiply by 2".

. When the PC is the destination of the instruction, a branch occurs. The instruction:

MOV PC, LR

can therefore be used to return from a subroutine (see instruBtiBhson page A4-10). In T
variants of architecture 4 and in architecture 5 and above, the instBitibR must be used in place
of MOV PC, LR as theBXinstruction automatically switches back to Thumb state if appropriate.
. When the PC is the destination of the instruction and the S bit is set, a branch occurs and the SPSR
of the current mode is copied to the CPSR. This meansiiaf& PC, LRinstruction can be used
to return from some types of exception (Ezeeptions on page A2-13).

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-57

ARM Instructions

4.1.30 MRC

31 28 27 26 25 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

cond 1 1 1 Olopcode 1f1 CRn Rd cp_num |opcode 2 1 CRm

The MRC (Move to ARM Register from Coprocessor) instruction causes the coprocessor whose number is

cp_num to transfer avalue to an ARM register or to the condition flags.

If no coprocessors indicate that they can execute the instruction an Undefined Instruction exception is

generated.

Syntax

MRC{ <cond>} <coproc>, <opcode_1>, <Rd> <CRn>, <CRr>{, <opcode_2>}

MRC2 <coproc>, <opcode_1>, <Rd>, <CRn>, <CRnp{, <opcode_2>}

where:

<cond> Isthe condition under which theinstruction is executed. The conditions are defined
in The condition field on page A3-5. If <cond> is omitted, the AL (always)
condition is used.

MRC2 Causes the condition field of the instruction to be set to Ob1111. This provides
additional opcode space for coprocessor designers. The resulting instructions can
only be executed unconditionally.

<copr oc> Specifies the name of the coprocessor, and causes the corresponding coprocessor
number to be placed in the cp_num field of the instruction. The standard generic
coprocessor names are po, p1, ..., p15.

<opcode_1> Is a coprocessor-specific opcode.

<Rd> Specifies the destination ARM register for the instruction. If R15 is specified for
<Rd>, the condition code flags are updated instead of a generd -purpose register.

<CRn> Specifies the coprocessor register that contains the first operand for the instruction.

<CRnw Is an additional coprocessor source or destination register.

<opcode_2> Is a coprocessor-specific opcode. If it isomitted, <opcode_2> isassumed to be 0.

Architecture version

MRCisinversion 2 and above.

MRC2 isin version 5 and above.

Exceptions

Undefined Instruction

A4-58 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Operation

i f ConditionPassed(cond) then

data = val ue from Coprocessor[cp_numni

if Rdis R15 then
N flag = data[31]
Z flag dat a[30]
C flag dat a[29]
V flag = data[28]

else /* Rd is not R15 */
Rd = data

Usage
MRC has two uses:

1 If <Rd> specifies R15, the condition code flags bits are updated from the top four bits of the value
from the coprocessor specified by <copr oc> (to allow conditiona branching on the status of a
coprocessor) and the other 28 hits are ignored.

An example of thisusewould be to transfer the result of a comparison performed by afloating-point
coprocessor to the ARM'’s condition flags.

2. Otherwise the instruction writes into register <Rd> a value from the coprocessor specified by
<coproc>.

An example of thisuseis afloating-point to integer conversion instruction in a fl oating-point
COprocessor.

Notes

Coprocessor fields Only instruction bits[31:24], bit[20], bitg 15:8] and bit[4] are defined by the ARM
architecture. The remaining fields are recommendations, for compatibility with
ARM Development Systems.

Unimplemented copr ocessor instructions

Hardware coprocessor support is optional, regardless of the architecture version.
An implementation can choose to implement a subset of the coprocessor
instructions, or no coprocessor instructionsat all. Any coprocessor instructionsthat
are not implemented instead cause an undefined instruction trap.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-59

ARM Instructions

4.1.31 MRS
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
cond 0(0|0|1|0|R|O|O SBO Rd SBZ
The MRS (Move PSR to General-purpose Register) instruction moves the value of the CPSR or the SPSR
of the current mode into a generd -purpose register. I n the general-purpose register, the value can be
examined or manipulated with normal data-processing instructions.
Syntax
MRS{<cond>} <Rd>, CPSR
MRS{<cond>} <Rd>, SPSR
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Rd> Specifies the destination register of theinstruction. If R15 is specified for <Rd>, the result
iS UNPREDICTABLE.
Architecture version
Version 3 and above
Exceptions
None
Operation
i f ConditionPassed(cond) then
if R==1 then
Rd = SPSR
el se
Rd = CPSR
A4-60 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Usage

The MRS instruction is commonly used for three purposes:

As part of a read/modify/write sequence for updating a PSR. For more detatSRea

page A4-62.

When an exception occurs and there is a possibility of a nested exception of the same type occurring,
the SPSR of the exception mode is in danger of being corrupted. To deal with this, the SPSR value
must be saved before the nested exception can occur, and later restored in preparation for the
exception return. The saving is normally done by usinyR&instruction followed by a store

instruction. Restoring the SPSR uses the reverse sequence of a load instruction followeBRYy an
instruction. For an example of this usage, lswerupt prioritization on page A9-15.

In process swap code, the programmer's model state of the process being swapped out needs to be
saved, including relevant PSR contents, and similar state of the process being swapped in needs to be
restored. Again, this involves the useMdiS/store and load/SR instruction sequences. For an

example of this usage, s€entext switch on page A9-16.

Notes
Opcode [11:0] Execution ofVRS instructions with opcode[11:0] '8x000 is UNPREDICTABLE.
Opcode [19:16] Execution ofVRS instructions with opcode[19:16] != 0b1111iSPREDICTABLE.

User mode SPSR Accessing the SPSR when in User mode or System mau@R&EDICTABLE.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A4-61

ARM Instructions

4.1.32 MSR
Immediate operand:
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0
cond 001 109gR1 0 field mask SBO rotate_imm 8 bit_immediate
Register operand:
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 0001Q0R 10 field_magk SBO SBZ 0 000 Rm
TheMSR (Move to Status Register from ARM Register) instruction transfersthe value of ageneral-purpose
register or immediate constant to the CPSR or the SPSR of the current mode.
Syntax
MSR{ <cond>} CPSR <fields>, #<i mediate>
MSR{<cond>} CPSR <fields> <R
MSR{ <cond>} SPSR <fiel ds>, #<i mediate>
MSR{<cond>} SPSR <fields> <R~
where:
<cond> Isthe condition under which theinstruction is executed. The conditions are defined
in The condition field on page A3-5. If <cond> is omitted, the AL (always)
condition is used.
<fiel ds> Is a sequence of one or more of the following:
c sets the control field mask bit (bit 16)
X sets the extension field mask bit (bit 17)
s sets the status field mask bit (bit 18)
f sets the flags field mask bit (bit 19).
<i nmedi at e> Isthe immediate value to be transferred to the CPSR or SPSR. Allowed immediate
values are 8-bit immediates (in the range 0x 00 to 0xFF) and values that can be
obtained by rotating them right by an even amount in the range 0-30. These
immediate values are the same as those allowed in the immediate form as shown in
Data-processing operands - Immediate on page A5-6.
<Rn® Is the general-purpose register to be transferred to the CPSR or SPSR.
A4-62 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Architecture version

Version 3 and above

Exceptions
None
Operation
i f ConditionPassed(cond) then
i f opcode[25] ==
operand = 8_bit_i medi ate Rotate_Right (rotate_imm?* 2)
el se /* opcode[25] == 0 */

operand = Rm
if R==0 then

if field_mask[0] == 1 and InAPrivil egedvbde() then
CPSR[7: 0] = operand[7: 0]

if field_mask[1] == 1 and InAPrivil egedvbde() then
CPSR[15: 8] = operand[15: 8]

if field_mask[2] == 1 and InAPrivil egedVvbde() then
CPSR[23: 16] = operand[23: 16]

if field_mask[3] == 1 then

CPSR[31: 24] = operand[31: 24]
else /* R==1 */

if field_mask[0] == 1 and Current MbdeHasSPSR() then
SPSR[7: 0] = operand[7: 0]

if field_mask[1] == 1 and Current MbdeHasSPSR() then
SPSR[15: 8] = operand[15: 8]

if field_mask[2] == 1 and Current MbdeHasSPSR() then
SPSR[23: 16] = operand[23: 16]

if field_mask[3] == 1 and Current MbdeHasSPSR() then

SPSR[31: 24] = operand[31: 24]

Usage

Thisingtruction is used to update the value of the condition code flags, interrupt enables, or the processor

mode.

The value of aPSR should normally be updated by moving the PSR to ageneral-purpose register (using the
MRS ingtruction), modifying the relevant bits of the general -purpose register, and restoring the updated
general-purpose register value back into the PSR (using the MSR instruction). For example, a good way to

switch the ARM to Supervisor mode from another privileged modeis:

MRS RO, CPSR ; Read CPSR

BIC RO, RO, #0x1F ; Modify by renoving current node
ORR RO, RO, #0x13 ; and substituting Supervisor node
MSR CPSR_c, RO ; Wite the result back to CPSR

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved.

A4-63

ARM Instructions

For maximum efficiency, MSRinstructions should only writeto those fieldsthat they can potentially change.
For example, the last instruction in the above code can only change the CPSR contral field, asall bitsin the
other fields are unchanged since they were read from the CPSR by the first instruction. So it writes to
CPSR_c, not CPSR_fsxc or some other combination of fields.

However, if the only reason that an MSR instruction cannot change afield is that no bits are currently
allocated to the field, then the field must be written, to ensure future compatibility. For example, when the
process swap code in Context switch on page A9-16 restores the new process's CPSR value, it writes to
SPSR_fsxc (which islater copied to the CPSR by the L DMinstruction which restarts the process). There are
no bits alocated to the state or extension fields at present, so writing to SPSR_fc would work just as well
in current architecture versions (5 and below). However, writing to SPSR_fsxc will continue to work
correctly in future versions of the architecture that do have bits allocated in the state or extension fields,
while writing to SPSR_fc will not.

Note

Dueto deficienciesin the handling of the state and extension fieldsin versions 2.50 and below of the ARM
Software Devel opment Toolkit, only specify the flags and control fields when using these toolkit versions.
In cases where the above guidelines mean that the state and extension fiel ds should have been written for
future compatibility, it is recommended that you keep arecord of the need to change the set of fields
specified when it becomes possible to do so.

Theimmediate form of thisinstruction can be used to set any of the fields of a PSR, but you must take care
to adhere to the read-modify-write technique described above. The immediate form of the instruction is
equivalent to reading the PSR concerned, replacing al the bits in the fields concerned by the corresponding
bits of the immediate constant and writing the result back to the PSR. The immediate form must therefore
only be used when the intention isto modify al the bitsin the specified fields and, in particular, must not
be used if the specified fields include any as-yet-unallocated bits. Failure to observe this rule might result
in code which has unanticipated side-effects on future versions of the ARM architecture.

As an exception to the aboverule, it islegitimate to use the immediate form of the instruction to modify the
flags byte, despite the fact that bits[26:24] of the PSRs have no allocated function at present. For example,
this instruction can be used to set all four flags (and clear the Q flag if the processor implements the
Enhanced DSP extension):

M5R CPSR _f, #0xF0000000

Any functionality allocated to bitg26:24] in afuture version of the ARM architecture will be designed so
that such code does not have unexpected side effects.

A4-64

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Notes
TheR bit Bit[22] of theinstruction is0if the CPSR isto be written and 1 if the SPSR isto be written.

User mode CPSR
Any writes to CPSR[23:0] in User mode are ignored (so that User mode programs cannot
change to a privileged mode).

User mode SPSR
Accessing the SPSR when in User mode is UNPREDICTABLE.

System mode SPSR
Accessing the SPSR when in System mode is UNPREDICTABLE.

Obsolete field specification

The CPSR, CPSR_f1 g,CPSR _ctl,CPSR al | , SPSR, SPSR fl g, SPSR ct| and
SPSR_al | forms of PSR field specification have been superseded by the csxf format
shown on page A4-62.

CPSR, SPSR, CPSR_al | and SPSR_al | produce afield mask of 0b1001.
CPSR f I g and SPSR_f | g produce afield mask of 0b1000.
CPSR ct| and SPSR_ct | produce afield mask of 0b00OO1.
TheT bit The MSRinstruction must not be used to alter the T bit in the CPSR. If such an attempt is
made, the results are UNPREDICTABLE.
Addressing modes

Theimmediate and register forms are specified in precisely the same way asthe immediate
and unshifted register forms of Addressing Mode 1 (see Addressing Mode 1 -
Data-processing operands on page A5-2). All other forms of Addressing Mode 1 yield
UNPREDICTABLE results.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-65

ARM Instructions

4133 MUL

31

28 27 26 25 24 23 22 21 20 19

16 15

12 11 8 7 6 5 4 3

cond

000O0OO0OO0O

S

Rd

SBZ

Rs

1001

Rm

The MUL (Multiply) instruction is used to multiply signed or unsigned variables to produce a 32-bit result.

The condition code flags are optionally updated, based on the result.

Syntax

MUL{<cond>}{S} <Rd>, <Rmp,

where:

<cond>

<Rd>
<Rnm>
<Rs>

Is the condition under which the instruction is executed. The conditions are defined in The

<Rs>

condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

Causes the S hit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR by setting the N and Z flags according to the result of the multiplication.
If S isomitted, the S bit of the instruction is set to 0 and the entire CPSR is unaffected by

the instruction.

Specifies the destination register for the instruction.

Specifies the register that contains the first value to be multiplied.

Holds the value to be multiplied with the value of <Rn®.

Architecture version

Version 2 and above

Exceptions
None
Operation
i f ConditionPassed(cond) then
Rd = (Rm* Rs)[31:0]
if S==1then
N Flag = Rd[31]
Z Flag =
C Flag = unaffected
V Flag = unaffected

if Rd == 0 then 1 else 0

/* See "C flag"

note */

A4-66

Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

ARM Instructions

Notes
Use of R15 Specifying R15 for register <Rd>, <Rn®, or <Rs> has UNPREDICTABLE resullts.
Operand restriction Specifying the same register for <Rd> and <R has UNPREDICTABLE results.

Early termination If the multiplier implementati on supportsearly termination, it must beimplemented
on the value of the <Rs > operand. The type of early termination used (signed or
unsigned) iSIMPLEMENTATION DEFINED.

Signed and unsigned Because the MJL instruction produces only the lower 32 hits of the 64-bit product,
MUL givesthe same answer for multiplication of both signed and unsigned numbers.

C flag TheMULS instruction isdefined to leave the C flag unchanged in ARM architecture
version 5 and above. In earlier versions of the architecture, the value of the C flag
was UNPREDICTABLE after a MULS ingtruction.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-67

ARM Instructions

4.1.34 MVN

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
cond 00 I1/1 1119 SBZ Rd shifter_operand

The MVN (Move Negative) instruction moves the logical one’s complement of the value of

<shi f t er _oper and> to the destination registeRd>. The condition code flags are optionally updated,

based on the result.

Syntax

MN{ <cond>}{S} <Rd>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defiffed in

condition field on page A3-5. Ikcond> is omitted, theAL (always) condition is used.

S Sets the S bit (bit[20]) in the instruction to 1 and specifies that the instruction updates the

CPSR. IfS is omitted, the S bit is set to 0 and the CPSR is not changed by the instruction.

Two types of CPSR update can occur wBda specified:

. If <Rd> is not R15, the N and Z flags are set according to the result of the operation,
and the C flag is set to the carry output bit generated by the shiftekddesssing
Mode 1 - Data-processing operands on page A5-2). The V flag and the rest of the
CPSR are unaffected.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of
the instruction i®NPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register of the instruction.
<shi fter_operand>

Specifies the operand for the operation. The options for this operand are described in

Addressing Mode 1 - Data-processing operands on page A5-2, including how each option

causes the | bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the | bitis 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction bt

Instead, seExtending theinstruction set on page A3-27 to determine which instruction it is.

Architecture version
All
Exceptions
None
A4-68 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Operation

i f ConditionPassed(cond) then
Rd = NOT shifter_operand
if S==1and Rd == R15 then

CPSR = SPSR
else if S==1 then
N Flag = Rd[31]

Z Fl ag if Rd == 0 then 1 else 0
C Flag = shifter_carry_out
V Flag = unaffected

Usage

MVNis used to:

. write a negative value into a register

. form a bit mask

. take the one’s complement of a value.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-69

ARM Instructions

4135 ORR

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 00111040 -9 Rn Rd shifter_operand

The ORR (Logica OR) ingtruction performs abitwise (inclusive) OR of the value of register <Rn> withthe
value of <shi f t er _oper and>, and stores the result in the destination register <Rd>. The condition
code flags are optionally updated, based on the resullt.

Syntax
ORR{ <cond>}{S} <Rd>, <Rn>, <shifter_operand>
where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

S Setsthe S hit (bit[20]) in the ingtruction to 1 and specifiesthat the instruction updates the
CPSR. If Sisomitted, the Sbit is set to 0 and the CPSR is not changed by the instruction.
Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, the N and Z flags are set according to the result of the operation,
and the C flag is set to the carry output bit generated by the shiftekddesssing
Mode 1 - Data-processing operands on page A5-2). The V flag and the rest of the
CPSR are unaffected.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of
the instruction i®NPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register of the instruction.
<Rn> Specifies the register that contains the first operand for the operation.

<shi fter_operand>

Specifies the second operand for the operation. The options for this operand are described
in Addressing Mode 1 - Data-processing operands on page A5-2, including how each

option causes the | bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the
instruction.

If the | bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction @Rt
Instead, seExtending theinstruction set on page A3-27 to determine which instruction it is.

Architecture version

All

A4-70 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Exceptions

None

Operation

i f ConditionPassed(cond) then
Rd = Rn OR shifter_operand

if S==1 and == R15 then
CPSR = SPSR
else if S ==1 then
N Flag = Rd[31]
Z Flag =if Rd == 0then 1 else 0
C Flag = shifter_carry_out
V Flag = unaffected

Usage

ARM Instructions

ORR can be used to set selected bitsin aregister. For each bit, OR with 1 sets the bit, and OR with 0 leaves

it unchanged.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

A4-71

ARM Instructions

4136 RSB

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 00 1|00 1 1 9 Rn Rd shifter_operand

The RSB (Reverse Subtract) instruction subtracts the value of register <Rn> from the value of
<shi ft er _oper and>, and stores the result in the destination register <Rd>. The condition code flags
are optionally updated, based on the result.

Syntax
RSB{ <cond>}{S} <Rd>, <Rn>, <shifter_operand>
where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

S Setsthe S hit (bit[20]) in the ingtruction to 1 and specifiesthat the instruction updates the
CPSR. If Sisomitted, the Sbit is set to 0 and the CPSR is not changed by the instruction.
Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, th&landZ flags are set according to the result of the subtraction,
and theCandV flags are set according to whether the subtraction generated a borrow
(unsigned underflow) and a signed overflow, respectively. The rest of the CPSR is
unchanged.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of
the instruction i®NPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register of the instruction.
<Rn> Specifies the register that contains the second operand for the subtraction.

<shi fter_operand>

Specifies the first operand for the subtraction. The options for this operand are described in
Addressing Mode 1 - Data-processing operands on page A5-2, including how each option
causes the | bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the | bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction RSibt
Instead, seExtending theinstruction set on page A3-27 to determine which instruction it is.

Architecture version

All

A4-72 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Exceptions

None

Operation

i f ConditionPassed(cond) then
Rd = shifter_operand - Rn
if S==1and Rd == R15 then

CPSR = SPSR
else if S ==1 then
N Flag = Rd[31]
Z Flag = if Rd == 0then 1 else O

C Fl ag NOT Borr owFr om(shi fter_operand - Rn)
V Flag = Overfl owFron(shifter_operand - Rn)

Usage

The following instruction stores the negation (two's complemen®xoih Rd:
RSB Rd, Rx, #0

Constant multiplication (oRx) by 2'-1 (intoRd) can be performed with:

RSB Rd, Rx, Rx, LSL #n

Notes

C flag If Sis specified, the C flag is set to:
1 if no borrow occurs
0 if a borrow does occur.

In other words, the C flag is used as a NOT(borrow) flag. This inversion of the borrow
condition is usually compensated for by subsequent instructions. For example:

. TheSBCandRSCinstructions use the C flag as a NOT(borrow) operand, performing
a normal subtraction if C == 1 and subtracting one more than usual if C == 0.

. The HS (unsigned higher or same) and LO (unsigned lower) conditions are
equivalent to CS (carry set) and CC (carry clear) respectively.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-73

ARM Instructions

41.37 RSC

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 00 I1/0 11 19 Rn Rd shifter_operand

The RSC (Reverse Subtract with Carry) instruction subtracts the value of register <Rn> and the value of
NOT (Carry flag) from thevalueof <shi f t er _oper and>, and storestheresult inthe destination register
<Rd>. The condition code flags are optionally updated, based on the result.

Syntax
RSC{ <cond>}{S} <Rd>, <Rn>, <shifter_operand>
where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

S Setsthe S hit (bit[20]) in the ingtruction to 1 and specifiesthat the instruction updates the
CPSR. If Sisomitted, the Sbit is set to 0 and the CPSR is not changed by the instruction.
Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, th&landZ flags are set according to the result of the subtraction,
and theCandV flags are set according to whether the subtraction generated a borrow
(unsigned underflow) and a signed overflow, respectively. The rest of the CPSR is
unchanged.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of
the instruction i®NPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register of the instruction.
<Rn> Specifies the register that contains the second operand for the subtraction.

<shi fter_operand>

Specifies the first operand for the subtraction. The options for this operand are described in
Addressing Mode 1 - Data-processing operands on page A5-2, including how each option
causes the | bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the | bitis 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction RSt
Instead, seExtending theinstruction set on page A3-27 to determine which instruction it is.

Architecture version

All

A4-74 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Exceptions

None

Operation

i f ConditionPassed(cond) then
Rd = shifter_operand - Rn - NOT(C Fl ag)
if S==1and Rd == R15 then

CPSR = SPSR
else if S ==1 then
N Flag = Rd[31]
Z Fl ag if Rd == 0 then 1 else 0

C Fl ag NOT BorrowFron(shifter_operand - Rn - NOT(C Fl ag))
V Flag = Overfl owFronm(shifter_operand - Rn - NOT(C Flag))

Usage

To negate the 64-bit valuein RO,R1, use the following sequence (RO holdsthe least significant word) which
stores the result in R2,R3:

RSBS R2, RO, #0

RSC R3, R1, #0
Notes
C flag If Sisspecified, the Cflagis set to:
1 if no borrow occurs
0 if aborrow does occur.

In other words, the C flag is used as a NOT (borrow) flag. This inversion of the borrow
condition is usually compensated for by subsequent instructions. For example:

. TheSBCandRSCinstructions use the C flag as a NOT(borrow) operand, performing
a normal subtraction if C == 1 and subtracting one more than usual if C == 0.

. The HS (unsigned higher or same) and LO (unsigned lower) conditions are
equivalent to CS (carry set) and CC (carry clear) respectively.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-75

ARM Instructions

4.1.38 SBC
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
cond 00 I1l0 11409 Rn Rd shifter_operand
The SBC (Subtract with Carry) instruction is used to synthesize multi-word subtraction. SBC subtracts the
value of <shi ft er _oper and> and the value of NOT (Carry flag) from the value of register <Rn>, and
stores theresult in the destination register <Rd>. The condition code flags are optionally updated, based on
the result.
Syntax
SBC{ <cond>}{S} <Rd>, <Rn>, <shifter_operand>
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
S Setsthe S hit (bit[20]) in the ingtruction to 1 and specifiesthat the instruction updates the

CPSR. If Sisomitted, the Sbit is set to 0 and the CPSR is not changed by the instruction.

Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, th&landZ flags are set according to the result of the subtraction,
and theCandV flags are set according to whether the subtraction generated a borrow
(unsigned underflow) and a signed overflow, respectively. The rest of the CPSR is
unchanged.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of
the instruction iNPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register of the instruction.
<Rn> Specifies the register that contains the first operand for the subtraction.
<shi fter_operand>

Specifies the second operand for the subtraction. The options for this operand are described

in Addressing Mode 1 - Data-processing operands on page A5-2, including how each

option causes the | bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the

instruction.

If the | bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction 8B@t

Instead, seExtending theinstruction set on page A3-27 to determine which instruction it is.

Architecture version
All
A4-76 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Exceptions

None

Operation

i f ConditionPassed(cond) then
Rd = Rn - shifter_operand - NOT(C Fl ag)
if S==1and Rd == R15 then

CPSR = SPSR
else if S ==1 then
N Fl ag Rd[31]
Z Fl ag if Rd == 0 then 1 else 0

NOT BorrowFrom(Rn - shifter_operand - NOT(C Fl ag))
Overfl owFrom(Rn - shifter_operand - NOT(C Fl ag))

C Fl ag
V Fl ag

Usage

If register pairs RO,R1 and R2,R3 hold 64-bit values (RO and R2 hold the least significant words), the
following instructions leave the 64-bit difference in R4,R5:

SUBS R4, RO, R2

SBC R5, R1, R3
Notes
C flag If Sisspecified, the Cflagis set to:
1 if no borrow occurs
0 if aborrow does occur.

In other words, the C flag is used as a NOT (borrow) flag. This inversion of the borrow
condition is usually compensated for by subsequent instructions. For example:

. TheSBCandRSCinstructions use the C flag as a NOT(borrow) operand, performing
a normal subtraction if C == 1 and subtracting one more than usual if C == 0.

. The HS (unsigned higher or same) and LO (unsigned lower) conditions are
equivalent to CS (carry set) and CC (carry clear) respectively.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-77

ARM Instructions

41.39 SMLAL

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 000O0O1101|S RdHi RdLo Rs 1001 Rm

The SMLAL (Signed Multiply Accumulate Long) instruction multiplies the signed value of register <Rn®

with the signed val ue of register <Rs> to produce a 64-bit product. This product is added to the 64-bit value
held in<RdHi > and <RdLo>, and the sum is written back to <RdH > and <RdLo>. The condition code
flags are optionally updated, based on the result.

Syntax

SMLAL{<cond>}{S} <RdLo>, <RdH >, <Rm>, <Rs>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

S Causes the S hit (bit[20]) in the instruction to be set to 1 and specifies that the instruction

updates the CPSR by setting the N and Z flags according to the result of the
multiply-accumulate. If Sisomitted, the S bit of the instruction is set to 0 and the entire
CPSR is unaffected by the instruction.

<RdLo> Supplies the lower 32 hits of the value to be added to the product of <Rm> and <Rs>, and
is the destination register for the lower 32 bits of the resullt.

<RdH > Supplies the upper 32 bits of the value to be added to the product of <Rm> and <Rs>, and
is the destination register for the upper 32 bits of the resullt.

<Rn® Holds the signed value to be multiplied with the va ue of <Rs>.

<Rs> Holds the signed value to be multiplied with the va ue of <Rm.

Architecture version

All M variants

Exceptions

None

A4-78 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Operation

i f ConditionPassed(cond) then
RdLo = (Rm* Rs)[31:0] + RdLo /* Signed nultiplication */
RdH = (Rm* Rs)[63:32] + RdH + CarryFron{(Rm* Rs)[31:0] + RdLo)
if S==1then

N Flag = RdHi [31]
Z Flag = if (RAdH == 0) and (RdLo == 0) then 1 else 0O
C Flag = unaffected /* See "C and V flags" note */

V Flag = unaffected /* See "C and V flags" note */

Usage

SMLAL multiplies signed variables to produce a 64-bit result, which is added to the 64-bit value in the two
destination genera -purpose registers. The result is written back to the two destination general-purpose
registers.

Notes

Use of R15 Specifying R15 for register <RdH >, <RdLo>, <Rmp, or <Rs> has
UNPREDICTABLE results.

Operand restriction <RdHi >, <RdLo>, and <Rm> must be three distinct registers, or the results are
UNPREDICTABLE.

Early termination If the multiplier implementati on supportsearly termination, it must beimplemented
on the value of the <Rs > operand. The type of early termination used (signed or
unsigned) iSIMPLEMENTATION DEFINED.

Cand V flags The SMLALS instruction is defined to leave the C and V flags unchanged in ARM
architecture version 5 and above. In earlier versions of the architecture, the values
of the C and V flags were UNPREDICTABLE after an SMLALS instruction.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-79

ARM Instructions

4140 SMULL

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 000O0O110]|S RdHi RdLo Rs 1001 Rm

TheSMJULL (Signed Muultiply Long) instruction multipliesthe signed value of register <R with the signed
value of register <Rs> to produce a 64-bit result. The upper 32 hits of the result are stored in <RdHi >.
The lower 32 bits are stored in <RdLo>. The condition code flags are optionally updated, based on the
64-bit result.

Syntax

SMULL{<cond>}{S} <RdLo>, <RdH >, <Rm>, <Rs>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

S Causes the S hit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR by setting the N and Z flags according to the result of the multiplication.
If S isomitted, the S bit of the instruction is set to 0 and the entire CPSR is unaffected by
the instruction.

<RdLo> Stores the lower 32 bits of the resullt.

<RdH > Stores the upper 32 bits of the resullt.

<Rn® Holds the signed value to be multiplied with the va ue of <Rs>.

<Rs> Holds the signed value to be multiplied with the va ue of <Rm>.

Architecture version

All M variants

Exceptions

None

A4-80 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Operation

i f ConditionPassed(cond) then
RdH = (Rm* Rs)[63:32] /* Signed nultiplication */
RdLo = (Rm* Rs)[31:0]
if S==1then

N Flag = RdHi [31]
Z Flag = if (RAdH == 0) and (RdLo == 0) then 1 else 0O
C Flag = unaffected /* See "C and V flags" note */

V Flag = unaffected /* See "C and V flags" note */

Usage

SMULL multiplies signed variables to produce a 64-bit result in two general-purpose registers.

Notes

Use of R15 Specifying R15 for register <RdH >, <RdLo>, <Rmp, or <Rs> has
UNPREDICTABLE results.

Operand restriction <RdHi >, <RdLo>, and <Rm> must be three distinct registers, or the results are
UNPREDICTABLE.

Early termination If the multiplier implementati on supportsearly termination, it must beimplemented
on the value of the <Rs > operand. The type of early termination used (signed or
unsigned) iSIMPLEMENTATION DEFINED.

C and V flags The SMULLS instruction is defined to leave the C and V flags unchanged in ARM
architecture version 5 and above. In earlier versions of the architecture, the values
of the C and V flags were UNPREDICTABLE after an SMULLS instruction.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-81

ARM Instructions

4141 STC

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 11 0|P|[UNW|O Rn CRd cp_num 8 bit word offset

The STC (Store Coprocessor) instruction stores data from the coprocessor whose hame is cp_num to the

sequence of consecutive memory addresses calculated by <addr essi ng_node>. If no coprocessors

indicate that they can execute the instruction, an Undefined Instruction exception is generated.

Syntax

STC{<cond>}{L} <coproc> <CRd>, <addressing_node>

STC2{ L} <coproc>, <CRd>, <addressing_node>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

STC2 Causes the condition field of the instruction to be set to Ob1111. This provides additional
opcode space for coprocessor designers. The resulting instructions can only be executed
unconditionally.

L Setsthe N bit (bit[22]) in the instruction to 1 and specifies along store (for example,
double-precisioninstead of single-precision datatransfer). If L isomitted, the N bitis0 and
the instruction specifies a short store.

<coproc> Specifiesthe name of the coprocessor, and causes the corresponding coprocessor number to
be placed in the cp_num field of the instruction. The standard generic coprocessor names
arep0, pl, ..., p15.

<CRd> Specifies the coprocessor source register of the instruction.

<addr essi ng_node>
Is described in Addressing Mode 5 - Load and Store Coprocessor on page A5-56. It
determinesthe P, U, Rn, W and 8_hit word_offset bits of the instruction.

The syntax of al forms of <addr essi ng_nopde> includes a base register <Rn>. Some
forms al so specify that the instruction modifies the base register value (thisisknown as base
register writeback).

Architecture version

STCisin version 2 and above.

STC2 isin version 5 and above.

A4-82 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Exceptions

Undefined Instruction, Data Abort

Operation

i f ConditionPassed(cond) then
address = start_address
Menor y[addr ess, 4] = val ue from Coprocessor [cp_nuni
whi | e (Not Fi ni shed(coprocessor[cp_nuni))
address = address + 4
Menor y[addr ess, 4] = val ue from Coprocessor[cp_nuni
assert address == end_address

Usage

STCis useful for storing coprocessor datato memory. TheL (long) option controls the N bit and could be
used to distinguish between a single- and double-precision transfer for a floating-point store instruction.

Notes

Coprocessor fields Only instruction bits[31:23], bitg21:16} and bits[11:0] are defined by the ARM
architecture. The remaining fields (bit[22] and bitg[15:12]) are recommendations,
for compatibility with ARM Development Systems.

In the case of the Unindexed addressing mode (P==0, U==1, W==0), instruction
bitg7:0] are also not ARM architecture-defined, and can be used to specify
additional coprocessor options.

Data abort For details of the effects of the instruction if a data abort occurs, see Effects of
data-aborted instructions on page A2-17.

Non wor d-aligned addresses

Store coprocessor register instructions ignore the least significant two bits of
address.

Alignment If an implementation includes a System Control coprocessor (see Chapter B2 The
System Control Coprocessor), and alignment checking is enabled, an address with
bitg[1:0] !'= 0b00 causes an alignment exception.

Unimplemented copr ocessor instructions

Hardware coprocessor support is optional, regardless of the architecture version.
An implementation can choose to implement a subset of the coprocessor
instructions, or no coprocessor instructionsat all. Any coprocessor instructionsthat
are not implemented instead cause an undefined instruction trap.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-83

ARM Instructions

4.1.42 STM(1)
31 28 27 26 25 24 23 22 21 20 19 16 15 0
cond 10 0|P|UIO|W|O Rn register_list
This form of the STM(Store Multiple) instruction stores a non-empty subset (or possibly all) of the
general-purpose registers to sequential memory locations.
Syntax
STM <cond>} <addr essi ng_nmode> <Rn>{!}, <registers>
where:
<cond> Isthe condition under which theinstruction is executed. The conditions are defined
in The condition field on page A3-5. If <cond> is omitted, the AL (always)
condition is used.
<addr essi ng_node>
Is described in Addressing Mode 4 - Load and Store Multiple on page A5-48. It
determines the P, U, and W bits of the instruction.
<Rn> Specifies the base register used by <addr essi ng_node>. If R15is specified as
<Rn>, the result is UNPREDICTABLE.
! Setsthe W bit, causing the instruction to write a modified value back to its base
register Rn as specified in Addressing Mode 4 - Load and Store Multiple on
page A5-48. If | is omitted, the W hit is 0 and the instruction does not change its
base register in thisway.
<regi sters> Isalist of registers, separated by commas and surrounded by { and }. It specifies
the set of registersto be stored by the STMinstruction.
The registers are stored in sequence, the lowest-numbered register to the lowest
memory address (st art _addr ess), through to the highest-numbered register to
the highest memory address (end_addr ess).
For each of i=0to 15, bit[i] inthe register_list field of theinstructionis1if Ri isin
thelist and O otherwise. If bitg15:0] are all zero, the result is UNPREDICTABLE.
If R15 is specifiedin <r egi st er s>, thevalue stored is IMPLEMENTATION
DEFINED. For more details, see Reading the program counter on page A2-7.
Architecture version
All
Exceptions
Data Abort
A4-84 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Operation

i f ConditionPassed(cond) then
address = start_address
for i =0to 15
if register_list[i] ==
Menory[address, 4] = Ri
address = address + 4
assert end_address == address - 4

Usage

STMis useful as ablock store instruction (combined with LDMit allows efficient block copy) and for stack
operations. A single STMused in the sequence of a procedure can push the return address and
general-purpose register values on to the stack, updating the stack pointer in the process.

Notes

Operand restrictions
If <Rn> isspecified as<r egi st er s> and base register writeback is specified:

. If <Rn> is the lowest-numbered register specifiegiregi st er _I i st >, the
original value okRn> is stored.

. Otherwise, the stored value ©Rn> is UNPREDICTABLE.

Data abort For details of the effects of the instruction if a data abort occur&ffeets of data-aborted
instructions on page A2-17.

Non wor d-aligned addresses
STMinstructions ignore the least significant two bitadfir ess.
Alignment If an implementation includes a System Control coprocessor (see Chapfthe B&tem

Control Coprocessor), and alignment checking is enabled, an address with bits[1:0] != 0b00
causes an alignment exception.

Timeorder The time order of the accesses to individual words of memory generated by this instruction
is only defined in some circumstances. Bata accesses to memory-mapped 1/0 on
page A2-32 for details.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-85

ARM Instructions

4.1.43 STM (2)
31 28 27 26 25 24 23 22 21 20 19 16 15 0
cond 1 0 0|P|UlL|0O|O Rn register_list
This form of STMstores a subset (or possibly al) of the User mode general -purpose registers to sequential
memory locations.
Syntax
STM <cond>} <addr essi ng_node> <Rn>, <registers>"
where:
<cond> Isthe condition under which theinstruction is executed. The conditions are defined
in The condition field on page A3-5. If <cond> is omitted, the AL (always)
condition is used.
<addr essi ng_node>
Is described in Addressing Mode 4 - Load and Store Multiple on page A5-48. It
determines the P and U hits of the instruction. Only the forms of this addressing
mode with W == 0 are available for this form of the STMinstruction.
<Rn> Specifies the base register used by <addr essi ng_node>. If R15is specified as
the base register <Rn>, the result is UNPREDICTABLE.
<regi sters> Isalist of registers, separated by commas and surrounded by { and }. It specifies
the set of registersto be stored by the STMinstruction.
The registers are stored in sequence, the lowest-numbered register to the lowest
memory address (st art _addr ess), through to the highest-numbered register to
the highest memory address (end_addr ess).
For each of i=0to 15, hit[i] inthe register_list field of theinstructionis1if Ri isin
thelist and O otherwise. If bitg[15:0] are all zero, the result is UNPREDICTABLE.
If R15 is specified in <r egi st er s> the value stored iSIMPLEMENTATION
DEFINED. For more details, see Reading the program counter on page A2-7.
n For an STMinstruction, indicates that User mode registers are to be stored.
Architecture version
All
Exceptions
Data Abort
A4-86 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Operation

i f ConditionPassed(cond) then
address = start_address
for i =0to 15
if register_list[i] ==
Menory[address, 4] = Ri _usr
address = address + 4
assert end_address == address - 4

Usage
STMis used to store the User mode registers when the processor is in a privileged mode (useful when
performing process swaps, and in instruction emulators).

Notes

Banked registers This instruction must not be followed by an instruction which accesses banked
registers (afollowing NOP is a good way to ensure this).

Writeback Setting bit 21 (the W bit) has UNPREDICTABLE results.

User and System mode
Thisinstruction is UNPREDICTABLE in User or System mode.

Baseregister mode For the purpose of address calculation, the base register is read from the current
processor mode registers, not the User mode registers.

Data abort For details of the effects of the instruction if a data abort occurs, see Effects of
data-aborted instructions on page A2-17.

Non wor d-aligned addresses
STMinstructions ignore the least significant two bits of addr ess.
Alignment If an implementation includes a System Control coprocessor (see Chapter B2 The

System Control Coprocessor), and alignment checking is enabled, an address with
bitg[1:0] !'= 0b00 causes an alignment exception.

Time order Thetime order of the accesses to individual words of memory generated by this
instruction is only defined in some circumstances. See Data accessesto
memory-mapped 1/0 on page A2-32 for details.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-87

ARM Instructions

4.1.44

STR

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1|I|P{U|O|W]|O Rn Rd addr_mode

The STR (Store Register) instruction stores aword from register <Rd> to the memory address calcul ated
by <addr essi ng_node>.

Syntax

STR{<cond>} <Rd>, <addressing node>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifiesthe sourceregister for the operation. If R15is specified for <Rd>, the value stored
iSIMPLEMENTATION DEFINED. For more details, see Reading the program counter on
page A2-7.

<addr essi ng_node>

Isdescribed in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page A5-18.
It determinesthel, P, U, W, Rn and addr_mode bits of the instruction.

The syntax of al forms of <addr essi ng_nopde> includes a base register <Rn>. Some
forms also specify that the instruction modifies the base register value (thisisknown as base
register writeback).

Architecture version

All

Exceptions

Data Abort

Operation

i f ConditionPassed(cond) then
Menory[address, 4] = Rd

Usage

Combined with a suitable addressing mode, STR stores 32-bit data from a general-purpose register into
memory. Using the PC as the base register allows PC-relative addressing, which facilitates
position-independent code.

A4-88

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Notes

Operand restrictions

If <addr essi ng_node> specifies base register writeback, and the same register is
specified for <Rd> and <Rn>, the results are UNPREDICTABLE.

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Non wor d-aligned addresses

STRinstructions ignore the least significant two bits of addr ess. So if these bits are not
0b00, the effects of STR are not precisely opposite to those of LDR.

Alignment If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor), and alignment checking isenabled, an addresswith bits[1:0] != 0b00
causes an aignment exception.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-89

ARM Instructions

4.1.45

STRB

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1|1|P{U|1|W]|O Rn Rd addr_mode

The STRB (Store Register Byte) instruction stores a byte from the least significant byte of register <Rd> to
the memory address calculated by <addr essi ng_node>.

Syntax

STR{<cond>} B <Rd>, <addressing_node>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the source register for the operation. If R15 is specified for <Rd>, the result is
UNPREDICTABLE.

<addr essi ng_node>

Isdescribed in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page A5-18.
It determinesthel, P, U, W, Rn and addr_mode bits of the instruction.

The syntax of al forms of <addr essi ng_nopde> includes a base register <Rn>. Some
forms also specify that the instruction modifies the base register value (thisisknown as base
register writeback).

Architecture version

All

Exceptions

Data Abort

Operation

i f ConditionPassed(cond) then
Menory[address, 1] = Rd[7: 0]

Usage

Combined with a suitable addressing mode, STRB writes the |east significant byte of a general-purpose
register to memory. Using the PC as the base register allows PC-relative addressing, which facilitates
position-independent code.

A4-90

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Notes

Operand restrictions

If <addr essi ng_node> specifies base register writeback, and the same register is
specified for <Rd> and <Rn>, the results are UNPREDICTABLE.

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-91

ARM Instructions

4.1.46 STRBT
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
cond 0 1|1|ofUuj1|1]|0 Rn Rd addr_mode

The STRBT (Store Register Byte with Translation) instruction stores a byte from the least significant byte

of register <Rd> to the memory address calculated by <post _i ndexed_addr essi ng_node>. If the

instruction is executed when the processor isin a privileged mode, the memory system is signaled to treat

the access as if the processor were in User mode.

Syntax

STR{<cond>} BT <Rd>, <post _indexed_addressi ng_node>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the source register for the operation. If R15 is specified for <Rd>, the result is
UNPREDICTABLE.

<post _i ndexed_addr essi ng_node>
Isdescribed in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page A5-18.
It determines the |, U, Rn and addr_maode bits of the instruction. Only post-indexed forms
of Addressing Mode 2 areavailablefor thisinstruction. These formshaveP==0and W ==
0, where P and W are hit[24] and bit[21] respectively. Thisinstruction uses P ==0and W
== 1 instead, but the addressing mode is the samein dl other respects.
The syntax of dl forms of <post _i ndexed_addr essi ng_node> includes abase
register <Rn>. All forms also specify that the instruction modifies the base register value
(thisis known as base register writeback).

Architecture version

All

Exceptions

Data Abort

Operation

i f ConditionPassed(cond) then

Menory[address, 1] = Rd[7: 0]
A4-92 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Usage

STRBT can be used by a (privileged) exception handl er that isemulating amemory accessinstructionwhich
would normally execute in User mode. The accessis restricted as if it had User mode privilege.

Notes

User mode If thisinstruction is executed in User mode, an ordinary User mode access is performed.

Operand restrictions
If the same register is specified for <Rd> and <Rn>, the results are UNPREDICTABLE.

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-93

ARM Instructions

4.1.47 STRH
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 0 0 O|P|U|I |W|O Rn Rd addr mode|(1 O 1 1|addr mode
The STRH (Store Register Halfword) instruction stores a ha fword from the least significant halfword of
register <Rd> to the memory address calculated by <addr essi ng_node>. If the address is not
halfword-aligned, the result is UNPREDICTABLE.
Syntax
STR{<cond>}H <Rd>, <addressing_node>
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Rd> Specifies the source register for the operation. If R15 is specified for <Rd>, the result is
UNPREDICTABLE.
<addr essi ng_node>
Is described in Addressing Mode 3 - Miscellaneous Loads and Sores on page A5-34. It
determinesthe P, U, I, W, Rn and addr_maode bits of the instruction.
The syntax of al forms of <addr essi ng_nopde> includes a base register <Rn>. Some
forms also specify that the instruction modifies the base register value (thisisknown as base
register writeback).
Architecture version
Version 4 and above
Exceptions
Data Abort
Operation
i f ConditionPassed(cond) then
if address[0] ==
data = Rd[15: 0]
else /* address[0] == 1 */
data = UNPREDI CTABLE
Menory[addr ess, 2] = data
A4-94 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Usage

Combined with asuitable addressing mode, STRH allows 16-bit data from a general-purpose register to be
stored to memory. Using the PC as the base register allows PC-relative addressing, to facilitate
position-independent code.

Notes

Operand restrictions If <addr essi ng_node> specifies base register writeback, and the sameregister
is specified for <Rd> and <Rn>, the results are UNPREDICTABLE.

Data abort For details of the effects of the instruction if a data abort occurs, see Effects of
data-aborted instructions on page A2-17.

Non halfwor d-aligned addr esses
If the store addressis not ha fword-aigned, the stored value is UNPREDICTABLE.

Alignment If an implementation includes a System Control coprocessor (see Chapter B2 The
System Control Coprocessor), and alignment checking is enabled, an address with
bit[0] != 0 causes an alignment exception.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-95

ARM Instructions

4.1.48

STRT

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1|1|ofjU|0O|1l]|0 Rn Rd addr_mode

The STRT (Store Register with Trand ation) instruction stores aword from register <Rd> to the memory
address calculated by <post _i ndexed_addr essi ng_node>. If the instruction is executed when
the processor isin a privileged mode, the memory system is signaled to treat the access as if the processor
was in User mode.

Syntax
STR{<cond>} T <Rd>, <post_indexed_addressi ng_node>
where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifiesthe sourceregister for the operation. If R15is specified for <Rd>, the value stored
iSIMPLEMENTATION DEFINED. For more details, see Reading the program counter on
page A2-7.

<post _i ndexed_addr essi ng_node>

Isdescribed in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page A5-18.
It determinesthe |, U, Rn and addr_maode bits of the instruction. Only post-indexed forms
of Addressing Mode 2 areavailablefor thisinstruction. These formshaveP==0and W ==
0, where P and W are hit[24] and bit[21] respectively. Thisinstruction uses P ==0 and W
== 1instead, but the addressing mode is the samein dl other respects.

The syntax of dl forms of <post _i ndexed_addr essi ng_node> includes abase
register <Rn>. All forms also specify that the instruction modifies the base register value
(thisis known as base register writeback).

Architecture version

All

Exceptions

Data Abort

Operation

i f ConditionPassed(cond) then
Menory[address, 4] = Rd

A4-96

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Usage

STRT can be used by a (privileged) exception handler that is emulating a memory access instruction that
would normally execute in User mode. The accessis restricted as if it had User mode privilege.

Notes

User mode If thisinstruction is executed in User mode, an ordinary User mode access is performed.

Operand restrictions
If the same register is specified for <Rd> and <Rn>, the results are UNPREDICTABLE.

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Alignment If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor), and alignment checking isenabled, an addresswith bits[1:0] != 0b00
causes an aignment exception.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-97

ARM Instructions

4.1.49 SUB
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
cond 00 1|00 1409 Rn Rd shifter_operand
The SUB (Subtract) instruction subtracts the value of <shi f t er _oper and> from the value of register
<Rn>, and stores the result in the destination register <Rd>. The condition code flags are optionally
updated, based on the resullt.
Syntax
SUB{ <cond>}{S} <Rd>, <Rn>, <shifter_operand>
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
S Setsthe S hit (bit[20]) in the ingtruction to 1 and specifiesthat the instruction updates the

CPSR. If Sisomitted, the Sbit is set to 0 and the CPSR is not changed by the instruction.

Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, th&landZ flags are set according to the result of the subtraction,
and theCandV flags are set according to whether the subtraction generated a borrow
(unsigned underflow) and a signed overflow, respectively. The rest of the CPSR is
unchanged.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of
the instruction i®NPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register of the instruction.
<Rn> Specifies the register that contains the first operand for the subtraction.
<shi fter_operand>

Specifies the second operand for the subtraction. The options for this operand are described

in Addressing Mode 1 - Data-processing operands on page A5-2, including how each

option causes the | bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the

instruction.

If the | bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction &t

Instead, seExtending theinstruction set on page A3-27 to determine which instruction it is.

Architecture version
All
A4-98 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Exceptions

None

Operation

i f ConditionPassed(cond) then
Rd = Rn - shifter_operand
if S==1and Rd == R15 then

CPSR = SPSR
else if S ==1 then
N Flag = Rd[31]
Z Fl ag if Rd == 0 then 1 else 0

C Fl ag NOT BorrowFr om(Rn - shifter_operand)
V Flag = OverflowFrom(Rn - shifter_operand)

Usage
SUB isused to subtract one value from another to produce athird. To decrement aregister value (in Rx) use:
SUBS Ri, R, #1

SUBS is useful as aloop counter decrement, as the loop branch can test the flags for the appropriate
termination condition, without the need for a compare instruction:

CWP Rx, #0
This both decrements the loop counter in Ri and checks whether it has reached zero.

The form of thisinstruction with the PC asits destination register and the S bit set can be used to return from
interrupts and various other types of exception. See Exceptions on page A2-13 for more details.

Notes

C flag If Sisspecified, the Cflagis set to:
1 if no borrow occurs
0 if aborrow does occur.

In other words, the C flag is used as a NOT (borrow) flag. This inversion of the borrow
condition is usually compensated for by subsequent instructions. For example:

. TheSBCandRSCinstructions use the C flag as a NOT(borrow) operand, performing
a normal subtraction if C == 1 and subtracting one more than usual if C == 0.

. The HS (unsigned higher or same) and LO (unsigned lower) conditions are
equivalent to CS (carry set) and CC (carry clear) respectively.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-99

ARM Instructions

4.1.50 Swi
31 28 27 26 25 24 23 0
cond 1111 immed_24
The SW (Software Interrupt) instruction causes a SWI exception (see Exceptions on page A2-13).
Syntax
SW {<cond>} <i med_24>
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<i nmed_24> Isa24-bitimmediate vauethat is put into bits[23:0] of theinstruction. Thisvalueisignored
by the ARM processor, but can be used by an operating system SWI exception handler to
determine what operating system service is being requested (see Usage on page A4-101
below for more details).
Architecture version
All
Exceptions
Software interrupt
Operation
i f ConditionPassed(cond) then
R14_svc = address of next instruction after the SW instruction
SPSR_svc = CPSR
CPSR[4: 0] = 0b10011 /* Enter Supervisor npde */
CPSR] 5] =0 /* Execute in ARMstate */
/* CPSR[6] is unchanged */
CPSR[7] =1 /* Disable normal interrupts */
i f high vectors configured then
PC = OxFFFF0008
el se
PC = 0x00000008
A4-100 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Usage

The SW instruction isused as an operating system service call. The method used to select which operating
system service isrequired is specified by the operating system, and the SWI exception handler for the
operating system determines and provides the requested service. Two typical methods are:

. The 24-bit immediate in the instruction specifies which service is required, and any parameters
needed by the selected service are passed in general-purpose registers.

. The 24-bitimmediate in the instruction is ignored, general-purpose register RO is used to select which
service is wanted, and any parameters needed by the selected service are passed in other
general-purpose registers.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-101

ARM Instructions

4.1.51

SWP

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11

8 7 6 5 4 3 0

cond 000O10O0O0O Rn Rd SBz

1001 Rm

The SWP (Swap) instruction swaps aword between registers and memory. SWP loads a word from the
memory address given by the value of register <Rn>. The value of register <R is then stored to the
memory address given by the value of <Rn>, and the original loaded vaue is written to register <Rd>. If
the same register is specified for <Rd> and <R, thisinstruction swaps the value of the register and

the value at the memory address.

Syntax

SWP{ <cond>}

<Rd>, <Rnp, [<Rn>]

where:

<cond>

<Rd>
<Rn>
<Rn>

Is the condition under which the instruction is executed. The conditions are defined in The

condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register for the instruction.
Contains the value that is stored to memory.

Contains the memory address to load from.

Architecture version

Version 3 and above, plus version 2a

Exceptions

Data Abort

Operation

i f ConditionPassed(cond) then

if Rn[1:0] == 0b0OO then
tenp = Menory[Rn, 4]
else if RA[1:0] == 0bO1 then
tenp = Menory[Rn, 4] Rotate_Right 8
else if RA[1:0] == 0b10 then
tenp = Menory[Rn, 4] Rotate_Ri ght
else /* Rn[1:0] == 0bl1l */
tenp = Menory[Rn, 4] Rot at e_Ri ght

16
24

Menmory[Rn, 4] =
Rd = tenp

Rm

A4-102

Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

ARM Instructions

Usage

The SWP instruction can be used to implement semaphores. For sample code, see Semaphore instructions
on page A9-11.

Notes

Non wor d-aligned addresses

If the addressis not word-aligned, the loaded value is rotated right by 8 times the
value of Rn[1:0]. The stored value is not rotated.

Use of R15 If R15 is specified for <Rd>, <Rn>, or <Rn®, the result is UNPREDICTABLE.

Operand restrictions If the sameregister is specified as <Rn> and <R, or <Rn> and <Rd>, the result
iS UNPREDICTABLE.

Data abort If adataabort is signaled on either the load access or the store access, the loaded
valueisnot written to <Rd>. If adata abort is signaled on the load access, the store
access does not occur.

Alignment If an implementation includes a System Control coprocessor (see Chapter B2 The
System Control Coprocessor), and alignment checking is enabled, an address with
bitg[1:0] !'= 0b00 causes an alignment exception.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-103

ARM Instructions

4.1.52 SWPB

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 00010100 Rn Rd SBz 1001 Rm
The SWPB (Swap Byte) instruction swaps a byte between registers and memory. SWPB |loads a byte from
the memory address given by the value of register <Rn>. The value of the least significant byte of register
<R isstored to the memory address given by <Rn>, the original loaded va ue is zero-extended to a 32-bit
word, and the word is written to register <Rd>. If the same register is specified for <Rd> and <Rn®, this
instruction swaps the value of the least significant byte of the register and the byte value at the memory
address.
Syntax
SWP{<cond>}B <Rd>, <Rnp, [<Rn>]
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Rd> Specifies the destination register for the instruction.
<Rn® Contains the value that is stored to memory.
<Rn> Contains the memory address to load from.
Architecture version
Version 3 and above, plus version 2a
Exceptions
Data Abort
Operation
i f ConditionPassed(cond) then
tenp = Menory[Rn, 1]
Menory[Rn, 1] = Rn{ 7: 0]
Rd = tenp

Usage
The SWPB instruction can be used to implement semaphores, in a similar manner to that shown for SWP
instructionsin Semaphore instructions on page A9-11.

A4-104 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Notes
Use of R15 If R15 is specified for <Rd>, <Rn>, or <Rn®, the result is UNPREDICTABLE.

Operand restrictions |If the sameregister is specified as <Rn> and <R, or <Rn> and <Rd>, the result
iS UNPREDICTABLE.

Data abort If adataabort is signaled on either the load access or the store access, the loaded
valueisnot written to <Rd>. If adata abort is signaled on the load access, the store
access does not occur.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-105

ARM Instructions

4.1.53 TEQ
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
cond 0 0|I|2 00112 Rn SBZ shifter_operand
The TEQ (Test Equivalence) instruction compares aregister value with another arithmetic value. The
condition flags are updated, based on the result of logically exclusive-ORing the two values, so that
subsequent instructions can be conditionally executed.
Syntax
TEQ{<cond>} <Rn>, <shifter_operand>
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Rn> Specifies the register that contains the first operand for the comparison.
<shi fter_operand>
Specifiesthe second operand for the comparison. The optionsfor thisoperand are described
in Addressing Mode 1 - Data-processing operands on page A5-2, including how each
option setsthe | bit (bit[25]) and the shifter_operand bits (bitg11:0]) in the instruction.
If thel bitis0 and both bit[7] and bit[4] of shifter_operand are 1, theinstructionis not TEQ
Instead, see Extending the instruction set on page A3-27 to determinewhich instructionit is.
Architecture version
All
Exceptions
None
Operation
i f ConditionPassed(cond) then
alu_out = Rn ECR shifter_operand
N Flag = al u_out[31]
Z Flag = if alu_out == 0 then 1 else O
C Flag = shifter_carry_out
V Flag = unaffected
Usage
TEQisused to test if two vaues are equal, without affecting the V flag (as CMP does). The C flag isalso
unaffected in many cases. TEQis also useful for testing whether two values have the same sign. After the
comparison, the N flag is the logical Exclusive OR of the sign hits of the two operands.
A4-106 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

4154 TST

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0|I|21 0001 Rn SBZ shifter_operand

The TST (Test) instruction compares aregister value with another arithmetic value. The condition flags are
updated, based on the result of logically ANDing the two values, so that subsequent instructions can be
conditionally executed.

Syntax

TST{ <cond>} <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rn> Specifies the register that contains the first operand for the comparison.

<shi ft er _operand>

Specifies the second operand for the comparison. The options for this operand are described
in Addressing Mode 1 - Data-processing operands on page A5-2, including how each
option causes the | bit (bit[25]) and the shifter_operand bits (bitg[11:0]) to be set in the
instruction.

If thel bitis0 and both bit[7] and bit[4] of shifter_operand are 1, theinstructionisnot TST.
Instead, see Extending theinstruction set on page A3-27 to determinewhich instructionit is.

Architecture version

All

Exceptions

None

Operation

i f ConditionPassed(cond) then
alu_out = Rn AND shifter_operand

N Flag = al u_out[31]

Z Flag = if alu_out == 0 then 1 else O
C Flag = shifter_carry_out

V Flag = unaffected

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-107

ARM Instructions

Usage

TST isused to determine whether a particular subset of register bitsincludes at |east one set hit. A very
common use for TST isto test whether asingle bit is set or clear.

A4-108 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

4.1.55

ARM Instructions

UMLAL

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 000O010O0T1|S RdHi RdLo Rs 1001 Rm

The UMLAL (Unsigned Multiply Accumulate Long) instruction multiplies the unsigned value of register
<Rn® with the unsigned value of register <Rs > to produce a 64-bit product. This product is added to the
64-bit value held in <RdH > and <RdLo>, and the sum is written back to <RdHi > and <RdLo>. The
condition code flags are optionally updated, based on the resuilt.

Syntax

UMLAL{ <cond>}{S} <RdLo>, <RdHi >, <Rnmp, <Rs>

where:

<cond> Is the condition under which theinstruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

S Causesthe S hit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR by setting the N and Z flags according to the result of the
multiply-accumulate. If S is omitted, the S bit of the instruction is set to 0 and the entire
CPSR is unaffected by the instruction.

<RdLo> Supplies the lower 32 hits of the value to be added to the product of <Rm> and <Rs >, and
is the destination register for the lower 32 bits of the result.

<RdHi > Supplies the upper 32 hits of the value to be added to the product of <Rm> and <Rs >, and
is the destination register for the upper 32 bits of the result.

<Rn® Holds the signed val ue to be multiplied with the value of <Rs>.

<Rs> Holds the signed value to be multiplied with the value of <Rm>.

Architecture version

All M variants

Exceptions

None

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-109

ARM Instructions

Operation

i f ConditionPassed(cond) then
RdLo = (Rm* Rs)[31:0] + RdLo /* Unsigned nmultiplication */
RdH = (Rm* Rs)[63:32] + RdH + CarryFrom((Rm* Rs)[31:0] + RdLo)
if S==1 then

N Flag = RdHi [31]
Z Flag = if (RAH == 0) and (RdLo == 0) then 1 else 0
C Flag = unaffected /* See "C and V flags" note */

V Flag = unaffected /* See "C and V flags" note */

Usage

UMLAL multiplies unsigned variables to produce a 64-bit result, which is added to the 64-bit value in the
two destination general -purpose registers. The result iswritten back to the two destination general -purpose
registers.

Notes

Useof R15 Specifying R15 for register <RdHi >, <RdLo>, <R, or <Rs> has
UNPREDICTABLE results.

Operand restriction <RdHi >, <RdLo>, and <Rn> must be three distinct registers, or the results are
UNPREDICTABLE.

Early termination If the multiplier implementation supports early termination, it must beimplemented
on the value of the <Rs > operand. The type of early termination used (signed or
unsigned) iS IMPLEMENTATION DEFINED.

C and V flags The UMLAL S ingtruction is defined to leave the C and V flags unchanged in ARM
architecture version 5 and above. In earlier versions of the architecture, the values
of the C and V flags were UNPREDICTABLE after a UMLAL S instruction.

A4-110 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

4.1.56

ARM Instructions

UMULL

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 000O01O00|S RdHi RdLo Rs 1001 Rm

The UMULL (Unsigned Multiply Long) instruction multiplies the unsigned value of register <Rm> with the
unsigned value of register <Rs > to produce a 64-bit result. The upper 32 bits of the result are stored in
<RdHi >. Thelower 32 bitsare stored in <RdLo>. The condition code flags are optionally updated, based
on the 64-hit result.

Syntax

UMULL{ <cond>}{S} <RdLo>, <RdHi >, <Rnp, <Rs>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

S Causesthe S hit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR by setting the N and Z flags according to the result of the multiplication.
If Sisomitted, the S bit of the instruction is set to 0 and the entire CPSR is unaffected by
the instruction.

<RdLo> Stores the lower 32 bits of the result.

<RdHi > Stores the upper 32 bits of the result.

<Rn® Holds the signed value to be multiplied with the value of <Rs>.

<Rs> Holds the signed val ue to be multiplied with the value of <Rm>.

Architecture version

All M variants

Exceptions

None

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-111

ARM Instructions

Operation

i f ConditionPassed(cond) then
RdH = (Rm* Rs)[63:32] /* Unsigned nultiplication */
RdLo = (Rm* Rs)[31:0]
if S==1then

N Flag = RdHi [31]
Z Flag = if (RAH == 0) and (RdLo == 0) then 1 else 0
C Flag = unaffected /* See "C and V flags" note */

V Flag = unaffected /* See "C and V flags" note */

Usage

UMULL multiplies unsigned variables to produce a 64-bit result in two general-purpose registers.

Notes

Useof R15 Specifying R15 for register <RdHi >, <RdLo>, <R, or <Rs> has
UNPREDICTABLE results.

Operand restriction <RdHi >, <RdLo>, and <Rn> must be three distinct registers, or the results are
UNPREDICTABLE.

Early termination If the multiplier implementation supports early termination, it must beimplemented
on the value of the <Rs > operand. The type of early termination used (signed or
unsigned) iS IMPLEMENTATION DEFINED.

C and V flags The UMULLS ingtruction is defined to leave the C and V flags unchanged in ARM
architecture version 5 and above. In earlier versions of the architecture, the values
of the C and V flags were UNPREDICTABLE after a UMJLL S instruction.

A4-112 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

4.2 ARM instructions and architecture versions

Table 4-1 shows which ARM instructions are present in each current ARM architecture version.

Table 4-1 ARM instructions by architecture version

v5, vbxM, V5TE,

Instruction v3, v3M v4, vaxM VAT, v4TxM V5T, v5TXM V5TEXP
ADC Yes Yes Yes Yes Yes
ADD Yes Yes Yes Yes Yes
AND Yes Yes Yes Yes Yes
B Yes Yes Yes Yes Yes
Bl C Yes Yes Yes Yes Yes
BKPT No No No Yes Yes
BL Yes Yes Yes Yes Yes
BLX (both forms) No No No Yes Yes
BX No No Yes Yes Yes
CDP Yes Yes Yes Yes Yes
CDP2 No No No Yes Yes
CL.z No No No Yes Yes
CWN Yes Yes Yes Yes Yes
CcwP Yes Yes Yes Yes Yes
EOR Yes Yes Yes Yes Yes
LDC Yes Yes Yes Yes Yes
LDC2 No No No Yes Yes
LDM(all forms) Yes Yes Yes Yes Yes
LDR Yes Yes Yes Yes Yes
LDRB Yes Yes Yes Yes Yes
LDRD No No No No Only V5TE
LDRBT Yes Yes Yes Yes Yes

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-113

ARM Instructions

Table 4-1 ARM instructions by architecture version (Continued)

v5, v5xM, V5TE,

Instruction v3, v3M v4, v4xM VAT, v4TxM V5T, v5TxM VSTExP
LDRH No Yes Yes Yes Yes
LDRSB No Yes Yes Yes Yes
LDRSH No Yes Yes Yes Yes

LDRT Yes Yes Yes Yes Yes

MCR Yes Yes Yes Yes Yes

MCR2 No No No Yes Yes

MCRR No No No No Only V5TE
M_A Yes Yes Yes Yes Yes

MoV Yes Yes Yes Yes Yes

MRC Yes Yes Yes Yes Yes

MRC2 No No No Yes Yes

MRRC No No No No Only V5TE
MRS Yes Yes Yes Yes Yes

MSR Yes Yes Yes Yes Yes

MUL Yes Yes Yes Yes Yes

MVN Yes Yes Yes Yes Yes

ORR Yes Yes Yes Yes Yes

PLD No No No No Only V5TE
QADD No No No No Yes
QDADD No No No No Yes
QDbSuUB No No No No Yes

QsuB No No No No Yes

RSB Yes Yes Yes Yes Yes

RSC Yes Yes Yes Yes Yes

A4-114 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Instructions

Table 4-1 ARM instructions by architecture version (Continued)

v5, vbxM, V5TE,

Instruction v3, v3M v4, va4xM VAT, v4TxM V5T, v5TXM V5TEXP
SBC Yes Yes Yes Yes Yes
SMLAL Only v3M Only v4 Only v4T Only v5/V5T Yes
SMLA<X><y> No No No No Yes
SMLAL<X><y> No No No No Yes
SMLAVyY > No No No No Yes
SMULL Only v3M Only v4 Only v4T Only v5/V5T Yes
SMUL<x><y> No No No No Yes
SMULWy > No No No No Yes
STC Yes Yes Yes Yes Yes
STC2 No No No Yes Yes
STM(both forms) Yes Yes Yes Yes Yes
STR Yes Yes Yes Yes Yes
STRB Yes Yes Yes Yes Yes
STRBT Yes Yes Yes Yes Yes
STRD No No No No Only V5TE
STRH No Yes Yes Yes Yes
STRT Yes Yes Yes Yes Yes
SUB Yes Yes Yes Yes Yes
SwW Yes Yes Yes Yes Yes
SWp Yes Yes Yes Yes Yes
SWPB Yes Yes Yes Yes Yes
TEQ Yes Yes Yes Yes Yes

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A4-115

ARM Instructions

Table 4-1 ARM instructions by architecture version (Continued)

v5, v5xM, V5TE,

Instruction v3, v3M v4, v4xM VAT, v4TxM V5T, v5TxM VSTExP
TST Yes Yes Yes Yes Yes
UMLAL Only v3M Only v4 Only v4T Only v5/IV5T Yes
UMULL Only v3M Only v4 Only v4T Only v5/V5T Yes

A4-116 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter A5
ARM Addressing Modes

This chapter describes each of the five addressing modes used with ARM instructions. The chapter contains
the following sections:

. Addressing Mode 1 - Data-processing operands on page A5-2

. Addressing Mode 2 - Load and Sore Word or Unsigned Byte on page A5-18
. Addressing Mode 3 - Miscellaneous Loads and Stores on page A5-34

. Addressing Mode 4 - Load and Sore Multiple on page A5-48

. Addressing Mode 5 - Load and Sore Coprocessor on page A5-56.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-1

ARM Addressing Modes

5.1 Addressing Mode 1 - Data-processing operands

There are 11 addressing modes used to calculate the<shi f t er _oper and>in an ARM data-processing
instruction. The general instruction syntax is:

<opcode>{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

where<shi f t er _oper and> isone of the following 11 options:

1.

10.

11.

#<i mredi at e>

See Data-processing operands - Immediate on page A5-6.

<R

See Data-processing operands - Register on page A5-8.

<Rn», LSL #<shift_ imp

See Data-processing operands - Logical shift left by immediate on page A5-9.
<RmP, LSL <Rs>

See Data-processing operands - Logical shift left by register on page A5-10.
<Rn>, LSR #<shift_ imp

See Data-processing operands - Logical shift right by immediate on page A5-11.
<RmP, LSR <Rs>

See Data-processing operands - Logical shift right by register on page A5-12.
<Rn», ASR #<shift_ imp

See Data-processing operands - Arithmetic shift right by immediate on page A5-13.
<RmP, ASR <Rs>

See Data-processing operands - Arithmetic shift right by register on page A5-14.
<RnP, ROR #<shift _imp

See Data-processing operands - Rotate right by immediate on page A5-15.
<RmP, ROR <Rs>

See Data-processing operands - Rotate right by register on page A5-16.

<RmP, RRX

See Data-processing operands - Rotate right with extend on page A5-17.

A5-2

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

511

ARM Addressing Modes

Encoding

The following diagrams show the encodings for this addressing mode:

32-bit immediate

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 0

cond 0(0|1| opcode |S Rn Rd rotate_imm immed_8

Immediate shifts

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 0|0| opcode |S Rn Rd shift_imm | shift | 0 Rm

Register shifts

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 0 0/0| opcode |S Rn Rd Rs 0| shift | 1 Rm

opcode Specifies the operation of the instruction.

Shit Indicates that the instruction updates the condition codes.

Rd Specifies the destination register.

Rn Specifies the first source operand register.

Bitg11:0] Thefieldswithin bits[11:0] arecollectively called ashifter operand. Thisisdescribedin The
shifter operand on page A5-4.

Bit[25] Isreferred to asthe | bit, and is used to distinguish between an immediate shifter operand
and a register-based shifter operand.

If al three of the following bits have the va ues shown, the instruction is not a data-processing instruction,
but liesin the arithmetic or Load/Store instruction extension space:

bit[25] == 0
bit[4] ==1
bit[7] ==1

See Extending the instruction set on page A3-27 for more information.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-3

ARM Addressing Modes

5.1.2 The shifter operand
Aswell asproducing the shifter operand, the shifter produces a carry-out which some instructions writeinto
the Carry Flag. The default register operand (register Rm specified with no shift) usesthe form register shift
|eft by immediate, with the immediate set to zero.
The shifter operand takes one of the following three basic formats.
Immediate operand value
An immediate operand value is formed by rotating an 8-bit constant (in a 32-bit word) by an even number
of bits (0,2,4,8...26,28,30). Therefore, each instruction contains an 8-bit constant and a 4-bit rotate to be
applied to that constant.
Some valid constants are:

OxFF, 0x104, OxFFO, OxFF00, OxFF000, OxFFO00000, 0OxFOOOO0O0F
Some invalid constants are:
0x101, 0x102, OxFF1, OxFF04, OxFF003, OxFFFFFFFF, OxFOO0001F

For example:
MoV RO, #0 ; Move zero to RO
ADD R3, R3, #1 ; Add one to the value of register 3
CwP R7, #1000 ; Conpare value of R7 with 1000
BI C R9, R8, #0xFF0O0 ; Clear bits 8-15 of R8 and store in R9
Register operand value
A register operand value is simply the value of aregister. The value of theregister is used directly asthe
operand to the data-processing instruction. For example:
MoV R2, RO ; Move the value of RO to R2
ADD R4, R3, R2 ; Add R2 to R3, store result in R4
CwP R7, R8 ; Conpare the value of R7 and R8
Shifted register operand value
A shifted register operand value is the value of aregister, shifted (or rotated) beforeit is used as the
data-processing operand. There are five types of shift:
ASR Arithmetic shift right
LSL Logical shift left
LSR Logical shift right
ROR Rotate right
RRX Rotate right with extend.

A5-4 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

The number of bitsto shift by is specified either asan immediate or asthe value of aregister. For example:

MoV R2, RO, LSL #2 ; Shift RO left by 2, wite to R2, (R2=R0x4)
ADD R9, R5, R5, LSL #3 ; RR=R5 + R5 x 8or RO =R5 x 9

RSB R9, R5, R5, LSL #3 ; RR=R5E x 8- RBor RO =R5 x7

SuB R10, R9, R8, LSR #4 ; RI0O = RO - R8/ 16

MoV R12, R4, ROR ; RI2 = R4 rotated right by value of R3

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-5

ARM Addressing Modes

5.1.3 Data-processing operands - Immediate
31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 0
cond 0 0 1| opcode |S Rn Rd rotate_imm immed_8
This data-processing operand provides a constant (defined in the instruction) operand to a data-processing
instruction.
Theshi ft er _oper and value isformed by rotating (to the right) an 8-bit immediate value to any even
bit positionin a 32-bit word. If therotateimmediateis zero, the carry-out from the shifter isthe value of the
C flag, otherwise, it is set to bit[31] of the value of <shi ft er _oper and>.
Syntax
#<i medi at e>
where:
<i nmedi at e> Specifies theimmediate constant wanted. It is encoded in the instruction as an 8-bit
immediate (immed_8) and a4-bitimmediate (rotate_imm), so that <i nredi at e>
is equal to theresult of rotating immed_8 right by (2 * rotate_imm) bits.
Architecture version
All
Operation
shifter_operand = imed_8 Rotate_Right (rotate_inm?* 2)
if rotate_imm == 0 then
shifter_carry_out = C flag
else /* rotate_imm!= 0 */
shifter_carry_out = shifter_operand[31]
Notes
L egitimate immediates
Not all 32-bitimmediates are legitimate. Only those that can be formed by rotating an 8-bit
immediate right by an even amount are valid 32-bit immediates for this format.
Encoding Some values of <i nmedi at e> have more than one possible encoding. For example, a
value of 0x3F0 could be encoded as:
immed_8 == 0x 3F, rotate_ imm == OXE
or as.
immed_8 == Ox FC, rotate_imm == OxF
When more than one encoding is available, an assembler needs to choose the correct one to
use, as follows:
A5-6 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

. If <i medi at e> lies in the range 0 t@x FF, an encoding with rotate_imm == 0 is
available. The assembler must choose that encoding. (Choosing another encoding
would affect how some instructions set the C flag.)

. Otherwise, it is recommended that the encoding with the smallest value of
rotate_imm is chosen. (This choice does not affect instruction functionality.)

For more precise control of the encoding, the instruction fields can be specified directly by
using the syntax:

#<i med_8>, <rotate_anount>

where<r ot at e_anount > = 2 * rotate_imm.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A5-7

ARM Addressing Modes

5.1.4 Data-processing operands - Register
31 28 27 26 25 24 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 0O O O| opcode |S Rn Rd 0 00O0O0O0O0O Rm

This data-processing operand provides the value of aregister directly. The carry-out from the shifter isthe

C flag.

Syntax

<R

where:

<Rn® Specifies the register whose value is the instruction operand.

Architecture version

All

Operation

shifter_operand = Rm

shifter_carry_out = C Fl ag

Notes

Encoding Thisingtruction is encoded as alogical shift left by immediate (see Data-processing
operands - Logical shift left by immediate on page A5-9) with ashift of zero (shift_imm ==
0).

Useof R15 If R15is specified asregister Rm or Rn, the value used is the address of the current
instruction plus 8.

A5-8 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

5.15 Data-processing operands - Logical shift left by immediate

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 0 O| opcode |S Rn Rd shift_imm |0 O O Rm

Thisdata-processing operand is used to provide either the value of aregister directly (loneregister operand,
as described in Data-processing operands - Register on page A5-8), or the vaue of aregister shifted left
(multiplied by a constant power of two).

Thisinstruction operand isthe value of register Rm, logically shifted |eft by animmediate valuein therange
0to 31. Zeros are inserted into the vacated hit positions. The carry-out from the shifter isthe last bit shifted
out, or the C flag if no shift is specified.

Syntax

<RnP», LSL #<shift i mp

where:

<Rn® Specifies the register whose value isto be shifted.
LSL Indicates alogical shift left.

<shi ft_i mm Specifies the shift. Thisisavalue between 0 and 31.

Architecture version

All

Operation

if shift_imm== 0 then /* Register Operand */
shifter_operand = Rm
shifter_carry_out = C Flag

else /* shift_imm> 0 */
shifter_operand = Rm Logi cal _Shift_Left shift_imm
shifter_carry_out = Rn{32 - shift_imi

Notes

Default shift If thevalue of <shi ft_i nm> == 0, the operand can be written as just <Rm> (see
Data-processing operands - Register on page A5-8).

Useof R15 If R15isspecified asregister Rm or Rn, the value used is the address of the current
instruction plus 8.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-9

ARM Addressing Modes

5.1.6

Data-processing operands - Logical shift left by register

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0O O O| opcode |S Rn Rd Rs 0001 Rm

Thisdataprocessing operand isused to provide the val ue of aregister multiplied by avariable power of two.

Thisinstruction operand isthe value of register Rm, logically shifted left by the valuein the least significant
byte of register Rs. Zeros areinserted into the vacated bit positions. The carry-out from the shifter isthelast
bit shifted out, which is zero if the shift amount is more than 32, or the C flag if the shift amount is zero.

Syntax

<Rm>, LSL <Rs>

where:

<Rn® Specifies the register whose value is to be shifted.
LSL Indicates alogical shift |eft.

<Rs> Isthe register containing the value of the shift.

Architecture version

All

Operation

if Rs[7:0] == 0 then
shifter_operand = Rm
shifter_carry_out = C Fl ag

else if Rs[7:0] < 32 then
shifter_operand = Rm Logi cal _Shift_Left Rs[7:0]
shifter_carry_out = Rni{32 - Rs[7:0]]

else if Rs[7:0] == 32 then
shifter_operand = 0
shifter_carry_out = RnfO0]

else /* Rs[7:0] > 32 */
shifter_operand = 0
shifter_carry_out =0

Notes

Useof R15 Specifying R15 asregister Rd, register Rm, register Rn, or register Rs has UNPREDICTABLE
results.

A5-10

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

5.1.7 Data-processing operands - Logical shift right by immediate

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 0 O| opcode |S Rn Rd shift_imm |0 1 O Rm

This data-processing operand is used to provide the unsigned value of aregister shifted right (divided by a
constant power of two).

Thisinstruction operand is the value of register Rm, logically shifted right by an immediate value in the
range 1 to 32. Zeros are inserted into the vacated bit positions. The carry-out from the shifter isthelast bit
shifted out.

Syntax

<RnP, LSR #<shift i mp

where:

<Rn® Specifies the register whose value isto be shifted.

LSR Indicates alogical shift right.

<shi ft_i mm Specifies the shift. Thisisan immediate value between 1 and 32. (A shift by 32is

encoded by shift_imm==0.)

Architecture version

All

Operation

if shift_imm== 0 then
shifter_operand = 0
shifter_carry_out = Rnf31]
else /* shift_imm> 0 */
shifter_operand = Rm Logi cal _Shift_Right shift_imm
shifter_carry_out = Rafshift_imm- 1]

Notes

Useof R15 If R15isspecified asregister Rm or Rn, the value used is the address of the current
instruction plus 8.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-11

ARM Addressing Modes

5.1.8

Data-processing operands - Logical shift right by register

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0O O O| opcode |S Rn Rd Rs 0011 Rm

This data-processing operand is used to provide the unsigned value of aregister shifted right (divided by a
variable power of two).

Itisproduced by the value of register Rm, logically shifted right by the value in the least significant byte of
register Rs. Zeros are inserted into the vacated bit positions. The carry-out from the shifter isthe last bit
shifted out, which is zero if the shift amount is more than 32, or the C flag if the shift amount is zero.

Syntax

<Rm>, LSR <Rs>

where:

<Rn® Specifies the register whose value is to be shifted.
LSR Indicates alogical shift right.

<Rs> Isthe register containing the value of the shift.

Architecture version

All

Operation

if Rs[7:0] == 0 then
shifter_operand = Rm
shifter_carry_out = C Fl ag

else if Rs[7:0] < 32 then
shifter_operand = Rm Logi cal _Shift_Ri ght Rs[7:0]
shifter_carry_out = Ri{Rs[7:0] - 1]

else if Rs[7:0] == 32 then
shifter_operand = 0
shifter_carry_out = Rnf31]

else /* Rs[7:0] > 32 */
shifter_operand = 0
shifter_carry_out =0

Notes

Useof R15 Specifying R15 asregister Rd, register Rm, register Rn, or register Rs has UNPREDICTABLE
results.

A5-12

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

5.1.9 Data-processing operands - Arithmetic shift right by immediate

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 0 O| opcode |S Rn Rd shift_imm |1 0 O Rm

This data-processing operand is used to provide the signed vaue of aregister arithmetically shifted right
(divided by a constant power of two).

Thisingtruction operand is the value of register Rm, arithmetically shifted right by an immediate valuein
therange 1 to 32. The sign bit of Rm (Rm[31]) isinserted into the vacated bit positions. The carry-out from
the shifter is the last bit shifted out.

Syntax

<RnP, ASR #<shift i mp

where:

<Rn® Specifies the register whose value isto be shifted.

ASR Indicates an arithmetic shift right.

<shi ft_i mm Specifies the shift. Thisisan immediate value between 1 and 32. (A shift by 32is

encoded by shift_imm==0.)

Architecture version

All

Operation

if shift_imm== 0 then
if RM{31] == 0 then
shifter_operand = 0
shifter_carry_out = Rnf31]
else /* Rn{31] == */
shifter_operand = OxFFFFFFFF
shifter_carry_out = Rnf31]
else /* shift_imm> 0 */
shifter_operand = Rm Arithnetic_Shift_Right <shift_i mmp
shifter_carry_out = Rafshift_imm- 1]

Notes

Useof R15 If R15isspecified asregister Rm or Rn, the value used is the address of the current
instruction plus 8.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-13

ARM Addressing Modes

5.1.10

Data-processing operands - Arithmetic shift right by register

31 28 27 26 25 24 21 20 19 16 15 12 11 8 76 5 4 3 0

cond 0 0 0| opcode |S Rn Rd Rs 0101 Rm

This data-processing operand is used to provide the signed value of aregister arithmetically shifted right
(divided by avariable power of two).

Thisinstruction operand is the value of register Rm arithmetically shifted right by the value in the least
significant byte of register Rs. The sign bit of Rm (Rm[31]) isinserted into the vacated bit positions. The
carry-out from the shifter is the last bit shifted out, which isthe sign bit of Rm if the shift amount is more
than 32, or the C flag if the shift amount is zero.

Syntax

<Rm>, ASR <Rs>

where:

<Rn® Specifies the register whose value is to be shifted.
ASR Indicates an arithmetic shift right.

<Rs> Isthe register containing the value of the shift.

Architecture version

All

Operation

if Rs[7:0] == 0 then
shifter_operand = Rm
shifter_carry_out = C Fl ag
else if Rs[7:0] < 32 then
shifter_operand = Rm Arithmetic_Shift_Ri ght Rs[7:0]
shifter_carry_out = Ri{Rs[7:0] - 1]
else /* Rs[7:0] >= 32 */
if R{31] == 0 then
shifter_operand = 0
shifter_carry_out = Rnf31]
else /* Ri{31] == 1 */
shifter_operand = OxFFFFFFFF
shifter_carry_out = Rnf31]

Notes

Useof R15 Specifying R15 asregister Rd, register Rm, register Rn, or register Rs has UNPREDICTABLE
results.

A5-14

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

5.1.11 Data-processing operands - Rotate right by immediate

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 0 O| opcode |S Rn Rd shift_imm |1 1 O Rm

This data-processing operand is used to provide the value of aregister rotated by a constant value.

Thisinstruction operand is the val ue of register Rm rotated right by an immediate value in the range 1 to
31. As bits are rotated off the right end, they are inserted into the vacated bit positions on the left. The
carry-out from the shifter is the last bit rotated off the right end.

Syntax

<RnP, ROR #<shift i mp

where:

<Rn® Specifies the register whose value isto be rotated.

ROR Indicates arotate right.

<shi ft_i mp Specifies the rotation. Thisis an immediate value between 1 and 31. When

shift_imm == 0, an RRX operation (rotate right with extend) is performed. Thisis
described in Data-processing operands - Rotate right with extend on page A5-17.
Architecture version

All

Operation

if shift_imm== 0 then

See “Data-processing operands - Rotate right with extend” on page A5-17
else /* shift_imm > 0 */

shifter_operand = Rm Rotate_Right shift_imm

shifter_carry_out = Rm[shift_imm - 1]

Notes

Useof R15 If R15isspecified asregister Rm or Rn, the value used is the address of the current
instruction plus 8.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-15

ARM Addressing Modes

5.1.12 Data-processing operands - Rotate right by register
31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 0O O O| opcode |S Rn Rd Rs 0111 Rm
This data-processing operand is used to provide the value of aregister rotated by a variable value.
Thisinstruction operand is produced by the value of register Rm rotated right by the value in the least
significant byte of register Rs. As bits are rotated off the right end, they are inserted into the vacated bit
positionson theleft. The carry-out from the shifter isthe last bit rotated off theright end, or the C flag if the
shift amount is zero.
Syntax
<Rm>, ROR <Rs>
where:
<Rn® Specifies the register whose value is to be rotated.
ROR Indicates arotate right.
<Rs> Isthe register containing the value of the rotation.
Architecture version
All
Operation
if Rs[7:0] == 0 then
shifter_operand = Rm
shifter_carry_out = C Fl ag
else if Rs[4:0] == 0 then
shifter_operand = Rm
shifter_carry_out = Rnf31]
else /* Rs[4:0] > 0 */
shifter_operand = Rm Rotate_Ri ght Rs[4:0]
shifter_carry_out = Ri{Rs[4:0] - 1]
Notes
Useof R15 Specifying R15 asregister Rd, register Rm, register Rn, or register Rs has UNPREDICTABLE
results.
A5-16 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

5.1.13

ARM Addressing Modes

Data-processing operands - Rotate right with extend

31 28 27 26 25 24 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 0 0 O| opcode |S Rn Rd 00000110 Rm

This data-processing operand can be used to perform a 33-hit rotate right using the Carry Flag as the 33rd
bit.

Thisinstruction operand is the value of register Rm shifted right by one bit, with the Carry Flag replacing
the vacated hit position. The carry-out from the shifter is the bit shifted off the right end.

Syntax

<R, RRX

where:

<Rn® Specifies the register whose value is shifted right by one bit.
RRX Indicates a rotate right with extend.

Architecture version

All

Operation

shifter_operand = (C Flag Logical _Shift_Left 31) OR (Rm Logi cal _Shift_Ri ght 1)
shifter_carry_out = RnfO]

Notes
Encoding Theinstruction encoding is in the space that would be used for ROR #0.
Use of R15 If R15 is specified as register Rm or Rn, the value used is the address of the current

instruction plus 8.

ADC instruction A rotate | eft with extend can be performed with an ADC instruction.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-17

ARM Addressing Modes

5.2 Addressing Mode 2 - Load and Store Word or Unsigned Byte

There are nine addressing modes used to cal culate the addressfor aL oad and Store Word or Unsigned Byte
instruction. The general instruction syntax is:

LDR| STR{ <cond>}{B}{T} <Rd>, <addressing_node>

where<addr essi ng_node> is one of the nine optionslisted below.

All nine of thefollowing options are available for LDR, LDRB, STRand STRB. For LDRBT, LDRT, STRBT
and STRBT, only the post-indexed options (the last threein the list) are available. For the PLD instruction
described in PLD on page A10-14, only the offset options (the first three in the list) are available.

1.

[<Rn>, #+/-<of fset_12>]

See Load and Sore Word or Unsigned Byte - Immediate offset on page A5-20.

[<Rn>, +/-<Rmp]

See Load and Sore Word or Unsigned Byte - Register offset on page A5-21.

[<Rn>, +/-<Rmp, <shift> #<shift_i mp]

See Load and Sore Word or Unsigned Byte - Scaled register offset on page A5-22.

[<Rn>, #+/-<of fset_12>]!

See Load and Sore Word or Unsigned Byte - Immediate pre-indexed on page A5-24.
[<Rn>, +/-<Rmp]!

See Load and Sore Word or Unsigned Byte - Register pre-indexed on page A5-25.
[<Rn>, +/-<Rmp, <shift> #<shift_imp]!

See Load and Sore Word or Unsigned Byte - Scaled register pre-indexed on page A5-26.
[<Rn>], #+/-<offset_12>

See Load and Sore Word or Unsigned Byte - Immediate post-indexed on page A5-28.

[<Rn>], +/-<Rnp
See Load and Sore Word or Unsigned Byte - Register post-indexed on page A5-30.

[<Rn>], +/-<Rnp, <shift> #<shift_imp
See Load and Sore Word or Unsigned Byte - Scaled register post-indexed on page A5-32.

A5-18

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

5.2.1

ARM Addressing Modes

Encoding

The following three diagrams show the encodings for this addressing mode:

Immediate offset/index

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1|0|P|UIB|W|L Rn Rd offset 12

Register offset/index

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 0 1|1|P|U|B|W|L Rn Rd 000O0O0OO0OOO Rm

Scaled register offset/index

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0
cond 0 1|1|P|UIB|W|L Rn Rd shift imm | shift | 0 Rm
TheP bit Has two meanings:
pP== Indicatesthe use of post-indexed addressing. The base register valueisused for

the memory address, and the offset isthen applied to the base register value and
written back to the base register.

pP== Indicates the use of offset addressing or pre-indexed addressing (the W hit
determines which). The memory address is generated by applying the offset to
the base register value.

TheU bit Indicates whether the offset is added to the base (U == 1) or is subtracted from the base
(U==0).

TheB bit Distinguishes between an unsigned byte (B == 1) and aword (B == 0) access.
TheW bit Has two meanings:

pP== If W == 0, theinstruction is LDR, LDRB, STR or STRB and a hormal memory
accessis performed. If W == 1, the instruction is LDRBT, LDRT, STRBT or
STRT and an unprivileged (User mode) memory access is performed.

p== If W == 0, the base register is not updated (offset addressing). If W == 1, the
calculated memory addressis written back to the base register (pre-indexed
addressing).

ThelL bit Distinguishes between aLoad (L == 1) and a Store (L == 0).

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-19

ARM Addressing Modes

5.2.2 Load and Store Word or Unsigned Byte - Inmediate offset
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
cond o|1|0(1|U|B|O|L Rn Rd offset_12
This addressing mode cal cul ates an address by adding or subtracting the value of an immediate offset to or
from the value of the base register Rn.
Syntax
[<Rn>, #+/-<of fset_12>]
where:
<Rn> Specifies the register containing the base address.
<of fset_12> Specifies the immediate offset used with the value of Rn to form the address.
Architecture version
All
Operation
if U==1 then
address = Rn + offset_12
else /* U==0 */
address = Rn - offset_12
Usage
This addressing mode is useful for accessing structure (record) fields, and accessing parameters and local
variablesin a stack frame. With an offset of zero, the address produced is the unaltered value of the base
register Rn.
Notes
Offset of zero Thesyntax [<Rn>] istreated asan abbreviation for [<Rn>, #0] , unlesstheinstruction
is one that only alows post-indexed addressing modes (LDRBT, LDRT, STRBT or STRT).
TheB bit This bit distinguishes between an unsigned byte (B==1) and aword (B==0) access.
Thel bit This bit distinguishes between aLoad (L==1) and a Store (L==0) instruction.
Useof R15 If R15is specified asregister Rn, the value used is the address of the instruction plus 8.
A5-20 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

5.2.3 Load and Store Word or Unsigned Byte - Register offset

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 0 1|1|1|Uu|B|O|L Rn Rd 000O0O0OO0O0O Rm

This addressing mode calculates an address by adding or subtracting the value of the index register Rm to
or from the value of the base register Rn.

Syntax

[<Rn>, +/-<Rmp]

where:
<Rn> Specifies the register containing the base address.
<Rnp Specifies the register containing the value to add to or subtract from Rn.

Architecture version

All

Operation

if U==1 then
address = Rn + Rm

else /* U==0 */
address = Rn - Rm

Usage

This addressing modeis used for pointer plus offset arithmetic, and accessing a single element of an array
of bytes.

Notes

Encoding This addressing mode is encoded as an LSL scaled register offset, scaled by zero.
TheB bit This bit distinguishes between an unsigned byte (B==1) and a word (B==0) access.
Thel bit This bit distinguishes between a L oad (L==1) and a Store (L==0) instruction.

Useof R15 If R15isspecified asregister Rn, the value used is the address of the instruction plus 8.
Specifying R15 as register Rm has UNPREDICTABLE results.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-21

ARM Addressing Modes

5.24 Load and Store Word or Unsigned Byte - Scaled register offset

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 1(1|1|U

B

ofL Rn Rd shift imm | shift | 0 Rm

These five addressing modes calcul ate an address by adding or subtracting the shifted or rotated value of
the index register Rm to or from the value of the base register Rn.

Syntax
Oneof:

[<Rn>, +/-<Rmp,
[<Rn>, +/-<Rmp,
[<Rn>, +/-<Rmp,
[<Rn>, +/-<Rmp,
[<Rn>, +/-<Rmp,

where:
<Rn>
<R
LSL
LSR
ASR
ROR
RRX

<shift_i mmp

LSL #<shift_i m]
LSR #<shi ft _i m]
ASR #<shi ft_i m]
ROR #<shi ft_i m]

RRX]

Specifies the register containing the base address.

Specifies the register containing the offset to add to or subtract from Rn.

Specifiesalogical shift left.

Specifies alogical shift right.

Specifies an arithmetic shift right.

Specifies arotate right.

Specifies arotate right with extend.

Specifies the shift or rotation.

LSL

LSR

ASR

ROR

Architecture version

All

0to 31, encoded directly in the shift_imm field.

1to 32. A shift amount of 32 isencoded as shift_ imm == 0. Other shift
amounts are encoded directly.

1to 32. A shift amount of 32 isencoded as shift_ imm == 0. Other shift
amounts are encoded directly.

1to 31, encoded directly in the shift_imm field. (The shift_imm ==
encoding is used to specify the RRX option.)

A5-22

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

Operation

case shift of
0b00 /* LSL */
index = Rm Logical _Shift_Left shift_imm
0b01 /* LSR */
if shift_imm==0 then /* LSR #32 */
index = 0
el se
index = Rm Logical _Shift_Right shift_inm
0b10 /* ASR */
if shift_imm==0 then /* ASR #32 */
if Ri{31] == 1 then
i ndex = OxFFFFFFFF
el se
index = 0
el se
index = RmArithmetic_Shift_Right shift_imm
0b11 /* ROR or RRX */
if shift_imm==0 then /* RRX */
index = (C Flag Logical _Shift_Left 31) OR
(Rm Logi cal _Shift_Right 1)
else /* ROR */
index = Rm Rotate_Right shift_imm
endcase
if U==1 then
address = Rn + index
else /* U==0 */
address = Rn - index

Usage

These addressing modes are used for accessing a single element of an array of values larger than a byte.

Notes
TheB bit This bit distinguishes between an unsigned byte (B==1) and aword (B==0) access.
Thel bit This bit distinguishes between a L oad (L==1) and a Store (L==0) instruction.

Useof R15 If R15isspecified asregister Rn, the value used is the address of the instruction plus 8.
Specifying R15 as register Rm has UNPREDICTABLE results.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-23

ARM Addressing Modes

5.2.5

Load and Store Word or Unsigned Byte - Inmediate pre-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1|10|1|U|B|1|L Rn Rd offset_12

This addressing mode cal cul ates an address by adding or subtracting the value of an immediate offset to or
from the value of the base register Rn.

If the condition specified in the instruction matches the condition code status, the calculated addressis
written back to the base register Rn. The conditions are defined in The condition field on page A3-5.
Syntax

[<Rn>, #+/-<of fset_12>]!

where:

<Rn> Specifies the register containing the base address.

<of fset _12> Specifies the immediate offset used with the value of Rn to form the address.

! Setsthe W bit, causing base register update.

Architecture version

All

Operation
if U==1 then
address = Rn + of fset_12
else /* if U==20 */
address = Rn - offset_12
i f ConditionPassed(cond) then
Rn = address
Usage

This addressing mode is used for pointer access to arrays with automatic update of the pointer value.

Notes

Offset of zero Thesyntax [<Rn>] must never be treated as an abbreviation for [<Rn>, #0] !.
TheB bit This bit distinguishes between an unsigned byte (B==1) and aword (B==0) access.
Thel bit This bit distinguishes between aLoad (L==1) and a Store (L==0) instruction.

Useof R15 Specifying R15 as register Rn has UNPREDICTABLE results.

A5-24

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

5.2.6 Load and Store Word or Unsigned Byte - Register pre-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 0 1|1|1|Uu|B|1|L Rn Rd 000O0O0OO0O0O Rm

This addressing mode cal cul ates an address by adding or subtracting the val ue of an index register Rmto or
from the value of the base register Rn.

If the condition specified in the instruction matches the condition code status, the calculated address is
written back to the base register Rn. The conditions are defined in The condition field on page A3-5.

Syntax

[<Rn>, +/-<Rnp]!

where:
<Rn> Specifies the register containing the base address.
<Rn® Specifies the register containing the offset to add to or subtract from Rn.

! Setsthe W bit, causing base register update.

Architecture version

All

Operation

if U==1 then
address = Rn + Rm

else /* U==0 */
address = Rn - Rm

i f ConditionPassed(cond) then
Rn = address

Notes

Encoding This addressing mode is encoded as an LSL scaled register offset, scaed by zero.
TheB bit This bit distinguishes between an unsigned byte (B==1) and aword (B==0) access.
Thel bit This bit distinguishes between a L oad (L==1) and a Store (L==0) instruction.

Use of R15 Specifying R15 asregister Rm or Rn has UNPREDICTABLE results.

Operand restriction |If the same register is specified for Rn and Rm, the result is UNPREDICTABLE.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-25

ARM Addressing Modes

5.2.7 Load and Store Word or Unsigned Byte - Scaled register pre-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 1|1|1(U|B|1]|L Rn Rd shift imm | shift | 0 Rm

These five addressing modes calcul ate an address by adding or subtracting the shifted or rotated vaue of
the index register Rm to or from the value of the base register Rn.

If the condition specified in the instruction matches the condition code status, the calculated addressis
written back to the base register Rn. The conditions are defined in The condition field on page A3-5.

Syntax
Oneof:

[<Rn>, +/-<Rme, LSL #<shift_i mp]!
[<Rn>, +/-<Rm>, LSR #<shift_i nmp]!
[<Rn>, +/-<Rm», ASR #<shift_i mp]!
[<Rn>, +/-<Rm», ROR #<shift_i mp]!
[<Rn>, +/-<Rme, RRX]!

where:
<Rn> Specifies the register containing the base address.
<Rn® Specifies the register containing the offset to add to or subtract from Rn.
LSL Specifiesalogical shift left.
LSR Specifies alogical shift right.
ASR Specifies an arithmetic shift right.
ROR Specifies arotate right.
RRX Specifies arotate right with extend.
<shift_imp Specifies the shift or rotation.
LSL 0to 31, encoded directly in the shift_imm field.
LSR 1to 32. A shift amount of 32 isencoded as shift_ imm == 0. Other shift

amounts are encoded directly.

ASR 1to 32. A shift amount of 32 isencoded as shift_ imm == 0. Other shift
amounts are encoded directly.

ROR 1to 31, encoded directly in the shift_imm field. (The shift_imm ==
encoding is used to specify the RRX option.)

! Setsthe W bit, causing base register update.

A5-26 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

Architecture version

All

Operation

case shift of
0b00 /* LSL */
index = Rm Logical _Shift_Left shift_imm
0b01 /* LSR */
if shift_imm==0 then /* LSR #32 */
index = 0
el se
index = Rm Logical _Shift_Right shift_inm
0b10 /* ASR */
if shift_imm==0 then /* ASR #32 */
if Ri{31] == 1 then
i ndex = OxFFFFFFFF
el se
index = 0
el se
index = RmArithmetic_Shift_Right shift_imm
0b11l /* ROR or RRX */
if shift_inmm==0 then /* RRX */
index = (C Flag Logical _Shift_Left 31) OR
(Rm Logi cal _Shift_Right 1)
else /* ROR */
index = Rm Rotate_Right shift_imm
endcase
if U==1 then
address = Rn + index
else /* U==0 */
address = Rn - index
i f ConditionPassed(cond) then
Rn = address

Notes

TheB bit This bit distinguishes between an unsigned byte (B==1) and aword (B==0) access.
Thel bit This bit distinguishes between a L oad (L==1) and a Store (L==0) instruction.

Use of R15 Specifying R15 as register Rm or Rn has UNPREDICTABLE results.

Operand restriction |If the same register is specified for Rn and Rm, the result is UNPREDICTABLE.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-27

ARM Addressing Modes

5.2.8

Load and Store Word or Unsigned Byte - Inmediate post-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 110|0|U|B|O|L Rn Rd offset_12

This addressing mode uses the value of the base register Rn as the address for the memory access.

If the condition specified in the instruction matches the condition code status, the value of the immediate
offset is added to or subtracted from the value of the base register Rn and written back to the base register
Rn. The conditions are defined in The condition field on page A3-5.

Syntax

[<Rn>], #+/-<offset_12>

where:

<Rn> Specifies the register containing the base address.

<of fset _12> Specifies the immediate offset used with the value of Rn to form the address.

Architecture version

All

Operation

address = Rn
i f ConditionPassed(cond) then
if U==1 then
Rn = Rn + offset_12
else /* U==0 */
Rn = Rn - offset_12

Usage

This addressing mode is used for pointer access to arrays with automatic update of the pointer value.

A5-28

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

Notes

Post-indexed addr essing modes

LDRBT, LDRT, STRBT, and STRT only support post-indexed addressing modes. They use
aminor modification of the above bit pattern, where bit[21] (the W bit) is 1, not O as shown.

Offset of zero Thesyntax[<Rn>] istreated asan abbreviationfor [<Rn>] , #0 forinstructionsthat only
support post-indexed addressing modes (LDRBT, LDRT, STRBT, STRT), but not for other

instructions.
TheB bit This bit distinguishes between an unsigned byte (B==1) and aword (B==0) access.
Thel bit This bit distinguishes between a L oad (L==1) and a Store (L==0) instruction.

Useof R15 Specifying R15 as register Rn has UNPREDICTABLE resullts.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-29

ARM Addressing Modes

5.2.9 Load and Store Word or Unsigned Byte - Register post-indexed
31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 0 1|1(0|U|B|O|L Rn Rd 000O0O0OO0OO0DO Rm
This addressing mode uses the value of the base register Rn as the address for the memory access.
If the condition specified in theinstruction matches the condition code status, the value of the index register
Rm isadded to or subtracted from the value of the base register Rn and written back to the base register Rn.
The conditions are defined in The condition field on page A3-5.
Syntax
[<Rn>], +/-<Rnp
where:
<Rn> Specifies the register containing the base address.
<Rn® Specifies the register containing the offset to add to or subtract from Rn.
Architecture version
All
Operation
address = Rn
i f ConditionPassed(cond) then
if U==1 then
Rn = Rh + Rm
else /* U==0 */
Rn = Rh - Rm
A5-30 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

Notes
Encoding This addressing mode is encoded as an LSL scaled register offset, scaled by zero.

Post-indexed addr essing modes

LDRBT, LDRT, STRBT, and STRT only support post-indexed addressing modes.
They use aminor modification of the above bit pattern, where bit[21] (the W hit) is
1, not 0 as shown.

TheB bit This bit distinguishes between an unsigned byte (B==1) and aword (B==0) access.
Thel bit This bit distinguishes between a L oad (L==1) and a Store (L==0) instruction.
Use of R15 Specifying R15 asregister Rn or Rm has UNPREDICTABLE results.

Operand restriction |If the same register is specified for Rn and Rm, the result is UNPREDICTABLE.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-31

ARM Addressing Modes

5.2.10 Load and Store Word or Unsigned Byte - Scaled register post-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 1|1|0(U|B|O]|L Rn Rd shift imm | shift | 0 Rm

This addressing mode uses the value of the base register Rn as the address for the memory access.

If the condition specified in theinstruction matches the condition code status, the shifted or rotated val ue of
index register Rm is added to or subtracted from the value of the base register Rn and written back to the
base register Rn. The conditions are defined in The condition field on page A3-5.

Syntax
Oneof:

[<Rn>], +/-<Rmp, LSL #<shift_i m»
[<Rn>], +/-<Rmp, LSR #<shift_i m»
[<Rn>], +/-<Rmrp, ASR #<shift_i m»
[<Rn>], +/-<Rmp, ROR #<shift_i m»
[<Rn>], +/-<Rmp, RRX

where:
<Rn> Specifies the register containing the base address.
<Rn® Specifies the register containing the offset to add to or subtract from Rn.
LSL Specifiesalogical shift left.
LSR Specifies alogical shift right.
ASR Specifies an arithmetic shift right.
ROR Specifies arotate right.
RRX Specifies arotate right with extend.
<shift_imp Specifies the shift or rotation.
LSL 0to 31, encoded directly in the shift_imm field.
LSR 1to 32. A shift amount of 32 isencoded as shift_ imm == 0. Other shift

amounts are encoded directly.

ASR 1to 32. A shift amount of 32 isencoded as shift_ imm == 0. Other shift
amounts are encoded directly.

ROR 1to 31, encoded directly in the shift_imm field. (The shift_imm ==
encoding is used to specify the RRX option.)

A5-32 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

Architecture version

All

Operation

address = Rn
case shift of
0b00 /* LSL */
index = Rm Logical _Shift_Left shift_imm
0b01 /* LSR */
if shift_imm==0 then /* LSR #32 */
index = 0
el se
index = Rm Logical _Shift_Right shift_inmm
0b10 /* ASR */
if shift_imm==0 then /* ASR #32 */
if Ri{31] == 1 then
i ndex = OxFFFFFFFF
el se
index = 0
el se
index = RmArithmetic_Shift_Right shift_imm
0b11l /* ROR or RRX */
if shift_imm==0 then /* RRX */
index = (C Flag Logical _Shift_Left 31) OR
(Rm Logi cal _Shift_Right 1)
else /* ROR */
index = Rm Rotate_Right shift_imm
endcase
i f ConditionPassed(cond) then
if U==1 then
Rn = Rn + index
else /* U==0 */
Rn = Rn - index

Notes

Post-indexed addr essing modes
LDRBT, LDRT, STRBT, and STRT only support post-indexed addressing modes.
They use aminor modification of the above bit pattern, where bit[21] (the W hit) is
1, not 0 as shown.

TheB bit This bit distinguishes between an unsigned byte (B == 1) and aword (B == 0)
access.

Thel bit This bit distinguishes between aLoad (L == 1) and a Store (L == 0) instruction.

Use of R15 Specifying R15 asregister Rm or Rn has UNPREDICTABLE results.

Operand restriction |If the same register is specified for Rn and Rm, the result is UNPREDICTABLE.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-33

ARM Addressing Modes

5.3 Addressing Mode 3 - Miscellaneous Loads and Stores
There are six addressing modes used to calcul ate the address for load and store (signed or unsigned)
halfword, load signed byte, or load and store doubleword instructions. The general instruction syntax is:
LDR| STR{ <cond>}H| SH SB| D <Rd>, <addressi ng_node>
where<addr essi ng_node> is one of the following six options:
1 [<Rn>, #+/-<of fset_8>]
See Miscellaneous Loads and Stores - |mmediate offset on page A5-36.
2. [<Rn>, +/-<Rp]
See Miscellaneous Loads and Stores - Register offset on page A5-38.
3. [<Rn>, #+/-<of fset_8>]!
See Miscellaneous Loads and Stores - Immediate pre-indexed on page A5-40.
4. [<Rn>, +/-<Rmp]!
See Miscellaneous Loads and Stores - Register pre-indexed on page A5-42.
5. [<Rn>], #+/-<offset_8>
See Miscellaneous Loads and Stores - |mmediate post-indexed on page A5-44.
6. [<Rn>], +/-<Rnp
See Miscellaneous Loads and Stores - Register post-indexed on page A5-46.
5.3.1 Encoding
The following diagrams show the encodings for this addressing mode:
Immediate offset/index
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 4 3 0
cond 0 0 O|P|U[L1|W|L Rn Rd immedH |1 1| ImmedL
Register offset/index
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 4 3 0
cond 0 0O[P|U|OW|L Rn Rd SBzZ 1 1 Rm
A5-34 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The P bit

The U bit

The W bit

Thel bit
The Shit
TheH bit

ARM Addressing Modes

Has two meanings:

pP== Indicatesthe use of post-indexed addressing. The base register valueisused for
the memory address, and the offset isthen applied to the base register value and
written back to the base register.

pP== Indicates the use of offset addressing or pre-indexed addressing (the W hit
determines which). The memory address is generated by applying the offset to
the base register value.

Indicates whether the offset is added to the base (U == 1) or subtracted from the base
(U==0).

Has two meanings:

P == The W bit must be 0 or the instruction iS UNPREDICTABLE.

pP== W == 1 indicates that the memory address is written back to the base register
(pre-indexed addressing), and W == 0 that the base register is unchanged (off set
addressing).

This bit distinguishes between aLoad (L == 1) and a Store (L == 0) instruction.
This bit distinguishes between a signed (S== 1) and an unsigned (S == 0) halfword access.
This bit distinguishes between a hdfword (H == 1) and a byte (H == 0) access.

Unsigned bytes

Signed stores

If S==0and H == 0, apparently indicating an unsigned byte, the instruction is not one that
uses this addressing mode. Instead, it is a multiply instruction, a SWP or SWPB instruction,
or an unallocated instruction in the arithmetic or load/store instruction extension space (see
Extending the instruction set on page A3-27).

Unsigned bytes are accessed by the LDRB, LDRBT, STRB and STRBT instructions, which
use addressing mode 2 rather than addressing mode 3.

If S==1andL == 0, apparently indicating a signed store instruction, the instruction is an
unallocated instruction in the |oad/store extension space (see Extending the instruction set
on page A3-27).

Signed bytes and halfwords can be stored with the same STRB and STRHinstructionsas are
used for unsigned quantities, so no separate signed store instructions are provided.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A5-35

ARM Addressing Modes

5.3.2 Miscellaneous Loads and Stores - Imnmediate offset

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 00 1|Ul1 OfL Rn Rd immedH |1|(S|H|1| immedL

This addressing mode cal cul ates an address by adding or subtracting the value of an immediate offset to or
from the value of the base register Rn.

Syntax

[<Rn>, #+/-<of fset_8>]

where:
<Rn> Specifies the register containing the base address.
<of fset _8> Specifies the immediate offset used with the value of Rn to form the address. The

offset is encoded in immedH (top 4 bits) and immedL (bottom 4 bits).

Architecture version

Version 4 and above

Operation
of fset_8 = (i medH << 4) OR i medL
if U==1 then

address = Rn + offset_8
else /* U==0 */

address = Rn - offset_8
Usage

This addressing mode is used for accessing structure (record) fields, and accessing parameters and locals
variable in a stack frame. With an offset of zero, the address produced is the unaltered value of the base
register Rn.

Notes

Zerooffset Thesyntax [<Rn>] istreated as an abbreviation for [<Rn>, #0] .

Thel bit This bit distinguishes between aLoad (L==1) and a Store (L==0) instruction.

The Sbit This bit distinguishes between a signed (S==1) and an unsigned (S==0) halfword access.
TheH bit This bit distinguishes between a halfword (H==1) and a signed byte (H==0) access.

Useof R15 If R15is specified asregister Rn, the value used is the address of the instruction plus 8.

A5-36 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

Unsigned bytes
If S==0and H == 0, apparently indicating an unsigned byte, the instruction is not one that
uses this addressing mode. Instead, it is a multiply instruction, a SWP or SWPB instruction,
or an unallocated instruction in the arithmetic or load/store instruction extension space (see
Extending the instruction set on page A3-27).

Unsigned bytes are accessed by the LDRB, LDRBT, STRB and STRBT instructions, which
use addressing mode 2 rather than addressing mode 3.

Signed stores If S==1and L == 0, apparently indicating a signed store instruction, the instruction is an
unallocated instruction in the |oad/store extension space (see Extending the instruction set
on page A3-27).

Signed bytes and halfwords can be stored with the same STRB and STRHinstructionsas are
used for unsigned quantities, so no separate signed store instructions are provided.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-37

ARM Addressing Modes

5.3.3 Miscellaneous Loads and Stores - Register offset
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 0 0O 1|U|j0O OfL Rn Rd SBz 1|S|H|1 Rm
This addressing mode calcul ates an address by adding or subtracting the value of the index register Rm to
or from the value of the base register Rn.
Syntax
[<Rn>, +/-<Rmp]
where:
<Rn> Specifies the register containing the base address.
<Rn® Specifies the register containing the offset to add to or subtract from Rn.
Architecture version
Version 4 and sbove
Operation
if U==1 then
address = Rn + Rm
else /* U==0 */
address = Rn - Rm
Usage
This addressing mode is useful for pointer plus offset arithmetic and for accessing a single element of an
array.
Notes
Thel bit Distinguishes between a Load (L==1) and a Store (L==0) instruction.
The Sbit Distinguishes between a signed (S==1) and an unsigned (S==0) halfword access.
TheH bit Thisbit distinguishes between a halfword (H==1) and a signed byte (H==0) access.
Unsigned bytes If S==0and H == 0, apparently indicating an unsigned byte, the instruction is not
one that uses this addressing mode. Instead, it is a multiply instruction, a SWP or
SWPB instruction, or an unallocated instruction in the arithmetic or |oad/store
instruction extension space (see Extending the instruction set on page A3-27).
Unsigned bytes are accessed by the LDRB, LDRBT, STRB and STRBT instructions,
which use addressing mode 2 rather than addressing mode 3.
A5-38 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

Signed stores If S==1and L == 0, apparently indicating asigned storeinstruction, theinstruction
isan unallocated instruction in the |oad/store extension space (see Extending the
instruction set on page A3-27).

Signed bytes and halfwords can be stored with the sasme STRB and STRH
instructions as are used for unsigned quantities, so no separate signed store
instructions are provided.

Use of R15 If R15is specified asregister Rn, the value used isthe address of the instruction plus
8. Specifying R15 as register Rm has UNPREDICTABLE results.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-39

ARM Addressing Modes

5.34 Miscellaneous Loads and Stores - Immediate pre-indexed
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 000 1|Ujl 1L Rn Rd immedH [1|S|H|1| ImmedL
This addressing mode cal cul ates an address by adding or subtracting the value of an immediate offset to or
from the value of the base register Rn.
If the condition specified in the instruction matches the condition code status, the calculated addressis
written back to the base register Rn. The conditions are defined in The condition field on page A3-5.
Syntax
[<Rn>, #+/-<of fset_8>]!
where:
<Rn> Specifies the register containing the base address.
<of fset _8> Specifies the immediate offset used with the value of Rn to form the address. The
offset is encoded in immedH (top 4 bits) and immedL (bottom 4 bits).
! Setsthe W bit, causing base register update.
Architecture version
Version 4 and sbove
Operation
of fset_8 = (i medH << 4) OR i medL
if U==1 then
address = Rn + offset_8
else /* U==0 */
address = Rnh - offset_8
i f ConditionPassed(cond) then
Rn = address
Usage
This addressing mode gives pointer access to arrays, with automatic update of the pointer value.
A5-40 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

Notes
Offset of zero The syntax [<Rn>] must not be treated as an abbreviation for [<Rn>, #0] ! .
Thel bit This bit distinguishes between a L oad (L==1) and a Store (L==0) instruction.

The Sbit This bit distinguishes between a signed (S==1) and an unsigned (S==0) halfword
access.

TheH bit This bit distinguishes between ahafword (H==1) and a signed byte (H==0) access.

Unsigned bytes If S==0and H == 0, apparently indicating an unsigned byte, the instruction is not
one that uses this addressing mode. Instead, it is amultiply instruction, a SWP or
SWPB instruction, or an unallocated instruction in the arithmetic or load/store
instruction extension space (see Extending the instruction set on page A3-27).

Unsigned bytes are accessed by the LDRB, LDRBT, STRB and STRBT instructions,
which use addressing mode 2 rather than addressing mode 3.

Signed stores If S==1and L == 0, apparently indicating asigned storeinstruction, theinstruction
isan unallocated instruction in the |oad/store extension space (see Extending the
instruction set on page A3-27).

Signed bytes and halfwords can be stored with the same STRB and STRH
instructions as are used for unsigned quantities, so no separate signed store
instructions are provided.

Use of R15 Specifying R15 asregister Rn has UNPREDICTABLE results.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-41

ARM Addressing Modes

5.3.5

Miscellaneous Loads and Stores - Register pre-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 00 1|U|O 1|L Rn Rd SBz 1/S|H|1 Rm

This addressing mode calcul ates an address by adding or subtracting the value of the index register Rm to
or from the value of the base register Rn.

If the condition specified in the instruction matches the condition code status, the calculated addressis
written back to the base register Rn. The conditions are defined in The condition field on page A3-5.
Syntax

[<Rn>, +/-<Rmp]!

where:

<Rn> Specifies the register containing the base address.

<Rn® Specifies the register containing the offset to add to or subtract from Rn.

! Sets the W bit, causing base register update.

Architecture version

Version 4 and above

Operation

if U==1 then
address = Rn + Rm

else /* U==0 */
address = Rn - Rm

i f ConditionPassed(cond) then
Rn = address

A5-42

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

Notes
Thel bit This bit distinguishes between a L oad (L==1) and a Store (L==0) instruction.

The Sbit This bit distinguishes between a signed (S==1) and an unsigned (S==0) halfword
access.

TheH bit This bit distinguishes between ahafword (H==1) and asigned byte (H==0) access.

Unsigned bytes If S==0and H == 0, apparently indicating an unsigned byte, the instruction is not
one that uses this addressing mode. Instead, it is amultiply instruction, a SWP or
SWPB instruction, or an unallocated instruction in the arithmetic or load/store
instruction extension space (see Extending the instruction set on page A3-27).

Unsigned bytes are accessed by the LDRB, LDRBT, STRB and STRBT instructions,
which use addressing mode 2 rather than addressing mode 3.

Signed stores If S==1andL == 0, apparently indicating asigned storeinstruction, theinstruction
isan unallocated instruction in the |oad/store extension space (see Extending the
instruction set on page A3-27).

Signed bytes and halfwords can be stored with the sasme STRB and STRH
instructions as are used for unsigned quantities, so no separate signed store
instructions are provided.

Use of R15 Specifying R15 as register Rm or Rn has UNPREDICTABLE results.

Operand restriction |If the same register is specified for Rn and Rm, the result is UNPREDICTABLE.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-43

ARM Addressing Modes

5.3.6 Miscellaneous Loads and Stores - Immediate post-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 0 0O0O0O|Ul1l OfL Rn Rd immedH [1|S|H|1| ImmedL
This addressing mode uses the value of the base register Rn as the address for the memory access.
If the condition specified in the instruction matches the condition code status, the value of the immediate
offset is added to or subtracted from the value of the base register Rn and written back to the base
register Rn. The conditions are defined in The condition field on page A3-5.
Syntax
[<Rn>], #+/-<offset_8>
where:
<Rn> Specifies the register containing the base address.
<of fset _8> Specifies the immediate offset used with the value of Rn to form the address. The
offset is encoded in immedH (top 4 bits) and immedL (bottom 4 bits).
Architecture version
Version 4 and sbove
Operation
address = Rn
of fset_8 = (i medH << 4) OR i medL
i f ConditionPassed(cond) then
if U==1 then
Rn = Rh + offset_8
else /* U==0 */
Rn = Rh - offset_8

Usage
This addressing mode gives pointer access to arrays, with automatic update of the pointer value.

A5-44 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

Notes
Offset of zero The syntax [<Rn>] must not be treated as an abbreviation for [<Rn>] , #0.
Thel bit This bit distinguishes between a L oad (L==1) and a Store (L==0) instruction.

The Sbit This bit distinguishes between a signed (S==1) and an unsigned (S==0) halfword
access.

TheH bit This bit distinguishes between ahafword (H==1) and a signed byte (H==0) access.

Unsigned bytes If S==0and H == 0, apparently indicating an unsigned byte, the instruction is not
one that uses this addressing mode. Instead, it is amultiply instruction, a SWP or
SWPB instruction, or an unallocated instruction in the arithmetic or load/store
instruction extension space (see Extending the instruction set on page A3-27).

Unsigned bytes are accessed by the LDRB, LDRBT, STRB and STRBT instructions,
which use addressing mode 2 rather than addressing mode 3.

Signed stores If S==1and L == 0, apparently indicating asigned storeinstruction, theinstruction
isan unallocated instruction in the |oad/store extension space (see Extending the
instruction set on page A3-27).

Signed bytes and halfwords can be stored with the same STRB and STRH
instructions as are used for unsigned quantities, so no separate signed store
instructions are provided.

Use of R15 Specifying R15 as register Rn has UNPREDICTABLE results.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-45

ARM Addressing Modes

5.3.7

Miscellaneous Loads and Stores - Register post-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 00 O|U|O O|L Rn Rd SBz 1/S|H|1 Rm

This addressing mode uses the value of the base register Rn as the address for the memory access.

If the condition specified in the instruction matches the condition code status, the value of theindex register
Rm isadded to or subtracted from the value of the base register Rn and written back to the base register Rn.
The conditions are defined in The condition field on page A3-5.

Syntax

[<Rn>], +/-<Rnp

where:

<Rn> Specifies the register containing the base address.

<Rn® Specifies the register containing the offset to add to or subtract from Rn.

Architecture version

Version 4 and above

Operation

address = Rn
i f ConditionPassed(cond) then
if U==1 then
Rn = Rn + Rm
else /* U==0 */
Rn = Rn - Rm

A5-46

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

Notes
Thel bit This bit distinguishes between a L oad (L==1) and a Store (L==0) instruction.

The Sbit This bit distinguishes between a signed (S==1) and an unsigned (S==0) halfword
access.

TheH bit This bit distinguishes between ahafword (H==1) and asigned byte (H==0) access.

Unsigned bytes If S==0and H == 0, apparently indicating an unsigned byte, the instruction is not
one that uses this addressing mode. Instead, it is amultiply instruction, a SWP or
SWPB instruction, or an unallocated instruction in the arithmetic or load/store
instruction extension space (see Extending the instruction set on page A3-27).

Unsigned bytes are accessed by the LDRB, LDRBT, STRB and STRBT instructions,
which use addressing mode 2 rather than addressing mode 3.

Signed stores If S==1andL == 0, apparently indicating asigned storeinstruction, theinstruction
isan unallocated instruction in the |oad/store extension space (see Extending the
instruction set on page A3-27).

Signed bytes and halfwords can be stored with the sasme STRB and STRH
instructions as are used for unsigned quantities, so no separate signed store
instructions are provided.

Use of R15 Specifying R15 as register Rm or Rn has UNPREDICTABLE results.

Operand restriction |If the same register is specified for Rn and Rm, the result is UNPREDICTABLE.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-47

ARM Addressing Modes

5.4

541

Addressing Mode 4 - Load and Store Multiple

Load Multipleinstructions|oad a subset (possibly all) of the general-purpose registers from memory. Store
Multiple instructions store a subset (possibly al) of the general purpose registers to memory.

Load and Store Multiple addressing modes produce a sequentia range of addresses. The |owest-numbered
register is stored at the lowest memory address and the highest-numbered register at the highest memory
address.

The general instruction syntax is:
LDM STM <cond>} <addr essi ng_node> <Rn>{!}, <registers>{"}
where<addr essi ng_node> is one of the following four addressing modes:

1 | A (Increment After)
See Load and Sore Multiple - Increment after on page A5-50.

2. | B (Increment Before)
See Load and Sore Multiple - Increment before on page A5-51.

3. DA (Decrement After)
See Load and Sore Multiple - Decrement after on page A5-52.

4, DB (Decrement Before)
See Load and Sore Multiple - Decrement before on page A5-53.

Encoding
The following diagram shows the encoding for this addressing mode:

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0|P|U|S|W|L Rn register list

TheP bit Has two meanings:

==1 indicates that the word addressed by Rn isincluded in the range of memory
locations accessed, lying at the top (U==0) or bottom (U==1) of that range.

==0 indicates that the word addressed by Rn is excluded from the range of memory
locations accessed, and lies one word beyond the top of the range (U==0) or one
word below the bottom of the range (U==1).

TheU bit Indicates that the transfer is made upwards (U==1) or downwards (U==0) from the base
register.

A5-48

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The Shit

The W bit

Thel bit

Register list

ARM Addressing Modes

For LDVe that 10oad the PC, the S bit indicates that the CPSR is |oaded from the SPSR. For
LDMs that do not load the PC and all STV, the S bit indicates that when the processor isin

aprivileged mode, the User mode banked registers are transferred instead of the registers of
the current mode.

Indicatesthat the baseregister is updated after the transfer. The base register isincremented
(U==1) or decremented (U==0) by four times the number of registersin the register list.

Distinguishes between Load (L==1) and Store (L==0) instructions.

Theregister_list field of the instruction has one bit for each genera -purpose register: bit[0]

for register zero through to bit[15] for register 15 (the PC). If no bits are set, the result is
UNPREDICTABLE.

Theinstruction syntax specifiestheregistersto load or storein <r egi st er s>, whichisa
comma-separated list of registers, surrounded by { and }.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A5-49

ARM Addressing Modes

5.4.2 Load and Store Multiple - Increment after

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0|0|1|S|W|L Rn register list

This addressing mode is for Load and Store Multiple instructions, and forms a range of addresses.

Thefirst address formed isthe<st ar t _addr ess>, and isthe value of the base register Rn. Subsequent
addresses are formed by incrementing the previous address by four. One addressis produced for each
register that is specified in<r egi st er s>.

The last address produced isthe<end_addr ess>. Itsvaueisfour less than the sum of the value of the
base register and four times the number of registers specified in <r egi st er s>.

If the condition specified in the instruction matches the condition code status and the W bit is set, Rnis
incremented by four times the number of registersin <r egi st er s>. The conditions are defined in The
condition field on page A3-5.

Syntax

I A

See a so the alternative syntax described in Load and Sore Multiple addressing modes (alternative names)
on page A5-54.

Architecture version

All

Operation

start_address = Rn
end_address = Rn + (Nunber_Of _Set_Bits_In(register_list) * 4) - 4
i f ConditionPassed(cond) and W== 1 then

Rn = Rn + (Nunber _OF _Set _Bits_In(register_list) * 4)

Notes

Thel bit This bit distinguishes between a Load Multiple and a Store Multiple.

The Shit For LDMs that load the PC, the S bit indicates that the CPSR is loaded from the SPSR. For
LDMs that do not load the PC and al STMs, the S bit indicates that when the processor isin
aprivileged mode, the User mode banked registers aretransferred instead of the registers of
the current mode.

A5-50 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

5.4.3

ARM Addressing Modes

Load and Store Multiple - Increment before

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 00[|1|2|S|W|L Rn register list

This addressing mode is for Load and Store Multiple instructions, and forms a range of addresses.

Thefirst addressformed isthe<st art _addr ess>, and is the value of the base register Rn plus four.
Subsequent addresses are formed by incrementing the previous address by four. One address is produced
for each register that is specified in <r egi st er s>.

The last address produced isthe <end_addr ess>. Itsvalue is the sum of the value of the base register
and four times the number of registers specified in <r egi st er s>.

If the condition specified in the instruction matches the condition code status and the W bit is set, Rn is
incremented by four times the number of registersin <r egi st er s>. The conditions are defined in The
condition field on page A3-5.

Syntax

IB

See also the alternative syntax described in Load and Store Multiple addressing modes (alter native names)
on page A5-54.

Architecture version

All

Operation

start_address = Rn + 4
end_address = Rn + (Nunber_O _Set _Bits_In(register_list) * 4)
i f ConditionPassed(cond) and W== 1 then

Rn = Rn + (Nunber _OF _Set_Bits_In(register_list) * 4)

Notes

Thel bit This bit distinguishes between a L oad Multiple and a Store M ultiple.

The Shit For LDVe that 1oad the PC, the S bit indicates that the CPSR is |oaded from the SPSR. For
LDMVs that do not load the PC and all STV, the S bit indicates that when the processor isin
aprivileged mode, the User mode banked registers are transferred instead of the registers of
the current mode.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-51

ARM Addressing Modes

5.4.4 Load and Store Multiple - Decrement after

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0{0|0|S|W|L Rn register list

This addressing mode is for Load and Store Multiple instructions, and forms a range of addresses.

Thefirst addressformed isthe<st ar t _addr ess>, and isthe vaue of the base register minus four times
the number of registers specified in <r egi st er s>, plus 4. Subsequent addresses are formed by
incrementing the previous address by four. One address is produced for each register that is specified in
<regi st er s>.

The last address produced isthe<end_addr ess>. Itsvaueisthe value of the base register Rn.

If the condition specified in the instruction matches the condition code status and the W bit is set, Rnis
decremented by four times the number of registersin <r egi st er s>. The conditions are defined in The
condition field on page A3-5.

Syntax

DA

See a so the alternative syntax described in Load and Sore Multiple addressing modes (alternative names)
on page A5-54.

Architecture version

All

Operation

start_address = Rn - (Nunmber O _Set _Bits_In(register_list) * 4) + 4
end_address = Rn
i f ConditionPassed(cond) and W== 1 then

Rn = Rn - (Nunber_OF _Set_Bits_In(register_list) * 4)

Notes

Thel bit This bit distinguishes between a Load Multiple and a Store Multiple.

The Shit For LDMs that load the PC, the S bit indicates that the CPSR is loaded from the SPSR. For
LDMs that do not load the PC and al STMs, the S bit indicates that when the processor isin
aprivileged mode, the User mode banked registers aretransferred instead of the registers of
the current mode.

A5-52 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

545

ARM Addressing Modes

Load and Store Multiple - Decrement before

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0[|1|{0|S|W|L Rn register list

This addressing mode is for Load and Store multiple instructions, and forms a range of addresses.

Thefirst addressformedisthe<st art _addr ess>, and isthe value of the base register minusfour times
the number of registers specified in<r egi st er s>. Subsequent addresses are formed by incrementing the
previous address by four. One address is produced for each register that is specified in <r egi st er s>.

Thelast addressproducedisthe<end_addr ess>. Itsvaueistheval ue of the baseregister Rn minusfour.
If the condition specified in the instruction matches the condition code status and the W bit is set, Rn is
decremented by four times the number of registersin <r egi st er s>. The conditions are defined in The
condition field on page A3-5.

Syntax

DB

See also the alternative syntax described in Load and Store Multiple addressing modes (alter native names)
on page A5-54.

Architecture version

All

Operation

start_address = Rn - (Nunmber_Of _Set _Bits_In(register_list) * 4)
end_address = Rn - 4
i f ConditionPassed(cond) and W== 1 then

Rn = Rn - (Nunber_OF _Set_Bits_In(register_list) * 4)

Notes

Thel bit This bit distinguishes between a Load Multiple and a Store M ultiple.

The Shit For LDVe that 1oad the PC, the S bit indicates that the CPSR is |oaded from the SPSR. For
LDV that do not load the PC and all STV, the S bit indicates that when the processor isin
aprivileged mode, the User mode banked registers are transferred instead of the registers of
the current mode.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-53

ARM Addressing Modes

5.4.6 Load and Store Multiple addressing modes (alternative names)

Thefour addressing mode namesgiven in Addressing Mode 4 - Load and Store Multipleon page A5-48 (1A,
IB, DA, DB) are most useful when aload and Store Multiple instruction isbeing used for block datatransfer,
asitislikely that the Load Multiple and Store Multiple have the same addressing mode, so that the datais
stored in the same way that it was |oaded.

However, if Load Multiple and Store Multiple are being used to access a stack, the data is not loaded with
the same addressing modethat was used to store the data, because the load (pop) and store (push) operations
must adjust the stack in opposite directions.

Stack operations

Load Multiple and Store Multiple addressing modes can be specified with an alternative syntax, which is
more applicable to stack operations:

Full stacks Have stack pointers that point to the last used (full) location.

Empty stacks Have stack pointers that point to the first unused (empty) location.
Descending stacks ~ Grow towards decreasing memory addresses (towards the bottom of memory).
Ascending stacks Grow towards increasing memory addresses (towards the top of memory).

Two attributes allow four types of stack to be defined:
. Full Descending, with the synt&D

. Empty Descending, with the syntE

. Full Ascending, with the syntaxA

. Empty Ascending, with the synt&A.

Note

When defining stacks on which coprocessor data is to be placed (or might be placed in the future),
programmers are advised to useFimeor EA stack types. This is because coprocessor data can be pushed
to these types of stack with a sin§l€C instruction and popped from them with a singC instruction.
Multi-instruction sequences are required for coprocessor accESsaioED stacks.

Table 5-1 and Table 5-2 on page A5-55 show the relationship between the four types of stack, the four types
of addressing mode shown above, and the L, U, and P bits in the instruction format.

A5-54 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Table 5-1 shows the relationship for LDMinstructions.

ARM Addressing Modes

Table 5-1 LDM addressing modes

Non-stack addressing mode Stack addressing mode L bit P bit U bit
LDVDA (Decrement After) LDMFA (Full Ascending) 1 0 0
LDM A (Increment After) LDMFD (Full Descending) 1 0 1
LDVDB (Decrement Before) LDMEA (Empty Ascending) 1 1 0
LDM B (Increment Before) LDMED (Empty Descending) 1 1 1

Table 5-2 shows the relationship for STMinstructions.

Table 5-2 STM addressing modes

Non-stack addressing mode Stack addressing mode L bit P bit U bit

STMDA (Decrement After) STMED (Empty Descending) 0 0 0

STM A (Increment After) STMEA (Empty Ascending) 0 0 1

STMDB (Decrement Before) STMFD (Full Descending) 0 1 0

STM B (Increment Before) STMFA (Full Ascending) 0 1 1
ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-55

ARM Addressing Modes

5.5 Addressing Mode 5 - Load and Store Coprocessor
There are four addressing modes which are used to calculate the address of aLoad or Store Coprocessor
instruction. The general instruction syntax is:
<opcode>{<cond>}{L} <coproc>, <CRd>, <addr essi ng_node>
where <addr essi ng_node> is one of the following four options:
1 [<Rn>, #+/ - <of f set _8>*4]
See Load and Sore Coprocessor - Immediate offset on page A5-58.
2. [<Rn>, #+/ - <of f set _8>*4]!
See Load and Sore Coprocessor - Immediate pre-indexed on page A5-60.
3. [<Rn>], #+/ - <of f set _8>*4
See Load and Sore Coprocessor - Immediate post-indexed on page A5-62.
4. [<Rn>], <opti on>
See Load and Store Coprocessor - Unindexed on page A5-64.
5.5.1 Encoding
The following diagram shows the encoding for this addressing mode:
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0
cond 1 1 0|P|UN|W|L Rn CRd cp# offset_8
TheP bit Has two meanings:
pP== Indicatesthe use of post-indexed addressing or unindexed addressing (the W bit
determines which). The base register value is used for the memory address.
pP== Indicates the use of offset addressing or pre-indexed addressing (the W bit
determines which). The memory addressis generated by applying the offset to
the base register value.
TheU bit Has two meanings:
U== Indicates that the offset is added to the base.
U== Indicates that he offset is subtracted from the base
TheN bit The meaning of this bit is coprocessor-dependent. Its recommended use is to distinguish
between different-sized valuesto be transferred.
The W bit Has two meanings:
W == Indicates that the memory address is written back to the base register.
W == Indicates that the base register value is unchanged.
A5-56 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

Also:

. If P == 0, this distinguishes unindexed addressing (W == 0) from post-indexed
addressing (W == 1). For unindexed addressing, U must equal 1 or the result is either
UNDEFINED Ofr UNPREDICTABLE (SeeCoprocessor instruction extension space on

page A3-33).
. If P == 1, this distinguishes offset addressing (W == 0) from pre-indexed addressing
(W==1).

Thel bit Distinguishes between Load (L == 1) and Store (L == 0) instructions.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-57

ARM Addressing Modes

5.5.2

Load and Store Coprocessor - Immediate offset

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 11 0|1|UIN|O|L Rn CRd cp_num offset 8

This addressing mode produces a sequence of consecutive addresses. The first addressis calculated by
adding or subtracting four times the value of an immediate offset to or from the value of the base register
Rn. The subsequent addresses in the sequence are produced by incrementing the previous address by four
until the coprocessor signals the end of the instruction. This allows a coprocessor to access datawhose size
is coprocessor-defined.

The coprocessor must not request a transfer of more than 16 words.

Syntax

[<Rn>, #+/-<of fset_8>*4]

where:

<Rn> Specifies the register containing the base address.

<of fset _8> Specifies the immediate offset that is multiplied by 4, then added to or subtracted
from the value of Rn to form the address.

Architecture version

Version 2 and above

Operation

i f ConditionPassed(cond) then

if U==1 then
address = Rn + offset_8 * 4

else /* U==0 */
address = Rh - offset_8 * 4

start_address = address

whi | e (Not Fi ni shed(coprocessor[cp_nuni))
addr ess address + 4

end_addr ess addr ess

A5-58

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

Notes

TheN bit I's coprocessor-dependent.

Thel bit Distinguishes between Load (L==1) and Store (L==0) instructions.

Useof R15 If R15isspecified asregister Rn, the value used is the address of the instruction plus 8.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-59

ARM Addressing Modes

5.5.3

Load and Store Coprocessor - Immediate pre-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 11 0|1|UIN|1|L Rn CRd cp_num offset 8

This addressing mode produces a sequence of consecutive addresses. The first addressis calculated by
adding or subtracting four times the value of an immediate offset to or from the value of the base register
Rn. If the condition specified in the instruction matches the condition code status, the first addressiswritten
back to the base register Rn. The subsequent addresses in the sequence are produced by incrementing the
previous address by four until the coprocessor signalsthe end of theinstruction. This allows a coprocessor
to access data whose size is coprocessor-defined.

The coprocessor must not request a transfer of more than 16 words.

Syntax

[<Rn>, #+/-<of fset_8>*4]!

where:

<Rn> Specifies the register containing the base address.

<of fset _8> Specifies the immediate offset that is multiplied by 4, then added to or subtracted
from the value of Rn to form the address.

! Setsthe W bit, causing base register update.

Architecture version

Version 2 and above

Operation

i f ConditionPassed(cond) then

if U==1 then
Rn = Rh + offset_8 * 4

else /* U==0 */
Rn = Rh - offset_8 * 4

start_address = Rn

address = start_address

whi | e (Not Fi ni shed(coprocessor[cp_nuni))
address = address + 4

end_address = address

A5-60

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

Notes
TheN bit I's coprocessor-dependent.
Thel bit Distinguishes between Load (L==1) and Store (L==0) instructions.

Useof R15 Specifying R15 as register Rn has UNPREDICTABLE resullts.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-61

ARM Addressing Modes

554

Load and Store Coprocessor - Immediate post-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 11 0|0|UIN|1|L Rn CRd cp_num offset 8

This addressing mode produces a sequence of consecutive addresses. The first addressis the value of the
base register Rn. The subsequent addresses in the sequence are produced by incrementing the previous
address by four until the coprocessor signals the end of the instruction. This allows a coprocessor to access
data whose size is coprocessor-defined.

If the condition specified in theinstruction matchesthe condition code status, the base register Rnisupdated
by adding or subtracting four timesthe value of an immediate offset to or from the value of the base register
Rn.

The coprocessor must not request a transfer of more than 16 words.

Syntax

[<Rn>], #+/-<offset_8>*4

where:

<Rn> Specifies the register containing the base address.

<of fset _8> Specifies the immediate offset that is multiplied by 4, then added to or subtracted
from the value of Rn to form the address.

Architecture version

Version 2 and above

Operation

i f ConditionPassed(cond) then

start_address = Rn

if U==1 then
Rn = Rh + offset_8 * 4

else /* U==0 */
Rn = Rh - offset_8 * 4

address = start_address

whi | e (Not Fi ni shed(coprocessor[cp_nuni))
address = address + 4

end_address = address

A5-62

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

Notes
TheN bit I's coprocessor-dependent.
Thel bit Distinguishes between Load (L==1) and Store (L==0) instructions.

Useof R15 Specifying R15 as register Rn has UNPREDICTABLE resullts.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-63

ARM Addressing Modes

5.5.5 Load and Store Coprocessor - Unindexed
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0
cond 1 1 0|0|U/N|O|L Rn CRd cp_num option
This addressing mode produces a sequence of consecutive addresses. The first addressis the value of the
base register Rn. The subsequent addresses in the sequence are produced by incrementing the previous
address by four until the coprocessor signals the end of the instruction. This allows a coprocessor to access
data whose size is coprocessor-defined.
The base register Rn is not updated. Bits[7:0] of the instruction are therefore not used by the ARM, either
for the address calculation or to calculate a new value for the base register, and so can be used to specify
additional instruction options to the coprocessor.
The coprocessor must not request a transfer of more than 16 words.
Syntax
[<Rn>], <option>
where:
<Rn> Specifies the register containing the base address.
<option> Specifiesadditional instruction options to the coprocessor. The <opt i on> is specified in
the ingtruction syntax as an integer in the range 0-255, surrounded by { and }.
Architecture version
Version 2 and above
Operation
i f ConditionPassed(cond) then
start_address = Rn
address = start_address
whi | e (Not Fi ni shed(coprocessor[cp_nuni))
address = address + 4
end_address = address
A5-64 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Addressing Modes

Notes

TheN bit I's coprocessor-dependent.

Thel bit Distinguishes between Load (L==1) and Store (L==0) instructions.

Useof R15 If R15isspecified asregister Rn, the value used is the address of the instruction plus 8.

TheU bit If bit[23] (the Up/down bit) is not set, the result is either UNDEFINED or UNPREDICTABLE (See
Coprocessor instruction extension space on page A3-33).

Option bits Are unused by the ARM in this addressing mode, and therefore can be used to request
additional instruction options in a coprocessor-dependent fashion.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A5-65

ARM Addressing Modes

A5-66 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter A6
The Thumb Instruction Set

This chapter introduces the Thumb instruction set and describes how Thumb uses the ARM programmer’s
model. It contains the following sections:

. About the Thumb instruction set on page A6-2

. Instruction set encoding on page A6-4
. Branch instructions on page A6-6
. Data-processing instructions on page A6-8

. Load and Sore Register instructions on page A6-15
. Load and Sore Multiple instructions on page A6-18
. Exception-generating instructions on page A6-20

. Undefined instruction space on page A6-21.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A6-1

The Thumb Instruction Set

6.1

6.1.1

About the Thumb instruction set

The Thumb instruction set isare-encoded subset of the ARM instruction set. Thumb isdesigned to increase
the performance of ARM implementationsthat use a 16-bit or narrower memory data bus and to allow better
code density than ARM. T variants of the ARM architectureincorporate both afull 32-bit ARM instruction
set and the 16-bit Thumb instruction set. Every Thumb instruction is encoded in 16 bits.

Thumb does not alter the underlying programmer’s model of the ARM architecture. It merely presents
restricted access to it. All Thumb data-processing instructions operate on full 32-bit values, and full 32-bit
addresses are produced by both data-access instructions and instruction fetches.

When the processor is executing Thumb instructions, eight general-purpose integer registers are available,
RO to R7, which are the same physical registers as RO to R7 when executing ARM instructions. Some
Thumb instructions also access the Program Counter (ARM Register 15), the Link Register

(ARM Register 14) and the Stack Pointer (ARM Register 13). Further instructions allow limited access to
ARM registers 8 to 15, which are know as lingh registers.

When R15 is read, bit[0] is zero and bits[31:1] contain the PC. When R15 is written, bitjopreD and
bits[31:1] are written to the PC. Depending on how it is used, the value of the PC is either the address of the
instruction plus 4 or iIINPREDICTABLE.

Thumb does not provide direct access to the CPSR or any SPSR (as the MSR and MRS instructions do in
the ARM instruction set)). Thumb execution is flagged by the T bit (bit[5]) in the CPSR:

T== 32-bitinstructions are fetched (and the PC is incremented by four) and are executed as ARM
instructions.

T== 16-bit instructions are fetched (and the PC is incremented by two) and are executed as
Thumb instructions.

Note

The Thumb instruction set is only compatible with the 32-bit ARM architectures. Thumb is not
recommended for use with 26-bit architectures or with 26-bit compatibility options on 32-bit architectures.

Entering Thumb state

Thumb execution is normally entered by executing an ARMnstruction (Branch and Exchange). This
instruction branches to the address held in a general-purpose register, and if bit[0] of that register is 1,
Thumb execution begins at the branch target address. If bit[0] of the target register is 0, ARM execution
continues from the branch target address. On architecture versions 5 andBabowstructions and
LDR/LDMinstructions that load the PC can be used similarly.

Thumb execution can also be initiated by setting the T bit in the SPSR and executing an ARM instruction
which restores the CPSR from the SPSR (a data-processing instruction with the S bit set and the PC as the
destination, or a Load Multiple with Restore CPSR instruction). This allows an operating system to
automatically restart a process independent of whether that process is executing Thumb code or ARM code.

The result isJNPREDICTABLE if the T bit is altered directly by writing the CPSR.

A6-2

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

6.1.2

The Thumb Instruction Set

Exceptions

Exceptions generated during Thumb execution switch to ARM execution before executing the exception
handler (whose first instruction is at the hardware vector). The state of the T bit is preserved in the SPSR,
and the LR of the exception modeis set so that the normal return instruction performs correctly, regardless
of whether the exception occurred during ARM or Thumb execution. Table 6-1 lists the values of the
exception mode LR for exceptions generated during Thumb execution.

Table 6-1 Exception return instructions

Exception Exception link register value Return instruction

Reset UNPREDICTABLE value -

Undefined Address of undefined instruction + 2 MOVS PC, R14

SWI Address of SWI instruction + 2 MOVS PC, R14

Prefetch Abort Address of aborted instruction fetch + 4 SUBS PC, R14, #4

Data Abort Address of the instruction that generated the abort + 8UBS PC, R14, #8

IRQ Address of the next instruction to be executed + 4 SUBS PC, R14, #4

FIQ Address of the next instruction to be executed + 4 SUBS PC, R14, #4
Note

For each exception, the return instruction indicated by Table 6-1 is the same as the return instruction

required if the exception occurred during ARM execution, for the primary or only method of return from

that instruction listed in Exceptions on page A2-13. However, the following two types of exception have a

secondary return method, for which different return instructions are needed depending on whether the

exception occurred during ARM or Thumb execution:

. For the Data Abort exception, the primary method of return causes execution to resume at the aborted
instruction, which causes it to be re-executed. As describedtaAbort (data access memory
abort) on page A2-17, it is also possible to return to the next instruction after the aborted instruction,
using aSUBS PC, R14, #4 instruction. If this type of return is required for a data abort caused by
a Thumb instruction, useUBS PC, R14, #6 for the return instruction.

. For the Undefined Instruction exception, the primary method of return causes execution to resume at
the next instruction after the undefined instruction. As describBadefined | nstruction exception
on page A2-15, it is also possible to return to the undefined instruction itself, using the instruction
SUBS PC, R14, #4. If this type of return is required for a Thumb undefined instructionSUBS
PC, R14, #2 for the return instruction. However, the main use of this type of return is for some types
of coprocessor instruction, and as the Thumb instruction set does not contain any coprocessor
instructions, you are unlikely to need this secondary method of return for Thumb instructions.

When these secondary methods of return are used, the exception handler code must test the SPSR T bit in
order to determine which of the two return instructions to use.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A6-3

The Thumb Instruction Set

6.2 Instruction set encoding
Figure 6-1 shows the Thumb instruction set encoding. An entry in square brackets, for example [1],
indicates a note on the following page.
15 14 13 12 1" 10 9 8 7 6 5 4 3 1 0
Shift by immediate 0 0 0 | opcode [1] immediate Rm Rd
Add/subtract register 0 0 0 1 1 0 |opc Rm Rn Rd
Add/subtract immediate 0 0 0 1 1 1 | opc immediate Rn Rd
Add/subtract/compare/move immediate 0 0 1 opcode Rd/Rn immediate
Data-processing register 0 1 0 0 0 0 opcode Rm/Rs Rd/Rn
Special data processing 0 1 0 0 0 1 |opcode[1] | H1 | H2 Rm Rd/Rn
?rzgﬂﬁrc‘{;xncgg{‘%‘i 0 1 0 0 0 1|1 1 |L |H Rm SBZ
Load from literal pool 0 1 0 0 1 Rd PC-relative offset
Load/store register offset 0 1 0 1 opcode Rm Rn Rd
Load/store word/byte immediate offset 0 1 1 B L offset Rn Rd
Load/store halfword immediate offset 1 0 0 0 L offset Rn Rd
Load/store to/from stack 1 0 0 1 L Rd SP-relative offset
Add to SP or PC 1 0 1 0 |SP Rd immediate
Miscellaneous: 1 0 1 1 X X X X X X X X X X X X
See Figure 6-2
Load/store multiple 1 1 0 0 L Rn register list
Conditional branch 1 1 0 1 cond [2] offset
Undefined instruction 1 1 0 1 1 1 1 0 X X X X X X X X
Software interrupt 1 1 0 1 1 1 1 1 immediate
Unconditional branch 1 1 1 0 0 offset
BLX suffix [4] 1 1 1 0 1 offset 0
Undefined instruction 1 1 1 0 1 X X X X X X X X X X 1
BL/BLX prefix 1 1 1 1 0 offset
BL suffix 1 1 1 1 1 offset
Figure 6-1 Thumb instruction set overview
A6-4 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The Thumb Instruction Set

1 The opc fieldisnot allowed to be 11 in thisline. Other lines deal with the case that the opc field is
11

2. Thecond field isnot alowed to be 1110 or 1111 in thisline. Other lines deal with the cases where
thecond fieldis1110 or 1111.

3. The form with L==1 isUNPREDICTABLE prior to ARM architecture version 5.
4. Thisis an undefined instruction prior to ARM architecture version 5.

6.2.1 Miscellaneous instructions

Figure 6-2 lists miscellaneous Thumb instructions. An entry in square brackets, for example [1], indicates
anote below the figure.

Adjust stack pointer 1 0 1 1 0 0 0 0 |opc immediate
Push/pop register list 1 0 1 1 L 1 0 R register list
Software breakpoint [1] 1 0 1 1 1 1 1 0 immediate

Figure 6-2 Miscellaneous Thumb instructions

1 Thisis an undefined instruction prior to ARM architecture version 5.

Note
Any instruction with bits[15:12] = 1011, and which is not shown in Figure 6-2, is an undefined instruction.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A6-5

The Thumb Instruction Set

6.3 Branch instructions
Thumb supports six types of branch instruction:
. an unconditional branch that allows a forward or backward branch of up to 2KB
. a conditional branch to allow forward and backward branches of up to 256 bytes
. a Branch with Link (subroutine call) is supported with a pair of instructions that allow forward and
backward branches of up to 4MB
. a Branch and Exchange instruction branches to an address in a register and optionally switches to
ARM code execution
. a Branch with Link and Exchange instruction performs a subroutine call to an address in a register
and optionally switches to ARM code execution
. a second form of Branch with Link and Exchange uses a pair of instructions, similar to Branch with
Link, but additionally switches to ARM code execution.
The encoding for these instructions is given below.
6.3.1 Conditional branch
B<cond> <target_address>
15 14 13 12 11 8 7 0
1 1 0 1 cond 8_bit_signed_offset
6.3.2 Unconditional branch
B <t arget _addr ess>
BL <t arget_addr ess> ; Produces two 16-bit instructions
BLX <target_address> ; Produces two 16-bit instructions
15 14 13 12 11 10 0
1 1 1 H offset_11
6.3.3 Branch with exchange
BX <R
BLX <Rm>
15 14 13 12 11 10 9 8 7 6 5 3 2 0
0 1 0 0 0 1 1 1 L| H2 Rm SBz
A6-6 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

6.3.4 Examples

B | abel
BCC | abel
BEQ | abel
BL func

func

MOV PC, LR

BX R12

The Thumb Instruction Set

uncondi tionally branch to | abel
branch to label if carry flag is clear
branch to label if zero flag is set

subroutine call to function

I nclude body of function here
R15=R14, return to instruction after the BL
branch to address in R12; begin ARM execution if

bit 0 of R12 is zero; otherw se continue executing
Thunmb code

6.3.5 List of branch instructions

The following instructions follow the formats shown above.

B Conditional Branch. See B (1) on page A7-18.

B Unconditional Branch. See B (2) on page A7-20.

BL Branch with Link. See BL, BLX(1) on page A7-26.

BX Branch and Exchange instruction set. See BX on page A7-32.

BLX Branch with Link and Exchangeinstruction set. See BL, BLX(1) on page A7-26 and BLX(2)
on page A7-30.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A6-7

The Thumb Instruction Set

6.4 Data-processing instructions

Thumb data-processing instructions are a subset of the ARM data-processing instructions, as shown in
Table 6-2. All Thumb data-processing instructionsin this table set the condition codes.

Table 6-2 Thumb data-processing instructions

Mnemonic Operation Action

ADC Rd, Rm Add with Carry Rd :=Rd + Rm + Carry flag
ADD Rd, Rn, Rm Add Rd:=Rn+Rm

ADD Rd, Rn, #0 to 7 Add Rd := Rn + 3-bit immediate
ADD Rd, #0 to 255 Add Rd := Rd + 8-bit immediate
AND Rd, Rm Logical AND Rd := Rd AND Rm

ASR Rd, Rm #1 to 32 Arithmetic Shift Right Rd := Rm ASR 5-bit immediate
ASR Rd, Rs Arithmetic Shift Right Rd:=RdASRRs

BIC Rd, Rm Bit Clear Rd := Rd AND NOT Rm

CW Rn, Rm Compare Negated Update flags after Rn + Rm
CWP Rn, #0 to 255 Compare Update flags after Rn - 8-bit immediate
CVWP Rn, Rm Compare Update flags after Rn - Rm
EOCR Rd, Rm Logical Exclusive OR Rd := Rd EOR Rm

LSL Rd, Rm #0 to 31 Logical Shift Left Rd := Rm LSL 5-bit immediate
LSL Rd, Rs Logical Shift Left Rd:=RdLSL Rs

LSR Rd, Rm #1 to 32 Logical Shift Right Rd := Rm LSR 5-bit immediate
LSR Rd, Rs Logical Shift Right Rd:=RdLSRRs

MOV Rd, #0 to 255 Move Rd := 8-bit immediate

MOV Rd, Rn Move Rd:=Rn

MUL Rd, Rm Multiply Rd:=Rmx Rd

M/N Rd, Rm Move Not Rd := NOT Rm

NEG Rd, Rm Negate Rd:=0-Rm

ORR Rd, Rm Logical (inclusive) OR Rd := Rd OR Rm

A6-8 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The Thumb Instruction Set

Table 6-2 Thumb data-processing instructions (Continued)

Mnemonic Operation Action

ROR Rd, Rs Rotate Right Rd := Rd ROR Rs

SBC Rd, Rm Subtract with Carry Rd := Rd - Rm - NOT(Carry Flag)
SUB Rd, Rn, Rm Subtract Rd:=Rn-Rm

SUB Rd, Rn, #0 to 7 Subtract Rd := Rn - 3-bit immediate
SUB Rd, #0 to 255 Subtract Rd := Rd - 8-bit immediate
TST Rn, Rm Test Update flags after Rn AND Rm
For example:

ADD RO, R4, R7 RO = R4 + R7

SuB R6, R1, R2 R6 = Rl - R2

ADD RO, #255 RO = RO + 255

ADD Rl1, R4, #4 RL=R4 + 4

NEG R3, R1 R3=0-RL

AND R2, R5 R2 = R2 AND R5

EOR R1, R6 Rl = Rl ECR R6

CwvP R2, R3 update flags after R2 - R3

CwP R7, #100 update flags after R7 - 100

Yo RO, #200 RO = 200

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A6-9

The Thumb Instruction Set

6.4.1 High registers

There are seven types of data-processing instruction which operate on ARM registers 8 to 14 and the PC as
shown in Table 6-3. Apart from CVP, instructions in this table do not change the condition code flags.

Table 6-3 High register data-processing instructions

Mnemonic Operation Action

MOV Rd, Rn Move Rd := Rn

ADD Rd, Rm Add Rd:=Rd +Rm

CVWP Rn, Rm Compare Update flags after Rn - Rm

ADD SP, #0 to 508 Increment stack pointer R13 = R13 + 4* (7-bit immediate)
SUB SP, #0 to 508 Decrement stack pointer R13 = R13 - 4* (7-bit immediate)
ADD Rd, SP, #0 to 1020 Form Stack address Rd = R13 + 4* (8-bit immediate)
ADD Rd, PC, #0 to 1020 Form PC address Rd = PC + 4* (8-bit immediate)
For example:

MoV RO, R12 RO = R12

ADD R10, R1l, R2 R6 = RlL - R2

o PC, LR PC = R14

CwvP R10, R11 update flags after R1I0 - R11

SUB SP, #12 increase stack size by 12 bytes

ADD SP, #16 decrease stack size by 16 bytes

ADD R2, SP, #20 R2 = SP + 20

ADD RO, PC, #500 RO = PC + 500

A6-10

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

6.4.2 Formats

The Thumb Instruction Set

Data-processing instructions use the following eight instruction formats:

Format 1

<opcodel> <Rd>, <Rn> <R

<opcodel> := ADD | SUB
15 14 13 12 11 10 9 8 6 5 3 2 0
0 0 0 1 1 0 |op_1 Rm Rn Rd

Format 2

<opcode2> <Rd>, <Rn>, #<3_bit_i med>

<opcode2> := ADD | SUB
15 14 13 12 11 10 9 8 6 5 3 2 0
0 0 0 1 1 1 |op_ 2| 3 bit_ immediate Rn Rd

Format 3

<opcode3> <Rd>| <Rn>, #<8_bit_i med>

<opcode3> := ADD | SUB | MOV | CW
15 14 13 12 11 10 8 7 0
0 0 1 op_3 Rd|Rn 8 hit immediate

Format 4

<opcode4> <Rd>, <Rmp, #<shift_i mp

<opcode4> := LSL | LSR | ASR
15 14 13 12 11 10 6 5 3 2 0
0 0 0 op_4 shift_immediate Rm Rd

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A6-11

The Thumb Instruction Set

Format 5

<opcode5> <Rd>| <Rn>, <Rnp|<Rs>

<opcode5> := MWN| CMP | CMN| TST | ADC | SBC| NEG| ML |
LSL | LSR| ASR| ROR| AND | EOR| ORR| BIC
15 14 13 12 11 10 9 6 5 3 2 0
0 1 0 0 0 0 op_5 Rm|Rs Rd|Rn
Format 6
ADD <Rd>, <reg>, #<8_bit_i med>
<reg> := SP | PC
15 14 13 12 11 10 8 7 0
1 0 1 0 | reg Rd 8 bit immediate
Format 7
<opcode6> SP, SP, #<7_bit_i med>
<opcode6> := ADD | SUB
15 14 13 12 11 10 9 8 7 6 0
1 0 1 1 0 0 0 0 |(op 6 7_bit_ immediate
Format 8
<opcode7> <Rd>| <Rn>, <Rnp
<opcode7> := MOV | ADD | CWP
15 14 13 12 11 10 9 8 7 6 5 3 2 0
0 1 0 0 0 1 opcode H1 | H2 Rm Rd|Rn

A6-12 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The Thumb Instruction Set

6.4.3 List of data-processing instructions

The following instructions follow the formats shown above.

EOR
LSL
LSL
LSR
LSR

Add with Carry. See ADC on page A7-4.

Add (immediate). See ADD (1) on page A7-5.

Add (large immediate). See ADD (2) on page A7-6.

Add (register). See ADD (3) on page A7-7.

Add high registers. See ADD (4) on page A7-8.

Add (immediate to program counter). See ADD (5) on page A7-10.
Add (immediate to stack pointer). See ADD (6) on page A7-11.
Increment stack pointer. See ADD (7) on page A7-12.

Logical AND. See AND on page A7-13.

Arithmetic Shift Right (immediate). See ASR (1) on page A7-14.
Arithmetic Shift Right (register). See ASR (2) on page A7-16.
Bit Clear. See BIC on page A7-22.

Compare Negative (register). See CMN on page A7-34.
Compare (immediate). See CMP (1) on page A7-35.

Compare (register). See CMP (2) on page A7-36.

Compare high registers. See CMP (3) on page A7-37.

Exclusive OR. See EOR on page A7-39.

Logical Shift Left (immediate). See LS (1) on page A7-59.
Logical Shift Left (register). See LSL (2) on page A7-60.

Logical Shift Right (immediate). See LSR (1) on page A7-62.
Logical Shift Right (register). See LSR (2) on page A7-64.
Move (immediate). See MOV (1) on page A7-66.

Move alow register to another low register. See MOV (2) on page A7-67.
Move high registers. See MOV (3) on page A7-68.

Multiply. See MUL on page A7-70.

Move NOT (register). See MVN on page A7-72.

Negate (register). See NEG on page A7-73.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

A6-13

The Thumb Instruction Set

RCR
SBC
SUB
SUB
SUB
SUB
TST

Logical OR. See ORR on page A7-74.

Rotate Right (register). See ROR on page A7-80.
Subtract with Carry (register). See SBC on page A7-82.
Subtract (immediate). See SUB (1) on page A7-98.
Subtract (large immediate). See SUB (2) on page A7-99.
Subtract (register). See SUB (3) on page A7-100.
Decrement stack pointer. See SUB (4) on page A7-101.
Test (register). See TST on page A7-103.

A6-14

Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

The Thumb Instruction Set

6.5 Load and Store Register instructions

Thumb supports eight types of Load and Store Register instructions. Two basic addressing modes are
available. These allow the load and store of words, halfwords and bytes, and also the load of signed

halfwords and bytes:
. register plus register
. register plus 5-bit immediate (not available for signed halfword and signed byte loads).

If an immediate offset is used, it is scaled by 4 for word access and 2 for halfword accesses.
In addition, three special instructions allow:
. words to be loaded using the PC as a base with a 1KB (word-aligned) immediate offset
. words to be loaded and stored with the stack pointer (R13) as the base and a 1KB (word-aligned)
immediate offset.
6.5.1 Formats

Load and Store Register instructions have the following formats:

Format 1

<opcodel> <Rd>, [<Rn>, #<5_bit_offset>]
<opcodel> : = LDR| LDRH| LDRB| STR| STRH| STRB

15 11 10 6 5 3 2 0

opcodel 5 bit_offset Rn Rd

Format 2

<opcode2> <Rd>, [<Rn>, <Rmp]
<opcode2> : = LDR| LDRH| LDRSH| LDRB| LDRSB| STR| STRH| STRB

15 9 8 6 5 3 2 0

opcode2 Rm Rn Rd

Format 3
LDR <Rd>, [PC, #<8_bit_offset>]

15 14 13 12 11 10 8 7 0

0 1 0 0 1 Rd 8 hit_immediate

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A6-15

The Thumb Instruction Set

Format 4

<opcode3> <Rd>, [SP, #<8_bit_offset>]

<opcode3> := LDR | STR
15 14 13 12 11 10 8 7 0
1 0 0 1 L Rd 8 bit immediate
For example:
LDR R4, [R2, #4] ; Load word into R4 from address R2 + 4
LDR R4, [R2, R1] ; Load word into R4 fromaddress R2 + RL
STR RO, [R7, #0x7(C] ; Store word fromRO to address R7 + 124
STRB R1, [R5, #31] ; Store byte fromRl to address R5 + 31
STRH R4, [R2, R3] ; Store halfword fromR4 to R2 + R3
LDRH R3, [R6, R5] ; Load word into R3 fromR6 + R5
LDRB R2, [R1, #5] ; Load byte into R2 fromRL + 5
LDR R6, [PC, #0x3FC] ; Load R6 from PC + O0x3FC
LDR R5, [SP, #64] ; Load R5 from SP + 64
STR R4, [SP, #0x260] ; Load R5 from SP + 0x260

A6-16 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The Thumb Instruction Set

6.5.2 List of Load and Store Register instructions

The following instructions follow the formats shown above.

LDR
LDR
LDR
LDR
LDRB
LDRB
LDRH
LDRH
LDRSB
LDRSH
STR
STR
STR
STRB
STRB
STRH
STRH

Load Word (immediate offset). See LDR (1) on page A7-42.

Load Word (register offset). See LDR (2) on page A7-44.

Load Word (PC-relative). See LDR (3) on page A7-46.

Load Word (SP-relative). See LDR (4) on page A7-48.

Load Unsigned Byte (immediate offset). See LDRB (1) on page A7-50.
Load Unsigned Byte (register offset). See LDRB (2) on page A7-51.
Load Unsigned Halfword (immediate offset). See LDRH (1) on page A7-52.
Load Unsigned Halfword (register offset). See LDRH (2) on page A7-54.
Load Signed Byte (register offset). See LDRSB on page A7-56.

Load Signed Halfword (register offset). See LDRSH on page A7-57.
Store Word (immediate offset). See STR (1) on page A7-86.

Store Word (register offset). See STR (2) on page A7-88.

Store Word (SP-relative). See STR (3) on page A7-90.

Store Byte (immediate offset). See STRB (1) on page A7-92.

Store Byte (register offset). See STRB (2) on page A7-93.

Store Halfword (immediate offset). See STRH (1) on page A7-94.

Store Halfword (register offset). See STRH (2) on page A7-96.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A6-17

The Thumb Instruction Set

6.6 Load and Store Multiple instructions
Thumb supports four types of Load and Store Multiple instructions:

. Two instructionsLDM A andSTM A, are designed to support block copy. They have a fixed
Increment After addressing mode from a base register.

. The other two instruction®USH andPOP, also have a fixed addressing mode. They implement a
full descending stack and the stack pointer (R13) is used as the base register.

All four instructions update the base register after transfer and all can transfer any or all of the lower 8
registersPUSH can also stack the return address, B@E can load the PC.

6.6.1 Formats

Load and Store Multiple instructions have the following formats:

Format 1

<opcodel> <Rn>!, <registers>

<opcodel> := LDMA | STMA
15 14 13 12 11 10 8 7 0
1 1 0 0 L Rn register_list

Format 2

PUSH {<registers>}
POP {<registers>}

15 14 13 12 11 10 9 8 7 0

1 0 1 1 L 1 0 R register_list

6.6.2 Examples

LDM A R7!, {RO-R3, R5} ; Load RO to R3-R5 fromR7, add 20 to R7

STM A RO!, {R3, R4, R5} ; Store R3-R5 to RO: add 12 to RO
function

PUSH {RO-R7, LR} ; push onto the stack (R13) RO-R7 and

the return address
code of the function body

pPOP {RO-R7, PC} ; restore RO-R7 fromthe stack
; and the program counter, and return

A6-18 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The Thumb Instruction Set

6.6.3 List of Load and Store Multiple instructions

The following instructions follow the formats shown above.

LDM A Load Multiple. See LDMIA on page A7-40.
POP Pop Multiple. See POP on page A7-75.
PUSH Push Multiple. See PUSH on page A7-78.
STM A Store Multiple. See STMIA on page A7-84.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A6-19

The Thumb Instruction Set

6.7 Exception-generating instructions

The Thumb instruction set provides two types of instruction whose main purpose is to cause a processor
exception to occur:

. The Software InterrupSW) instruction is used to cause a SWI exception to occur(sfegare
Interrupt exception on page A2-16). This is the main mechanism in the Thumb instruction set by
which User mode code can make calls to privileged Operating System code.

. The BreakpointBKPT) instruction is used for software breakpoints in T variants of ARM
architecture versions 5 and above. Its default behavior is to cause a Prefetch Abort exception to occur
(seePrefetch Abort (instruction fetch memory abort) on page A2-16). A debug monitor program that
has previously been installed on the Prefetch Abort vector can handle this exception.

If debug hardware is present in the system, it is allowed to override this default behavior. Details of
whether and how this happens BeLEMENTATION DEFINED.

6.7.1 Instruction encodings
SW <i mmed_8>

15 14 13 12 11 10 9 8 7 0

1 1 0 1 1 1 1 1 immed_8

BKPT <i mmed 8>

15 14 13 12 11 10 9 8 7 0

1 0 1 1 1 1 1 0 immed_8

In bothSW andBKPT, the immed_8 field of the instruction is ignored by the ARM processor. The SWI or
Prefetch Abort handler can optionally be written to load the instruction that caused the exception and extract
these fields. This allows them to be used to communicate extra information about the Operating System call
or breakpoint to the handler.

6.7.2 List of exception-generating instructions
BKPT Breakpoint. Se8KPT on page A7-24.
SW Software Interrupt. Se®M on page A7-102.

A6-20 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The Thumb Instruction Set

6.8 Undefined instruction space

The following instructions are UNDEFINED in the Thumb instruction set:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 1 X X X X X X X X

In general, these instructions can be used to extend the Thumb instruction set in the future. However, it is
intended that the following group of instructions will not be used in this manner:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 1 1 0 X X X X X X X X

Use one of these instructions if you want to use an undefined instruction for software purposes, with
minimal risk that future hardware will trezat it as a defined instruction.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A6-21

The Thumb Instruction Set

A6-22 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter A7
Thumb Instructions

This chapter describes the syntax and usage of every Thumb instruction, in the section:
. Alphabetical list of Thumb instructions on page A7-2
. Thumb instructions and architecture versions on page A7-104.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-1

Thumb Instructions

7.1 Alphabetical list of Thumb instructions

Every Thumb instruction is listed on the following pages. Each instruction description shows:

. the instruction encoding

. the instruction syntax

. the versions of the ARM architecture where the instruction is valid
. any exceptions that might apply

. a pseudo-code specification of how the instruction operates

. notes on usage and special cases

. the equivalent ARM instruction encoding.

7.11 General notes

These notes explain the types of information and abbreviations used on the instruction pages.

Syntax abbreviations
The following abbreviations are used in the instruction pages:

i mred_<n> This is an<n>-bit immediate value. For example, an 8-bit immediate value is represented
by:
i med_8

signed_i med_<n>
This is a signed immediate. For example, an 8-bit signed immediate is represented by:

si gned_i nmed_8

Architecture version

For the convenience of the reader, this section describes the version of the ARM instruction set that the
instruction is associated with, not the version of the Thumb instruction set. There have been two versions
of the Thumb instruction set architecture to date:

THUMBvV1 Thisis used in T variants of version 4 of the ARM instruction set architecture.
THUMBV2 Thisis used in T variants of version 5 and above of the ARM instruction set architecture.

Instructions which are described as being in all T variants are therefore present in both THUMBvV1 and
THUMBV2, while those that are described as being in T variants of version 5 and above are in THUMBvV2
only.

A7-2 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Equivalent ARM syntax and encoding

This section shows the syntax and encoding of an equivalent ARM instruction. When no precise equival ent
isavailable, a close equivalent is shown and the reasonswhy it is not a precise equivaent are explained.

A common reason for the instruction not being a precise equivalent isthat it readsthe value of the PC. This
produces the instruction’s own address plus N, where N is 8 for ARM ingtructions and 4 for Thumb
instructions. This difference can often be compensated for by adjusting an immediate constant in the
equivalent ARM instruction.

In the equivalent instruction encodings, named fields and bitsmust befilled in with the corresponding fields
and bits from the Thumb instruction, or in afew cases with values derived from the Thumb instruction as
described in the text.

The ARM instruction fields are normally the same length as the corresponding Thumb instruction fiel ds,
with one important exception. Thumb register fields are normally 3 bitslong, whereas ARM register fields
arenormally 4 bitslong. Inthese cases, the Thumb register field must be extended with ahigh-order 0 when
subgtituted into the ARM register field, so that the ARM instruction refers to the correct one of RO to R7.

Information on usage

Usageinformationisonly given for Thumb instructionswhereit differs significantly from ARM instruction
usage. If no Usage section appears for a Thumb instruction, see the equivalent ARM instruction pagein
Chapter A4 ARM Instructions for usage information.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-3

Thumb Instructions

7.1.2

ADC

15 14 13 12 11 10 9 8

1 Rm

Rd

The ADC (Add with Carry) instruction can be used to synthesize multi-word addition. The condition code

flags are updated, based on the result.

Syntax
ADC <Rd>, <Rr>

where:

<Rd> Holds the first value for the addition, and is the destination register for the operation.

<Rn® Specifies the register that contains the second operand for the addition.

Architecture version

All T variants

Exceptions

None

Operation

Rd = Rd + Rm+ C Fl ag

N Fl ag Rd[31]

Z Fl ag if Rd == 0 then 1 else 0

C Fl ag CarryFrom(Rd + Rm + C Fl ag)

V Fl ag OverflowFrom(Rd + Rm + C Fl ag)

Equivalent ARM syntax and encoding

ADCS <Rd>, <Rd>, <Rnp

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15

121110 9 8 7 6 5 4 3 0

111000001011 Rd

Rd

000O0O0OO0OOOO Rm

A7-4

Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

Thumb Instructions

713 ADD(1)

15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 0 1 1 1 0 immed_3 Rn Rd

This form of ADD adds a small constant value to the value of aregister and stores the result in a second
register. The condition code flags are updated, based on the resuilt.

Syntax

ADD <Rd>, <Rn>, #<imed 3>

where:

<Rd> I's the destination register for the completed operation.

<Rn> Specifies the register that contains the operand for the addition.

<i med_3> Specifies a 3-bit immediate value that is added to the vaue of <Rn>.

Architecture version

All T variants

Exceptions

None

Operation

Rd = Rh + imed_3

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else O
C Flag = CarryFronm{Rn + inmed_3)

V Flag = Overfl owFron{Rn + i med_3)

Equivalent ARM syntax and encoding
ADDS <Rd>, <Rn>, #<imed 3>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 2 0

111000101001 Rn Rd 00O0O0OOOO OO0 Ofimmed_3

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-5

Thumb Instructions

7.1.4 ADD (2)
15 14 13 12 11 10 8 7 0
0 0 1 1 0 Rd immed_8
This form of ADD adds alarge immediate value to the value of aregister and stores the result back in the
same register. The condition code flags are updated, based on the result.
Syntax
ADD <Rd>, #<i med 8>
where:
<Rd> Holds the first operand for the addition, and is the destination register for the
completed operation.
<i mred_8> Specifies an 8-bit immediate value that is added to the value of <Rd>.
Architecture version
All T variants
Exceptions
None
Operation
Rd = Rd + i med_8
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = CarryFronm(Rd + inmed_8)
V Flag = OverflowFrom(Rd + i med_8)
Equivalent ARM syntax and encoding
ADDS <Rd>, <Rd>, #<immed 8>
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 0
111000101001 Rd Rd 00O00O immed_8
A7-6 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

7.1.5

Thumb Instructions

ADD (3)
15 14 13 12 11 10 9 8 6 5 3 2 0
o 0 0 1 1 0 0 Rm RN Rd

This form of ADD adds the value of one register to the value of a second register, and storestheresultin a
third register. The condition code flags are updated, based on the result.

Syntax

ADD <Rd> <Rn>, <Rnp

where:

<Rd> Is the destination register for the completed operation.

<Rn> Specifies the register containing the first value for the addition.
<Rn® Specifies the register containing the second value for the addition.

Architecture version

All T variants

Exceptions

None

Operation

Rd = Rn + Rm

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else O
C Flag = CarryFronm{Rn + Rm)

V Flag = Overfl owFrom(Rn + Rm

Equivalent ARM syntax and encoding
ADDS <Rd>, <Rn>, <R

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

111000001001 Rn Rd 000O0O0O0O0O Rm

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-7

Thumb Instructions

7.1.6 ADD (4)

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 1 0 0 | H1 | H2 Rm Rd

This form of ADD adds the values of two registers, one or both of which are high registers. Unlike the
low-register ADD instruction (ADD (3) on page A7-7), this instruction does not change the flags.

Syntax

ADD <Rd>, <Rr>

where:

<Rd> Specifiestheregister containing thefirst value, and is also the destination register. It can be
any of RO to R15. Theregister number isencoded in the instruction in H1 (most significant
bit) and Rd (remaining three bits).

<Rn® Specifiesthe register containing the second vaue. It can be any of RO to R15. Its number is

encoded in theinstruction in H2 (most significant bit) and Rm (remaining three bits).

Architecture version

All T variants

Exceptions

None

Operation

Rd = Rd + Rm

Notes

Operand regtriction If alow register is specified for <Rd> and Rm (H1==0 and H2==0), the result is
UNPREDICTABLE.

A7-8 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Equivalent ARM syntax and encoding
A closeequivaentis:
ADD <Rd> <Rd>, <Rn®

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 121110 9 8 7 6 5 4 3 2 0

111000001000HY] Rd HL Rd 0 00OOOOOHZ Rm

There are dight differences when theinstruction accesses the PC, because of the different definitions of the
PC when executing ARM and Thumb code.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-9

Thumb Instructions

7.1.7

ADD (5)

15 14 13 12 11 10 8 7 0

1 0 1 0 0 Rd immed_8

This form of ADD adds an immediate val ue to the PC and writes the resulting PC-rel ative address to a
destination register. The immediate can be any multiple of 4 in the range 0 to 1020. The condition codesare
not affected.

Syntax

ADD <Rd>, PC, #<imed 8> * 4

where:

<Rd> Is the destination register for the completed operation.

PC Indicates PC-relative addressing.

<i nmed_8> Specifiesan 8-bit immediate value that is quadrupled and added to the value of the PC.

Architecture version

All T variants

Exceptions

None

Operation

Rd = (PC AND OXxFFFFFFFC) + (imed_8 << 2)

Equivalent ARM syntax and encoding
A closeequivalentis:
ADD <Rd>, PC, #<imed 8> * 4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 121110 9 8 7 0

1110001010002 111 Rd 1111 immed_8

The definitions of the PC differ between ARM and Thumb code. This makes a difference between the
precise results of the instructions.

A7-10

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

7.1.8

Thumb Instructions

ADD (6)
15 14 13 12 11 10 8 7 0
1 0 1 o0 1 Rd immed_8

This form of ADD adds an immediate value to the SP and writes the resulting SP-relative addressto a
destination register. Theimmediate can be any multiple of 4 in the range 0 to 1020. The condition codesare
not affected.

Syntax

ADD <Rd>, SP, #<immed 8> * 4

where:
<Rd> Is the destination register for the completed operation.
SP Indicates SP-relative addressing.

<i mmed_8> Specifies an 8-bit immediate value that is quadrupled and added to the value of the SP.

Architecture version

All T variants

Exceptions

None

Operation

Rd = SP + (imed_8 << 2)

Equivalent ARM syntax and encoding
ADD <Rd>, SP, #<immed 8> * 4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 121110 9 8 7 0

1110001010002 101 Rd 1111 immed_8

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-11

Thumb Instructions

7.1.9

ADD (7)

15 14 13 12 11 10 9 8 7 6 0

1 0 1 1 0 0 0 0 0 immed_7

Thisform of ADDincrementsthe SP by four timesa7-bit immediate (that is, by amultiple of 4intherange
0to 508). The condition codes are not affected.

Syntax
ADD SP, #<immed 7> * 4
where:

SP Contains the first operand for the addition. SP is also the destination register for the
operation.

<i nmed_7> Specifiesthe immediate value that is quadrupled and added to the value of the SP.

Architecture version

All T variants

Exceptions

None

Operation

SP = SP + (immed_7 << 2)

Usage

For the Full Descending stack which the Thumb instruction set is designed to use, incrementing the SPis
used to discard data on the top of the stack.

Notes

Alternativesyntax ~ Thisinstruction can also be writtenas ADD SP, SP, #(<i med_7> * 4).

Equivalent ARM syntax and encoding
ADD SP, SP, #<imed 7> * 4

31 3029 28 27 26 2524 23 22 21 20 19 18 17 16 1514 1312 11 10 9 8 7 6 0

111000101000/1212101j2101f1 1110 immed_7

A7-12

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

7.1.10 AND
15 14 13 12 11 10 9 8 7 6 5 3 2 0
0 1 0 0 0 0 0 0 0 0 Rm Rd

The AND (Logical AND) instruction performs a bitwise AND of the valuesin two registers. The condition
code flags are updated, based on the resuilt.

Syntax

AND <Rd>, <Rn»

where:
<Rd> Specifies the register containing the first operand, and is also the destination register.
<Rnp Specifies the register containing the second operand.

Architecture version

All T variants

Exceptions

None

Operation

Rd = Rd AND Rm

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else O
C Flag = unaffected

V Flag = unaffected

Equivalent ARM syntax and encoding
ANDS <Rd>, <Rd> <R

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

1110000000012 Rd Rd 000O0O0O0O0O Rm

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-13

Thumb Instructions

7111 ASR(1)

15 14 13 12 11 10 6 5 3 2 0

0 0 0 1 0 immed_5 Rm Rd

This form of the ASR (Arithmetic Shift Right) instruction is used to provide the signed value of aregister
divided by a constant power of 2. The condition code flags are updated, based on the result.

Syntax

ASR <Rd>, <Rrp, #<i mmed 5>

where:

<Rd> Is the destination register for the completed operation.

<Rn® Specifies the register that contains the value to be shifted.

<i mred_5> Specifiesthe shift amount, in therange 1 to 32. Shiftsby 1 to 31 are encoded directly

inimmed_5. A shift by 32 isencoded asimmed 5 == 0.

Architecture version

All T variants

Exceptions
None
Operation
if imed_5 ==

C Flag = Rnf 31]

if RM{31] == 0 then

Rd = 0
else /* Rn{31] == 1 */]

Rd = OxFFFFFFFF
else /* imed_5 > 0 */
C Flag = Rr{inmred_5 - 1]

Rd = Rm Arithnetic_Shift_Right imed_5
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
V Flag = unaffected

A7-14 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Equivalent ARM syntax and encoding

Thumb Instructions

MOVS <Rd>, <RnP, ASR #<i med 5>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

111000011011 SBZ Rd immed_5 100 Rm
ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-15

Thumb Instructions

7.1.12 ASR(2)
15 14 13 12 11 10 9 8 7 6 5 2 0
0 1 0 0 0 0 0 1 0 0 Rs Rd
Thisform of ASR is used to provide the signed value of aregister divided by a variable power of 2. The
condition code flags are updated, based on the result.
Syntax
ASR <Rd>, <Rs>
where:
<Rd> Contains the value to be shifted, and is also the destination register for the completed
operation.
<Rs> Specifies the register that contains the val ue of the shift.
Architecture version
All T variants
Exceptions
None
Operation
if Rs[7:0] == 0 then
C Flag = unaffected
Rd = unaffected
else if Rs[7:0] < 32 then
C Flag = RA[Rs[7: 0] - 1]
Rd = Rd Arithnetic_Shift_Right Rs[7:0]
else /* Rs[7:0] >= 32 */
C Flag = Rd[31]
if RA[31] == O then
Rd =0
else /* RA[31] == 1 */
Rd = OxFFFFFFFF
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
V Flag = unaffected
A7-16 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Equivalent ARM syntax and encoding

MOVS <Rd> <Rd>, ASR <Rs>

Thumb Instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
111000011011 SBZ Rd Rs 0101 Rd
ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-17

Thumb Instructions

7.1.13 B (1)
15 14 13 12 11 8 7 0
1 1 0 1 cond signed_immed_8

This form of the B (Branch) instruction provides a conditiona branch to atarget address.

Syntax
B<cond> <target_address>
where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5.

<target _address>
Specifies the address to branch to. The branch target addressis calculated by:

1 Shifting the 8-bit signed offset field of the instruction left by one bit.
2. Sign-extending the result to 32 bits.

3. Adding this to the contents of the PC (which contains the address of the branch
instruction plus 4).

The instruction can therefore specify a branch of approximately +256 bytes.

Architecture version

All T variants

Exceptions

None

Operation

i f ConditionPassed(cond) then
PC = PC + (SignExtend(signed_imed_8) << 1)

A7-18 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Usage
To calculate the correct value of signed_immed_8, the assembler (or other toolkit component) needs to:

1. Form the base address for the branch. Thisis the address of the branch instruction, plus 4. In other
words, the base address is equal to the PC value read by that instruction.

2. Subtract the base address from the target address to form a byte offset. This offset is adways even,
because all Thumb instructions are halfword-aligned.

3. If the byte offset is outside the range -256 to +254, use an dternative code-generation strategy or
produce an error as appropriate.

4. Otherwise, set the signed_immed_8 field of the instruction to the byte offset divided by 2.

Notes

Memory bounds Branching backwards past location zero and forwards over the end of the 32-bit
address space iS UNPREDICTABLE.

AL condition If the condition field indicates AL (0b1110), the instruction is instead UNDEFINED.
When an unconditional branch isrequired, use the unconditiona Branch instruction
described in B (2) on page A7-20.

NV condition If the condition field indicates NV (0b1111), the instruction isa SW instead (see

SW on page A7-102).

Equivalent ARM syntax and encoding
A closeequivaentis:
B<cond> <target_address>

31 28 27 26 25 24 23 8 7 0

cond 1010 sign extension of signed_immed_8 signed_immed_8

Thisdiffersfrom the Thumbinstruction, because the offset in the ARM instruction is shifted | eft by 2 before
being added to the PC, whereas the offset in the Thumb instruction is shifted left by 1. Also, the PC values
read by the ARM and Thumb instructions are different.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-19

Thumb Instructions

7.1.14 B (2)
15 14 13 12 11 10 0
1 1 1 0 0 signed_immed_11
This form of B provides an unconditiona branch to atarget address.
Syntax
B <target_address>
where:
<t arget _address>
Specifies the address to branch to. The branch target addressis calculated by:
1 Shifting the 11-bit signed offset of the instruction left one bit.
2. Sign-extending the result to 32 bits.
3. Adding this to the contents of the PC (which contains the address of the branch
instruction plus 4).
The instruction can therefore specify a branch of approximately +2048 bytes.
Architecture version
All T variants
Exceptions
None
Operation
PC = PC + (SignExtend(signed_i med_11) << 1)
Usage
To calculate the correct value of signed_immed_11, the assembler (or other toolkit component) needs to:
1. Form the base address for the branch. Thisis the address of the branch instruction, plus 4. In other
words, the base addressis equal to the PC value read by that instruction.
2. Subtract the base address from the target address to form a byte offset. This offset is always even,
because all Thumb instructions are halfword-aligned.
3. If the byte offset is outside the range -2048 to +2046, use an alternative code-generation strategy or
produce an error as appropriate.
4. Otherwise, set the signed_immed_11 field of the instruction to the byte offset divided by 2.
A7-20 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Notes

Memory bounds Branching backwards past location zero and forwards over the end of the 32-bit
address space iS UNPREDICTABLE.

Equivalent ARM syntax and encoding

A closeequivaentis:

B <target_address>

31 28 27 26 25 24 23 11 10 0

1110|1010 sign extension of signed_immed_11 signed_immed_11

Thisdiffersfrom the Thumbinstruction, because the offset in the ARM instruction is shifted | eft by 2 before
being added to the PC, whereas the offset in the Thumb instruction is shifted left by 1. Also, the PC values
read by the ARM and Thumb instructions are different.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-21

Thumb Instructions

7.1.15 BIC
15 14 13 12 11 10 9 8 7 6 5 2 0
0 1 0 0 0 0 1 1 1 0 Rm Rd
TheBI C(Bit Clear) instruction performsabitwise AND of the value of one register and the bitwiseinverse
of the value of another register. The condition code flags are updated, based on the result.
Syntax
BIC <Rd>, <Rmp
where:
<Rd> Isthe register containing the value to be ANDed, and is also the destination register for the
completed operation.
<Rn® Specifies the register that contains the val ue whose complement is ANDed with the value
in <Rd>.

Architecture version
All T variants
Exceptions
None
Operation
Rd = Rd AND NOT Rm
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = unaffected
V Flag = unaffected

A7-22 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Equivalent ARM syntax and encoding

BICS <Rd> <Rd> <Rt

Thumb Instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
111000011101 Rd Rd 00OO0OOO0OO0ODO Rm
ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-23

Thumb Instructions

7.1.16 BKPT
15 14 13 12 11 10 9 8 7 0
1 0 1 1 1 1 1 0 immed_8

The BKPT (Breakpoint) instruction causes a software breakpoint to occur. This breakpoint can be handled
by an exception handler installed on the prefetch abort vector. Inimplementati ons which also include debug
hardware, the hardware can optionally override this behavior and handle the breakpoint itself. When this
occurs, the prefetch abort vector is not entered.

Syntax

BKPT <i mmed 8>

where:

<i nmed_8> Isan 8-hitimmediate value, which is placed in bits[7:0] of the instruction. Thisvalueis
ignored by the ARM hardware, but can be used by a debugger to store additional
information about the breakpoint.

Architecture version

T variants of version 5 and above

Exceptions
Prefetch Abort
Operation
if (not overridden by debug hardware)
R14_abt = address of BKPT instruction + 4
SPSR_abt = CPSR
CPSR[4: 0] = 0b10111 /* Enter Abort nopde */
CPSR] 5] =0 /* Execute in ARMstate */
/* CPSR[6] is unchanged */
CPSR[7] =1 /* Disable normal interrupts */
i f high vectors configured then
PC = OxFFFFO00C
el se
PC = 0x0000000C

A7-24 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Usage

The exact usage of the BKPT instruction depends on the debug system being used. A debug system can use
the BKPT instruction in two ways:

. Debug hardware (if present) does not override the normal behavior BKHIeinstruction, and so
the prefetch abort vector is entered. If the system also allows real prefetch aborts to occur, the
prefetch abort handler determines (in a system-dependent manner) whether the vector entry occurred
as a result of BKPT instruction or as a result of a real prefetch abort, and branches to debug code or
prefetch abort code accordingly. Otherwise, the prefetch abort handler just branches straight to debug
code.

When used in this manner, tBEPT instruction must be avoided within abort handlers, as it corrupts
R14 abt and SPSR_abt. For the same reason, it must also be avoided within FIQ handlers, as an FIQ
interrupt can occur within an abort handler.

. Debug hardware overrides the normal behavior oBHT instruction and handles the software
breakpoint itself. When finished, it typically either resumes execution at the instruction following the
BKPT, or replaces thBKPT in memory with another instruction and resumes execution at that
instruction.

WhenBKPT is used in this manner, R14_abt and SPSR_abt are not corrupted, and so the above
restrictions about its use in abort and FIQ handlers do not apply.

Notes

Hardwareoverride Debug hardware in an implementation is specifically permitted to override the
normal behavior of thBKPT instruction. Because of this, software must not use this
instruction for purposes other than those permitted by the debug system being used
(if any). In particular, software cannot rely on the Prefetch Abort exception
occurring, unless either there is guaranteed to be no debug hardware in the system
or the debug system specifies that it will occur.

For more information, consult the documentation for the debug system being used.

Equivalent ARM syntax and encoding
BKPT <i med_ 8>

3130 29 28 27 26 25 24 23 22 21 10 19 18 17 6 15 14 13 12 11 8 7 4 3 0

immed_8 immed_8
[7:4] 0111 [3:0]

1110000100100 0O0O0O0O0O0]|0

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-25

Thumb Instructions

7.1.17 BL, BLX(1)

15 14 13 12 11 10 0

1 1 1 H offset 11

This form of the BL (Branch with Link) instruction provides an unconditional subroutine call to another
Thumb routine. The return from subroutine is typically performed by one of the following:

. MOV PC, LR

. BX LR

. aPOP instruction that loads the PC.

This form of theBLX (Branch with Link and Exchange instruction set) instruction provides an unconditional

subroutine call to an ARM routine. The return from subroutine is typically performe@Xyl=R
instruction, or ar DR or LDMinstruction that loads the PC.

To allow for a reasonably large offset to the target subroutine, each of these two instructions is automatically
translated by the assembler into a sequence of two 16-bit Thumb instructions:

. The first Thumb instruction has H == 10 and supplies the high part of the branch offset. This
instruction sets up for the subroutine call and is shared betweBh #redBLX forms.

. The second Thumb instruction has H == 11 Bh) or H == 01 (forBLX). It supplies the low part
of the branch offset and causes the subroutine call to take place.
Syntax

BL <t ar get _addr >
BLX <target_addr>

where:
<target_addr> Specifies the address to branch to. The branch target address is calculated by:

1. Shifting the offset_11 field of the first instruction left twelve bits.
2. Sign-extending the result to 32 bits.

3. Adding this to the contents of the PC (which contains the address of the first
instruction plus 4).

4. Adding twice the offset_11 field of the second instruction.BtoX, the
resulting address is forced to be word-aligned by clearing bit[1].

The instruction can therefore specify a branch of approximatdiB.

Architecture version
BL (H == 10 and H == 11 forms) is in all T variants.

BLX (H == 01 form) is in T variants of version 5 and above.

A7-26 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Exceptions

None

Operation

if H== 10 then
LR = PC + (SignExtend(offset_11) << 12)

else if H== 11 then
PC = LR + (offset_11 << 1)
LR = (address of next instruction) | 1

else if H== 01 then
PC = (LR + (offset_11 << 1)) AND OxFFFFFFFC
LR = (address of next instruction) | 1
T Flag = 0

Usage

To generate the correct pair of instructions, the assembler (or other toolkit component) must first generate
the branch offset, as follows:

1 Form the base address for the branch. Thisis the address of the first of the two Thumb instructions
(the one with H == 10), plus 4. In other words, the base addressis equal to the PC value read by that
instruction.

2. If theinstruction is BLX, set bit[1] of the target addressto be equal to bit[1] of the base address. This
is an exception to the normal rule that bitg1:0] of the address of an ARM instruction are 0b00. This
adjustment is required to ensure that the restrictions associated with the H == 01 form of the
instruction are obeyed.

3. Subtract the base address from the target address to form the offset.
The resulting offset is dways even. If the offset lies outside the range:
-222 <= offset <= +2%2 . 2

the target address lies outside the addressing range of these instructions. This resultsin alternative code or
an error, as appropriate.

If the offset isin range, a sequence of two Thumb instructions must be generated, both using the above form:
. The first with H == 10 and offset_11 = offset[22:12].
. The second with H == 11 (f@L) or H== 01 (for BLX) and offset_11 = offset[11:1].

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-27

Thumb Instructions

Notes

Encoding If H==00, theinstruction is an unconditional branch instruction instead (see the
Thumb instruction B (2) on page A7-20).

Bit[Q] for BLX If H==01, then bit[0] of the instruction must be zero, or the instruction is
UNDEFINED. The offset cal culation method described in Usage above ensures that
the offset calculated for a BLX instruction is amultiple of four, and that this
restriction is obeyed.

Memory bounds Branching backwards past |ocation zero and forwards over the end of the 32-bit

address space is UNPREDICTABLE.

Instruction pairs These Thumb instructions must always occur in the pairs described above.
Specifically:

. If a Thumb instruction at address A is the H==10 form of this instruction, the
Thumb instruction at address A+2 must be either the H==01 or the H==11
form of this instruction.

. If a Thumb instruction at address A is either the H==01 or the H==11 form
of this instruction, the Thumb instruction at address A-2 must be the H==10
form of this instruction.

Also, except as noted below undewceptions, the second instruction of the pair
must not be the target of any branch, whether as the result of a branch instruction or
of some other instruction that changes the PC.

Failure to adhere to any of these restrictions can reSUNMAREDICTABLE behavior.

Exceptions It is IMPLEMENTATION DEFINED whether processor exceptions can occur between
the two instructions of BL or BLX pair. If they can, the ARM instructions designed
for use for exception returns must be capable of returning correctly to the second
instruction of the pair. So, exception handlers need take no special precautions
about returning to the second instruction @&Laor BLX pair.

A7-28 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Equivalent ARM syntax and encoding

Close equivaents to these instruction pairs are as follows.

To call a Thumb subroutine:

BLX <target_addr>

31 30 29 28 27 26 25 24 23 22 21 20

Thumb Instructions

1111

101|L

offset sign

offset[22:2]

where L == offset[1].

To call an ARM routine:

BL <target_addr>

31 30 29 28 27 26 25 24

23 22 21 20

1110

1011

offset sign

offset[22:2]

Thesediffer slightly from the Thumb instruction pairs because of the different values of the PCin ARM and
Thumb code. This can be compensated for by adjusting the offset by 4.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A7-29

Thumb Instructions

7.1.18 BLX(2)
15 14 13 12 11 10 9 8 7 6 5 3 2 0
0 1 0 0 0 1 1 1 1 | H2 Rm SBzZ

Thisform of BLX isused to call an ARM or Thumb subroutine from the Thumb instruction set, at an address

specified in aregister. Thisinstruction branches and selects the instruction decoder to use to decode the

instructions at the branch destination.

TheT flagisupdated with bit[O] of thevalue of register Rm. To return from the subroutineto the caller, use

BX R14.

Syntax

BLX <Rnp

where:

<Rn® Istheregister that containsthe branch target address. It can be any of RO to R14. Theregister
number is encoded in the instruction in H2 (most significant bit) and Rm (remaining three
bits). If R15 is specified for <Rn, the results are UNPREDICTABLE.

Architecture version

T variants of version 5 and above

Exceptions

None

Operation

LR = (address of the instruction after this BLX) | 1

T Flag = R 0]

PC = RM{31:1] << 1

Notes

Encoding Bit 7 isthe H1 bit for some of the other instructions that access the high registers. If itis0
for thisinstruction, rather than 1 as shown, the instruction is a BX instruction instead (see
BX on page A7-32).

ARM/Thumb statetransfers
If Rm[1:0] == 0b10, the result is UNPREDICTABLE, as branches to non word-aligned
addresses are impossible in ARM state.

A7-30 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Equivalent ARM syntax and encoding

Thumb Instructions

BLX <Rt

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 76 54 3 2 0

111000010010 SBO SBO SBO 001 1H2Z Rm
ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-31

Thumb Instructions

7.1.19 BX
15 14 13 12 11 10 9 8 7 6 5 3 2 0
0 1 0 0 0 1 1 1 0 H2 Rm SBZ

The BX (Branch and Exchange) instruction is used to branch between ARM code and Thumb code.

Syntax

BX <Rnp

where:

<Rn® Isthe register that containsthe branch target address. It can be any of RO to R15. Theregister
number is encoded in the instruction in H2 (most significant bit) and Rm (remaining three
bits).

Architecture version

All T variants

Exceptions

None

Operation

T Flag = R 0]
PC = Rn{31:1] << 1

Usage

The normal subroutine return instruction in Thumb codeisBX R14. The following subroutine call
instructions |eave a suitable return value in R14:

. ARM BLX instructions (SeBLX (1) on page A4-16 anBLX (2) on page A4-18)
. ThumbBL andBLX instructions (se8L, BLX(1) on page A7-26 anBLX(2) on page A7-30).

In T variants of ARM architecture version 4, a subroutine call to an ARM routine can be performed by a
code sequence of the form:

<Put address of routine to call in Ra>
MOV LR PC ; Return to second follow ng instruction
BX Ra

In T variants of ARM architecture 5 and above, a subroutine call to an ARM routine can be performed more
efficiently with aBLX instruction (se®L, BLX(1) on page A7-26 anBLX(2) on page A7-30).

A7-32 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Notes

Encoding Bit 7 isthe H1 bit for some of the other instructions that access the high registers. If itis 1
for this instruction, rather than 0 as shown, the instruction is:

. aBLX instruction instead in ARM architecture version 5 and aboveBEX€) on
page A7-30)
. UNPREDICTABLE prior to ARM architecture version 5.

ARM/Thumb statetransfers

If Rm[1:0] == 0b10, the result iISNPREDICTABLE, as branches to non word-aligned
addresses are impossible in ARM state.

Useof R15 Register 15 can be specified fdrn®. If this is done, R15 is read as normal for Thumb
code, that is, it is the address of BXinstruction itself plus 4. If thBX instruction is at a
word-aligned address, this results in a branch to the next word, executing in ARM state.
However, if theBX instruction is not at a word-aligned address, this means that the results
of the instruction areNPREDICTABLE (because the value read for R15 has bits[1:0]==0b10).

Equivalent ARM syntax and encoding

A close equivalent is:

BX <Rn»
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
1110000100 1C(SBO SBO SBO 0 0 0|1|H2 Rn‘v

This ARM instruction is not quite equivalent to the Thumb instruction, because their specified behavior
differs when<Rm> is R15.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-33

Thumb Instructions

7.1.20 CMN
15 14 13 12 11 10 9 8 7 6 5 3 2 0
0 1 0 0 0 0 1 0 1 1 Rm Rn

The CMN (Compare Negative) instruction compares a register val ue with the negation of another register
value. The condition flags are updated, based on the result of adding the two register values, so that
subsequent instructions can be conditionally executed (using a conditional branch).

Syntax

CWN <Rn>, <Rnp

where:
<Rn> Isthe register containing the first value for comparison.
<Rn® Isthe register containing the second value for comparison.

Architecture version

All T variants

Exceptions

None

Operation

alu_out = Rh + Rm

N Flag = al u_out[31]

Z Flag = if alu_out == 0 then 1 else O
C Flag = NOT BorrowFrom(Rn + Rm

V Flag = OverflowFrom(Rn + Rm

Equivalent ARM syntax and encoding
CWN <Rn>, <Rnp

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

111000010111 Rn SBZ 000O0OO0OOOO Rm

A7-34 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

7.1.21 CMP (1)

15 14 13 12 11 10 8 7 0

0 0 1 0 1 Rn immed_8

This form of the CMP (Compare) instruction compares aregister value with alarge immediate value. The
condition flags are updated, based on the result of subtracting the constant from the register value, so that
subsequent instructions can be conditionally executed (using a conditional branch).

Syntax

CWMP <Rn>, #<imed_8>

where:
<Rn> Isthe register containing the first value for comparison.
<i med_8> I's the 8-bit second vaue for comparison.

Architecture version

All T variants

Exceptions

None

Operation

alu_out = Rn - imed_8

N Flag = al u_out[31]

Z Flag = if alu_out == 0 then 1 else O
C Flag = NOT BorrowFron{Rn - imed_8)

V Fl ag Overfl owFronm(Rn - i med_8)

Equivalent ARM syntax and encoding
CWP <Rn>, #<imed_8>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 0

111000110101 Rn SBZ 0 00O immed_8

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-35

Thumb Instructions

7.1.22 CMP (2)

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 1 0 1 0 Rm Rn

This form of CMP compares two register values. The condition code flags are updated, based on the result
of subtracting the second register value from the first, so that subseguent instructions can be conditionally
executed (using a conditional branch).

Syntax

CMP <Rn>, <Rnp

where:
<Rn> Isthe register containing the first value for comparison.
<Rn® Isthe register containing the second value for comparison.

Architecture version

All T variants

Exceptions

None

Operation

alu_out = Rh - Rm

N Flag = al u_out[31]

Z Flag = if alu_out == 0 then 1 else O
C Flag = NOT BorrowrFrom(Rn - Rm

V Flag = OverflowFrom(Rn - Rm

Equivalent ARM syntax and encoding
CMP <Rn>, <Rnp

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

111000010101 Rn SBZ 000O0OO0OOOO Rm

A7-36 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

7.1.23 CMP (3)

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 1 0 1 | H1 | H2 Rm Rn

This form of CMP compares the values of two registers, one or both of which are high registers. The
condition flagsare updated, based on theresult of subtracting the second register value from thefirst, so that
subsequent instructions can be conditionally executed (using a conditional branch).

Syntax

CW <Rn>, <Rnp

where:

<Rn> Isthe register containing the first value. It can be any of RO to R15. Its number is encoded
in the instruction in H1 (most significant bit) and Rn (remaining three hits).

<RnP Isthe register containing the second value. It can be any of RO to R15. Itsnumber isencoded

in the instruction in H2 (most significant bit) and Rm (remaining three bits).

Architecture version

All T variants

Exceptions

None

Operation

alu_out = Rh - Rm

N Flag = al u_out[31]

Z Flag = if alu_out == 0 then 1 else O
C Flag = NOT BorrowrFrom(Rn - Rm

V Flag = OverflowFrom(Rn - Rm

Notes

Operand restriction If alow register is specified for both <Rn> and <R (H1==0 and H2==0), the
result iS UNPREDICTABLE.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-37

Thumb Instructions

Equivalent ARM syntax and encoding
A closeequivalentis:
CMP <Rn>, <Rnp

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 121110 9 8 7 6 5 4 3 2 0

11100001010 1HY Rn SBZ 0 00O0OOOOOHZ Rm

There are slight differences when the instruction accesses the PC, because of the different definitions of the
PC when executing ARM and Thumb code.

A7-38 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

7.1.24 EOR
5 14 13 12 11 10 9 8 7 6 5 3 2 0
0 1 0 0 0 0 0 0 0 1 Rm Rd

The EOR (Exclusive OR) ingtruction performs a bitwise EOR of the valuesin two registers. The condition
code flags are updated, based on the resuilt.

Syntax

EOR <Rd>, <Rn®

where:
<Rd> Specifies the register containing the first operand, and is also the destination register.
<Rnp Specifies the register containing the second operand.

Architecture version

All T variants

Exceptions

None

Operation

Rd = Rd EOR Rm

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else O
C Flag = unaffected

V Flag = unaffected

Equivalent ARM syntax and encoding
EORS <Rd>, <Rd>, <Rmp

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

1110000000112 Rd Rd 000O0O0O0O0O Rm

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-39

Thumb Instructions

7.1.25 LDMIA
15 14 13 12 11 10 8 7 0
1 1 0 0 1 Rn register_list

TheLDM A (Load Multiple Increment After) instruction loads a non-empty subset, or possibly al, of the

general-purpose registers from sequential memory locations.

Syntax

LDM A <Rn>!, <registers>

where:

<Rn> Isthe register containing the start address for the instruction.

! Causes base register writeback, and is not optional.

<regi sters> Isalist of registersto be loaded, separated by commas and surrounded by { and }.
Thelistisencoded in theregister_list field of theinstruction, by setting bit[i] to 1 if
register Ri isincluded in thelist and to O otherwise, for each of i=0to 7.
At least one register must be loaded. If bitg[7:0] are all zero, theresultis
UNPREDICTABLE.
Theregistersare loaded in sequence, the lowest-numbered register from the lowest
memory address (st ar t _addr ess), through to the highest-numbered register
from the highest memory address (end_addr ess).
Thest art _addr ess isthe value of the base register <Rn>. Subsequent
addresses are formed by incrementing the previous address by four. One addressis
produced for each register that is specified in <r egi st er s>.
Theend_addr ess valueisfour lessthan the sum of the value of the base register
and four times the number of registers specified in <r egi st er s>.
Finaly, the base register <Rn> isincremented by four times the numbers of
registersin <r egi st er s>.

Architecture version

All T variants

Exceptions

Data Abort

A7-40 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Operation

start_address = Rn
end_address = Rn + (Nunber_O _Set _Bits_In(register_list) * 4) - 4
address = start_address
for i =0to 7
if register_list[i] ==

Ri = Menory[address, 4]

address = address + 4
assert end_address == address - 4
Rn = Rn + (Nunber _OF _Set _Bits_In(register_list) * 4)

Usage

The LDM Alinstruction is useful asablock load instruction. Combined with STM A (Store Multiple), it
allows efficient block copy.

Notes

Operand restrictions

If the base register <Rn> is specified in <r egi st er s>, the final value of <Rn> isthe
loaded value (not the written-back value).

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Alignment Load Multiple instructions ignore the least significant two bits of addr ess.

If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor) and alignment checking is enabled, an addresswith bitg[1:0] != 0b00
causes an aignment exception.

Timeorder Thetimeorder of the accessesto individua words of memory generated by thisinstruction
is only defined in some circumstances. See Data accesses to memory-mapped 1/0 on
page A2-32 for details.

Equivalent ARM syntax and encoding

If <Rn> isnot intheregister list (W ==1):

LDM A <Rn>!, <registers>

If <Rn> isintheregister list (W == 0):

LDM A <Rn>, <registers>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13121110 9 8 7 0

1110{200010|W|1 Rn 000O0O0OO0OOO0O register_list

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-41

Thumb Instructions

7.1.26 LDR (1)

15 14 13 12 11 10 6 5 3 2 0

0 1 1 0 1 immed_5 Rn Rd

This form of the LDR (Load Register) instruction allows 32-bit memory data to be loaded into a
general -purpose register. The addressing mode is useful for accessing structure (record) fields.
With an offset of zero, the address produced is the unaltered value of the base register <Rn>.

Syntax

LDR <Rd>, [<Rn>, #<inmed_5> * 4]

where:
<Rd> Is the destination register for the word loaded from memory.
<Rn> Isthe register containing the base address for the instruction.

<i nmed_5> Isab5-bit valuethat is multiplied by 4 and added to the value of <Rn> to form the memory
address.

Architecture version

All T variants

Exceptions
Data Abort
Operation
address = Rh + (imed_5 * 4)
i f address[1:0] == 0b00
data = Menory[address, 4]
el se
data = UNPREDI CTABLE
Rd = data

A7-42 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Notes

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Alignment If the memory addressis not word-aligned and no data abort occurs, the value written to the
destination register is UNPREDICTABLE.

If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor) and alignment checking is enabled, an addresswith bits[1:0] != 0b00
causes an alignment exception (atype of data abort).

Equivalent ARM syntax and encoding

LDR <Rd>, [<Rn>, #<imed_5> * 4]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 2 10

111001011001 Rn Rd 00O0OO| immed5 |0 O

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-43

Thumb Instructions

7.1.27 LDR (2)
15 14 13 12 11 10 9 8 2 0
0 1 0 1 1 0 0 Rm Rn Rd
This form of LDR dlows 32-bit memory data to be loaded into a general-purpose register. The addressing
mode is useful for pointer+large offset arithmetic and for accessing a single element of an array.
Syntax
LDR <Rd>, [<Rn>, <Rmp]
where:
<Rd> Is the destination register for the word loaded from memory.
<Rn> Isthe register containing the first value used in forming the memory address.
<Rn® Isthe register containing the second value used in forming the memory address.
Architecture version
All T variants
Exceptions
Data Abort
Operation
address = Rn + Rm
i f address[1:0] == 0b0O
data = Menory[address, 4]
el se
data = UNPREDI CTABLE
Rd = data
A7-44 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Notes

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Alignment If the memory addressis not word-aligned and no data abort occurs, the value written to the
destination register is UNPREDICTABLE.

If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor) and alignment checking is enabled, an addresswith bits[1:0] != 0b00
causes an alignment exception (atype of data abort).

Equivalent ARM syntax and encoding

LDR <Rd>, [<Rn>, <Rmp]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

111001111001 Rn Rd 000O0O0O0O0O Rm

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-45

Thumb Instructions

7.1.28 LDR (3)

15 14 13 12 11 10 8 7 0

0 1 0 0 1 Rd immed_8

This form of LDR dlows 32-bit memory data to be loaded into a general-purpose register. The addressing
mode is useful for accessing PC-relative data.

Syntax

LDR <Rd>, [PC, #<imed_8> * 4]

where:

<Rd> Is the destination register for the word loaded from memory.

PC Is the program counter. Its value is used to calculate the memory address. Bit 1 of the PC
valueisforced to zero for the purpose of this calculation, so the addressis dways
word-aligned.

<i nmed_8> Isan 8-bit valuethat ismultiplied by 4 and added to the value of the PC to form the memory
address.

Architecture version

All T variants

Exceptions

Data Abort

Operation

address = (PC[31:2] << 2) + (imed_8 * 4)
Rd = Menory[address, 4]

Notes

Data abort For detail s of the effects of theinstruction if a data abort occurs, see Effects of data-aborted
instructions on page A2-17.

A7-46 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Equivalent ARM syntax and encoding
A closeequivaentis:

LDR <Rd>, [PC, #<imed_8> * 4]

Thumb Instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 10
1110010110012 111 Rd 00 immed_8 00
There are dight differences caused by the different definitions of the PC and the fact that the Thumb
instruction ignores bit[1] of the PC.
ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-47

Thumb Instructions

7.1.29 LDR (4)
15 14 13 12 11 10 0
1 0 0 1 1 Rd immed_8
This form of LDR dlows 32-bit memory data to be loaded into a general-purpose register. The addressing
mode is useful for accessing stack data.
Syntax
LDR <Rd>, [SP, #<imed_8> * 4]
where:
<Rd> Is the destination register for the word loaded from memory.
SP Isthe stack pointer. Its valueis used to calculate the memory address.
<i nmed_8> Isan8-hit vauethat ismultiplied by 4 and added to the value of the SPto form the memory
address.
Architecture version
All T variants
Exceptions
Data Abort
Operation
address = SP + (imed_8 * 4)
i f address[1:0] == 0b0O
data = Menory[address, 4]
el se
data = UNPREDI CTABLE

Rd = data

A7-48 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Notes

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Alignment If the memory addressis not word-aligned and no data abort occurs, the value written to the
destination register is UNPREDICTABLE.

If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor) and alignment checking is enabled, an addresswith bits[1:0] != 0b00
causes an alignment exception (atype of data abort).

Equivalent ARM syntax and encoding

LDR <Rd>, [SP, #<imed_8> * 4]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 2 10

1110010110012 101 Rd 00 immed_8 00

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-49

Thumb Instructions

7.1.30 LDRB (1)

15 14 13 12 11 10 6 5 3 2 0

0 1 1 1 1 immed_5 Rn Rd

This form of the LDRB (Load Register Byte) instruction loads a byte from memory and zero-extends it to
form a32-bit word which is written to a general-purpose register. The addressing mode is useful for
accessing structure (record) fields. With an offset of zero, the address produced is the unaltered val ue of the
base register <Rn>.

Syntax

LDRB <Rd>, [<Rn>, #<innmed_5>]

where:
<Rd> Is the destination register for the byte loaded from memory.
<Rn> Isthe register containing the base address for the instruction.

<i nmed_5> Isa5-hit value that is added to the value of <Rn> to form the memory address.

Architecture version

All T variants

Exceptions

Data Abort

Operation

address = Rn + imed_5
Rd = Menory[address, 1]

Notes

Data abort For detail s of the effects of theinstruction if a data abort occurs, see Effects of data-aborted
instructions on page A2-17.

Equivalent ARM syntax and encoding

LDRB <Rd>, [<Rn>, #<i mred_5>]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 0

111001011101 Rn Rd 0 00OOOO| immed5

A7-50 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

7.1.31 LDRB (2)

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 1 1 0 Rm Rn Rd

This form of LDRB loads a byte from memory and zero-extends it to form a 32-bit word, which is written
to a general-purpose register. The addressing mode is useful for pointer+large offset arithmetic and for
accessing asingle element of an array.

Syntax

LDRB <Rd>, [<Rn>, <RnPp]

where:

<Rd> Isthe destination register for the byte loaded from memory.

<Rn> Isthe register containing the first value used in forming the memory address.
<Rn® Isthe register containing the second value used in forming the memory address.

Architecture version

All T variants

Exceptions

Data Abort

Operation

address = Rh + Rm
Rd = Menory[address, 1]

Notes

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Equivalent ARM syntax and encoding
LDRB <Rd>, [<Rn>, <Rnp]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

111001111101 Rn Rd 000O0O0O0O0O Rm

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-51

Thumb Instructions

7.1.32

LDRH (1)

15 14 13 12 11 10

1 0 0 0 1

immed_5

Rn

Rd

This form of the LDRH (Load Register Halfword) instruction loads a halfword (16 bits) from memory and
zero-extends it to form a 32-bit word, which iswritten to a general-purpose register. The addressing mode
isuseful for accessing structure (record) fields. With an offset of zero, the address produced is the unaltered

value of the base register <Rn>.

Syntax

LDRH <Rd>, [<Rn>, #<immed 5> * 2]

where:

<Rd> Is the destination register for the halfword |oaded from memory.

<Rn> Isthe register containing the base address for the instruction.

<i nmed_5> Isab-bit valuethat ismultiplied by 2, then added to the value of <Rn> to form the memory

address.

Architecture version

All T variants

Exceptions

Data Abort

Operation

address = Rh + (imed_5 * 2)
if address[0] == 0

data = Menory[address, 2]
el se

data = UNPREDI CTABLE
Rd = data

A7-52

Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

Thumb Instructions

Notes

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Alignment If the memory addressis not halfword-aligned and no data abort occurs, the value written
to the destination register is UNPREDICTABLE.

If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor) and alignment checking is enabled, an addresswith bit[0] != 0 causes
an alignment exception (atype of data abort).

Equivalent ARM syntax and encoding

LDRH <Rd>, [<Rn>, #<inmed_5> * 2]

3130 29 28 27 26 25 24 23 22 21 10 19 16 15 121110 9 8 7 6 5 4 3 10
immed immed

111000011101 R Rd 00 1011 0
: [4:3] [2:0]

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-53

Thumb Instructions

7.1.33 LDRH (2)
15 14 13 12 11 10 9 8 6 5 3 2 0
0 1 0 1 1 0 1 Rm Rn Rd

Thisform of LDRHIoadsahalfword (16 bits) from memory and zero-extendsit to form a32-bit word, which

iswritten to a general-purpose register. The addressing mode is useful for pointer + large offset arithmetic

and for accessing asingle element of an array.

Syntax

LDRH <Rd>, [<Rn>, <RnP]

where:

<Rd> Is the destination register for the halfword |oaded from memory.

<Rn> Isthe register containing the first value used in forming the memory address.

<Rn® Isthe register containing the second value used in forming the memory address.

Architecture version

All T variants

Exceptions

Data Abort

Operation

address = Rn + Rm

if address[0] == 0

data = Menory[address, 2]
el se
data = UNPREDI CTABLE

Rd = data

Notes

Data abort For detail s of the effects of theinstruction if a data abort occurs, see Effects of data-aborted
instructions on page A2-17.

Alignment If the memory addressis not halfword-aligned and no data abort occurs, the value written
to the destination register iS UNPREDICTABLE.
If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor) and alignment checking isenabled, an addresswith bit[0] != 0 causes
an alignment exception (atype of data abort).

A7-54 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Equivalent ARM syntax and encoding

LDRH <Rd>, [<Rn>, <RnPp]

Thumb Instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
111000011001 Rn Rd SBZ 1011 Rm
ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-55

Thumb Instructions

7.1.34

LDRSB

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 0 1 1 Rm Rn Rd

The LDRSB (L oad Register Signed Byte) instruction loads a byte from memory and sign-extendsit to form
a 32-bit word, which is written to a general-purpose register.

Syntax

LDRSB <Rd>, [<Rn>, <Rnp]

where:

<Rd> Is the destination register for the byte loaded from memory.

<Rn> Isthe register containing the first value used in forming the memory address.

<Rn® Isthe register containing the second value used in forming the memory address.

Architecture version

All T variants

Exceptions

Data Abort

Operation

address = Rn + Rm
Rd = Si gnExt end(Menory[address, 1])

Notes

Data abort For detail s of the effects of theinstruction if a data abort occurs, see Effects of data-aborted
instructions on page A2-17.

Equivalent ARM syntax and encoding
LDRSB <Rd>, [<Rn>, <Rnp]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

111000011001 Rn Rd SBz 1101 Rm

A7-56

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

7.1.35

Thumb Instructions

LDRSH
15 14 13 12 11 10 9 8 6 5 3 2 0
0 1 0 1 1 1 1 Rm Rn Rd

The LDRSH (L oad Register Signed Halfword) instruction loads a hal fword from memory and sign-extends
it to form a 32-bit word, which is written to a general-purpose register.

Syntax

LDRSH <Rd>, [<Rn>, <RnPp]

where:

<Rd> Is the destination register for the halfword loaded from memory.

<Rn> Isthe register containing the first value used in forming the memory address.
<Rn® Isthe register containing the second value used in forming the memory address.

Architecture version

All T variants

Exceptions

Data Abort

Operation

address = Rn + Rm
if address[0] ==
data = Menory[address, 2]
el se
data = UNPREDI CTABLE
Rd = Si gnExt end(dat a)

Notes

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Alignment If the memory addressis not halfword-aligned and no data abort occurs, the value written
to the destination register is UNPREDICTABLE.

If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor) and alignment checking is enabled, an addresswith bit[0] != 0 causes
an alignment exception (atype of data abort).

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-57

Thumb Instructions

Equivalent ARM syntax and encoding
LDRSH <Rd>, [<Rn>, <Rnp]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

111000011001 Rn Rd SBz 1111 Rm

A7-58 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

7.1.36 LSL (1)

15 14 13 12 11 10 6 5 3 2 0

0 0 0 0 0 immed_5 Rm Rd

Thisform of the LSL (Logical Shift Left) instruction isused to provide either the value of aregister directly
(LSL #0), or the value of aregister multiplied by a constant power of two. Zeros are inserted into the bit
positions vacated by the shift, and the condition code flags are updated, based on the resullt.

Syntax

LSL <Rd>, <Rnp, #<imed 5>

where:

<Rd> Isthe register that stores the result of the operation.
<Rn® Isthe register containing the va ue to be shifted.

<i med_5> Specifies the shift amount, in the range 0 to 31.

Architecture version

All T variants

Exceptions

None

Operation

if imed_5 ==
C Flag = unaffected
Rd = Rm

else /* imed_5 > 0 */
C Flag = Rr{32 - i med_5]

Rd = Rm Logical _Shift_Left inmed_5
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else O
V Flag = unaffected

Equivalent ARM syntax and encoding
MOVS <Rd>, <RnP, LSL #<i med 5>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

111000011011 SBz Rd immed_5 00O Rm

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-59

Thumb Instructions

7.1.37 LSL (2)
15 14 13 12 11 10 9 8 7 6 5 3 2 0
0 1 0 0 0 0 0 0 1 0 Rs Rd
Thisform of LSL is used to provide the value of aregister multiplied by avariable power of two. Zeros are
inserted into the vacated bit positions. The condition code flags are updated, based on the result.
Syntax
LSL <Rd>, <Rs>
where:
<Rd> Containsthe valueto be shifted, and is the destination register for the result of the operation.
<Rs> Isthe register containing the shift value. The valueis held in the least significant byte.
Architecture version
All T variants
Exceptions
None
Operation
if Rs[7:0] ==
C Flag = unaffected
Rd = unaffected
else if Rs[7:0] < 32 then
C Flag = RA[32 - Rs[7:0]]
Rd = Rd Logical _sShift_Left Rs[7:0]
else if Rs[7:0] == 32 then
C Flag = RdA[0]
Rd =0
else /* Rs[7:0] > 32 */
CFlag = 0
Rd =0
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
V Flag = unaffected
A7-60 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Equivalent ARM syntax and encoding

MOVS <Rd> <Rd>, LSL <Rs>

Thumb Instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
111000011011 SBZ Rd Rs 0001 Rd
ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-61

Thumb Instructions

7.1.38 LSR(1)

15 14 13 12 11 10 6 5 3 2 0

0 0 0 0 1 immed_5 Rm Rd

This form of the LSR (Logica Shift Right) instruction is used to provide the unsigned value of aregister,
divided by a constant power of two. L SR performs alogical shift right of the value of register <Rm>, and
zeros are inserted into the vacated bit positions. The condition code flags are updated, based on the result.

Syntax

LSR <Rd>, <Rnp, #<inmmed 5>

where:

<Rd> Is the destination register for the operation.

<Rn® Is the register containing the value to be shifted.

<i mred_5> Specifiesthe shift amount, in therange 1 to 32. Shiftsby 1 to 31 are encoded directly

inimmed_5. A shift by 32 isencoded asimmed 5 == 0.

Architecture version

All T variants

Exceptions

None

Operation

if imed_5 ==
C Flag = Rd[31]
Rd =0
else /* imed_5 > 0 */
C Flag = Rd[imred_5 - 1]

Rd = Rm Logical _Shift_Right inmred_5
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
V Flag = unaffected

A7-62 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Equivalent ARM syntax and encoding

MOVS <Rd>, <RnP, LSR #<i med 5>

Thumb Instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0
111000011011 SBZ Rd immed_5 010 Rm
ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-63

Thumb Instructions

7.1.39 LSR(2)

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 0 0 1 1 Rs Rd

Thisform of LSRis used to provide the unsigned value of aregister divided by a variable power of two.
Zeros are inserted into the vacated bit positions. The condition code flags are updated, based on the result.

Syntax

LSR <Rd>, <Rs>

where:
<Rd> Containsthe valueto be shifted, and is the destination register for the result of the operation.
<Rs> Isthe register containing the shift value. The valueis held in the least significant byte.

Architecture version

All T variants

Exceptions

None

Operation

if Rs[7:0] == 0 then
C Flag = unaffected
Rd = unaffected
else if Rs[7:0] < 32 then
C Flag = RA[Rs[7: 0] - 1]
Rd = Rd Logical _Shift_Ri ght Rs[7:0]

else if Rs[7:0] == 32 then
C Flag = Rd[31]
Rd =0
else /* Rs[7:0] > 32 */
CFlag = 0
Rd =0
N Flag = Rd[31]
Z Fl ag if Rd == 0then 1 else O

V Fl ag unaf f ect ed

A7-64 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Equivalent ARM syntax and encoding

MOVS <Rd> <Rd>, LSR <Rs>

Thumb Instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
111000011011 SBZ Rd Rs 0011 Rd
ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-65

Thumb Instructions

7.1.40 MOV (1)
15 14 13 12 11 10 8 7 0
0 0 1 0 0 Rd immed_8
This form of the MOV (M ove) instruction moves alarge immediate vaue to aregister. The condition code
flags are updated, based on the result.
Syntax
MOV <Rd>, #<i mmed_8>
where:
<Rd> Is the destination register for the operation.
<i med_8> Is an 8-bit immediate value, in the range 0 to 255, to move into <Rd>.
Architecture version
All T variants
Exceptions
None
Operation
Rd = i med_8
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = unaffected
V Flag = unaffected
Equivalent ARM syntax and encoding
MOVS <Rd>, #<immed_8>
31 3029 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 0
111000111011 SBZ Rd 00O00O immed_8
A7-66 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

7.1.41 MOV (2)

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 0 0 1 1 1 0 0 0 0 Rn Rd

Thisform of MOV is used to move a value from one low register to another, and the flags are set according
to that value.

Syntax

MOV <Rd>, <Rn>

where:
<Rd> Is the destination register for the operation.
<Rn> Isthe register containing the value to be copied.

Architecture Version

All T variants

Exceptions

None

Operation

Rd = Rn

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else O
CFlag = 0

V Flag = 0

Notes

Encoding Thisinstruction isencoded asADD Rd, Rn, #O.
See also ADD (1) on page A7-5.

Equivalent ARM syntax and encoding
ADDS <Rd>, <Rn>, #0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 2 1 0

111000101001 Rn Rd 000O00OOOOOOOODO

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-67

Thumb Instructions

7.1.42 MOV (3)
15 14 13 12 11 10 9 8 7 6 5 3 2 0
0 1 0 0 0 1 1 0 | H1 | H2 Rm Rd
This form of MOV is used to move avalueto, from, or between high registers. Unlike the low register MOV
instruction described in MOV (2) on page A7-67, this instruction does not change the flags.
Syntax
MOV <Rd>, <Rnp
where:
<Rd> Is the destination register for the operation. It can be any of RO to R15, and its number is
encoded in theinstruction in H1 (most significant bit) and Rd (remaining three bits).
<Rn® Istheregister containing the value to be copied. It can be any of RO to R15, and its number
is encoded in the instruction in H2 (most significant bit) and Rm (remaining three bits).
Architecture version
All T variants
Exceptions
None
Operation
Rd = Rm
Usage
Theinstruction MOV PC, R14 can be used as a subroutine return instruction if it is known that the caller is
also a Thumb routine. However, it is more usual to use BX R14 (see BX on page A7-32), which works
regardless of whether the caller isan ARM routine or a Thumb routine.
InT variants of ARM architecture4, theinstruction MOV R14, PCisoften used to set up areturnlink value
inR14for acdl toan ARM routine. In T variants of ARM architecture 5 and above, there are more efficient
ways of doing this. See BX on page A7-32 for more details.
Notes
Operand restriction If alow register is specified for <Rd> and <Rn (H1==0 and H2==0), the result is
UNPREDICTABLE.
A7-68 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Equivalent ARM syntax and encoding
A closeequivaentis:
MOV <Rd>, <RnP

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 121110 9 8 7 6 5 4 3 2 0

111000011010 SBz H1l Rd 0 0O0OOOOOHZ Rm

There are dight differences when theinstruction accesses the PC, because of the different definitions of the
PC when executing ARM and THUMB code.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-69

Thumb Instructions

7.1.43 MUL
15 14 13 12 11 10 9 8 7 6 5 3 2 0
0 1 0 0 0 0 1 1 0 1 Rm Rd

The MUL (Multiply) instruction multiplies signed or unsigned variables to produce a 32-bit result. The
condition code flags are updated, based on the result.

Syntax

MJL <Rd>, <Rmp

where:

<Rd> Contains the value to be multiplied with the value of <R, and is also the destination
register for the operation.

<Rn® Isthe register containing the value to be multiplied with the value of <Rd>.

Architecture version

All T variants

Exceptions

None

Operation

Rd = (Rm* Rd)[31:0]
N Flag = Rd[31]

Z Fl ag if Rd == 0 then 1 else O
C Flag = unaffected /* See "C flag" note */
V Flag = unaffected

A7-70 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Notes
Operand restriction Specifying the same register for <Rd> and <R has UNPREDICTABLE results.

Early termination If the multiplier implementati on supportsearly termination, it must beimplemented
on the value of the <Rd> operand. The type of early termination used (signed or
unsigned) iSIMPLEMENTATION DEFINED.

Signed and unsigned Asthe MUL instruction produces only the lower 32 bits of the 64-bit product, MJL
gives the same answer for multiplication of both signed and unsigned numbers.

C flag The MUL instruction is defined to leave the C flag unchanged in ARM architecture
version 5 and above. In earlier versions of the architecture, the value of the C flag
was UNPREDICTABLE after a MUL instruction.

Equivalent ARM syntax and encoding

MULS <Rd>, <Rnp, <Rd>

3130 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
1110/{00000O0O0T1 Rd SBZ Rd 1001 Rm
Note

The following instruction is not asuitable alternative, asit violates the operand restriction on the ARM
instruction (see MUL on page A4-66) and might have the wrong early termination behavior:

MULS <Rd>, <Rd>, <Rmp

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-71

Thumb Instructions

7.1.44 MVN
15 14 13 12 11 10 9 8 7 6 5 3 2 0
0 1 0 0 0 0 1 1 1 1 Rm Rd

The M\WN (Move NOT) instruction is used to complement a register value, often to form a bit mask. The
condition code flags are updated, based on the result.

Syntax

MVN <Rd>, <Rnp

where:
<Rd> Is the destination register for the operation.
<Rn® Is the register containing the value whose one’s complement is writtdRdte.

Architecture version

All T variants

Exceptions

None

Operation

Rd = NOT Rm

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else 0
C Flag = unaffected

V Flag = unaffected

Equivalent ARM syntax and encoding
MUNS <Rd>, <RnP

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

111000011111 SBZ Rd 00O0OOOGO|O Rm

A7-72 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

7.1.45 NEG
15 14 13 12 11 10 9 8 7 6 5 3 2 0
0 1 0 0 0 0 1 0 0 1 Rm Rd

The NEG(Negate) instruction negatesthe value of one register and storesthe result in asecond register. The
condition code flags are updated (based on the result).

Syntax

NEG <Rd>, <RnP

where:
<Rd> Is the destination register for the operation.
<Rnp Isthe register containing the value that is subtracted from zero.

Architecture version

All T variants

Exceptions

None

Operation

Rd = 0 - Rm

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else O
C Flag = NOT BorrowrFronm(0 - Rm

V Flag = OverflowFron(0 - Rm

Equivalent ARM syntax and encoding
RSBS <Rd>, <R, #0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 2 1 0

111000100111 Rm Rd 000O00O0OOOOOOOODO

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-73

Thumb Instructions

7.1.46 ORR
15 14 13 12 11 10 9 5 3 2 0
0 1 0 0 0 0 1 1 0 0 Rm Rd

The ORR (Logical OR) ingtruction performs abitwise OR of the valuesin two registers. The condition code

flags are updated, based on the result.

Syntax

ORR <Rd>, <Rmp

where:

<Rd> Is the destination register for the operation.

<Rn® Isthe register containing the value that is ORed with the value of <Rd>. The operationisa

bitwise inclusive OR.

Architecture version

All T variants

Exceptions

None

Operation

Rd = Rd OR Rm

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else 0

C Flag = unaffected

V Flag = unaffected

Operation

ORRS <Rd>, <Rd>, <Rn»

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

111000011001 Rd Rd 000OO0OO0OOOO Rm
A7-74 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

7.1.47 POP
15 14 13 12 11 10 9 8 7 0
1 0 1 1 1 1 0 R register_list

The POP (Pop Multiple Registers) instruction loads a subset (or possibly all) of the general-purpose
registers RO-R7 and the PC from the stack.

The general-purpose registers loaded can include the PC. If they do, the word loaded for the PC is treated
as an address and a branch occursto that address. In ARM architecture version 5 and above, bit[0] of the
|loaded value determines whether execution continues after this branch in ARM state or in Thumb state, as
though the following instruction had been executed:

BX (1| oaded_val ue)

In T variants of architecture version 4, bit[0] of the loaded value isignored and execution continuesin
Thumb state, as though the following instruction had been executed:

MOV PC, (| oaded_val ue)

Syntax
POP <registers>
where:

<regi sters> Isthe list of registers, separated by commas and surrounded by { and }. Thelist is
encoded in the register_list field of the instruction, by setting bit[i] to 1 if register
Ri isincluded in the list and to O otherwise, for each of i=0to 7. The R bit (bit[8])
issetto 1if the PC isin the list and to O otherwise.

At least one register must be loaded. If bits[8:0] are all zero, theresult is
UNPREDICTABLE.

Theregisters are loaded in sequence, the lowest-numbered register from the lowest
memory address (st art _addr ess), through to the highest-numbered register
from the highest memory address (end_addr ess). If the PC is specified in the
register list (opcode bit[8] is set), the instruction causes a branch to the address
(data) loaded into the PC.

The<start _addr ess> isthe value of the SP.

Subsequent addresses are formed by incrementing the previous address by four.
One address is produced for each register that is specified in <r egi st er s>.

Theend_addr ess valueisfour lessthan the sum of the value of the SP and four
times the number of registers specified in <r egi st er s>.

The SP register is incremented by four times the numbers of registersin
<regi sters>.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-75

Thumb Instructions

Architecture version

All T variants

Exceptions

Data Abort

Operation

start_address = SP

end_addr ess

= SP + 4*(R + Nunmber_OF _Set_Bits_ln(register_list))

address = start_address

for i =0to 7
if register_list[i] == 1 then
Ri = Menory[address, 4]

address = address + 4

if R==1 then

val ue =

Menor y[addr ess, 4]

PC = val ue AND OxFFFFFFFE
if (architecture version 5 or above) then
T Bit = val ue[0]

addr ess

= address + 4

assert end_address = address
SP = end_address

Usage

ThePOP instruction is useful for stack operations. A POP instruction with the PC in the register list can be
used for an efficient procedure exit, asit restores saved registers, loads the PC with the return address, and
updates the stack pointer with asingle instruction.

Notes

Data abort

CPSR

Alignment

For detail s of the effects of theinstruction if a data abort occurs, see Effects of data-aborted
instructions on page A2-17.

The CPSR is not updated when POP |oads the PC.

POP instructionsignore the least significant two bits of addr ess.

If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor) and alignment checking is enabled, an addresswith bitg[1:0] != 0b00
causes an alignment exception.

A7-76

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

ARM/Thumb statetransfers

In ARM architecture 5 and above, if bitg[1:0] of avalueloaded for R15 are 0b10, the result

iS UNPREDICTABLE, as branches to non word-aligned addresses are not possible in ARM
state.

Timeorder Thetimeorder of the accessesto individua words of memory generated by thisinstruction
is only defined in some circumstances. See Data accesses to memory-mapped 1/0 on
page A2-32 for details.

Equivalent ARM syntax and encoding
LDM A SP!, <registers>

31 30 29 28 27 26 25 24 232221 20 19 18 17 16 15 14 1312 1110 9 8 7 0

1110100010112 101RI0O00O0O0O0O register_list

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-77

Thumb Instructions

7.1.48 PUSH
15 14 13 12 11 10 9 8 7 0
1 0 1 1 0 1 0 R register_list

The PUSH (Push Multiple Registers) instruction stores a subset (or possibly all) of the general-purpose
registers RO-R7 and the LR to the stack.

Syntax
PUSH <registers>
where:

<regi sters> Isthelist of registersto be stored, separated by commas and surrounded by { and } .
Thelistisencoded in theregister_list field of theinstruction, by setting bit[i] to 1 if
register Ri isincluded in the list and to O otherwise, for each of i=0to 7. The R bit
(bit[8]) issetto 1if the LR isin thelist and to O otherwise.

At least one register must be stored. If bitg8:0] are all zero, theresult is
UNPREDICTABLE.

The registers are stored in sequence, the lowest-numbered register to the lowest
memory address (st art _addr ess), through to the highest-numbered register to
the highest memory address (end_addr ess)

Thest art _addr ess isthevaueof the SP minus4 timesthe number of registers
to be stored.

Subsequent addresses are formed by incrementing the previous address by four.
One address is produced for each register that is specified in <r egi st er s>.

Theend_addr ess vdueisfour less than the original value of SP.

The SP register is decremented by four times the numbers of registersin
<regi st ers>.

Architecture version

All T variants

Exceptions

Data Abort

A7-78 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Operation

start_address = SP - 4*(R + Nunber_Of _Set _Bits_In(register_list))
end_address = SP - 4
address = start_address
for i =0to 7
if register_list[i] ==
Menory[address, 4] = Ri
address = address + 4
if R==
Menory[address, 4] = LR
address = address + 4
assert end_address == address - 4
SP = SP - 4*(R + Nunber_Of _Set _Bits_In(register_list))

Usage

PUSH is useful for stack operations. A PUSH instruction with the LR in the register list can be used for an
efficient procedure entry, as it saves registers (including the return address) on the stack and updates the
stack pointer with a single instruction. A matching POP instruction can be used later to return from the
procedure.

Notes

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Alignment PUSH instructions ignore the least significant two bits of addr ess.

If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor) and alignment checking is enabled, an addresswith bits[1:0] != 0b00
causes an aignment exception.

Timeorder Thetimeorder of the accessesto individua words of memory generated by thisinstruction
is only defined in some circumstances. See Data accesses to memory-mapped 1/0 on
page A2-32 for details.

Equivalent ARM syntax and encoding

STMDB SP!, <registers>

3130 29 28 27 26 25 24 232221 20 19 18 17 16 15 14 1312 1110 9 8 7 0

1110/1210010010|21010/RIO0O0O0O0O register_list

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-79

Thumb Instructions

7.1.49 ROR
15 14 13 12 11 10 9 8 7 6 5 3 2 0
0 1 0 0 0 0 0 1 1 1 Rs Rd

The ROR (Rotate Right Register) instruction is used to provide the value of aregister rotated by avariable
value (from another register). The bits that are rotated off the right end are inserted into the vacated bit
positions on the left. The condition code flags are updated, based on the result.

Syntax

ROR <Rd>, <Rs>

where:
<Rd> Contains the value to be rotated, and is also the destination register for the operation.
<Rs> Istheregister containing the rotation applied to thevalue of <Rd>. Thevalue of therotation

is stored in the least significant byte.

Architecture version

All T variants

Exceptions

None

Operation

if Rs[7:0] == 0 then
C Flag = unaffected
Rd = unaffected
else if Rs[4:0] == 0 then
C Flag = Rd[31]
Rd = unaffected
else /* Rs[4:0] > 0 */
C Flag = RA[Rs[4:0] - 1]

Rd = Rd Rotate_Ri ght Rs[4:0]
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
V Flag = unaffected

A7-80 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Equivalent ARM syntax and encoding

MOVS <Rd> <Rd> ROR <Rs>

Thumb Instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
111000011011 SBZ Rd Rs 0111 Rd
ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-81

Thumb Instructions

7.1.50 SBC
15 14 13 12 11 10 9 9 8 6 5 3 2 0
0 1 0 0 0 0 0 1 1 0 Rm Rd

The SBC (Subtract with Carry) instruction can be used to synthesi ze multi-word subtraction. It subtractsthe
value of register <R and the value of NOT(Carry Flag) from the value of register <Rd>. The condition
code flags are updated, based on the resullt.

Syntax

SBC <Rd>, <R

where:

<Rd> Contains the first operand for the subtraction, and is also the destination register for the
operation.

<Rn® Contains the value to be subtracted from <Rd>.

Architecture version

All T variants

Exceptions

None

Operation

Rd = Rd - Rm- NOT(C Fl ag)

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else 0

C Flag = NOT BorrowFronm{Rd - Rm - NOT(C Fl ag))
V Flag = OverflowFrom{Rd - Rm - NOT(C Fl ag))

A7-82 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Equivalent ARM syntax and encoding

SBCS <Rd>, <Rd>, <Rt

Thumb Instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
111000001101 Rd Rd 00OO0OOO0OO0ODO Rm
ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-83

Thumb Instructions

7.1.51 STMIA
15 14 13 12 11 10 8 7 0
1 1 0 0 0 Rn register_list

The STM A (Store Multiple Increment After) instruction stores a non-empty subset, or possibly all, of the

general-purpose registers to sequential memory locations.

Syntax

STM A <Rn>!, <registers>

where:

<Rn> Isthe register containing the start address for the instruction.

! Causes base register writeback, and is not optional.

<regi sters> Isalist of registersto be stored, separated by commas and surrounded by { and }.
Thelistisencoded in theregister_list field of theinstruction, by setting bit[i] to 1 if
register Ri isincluded in thelist and to O otherwise, for each of i=0to 7.
At least one register must be stored. If bitg7:0] are al zero, theresult is
UNPREDICTABLE.
The registers are stored in sequence, the lowest-numbered register to the lowest
memory address (st art _addr ess), through to the highest-numbered register to
the highest memory address (end_addr ess).
Thest art _addr ess isthe value of the base register <Rn>. Subsequent
addresses are formed by incrementing the previous address by four. One addressis
produced for each register that is specified in <r egi st er s>.
Theend_addr ess valueisfour lessthan the sum of the value of the base register
and four times the number of registers specified in <r egi st er s>.
Finaly, the base register <Rn> isincremented by 4 times the numbers of registers
in<regi sters>.

Architecture version

All T variants

Exceptions

Data Abort

A7-84 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Operation

start_address = Rn
end_address = Rn + (Nunber_O _Set _Bits_In(register_list) * 4) - 4
address = start_address
for i =0to 7
if register_list[i] ==

Menory[address, 4] = Ri

address = address + 4
assert end_address == address - 4
Rn = Rn + (Nunber _OF _Set _Bits_In(register_list) * 4)

Usage
STM Aisuseful as ablock store instruction. Combined with LDM A (Load Multiple), it allows efficient
block copy.

Notes

Operand restrictions
If <Rn> isspecified in <r egi st er s> and writeback is specified:

. If <Rn> is the lowest-numbered register specifiegiiregi st er s>, the original
value of<Rn> is stored.

. Otherwise, the stored value ©Rn> is UNPREDICTABLE.

Data abort For details of the effects of the instruction if a data abort occur&ffeets of data-aborted
instructions on page A2-17.

Alignment Store Multiple instructions ignore the least significant two bitsddr ess.

If an implementation includes a System Control coprocessor (see Chapitee B&tem
Control Coprocessor) and alignment checking is enabled, an address with bits[1:0] != 0b00
causes an alignment exception.

Timeorder The time order of the accesses to individual words of memory generated by this instruction
is only defined in some circumstances. Bata accesses to memory-mapped 1/0 on
page A2-32 for details.

Equivalent ARM syntax and encoding

STM A <Rn>!, <registers>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13121110 9 8 7 0

1110100010 1(Rn 00O0OOOOI|O register_list

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-85

Thumb Instructions

7.1.52 STR (1)
15 14 13 12 11 10 6 5 3 2 0
0 1 1 0 0 immed_5 Rn Rd
This form of the STR (Store Register) instruction allows 32-bit data from a general-purpose register to be
stored to memory. The addressing mode is useful for accessing structure (record) fields. With an offset of
zero, the address produced is the unaltered value of the base register <Rn>.
Syntax
STR <Rd>, [<Rn>, #<imed_5> * 4]
where:
<Rd> Isthe register that contains the word to be stored to memory.
<Rn> Isthe register containing the base address for the instruction.
<i nmed_5> Isab5-bit valuethat is multiplied by 4 and added to the value of <Rn> to form the memory
address.
Architecture version
All T variants
Exceptions
Data Abort
Operation
address = Rh + (imed_5 * 4)
i f address[1:0] == 0b00
Menory[address, 4] = Rd
el se
Menor y[addr ess, 4] = UNPREDI CTABLE
A7-86 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Notes

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Alignment If the memory addressis not word-aligned and no data abort occurs, the value written to
memory iS UNPREDICTABLE.

If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor) and alignment checking is enabled, an addresswith bitg[1:0] != 0b00
causes an alignment exception (atype of data abort).

Equivalent ARM syntax and encoding

STR <Rd>, [<Rn>, #<inmmed_5> * 4]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 2 10

111001011000 Rn Rd 00O0OO| immed5 |0 O

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-87

Thumb Instructions

7.1.53 STR(2)
15 14 13 12 11 10 9 8 6 5 3 2 0
0 1 0 1 0 0 0 Rm Rn Rd

Thisform of STRdlows32-bit datafrom a general-purpose register to be stored to memory. The addressing

mode is useful for pointer + large offset arithmetic, and for accessing a single element of an array.

Syntax

STR <Rd>, [<Rn>, <Rnp]

where:

<Rd> Isthe register that contains the word to be stored to memory.

<Rn> Isthe register containing the first value used in forming the memory address.

<Rn® Isthe register containing the second value used in forming the memory address.

Architecture version

All T variants

Exceptions

Data Abort

Operation

address = Rn + Rm

i f address[1:0] == 0b0O

Menory[address, 4] = Rd
el se
Menor y[addr ess, 4] = UNPREDI CTABLE

Notes

Data abort For detail s of the effects of theinstruction if a data abort occurs, see Effects of data-aborted
instructions on page A2-17.

Alignment If the memory address is not word-aligned and no data abort occurs, the value written to
memory iS UNPREDICTABLE.
If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor) and alignment checking is enabled, an addresswith bitg[1:0] != 0b00
causes an alignment exception (atype of data abort).

A7-88 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Equivalent ARM syntax and encoding

Thumb Instructions

STR <Rd>, [<Rn>, <Rmp]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

111001111000 Rn Rd 00OO0OOO0OO0ODO Rm
ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-89

Thumb Instructions

7.1.54 STR (3)
15 14 13 12 11 10 8 7 0
1 0 0 1 0 Rd immed_8
Thisform of STRdlows32-bit datafrom ageneral-purposeregister to be stored to memory. The addressing
mode is useful for accessing stack data. In this case, STR stores aword from register <Rd> to memory.
Syntax
STR <Rd>, [SP, #<imed_8> * 4]
where:
<Rd> Isthe register that contains the word to be stored to memory.
SP Isthe stack pointer. Its valueis used to calculate the memory address.
<i nmed_8> Isan8-hit vauethat ismultiplied by 4 and added to the value of the SPto form the memory
address.
Architecture version
All T variants
Exceptions
Data Abort
Operation
address = SP + (imed_8 * 4)
i f address[1:0] == 0b0O
Menory[address, 4] = Rd
el se
Menor y[addr ess, 4] = UNPREDI CTABLE
A7-90 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Notes

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Alignment If the memory addressis not word-aligned and no data abort occurs, the value written to
memory iS UNPREDICTABLE.

If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor), and alignment checking isenabled, an addresswith bits[1:0] != 0b00
causes an alignment exception (atype of data abort).

Equivalent ARM syntax and encoding

STR <Rd>, [SP, #<imed_8> * 4]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 2 10

1110010110002 101 Rd 00 immed_8 00

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-91

Thumb Instructions

7.1.55 STRB (1)
15 14 13 12 11 10 6 5 3 2 0
0 1 1 1 0 immed_5 Rn Rd
This form of the STRB (Store Register Byte) instruction allows 8-bit data from a general-purpose register
to be stored to memory. The addressing mode is useful for accessing structure (record) fields.
With an offset of zero, the address produced is the unaltered value of the base register <Rn>.
Syntax
STRB <Rd>, [<Rn>, #<i med_5>]
where:
<Rd> Is the register whose least significant byte is stored to memory.
<Rn> Isthe register containing the base address for the instruction.
<i nmed_5> Isa5-hitimmediate value that is added to the value of <Rn> to form the memory address.
Architecture version
All T variants
Exceptions
Data Abort
Operation
address = Rn + imed_5
Menory[address, 1] = Rd[7: 0]
Notes
Data abort For detail s of the effects of theinstruction if a data abort occurs, see Effects of data-aborted
instructions on page A2-17.
Equivalent ARM syntax and encoding
STRB <Rd>, [<Rn>, #<i med_5>]
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 0
111001011100 Rn Rd 0 00OOOO| immed5
A7-92 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

7.1.56 STRB (2)

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 0 1 0 Rm Rn Rd

This form of STRB alows 8-bit data from a general-purpose register to be stored to memory. The
addressing mode is useful for pointer + large offset arithmetic, and for accessing a single element of an
array.

Syntax

STRB <Rd>, [<Rn>, <Rnp]

where:

<Rd> Isthe register whose least significant byte is stored to memory.

<Rn> Isthe register containing the first value used in forming the memory address.
<Rn® Isthe register whose value is added to <Rn> to form the memory address.

Architecture version

All T variants

Exceptions

Data Abort

Operation

address = Rn + Rm
Menory[address, 1] = Rd[7: 0]

Notes

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Equivalent ARM syntax and encoding
STRB <Rd>, [<Rn>, <Rnp]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

111001111100 Rn Rd 000O0O0O0O0O Rm

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-93

Thumb Instructions

7.1.57 STRH (1)
15 14 13 12 11 10 2 0
1 0 0 0 0 immed_5 Rn Rd
This form of the STRH (Store Register Halfword) instruction allows 16-bit data from a general-purpose
register to be stored to memory. The addressing mode is useful for accessing structure (record) fields. With
an offset of zero, the address produced is the unaltered value of the base register <Rn>.
Syntax
STRH <Rd>, [<Rn>, #<imed_5> * 2]
where:
<Rd> Is the register whose least significant halfword is stored to memory.
<Rn> Isthe register containing the base address for the instruction.
<i nmed_5> Isab-bitimmediatevalue that is multiplied by two and added to the value of <Rn> to form
the memory address.
Architecture version
All T variants
Exceptions
Data Abort
Operation
address = Rh + (imed_5 * 2)
if address[1:0] == 0
Menor y[addr ess, 2] = Rd[15: 0]
el se
Menor y[addr ess, 2] = UNPREDI CTABLE
A7-94 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

Notes

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Alignment If the memory addressis not halfword-aligned and no data abort occurs, the value written
to memory is UNPREDICTABLE.

If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor) and alignment checking is enabled, an addresswith bit[0] != 0 causes
an alignment exception (atype of data abort).

Equivalent ARM syntax and encoding

STRH <Rd>, [<Rn>, #<imed_5> * 2]

31 3029 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 10
immed immed
111000011100 Rn Rd 00[4:3]1011[2:0]0

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-95

Thumb Instructions

7.1.58 STRH (2)
15 14 13 12 11 10 9 8 6 5 3 2 0
0 1 0 1 0 0 1 Rm Rn Rd

This form of STRH allows 16-bit data from a general-purpose register to be stored to memory. The

addressing mode is useful for pointer + large offset arithmetic and for accessing asingle element of an array.

Syntax

STRH <Rd>, [<Rn>, <Rnp]

where:

<Rd> Is the register whose least significant halfword is stored to memory.

<Rn> Isthe register containing the first value used in forming the memory address.

<Rn® Is the register whose vaue is added to <Rn> to form the memory address.

Architecture version

All T variants

Exceptions

Data Abort

Operation

address = Rn + Rm

if address[1:0] ==

Menor y[addr ess, 2] = Rd[15: 0]
el se
Menor y[addr ess, 2] = UNPREDI CTABLE

Notes

Data abort For detail s of the effects of theinstruction if a data abort occurs, see Effects of data-aborted
instructions on page A2-17.

Alignment If the memory addressis not halfword-aligned and no data abort occurs, the value written
to memory iS UNPREDICTABLE
If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor) and alignment checking isenabled, an addresswith bit[0] != 0 causes
an alignment exception (atype of data abort).

A7-96 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Equivalent ARM syntax and encoding

STRH <Rd>, [<Rn>, <Rnp]

Thumb Instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 76 543210
111000011000 Rn Rd SBZ 1011 Rm
ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-97

Thumb Instructions

7.1.59 SUB (1)
15 14 13 12 11 10 9 5 2 0
0 0 0 1 1 1 1 immed_3 Rn Rd
Thisform of the SUB (Subtract) instruction subtractsasmall constant value from the value of aregister and
stores the result in a second register. The condition code flags are updated, based on the resullt.
Syntax
SUB <Rd>, <Rn>, #<inmred 3>
where:
<Rd> Is the destination register for the operation.
<Rn> Isthe register containing the first operand for the subtraction.
<i mred_3> Isa3-bit immediate value (values 0 to 7) that is subtracted from <Rn>.
Architecture version
All T variants
Exceptions
None
Operation
Rd = Rh - imed_3
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = NOT BorrowFrom(Rn - imed_3)
V Flag = OverflowFrom(Rn - imed_3)
Equivalent ARM syntax and encoding
SUBS <Rd>, <Rn>, #<imed_ 3>
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 2 0
111000100101 Rn Rd 0 00OO0OOOO OO0 Ofimmed3
A7-98 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

7.1.60

Thumb Instructions

SUB (2)
15 14 13 12 11 10 8 7 0
0 0 1 1 1 Rd immed_8

This form of SUB subtracts alarge immediate value from the value of aregister and stores the result back
in the same register. The condition code flags are updated, based on the result.

Syntax

SUB <Rd>, #<imed_8>

where:

<Rd> Isthe register containing the first operand for the subtraction, and is also the
destination register for the operation.

<i med_8> Is an 8-bit immediate value (values 0 to 255) that is subtracted from <Rd>.

Architecture version

All T variants

Exceptions

None

Operation

Rd = Rd - imed_8

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else O

C Flag = NOT BorrowFron{Rd - imed_8)
V Flag = OverflowFron{Rd - imed_8)

Equivalent ARM syntax and encoding
SUBS <Rd, <Rd>, #<inmed 8>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 0

111000100101 Rd Rd 0 00O immed_8

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-99

Thumb Instructions

7.1.61 SUB (3)

15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 0 1 1 0 1 Rm Rn Rd

Thisform of SUB subtracts the value of one register from the value of a second register and storesthe result
in athird register. The condition code flags are updated, based on the result.

Syntax

SUB <Rd>, <Rn>, <Rmp

where:

<Rd> Is the destination register for the operation.

<Rn> Isthe register containing the first operand for the subtraction.
<Rn® Is the register whose vaue is subtracted from <Rn>.

Architecture version

All T variants

Exceptions

None

Operation

Rd = Rh - Rm

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else 0
C Flag = NOT BorrowrFrom(Rn - Rm
V Flag = OverflowFrom(Rn - Rm

Equivalent ARM syntax and encoding
SUBS <Rd>, <Rn>, <Rn»

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

111000000101 Rn Rd 000O0O0OO0OOOO Rm

A7-100 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Thumb Instructions

7.1.62 SUB (4)

15 14 13 12 11 10 9 8 7 6 0

1 0 1 1 0 0 0 0 1 immed_7

Thisform of SUB decrementsthe SP by four timesa7-bit immediate (that is, by a multiple of 4in therange
0 to 508). The condition codes are not affected.

Syntax

SUB SP, #<imed 7> * 4

where:
SP Indicates the stack pointer. The result of the operation is also stored in the SP.
<i med_7> Isa7-bitimmediate valuethat is multiplied by 4 and then subtracted from the value

of the stack pointer.

Architecture version

All T variants

Exceptions

None

Operation

SP = SP - (immed_7 << 2)

Usage

For the Full Descending stack which the Thumb instruction set is designed to use, decrementing the SPis
used to allocate extra memory variables on the top of the stack.

Notes

Alternative syntax Thisingtruction can also be writtenas SUB SP, SP, #<i mmed_7> * 4.

Equivalent ARM syntax and encoding
SUB SP, SP, #<immed 7> * 4

313029 2827 26 25 24 232221 20 19 18 17 16 15 14 13121110 9 8 7 6 0

111000100100|2212101j1101j21110 immed_7

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-101

Thumb Instructions

7.1.63 SWI
15 14 13 12 11 10 9 8 7 0
1 1 0 1 1 1 1 1 immed_8
The SW (Software Interrupt) instruction is used as an operating system service call. A SWI exception is
generated, which is handled by an operating system to provide the requested service. See Exceptions on
page A2-13.
Syntax
SW <i mmed_8>
where:
<i mred_8> Isan 8-bit immediate value that is put into bits[7:0] of theinstruction. Thisvdueis
ignored by the processor, but can be used by an operating system’s SWI exception
handler to determine which operating system service is being requested.
Architecture version
All T variants
Exceptions
Software Interrupt
Operation
R14_svc = address of next instruction after the SW instruction
SPSR_svc = CPSR
CPSR[4: 0] = 0b10011 /* Enter Supervisor node */
CPSR] 5] =0 /* Execute in ARM state */
/* CPSR[6] is unchanged */
CPSR[7] =1 /* Disable normal interrupts */
i f high vectors configured then
PC = OxFFFF0008
el se
PC = 0x00000008
Equivalent ARM syntax and encoding
SW <i mmed_8>
31 3029 28 27 26 2524 23 22 21 20 19 18 17 16 1514 1312 1110 9 8 7 0
1110{(11110000000000000000 immed_8
A7-102 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

7.1.64

Thumb Instructions

TST
15 14 13 12 11 10 9 8 7 6 5 3 2 0
0 1 0 0 0 0 1 0 0 0 Rm Rn

The TST (Test) instruction is used to determine whether a particular subset of bitsin aregister includes at
least one set bit. A very common use for TST isto test whether a single bit is set or clear. The condition
code flags are updated, based on the resuilt.

Syntax

TST <Rn>, <Rnp

where:
<Rn> Is the register containing the first operand for the instruction.
<Rn® Isthe register whose valueis logically ANDed with the value of <Rn>.

Architecture version

All T variants

Exceptions

None

Operation

alu_out = Rn AND Rm

N Flag = al u_out[31]
Z Flag = if alu_out == 0 then 1 else O
C Flag = unaffected
V Flag = unaffected

Equivalent ARM syntax and encoding
TST <Rn>, <Rnp

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

111000010001 Rn SBZ 000O0O0O0O0O Rm

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-103

Thumb Instructions

7.2 Thumb instructions and architecture versions

Table 7-1 shows which Thumb instructions are present in each current ARM architecture version that

supports Thumb.

Table 7-1 Thumb instructions by architecture

Instruction V4T, v4TxM v5T, v56TxM
ADC Yes Yes
ADD (all forms) Yes Yes
AND Yes Yes
ASR (both forms) Yes Yes
B (both forms) Yes Yes
Bl C Yes Yes
BKPT No Yes
BL Yes Yes
BL X (both forms) No Yes
BX Yes Yes
CWN Yes Yes
CWVP (all forms) Yes Yes
EOR Yes Yes
LDM A Yes Yes
LDR (all forms) Yes Yes
LDRB (both forms) Yes Yes
LDRH (both forms) Yes Yes
LDRSB Yes Yes
LDRSH Yes Yes
LSL (both forms) Yes Yes
LSR (both forms) Yes Yes
MOV (all forms) Yes Yes

A7-104

Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

Thumb Instructions

Table 7-1 Thumb instructions by architecture (Continued)

Instruction VAT, v4TxM v5T, v6TxM
MUL Yes Yes
MVN Yes Yes
NEG Yes Yes
ORR Yes Yes
pPCP Yes Yes
PUSH Yes Yes
RCOR Yes Yes
SBC Yes Yes
STM A Yes Yes
STR (all forms) Yes Yes
STRB (both forms) Yes Yes
STRH (both forms) Yes Yes
SUB (all forms) Yes Yes
SW Yes Yes
TST Yes Yes

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A7-105

Thumb Instructions

A7-106 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter A8
The 26-bit Architectures

This chapter describes the differences between the 32-bit and 26-bit architectures. It contains the following
sections:

Overview of the 26-bit architectures on page A8-2

Format of register 15 on page A8-4

26-bit PSR update instructions on page A8-6

Address exceptions on page A8-8

Backwards compatibility from 32-bit architectures on page A8-9.

Note

The information in this chapter is to help witiackwar ds-compatibility issues in existing systems.

Programmers starting new projects are strongly encouraged to use only the 32-bit facilities.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

A8-1

The 26-bit Architectures

8.1 Overview of the 26-bit architectures

ARMv1, ARMV2, and ARMv2aareearlier versionsof the ARM architecturewhich implement only a26-bit
address space, and are known as 26-bit architectures.

ARM architecture version 3 and above implement a 32-bit address space and are known as 32-bit
architectures. For backwards compatibility:

. except for ARMv3G, all variants of ARM architecture version 3 implement the 26-bit address space

. all non-T variants of ARM architecture version 4 and above can optionally implement the 26-bit
address space.

This chapter describes the differences between the 26-bit and 32-bit architectures, and how the
backwards-compatibility features are used.

There are several differences between the 26-bit and the 32-bit architectures:

Program counter The 26-bit architectures implement only a 24-bit program counter in R15, which
allows 64MB of program space. The 32-bit architectures have a 30-bit program
counter in R15 which allows 4GB of program space on 32-bit architectures.

Processor modes Only four processor modes are supported on 26-bit architectures:
. User (0b00)
. FIQ (0b01)
. IRQ (0b10)
. Supervisor (Ob11).

Register 15 In the 26-bit architectures, the following are also stored in register 15:
. four condition flags (N, Z, C and V)
. the interrupt disable flags (I and F)

. two processor mode bits (M1 and MO).
CPSR/SPSR The 26-bit architectures do not have a CPSR or any SPSRs.
Exceptions An exception (called an address exception) is raised if a memory access instruction

uses an address that is greater tt?QHJZbytes.

Branches In 26-bit architectures, there are no restrictions on branching backwards past
location0x0000000 or forwards past locatiddx 3FFFFFF. Such branches wrap
around to the other end of the 26-bit address space, and so have a different target
address than they would have had in a 32-bit architecture.

As a result, the signed 24-bit word offset in BrandBL instructions allows any
instruction in the 26-bit address space to be branched to.

A8-2 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The 26-bit Architectures

Together, these differences make up the fundamental distinction between 26-bit and 32-bit architectures:

26-bit architectures

All process status (namely the condition flags, interrupt status and processor mode) can be
preserved across subroutine calls and nested exceptions without adding any instructionsto
the entry or exit sequence.

32-bit architectures

This process status functionality is given up to allow 32-bit instruction addresses to be used.
For exceptions, processor status is preserved in the SPSRs, and if nested exceptions using
the same SPSR can occur, extrainstructions are used to preservethis status in memory. For
subroutine calls, processor status can be preserved acrossthe subroutine call by using extra
instructions, but thisis not normally done.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A8-3

The 26-bit Architectures

8.2 Format of register 15

31 30 29 28 27 26 25 21 0

NlZ|C|V|I|F Program Counter M1MO

Bits[25:2] are collectively known as the Program Counter (PC). Because the PC occupies only 24 bits of
register 15, only 22% instructions (228 bytes) can be addressed, giving amaximum addressable program size
of 64MB.

Bits[31:26] and bits[1:0] are collectively known as the Program Status Register (PSR).

TheN, Z, C, V, |, and F bits have the same meaning in both 26-bit and 32-bit architectures. M[1:0] al so have
the same meaning in both architectures.

Abort, Undefined, and System mode are not supported in 26-bit architectures. Aborts and Undefined
Instruction exceptions have exactly the same actions in both modes, except that in 26-bit architectures,
Supervisor mode is entered instead of Abort or Undefined mode.

The precise effect of an exception on a 26-bit architecture can be derived from the rulesin Exceptions on
page A2-13, asfollows:

. The banked version of R14 has bits[25:2] set to the specified address, and bits[31:26, 1, 0] set to
copies of the corresponding bits in R15.

. The I, F, M1, and MO bits are modified in the same way as CPSR[7], CPSR[6], CPSR[1], and
CPSR][0] respectively, on a 32-bit architecture.

The |, F and M[1:0] bits cannot be written directly when the processor is in User mode. In User mode they
are only changed by an exception occurring.

8.2.1 Reading register 15

In 26-bit architectures, the value of R15 is read in five different ways:

. Most importantly, if R15 has asNPREDICTABLE value in the 32-bit architecture, it also has an
UNPREDICTABLE value when used in the same way in the 26-bit architecture.

. If R15 is specified in bits[19:16] of an instruction (and its value iSJREREDICTABLE), only the PC
(bits[25:2]) is used. All other bits read as zero.

. If R15 is specified in bits[3:0] of an instruction (and its value iSUNBPREDICTABLE), all 32 bits are
used.

. If R15 is stored usin§TR or STM the value of the PC (bits[25:2])Ii@PLEMENTATION DEFINED, but
all 32 bits of the register are stored.

. All 32 bits are stored in the Link register (R14) after a Branch with Link instruction or an exception
entry.

A8-4 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The 26-bit Architectures

8.2.2 Writing register 15

In 26-bit architectures, the value of R15 iswritten in three different ways:

The following instructions only write the PC part of R15, leaving the PSR part unchanged:
— Data-processing instructions without the S bit set

— LDRinstructions

— LDM instructions, other than Load Multiple with Restore CPSR.

The following instructions write both the PC and the PSR part of R15:
— Data-processing instructions with the S bit set
— Load Multiple with Restore CPSR.

Variants of theCMP, CMN, TST, andTEQinstructions write just the PSR part of R15 and leave the
PC part unchanged. These instruction variants are des@6katPSR update instructions on
page A8-6.

These read/write rules mean that R15 is used in three basic ways:

When it is the Rn specifier in data-processing instructions, or the base address for load and store
instructions, only the value of the program counter is used, to simplify PC-relative addressing and
position-independent code.

When it is the Rm specifier in data-processing instructions, all 32 bits are used in order to allow all
process status to be restored after a subroutine call or exception by subroutine-return instructions
such as:

MOVS PC, LR and LDM .., PC"

These instructions aNPREDICTABLE in User mode on 32-bit architectures, but are legal on 26-bit
architectures, as they are used to restore the condition code flags on procedure exit.

All 32 bits are saved in the Link register, to preserve the PC and the PSR across subroutine calls and
exceptions.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A8-5

The 26-bit Architectures

8.3

8.3.1

8.3.2

26-bit PSR update instructions

31 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 O|1|1 O|opc|1 Rn 1111 shifter_operand

In 26-bit architectures, the MSR and MRS instructions are not supported. Instead, variants of the CMN, CVP,
TEQand TST instructions are used to write just the PSR part of R15 without affecting the PC part. These
26-bit-only variants are called CMNP, CMPP, TEQP and TSTP, and are distinguished by having instruction
bitg[15:12] equal to Ob1111. These bits are equa to 0b0000 in the normal variants of these instructions.

These instructions write their ALU result directly to the PSR part of register 15 (only N, Z, C, and V are
affected in User mode).

When the processor isin User mode, only the condition codes are affected. All other modes allow al PSR
bits to be altered.

Syntax

CM\{ <cond>} P
CWP{ <cond>} P
TEQ{ <cond>} P
TST{<cond>} P

<shi ft er _oper and>
<shi ft er _oper and>
<shi ft er _oper and>
<shi ft er _oper and>

3333

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rn> Specifies the register that contains the first operand for the instruction.

<shi fter_operand>

Specifies the second operand for the instruction. Its options are described in Addressing
Mode 1 - Data-processing operands on page A5-2, including how each option causesthe |
bit (bit 25) and the <shi f t er _oper and> bits (bits 11:0) to be set in the instruction.

Exceptions

None

A8-6

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

8.3.3 Operation

i f ConditionPassed(<cond>) then

case <opc> of
0b00 /* TSTP */

<al u_out> =

0b01 /* TEQP */

<al u_out >

0b10 /* CWPP *

<al u_out >

0bll /* CWNP *

<al u_out >

In = u =1

endcase
if R15[1:0] == 0b0O

R15[31: 28] = <al u_out >[31: 28]

el se

R15[31: 26] = <al u_out >[31: 26]
R15[1: 0] = <al u_out>[1:0]

The 26-bit Architectures

Rn AND <shi fter_operand>

Rn EOR <shi fter_operand>

Rn - <shifter_operand>

Rn + <shifter_operand>

t hen

/* M 1:0] == 0b00, User node */
/* update just NzZCV */

/* a privil eged npode */

/* update NZCVIF and ... */

/* ... update M 1:0] */

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A8-7

The 26-bit Architectures

8.4

8.4.1

Address exceptions

In 26-bit architectures, all data addresses are checked to ensure that they are between 0 and 64MB. If adata
address is produced with a 1 in any of the top 6 bits, an address exception is generated. When an address
exception is generated, the following actions are performed:

R14_svc| 25: 2] = address of instruction + 8
R14_svc[31: 26, 1, 0] = R15[31: 26, 1, 0]

M 1: 0] 0Ob11 ; Supervi sor node

F unchanged

| = 1 ; (normal) interrupts disabled
PC = 0x14

The address of the instruction which caused the address exception is the value in R14 minus 8.

Returning from an address exception

Asthis exception implies a programming error, it is not usual to return from address exceptions, but if a
return isrequired, use:

SUBS PC, R14, #8

Thisrestores both the PC and PSR (from R14_svc) and returnsto the instruction that generated the address
exception.

A8-8

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The 26-bit Architectures

8.5 Backwards compatibility from 32-bit architectures

As described in Overview of the 26-bit architectures on page A8-2, some 32-bit architecturesinclude
mandatory or optional backwards-compatibility support for 26-bit architectures. Architecture versionswith
this support implement the four 26-bit modes described in Overview of the 26-bit architectures on

page A8-2. When the processor isin one of these modes, the PC behaves as explained in Format of register
15 on page A8-4 and the instructions described in 26-bit PSR update instructions on page A8-6 are
available. This alows older 26-bit programs to be executed in a suitable 26-bit mode.

In architecture versions without 26-bit backwards-compatibility support, CPSR hit[4] (M[4]) aways reads

as1, and all writesto it are ignored.

The complete list of processor modesis shown in Table 8-1.

Table 8-1 32-bit and 26-bit modes

M[4:0] Mode Accessible registers

0b00000 User 26 RO to R14, PC, (CPSR)

0b00001 FIQ 26 RO to R7, R8_fig to R14 fig, PC, (CPSR, SPSR_fiq)
0b00010 IRQ 26 ROto R12, R13 irq, R14 irg, PC, (CPSR, SPSR_irq)
0b00011 SVC 26 RO to R12, R13 svc, R14 svc, PC, (CPSR, SPSR_svc)
0b10000 User_32 RO to R14, PC, CPSR

0b10001 FIQ 32 ROto R7, R8_fig to R14 fig, PC, CPSR, SPSR_fiq
0b10010 IRQ 32 ROto R12, R13 irq, R14 irg, PC, CPSR, SPSR_irq
0b10011 SVC_32 RO to R12, R13 svc, R14 svc, PC, CPSR, SPSR_svc
0b10111 Abort_32 RO to R12, R13 aht, R14 abt, PC, CPSR, SPSR_abt
0b11011 Undef_32 RO to R12, R13 und, R14 und, PC, CPSR, SPSR_und
0b11111 System_32 RO to R14, PC, CPSR (architecture version 4 and above)

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A8-9

The 26-bit Architectures

8.5.1

Note

The MRS and MSRinstructions are supported in all cases, despite thefact that they do not exist in pure 26-bit
architectures. Thisisto assist conversion to a 32-hit architecture, as the CMNP, CMPP, TEQP, and TSTP
instructions cannot enter a 32-bit mode from a 26-bit mode.

If an MSR instruction which lies outside the 26-bit address space is used to switch into a 26-bit mode, the
results are UNPREDICTABLE.

The results of an MSRinstruction which switches between a 32-bit mode and a 26-bit mode (in either
direction) are also UNPREDICTABLE if it isexecuted at any point where predi ctabl e subsequent execution can
reach either of the following:

. the end of the 26-bit address space
. a branch instruction whose target addresses in the 26-bit and 32-bit address spaces are different.

For this purposeyredictable subsequent execution is as defined iOther uses for IMBs on page A2-30.

32-bit and 26-bit configuration

Architecture versions with 26-bit backwards compatibility support optionally incorporate two hardware
signals that control 32-bit instruction accesses and 32-bit data accesses. The signals are mapped to two bits
in register 1 of the system control coprocessor. These signals are:

. PROG32
. DATA32.

Note

If an implementation does not support these signals but does provide 32-bit modes, it must behave as though
both signals were 1.

32-bit configuration

1. If PROG32 is active andATAS32 is active, the processor switches to a 32-bit mode when
processing exceptions (including Reset), using the _32 modes for handling all exceptions. This is
called a 32-bit configuration. Abort_32 mode is used for handling memory aborts, and Undef_32 for
handling Undefined Instruction exceptions. A 26-bit mode can be selected by putting a 26-bit mode
number into the M[4:0] bits of the CPSR (either using MSR or an exception return sequence). A
32-bit mode can also be entered from a 26-bit mode usiddsfRanstruction. Once in a 26-bit mode,
another 26-bit mode can be entered using one c@&NP, CMPP, TEQP andTSTP instructions, or
the MSR instruction.

If an exception occurs when the processor is in a 26-bit mode, only the PC bits from R15[25:2] are
copied to the link register. The remaining bits in the link register are zeroed. The PSR bits from
R15[31:26] and R15[1:0] are copied into the SPSR, ready for a normal 32-bit return sequence.

2. If PROG32 is active andATAS32 is not active (32-bit programs with 26-bit data), the result is
UNPREDICTABLE.

A8-10

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

8.5.2

The 26-bit Architectures

26-bit configuration

1 If PROG32 is not active, the processor is locked into 26-bit modes (that is, cannot be placed into a
32-bit mode by any means) and handles exceptions in 26-bit modes. Thisis called a 26-bit
configuration. In this configuration, CMNP, CMPP, TEQP and TSTP instructions, or the MSR
instruction can be used to switch to 26-bit modes. Attempts to write CPSR bitg4:2] (M[4:2]) are
ignored, stopping any attempts to switch to a 32-bit mode, and SVC_26 mode is used to handle
memory aborts and Undefined Instruction exceptions. The PC is limited to 24 bits, limiting the
addressabl e program memory to 64MB.

2. If PROG32 isnot active, DATA32 has the following actions:

. If DATA32is not active, all data addresses are checked to ensure that they are between 0 and
64MB. If a data address is produced with a 1 in any of the top 6 bits, an address exception is
generated.

. If DATAB32 is active, full 32-bit addresses can be produced and are not checked for address

exceptions. This allows 26-bit programs to access data in the full 32-bit address space.

Vector exceptions

When the processor is in a 32-bit configuratiBRQG32 is active) and in a 26-bit mode (CPSR[4] == 0),
data access (but notinstruction fetches) to the exception vectors (&dddes)x 1 F) causes a data abort.
This is known as a vector exception.

Vector exceptions are always produced if the exception vectors are written in a 32-bit configuration and a
26-bit mode. It iSMPLEMENTATION DEFINED whether reading the exception vectors in a 32-bit
configuration and a 26-bit mode also causes a vector exception.

Vector exceptions are provided to support 26-bit backwards compatibility. When a vector exception is
generated, it indicates that a 26-bit mode process is trying to install a (26-bit) vector handler. Because the
processor is in a 32-bit configuration, exceptions are handled in a 32-bit mode, so a veneer must be used to
change from the 32-bit exception mode to a 26-bit mode before calling the 26-bit exception handler.

This veneer can be installed on each vector and can switch to a 26-bit mode before calling any 26-bit
handlers.

The return from the 26-bit exception handler might also need to be veneered. Some SWI handlers return
status information in the processor flags, and this information needs to be transferred from the link register
to the SPSR with a return veneer for the SWI handler.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A8-11

The 26-bit Architectures

A8-12 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter A9
ARM Code Sequences

The ARM instruction set is apowerful tool for generating high-perf ormance microprocessor systems. Used
toitsfull extent, the ARM instruction set allows algorithmsto be coded in avery compact and efficient way.
This chapter describes some sample routines that provide insight into the ARM instruction set. It contains
the following sections:

. Arithmetic instructions on page A9-2

. Branch instructions on page A9-5

. Load and Soreingtructions on page A9-7

. Load and Sore Multipleinstructions on page A9-10
. Semaphore instructions on page A9-11

. Other code examples on page A9-12.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A9-1

ARM Code Sequences

9.1 Arithmetic instructions

Thefollowing subsectionsillustrate some ways of using ARM data-processing instructions. The examples
illustrate:

. Bit field manipulation

. Multiplication by constant

. Multi-precision arithmetic on page A9-3
. Swapping endianness on page A9-4.

9.1.1 Bit field manipulation
The ARM shift and logical instructions can be used for bit field manipulation:

Extract 8 bits fromthe top of R2 and insert theminto

the bottomof R3, shifting up the data in R3

RO is a tenporary val ue
MoV RO, R2, LSR #24 ; extract top bits fromR2 into RO
ORR R3, RO, R3, LSL #8 ; shift up R3 and insert RO

9.1.2 Multiplication by constant

Combinations of shifts, add with shifts, and reverse subtract with shift can be used to perform
multiplications by constants:

mul tiplication of RO by 2”n
MoV RO, RO, LSL #n ; RO

RO << n

mul tiplication of RO by 2"n + 1
ADD RO, RO, RO, LSL #n ; RO

RO + (RO << n)

mul tiplication of RO by 2"n - 1
RSB RO, RO, RO, LSL #n ; RO

(RO << n) - RO

RO = RO * 10 + R1

ADD RO, RO, RO, LSL #2 RO = RO * 5
ADD RO, R1, RO, LSL #1 RO =RL + RO * 2
RO = RO * 100 + R1
ADD RO, RO, RO, LSL #2 RO = RO 5
ADD RO, RO, RO, LSL #2 RO = RO * 5 (RO = RO * 25)
ADD RO, R1, RO, LSL #2 RO =RL+ RO * 4

A9-2 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Code Sequences

9.1.3 Multi-precision arithmetic

Arithmetic instructions alow efficient arithmetic on 64-bit or larger objects:
. Add, and Add with Carry perform multi-precision addition

. Subtract, and Subtract with Carry perform subtraction
. Compare can be used for comparison.

On entry : RO and RL hold a 64-bit nunber
: (RO is least significant)
: R2 and R3 hold a second 64-bit nunber
On exit : RO and Rl hold 64-bit sum (or difference) of the 2 nunbers

add64 ADDS RO, RO, R2 ; add | ower halves and update Carry flag
ADC R1, R1, R3 ; add the high halves and Carry flag

sub64 SUBS RO, RO, R2 ; subtract |ower halves, update Carry
SBC R1, R1, R3 ; subtract high halves and Carry

This routine conpares two 64-bit nunbers

On entry : As above
On exit : N, Z, and C flags updated correctly
cnp64 CwvP R1, R3 ; conpare high halves, if they are
CMPEQ RO, R2 ; equal, then conpare |ower hal ves

Be aware that in the above example, the V flag is not updated correctly. For example:

R1
R3

0x00000001, RO
0x00000001, R2

0x80000000
OX7FFFFFFF

RO - R2 overflows as a32-bit signed number, so the CMPEQnstruction setsthe V flag. But (R1, R0)
—(R3,R2) doesnot overflow as a64-bit number.

An alternative routine exists which updates the V flag correctly, but not the Z flag:

This routine conpares two 64-bit nunbers
On entry: as above
On exit: N, V and C set correctly ; R4 is destroyed
cnp64 SUBS R4, RO, R2
SBCS R4, R1, R3

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A9-3

ARM Code Sequences

9.1.4 Swapping endianness
Swapping the order of bytesin aword (the endianness) can be performed in two ways:
. This method is best for single words:
; Onentry RO holds the word to be swapped
; Onoexit RO holds the swapped word, Rl is destroyed
byt eswap ; ROR=A, B, C, D
EOR R1, RO, RO, ROR #16 ; Rl = AMC, B"D, C*"A, D'B
BI C R1, R1, #OxFFO000 ; RL = ACC, 0 ,C'A D'B
MoV RO, RO, ROR #8 , RO=D, A, B, C
EOR RO, RO, R1, LSR #8 y RO=D, C, B, A
. This method is best for swapping the endianness of a large number of words:
; On entry RO holds the word to be swapped
; Onoexit RO hol ds the swapped word,
; R1l, R2 and R3 are destroyed
byt eswap ; first the two-instruction initialization
MoV R2, #OxFF : R2 = OXFF
ORR R2, R2, #O0xFFO000 ; R2 = OxOOFFOOFF
; repeat the following code for each word to swap
; RO =A B C D
AND R1, R2, RO ; RL=0 B 0 D
AND RO, R2, RO, ROR #24 ; RO =0 cC 0 A
ORR RO, RO, R1l, ROR #8 ; RO=D C B A
A9-4 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Code Sequences

9.2 Branch instructions

The following subsections show some different ways of controlling the flow of execution in ARM code.

9.2.1 Procedure call and return

The BL (Branch and Link) instruction makes a procedure call by preserving the address of the instruction
after the BL in R14 (the link register, LR), and then branching to the target address. Returning from a
procedure is achieved by moving R14 to the PC:

BL function ; call ‘function’
; procedure returns to here

function ; function body

MOV PC, LR ; Put R14 into PC to return
Another method to return from a called procedure is given in Procedure entry and exit on page A9-10.

9.2.2 Conditional execution

Conditional execution allows if-then-else statements to be collapsed into sequences that do not require
forward branches:

/* C code for Euclid’s Greatest Common Divisor (GCD)*/
/* Returns the GCD of its two parameters */
int gcd(int a, int b)
while (a != b)
if(@>b)
a=a-b;
else
b=b-a;
return a ;

}

; ARM assembler code for Euclid’s Greatest Common Divisor
; On entry: RO holds ‘a’, R1 holds ‘b’
; On exit : RO hold GCD of A and B

gcd CMP RO, R1 ; compare ‘a’ and ‘b’
SUBGT RO, RO, R1 ; if (a>b) a=a-b (if a==b do nothing)
SUBLT R1, R1, RO ; if (b>a) b=b-a (if a==b do nothing)
BNE gcd ; if (al=b) then keep going
MOV PC, LR ; return to caller

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A9-5

ARM Code Sequences

9.2.3 Conditional compare instructions
Compare instructions can be conditionally executed to implement more complicated expressions:

if (a==0 || b==1)

c=d+e;
CwP RO, #0 ; conpare a with 0
CMPNE R1, #1 ; if ais not 0, conpare b to 1
ADDEQ R2, R3, R4 ; if either was true c =d + e

9.24 Loop variables

The Subtract instruction can be used to both decrement aloop counter and set the condition codes to test for

azero:
MoV RO, #l oopcount ; initialize the | oop counter
| oop ; loop body
SUBS RO, RO, #1 ; subtract 1 from counter
; and set condition codes
BNE | oop ; 1f not zero, continue | ooping

9.2.5 Multi-way branch

A very smple multi-way branch can be implemented with a single instruction. The following code
dispatches the control of execution to any number of routines, with the restriction that the code to handle
each case of the multi-way branch is the same size, and that sizeis a power of two bytes:

Mul ti-way branch
On entry: RO holds the branch index

CWP RO, #nmaxi ndex ; checks the index is in range
ADDLO PC, PC, RO, LSL #RoutineSi zelLog2
; scale index by the log of the size of
each handler, add to the PC, which points
2 instructions beyond this one
; (at IndexOHandl er), then junp there
B | ndexQut Of Range ; junp to the error handler

I ndexOHandl er

I ndex1Handl er

| ndex2Handl er

A9-6 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Code Sequences

9.3 Load and Store instructions

Load and Store instructions are the best way to load or store asingle word. They are aso the only

instructions that can load or store a byte or halfword.

9.3.1 Linked lists

The following code searches for an element in alinked list that has two elements (a single byte value and a
pointer to the next record) in each record. A null next pointer indicates this is the last element in the list:

Li nked list search

On entry

On exit

Il search
cwP
LDRNEB
CVPNE
LDRNE
BNE
MOV

RO holds a pointer to the first record in the |ist
Rl holds the byte we are searching for

Call this code with a BL

RO hol ds the address of the first record matched
or a null pointer if no match was found

R2 is destroyed

RO, #0 ; null pointer?

R2, [RO] ; load the byte value fromthis record
Rl, R2 ; conpare with the | ooked-for val ue
RO, [RO, #4] ; if not found, followthe link to the
Il search ; next record and then keep | ooking
PC, LR ; return with pointer in RO

9.3.2 Simple string compare

The following code performs a very simple string compare on two zero-terminated strings:

String conpare

On entry

On exit

strcnp
LDRB

LDRB
owP
CVPNE
BEQ
owP
BEQ

return
SuB
MOV

RO points to the first string

Rl points to the second string

Call this code with a BL

RO is <0 if the first string is less than the second
RO is =0 if the first string is equal to the second

RO is >0 if the first string is greater than the second
Rl, R2 and R3 are destroyed

R2, [RO], #1 ; Get a byte fromthe first string
R3, [R1], #1 ; Get a byte fromthe second string
R2, #0 ; Have we reached the end of either
R3, #0 ; string?

return ; Go to return code if so

R2, R3 ; Are the strings the sane so far?
strcnp ; Repeat for next character if so
RO, R2, R3 ; Calculate result value and return
PC, LR ; by copying R14 (LR) into the PC

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

A9-7

ARM Code Sequences

The following code performs a more optimized string compare:

int strcnmp(char *sl1, char *s2)

{
unsigned int chl, ch2;
do
{
chl = *sl++;
ch2 = *s2++;
} while (chl >= 1 && chl == ch2);
return chl - ch2;
}
This code uses an unsigned comparison with 1 to test for anull character, rather than the normal comparison
with 0.

The corresponding ARM codeis:

strcnp
LDRB R2, [RO], #1
LDRB RS, [R1], #1
oW R2#1
CMPCS R2, R3

BEQ strcnp
SuB RO, R2, R3
MoV PC, LR

The change in the way that null characters are detected allows the condition tests to be combined:

. If R2 == 0, theCVP instruction sets Z = 0, C = 0. Neither @&PCS instruction nor th8EQ
instruction is executed, and the loop terminates.

. If R2 '= 0 and R3 == 0, th€EMP instruction sets C = 1, then tA&PCS instruction is executed and
sets Z = 0. So, thBEQinstruction is not executed and the loop terminates.

. If R2 1= 0 and R3 != 0, th€VP instruction sets C = 1, then t@®PCS instruction is executed and
sets Z according to whether R2 == R3. So BB instruction is executed if R2 == R3 and the loop
terminates if R2 != R3.

Much faster string comparison routines are possible by loading one word of each string at a time and
comparing all four bytes.

A9-8 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

9.3.3

9.3.4

ARM Code Sequences

Long branch

A Load instruction can be used to generate a branch to anywhere in the 4GB address space. By manually
setting the value of the link register (R14), a subroutine call can be made to anywhere in the address space.

Long branch (and li nk)

ADD LR, PC, #4 ; set the return address to be 8 bytes
; after the next instruction
LDR PC, [PC, #-4] ; get the address fromthe next word
DCD function ; store the address of the function
; (DCD is an assenbler directive)
return_here ; return to here

This code usesthe location after theload to hold the address of the functionto call. In practice, thislocation
can be anywhere aslong as it iswithin 4KB of the load instruction. Notice also that this code is
position-independent except for the address of the function to call. Full position-independence can be
achieved by storing the offset of the branch target after the load, and using an ADD instruction to add it to
the PC.

Multi-way branches

The following code improves on the multi-way branch code shown above by using atable of addresses of
functions to call:

Mul ti-way branch
On entry: RO holds the branch index

CwvP RO, #nmaxi ndex ; checks the index is in the range
; by using an unsigned conpare.
LDRLO PC, [PC, RO, LSL #2] ; convert the index to a word of fset

do a look up in the table put the | oaded
value into the PC and junp there

B | ndexQut Of Range ; junp to the error handler

DCD Handl er 0 ; DCD is an assenbler directive to
DCD Handl er 1 ; store a word (in this case an
DCD Handl er 2 ; address in nenory).

DCD Handl er 3

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A9-9

ARM Code Sequences

9.4

9.4.1

9.4.2

Load and Store Multiple instructions

Load and Store Multiple instructions are the most efficient way to manipulate blocks of data.

Simple block copy

This code performs avery simple block copy, 48 bytes a atime, and approaches the maximum throughput
for a particular machine:

Si npl e bl ock copy function

R12 points to the start of the source bl ock

R13 points to the start of the destination block
R14 points to the end of the source bl ock

| oop LDM A R12!, (RO-R11} ; load 48 bytes
STM A R13!, {RO-R11} ; store 48 bytes
CwP R12, R14 ; reached the end yet?
BLO | oop ; branch to the top of the |oop

The source and destination must be word-aligned, and if the object to be copied is not amultiple of 48 bytes
long, extrabytes are copied to bring the total to the next multiple of 48 bytes. A more sophisticated routine
is needed if this extra copying isto be avoided.

Procedure entry and exit

This code uses L oad and Store Multiple to preserve and restore the processor state during a procedure. The
code assumes that registers RO to R3 are argument registers, preserved by the caller of the function, so do
not need to be preserved. R13 is also assumed to point to afull descending stack.

function
STMFD R13!, {R4 - R12, R14} ; preserve all the local registers
; and the return address, and
update the stack pointer.

Insert the function body here

LDMFD R13!, {R4 - R12, PC} ; restore the local register, |oad
; the PC fromthe saved return
updat e the stack pointer.

Noticethat thiscoderestores all saved registers, updatesthe stack pointer, and returnsthe caller (by loading
the PC value) in asingleinstruction. Thisallowsvery efficient conditional return for exceptional casesfrom
aprocedure (by checking the condition with a compare instruction and then conditionally executing the
Load Multiple).

A9-10

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

9.5

ARM Code Sequences

Semaphore instructions

This code controls the entry and exit from acritical section of code. The semaphoreinstruction (SWP) does
not provide a compare and conditional write facility, so this must be done explicitly. The following code
achieves this by using a semaphore value to indicate that the lock is being inspected.

The code below causes the calling process to busy-wait until the lock is free. To ensure progress, three OS
calls need to be made (one before each loop branch) to sleep the processiif the lock cannot be accessed.

Cri

tical section entry and exit

The code uses a process IDto identify the | ock owner

An
An

ID of zero indicates the lock is free
ID of -1 indicates the lock is being inspected

On entry: RO hol ds the address of the semaphore
Rl holds the ID of the process requesting the |ock
MVN R2, #0 ; load the ‘looking’ value (-1) in R2
spinin SWP R3, R2, [RO] ; look at the lock, and lock others out
CMN R3,#1 ; anyone else trying to look?
Insert conditional OS call to sleep process here
BEQ spinin ; yes, so wait our turn
CMP RS3, #0 ; no-one looking, is the lock free?
STRNE R3, [RO] ; no, then restore the previous owner
Insert conditional OS call to sleep process here
BNE spinin ; and wait again
STR R1, [RO] ; otherwise grab the lock
Insert critical code here
spinout SWP R3, R2, [RO] ; look at the lock, and lock others out

CMN R3,#1 ; anyone else trying to look ?

Insert conditional OS call to sleep process here

BEQ spinout ; yes, so wait our turn

CMP R3,R1 ; check we own it

BNE CorruptSemaphore ; we should have been the owner!
MOV R2, #0 ; load the ‘free’ value

STR R2,[RO] ; and open the lock

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A9-11

ARM Code Sequences

9.6 Other code examples

The following sequences illustrate some other applications of ARM assembly language.

9.6.1 Software interrupt dispatch

This code segment dispatches software interrupts (SWIs) to individual handlers. For it to work, the
instruction at the software interrupt vector (memory location 0x00000008) must branch to the first
instruction of thiscode. The SW instruction has a 24-bit field that can be used for specific SWI functions.
This code also handles the 16-bit Thumb SWI instruction, which has an 8-bit SWI number field rather than
a24-bit field.

This example assumes that the code to handle each of the individual SWIs only modifiesr0-r3, r12, Ir and
the PC. If more registers are needed, the example should be modified to include the extra registers needed
in the register lists of the STMFD and LDMFD instructions. This makes the extraregisters availableto all of
the SWI handlers, but the code will typically take longer to execute because of the extra memory accesses.

Alternatively, if only afew of the individual SWI handlers require extraregisters, use extra STMFD and
LDMFD instructions within those handlers. Thisensures that SWIswhich do not requirethe extraregisters
are not slowed down.

SW Handl er
STMFD sp!, {r0-r3,r12,1r} ; Store the registers
MRS r0, spsr ; Move SPSR into general purpose
; register
TST r0, #0x20 ; Test the SPSR T bit to discover
i ARM Thunb state when SW occurred
LDRNEH ro, [Ir, #-2] ; T bit set so |load hal fword (Thunb)
Bl CNE r0, r0, #OxffO0O0 ; and clear top 8 bits of hal fword
; (LDRH clears top 16 bits of word)
LDREQ ro, [Ir, #-4] ; T bit clear so load word (ARM
Bl CEQ r0, r0, #Oxff000000 ; and clear top 8 bits of word
CwP r0, #MaxSW ; Check the SW nunber is in range
LDRLS pc, [pc, r0O, LSL #2] ; If so, junp to the correct routine
B SW Qut Of Range
switabl e
DCD do_swi _0
DCD do_swi _1
do_swi _0
Insert code to handle SW 0 here
LDMFD sp!, {r0-r3,r12,pc}™ ; Restore the registers and return.

A9-12 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

9.6.2

9.6.3

ARM Code Sequences

Single-channel DMA transfer

The following code is an interrupt handler to perform interrupt driven input/output to memory transfers
(soft DMA). The code is written as an FIQ handler, and uses the banked FIQ registers to maintain state
between interrupts. Therefore this codeis best situated at location 0x 1C. The entire sequence to handle a
normal transfer is just four instructions. Code situated after the conditional return is used to signal that the
transfer is complete.

LDR r11, [r8, #l OData] ; load port data fromthe I/0O device
STR ri1, [r9], #4 ; store it to nmenory: update the pointer
CcwP ro, rl1o ; reached the end?
SUBLTS pc, Ir, #4 ; no, so return
Insert transfer conplete code here
where:
R8 Points to the base address of the input/output device that datais read from.
| ODat a Is the offset from the base address to the 32-hit data register that is read. Reading this
register disables the interrupt.
RO Points to the memory location where data is being transferred.
R10 Points to the last address to transfer to.

Of course, byte transfers can be made by replacing the load and store instructions with Load and Store byte
instructions, and changing the offset in the store instruction from 4 to 1. Transfers from memory to an
input/output device are made by swapping the addressing modes between the L oad instruction and the Store
instruction.

Dual-channel DMA transfer

This code is similar to the example in Single-channel DMA transfer on page A9-13, except that it handles
two channels (which can bethe input and output side of the same channel). Again, thiscode iswritten asan
FIQ handler, and uses the banked FIQ registers to maintain state between interrupts. Therefore this code is
best situated at location Ox 1C.

The entire sequence to handle anormal transfer isjust nineinstructions. Code situated after the conditional
return is used to signal that the transfer is complete.

LDR ri3, [r8, #lOstat] ; load status register to find

TST r13, #l OPort1lActive ; which port caused the interrupt?
LDREQ r13, [r8, #l OPort1] ; load port 1 data

LDRNE r13, [r8, #l OPort?2] ; load port 2 data

STREQ r13, [r9], #4 ; store to buffer 1

STRNE r13, [r10], #4 ; store to buffer 2

CcwP ro, rli1 ; reached the end?

CWPNE r10, ri12 ; on either channel ?

SUBNES pc, Ir, #4 ; return

Insert transfer conplete code her

where:

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A9-13

ARM Code Sequences

R8 Points to the base address of the input/output device that datais read from.
| Ost at Is the offset from the base address to aregister indicating which of two ports caused the
interrupt.

| OPort 1Acti ve

Isabit mask indicating if thefirst port caused the interrupt (otherwise it is assumed that the
second port caused the interrupt).

| OPortl, 1 QOPort 2

Areoffsetsto the two dataregistersto beread. Reading adataregister disablestheinterrupt
for that port.

R9 Points to the memory location that data from the first port is being transferred to.
R10 Points to the memory location that data from the second port is being transferred to.
R11, R12 Point to the last address to transfer to (R11 for the first port, R12 for the second).

Again, byte transfers can be made by suitably replacing the load and store instructions. Transfers from
memory to an input/output device are made by swapping the addressing modes between the conditional load
instructions and the conditional store instructions.

A9-14

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

9.6.4 Interrupt prioritization

ARM Code Sequences

This code dispatches up to 32 interrupt sources to their appropriate handler routines. This codeisintended
to use the normal interrupt vector, so memory location 0x00000018 must contain an instruction that

branches to the first instruction of this code.

External hardware is used to prioritize the interrupt and present the number of the highest-priority active
interrupt in an input register. Interrupts are re-enabled after 10 instructions (including the branch to this

code).
; first save the critical state

SUB ri14, rl4, #4 :
STMFD 13!, {ri12, r14} :
MRS r12, SPSR :
STMFD r13!, {ri2} :

i

adj ust return address before saving it
stack return address and working register
get the SPSR ...

and stack that too

; now get the priority level of the highest priority active interrupt

MoV ri12, #l ntBase ;
LDR r12, [r12, #lIntLevel] ;
; now read-nodi fy-wite the CPSR
MRS r14, CPSR ;
BI C rl4, r14, #0x80 ;
MSR CPSR ¢, r14 ;
; junp to the correct handl er
LDR PC, [PC, r12, LSL #2] ;
NOP ;

f

get interrupt controller’s base address
get the interrupt level (0 to 31)

to enable interrupts

read the status register

clear the | bit (use 0x40 for the F bit)
wite it back to re-enable interrupts

and junp to the correct handler. PC base
address points to this instruction + 8
pad so the PC indexes this table

; table of handler start addresses

i

DCD PriorityOHandl er

DCD PrioritylHandler
PriorityOHandl er

STMFD r13!, {r0 - r11} ;

i

; insert handl er code here

MRS rl2, CPSR ;
ORR rl2, r12, #0x80 ;
MSR CPSR_c, r12 ;

LDMFD r13!, {r0-r12} ;

MSR SPSR cxsf, ri12 ;

LDMD r13!, {r12, PG* ;
PrioritylHandl er

save working registers

Read-nodi fy-wite the CPSR to disable
interrupts (use 0x40 instead for FlQs)
Note: Do not use rl4 instead of rl12. It
will be corrupted if an interrupt occurs
Recover the working registers and SPSR
Put the SPSR back

Restore | ast working register and return

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A9-15

ARM Code Sequences

where:

R13

| nt Base

Is assumed to point to asmall Full Descending stack. The stack space required is 60 bytes
times the maximum level to which interrupts can possibly be nested.

Holds the base address of the interrupt handler.

I nt Level Holds the offset (from | nt Base) of the register containing the highest priority active

interrupt.

9.6.5 Context switch

This section gives avery simple exampl e of how to perform context switches between User mode processes,
inorder toillustrate some of theinstructionsused for this purpose. It makes the following assumptions about
the system design:

Context switches are performed by an IRQ handler. This handler first performs normal interrupt
processing to identify the source of the interrupt and deal with it. The details of this are
system-specific and are not described here. At the end of normal interrupt processing, the interrupt
handler can choose either to return to the interrupted process, or to switch to another process.

Only User mode context switches are to be supported. If an IRQ is allowed to occur in a privileged
process, the IRQ handler always returns to the interrupted process.

The normal interrupt processing code requires registers R0O-R3, R12 and R14_irq to be preserved
around it. It leaves R4-R11 unchanged, and uses R13_irq as a Full Descending stack pointer. (These
assumptions basically mean that it can call subroutines that adhere to the standard ARM Procedure
Calling Standard.)

The normal interrupt processing code does not re-enable interrupts, change SPSR_irq or change to
another processor mode, and FIQ handlers also do not re-enable interrupts. As a result, neither
SPSR_irg nor the banked versions of R13, R14 and the SPSR belonging to the interrupted process
are changed by execution of the normal interrupt processing code.

Each User mode process has an assodiramss Control Block (PCB), which stores its register
values while it is not running. The format of a PCB is shown in Figure 9-1.

A9-16

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

ARM Code Sequences

CPSR

Restart address

Increasing
addresses RO

R1

R2

R3

R4

R5

R6
R7
R8
v R9

R10

R11

R12
R13

R14

Figure 9-1 PCB layout

On entry to the IRQ handler, the following code is used to calculate the correct return address and to
preserve the registers required by the normal interrupt processing code:

SUB R14, R14, #4
STMFD R13!, {R0-R3, R12, R14}

Thisisfollowed by the normal interrupt processing code. If this code decides to return to the interrupted
process, it executes the instruction:

LDMFD R13!, {RO-R3, R12, PC"
Thisingruction is the form of LDM described in LDM (3) on page A4-34, and causes:

. Registers R0O-R3 and R12 to be reloaded with their values on entry to the IRQ handler, which were
stored by th&STMFD instruction.

. The PC to be reloaded with the R14 value stored b$Tihd-D instruction, which is 4 less than the
value of R14_irq on entry to the IRQ handler and so is the address of the next instruction to be
executed in the interrupted process (seerrupt request (IRQ) exception on page A2-19).

. The CPSR to be reloaded from SPSR_irq, which was set to the CPSR of the interrupted process on
interrupt entry and has remained unchanged since.

The values of all other registers belonging to the interrupted process were left unchanged by interrupt entry
and by execution of the normal interrupt processing code, so this fully restores the context of the interrupted
process.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A9-17

ARM Code Sequences

If the normal interrupt processing code instead switches to another User mode process, it puts pointers to
the PCBs of the old and new processesin RO and R1 respectively and branches to the following code:

First store the old process’s User node state to the PCB pointed to by RO.

MRS R12, SPSR ; Get CPSR of interrupted process
STR R12, [RO], #8 ; Store CPSR to PCB, point RO at

; PCB | ocation for RO val ue
LDMVD R13!, {R2, R3} ; Reload RO/RL of interrupted

; process from stack
STMA RO!, {R2, R3} ; Store RO/R1 values to PCB, point

; RO at PCB |l ocation for R2 val ue
LDMFD R13!, {R2, R3, R12, R14} ; Reload renmining stacked val ues

STR R14, [RO, #-12] ; Store Rl4_irqg, the interrupted
; process’s restart address
STMA RO, {R2-R14}" ; Store user R2-R14 - see Note 1

Then | oad the new process’s User node state and return to it.

LDM A R1!, {Rl12, R14} ; Put interrupted process’s CPSR
MSR SPSR fsxc, R12 ; and restart address in SPSR.irq
and Rl4_irq
LDM A R1, {RO-R14}" ; Load user RO-R14 - see Note 2
NOP ; Note: Cannot use banked register
i medi ately after User node LDM
MOVS PC, R14 ; Return to address in Rl14_irq,

with SPSR irqg -> CPSR transfer

Note

1 Thisingtruction is an example of the form of STMdescribed in STM (2) on page A4-86. It storesthe
registers R2, R3, ..., R12, R13 usr, R14_usr to the correct placesin the PCB.

2. Thisingtruction is an example of the form of LDMdescribed in LDM (2) on page A4-32. It loadsthe
registers RO, R1, ..., R12, R13 usr, R14_usr from the correct placesin the PCB.

A9-18 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter A10
Enhanced DSP Extension

This chapter describes the enhanced DSP additions to the ARM programmer’s model and instruction set,
included in E variants of ARM architecture versions 5 and above. It contains the foll owing sections:

About the enhanced DSP instructions on page A10-2
Saturated integer arithmetic on page A10-3

Saturated Q15 and Q31 arithmetic on page A10-4

The Q flag on page A10-5

Enhanced DSP instructions on page A10-6

Alphabetical list of enhanced DSP instructions on page A10-8.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A10-1

Enhanced DSP Extension

10.1

About the enhanced DSP instructions

Many digital signal processing (DSP) algorithms operate on arrays of 16-bit data, wherethe 16-bit valueis
to be interpreted as a signed fixed-point number with 15 binary places. Such values are sometimes called

Q15 numbers, and represent nhumeric values ranging from —1 up to 1% 2

To preserve accuracy, intermediate values in these algorithms are often calculated as Q31 numbers, which
are similar but have 32 bits and 31 binary places. Also, in order to avoid spikesin the output from the

algorithm if numeric overflow occurs, arithmetic on Q15 and Q31 valuesisnormally saturated. This means
that if overflow occurs, the result is set to the most positive or most negative possible value depending on

the direction of overflow. In contrast, normal integer arithmetic will wrap around modulo 232,

Performing saturated arithmetic on Q15 and Q31 numbers is possible using the standard ARM instruction
set, but takes roughly 5-10 instructions per arithmetic operation. The enhanced DSP instructions described
in this chapter include instructions to perform such arithmetic considerably more quickly, using 1-2
instructions per arithmetic operation.

I'n order to maximize the performance of DSP a gorithms, it is al so important that data and coefficient values
should be loaded and stored efficiently. The enhanced DSP instructions therefore also include instructions
to assist with this loading and storing.

Finally, the enhanced DSP instructions include coprocessor instructions which transfer 64 bits of data
directly betweenthe ARM processor and the coprocessor, in order to assi st the design of coprocessorswhich
will further improve the performance of DSP agorithms.

A10-2

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Enhanced DSP Extension

10.2 Saturated integer arithmetic

When viewed as a signed number, the value of a general-purpose register lies in the rang%lfcmm -2

0x80000000) to +21_1 (orOx7FFFFFFF). If an addition or subtraction is performed on such numbers
and the correct mathematical result lies outside this range, it would require more than 32 bits to represent.
In these circumstances, the surplus bits are normally discarded, which has the effect that the result obtained

is equal to the correct mathematical result reduced modtio 2

For examplePx 60000000 could be used to representx-z29 as a signed integer. If you add this number

to itself, you get +X 20, which lies outside the representable range, but could be represented as the 33-bit
signed numbe®x0C0000000. The actual result obtained will be the rightmost 32 bits of this, which are

0xC0000000. This represents 22, which is smaller than the correct mathematical resulfBya®d does
not even have the same sign as the correct result.

This kind of inaccuracy is unacceptable in many DSP applications. For example, if it occurred while
processing an audio signal, the abrupt change of sign would be likely to result in a loud click. To avoid this
sort of effect, many DSP algorithms wssturated signed arithmetic. This modifies the way normal integer
arithmetic behaves as follows:

. If the correct mathematical result lies within the available range frothte2-2%1 — 1, the result of
the operation is equal to the correct mathematical result.

. If the correct mathematical result is greater thaft+21 and so overflows the upper end of the
representable range, the result of the operation is equa?’co—ﬂZ

. If the correct mathematical result is less thaft-atd so overflows the lower end of the representable
range, the result of the operation is equal t0l—2

Put another way, the result of a saturated arithmetic operation is the closest representable number to the
correct mathematical result of the operation.

The enhanced DSP instructions support saturated signed 32-bit integer additions and subtractions, by use of
the QADD andQSUB instructions. Variants of these instructio@®ADD andQDSUB) perform a saturated
doubling of one of the operands before the saturated addition or subtraction.

Saturated integer multiplications are not supported, because the product of two values of widths A and B
bits never overflows an (A+B)-bit destination.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A10-3

Enhanced DSP Extension

10.3 Saturated Q15 and Q31 arithmetic

A 32-bit signed value can betreated ashaving abinary pointimmediately after itssign bit. Thisisequivalent

todividing itssigned integer value by 231 so that it can now represent numbers from —1 to +PL When
a 32-bit valueis used to represent a fractional number in this fashion, it is known as a Q31 number.

Saturated additions, subtractions, and doublings can be performed on Q31 numbers using the same
instructions as are used for saturated integer arithmetic, since everything is smply scaled down by afactor

of 2731

Similarly, a 16-bit value can be treated as having a binary point immediately after its sign bit, which
effectively dividesits signed integer value by 215 When a 16-bit value is used in this fashion, it can
represent numbers from —1 to +1=2%and is known as a Q15 number.

If two Q15 numbers are multiplied together as integers, the resulting integer needs to be scaled down by a
factor of 2719x 2715== 2730 For example, multiplying the Q15 number 0x8000 (representing —1) by itself

using an integer multiplication instruction yields the valu&d 0000000, which is 20 times the desired
result of +1.

This means that the result of the integer multiplication instruction is not quite in Q31 form. To get it into

Q31 form, it must be doubled, so that the required scaling factor becﬁ?ﬁ.e&ﬂhermore, it ispossible
that the doubling will cause integer overflow, so the result should in fact be doubled with saturation. In
particul ar, the result 0x40000000 from the multiplication of 0x8000 by itself should be doubled with
saturation to produce Ox 7FFFFFFF (the closest possible Q31 number to the correct mathematical result of
—1x -1 ==+1). If it were doubled without saturation, it would instead pro@x&9000000, which is the
Q31 representation of —1.

To implement a saturated Q45)15 —. Q31 multiplication, therefore, an integer multiply instruction
should be followed by a saturated integer doubling. The latter can be perform&ADK mstruction
adding the multiply result to itself.

Similarly, a saturated Q16Q15 + Q31- Q31 multiply-accumulate can be performed using an integer
multiply instruction followed by the use of@DADD instruction.

Some other examples of arithmetic on Q15 and Q31 numbers are described in the Usage sections for the
individual instructions.

A10-4 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Enhanced DSP Extension

104 The Qflag

The enhanced DSP extension incorporates a mechanism to determine whether saturation or overflow has
occurred in the course of a calculation. Bit[27] of the CPSR is a sticky overflow flag, also known as the Q
flag. Thisflag is set to 1 if any of the following occurs:

. Saturation of the addition result ifQADD or QDADD instruction

. Saturation of the subtraction result iBUB or QDSUB instruction

. Saturation of the doubling intermediate result i@DADD or QDSUB instruction
. Signed overflow during aBM_A<x><y > or SMLAWKy > instruction.

Note
The Q flag is not affected by overflow during any other arithmetic instruction, sudba$SUB, or MLA.

The Q flag issticky in that once it has been set to 1, it is not affected by whether subsequent calculations
saturate and/or overflow. Its intended usage is:

1. Use arMSR CPSR_f , #0 instruction to clear the Q flag (this also clears the condition code flags).
2. Perform a sequence of calculations.

3. Use arlVRS Rn, CPSRinstruction to read the CPSR, then test the value of the Q flag. If it is still O,
none of the above types of saturation or overflow occurred during step 2. Otherwise, at least one
instance of saturation or overflow occurred.

Each SPSR also has a Q flag into which the CPSR Q flag is copied when an exception occurs as part of the
general CPSR. SPSR copy performed on exception entry. Similarly, the exception return instructions
which atomically return to the correct address and perform an SPSRSR transfer will copy the SPSR

Q flag back to the CPSR. Between them, these ensure that the value of the Q flag is not changed by an
interrupt or other exception. For more details of this,Bs@eptions on page A2-13.

Except as described above, the only instructions that affect or are affected by the Q \&¥® are
instructions which write to the flags byte of the destination PSRIVR&dnstructions.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A10-5

Enhanced DSP Extension

10.5 Enhanced DSP instructions
The enhanced DSP instructions can be divided into the following groups:
. Integer multiply and multiply-accumulate instructions on page A10-6
. Saturated addition and subtraction instructions on page A10-7
. Two-word load and store instructions on page A10-7
. Cache preload instruction on page A10-7
. Two-word coprocessor register transfer instructions on page A10-7.
10.5.1 Integer multiply and multiply-accumulate instructions
The enhanced DSP instructions augment the normal integer multiply and multiply-accumulate instructions
with versions designed to work on 16-bit signed data. These form one or both of the operands to the
multiplication by taking either the bottom half (bits[15:0]) or the top half (bits[31:16]) of a source register
and sign-extending it, while ignoring the other half of the source register.
These instructions allow multiplications to be performed on 16-bit data values that are held packed in
registers, without the need to unpack them. The data values can be loaded in this farbibblyDM
instructions, which generally results in more efficient use of memory bandwidth than would be obtained by
the use of. DRH or LDRSH instructions.
The instructions available are:
. 16x 16 — 32 bit signed multiply instructiorBVUL<x><y>. These instructions are very similar to
the normaMUJL instruction, apart from the fact that their operands are generated as described above.
. 16x 16 + 32 32 bit signed multiply-accumulate instructioBl¥L A<x><y>. These instructions
are very similar to the normBLA instruction, apart from the fact that their operands are generated
as described above.
. 32x 16 - 32 bit signed multiply instructiorSMULWy>. These instructions produce the upper 32
bits of the 48-bit product.
. 32x 16 + 32— 32 bit signed multiply-accumulate instructid®$L AWy >. The multiplication in
these instructions produces the upper 32 bits of the 48-bit product, and these 32 bits are then added
to the accumulate value.
. 16x 16 + 64 64 bit signed multiply instructiofSMLAL<x><y>. These instructions are very
similar to the normaBMLAL instruction, apart from the fact that their operands are generated as
described above.
In all casesgy> is either the letteB or T, depending on whether the bottom or top half of the second
operand register should be used. Where the first operand is a sign-extended 16-kikvatpecifies
whether the bottom or top half of the first operand register should be used in a similar fashion.
A10-6 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Enhanced DSP Extension

10.5.2 Saturated addition and subtraction instructions

Instructions are provided to perform saturated integer addition and subtraction, with an optional saturated
doubling of one operand. These instructions can be used to perform saturated integer, Q15, and Q31
arithmetic, as described in Saturated integer arithmetic on page A10-3 and Saturated Q15 and Q31
arithmetic on page A10-4.

Theinstructions are:

QADD Performs a saturated integer addition.

QDADD Performs a saturated integer doubling of one operand followed by a saturated integer
addition with the other operand.

QsuB Performs a saturated integer subtraction.

QbsuB Performs a saturated integer doubling of one operand followed by a saturated integer

subtraction from the other operand.

10.5.3 Two-word load and store instructions

Load and storeingtructions are provided which can be used to transfer two adjacent words of memory to or
from any of theregister pairs{ RO,R1}, { R2,R3}, { R4,R5}, {R6,R7}, {R8,R9}, { R10,R11}, or { R12,R13}.
These instructions use the same addressing modes as LDRH, LDRSB, LDRSH, and STRH, and thus allow a
larger addressing range than is possible with the LDMand STMinstructions. A restriction is that the
doubleword formed by the two adjacent words of memory is required to be doubleword-aligned.

Theinstructions are:
LDRD L oads two words.

STRD Stores two words.

10.5.4 Cache preload instruction

The PLD instruction can be used to tell the memory system that an access to the data at a specified memory
addressislikely to occur soon. A memory system that recognizesthis request will bring the datainto cache,
so that when the access actually occurs, any delay caused by a cache missis reduced or eliminated.

10.5.5 Two-word coprocessor register transfer instructions

Two additional generic coprocessor instructions are defined. These are similar to the normal MCR and MRC
generic coprocessor instructions, but transfer two ARM register vaues to or from the coprocessor rather
than just one. They can be used when designing coprocessors which require more ARM-coprocessor
bandwidth than is available from the MCR and MRC instructions.

Theinstructions are:

MCRR Transfers two ARM register values to a coprocessor.
MRRC Transfers values from a coprocessor to two ARM registers.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A10-7

Enhanced DSP Extension

10.6

10.6.1

Alphabetical list of enhanced DSP instructions

This section describes each enhanced DSP instruction in alphabetical order, using the same format and
conventions as are used in the descriptions of hormal ARM instructions (see Alphabetical list of ARM
instructions on page A4-2).

LDRD

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 O|P|U|I (W|O Rn Rd addr mode|(1 1 O 1|addr mode

The LDRD instruction loads a pair of ARM registers from two consecutive words of memory. The pair of
registersis restricted to being an even-numbered register and the odd-numbered register that immediately
followsit (for example, R10 and R11).

A greater variety of addressing modes is available than for a 2-register LDM However, the address of the
first of the two words isrequired to be doubleword-aligned (that is, the address must be divisible by 8).

Syntax
LDR{<cond>}D <Rd>, <addressing_node>
where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the even-numbered destination register for the memory word addressed by
<addr essi ng_node>. Theimmediately following odd-numbered register isthe
destination register for the next memory word. If <Rd> is R14, which would specify R15
as the second destination register, theinstruction is UNPREDICTABLE. If <Rd> specifies an
odd-numbered register, the instruction is UNDEFINED.

<addr essi ng_node>
Is described in Addressing Mode 3 - Miscellaneous Loads and Sores on page A5-34. It
determinesthe P, U, I, W, Rn, and addr_mode bits of theinstruction. The syntax of all forms
of <addr essi ng_node> includes a base register <Rn>. Some forms also specify that
the ingtruction modifies the base register value (this is known as base register writeback).

The address generated by <addr essi ng_node> is the address of the lower of the two
words loaded by the LDRD instruction. The address of the higher word is generated by
adding 4 to this address.

Architecture version

E variants of version 5 and above, excluding ARMV5TEXP

A10-8

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Enhanced DSP Extension

Exceptions

Data abort

Operation

i f ConditionPassed(cond) then
if (Rd is even-nunbered) then
if (address[2:0] == 0b000) and (Rd is not R14) then
Rd = Menory[address, 4]
R(d+1) = Menory[address+4, 4]
el se
UNPREDI CTABLE
el se
UNDEFI NED

Notes

Operand restrictions
If <addr essi ng_node> performsbase register writeback and the base register <Rn> is
one of the two destination registers of the instruction, the results are UNPREDICTABLE.

If <addr essi ng_node> specifies an index register <RnP and <R is one of the two
destination registers of the instruction, the results are UNPREDICTABLE.

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Non doubleword-aligned addr esses
If the load address is not doubleword-aligned, the results are UNPREDICTABLE.

Alignment If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor), and alignment checking is enabled, then:

Timeorder

. an address with bits[1:0] != Ob00 causes an alignment exception
. an address with bits[2:0] == Ob000 does not cause an alignment exception
. it is IMPLEMENTATION DEFINED whether an address with bits[2:0] == 0b100 causes

an alignment exception.

The time order of the accesses to the two memory words is not architecturally defined. In
particular, an implementation is allowed to perform the two 32-bit memory accesses in
either order, or to combine them into a single 64-bit memory access.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A10-9

Enhanced DSP Extension

10.6.2 MCRR

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 4 3 0

1%

cond 1100010 (Rn Rd cp_numnj opcod CRnj

The MCRR instruction passes the values of ARM registers <Rd> and <Rn> to the coprocessor whose
number iscp_num If no coprocessors indicate that they can execute the instruction, an undefined
instruction exception is generated.

Syntax
MCRR{ <cond>} <coproc>, <opcode> <Rd> <Rn>, <CRmp
where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<coproc> Specifiesthe name of the coprocessor, and causes the corresponding coprocessor number to
be placed in the cp_numfield of the instruction. The standard generic coprocessor names
are po, p1, ..., p15.

<opcode> Is a coprocessor-specific opcode.

<Rd> Is the first ARM register whose value is transferred to the coprocessor. If R15 is specified
for <Rd>, the result i/NPREDICTABLE.

<Rn> Is the second ARM register whose value is transferred to the coprocessor. If R15 is specified
for <Rn>, the result iNPREDICTABLE.

<CRnw Is the destination coprocessor register.

Architecture version

E variants of version 5 and above, excluding ARMV5TExP

Exceptions

Undefined instruction

Operation

i f ConditionPassed(cond) then
send Rd val ue to Coprocessor[cp_nun
send Rn val ue to Coprocessor[cp_nuni

A10-10 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Enhanced DSP Extension

Usage

MCRR is used to initiate coprocessor operations that depend on valuesin two ARM registers. An example
for afloating-point coprocessor is an instruction to transfer a double-precision floating-point number held
intwo ARM registers to afloating-point register.

Notes

Copr ocessor fields

Only instruction bits[31:8] are defined by the ARM architecture. The remaining fields are
recommendations, for compatibility with ARM Development Systems.

Unimplemented copr ocessor instructions

Hardware coprocessor support is optional, regardless of the architecture version. An
implementation may choose to implement a subset of the coprocessor instructions, or no
coprocessor instructions at all. Any coprocessor instructions that are not implemented
instead cause an undefined instruction trap.

Order of transfers

If a coprocessor uses these instructions, it will define how each of the values of <Rd> and
<Rn> isused. Thereis no architectural requirement for the two register transfers to occur
in any particular time order. It is IMPLEMENTATION DEFINED whether Rd is transferred
before Rn, after Rn, or at the same time as Rn.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A10-11

Enhanced DSP Extension

10.6.3 MRRC
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 4 3 0
cond 11000101 Rn Rd cp_numnj opcode CRnj
The MRRC instruction causes the coprocessor whose number is cp_num to transfer values to two ARM
registers <Rd> and <Rn>. If no coprocessors indicate that they can execute the instruction, an undefined
instruction exception is generated.
Syntax
MRRC{ <cond>} <coproc>, <opcode> <Rd> <Rn>, <CRmp
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<coproc> Specifiesthe name of the coprocessor, and causes the corresponding coprocessor number to
be placed in the cp_numfield of the instruction. The standard generic coprocessor names
are po, p1, ..., p15.
<opcode> Is a coprocessor-specific opcode.
<Rd> Is the first destination ARM register. If R15 is specified$&d>, the result is
UNPREDICTABLE.
<Rn> Is the second destination ARM register. If R15 is specifie&Rir>, the result is
UNPREDICTABLE.
<CRnw Is the coprocessor register which supplies the data to be transferred.
Architecture version
E variants of version 5 and above, excluding ARMV5TExP
Exceptions
Undefined instruction
Operation
i f ConditionPassed(cond) then
Rd = first value from Coprocessor[cp_nuni
Rn = second val ue from Coprocessor[cp_nuni
Al10-12 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Enhanced DSP Extension

Usage

MRRC is used to initiate coprocessor operations that write values to two ARM registers. An example for a
floating-point coprocessor is an instruction to transfer a double-precision floating-point number held in a
floating-point register to two ARM registers.

Notes

Operand restrictions
Specifying the same register for <Rd> and <Rn> has UNPREDICTABLE results.

Coprocessor fields

Only instruction bits[31:8] are defined by the ARM architecture. The remaining fields are
recommendations, for compatibility with ARM Development Systems.

Unimplemented copr ocessor instructions

Hardware coprocessor support is optional, regardless of the architecture version. An
implementation may choose to implement a subset of the coprocessor instructions, or no
coprocessor instructions at all. Any coprocessor instructions that are not implemented
instead cause an undefined instruction trap.

Order of transfers

If a coprocessor uses these ingtructions, it will define which value iswritten to <Rd> and
which valueto <Rn>. Thereis no architecturd reguirement for the two register transfersto
occur inany particular timeorder. It iSIMPLEMENTATION DEFINED Whether Rd istransferred
before Rn, after Rn, or at the same time as Rn.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A10-13

Enhanced DSP Extension

10.6.4 PLD
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0
1111{0 1{1I|1|Uul1 01 Rn 1111 addr_mode
The PLD instruction signals the memory system that memory accesses from a specified address are likely
in the near future. The memory system can respond by taking actions which are expected to speed up the
memory accesses when they do occur, such as pre-loading the cache line containing the specified address
into the cache. PLD is a hint instruction, aimed at optimizing memory system performance. It has no
architecturally defined effect, and memory systems that do not support this optimization can ignoreit. On
such memory systems, PLD acts as a NOP.
Syntax
PLD <addressing_node>
where:
<addr essi ng_node>
Isdescribed in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page A5-18.
It specifiesthel, U, Rn, and addr_mode bits of the instruction. Only addressing modes with
P==1and W == 0 are available for thisinstruction. Pre-indexed and post-indexed
addressing modes have P == 0 or W == 1 and so are not available.
Architecture version
E variants of version 5 and above, excluding ARMV5TEXP
Exceptions
None
Operation
/* No change occurs to programmer’s nodel state, but where
* appropriate, the menory systemis signalled that nmenory accesses
* to the specified address are likely in the near future.
*/
A10-14 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes
Condition
Writeback

Data aborts

Alignment

Enhanced DSP Extension

Unlike most other ARM ingtructions, thisinstruction cannot be executed conditionally.
Clearing bit[24] (the P bit) or setting bit[21] (the W bit) has UNPREDICTABLE results.

Thisinstruction never generates a data abort, nor doesit signal any sort of memory system
exception detected for the address generated by <addr essi ng_node> in any other way.
All such memory system exceptions must be ignored by the memory system. Typically, the
memory system does this by treating the PLD instruction as a NOP if any exceptiona case
is encountered while handling it.

There are no alignment restrictions on the address generated by <addr essi ng_node>.
If an implementation contains a System Control coprocessor (see Chapter B2 The System
Control Coprocessor), it will not generate an aignment exception for any PLD instruction.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A10-15

Enhanced DSP Extension

10.6.5 QADD
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 000100 0 (Rn Rd SBz 010]1 Rm
The QADD instruction performs integer addition, saturating the result to the 32-bit signed integer r%?nge -2
<x <2381 1. If saturation actually occurs, the instruction sets the Q flag in the CPSR.
Syntax
QADD{ <cond>} <Rd>, <Rnp, <Rn>
where:
<cond> Is the condition under which the instruction is executed. The conditions are defiffe in
condition field on page A3-5. Ikcond> is omitted, theAL (always) condition is used.
<Rd> Specifies the destination register of the instruction.
<Rn® Specifies the register that contains the first operand for the saturated addition.
<Rn> Specifies the register that contains the second operand for the saturated addition.
Architecture version
E variants of version 5 and above
Exceptions
None
Operation
i f ConditionPassed(cond) then
Rd = SignedSat (Rm + Rn, 32)
i f SignedDoesSat (Rm + Rn, 32) then
QFlag =1
A10-16 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Enhanced DSP Extension

Usage

Aswell as performing saturated integer and Q31 additions, thisinstruction can be used in combination with
an SMUL<x><y>, SMULWky >, or SMULL instruction to produce multiplications of Q15 and Q31 numbers.
Three examples are:

To multiply the Q15 numbers in the bottom halves of RO and R1 and place the Q31 result in R2, use:
SMULBB R2, RO, R1
QADD R, R, R2
To multiply the Q31 number in RO by the Q15 number in the top half of R1 and place the Q31 result
in R2, use:
SMULW R2, RO, R1
QADD R, R, R2
To multiply the Q31 numbers in RO and R1 and place the Q31 result in R2, use:

SMILL R3, R2, RO, R1
QDD R, R, R

Notes
Use of R15 Specifying R15 for registesrRd>, <Rn®, or <Rn> hasUNPREDICTABLE results.
Condition flags The QADD instruction does not affect the N, Z, C, or V flags.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A10-17

Enhanced DSP Extension

10.6.6 QDADD

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0001010 (Rn Rd SBZ 01011 Rm

The QDADD instruction doubl es its second operand, then adds the result to its first operand. Both the

doubling and the addition have their results saturated to the 32-bit signed integer ?’&rﬂgﬁszg’l— 1.
If saturation actually occurs in either operation, the instruction sets the Q flag in the CPSR.

Syntax

QDADD{ <cond>} <Rd>, <RnPp, <Rn>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defifted in
condition field on page A3-5. Ikcond> is omitted, theAL (always) condition is used.

<Rd> Specifies the destination register of the instruction.

<Rn® Specifies the register that contains the first operand for the saturated addition.

<Rn> Specifies the register whose value is to be doubled, saturated, and used as the second

operand for the saturated addition.

Architecture version

E variants of version 5 and above

Exceptions

None

Operation

i f ConditionPassed(cond) then
Rd = SignedSat (Rm + Si gnedSat (Rn*2, 32), 32)
i f SignedDoesSat (Rm + SignedSat(Rn*2, 32), 32) or
Si gnedDoesSat (Rn*2, 32) then
QFlag =1

A10-18 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Enhanced DSP Extension

Usage

The primary use for thisinstruction is to generate multi ply-accumulate operations on Q15 and Q31
numbers, by placing it after an integer multiply instruction. Three examples are:

To multiply the Q15 numbers in the top halves of R4 and R5 and add the product to the Q31 number
in R6, use:

SMULTT RO, R4, RS

QDADD R6, R6, RO
To multiply the Q15 number in the bottom half of R2 by the Q31 number in R3 and add the product
to the Q31 number in R7, use:

SMULWB RO, R3, R2

QDADD R7, R7, RO
To multiply the Q31 numbers in R2 and R3 and add the product to the Q31 number in R4, use:

SMULL RO, R1, R2, R3
QDADD R4, R4, RL

Notes
Use of R15 Specifying R15 for registesrRd>, <Rn®, or <Rn> hasUNPREDICTABLE results.
Condition flags The QDADD instruction does not affect the N, Z, C, or V flags.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. A10-19

Enhanced DSP Extension

10.6.7 QDSUB

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0001011(Rn Rd SBZ 01011 Rm

The QDSUB instruction doublesits second operand, then subtracts the result from itsfirst operand. Both the
doubling and the subtraction have their results saturated to the 32-bit signed integer range

-2Bl<x <231 _ 1. If saturation actually occurs in either operation, the instruction sets the Q flag in the
CPSR.

Syntax

QDSUB{ <cond>} <Rd>, <RnP, <Rn>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defifted in
condition field on page A3-5. Ikcond> is omitted, theAL (always) condition is used.

<Rd> Specifies the destination register of the instruction.

<Rn® Specifies the register that contains the first operand for the saturated subtraction.

<Rn> Specifies the register whose value is to be doubled, saturated, and used as the second

operand for the saturated subtraction.

Architecture version

E variants of version 5 and above

Exceptions

None

Operation

i f ConditionPassed(cond) then
Rd = SignedSat (Rm - SignedSat(Rn*2, 32), 32)
i f SignedDoesSat (Rm - SignedSat(Rn*2, 32), 32) or
Si gnedDoesSat (Rn*2, 32) then
QFlag =1

A10-20 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Enhanced DSP Extension

Usage

The primary use for this instruction is to generate multiply-subtract operations on Q15 and Q31 numbers,
by placing it after an integer multiply instruction. Three examples are:

. To multiply the Q15 numbers in the top half of R4 and the bottom half of R5, and subtract the product
from the Q31 number in R6, use:

SMULTB RO, R4, R5
QDSUB R6, R6, RO
. To multiply the Q15 number in the bottom half of R2 by the Q31 number in R3 and subtract the
product from the Q31 number in R7, use:
SMULWB RO, R3, R2
QDSUB R7, R7, RO
. To multiply the Q31 numbers in R2 and R3 and subtract the product from the Q31 number in R4, use:

SMULL RO, R1, R2, R3
QDSUB R4, R4, RL

Notes
Use of R15 Specifying R15 for registesrRd>, <Rn®, or <Rn> hasUNPREDICTABLE results.
Condition flags The QDSUB instruction does not affect the N, Z, C, or V flags.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A10-21

Enhanced DSP Extension

10.6.8 QSUB
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 0001001 (Rn Rd SBz 010]1 Rm
The QSUB instruction performs integer subtraction, saturating the result to the 32-bit signed integer range
—Bl<x <2311, If saturation actually occurs, the instruction sets the Q flag in the CPSR.
Syntax
@SUB{ <cond>} <Rd>, <Rm, <Rn>
where:
<cond> Is the condition under which the instruction is executed. The conditions are defifted in
condition field on page A3-5. Ikcond> is omitted, theAL (always) condition is used.
<Rd> Specifies the destination register of the instruction.
<Rn® Specifies the register that contains the first operand for the saturated subtraction.
<Rn> Specifies the register that contains the second operand for the saturated subtraction.
Architecture version
E variants of version 5 and above
Exceptions
None
Operation
i f ConditionPassed(cond) then
Rd = SignedSat (Rm- Rn, 32)
i f SignedDoesSat (Rm - Rn, 32) then
QFlag =1
Notes
Useof R15 Specifying R15 for registerRd>, <Rn®, or <Rn> hasUNPREDICTABLE results.
Condition flags The QSUB instruction does not affect the N, Z, C, or V flags.
A10-22 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Enhanced DSP Extension

10.6.9 SMLA<x><y>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 000100O00O0 Rd Rn Rs 1ly|x]|O0 Rm

The SMLA<x><y > ingtructions (SM_LABB, SMLABT, SMLATB and SMLATT) perform a signed
multiply-accumulate operation. The multiply acts on two signed 16-bit quantities, taken from either the
bottom or the top half of their respective source registers. The other halves of these source registers are
ignored. The 32-bit product is added to a 32-bit accumulate val ue and the result is written to the destination
register.

If overflow occurs during the addition of the accumulate value, the instruction setsthe Q flag in the CPSR.
It is not possible for overflow to occur during the multiplication.
Syntax

SMLA<x><y>{<cond>} <Rd> <RrP, <Rs> <Rn>

where:

<Xx> Specifieswhich half of the sourceregister <R isused asthefirst multiply operand. If <x>
is B, then x == 0 in the instruction encoding and the bottom half (bitg15:0]) of <Rm> is
used. If <x>is T, then x == 1 in the instruction encoding and the top half (bitg31:16]) of
<R is used.

<y> Specifies which half of the source register <Rs > is used as the second multiply operand. If
<y> isB, then y == 0in theinstruction encoding and the bottom half (bitg15:0]) of <Rs>
isused. If <y>isT, theny == 1 in theinstruction encoding and the top half (bitg31:16]) of
<Rs> isused.

<cond> Is the condition under which theinstruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register of the instruction.

<Rn® Specifiesthe source register whose bottom or top half (selected by <x>) isthefirst multiply
operand.

<Rs> Specifies the source register whose bottom or top haf (selected by <y >) is the second
multiply operand.

<Rn> Specifies the register which contains the accumulate value.

Architecture version

E variants of version 5 and above

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A10-23

Enhanced DSP Extension

Exceptions

None

Operation
i f ConditionPassed(cond) then

if (x == 0) then

operandl = Si gnExt end(Rn{ 15:0])
else /* x == */

operandl Si gnExt end(Rn{ 31: 16])

[T |

if (y == 0) then

operand2 = Si gnExt end(Rs[15:0])
else /* y == */

oper and2 Si gnExt end(Rs[31: 16])

NP1

Rd = (operandl * operand2) + Rn
i f Overfl owFron((operandl * operand2) + Rn) then
QFlag =1

Usage

In addition to its straightforward uses for integer multiply-accumulates, these instructions sometimes
provide afaster aternative to Q15 x Q15 + Q31 - Q31 multiply-accumulates synthesized from
SMUL<x><y> and QDADD instructions. The main circumstances under which thisis possible are:

. if it is known that saturation and/or overflow cannot occur during the calculation

. if saturation and/or overflow can occur during the calculation but the Q flag is going to be used to
detect this and take remedial action if it does occur.

For example, the following code produces the dot product of the four Q15 numbers in RO and R1 by the four
Q15 numbers in R2 and R3:

SMULBB R4, RO,
QDD R4, R4,
SMULTT R5, RO,
QDADD R4, R4,
SMULBB R5, RI,
QDADD R4, R4,
SMULTT R5, RI,
QDADD R4, R4,

BREABEIRS

In the absence of saturation, the following code provides a faster alternative:

A10-24 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

SMULBB
SMLATT
SM_ABB
SMLATT

QADD

R4,
R4,
R4,
R4,
R4,

RO,
RO,
R1,
R1,
R4,

R4
, R4
, R4

R3BIR

Enhanced DSP Extension

Furthermore, if saturation and/or overflow occursin this second sequence, it will set the Q flag. Thisalows
remedia action to be taken, such as scaling down the data values and repeating the cal culation.

Notes

Use of R15

Condition flags

Specifying R15 for register <Rd>, <Rn®, <Rs >, or <Rn> has UNPREDICTABLE

results.

The SMLA<x><y> instructions do not affect the N, Z, C, or V flags.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

A10-25

Enhanced DSP Extension

10.6.10 SMLAL<x><y>

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

00010100 RdHi RdLo Rs 1|y|x]|0 Rm

The SMLAL<x><y> ingtructions (SM_LALBB, SM_LALBT, SM_LALTB and SMLALTT) perform a signed
multiply-accumul ate operation. The multiply acts on two signed 16-bit quantities, taken from either the
bottom or the top half of their respective source registers. The other halves of these source registers are
ignored. The 32-bit product is sign-extended and added to the 64-bit accumulate value held in <RdHi > and
<RdLo>, and theresult is written back to <RdHi > and <RdLo>.

Overflow is possible during thisinstruction, but only as aresult of the 64-bit addition. This overflow is not
detected if it occurs. Instead, the result wraps around modulo 264,

Syntax

SMLAL<x><y>{<cond>} <RdLo>, <RdHi >, <RrP, <Rs>

where:

<X>

<y>

<cond>

<RdLo>

<RdH >

<Rm>

<Rs>

Specifieswhich half of the source register <R isused asthe first multiply operand. If <x>
is B, then x == 0 in the instruction encoding and the bottom half (bits[15:0]) of <R is
used. If <x>is T, then x == 1 in the instruction encoding and the top half (bits[31:16]) of
<Rm> isused.

Specifieswhich half of the source register <Rs> isused as the second multiply operand. If
<y>isB, theny == 0 in the instruction encoding and the bottom half (bits[15:0]) of <Rs >
isused. If <y>isT, theny == 1lin theinstruction encoding and the top half (bits[31:16]) of
<Rs> isused.

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

Suppliesthe lower 32 bits of the 64-bit accumulate value to be added to the product, and is
the destination register for the lower 32 bits of the 64-bit result.

Suppliesthe upper 32 bits of the 64-bit accumulate value to be added to the product, and is
the destination register for the upper 32 bits of the 64-bit result.

Specifiesthe source register whose bottom or top half (selected by <x>) isthe first multiply
operand.

Specifies the source register whose bottom or top half (selected by <y>) is the second
multiply operand.

Architecture version

E variants of version 5 and above

A10-26

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Enhanced DSP Extension

Exceptions

None

Operation

i f ConditionPassed(cond) then

if (x == 0) then

operandl = Si gnExt end(Rnf 15:0])
else /* x == 1 */

operandl = SignExtend(Rni 31:16])

if (y == 0) then

operand2 = Si gnExt end(Rs[15:0])
else /* y ==1*/

operand2 = SignExtend(Rs[31:16])

RdLo = RdLo + (operandl * operand2)
RdH = RdH + (if (operandl*operand2) < O then OxFFFFFFFF el se 0)
+ CarryFron{RdLo + (operandl * operand2))

Usage

Theseingtructions allow along sequence of multiply-accumulates of signed 16-bit integers or Q15 numbers
to be performed, with sufficient guard bits to ensure that the result cannot overflow the 64-bit destination

in practice. It would take more than 233 consecutive multiply-accumulates to cause such overflow.

If the overall calculation does not overflow a signed 32-bit number, then <RdLo> will hold theresult of the
calculation.

A simpletest to determine whether such a calculation has overflowed <RdLo> isto execute the instruction:
CWP <RdHi >, <RdLo>, ASR #31

at the end of the calculation. If the Z flag is set, <RdLo> holds an accurate final result. If the Z flag isclear,
the fina result has overflowed a signed 32-hit destination.

Notes

Use of R15 Specifying R15 for register <RdLo>, <RdHi >, <Rmp, or <Rs> has
UNPREDICTABLE results.

Operand restriction If <RdLo> and <RdHi> are the same register, the results are UNPREDICTABLE.

Condition flags The SMLAL<x><y> instructions do not affect the N, Z, C, V, or Q flags.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A10-27

Enhanced DSP Extension

10.6.11 SMLAW<y>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 00010010 Rd Rn Rs 1|y|0]|0 Rm

The SMLAWKy > ingtructions (SMLAVB and SMLAWT) perform asigned multiply-accumulate operation. The
multiply actson asigned 32-bit quantity and asigned 16-bit quantity, with the latter being taken from either
the bottom or the top half of its source register. The other half of the second source register isignored. The
top 32 bits of the 48-bit product are added to a 32-bit accumulate value and the result is written to the
destination register. The bottom 16 bits of the 48-bit product are ignored. If overflow occurs during the
addition of the accumul ate value, theinstruction sets the Q flag in the CPSR. No overflow can occur during
the multiplication, because of the use of the top 32 bits of the 48-bit product.

Syntax

SMLAWty>{ <cond>} <Rd>, <RmP, <Rs>, <Rn>

where:

<y> Specifieswhich half of the source register <Rs> isused as the second multiply operand. If
<y>isB, theny == 0 in the instruction encoding and the bottom half (bits[15:0]) of <Rs >
isused. If <y>isT, theny == 1lintheinstruction encoding and the top half (bits[31:16]) of
<Rs> isused.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register of the instruction.

<Rn® Specifies the source register which contains the 32-bit first multiply operand.

<Rs> Specifies the source register whose bottom or top half (selected by <y>) is the second
multiply operand.

<Rn> Specifies the register which contains the accumulate value.

Architecture version

E variants of version 5 and above

Exceptions

None

A10-28

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Enhanced DSP Extension

Operation

i f ConditionPassed(cond) then

if (y == 0) then

operand2 = Si gnExt end(Rs[15:0])
else /* y ==1*/

operand2 = Si gnExtend(Rs[31:16])

Rd = (Rm* operand2)[47:16] + Rn /* Signed multiplication */
if OverflowFrom((Rm* operand2)[47:16] + Rn) then
QFlag =1
Usage

In addition to its straightforward uses for integer multiply-accumulates, these instructions sometimes
provide afaster alternative to Q31 x Q15 + Q31 - Q31 multiply-accumulates synthesized from
SMULWy > and QDADD instructions. The circumstances under which thisis possible and the benefits it
provides are very similar to those for the SMLA<x ><y> instructions. See Usage on page A10-24 for more

details.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rn®, <Rs >, or <Rn> has UNPREDICTABLE
results.

Condition flags The SMLAWLy > instructions do not affect the N, Z, C, or V flags.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A10-29

Enhanced DSP Extension

10.6.12 SMUL<x><y>

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

00010110 Rd SBZ Rs 1|y|x]|0 Rm

The SMUL<x><y> instructions (SMULBB, SMULBT, SMULTB, and SMULTT) perform a signed multiply
operation. The multiply acts on two signed 16-bit quantities, taken from either the bottom or the top half of
their respective source registers. The other halves of these source registers are ignored. No overflow is
possible during this instruction.

Syntax

SMUL<x><y>{<cond>} <Rd>, <Rnp, <Rs>

where:

<X>

<y>

<cond>

<Rd>
<Rn>

<Rs>

Specifieswhich half of the source register <R isused asthe first multiply operand. If <x>
is B, then x == 0 in the instruction encoding and the bottom half (bits[15:0]) of <R is
used. If <x>is T, then x == 1 in the instruction encoding and the top half (bits[31:16]) of
<Rm> isused.

Specifieswhich half of the source register <Rs > is used as the second multiply operand. If
<y>isB, theny == 0 in the instruction encoding and the bottom half (bits[15:0]) of <Rs>
isused. If <y>isT, theny == 1lin theinstruction encoding and the top half (bits[31:16]) of
<Rs> isused.

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register of the instruction.

Specifiesthe source register whose bottom or top half (selected by <x>) isthe first multiply
operand.

Specifies the source register whose bottom or top half (selected by <y>) is the second
multiply operand.

Architecture version

E variants of version 5 and above

Exceptions

None

A10-30

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Operation

i f ConditionPassed(cond) then

if (x == 0) then

operandl = Si gnExt end(Rn 15:0])
else /* x == 1 */

operandl = SignExtend(Rni 31:16])

if (y == 0) then

operand2 = Si gnExt end(Rs[15:0])
else /* y == 1 */

operand2 = Si gnExtend(Rs[31:16])

Rd = operandl * operand2

Usage

Enhanced DSP Extension

In addition to its straightforward usesfor integer multiplies, thisinstruction can be used in combination with
the QADD, QDADD, and QDSUB instructions to perform multiplies, multiply-accumulates, and
multiply-subtracts on Q15 numbers. See the Usage sections on page A10-17, page A10-19, and

page A10-21 for examples.

Notes

Use of R15

Condition flags

Specifying R15 for register <Rd>, <Rn®, or <Rs> has UNPREDICTABLE results.

The SMUL<x><y> instructions do not affect theN, Z, C, V, or Q flags.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

A10-31

Enhanced DSP Extension

10.6.13 SMULW<y>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 00010010 Rd SBZ Rs 1|y|1]0 Rm

The SMULWy > instructions (SMULVB and SMULWI') perform a signed multiply operation. The multiply
acts on asigned 32-bit quantity and a signed 16-bit quantity, with the latter being taken from either the
bottom or the top half of its source register. The other half of the second source register isignored. The top
32 bits of the 48-bit product are written to the destination register. The bottom 16 bits of the 48-hit product
areignored.

No overflow is possible during this instruction.

Syntax

SMULWey>{ <cond>} <Rd>, <Rmp, <Rs>

where:

<y> Specifieswhich half of the source register <Rs> isused as the second multiply operand. If
<y>isB, theny == 0 in the instruction encoding and the bottom half (bits[15:0]) of <Rs >
isused. If <y>isT, theny == 1lin theinstruction encoding and the top half (bitg[31:16]) of
<Rs> isused.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register of the instruction.

<Rn® Specifies the source register which contains the 32-bit first operand.

<Rs> Specifies the source register whose bottom or top half (selected by <y>) is the second

operand.

Architecture version

E variants of version 5 and above

Exceptions

None

A10-32

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Enhanced DSP Extension

Operation

i f ConditionPassed(cond) then

if (y == 0) then

operand2 = Si gnExt end(Rs[15:0])
else /* y ==1*/

operand2 = Si gnExtend(Rs[31:16])

Rd = (Rm* operand2)[47:16] /* Signed multiplication */

Usage

In addition to its straightforward usesfor integer multiplies, thisinstruction can be used in combination with
the QADD, QDADD, and QDSUB instructions to perform multiplies, multiply-accumulates and
multiply-subtracts between Q31 and Q15 numbers. See the Usage sections on page A10-17, page A10-19,
and page A10-21 for examples.

Notes
Use of R15 Specifying R15 for register <Rd>, <Rn®, or <Rs> has UNPREDICTABLE resullts.
Condition flags The SMULW&y > instructions do not affect theN, Z, C, V, or Q flags.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A10-33

Enhanced DSP Extension

10.6.14 STRD

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 O|P|U|I[(W|O Rn Rd addr mode|1 1 1 1|addr mode

The STRD instruction stores a pair of ARM registers to two consecutive words of memory. The pair of
registersis restricted to being an even-numbered register and the odd-numbered register that immediately
followsit (for example, R10 and R11).

A greater variety of addressing modes is available than for a 2-register STM However, the address of the
first of the two words isrequired to be doubleword-aligned (that is, the address must be divisible by 8).
Syntax

STR{<cond>}D <Rd>, <addressing_node>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the even-numbered register which will be stored to the memory word addressed

by <addr essi ng_node>. Theimmediately following odd-numbered register will be
stored to the next memory word. If <Rd> is R14, which would specify R15 as the second
source register, the instruction is UNPREDICTABLE.

If <Rd> specifies an odd-numbered register, the instruction is UNDEFINED.

<addr essi ng_node>

Is described in Addressing Mode 3 - Miscellaneous Loads and Sores on page A5-34. It
determinesthe P, U, I, W, Rn, and addr_mode bits of the instruction.

The syntax of al forms of <addr essi ng_node> includes a base register <Rn>. Some
forms also specify that the instruction modifies the base register value (thisisknown as base
register writeback).

The address generated by <addr essi ng_node> is the address of the lower of the two
words stored by the STRD instruction. The address of the higher word is generated by
adding 4 to this address.

Architecture version

E variants of version 5 and above, excluding ARMV5TEXP

Exceptions

Data abort

A10-34

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Enhanced DSP Extension

Operation

i f ConditionPassed(cond) then
if (Rd is even-nunbered) then
if (address[2:0] == 0b000) and (Rd is not R14) then
Menory[address, 4] = Rd
Menory[addr ess+4, 4] = R(d+1)
el se
UNPREDI CTABLE
el se
UNDEFI NED

Notes

Operand restrictions

If <addr essi ng_node> performsbase register writeback and the base register <Rn> is
one of the two source registers of the instruction, the results are UNPREDICTABLE.

Data abort For details of the effects of the instruction if adataabort occurs, see Effects of data-aborted
instructions on page A2-17.

Non doubleword-aligned addr esses
If the store address is not doubleword-aligned, the results are UNPREDICTABLE.

Alignment If an implementation includes a System Control coprocessor (see Chapter B2 The System
Control Coprocessor), and alignment checking is enabled, then:

. an address with bits[1:0] != Ob00 causes an alignment exception
. an address with bits[2:0] == Ob000 does not cause an alignment exception
. it is IMPLEMENTATION DEFINED whether an address with bits[2:0] == 0b100 causes

an alignment exception.

Timeorder The time order of the accesses to the two memory words is not architecturally defined. In
particular, an implementation is allowed to perform the two 32-bit memory accesses in
either order, or to combine them into a single 64-bit memory access.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. A10-35

Enhanced DSP Extension

A10-36 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Part B

Memory and System Architectures

Chapter B1
Introduction to Memory and System
Architectures

This chapter provides ahigh-level overview of memory and system architectures. It contains the following

sections:
. About the memory system on page B1-2
. System-level issues on page B1-4.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved.

Introduction to Memory and System Architectures

1.1 About the memory system

ARM processors are used in awide range of embedded systems and other applications. The memory system

requirements of these applications vary considerably, from simple memory blocks with aflat address map,

to systems using any or all of the following to optimize their use of memory resources:

. multiple types of memory

. caches

. write buffers

. virtual memory and other memory remapping techniques.

The range of memory-mapped I/O devices that can be used adds further to the variety of systems based on

ARM processors.

Most systems need to initialize and control their memory system facilities in various ways, such as:

. Enabling a cache, to ensure that its performance benefits are realized.

. Setting up the virtual-to-physical address mapping for a virtual memory system.

. Restricting access to memory regions.

. Ensuring that the correct accesses to memory-mapped I/O devices occur, and that they occur at the
correct times. (This usually happens automatically in the simplest memory systems, but caches and
other facilities in more complex systems can interfere with it.)

The standard way to perform memory system control in ARM-based systems is to use coprocessor 15

(CP15), which is also known as tBgstem Control coprocessor. Chapter BZ'he System Control

Coprocessor provides a top-level overview of this coprocessor.

The rest oPart B (Chapter B3 through Chapter B6) describes standardized ways to perform a variety of

memory system control operations using CP15:
Chapter B3 Memory Management Unit
Describes a sophisticated system to control virtual-to-physical address mapping, access
permissions to memory, and other memory attributes, based on the uderobry
Management Unit (MMU).

Chapter B4 Protection Unit
Describes a simpld?rotection Unit system which is suitable for many applications which
do not require the full facilities provided by the MMU memory system.

Chapter B5 Caches and Write Buffers

Describes facilities to control caches and write buffers. These are common to the MMU and
Protection Unit systems
Chapter B6 Fast Context Switch Extension
Describes the Fast Context Switch Extension, which facilitates fast switching between up
to 128 processes executing in separate process blocks, each of size up to 32MB.
B1-2 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Introduction to Memory and System Architectures

Note

Because of the wide variety of systems based on ARM processors, all functionality described in Part B
might be inappropriate to any given system. Furthermore, some ARM processors have implemented
functions in a different manner to the one described here. Because of this, the datasheet or Technical
ReferenceManua for aparticular ARM processor isthe definitive sourcefor itsmemory and system control
facilities.

Part B therefore does not attempt to specify absolute requirements on the functionality of the System
Control coprocessor or other memory system components. Instead, it contains guidelines which, if

followed:
. mean that the system is more likely to be compatible with existing and future ARM software.
. probably make it easier to port incompatible software to the system.

In order to provide an adequate description of the range of memory and system facilities on existing ARM
implementationsPart B describes a number of options that will not be used on new ARM implementations.
For information on the rules that must be followed by new implementations of the memory and system
architectures, contact ARM Ltd.

The fact thaPart B describes a broad range of facilities, many of which are used only on some existing
ARM implementations, also means that architecture version numbers for the memory and system
architectures would not be helpful or descriptive. They are therefore not used.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B1-3

Introduction to Memory and System Architectures

1.2

1.2.1

System-level issues

Thissection listsanhumber of general and operating-system issuesthat the system designer needsto address
when using an ARM processor.

Memory systems, write buffers and caches

ARM processors and software are designed to be connected to a byte-addressed memory. Word and
halfword accessesto the memory ignore the alignment of the address and access the naturally-aligned value
that is addressed (so a memory access ignores address bits 0 and 1 for word access, and ignores bit 0 for
halfword accesses). The endianness of the ARM processor should normally match that of the memory
system, or be configured to match it before any non-word accesses occur (when the endiannessis
configurable and CP15 isimplemented, bit[7] of CP15 register 1 controls the endianness).

Memory that is used to hold programs and data should be marked as follows:
. Main (RAM) memory is normally set as cachable and bufferable.

. ROM memory is normally set as cachable, and should be marked as read only, so the bufferable
attribute is not used and should be 1.

Write buffers

Some ARM implementations incorporate a merging write buffer that subsumes multiple writes to the same
location into a single write to main memory. Furthermore, some write buffers re-order writes, so that writes
are issued to memory in a different order to the order in which they are issued by the processor. Therefore,
I/O locations should not normally be marked as bufferable, to ensure all writes are issued to the 1/O device
in the correct order.

For writes to bufferable areas of memory, memory aborts can only be signaled to the processor as a result
of conditions that are detectable at the time the data is placed in the write buffer. Conditions that can only
be detected when the data is later written to main memory (such as a parity error from main memory) must
be handled by other methods (typically by raising an interrupt).

Caches

Frame buffers can be cachable, but frame buffers on writeback cache implementations must be copied back
to memory after the frame buffer has been updated. Frame buffers can be bufferable, but again the write
buffer must be written back to memory after the frame buffer has been updated.

ARM processors do not normally support cache coherence between the ARM and other system bus masters.
Bus snooping is not supported. If memory data is to be shared between multiple bus masters without taking
special software measures to ensure coherency, then the data must be mapped as:

. uncachable to ensure that all reads access main memory

. unbufferable to ensure that all write access main memory.

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Introduction to Memory and System Architectures

Alternatively, using software, you can manage the coherence of data buffersthat are read or written by
another bus master by:

. cleaning data from writeback caches and write buffers to memory when the processor has written to
the data buffer and before the other bus master reads the buffer

. flushing relevant data from caches when the buffer is being read after the other bus master has written
the buffer.

You can use an uncached, unbuffered semaphore to maintain synchronization between multiple bus masters
(seeSemaphoreson page B1-6).

For implementations with writeback caches, all dirty cache data must be written back before any alterations
are made to the MMU page tables, to ensure that cache line write back can use the page tables to form the
correct physical address for the transfer.

You can index caches using either virtual or physical addresses. Physical pages must only be mapped into
a single virtual page, otherwise the resultN®REDICTABLE. ARM processors do not normally provide
coherence between multiple virtual copies of a single physical page.

Some ARM implementations support separate instruction and data caches. Coherence between the data and
instruction caches is not necessarily maintained in hardware, so if the instruction stream is written, the
instruction cache and data cache must be made coherent. This can entail:

. cleaning the data cache (storing dirty data to memory)
. draining the write buffer (completing all buffered writes)
. flushing the instruction cache.

Instruction and data memory incoherence occurs after a program has been loaded (and therefore treated as
data) and is about to be executed. It also occurs if self-modifying code is used or generated.

1.2.2 Interrupts

ARM processors implement fast and normal levels of interrupt. Both interrupts are signaled externally, and
many implementations synchronize interrupts before an exception is raised.

Fast interrupt request (FIQ)
Disables subsequent normal and fast interrupts by setting the | and F bits in the CPSR.

Normal interrupt request (IRQ)
Disables subsequent normal interrupts by setting the | bit in the CPSR.

For more information, seexceptions on page A2-13.

Canceling interrupts

It is the responsibility of software (the interrupt handler) to ensure that the cause of an interrupt is canceled
(no longer signaled to the processor) before interrupts are re-enabled (by clearing the | and/or F bit in the
CPSR). Interrupts can be canceled with any instruction that might make an external data bus access,
meaning any load or store, a swap, or any coprocessor instruction.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B1-5

Introduction to Memory and System Architectures

Canceling an interrupt via an instruction fetch isS UNPREDICTABLE.

Canceling an interrupt with aload multiple that restores the CPSR and re-enables interruptsis
UNPREDICTABLE.

Devicesthat do not instantaneously cancel aninterrupt (that is, they do not cancel the interrupt beforeletting
the access complete) must be probed by software to ensure that interrupts have been canceled before
interrupts are re-enabled. This allows a device connected to aremote 1/O bus to operate correctly.

1.2.3 Semaphores
The Swap and Swap Byte instructions have predictable behavior when used in two ways:
. Systems with multiple bus masters that use the Swap instructions to implement semaphores to control
interaction between different bus masters.
In this case, the semaphores must be placed in an uncached and unbufferable region of memory. The
Swap instruction then causes a (locked) read-write bus transaction.
This type of semaphore can be externally aborted.
. Systems with multiple threads running on a uniprocessor that use the Swap instructions to implement
semaphores to control interaction of the threads.
In this case, the semaphores can be placed in a cached and bufferable region of memory, and a
(locked) read-write bus transaction might or might not occur. The Swap and Swap Byte instructions
are likely to have better performance on such a system than they do on a system with multiple bus
masters (as described above).
This type of semaphore hasPREDICTABLE behavior if it is externally aborted.
Semaphores placed in uncachable/bufferable memory regions/ke®eDICTABLE results. Semaphores
placed in cachable/unbufferable memory regions bawveEDICTABLE results.
B1-6 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter B2
The System Control Coprocessor

This chapter describes coprocessor 15, the System Control coprocessor. It contains the following sections:
. About the System Control coprocessor on page B2-2

. Registers on page B2-3

. Register 0: 1D codes on page B2-6

. Register 1: Control register on page B2-13

. Registers 2-15 on page B2-17.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B2-1

The System Control Coprocessor

2.1 About the System Control coprocessor

All of the standard memory and system facilities are controlled by coprocessor 15 (CP15), which is
therefore called the System Control coprocessor. Some also use other methods of control, which are
described in the chapters describing the facilities concerned. For example, the Memory Management Unit
described in Chapter B3 Memory Management Unit is also controlled by page tables in memory.

If none of the standard memory and system facilities are implemented in a system, the System Control
coprocessor might not be present. In this case, ho coprocessor accepts CP15 instructions, and so all such
instructions are UNDEFINED.

However, new implementations of the memory and system architectures must implement the System
Control coprocessor, and must follow some additional rules about which facilities are implemented. For
details of these rules, contact ARM Ltd.

This chapter describes the overall design of the System Control coprocessor and how itsregisters are
accessed. Detailed information is given on some of its registers. Other registers are alocated to facilities
described in detail in other chapters and are only summarized in this chapter.

B2-2 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The System Control Coprocessor

2.2 Registers

The System Control coprocessor can contain up to 16 primary registers, each of which is 32 bitslong. For
some of these, additional bitsin the register accessinstructions are used to identify a specific version of the
register and/or specific types of access to the register, so the number of physica 32-bit registersin CP15

can be morethan 16. However, the 4-bit primary register number isused to identify registersin descriptions
of the System Control coprocessor, becauseit isthe primary factor determining the function of the register.

CP15 registers can be read-only, write-only or read/write. The detailed descriptions of the registers specify:

. what types of access are allowed

. what functionality is invoked by each type of access

. whether a primary register identifies more than one physical register, and if so, how they are
distinguished

. any other details that are relevant to the use of the register.

221 Register access instructions

The only defined System Control coprocessor instructions are:
. MCR instructions to write an ARM register to a CP15 register
. MRC instructions to read the value of a CP15 register into an ARM register.

All CP15CDP, LDC andSTC instructions ar&NDEFINED.

31 28 27 26 25 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

cond 1110 sBz| L CRn Rd 1 1 1 1 opcode2|1 CRm

The MCR andMRC instructions to access the CP15 registers use the generic syntax for those instructions:

MCR{ <cond>} pl15, 0, <Rd>, <CRn>, <CRm>{, <opcode2>}
MRC{ <cond>} pl5, 0, <Rd>, <CRn>, <CRm>{, <opcode2>}

where:

<cond> This is the condition under which the instruction is executed. The conditions are
defined inThe condition field on page A3-5. Ikcond> is omitted, theAL (always)
condition is used.

Bitg23:21] These bits of the instruction, which are #t@pcodel> field in generidVRC and
MCR instructions, are always 0b000 in valid CP15 instructions. If they are not
0b000, the instruction iISNPREDICTABLE.

<Rd> This is the ARM register involved in the transfer (the source registédRrand

the destination register f&RC). This register must not be R15, even tholgR
instructions normally allow it to be R15. If R15 is specifiedfBd> in a CP15VRC
or MCRinstruction, the instruction iISNPREDICTABLE.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B2-3

The System Control Coprocessor

<CRn>

<CRn»

<opcode2>

Thisisthe primary CP15 register involved in the transfer (the destination register
for MCR and the source register for MRC). The standard generic coprocessor register
names are c0, cl, ..., c15.

Thisisan additional coprocessor register name which is used for accesses to some
primary registersto specify additional information about the version of the register
and/or the type of access.

When the description of aprimary register does not specify <CRn®, c0 must be
specified. If another register is specified, the instruction is UNPREDICTABLE.

Thisis an optional 3-bit number which is used for accesses to some primary
registers to specify additional information about the version of the register and/or
the type of access. If it is omitted, 0 is used.

When the description of aprimary register does not specify <opcode?2>, it must
be omitted or 0 must be specified. If another value is specified, the instruction is
UNPREDICTABLE.

These MCR and MRC instructions can only be used while the processor isin a privileged mode. If they are
executed while the processor isin User mode, an Undefined I nstruction exception occurs.

Note

If access to some System Control coprocessor functionality by User mode programs is required, the usual
solution is that the operating system defines one or more SWIsto supply it. As the precise set of memory
and system facilities avail able on different processors can vary considerably, it isrecommended that all such
SWisareimplemented in an easily replaceable module and that the SWI interface of thismoduleis defined
to be as independent of processor details as possible.

The IMB and IMB_Range SWIs described in Instruction Memory Barriers (IMBs) on page A2-28 are
examples of such SWis.

B2-4

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The System Control Coprocessor

222 Primary register allocation
Table 2-1 shows the dlocation of the primary registers of the System Control coprocessor.
Table 2-1 Primary register allocation
Reg Generic use Specific uses Details in
0 ID codes (read-only) ID and Cache type Register 0: 1D codes on page B2-6
1 Control bits (read/write) Miscellaneous control bits ~ Register 1: Control register on page B2-13
2 Memory protection and MMU: Trandation table Register 2: Translation table base on
control base page B3-23
PU: Cachability bits Register 2: Cachability bits on page B4-6
3 Memory protection and MMU: Domain access Register 3: Domain access control on
control control page B3-24
PU: Bufferahility bits Register 3: Bufferability bits on page B4-6
4 Memory protection and MMU: Reserved Register 4: Reserved on page B3-24
control PU: Reserved Registers 4, 8, 10: Reserved on page B4-7
5 Memory protection and MMU: Fault status Register 5: Fault status on page B3-24
control PU: Accesspermission bits Register 5: Access permission bitson
page B4-7
6 Memory protection and MMU: Fault address Register 6: Fault address on page B3-25
control PU: Protection areacontrol ~ Register 6: Protection area control on
page B4-8
7 Cache and write buffer Cache/write buffer control Register 7: Cache functions on page B5-15
8 Memory protection and MMU: TLB control Register 8: TLB functions on page B3-25
control PU: Reserved Registers 4, 8, 10: Reserved on page B4-7
9 Cache and write buffer Cache lockdown Register 9: Cache lockdown on page B5-18
10 Memory protection and MMU: TLB lockdown Register 10: TLB lockdown on page B3-27
control PU: Reserved Registers 4, 8, 10: Reserved on page B4-73
11 Reserved - -
12 Reserved - -
13 ProcessID Process ID Register 13: Process |D on page B6-6
14 Reserved - -
15 IMPLEMENTATION DEFINED ~ IMPLEMENTATION DEFINED Implementation documents

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

B2-5

The System Control Coprocessor

2.3

231

Register 0: ID codes

CP15 register 0 contains one or more identification codes for the ARM and system implementation. When
thisregister isread, the opcode? field of the MRCinstruction selects which identification code is wanted, as
shown in Table 2-2, and the CRm field must be specified as cO (if it is not, the instruction is
UNPREDICTABLE). Writing to CP15 register 0 iS UNPREDICTABLE.

Table 2-2 System Control coprocessor ID registers

opcode2 Register Details in

0b000 Main ID register Main ID register

0b001 Cache Type register Cache Typeregister on page B2-9

other Reserved (see main text) -

It is recommended that all the ID registersin Table 2-2 are implemented, but only the main ID register
(<opcode2>==0) ismandatory. Whether or not other ID registers are implemented iS IMPLEMENTATION
DEFINED.

If an <opcode2> vaue corresponding to an unimplemented or reserved | D register is encountered, the
System Control coprocessor returns the value of the main ID register.

ID registers other than the main 1D register are defined so that when implemented, their value cannot be
equal to that of the main ID register. Software can therefore determine whether they exist by reading both
themain I D register and the desired register and comparing their values. If the two vaues are not equal, the
desired register exists.

Main ID register

When CP15 register Oisread with<opcode2> ==0, an identification codeisreturned from which, among
other things, the ARM architecture version number can be determined, as well aswhether or not the Thumb
instruction set has been implemented.

Note

Only some of the fieldsin CP15 register O are architecturally defined. The rest are IMPLEMENTATION
DEFINED and provide more detail ed information about the exact processor variant. Consult individual
datasheets for the precise identification codes used for each processor.

For historical reasons, there are three distinct ways in which the CP15 register 0 ID code might need to be
interpreted. To determine which to use, look at bits[15:12] of the ID code:

. if they are0x0, this indicates a pre-ARM7 processor
. if they are0x7, this indicates that the processor is in the ARM7 family
. otherwise, a more recent processor family than ARM7 is involved.

B2-6

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The System Control Coprocessor

Post-ARMY processors

If bitg15:12] of the ID code are neither 0x0 nor 0x 7, the ID code isinterpreted as follows:

31

24 23 20 19 16 15 4 3 0

Implementor Variant |Architecture Primary part number Revision

Bitg[3:0]
Bits[15:4]

Bits[19: 16]

Bits[23:20]

Bits[31:24]

Contain the IMPLEMENTATION DEFINED revision number for the processor.

Contain an IMPLEMENTATION DEFINED representation of the primary part number for the
processor. The top four bits of this number are not allowed to be 0x0 or 0x 7.

Contain an architecture code. The following architecture codes are defined (all other values
of the architecture code are reserved by ARM Ltd):

0x1 Architecture 4
0x2 Architecture 4T
0x3 Architecture 5
0ox4 Architecture 5T
0x5 Architecture 5TE.

Contain an IMPLEMENTATION DEFINED variant number. Thisistypically used to distinguish
two variants of the same primary part, for example, two different cache size variants.

Contain an implementor code. The following codes are defined (all other values of the
architecture code are reserved by ARM Ltd):

0x41 = A (ARM Ltd)
0x44 =D (Digital Equipment Corporation).
0x69 =i (Intel Corporation).

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. B2-7

The System Control Coprocessor

ARM7 family processors

If bitg[15:12] of the ID code are 0x 7, the ID code is interpreted as follows:

31 24 23 22 16 15 4 3 0
Implementor A Variant Primary part number Revision
Bits[3:0] Contain the IMPLEMENTATION DEFINED revision number for the processor.

Bitg[15:4] Contain an IMPLEMENTATION DEFINED representation of the primary part number for the
processor. Thetop four bits of this number are Ox 7.

Bitg[22:16] Contain an IMPLEMENTATION DEFINED Vvariant number.

Bit[23] Indicates which of the two possible architecturesfor an ARM 7-based processor isinvolved:
0 Architecture 3
1 Architecture 4T.

Bitg[31:24] Contain an implementor code. See Post-ARM7 processors for these codes.

Pre-ARMY processors

Four processors prior to ARM7 use ID codesin which bits[15:12] are 0x0, and no further processors will
be allocated such ID codes. They are interpreted as a 28-bit processor ID and a 4-bit revision number:

31 4 3 0

Processor ID Revision

The processor ID values are as follows:

0x4156030 ARM3 (Architecture 2)

0x4156060 ARMG600 (Architecture 3)
0x4156061 ARM®610 (Architecture 3)
0x4156062 ARM620 (Architecture 3).

B2-8 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The System Control Coprocessor

2.3.2 Cache Type register

If present, the Cache Type register supplies the following details about the cache:

. whether it is a unified cache or separate instruction and data caches
. its size, line length and associativity

. whether it is a write-through cache or a write-back cache

. how it can be cleaned efficiently (in the case of a write-back cache)
. whether cache lock-down is supported.

SeeTypes of cache on page B5-5 for a discussion of these details.

The format of the Cache Type register is:

31 29 28 25 24 23 12 11 0
000 ctype S Dsize Isize
ctype Specifies details of the cache not specified by the S bit and the Dsize and Isize fields. See

Table 2-3 on page B2-9 for details of the encoding. All values not specified in the table are
reserved for future expansion.

Shit Specifies whether the cache is a unified cache (S == 0), or separate instruction and data
caches (S ==1). If S == 0, the Isize and Dsize fields both describe the unified cache, and
must be identical.

Dsize Specifies the size, line length and associativity of the data cache, or of the unified cache if
S == 0. Se€ache sizefields on page B2-10 for details of the encoding.

Isize Specifies the size, line length and associativity of the instruction cache, or of the unified
cache if S == 0. Se@ache size fields on page B2-10 for details of the encoding.

Table 2-3 Cache type values

ctype field Method Cache cleaning Cache lock-down
0b0000 Write-through Not needed Not supported
0b0001 Write-back Read data block Not supported
0b0010 Write-back Register 7 operations Not supported
0b0110 Write-back Register 7 operations Supported, format A
0b0111 Write-back Register 7 operations Supported, format B

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B2-9

The System Control Coprocessor

The Read data block method of cleaning write-back caches encoded by ctype == 0b0001 consists of loading
asequential block of data with size equal to that of the cache, and which is known not to be in the cache
aready. It is only suitable for use when the cache organization guarantees that this causes the entire cache
to be reloaded. (For example, direct-mapped caches normally have this property, as do caches using some
types of round-robin replacement.)

Note

This method of cache cleaning must only be used if the Cache Type register has ctype == 0b0001, or if
implementation documentation states that it is a valid method for the implementation.

Register 7: Cachefunctions on page B5-15 gives details of the register 7 operations used for cleaning other
write-back caches.

For an explanation of cache lockdown and of the formats referred to in Table 2-3, see Register 9: Cache
lockdown on page B5-18.

233 Cache size fields
The Dsize and Isize fields in the Cache Type register have the same format, as follows:
11 9 8 6 5 3210
0 0 0| sze assoc (M| len
Bits[11:9] are reserved for future expansion.
The size of the cache is determined by the size field and M bit, as shown in Table 2-4.

Table 2-4 Cache sizes
size field Size if M == Size if M ==
0b000 0.5KB 0.75KB
0b001 1KB 1.5KB
0b010 2KB 3KB
0Ob011 4KB 6KB
0b100 8KB 12KB
0b101 16KB 24KB
0b110 32KB 48KB
Ob111 64KB 96KB

B2-10 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The System Control Coprocessor

The line length of the cache is determined by the len field, as shown in Table 2-5.

Table 2-5 Cache line lengths

len field Cache line length
0b00 2 words (8 bytes)
0bO1 4 words (16 bytes)
0b10 8 words (32 bytes)
Ob11 16 words (64 bytes)

The associativity of the cache is determined by the assoc field and M bit, as shown in Table 2-6.

Table 2-6 Cache associativity

assoc Associativity if ~ Associativity
field M == if M ==
0b000 1-way cache absent
(direct-mapped)
0Ob001 2-way 3-way
0b010 4-way 6-way
0b011 8-way 12-way
0b100 16-way 24-way
0Ob101 32-way 48-way
0b110 64-way 96-way
Ob111 128-way 192-way

The cache absent encoding overrides all other datain the cache size field.

Alternatively, the following formulae can be used to determine the values LINELEN, ASSOCIATIVITY
and NSETS, defined in Cache size on page B5-4, once the cache absent case (assoc == 0b000, M == 1) has

been checked for and eliminated:
LI NELEN =1 << (len+3) /* In bytes */

MULTI PLI ER
ASSOCI ATI VI TY

2+ M
MULTI PLI ER << (assoc-1)

NSETS

1 << (size + 6 - assoc - len)

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved.

B2-11

The System Control Coprocessor

Multiplying these together givesthe overall cache size as:

CACHE_SI ZE = MULTIPLI ER << (size+8) /* In bytes */

Note

Cache length fields with (size + 6 - assoc - len) < 0 are invalid, as they correspond to impossible
combinations of line length, associativity and overall cache size. So the formulafor NSETS never involves
a negative shift amount.

B2-12 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The System Control Coprocessor

2.4 Register 1. Control register
This register contains:

. Enable/disable bits for the caches, MMUs, and other memory system blocks that are primarily
controlled by other CP15 registers. This allows these memory system blocks to be programmed
correctly before they are enabled.

. Various configuration bits for memory system blocks and for the ARM processor itself.

Note

Extra bits of both varieties might be added in the future. Because of this, this register should normally be
updated using read/modify/write techniques, to ensure that currently unallocated bits are not needlessly
modified. Failure to observe this rule might result in code which has unexpected side-effects on future
processors. One exception that may be useful in some circumstances is that 0 can be written to this register
to restore it to its reset state.

31 16 151413121110 9 8 7 6 5 4 3 2 1 0

UNP/SBZP L4RRM I| ZH R S BLDRWGCANM

Reading from CP15 register 1 reads the control bits<URe> and<opcode?2> fields are ignored when
reading CP15 register 1, and should be zero.

Writing to CP15 register 1 sets the control bits. ¥G&n> and<opcode2> fields are not used when
writing CP15 register 1, and should be zero.

When a control bit in CP15 register 1 is not applicable to a particular implementation, it reads as the value
that most closely reflects that implementation, and ignores writes. (Specific examples of this general rule
are documented in the individual bit descriptions below.) Apart from bits that read as 1 according to this
rule, all bits in CP15 register 1 are set to 0 on reset.
M (bit[0]) This is the enable/disable bit for the MMU or Protection Unit:

0 = MMU or Protection Unit disabled

1 = MMU or Protection Unit enabled.

On systems without an MMU or Protection Unit, this bit reads as 0 and ignores writes.
A (bit[1]) For memory systems which optionally allow the alignment of data memory accesses to be

checked, this bit enables and disables alignment fault checking:

0 = Alignment fault checking disabled

1 = Alignment fault checking enabled.

For other memory systems, this bit ignores writes, and reads as 1 or 0 according to whether
the memory system does or does not check the alignment of data memory accesses.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B2-13

The System Control Coprocessor

C (bit[2])

W (bit[3])

P (bit[4])

D (bit[5])

L (bit[6])

B (bit[7])

If aunified cache is used, thisisthe enable/disable bit for the unified cache. If separate
caches are used, thisis the enable/disable bit for the data cache. In either case:

0 = Cache disabled

1 = Cache enabled.

If the cache is not implemented, this bit reads as 0 and ignores writes. If the cache cannot
be disabled, this bit reads as 1 and ignores writes.

Thisisthe enable/disable bit for the write buffer:

0 = Write buffer disabled

1 = Write buffer enabled.

If the write buffer is not implemented, thisbit reads as 0 and ignores writes. If the write
buffer cannot be disabled, this bit reads as 1 and ignores writes.

On ARM processors which support 26-hit backwards-compatibility configurations, this bit
controls the PROG32 configuration signal:

0 = Exception handlers entered in 26-bit modes

1 = Exception handlers entered in 32-bit modes.

For details, see 32-bit and 26-bit configuration on page A8-10.

On ARM processors which do not support 26-bit backwards-compatibility configurations,
this bit reads as 1 and ignores writes.

On ARM processors which support 26-bit backwards-compatibility configurations, this bit
controls the DATA32 configuration signal:

0 = 26-hit address exception checking enabled

1 = 26-bit address exception checking disabled.

For details, see 32-bit and 26-bit configuration on page A8-10.

On ARM processors which do not support 26-bit backwards-compatibility configurations,
this bit reads as 1 and ignores writes.

In some ARMv3 and earlier implementations, the abort model of the processor could be
configured:

0 = Early Abort Model selected (now obsolete)

1=Late Abort Model selected (same as Base Updated Abort Model).

For details, see Effects of data-aborted instructions on page A2-17.

On later processors, this bit reads as 1 and ignores writes.

On ARM processors which support both little-endian and big-endian memory systems, this
bit is used to configure the ARM processor to the endianness of the memory system:

0 = Configured for little-endian memory system
1 = Configured for big-endian memory system.
For details, see Endianness on page A2-23.

B2-14

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

S (bit[8])

R (bit[9])

F (bit[10])
Z (bit[11])

I (bit[12])

V (bit[13])

RR (bit[14])

L4 (bit[15])

The System Control Coprocessor

On ARM processors that support only little-endian memory systems, this bit reads as 0 and
ignoreswrites. On ARM processors that support only big-endian memory systems, this bit
reads as 1 and ignores writes.

System protection bit (inan MM U-based memory system). The effect of thisbit isdescribed
in Access permissions on page B3-16.

ROM protection bit (in an MMU-based memory system). The effect of this bit is described
in Access permissions on page B3-16.

The meaning of this bit iS IMPLEMENTATION DEFINED.

On ARM processors which support branch prediction, thisisthe enable/disable bit for
branch prediction:

0 = Branch prediction disabled

1 = Branch prediction enabled.

If branch prediction cannot be disabled, this bit reads as 1 and ignores writes.

On ARM processors that do not support branch prediction, this bit reads as 0 and ignores
writes.

If separate caches are used, thisis the enable/disable bit for the instruction cache:

0 = Instruction cache disabled

1 = Instruction cache enabled.

If aunified cacheis used or theingtruction cacheis not implemented, this bit reads as 0 and
ignores writes. If the instruction cache cannot be disabled, this bit reads as 1 and ignores
writes.

On ARM processors which support the alternative high vectors described in High vectors
on page A2-21, this bit is used to select the location of the exception vector:

0 = Normal exception vectors selected (address range 0x00000000 - 0x0000001C)

1 = High exception vectors selected (address range Ox FFFFO000 - Ox FFFF001C).

On ARM processorsthat do not support high vectors, this bit reads as 0 and ignores writes.
If the cache allows an alternative replacement strategy to be used which has more easily
predictable worst-case performance, this bit selectsiit:

0 = Normal replacement strategy (for example, random replacement)

1 = Predictable strategy (for example, round-robin replacement).

If the cache does not allow a choice of replacement strategy this bit should ignore writes,
and read as 0 or 1 according to whether the replacement strategy has a reasonably easily
predictable worst-case performance.

For some ARM processors that support architecture version 5 or above, this bit controls a
backwards-compatibility feature with previous versions of the architecture.

0 = normal behaviour for the architecture

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. B2-15

The System Control Coprocessor

1=loadinstructionsthat load the PC and use bit[0] of theloaded val ueto determinewhether

to enter ARM or Thumb state (that is, to set the new value of the CPSR T bit) instead ignore

bit[O] of the T bit and stay in the current execution state.

The instructions affected by this are:

. LDM (1) on page A4-30

. LDR on page A4-37

. POP on page A7-75

For ARM processors that support architecture versions prior to version 5, this bit should be
treated as UNP/SBZP. For ARM processors that support architecture versions 5 or above,
but which do not support this backwards-compatibility feature, this bit reads as zero and
ignores writes.

Bitg[31:16] When these bits are read, they returrvePREDICTABLE value. When they are written, the
value written must either be zero or a value previously read from the same bits.

B2-16 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

The System Control Coprocessor

2.5 Registers 2-15

System Control coprocessor registers other than registers 0 and 1 are alocated to specific areas as follows:

CP15 registers 2-6, 8 and 10 are allocated to the memory protection system. See Chdetaar33
Management Unit and Chapter B&rotection Unit for details of these registers.

CP15 registers 7 and 9 are allocated to the control of caches and write buffers. See ClzguieeB5
and Write Buffers for details of these registers.

CP15 register 13 is allocated to the process ID of the Fast Context Switch Extension. See Chapter B6
Fast Context Switch Extension for details of this register.

CP15 register 15 is reserved fOIPLEMENTATION DEFINED purposes. See the technical reference
manual for the implementation or other implementation-specific documentation for details of the
facilities available through this register.

CP15 registers 11, 12 and 14 are reserved for future expansion. Accessing (reading or writing) any
of these registers iSNPREDICTABLE.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. B2-17

The System Control Coprocessor

B2-18 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter B3
Memory Management Unit

This chapter describes the memory system architecture based on a Memory Management Unit (MMU). It
contains the following sections:

. About the MMU architecture on page B3-2

. Memory access sequence on page B3-4
. Trandation process on page B3-6

. Access permissions on page B3-16

. Domains on page B3-17

. Aborts on page B3-18
. CP15 registers on page B3-23.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B3-1

Memory Management Unit

3.1 About the MMU architecture

The Memory Management Unit (MMU) memory system architecture allows fine-grained control of a
memory system. Most of the detailed control is provided through translation tables held in memory. Entries
in these tables define the properties of memory areas of various sizesfrom 1KB to 1IMB. The properties
include:

Virtual-to-physical address mapping
An address generated by the ARM processor is called a virtual address. The MMU allows

this address to be mapped to a different physical address. This physica address identifies
which main memory location is being accessed.

This can be used to manage the allocation of physical memory in many ways. For example,
it can be used to allocate memory to different processes with potentially conflicting address
maps, or to allow an application with a sparse address map to use a contiguous region of
physical memory.

Note

If the Fast Context Switch Extension is being used (see Chapter B6 Fast Context Switch
Extension), all referencesto virtual addresses in this chapter mean the modified virtual
addressthat it generates.

Memory access permissions

These control whether a program has no access, read-only access or read/write accessto the
memory area. When an access is not permitted, a memory abort is signaled to the ARM
processor.

Thelevel of access allowed can also be affected by whether the program is running in User
mode or a privileged mode, and by the use of domains (see Domains on page B3-17).

Cachability and bufferability bits (C and B)
These are described in Cachability and bufferability on page B5-8.

System Control coprocessor registers allow high-level control of this system, such as the location of the
trandation tables. They are also used to provide status information about memory aborts to the ARM.

The process of doing a full translation table lookup is known as atrandation table walk. It is performed
automatically by hardware, and has a significant execution time cost (at least one main memory access, and
oftentwo). Toreducethe average cost of amemory access, the results of translation table walks are cached
in one or more structures known as Trand ation Lookaside Buffers (TLBs). Usually, thereisaTLB for each
memory interface of the ARM implementation:

. a system with a single memory interface normally has a single unified TLB
. a system with separate instruction and data memory interfaces normally has separate instruction and
data TLBs.

If the system also contains a cache or caches, the number of caches is usually determined in the same way
(seeUnified or separate caches on page B5-5). So in cached systems, there is normally one TLB per cache.

B3-2 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Memory Management Unit

When trand ation tables in memory are changed or a different trand ation table is selected (by writing to
CP15 register 2), previously cached translation tablewalk resultsinthe TLBsarelikely to cease to bevalid.
The MMU architecture therefore supplies operationsto flush TLBs.

The MMU architecture also allows specific trand ation table walk resultsto be locked down ina TLB. This
ensures that accesses to the associated memory areas never cause a trand ation table walk, and has similar
benefitsfor rea -time codeto those of locking down instructionsand datain the cache (see Register 9: Cache
lockdown on page B5-18).

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B3-3

Memory Management Unit

3.2 Memory access sequence
When the ARM generates amemory access, the MMU first looks up the virtual address of the accessin the
TLB. If theimplementation has separate data and instruction TLBS, it uses:.
. the instruction TLB for an instruction fetch
. the data TLB for all other types of access.
If the TLB does not contain an entry for the virtual address, translation table walk hardware is invoked to
retrieve the translation and access permission information from the translation table held in main memory.
Once retrieved, the information is placed in the TLB, either in a currently unused entry or overwriting an
existing entry. Se@ranslation process on page B3-6 for a description of translation tables and of how the
translation table walk is performed.
Once the TLB entry for a memory access is obtained, the information it contains is used as follows:
1. The C (cachable) and B (bufferable) bits are used to control the cache and write buffer and to
determine whether the access is cached or uncached, as desdOiefthhility and bufferability on
page B5-8. (If the system does not contain a cache and/or a write buffer, the relevant bits are ignored.)
2. The access permission bits and domain are used to determine whether the access is permitted. If the
access is not permitted, the MMU signals a memory abort to the ARM processor. Otherwise, the
access is allowed to proceed.
The section#\ccess permissions on page B3-18)omainson page B3-17 anglborts on page B3-18
describe in more detail how this is done.
3. For an uncached memory access (including all memory accesses in an uncached system), the physical
address is used as the address for the main memory access.
For a cached memory access, the physical address is used as the address for the line fetch in the event
of a cache miss. If a cache hit occurs, the physical address is ignored.
Figure 3-1 illustrates this for a cached system:
Access bits,)
Access domain Translation
control < table walk |«
hardware hardware
TLB
Abort Physical address
(PA) Main
memory
C, B bits
ARM Cache Cache
Virtual address and line fetch
(VA) write buffer |« hardware
Figure 3-1 Cached MMU memory system overview
B3-4 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Memory Management Unit

3.2.1 Enabling and disabling the MMU

The MMU can be enabled and disabled by writing bit[0] of register 1 of the System Control coprocessor.
On reset, this bit is cleared to 0, so the MMU is disabled after a reset.

When the MMU is disabled, memory accesses are treated as follows:

. Itis IMPLEMENTATION DEFINED Whether caches and write buffers are allowed to be enabled while the

MMU is disabled.

— For caches and write buffers which are not allowed to be enabled while the MMU is disabled,
the values of the C and B bits for a memory access are irrelevant.

— For caches and write buffers which are allowed to be enabled while the MMU is disabled, a
data access is treated as uncachable and unbufferable (C == 0, B == 0). An instruction fetch is
treated as uncachable (C == 0) in a system with a unified TLB, and as cachable (C==1)ina
system with a separate instruction TLB.

. No memory access permission checks are performed, and no aborts are generated by the MMU.
. The physical address for every access is equal to its virtual address (this is kndbah addxess
mapping).

Before the MMU is enabled, suitable translation tables must be set up in memory and all relevant CP15
registers must be programmed.

Note

Enabling or disabling the MMU effectively changes the virtual-to-physical address mapping (unless the
translation tables are set up to implement a flat address mapping). It is therefore likely that any caches, for
example, that are enabled at the time will need to be flushedddezss mapping changes on page B5-10).

In addition, if the physical address of the code that enables or disables the MMU differs from its virtual
address, instruction prefetching can cause complication®(sfstching and self-modifying code on

page A2-27). It is therefore strongly recommended that code which enables or disables the MMU has
identical virtual and physical addresses.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B3-5

Memory Management Unit

3.3

3.3.1

3.3.2

Translation process

The MM U supports memory accesses based on sections or pages:
Sections Are comprised of IMB blocks of memory.
Three different page sizes are supported:

Tiny pages Consist of 1KB blocks of memory.

Small pages Consist of 4KB blocks of memory.
Large pages Consist of 64KB blocks of memory.

Sections and large pages are supported to alow mapping of alarge region of memory while using only a
single entry in the TLB. Additional access control mechanisms are extended within small pagesto 1KB
subpages, and within large pages to 16K B subpages. There are no similar subpagesfor tiny pages, so access
controls for tiny pages apply to the entire page.

The translation table held in main memory has two levels:
First-level table Holds both section translations and pointers to second-level tables.

Second-level tables Hold both large and small pagetrand ations. One type of second-level table can also
hold tiny page trand ations.

The MMU translates virtual addresses generated by the CPU into physical addressesto access external
memory, and also derives and checks the access permission. There are four routes by which the address
trandation (and therefore permission check) takes place. The route taken depends on whether the address
in question has been marked as a section-mapped access or a page-mapped access. A page-mapped access
can be alarge, smal, or tiny page access.

However, the trand ation process always starts out in the same way, as described bel ow, with afirst-level
fetch. A section-mapped access only requires afirst level fetch, but a page-mapped access aso requires a
second-level fetch.

Translation table base

Thetranslation processisinitiated when the on-chip TLB does not contain an entry for the requested virtual
address. The Translation Table Base Register (CP15 register 2) holdsthe physical address of the base of the
first-level table. Only bitg31:14] of the Translation Table Base Register are significant, and bits[13:0]
should be zero. Therefore, the first-level page table must reside on a 16KB boundary.

First-level fetch

Bits[31:14] of the Trandation Table Base register are concatenated with bitg31:20] of the virtual address
and two zero bits to produce a 32-bit physica address asillustrated in Figure 3-2. This address selects a
four-byte translation table entry whichisafirst-level descriptor for a section or apointer to a second-level
page table.

B3-6

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Memory Management Unit

31 14 13 0

Translation base ‘ SBZ ‘

31 20 19 o

Table index E

31 <= 14 13

Translation base ‘ Table index ‘ 0 0‘

Figure 3-2 Accessing the translation table first-level descriptors

3.3.3 First-level descriptors

Each entry inthefirst-level tableisadescriptor of how itsassociated 1IMB virtual address rangeis mapped.
There are the following possibilities, selected by bitg[1:0] of the descriptor as shown in Table 3-1:

. If bits[1:0] == 0b00, the associated virtual addresses are unmapped, and attempts to access them
generate a translation fault (s&lgorts on page B3-18). Software can use bits[31:2] for its own
purposes in such a descriptor, as they are ignored by the hardware. Where appropriate, it is suggested
that bits[31:2] continue to hold valid access permissions for the descriptor.

. If bits[1:0] == 0b10, the entry is a section descriptor for its associated virtual addressgtisae
descriptor and translating section references on page B3-8 for details of how it is interpreted.
. If bit[0] == 1, the entry gives the physical address of a coarse second-level table (if bit[1] == 0) or of

a fine second-level table (if bit[1] == 1). Each type of table specifies how the associated 1MB virtual
address range is mapped. Coarse tables are smaller, at 1KB per table (compared with 4KB per table
for fine tables). However, coarse tables can only map large pages and small pages, while fine tables
can map large, small and tiny pages. The two types of table are desci@mldapage table

descriptor on page B3-9 anHBine page table descriptor on page B3-10.

Table 3-1 First-level descriptor format

31 20 19 121110 9 8 543210
Fault IGN 00
Coarse S .
Coarse page table base address B| Domain IMP |0 1
page tablg Z
S I
Section Section base address SBZ ARl Domain [M|C|B|1 O
Z P
Flr::brl):ge Fine page table base address SBZ Domain IMP L 1

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B3-7

Memory Management Unit

3.34 Section descriptor and translating section references
If the first-level descriptor is a section descriptor, the fields have the following meanings:
Bits[1:0] Identify the type of descriptor (Ob10 marks a section descriptor).
Bitg[3:2] The cachable and bufferable bits (see Cachability and bufferability on page B5-8).
Bit[4] The meaning of thisbit is IMPLEMENTATION DEFINED.
Bits[8:5] The domain field specifies one of the sixteen possible domainsfor the section controlled by
this descriptor.
Bit[9] This bit is not currently used, and should be zero.
Bitg[11:10] Access permissions. These bits control the access to the section. See Table 3-3 on
page B3-16 for the interpretation of these bits.
Bitg[19:12] These bits are not currently used, and should be zero.
Bitg[31:20] The Section Base Address forms the top 12 bits of the physical address.
Figure 3-3 illustrates the compl ete section translation sequence.
Note
The access permissions in the first-level descriptor must be checked before the physical addressis
generated. The sequence for checking access permissions is given in Access permissions on page B3-16.
31 14 13 0
Translation)
table base Translation base ‘ SBZ ‘
31 20 19 0
Virtual) -
address Table index ‘ Section index
31 \::/ 14 13 : E 210
Address of _ .
first-level descriptor Translation base ‘ Table index ‘ 0 0‘
First-level fetch
20 19 12113;95 5|43210
First-level descriptor Section base address SBZ ‘ AP ‘S Pomain| c‘ 3‘1 0 ‘
Physical 31 20 19 \,.7 0
sica N
adc)ilress Section base address ‘ Section index ‘
Figure 3-3 Section translation
B3-8 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Memory Management Unit

3.35 Coarse page table descriptor

If the first-level descriptor is a coarse page tabl e descriptor, the fields have the following meanings:

Bitg1:0] Identify the type of descriptor (Ob01 marks a coarse page table descriptor).

Bitg4:2] The meaning of these bits iS IMPLEMENTATION DEFINED.

Bitg8:5] The domain field specifies one of the sixteen possible domains for all the pages controlled
by this descriptor.

Bit[9] This bit is not currently used, and should be zero.

Bitg31:10] The Page Table Base Addressis a pointer to a coarse second-level page table, giving the

base addressfor asecond-level fetch to be performed. Coarse second-level page tables must
be digned on a 1KB boundary.

If a coarse page table descriptor is returned from the first-level fetch, a second-level fetch isinitiated to
retrieve asecond-level descriptor, as shown in Figure 3-4.

1413

Translation]
table base Translation base SBZ
31 20 19 1211 0
Virtual First-level Second-level
address table index table index
31 v 1413 2 .10
Address of) Firstlevel
first-level descriptor Transiation base table ndex 00
First-level fetch |:
s=ii= 1098 |“l54 210
S
First-level descriptor Page table base address % Domain | IMP |0 1
31 10 9 210
Address of Second-level
second-level deSCI’iptOI‘ Page table base address table index 00

Figure 3-4 Accessing coarse page table second-level descriptors

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

B3-9

Memory Management Unit

3.3.6 Fine page table descriptor

If the first-level descriptor is afine page table descriptor, the fields have the following meanings:

Bits[1:0] Identify the type of descriptor (Ob11 marks a fine page table descriptor).

Bits[4:2] The meaning of these bitsiSIMPLEMENTATION DEFINED.

Bits[8:5] The domain field specifies one of the sixteen possible domains for all the pages controlled
by this descriptor.

Bit[11:9] These bits are not currently used, and should be zero.

Bitg[31:12] The Page Table Base Addressis a pointer to afine second-level pagetable, giving the base
address for a second-level fetch to be performed. Fine second-level page tables must be
aligned on a 4K B boundary.

If afine pagetabledescriptor isreturned from thefirst-level fetch, asecond-level fetchisinitiated to retrieve

a second-level descriptor, as shown in Figure 3-5.

31 1413 0
Translation]
table base Translation base SBZ
31 20 19
. N Virtual First-level | Second-level
N :| address table index table index
31 v 1413 210/
Address of Translation base First-level o
first-level descriptor table index 09
First-level fetch
31\:3/7 1211 98 :354 210
First-level descriptor Page table base address SBZ | Domain | IMP |1 1
31 12 11 s 210
Qgggﬁgﬁ:\tel descriptor Page table base address ‘ Sg%?g%’?gf‘ 00
Figure 3-5 Accessing fine page table second-level descriptors
B3-10 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Memory Management Unit

3.3.7 Second-level descriptor

Each entry in a coarse second-level table corresponds to how a 4K B virtual address range is mapped, and
each entry in afine second-level table corresponds to how a 1KB virtual address range is mapped. The
entries are page descriptors, and can describe a page which is larger than 4KB or 1KB respectively. When
this happens, the descriptor must be repeated enough times in the second-level table to ensure that the same
descriptor isalways used for the page, regardless of which virtual address is being accessed within the page.

There arefour possibilities for asecond-level descriptor, selected by bitg[1:0] of the descriptor as shown in
Table 3-2:

. If bits[1:0] == 0b00, the associated virtual addresses are unmapped, and attempts to access them
generate a translation fault (s&leorts on page B3-18). Software can use bits[31:2] for its own
purposes in such a descriptor, as they are ignored by the hardware. Where appropriate, it is suggested
that bits[31:2] continue to hold valid access permissions for the descriptor.

. If bits[1:0] == 0b01, the entry is a large page descriptor, describing 64KB of virtual addresses. See
Trandating large page references on page B3-13 for details.
A large page descriptor must be repeated 64 times in a fine second-level table or 16 times in a coarse
second-level table to ensure that all of its virtual addresses are described.

. If bits[1:0] == 0b10, the entry is a small page descriptor, describing 4KB of virtual addresses. See
Trandating small page references on page B3-14 for details.

A small page descriptor must be repeated four times in a fine second-level table to ensure that all of
its virtual addresses are described. In a coarse second-level table, only one instance of each small
page descriptor is needed.

. If bits[1:0] == Ob11, the entry is a tiny page descriptor, describing 1KB of virtual addresses. See
Trandating tiny page references on page B3-15 for details.

Only one instance of each tiny page descriptor is needed in a fine second-level table. Tiny page
descriptors must not appear in coarse second-level tables. If they do, the reINPREDECTABLE.

Table 3-2 Second-level descriptor format

31 16 15 121110 9 8 7 6 5 4 3 2 1 0
Fault IGN 00
Large page Large table base address SB¥Z AP3 |AP2 |AP1 |[ARO |C B|O 1
Small page Small page base address AP3 AP2 |AP1 [ARO |C B|1 O
Tiny page Tiny page base address SBZ APl ¢ B 11

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B3-11

Memory Management Unit

Large page descriptor fields

Thefieldsin alarge page descriptor have the following meanings:

Bits[1:0] Identify the type of descriptor.

Bitg[3:2] Are the cachable and bufferable bits (see Cachability and bufferability on page B5-8).

Bitg[11:4] Are the access permission bits. These bits control accessto the page. See Table 3-3 on
page B3-16 for the interpretation of these bits. Large pages are split into four subpages:

APO Encodes the access permissions for the first subpages.

AP1 Encodes the access permissions for the second subpages.
AP2 Encodes the access permissions for the third subpages.

AP3 Encodes the access permissions for the fourth (last) subpages.

Bitg[15:12] Arenot currently used, and must be zero.
Bitg[31:16] Areused to form the corresponding bits of the physical address.

Small page descriptor fields

Thefieldsin asmall page descriptor have the following meanings:

Bits[1:0] Identify the type of descriptor.

Bitg[3:2] Are the cachable and bufferable bits (see Cachability and bufferability on page B5-8).

Bitg[11:4] Are the access permission bits. These bits control accessto the page. See Table 3-3 on
page B3-16 for the interpretation of these bits. Small pages are split into four subpages:

APO Encodes the access permissions for the first subpages.

AP1 Encodes the access permissions for the second subpages.
AP2 Encodes the access permissions for the third subpages.

AP3 Encodes the access permissions for the fourth (last) subpages.

Bitg[31:12] Areused to form the corresponding bits of the physical address.

Tiny page descriptor fields

Thefieldsin atiny page descriptor have the following meanings:

Bits[1:0] Identify the type of descriptor.

Bitg[3:2] Are the cachable and bufferable bits (see Cachability and bufferability on page B5-8).

Bits[5:4] Are the access permission bits. See Table 3-3 on page B3-16 for the interpretation of these
bits, which apply to the entire tiny page.

Bits[9:6] Are not currently used, and must be zero.

Bitg[31:10] Areused to form the corresponding bits of the physical address.

B3-12 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Memory Management Unit

3.3.8 Translating large page references

Figure 3-6 shows the complete translation sequence for a 64K B large page in a coarse second-level table.
The translation sequence for alarge page in afine second-level table is similar, but with the address of the
second-level descriptor being determined as shown in Fine page table descriptor on page B3-10.

Note

As the upper four bits of the Page Index and low-order four bits of the Second-level Table Index overlap,
each page table entry for alarge page must be repeated 16 times (in consecutive memory locations) in a
coarse page table. Similarly, each page table entry for alarge page must be repeated 64 timesin afine page

table.
31 1413 0
Translation]
table base Translation base SBZ
31 2019 1615 12 11 0
Virtual First-level Second- Page index
address table index level table index
31 v 1413 - 210 .
Address of) First-level i
first-level descriptor Transiation base table ndex 09|
First-level fetch
3= 1098|1554 210
S
First-level descriptor Page table base address % Domain | IMP |0 1
31 \/ 109 5 210
Address of Second-level
second-level descriptor Page table base address tanle noex |0 ©
Second-level fetch
3 <o 1615 1211109/8i16 543 21 0
Second-level descriptor Large page base address | SBz |AP3|AP2 AP1|APO|C[B|O 1
a3 = 16 15 ¥ 0
Physical address Large page base address | Page index

Figure 3-6 Large page translation in a coarse second-level table

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B3-13

Memory Management Unit

3.3.9 Translating small page references

Figure 3-7 shows the complete trand ation sequence for a4KB small page in a coarse second-level table.
Thetrandation sequence for asmall pagein afine second-leve tableis similar, but with the address of the
second-level descriptor being determined as shown in Fine page table descriptor on page B3-10.

Note

When a small page appearsin afine second-level table, the upper two bits of the Page Index and the
low-order two bits of the Second-level Table Index overlap. So each page table entry for asmall page must
be repeated four times (in consecutive memory locations) in afine page table.

31 1413 0
Translation]
table base Translation base SBZ
- 31 20 19 12 11 0
. Virtual First-level Second-level Page index
.:| address table index table index 9
31 \;7 1413 210
Address of Translati First-level o
first-level descriptor ranslation base table index o9
First-level fetch
=0t 1098 154 210
S
First-level descriptor Page table base address g Domain | IMP [0 1
31 ¥ 10 9 i 210
Address of Second-level
second-level descriptor Page table base address table indgx 00
Second-level fetch
31 =it 12111098116 543 21 0
Second-level descriptor Small page base address |AF‘3|AP2 AP1|APO(C|B[1 0
31x::/ 11 <kl 0
Physical address Small page base address | Page index

Figure 3-7 Small page translation in a coarse second-level table

B3-14

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Memory Management Unit

3.3.10 Translating tiny page references

Figure 3-8 shows the complete translation sequence for a 1KB tiny page in afine second-level table.

Note

Tiny pages can not appear in a coarse second-level table.

31

1413 0
Translation]
table base Translation base SBZ
31 20 19 10 9 0
Virtual First-level Second-level i
vitual | Ol oo
31 <Us 1413 210 :
Address of) First-level -
first-level descriptor Translation base table index o0
First-level fetch : -l
s~ 1211 _98liis 4 21 0
First-level descriptor Page table base address SBZ | Domain | IMP |1 1
Add ‘ 31 \/7 1211 v 210
ress o S d-level
second-level descriptor Page table base address 12%?enindeevxe 00
Second-level fetch
<> 109 [i-]es43 210
Second-level descriptor Tiny page base address | SBZ |AP (C(B|1 1|
31 v 10 gv 0
Physical address Tiny page base address | Page index

Figure 3-8 Tiny page translation in a fine second-level table

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B3-15

Memory Management Unit

3.4 Access permissions
The access permission hits in section and page descriptors control access to the corresponding section or
page. The access permissions are modified by the System (S) and ROM (R) control bitsin CP15 register 1.
Table 3-3 describes the meaning of the access permission bits in conjunction with the S and R bits. If an
access is made to an area of memory without the required permission, a Permission Fault is raised (see
Aborts on page B3-18).
Table 3-3 MMU access permissions
AP Privileged User
permissions permissions
0b00 No access No access
0b00 Read only No access
0b00 Read only Read only
0b00 UNPREDICTABLE ~ UNPREDICTABLE
ObO1 Read/write No access
0b10 Read/write Read only
Ob11l Read/write Read/write
B3-16 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Memory Management Unit

35 Domains

A domainis a collection of sections, large pages and small pages. The ARM architecture supports 16
domains. Accessto each domain is controlled by a2-bit field in the Domain Access Control Register. Each
field allows the access to an entire domain to be enabled and disabled very quickly, so that whole memory
areas can be swapped in and out of virtual memory very efficiently. Two kinds of domain access are
supported:

Clients Are users of domains (execute programs, access data), and are guarded by the access
permissions of the individual sections and pages that make up the domain.

Managers Control the behavior of the domain (the current sections and pages in the domain, and the
domain access), and are not guarded by the access permissions of individual sections and
pages in the domain.

One program can be a client of some domains, and a manager of some other domains, and have no access
to the remaining domains. This allows very flexible memory protection for programs that access different
memory resources. Table 3-4 illustrates the encoding of the bitsin the Domain Access Control Register.

Table 3-4 Domain Access Values

Value Access types Description
0b00 No access Any access generates a domain fault
0bO1 Client Accesses are checked against the access permission bitsin the

section or page descriptor

0b10 Reserved Using this value has UNPREDICTABLE results

Ob11 Manager Accesses are not checked against the access permission bitsin the
section or page descriptor, so a permission fault cannot be generated

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B3-17

Memory Management Unit

3.6

3.6.1

Aborts

M echanismsthat can cause the ARM processor to halt execution because of memory accessrestrictions are:
MMU fault The MMU detects the restriction and signal s the processor.
External abort The externa memory system signals an illegal memory access.

Collectively, MMU faults and external aborts are just called aborts. Accessesthat cause aborts are said to
be aborted.

If the memory request that is aborted isan instruction fetch, then a Prefetch Abort exception israised if and
when the processor attempts to execute the instruction corresponding to the illegal access. If the aborted
access is a data access, a Data Abort exception is raised. See Exceptions on page A2-13 for more
information about Prefetch and Data Aborts.

MMU faults

The MMU generates four types of fault:
. alignment fault

. translation fault

. domain fault

. permission fault.

The memory system can abort three types of access:

. line fetches

. memory accesses (uncached or unbuffered accesses)
. translation table accesses.

Aborts that are detected by the MMU are stopped before any external memory access takes place. It is the
responsibility of the external system to stop external accesses that cause external aborts.

The System Control coprocessor contains two registers which are updated when a data access is aborted.
These registers are not updated for Prefetch Aborts, as the aborted instruction might not be executed due to
changes in program flow.

Fault Address Register (FAR) and Fault Status Register (FSR)

Aborts resulting from data accesses (Data Aborts) are immediately acted upon by the CPU. The Fault Status
Register (FSR) is updated with a 4-bit Fault Status (FS[3:0]) and the domain number of the access. In
addition, the virtual address which caused the Data Abort is written into the Fault Address Register (FAR).
If a data access simultaneously generates more than one type of Data Abort, they are prioritized in the order
given in Table 3-5 on page B3-19.

Aborts arising from instruction fetches are flagged as the instruction enters the instruction pipeline. Only
when (and if) the instruction is executed does it cause a Prefetch Abort exception. An abort resulting from
an instruction fetch is not acted upon if the instruction is not used (for example, if it is branched around).
Normally, the fault address associated with a Prefetch Abort exception is determined from the value saved
in R14_abt when the Prefetch Abort exception vector is enteredMRLEMENTATION DEFINED whether

B3-18

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

the FSR and FAR are updated for an abort arising from an instruction fetch, and if so, what useful

Memory Management Unit

information they contain about the fault. However, an abort arising from an instruction fetch will never

update the FSR and the FAR between the time that an abort arising from a data access updates them and the
time of the corresponding entry into the Data Abort exception vector. In other words, a Data Abort handler
canrely upon its FAR and FSR values not being corrupted by an abort arising from an instruction fetch that

was not acted upon.

Table 3-5 Priority encoding of fault status

. FS Domain

Priority Sources [3:0] [3:0] FAR

Highest ~ Terminal Exception 0b0010 Invalid IMPLEMENTATION
DEFINED

Vector Exception 0b0000 Invalid vaid

Alignment 0b0Ox1 Invalid valid

Externa Abort on Translation First level 0b1100 Invalid Valid

Second level 0b1110 Valid Valid

Translation Section 0b0101 Invalid Vaid

Page Ob0111 Vvalid Valid

Domain Section Ob1001 Valid Valid

Page Ob1011 Vvalid Vaid

Permission Section Ob1101 Valid Valid

Page Ob1111 Vvalid Valid

Externa Abort on Linefetch Section Ob0100 Valid Vaid

Page Ob0110 Valid Vaid

Lowest External Abort on Section 0b1000 Valid Valid

Non-linefetch Page 0b1010 Valid vaid

Note

Alignment faults can write either 0b0001 or 0b0011 into FS[3:0].

Invalid valuesin Domain[3:0] occur because the fault is raised before avalid domain field has been |oaded.

Any abort masked by the priority encoding can be regenerated by fixing the primary abort and restarting the

instruction.

The FS3:0] encoding for V ector Exception breaks from the pattern that FS[0] is zero for al external aborts.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved.

B3-19

Memory Management Unit

Fault-checking sequence

The sequence by which theMMU checksfor accessfaultsisslightly different for Sectionsand Pages. Figure
3-9illustrates the sequence for both types of access.

Virtual address

Checking
alignment?

Check address alignment ‘

'

Misaligned?

Y

@
@
e
5::
@
<
3
Q
@
w
(=]
=
<
=3
3
<

Alignment

Translation
fault

external
abort

Section
translation
fault

Section

‘ Get second-level descriptor ‘

External Ye
abort
No

Translation
external
abort

Page
translation
fault

‘ Check domain ‘ ‘ Check domain ‘

'

No

. Manager
ggﬁ:?" access Access J Access
in tvoe b
fault P ype
Client
‘ Check access permissions ‘ ‘ Check access permissions ‘

Sub-page
permission
fault

Section
permission
fault

No

Y

Physical address

Figure 3-9 Sequence for checking faults

B3-20

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Memory Management Unit

Terminal exception

Thisindicates that an irrecoverable fault has occurred. The circumstances under which this can happen (if
at all) are IMPLEMENTATION DEFINED.

Vector exception

When the processor isin a 32-bit configuration (PROG32 is active) and in a 26-bit mode (CPSR[4] == 0),
dataaccess (but not instruction fetches) to the normal exception vectors (address0x 0 to Ox 1F) causeaData
Abort, known asavector exception. ItiSIMPLEMENTATION DEFINED if vector exceptionsare generated when
the MMU is not enabled. For more information, see Vector exceptions on page A8-11.

Alignment fault

If alignment faults are enabled, an alignment fault is generated on any data word access whose addressis
not word-aligned (virtual address bits [1:0] != 0b00), or any halfword access that is not halfword-aligned
(virtual address bit[0] != 0). Alignment faults are not generated on any instruction fetch, or on any byte
access.

Note

If the access generates an alignment fault, it is aborted without reference to further permission checks. It is
IMPLEMENTATION DEFINED if alignment exceptions are generated when the MM U is not enabled.

Translation fault
There are two types of translation fault:

Section Thisis generated if the first-level descriptor is marked asinvalid. This happensif bitg1:0]
of the descriptor are both 0.

Page Thisis generated if the second-level descriptor is marked asinvalid. This happens if
bitg[1:0] of the descriptor are both 0.

Domain fault

There are two types of domain fault:

. Section

. Page.

In both cases, the first descriptor holds the 4-bit Domain field which selects one of the sixteen 2-bit domains

in the Domain Access Control Register. The two bits of the specified domain are then checked for access
permissions as detailed in Table 3-4 on page B3-17:

. In the case of a section, the domain is checked when the first-level descriptor is returned.
. In the case of a page, the domain is checked when the second-level descriptor is returned.

If the specified access is marked as No Access in the Domain Access Control Register, either a Section
Domain Fault or Page Domain Fault occurs.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B3-21

Memory Management Unit

Permission fault
There are section permission faults and subpage permission faults.

Permission faults are checked at the sametime as domain faults. If the 2-bit domain field returnsclient (01),
the permission access check isinvoked as follows:

Section If the first-level descriptor defines a section access, the AP bits of the descriptor define
whether or not the accessis allowed, according to Table 3-3 on page B3-16. If the accessis
not allowed, a section permission fault is generated.

Subpages If the first-level descriptor defines a page-mapped access, the second-level descriptor can
defineatiny page, asmall pageor alarge page. If the second-leve descriptor defines atiny
page, it contains a single access permission field (AP), which applies to the whole page.
Otherwise, the second-level descriptor contains four access permission fields (AP3, AP2,
AP1, APO), each corresponding to one quarter of the page.

For small pages, AP3 is selected by the top 1KB of the page, and APO is selected by the
bottom 1K B of the page. For large pages, AP3 is selected by the top 16K B of the page, and
APO is selected by the bottom 16K B of the page. The selected AP bits are then interpreted
in exactly the same way as for a section, (see Table 3-3 on page B3-16) the only difference
being that the fault generated is a subpage permission fault.

3.6.2 External aborts
In addition to the MMU faults, the ARM architecture defines an external abort pin which can be used to flag
an error on an external memory access. However, not all accesses can be aborted in this way, so this pin
must be used with great care. The following accesses can be externally aborted and restarted safely:
. reads
. unbuffered writes
. first-level descriptor fetch
. second-level descriptor fetch
. semaphores in uncachable/unbufferable memory areas.
A linefetch can be safely aborted on any word in the line transfer. If the abort happens on data that has been
requested by the processor (rather than data that is being fetched as the remainder of a cache line), the access
is aborted. Any data transferred that is not immediately accessed (the remainder of the cache line) is only
aborted when it is accessed.
It is IMPLEMENTATION DEFINED if the FAR points to the start address of the cache line, or the address that
generated the abort.
Buffered writes cannot be externally aborted. Therefore, the system must be configured so that it does not
do buffered writes to areas of memory which are capable of flagging an external abort, or a different
mechanism needs to be used to signal the abort (an interrupt for example).
The value of a memory location that causes an aboRABEDICTABLE after the abort.

B3-22 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Memory Management Unit

3.7 CP15 registers

The MMU is controlled with the System Control coprocessor registers 2, 3, 4, 5, 6, 8 and 10, and some bits
of register 1.

3.7.1 MMU control bits in register 1
The following bits in the System Control coprocessor register 1 are used to control the MM U:
M (bit[Q]) Thisis the enable/disable bit for the MM U:
0=MMU disabled
1=MMU enabled.

On systems without an MMU or Protection Unit, this bit must read as zero and ignore
writes.

A (bit[1]) Thisbit enables and disables alignment fault checking (see Alignment fault on page B3-21):
0 = Alignment fault checking disabled
1 = Alignment fault checking enabled.

S (bit[8]) Thisisthe system protection bit. The effect of thishit is described in Access permissions on
page B3-16.

R (bit[9]) Thisisthe ROM protection bit. The effect of this bit isdescribed in Access permissionson
page B3-16.
3.7.2 Register 2: Translation table base

31 14 13 0

Trandation Table Base UNP/SBZP

Reading from CP15 register 2 returnsthe physica address of the currently activefirst-level translation table
in bitg 31:14] and an UNPREDICTABLE value in bits[13:0]. The CRm and opcode2 fields are ignored when
reading CP15 register 2 and should be zero.

Writing to CP15 register 2 updates the physical address of the currently active first-level translation table
from the valuein bitg31:14] of the written value. Bitq 13:0] must be written aszero or asavalue previously
read from bitg13:0] of thisregister. The CRm and opcode2 fields are ignored when writing CP15 register 2
and should be zero.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B3-23

Memory Management Unit

3.7.3

3.74

3.7.5

Register 3: Domain access control

31 3029 28 27 26 252423 2221 201918 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

D15| D14| D13| D12l D11 Di1¢o D9 D§ D7 D§ D% D4 DB D2 DL Dp

Reading from CP15 register 3 returns the value of the Domain Access Control Register. The CRm and
opcode? fields are ignored when reading CP15 register 3 and should be zero.

Writing to CP15 register 3 writes the value of the Domain A ccess Control Register. The CRm and opcode2
fields are ignored when writing CP15 register 3 and should be zero.

The Domain Access Control Register consists of sixteen 2-bit fields (see Domains on page B3-17), each
defining the access permissions for one of the sixteen Domains (D15-DO0).

Register 4: Reserved

Reading and writing CP15 register 4Ji$PREDICTABLE.

Register 5: Fault status

31 9 8 7 4 3 0

UNP/SBZP 0| Domain Status

Reading CP15 register 5 returns the value of the Fault Status Register (FSR). The FSR contains the source
of the last data fault. Only the bottom nine bits are returned. The upper 23 hitRE®ICTABLE. The
FSR indicates the domain and type of access being attempted when an abort occurred.

Bit[8] Returns zero.
Bits[7:4] Specify which of the sixteen domains (D15-D0) was being accessed when a fault occurred.

Bits[3:0] Indicate the type of access being attempted. The encoding of these bits is shown in Table
3-5 on page B3-19.

The FSR is updated for data faults. IMSLEMENTATION DEFINED whether the FSR is updated for prefetch
faults (for details, seEault Address Register (FAR) and Fault Satus Register (FSR) on page B3-18). The
CRm and opcode? fields are ignored when reading CP15 register 5 and should be zero.

Writing CP15 register 5 sets the Fault Status Register to the value of the data written. This is useful for a
debugger to restore the value of the FSR. The upper 24 bits written should be zero or a value previously read
from the FSR. The CRm and opcode? fields are ignored when writing CP15 register 5 and should be zero.

B3-24

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

3.7.6

3.7.7

Memory Management Unit

Register 6: Fault address

31 0

Fault address

Reading CP15 register 6 returns the value of the FAR. The FAR holds the virtua address of the access
which was attempted when a fault occurred. The FAR is updated for datafaults. It iSIMPLEMENTATION
DEFINED whether the FAR is updated for prefetch faults (for details see Fault Address Register (FAR) and
Fault Status Register (FSR) on page B3-18). The CRm and opcode2 fields are ignored when reading CP15
register 6 and should be zero.

Writing CP15 register 6 setsthe Fault Address Register to the value of the datawritten. Thisisuseful for a
debugger to restore the value of the FAR. The CRm and opcode? fiel ds are ignored when writing CP15
register 6 and should be zero.

Note
If the Fast Context Switch Extension (FCSE) described in Chapter B6 is being used, then:

. When the FAR is updated for a memory fault, nfiaelified virtual address is written to the FAR.

. When the FAR is read by amRC instruction or written by aMCR instruction, its value is being
treated as data and so no address modification is performed by the FCSE.

Register 8: TLB functions

CP15 register 8 is a write-only register which is used to control TLBs. Table 3-6 on page B3-26 shows the
defined TLB operations and the values@Rnm> and<opcode2> used in thé/CRinstruction for each of

them. The results of using any combinatiorr@Rm> and<opcode2> not specified in the table are
UNPREDICTABLE.

If any of the following operations are used on an implementation with a unified TLB, the equivalent
function is performed on the unified TLB:

. invalidate instruction TLB

. invalidate instruction single entry
. invalidate entire data TLB

. invalidate data single entry.

Otherwise, if a function not relevant to a particular implementation is performed, the results are
UNPREDICTABLE.

Attempting to read CP15 register 8 withRC instruction iSUNPREDICTABLE.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B3-25

Memory Management Unit

Theinvalidate single entry operations can be used to improve performance on someimplementations when
only asmall amount of memory is being remapped. For each remapped memory area (section, small page
or large page), the invalidate single entry operation needs to be performed on avirtual addressin the
memory area. The performance improvement comes from not having to subsequently reload TLB entries
relating to memory areas that were not remapped.

Note

The performance improvement for theinvalidate single entry operationsisnot guaranteed. | mplementations
are free to invaidate more than the single requested entry, up to and including invalidating the entire TLB.

—— Caution

When memory is remapped, all TLB entries relating to the old mapping must be invalidated. If thisis not
done, itispossibleto get into astate wheretwo TLB entriesrelateto overlapping ranges of virtual addresses.
Any attempt to address the overlapped virtual memory addresses results in UNPREDICTABLE behavior at
best, and might even physically damage the MM U on some implementations.

Itis therefore strongly recommended that great careis taken to invalidate the TLB appropriately whenever
memory is remapped.

Table 3-6 TLB functions

Function <opcode2> <CRm> Data Instruction
Invalidate entire unified TLB 0b000 0b0111 SBZ MCR p15, O, Rd, ¢8, c7, O
or both instruction and data
TLBs
Invalidate unified singleentry ~ 0b001 0b0111 Virtua MCR p15, O, Rd, ¢8, c7, 1
address
Invalidate entireinstruction 0b000 0b0101 SBZ MCR p15, O, Rd, ¢8, c¢c5, O
TLB
Invalidate instruction single 0b001 0b0101 Virtud MCR p15, O, Rd, ¢8, c5, 1
entry address
Invalidate entiredata TLB 0b000 0b0110 SBZ MCR p15, O, Rd, ¢8, c6, O
Invalidate data single entry 0b001 0b0110 Virtua MCR p15, O, Rd, c¢8, c6, 1
address
Note
If the Fast Context Switch Extension (FCSE) described in Chapter B6 is being used, the virtual addresses
passed to CP15 by some of the functionsin Table 3-6 are passed as data. This means that no address
modification is performed for them by the FCSE.
B3-26 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Memory Management Unit

3.7.8 Register 10: TLB lockdown

Translation table walks can take a considerabl e amount of time, especially as they involve potentially slow
main memory accesses. In real-time interrupt handlers, translation table walks caused by the TLB not
containing translations for the handler and/or the datait accesses can increase interrupt | atency significantly.

TLB lockdown is afeature of some ARM memory systems which allows the results of specified trandation
table walks to be loaded into the TLB, in such away that they are not overwritten by the results of
subsequent trand ation table walks. It is programmed via CP15 register 10.

If W isthe logarithm base 2 of the number of TLB entries, rounded up to an integer if necessary, then the
format of CP15 register 10 is:

31 32-W 31-W 32-2W 31-2W 10

base victim UNP/SBZP P

If theimplementation has separate instruction and data TL Bs, there are two variants of thisregister, selected
by the <opcode2> field of the MCR or MRC instruction used to access register 10:

<opcode2> == 0 Selectsthedata TLB lockdown register.
<opcode2> == 1 Selectstheinstruction TLB lockdown register.

If the implementation has a unified TLB, only one variant of this register exists, and <opcode2> should
be zero.

<CRnP must always be c0 for MCR and MRC instructions that access register 10.
Writing register 10 has the following effects:

. The victim field specifies which TLB entry is replaced by the translation table walk result generated
by the next TLB miss.

. The base field constrains the TLB replacement strategy to only use the TLB entries numbered from
(base) to (number of TLB entries)-1, provided the victim field is already in that range.

. Any translation table walk results written to TLB entries while P == 1 are protected from being
invalidated by the register 8 invalidate entire TLB operations. Ones written while P == 0 are
invalidated normally by these operations.

Note

If the number of TLB entries is not a power of two, writing a value to either the base or victim fields which
is greater than or equal to the number of TLB entriesJRBREDICTABLE results.

Reading register 10 returns the last values written to the base field and the P bit, and the number of the next
TLB entry to be replaced in the victim field.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B3-27

Memory Management Unit

TLB lockdown procedure
The normal procedure to lock down N TLB entriesisas follows:

1. Ensure that no processor exceptions can occur during the execution of this procedure, by disabling
interrupts, and so on.

2. If aninstruction TLB or unified TLB isbeing locked down, write the appropriate version of register
10 with base == N, index == N, and P == 0. If appropriate, also turn off facilities like branch
prediction that make instruction prefetching harder to understand.

3. Invalidate the entire TLB to be locked down.

4. If aninstruction TLB isbeing locked down, ensurethat all TLB entries areloaded which relate to any
instruction that could be prefetched by the rest of the lockdown procedure. (Provided care is taken
about where the lockdown procedure starts, it is normally possible for one TLB entry to cover all of
these, in which case the first instruction prefetch after the TLB isinvalidated can do thisjob.)

If adata TLB isbeing locked down, ensure that all TLB entries are |oaded which relate to any data
accessed by the rest of the lockdown procedure, including any inline literals used by its code. (This
isusually best done by avoiding the use of inline literalsin the lockdown procedure and by putting
all other data used by it in an area covered by asingle TLB entry, then loading one data item.)

If aunified TLB is being locked down, do both of the above.
5. For each of i = 0to N-1:

Write to register 10 with base ==1, victim ==1i,and P==1.
b. Force atranslation table walk to occur for the area of memory whose trand ation table walk
result isto be locked into TLB entry i, by:

. If a data TLB or unified TLB is being locked down, loading an item of data from the
area of memory.
. If an instruction TLB is being locked down, using the registprefetch instruction

cacheline operation defined iRegister 7: Cache functions on page B5-15 to cause an
instruction to be prefetched from the area of memory.

6. Write to register 10 with base == N, victim == N, and P == 0.

Note
If you are using th€ast Context Switch Extension (FCSE) (see Chapter B6), take care in step 5b, because:
. If a data TLB or a unified TLB is being locked down, the address used for the load instruction is
subject to modification by the FCSE.
. If an instruction TLB is being locked down, the address used for the register 7 operation is being

treated as data and so is not subject to modification by the FCSE.

To minimise the possible confusion caused by this, it is recommended that the lockdown procedure should:
. start by disabling the FCSE (by setting the PID to zero)

. where appropriate, generate modified virtual addresses itself by ORing the appropriate PID value into
the top 7 bits of the virtual addresses it uses.

B3-28 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Memory Management Unit

TLB unlock procedure

To unlock the locked-down portion of the TLB after it has been locked down using the above procedure:
1 Useregister 8 operationsto invalidate each single entry that was locked down.

2. Write to register 10 with base== 0, victim==0, and P==0.

Note

Step 1isused in order to ensure that P==1 entries are not left in the TLB. If they wereleft inthe TLB, the
entire TLB invalidation step (step 3) of a subsequent TLB lockdown procedure would not have the desired
effect.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B3-29

Memory Management Unit

B3-30 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter B4
Protection Unit

This chapter describes the ARM Protection Unit. It contains the following sections:
. About the Protection Unit on page B4-2

. Overlapping regions on page B4-5

. CP15 registers on page B4-6.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B4-1

Protection Unit

4.1

4.1.1

About the Protection Unit

The Protection Unit memory system architecture provides a considerably simpler alternative to the MM U
memory system architecture described in Chapter B3 Memory Management Unit. This allows both
hardware and software to be simplified in systems which do not require all facilities of the MMU.

The main simplification is that the Protection Unit does not use trand ation tables. Instead, up to eight
protection regions can be defined by writing to Protection Unit registers. This eliminates the need for
hardware to do trand ation table walks, and for software to set up and maintain the translation tables. The
cost of thissimplificationisthat the level of control over memory behavior isconsiderably less fine-grained.
MMU trand ation tables can define many thousands of memory regions with different attributes,
considerably more than are possible with the Protection Unit.

A second simplification isthat virtual-to-physical address mapping is not supported. The physical memory
address is always the same as the virtual address generated by the ARM processor (except that if the Fast

Context Switch Extension is used, as described in Chapter B6 Fast Context Switch Extension, the physical
address is the same as the modified virtual addressthat it generates).

Protection regions

The sizes and starting addresses of the eight protection regions are defined using CP15 register 6. The size
of aregion must be a power of two, and can range from 4KB up to 4GB. The starting address of aregion
must beamultiple of itssize. For example, a4KB region (size0x1000) can start at address0x 12345000,
but an 8KB region (size 0x2000) or larger can not.

The cachable bits (C), bufferable bits (B) and Access Permission (AP) bits of the eight protection regions
are defined by CP15 registers 2, 3 and 5 respectively. These behave similarly to the corresponding bitsin
the MMU memory system architecture, except that the interpretation of the AP bits is not modified by the
System (S) and ROM (R) bitsin CP15 register 1. (These bits are therefore not normally implemented in
Protection Unit systems.)

Protection regions can legitimately overlap each other. If an address lies within more than one protection
region, the attributes of the highest-numbered protection region apply to it. For more details, see
Overlapping regions on page B4-5.

Someimplementations (typically those with separate instruction and data caches) provide two separate sets
of eight protection regions, with one set being used for instruction fetches and the other set for data accesses.

Note

Itispossibleto program theinstruction and data protection regions differently in these implementati ons, but
some care needsto be taken. In particular, most ARM and Thumb code areasincludeinline literals, which
are constant addresses and other dataitems held in the same area as the code itself. Inline literals are
automatically generated by compilers, and can a so appear in assembler code. (For ARM Development
Systems, they aretypically generated by the use of DCD, DCB and rel ated assembler directives, or by the use
of the construction LDR Rn, =expr essi on together with an LTORG directive.) Inline literals are
typically accessed by LDR instructions with base register R15. Such instructions generate a data access to
the code area, so it does not normally make sense to program an instruction protection region without
programming a corresponding data protection region to allow the code to access itsinline literals.

B4-2

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Protection Unit

41.2 Memory access sequence

When the ARM processor generates a memory access, the Protection Unit checks whether the address lies
within the range of each of the eight protection regions (using the appropriate set of eight regionsif the
implementation has separate sets for instruction and data accesses):

. If the address does not lie in any protection region, the memory access is aborted.

. If the address lies in one or more protection regions, the access is controlled by the highest-numbered
of those regions. The C, B and AP bits associated with that region are used by the access as follows:

1. The C (cachable) and B (bufferable) bits are used to control the cache and write buffer and to
determine whether the access is cached or uncached, as desc@ibelhhility and
bufferability on page B5-8. (If the system does not contain a cache and/or a write buffer, the
relevant bits are ignored.)

2. The AP (access permission) bits are used to determine whether the access is permitted. If the
access is not permitted, the Protection Unit signals a memory abort to the ARM processor.
Otherwise, the access is allowed to proceed.

Register 5: Access permission bits on page B4-7 anBxceptions on page A2-13 describe this
in more detail.

Figure 4-1 illustrates the memory access sequence for a cached system:

Selected region
Register 5 Registers 2, 3

AP bits C, B bits

Priority encoder

Access
control
hardware
Region address
comparators
Abort
Cache Cache
ARM and line fetch
write buffer hardware Mai
> ain
memory

Virtual/physical address

Figure 4-1 Cached Protection Unit memory system overview

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B4-3

Protection Unit

4.1.3 Enabling the Protection Unit

The Protection Unit can be enabled by writing 1 to CP15 register 1 bit[0], and can be disabled by writing 0
to the same bit. On reset, thisbitis cleared and all protection regions are invalidated.

Before the Protection Unit is enabled, at |east one vaid protection region must be specified and itsC, B and
AP bits must be set. In the case of aProtection Unit with separate sets of protection regions for instruction
and data accesses, at least one valid protection region in each of the two sets must be programmed in this
manner.

Furthermore, the code that enablesthe Protection Unit must liewithin avalid (instruction) protectionregion.
Enabling the Protection Unit without adhering to these rules can result in behavior which is at best
UNPREDICTABLE, and can even result in a hung state which can only be recovered from by resetting the
system.

While the Protection Unit is disabled, all memory accesses are treated as uncachable, unbufferable and
non-aborting.

B4-4 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

4.2

42.1

Protection Unit

Overlapping regions

The Protection Unit can be programmed with two or more overlapping regions. When overlapping regions
are programmed, afixed priority scheme is applied to determine the region whose attributes are applied to
the memory access.

Attributes for region 7 take highest priority and those for region 0 take lowest priority. For example:

. Data region 2 is programmed to be 4KB in size, starting from addre&300 with AP == 0b10
(Privileged mode full access, User mode read only).

. Data region 1 is programmed to be 16KB in size, starting from ad@ix@sith AP == 0b01
(Privileged mode access only).

When the processor performs a data load from ad@r3810 while in User mode, the address falls into
both region 1 and region 2, as shown in Figure 4-2. Because there is a clash, the attributes associated with
region 2 are applied. In this case, the load would not abort.

0x4000

0x3010 ———————> | Region 2

0x3000

Region 1

0x0

Figure 4-2 Overlapping memory regions

Background regions

Overlapping regions increase the flexibility of how the eight regions can be mapped onto physical memory
devices in the system. The overlapping properties can also be used to specify a background region. For
example, there might be a number of physical memory areas sparsely distributed across the 4GB address
space. If a programming error occurs therefore, it might be possible for the processor to issue an address
which does not fall into any defined region.

If the address issued by the processor falls outside of any of the defined regions, the Protection Unit is
hard-wired to abort the access. This behavior can be overridden by programming region 0 to be a 4GB
background region. In this way, if the address does not fall into any of the other seven regions, the access is
controlled by the attributes the user has specified for region 0.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B4-5

Protection Unit

4.3 CP15 registers
The Protection Unit is controlled with the System Control coprocessor registers 2, 3, 5, and 6, and one or
two bits of register 1.

431 Protection Unit control bits in register 1
M (bit[0]) in the System Control coprocessor register 1 is the enable/disable bit for the Protection Unit:
0 = Protection Unit disabled
1 = Protection Unit enabled.
On systems without a Protection Unit or MM U, this bit must read as zero and ignore writes.
A Protection Unit memory system can optionally implement alignment checking, as described in Alignment
fault on page B3-21. If it does, the A bit (bit[1]) of register 1 behaves asdescribed thereand in MMU control
bitsin register 1 on page B3-23. Otherwise, the A bit should be zero.

4.3.2 Register 2: Cachability bits
31 8 76 543210

UNP/SBZP C7|C6|C5|C4|C3|C2/C1|CO

Reading from CP15 register 2 returns the cachable (C) bitsfor the eight protection regionsin bits[7:0], with
bit[n] corresponding to region n, and an UNPREDICTABLE value in bitg31:8].
Writing to CP15 register 2 updates the cachable (C) bits of the eight protection regions, with the C bit of
region n being set to bit[n] of the value written. Bitg[31:8] must be written as zero or as a value previously
read from bitg31:8] of thisregister.
In each case, the <CRm field of the MRC or MCR instruction is ignored and must be cO0. If the
implementation only has one set of eight protection regions, the <opcode2> field should be zero. If it has
separate sets of protection regions for instruction and data accesses, <opcode2> must be specified as0to
select the data protection regions and 1 to select the instruction protection regions.
For details of how the C bit affects cache and write buffer behavior, see Cachability and bufferability on
page B5-8.

4.3.3 Register 3: Bufferability bits
31 8 76 543210

UNP/SBZP B7|B6B5B4/B3B2B1BO)

Reading from CP15 register 3 returns the bufferable (B) bits for the eight protection regionsin bitg7:0],
with bit[n] corresponding to region n, and an UNPREDICTABLE value in bitg31:8].

B4-6 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

4.3.4

4.3.5

Protection Unit

Writing to CP15 register 3 updates the bufferable (B) bits of the eight regions, with the B bit of region n
being set to bit[n] of the value written. Bitg31:8] must be written as zero or as avalue previously read from
bits[31:8] of this register.

In each case, the <CRn® and <opcode2> fields of the MRC or MCR ingtruction areighored and must be cO
and zero respectively.

For details of how the B bit affects cache and write buffer behavior, see Cachability and bufferability on
page B5-8.

Registers 4, 8, 10: Reserved

Accessing (reading or writing) any of these registers is UNPREDICTABLE.

Register 5: Access permission bits

31 161514 13121110 9 8 7 6 5 4 3 2 1 0

UNP/SBZP AP7 | AP6 | AP5 | AP4 | AP3 | AP2 | AP1 | APO

Reading from CP15 register 3 returns the AP bits for the eight protection regions in bits[15:0], with
bits[2n+1:2n] corresponding to region n, and an UNPREDICTABLE vaue in bits[31:16].

Writing to CP15 register 3 updates the AP bits of the eight regions, with the AP bits of region n being set to
bits[2n+1:2n] of the vaue written. Bits[31:16] must be written as zero or as avalue previously read from
bits[31:16] of thisregister.

In each case, the <CRm field of the MRC or MCRinstruction isignored and must be c0. If the
implementation only has one set of eight protection regions, the <opcode2> field should be zero. If it has
separate sets of protection regionsfor instruction and data accesses, <opcode2> must be specified as0to
select the data protection regions and 1 to select the instruction protection regions.

The interpretation of each set of AP bitsis as shown in Table 4-1 on page B4-7. If the requested type of
access is not permitted, an abort is signaled to the ARM processor.

Table 4-1 Protection Unit access permissions

AP Privil_ege_:d User o
permissions permissions
0b00 No access No access
0b01 Read/write No access
0b10 Read/write Read only
Ob11 Read/write Read/write

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B4-7

Protection Unit

4.3.6

Register 6: Protection area control

31

12 11 6 5 10

Base address UNP/SBZP Size E

Reading from CP15 register 6 returns the current base address, size and enabled/disabled status of a
protection region, in the format shown in the above diagram. The value read for bits[11:6] is
UNPREDICTABLE.

Writing to CP15 register 6 sets the base address, size and enabled/disabled status of a protection region, in
the format shown in the above diagram. The value written to bits[11:6] must either be zero or avalue
previoudy read from bits[11:6] of CP15 register 6.

Thereis one version of register 6 for each protection region in the Protection Unit. The version used (and
therefore the protection region affected) is selected by the <CRm> and <opcode2> fields of the MCR or
MRC instruction used to access the register:

<CRn is used to select the number of the protection region, by specifying cO to select protection
region O, cl to select protection region 1, and so on, through to c7 to select protection region 7.

If the implementation only has one set of eight protection regionsotheode2> field should be
zero.

If the implementation has separate sets of protection regions for instruction and data accesses,
<opcode2> must be specified as 0 to select a data protection region and 1 to select an instruction
protection region.

The meaning of the fields in the value read from or written to register 6 is as follows:

The E bit enables or disables the associated protection region:
0 = protection region disabled
1 = protection region enabled.

A disabled protection region never matches any addresses, and therefore does not affect the memory
access sequence in any way. All protection regions are disabled on reset.

The Size field selects the associated protection region's size, which can vary from 4KB to 4GB. The
encoding is shown in Table 4-2 on page B4-9.

The Base address field specifies bits[31:12] of the address of the first byte in the associated protection
region.

The address of this first byte is required to be a multiple of the region size, so its bits[11:0] are always
zero and do not need to be programmed. Also, because of this requirement for the region to be aligned
to a multiple of its size, one or more further bits of the base address may also be constrained to be
zero. These additional constraints are shown in Table 4-2 on page B4-9. If they are broken, the
protection region is misaligned, andPREDICTABLE behavior might result.

B4-8

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Protection Unit

Table 4-2 Region size encoding

Size field Area size Base area constraints
0b00000 to 0b01010 UNPREDICTABLE -

0b01011 4KB None

0b01100 8KB Bit[12] must be zero
0b01101 16KB Bits[13:12] must be zero
0b01110 32KB Bits[14:12] must be zero
0b01111 64KB Bits[15:12] must be zero
0b10000 128KB Bits[16:12] must be zero
0b10001 256KB Bits[17:12] must be zero
0b10010 512KB Bits[18:12] must be zero
0b10011 1MB Bits[19:12] must be zero
0b10100 2MB Bits[20:12] must be zero
0b10101 4MB Bits[21:12] must be zero
0b10110 8MB Bits[22:12] must be zero
0b10111 16MB Bits[23:12] must be zero
0b11000 32MB Bits[24:12] must be zero
0b11001 64MB Bits[25:12] must be zero
0b11010 128MB Bits[26:12] must be zero
0b11011 256MB Bitg[27:12] must be zero
0b11100 512MB Bits[28:12] must be zero
0b11101 1GB Bits[29:12] must be zero
0b11110 2GB Bits[30:12] must be zero
0b11111 4GB Bits[31:12] must be zero

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B4-9

Protection Unit

B4-10 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter B5
Caches and Write Buffers

This chapter describes cache and write buffer control functions that are common to both the MM U-based
memory system and the Protection Unit-based memory system. It contains the following sections:

. About caches and write buffers on page B5-2
. Cache organization on page B5-3

. Types of cache on page B5-5

. Cachability and bufferability on page B5-8

. Memory coherency on page B5-10

. CP15 registers on page B5-14.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B5-1

Caches and Write Buffers

5.1

About caches and write buffers
Caches and write buffers can be used in ARM memory systems to improve their average performance.

A cacheisablock of high-speed memory locations whose addresses can be changed, and whose purpose is
to increase the average speed of a memory access. Each memory location of a cache isknown as a cache
line.

Normally, changes to the address of a cache line occur automatically. Whenever the processor loads data

from amemory address and no cache line currently holds that data, a cache lineis allocated to that address
and the dataisread into the cache line. If data at the same addressis accessed again before the cachelineis
re-allocated to another address, the cache can process the memory access at high speed. So acachetypically
speeds up the second and subsequent accessesto the data. In practice, these second and subsequent accesses
are common enough for thisisto produce a significant performance gain. This effect is known as temporal
locality.

To reduce the percentage overhead of storing the current addresses of the cache lines, each cache line
normally consists of severa memory words. Thisincreases the cost of thefirst accessto a cacheline, since
several words need to be loaded from main memory to satisfy arequest for just one word. However, it also
means that a subseguent access to another word in the same cache line can be processed by the cache at high
speed. This sort of access is also common enough to increase performance significantly. This effect is
known as spatial locality.

A memory accesswhich can be processed at high speed because the data it addresses isalready in the cache
is known as a cache hit. Other memory accesses are called cache misses.

A write buffer isablock of high-speed memory whaose purposeisto optimize storesto main memory. When
astore occurs, its data, address and other details (such as data size) are written to the write buffer at high
speed. The write buffer then compl etes the store at main memory speed, which is typically much slower
than the speed of the ARM processor. In the meantime, the ARM processor can proceed to execute further
instructions at full speed.

Write buffers and caches introduce a number of potential problems, mainly dueto:
. memory accesses occurring at times other than when the programmer would normally expect them
. there being multiple physical locations where a data item can be held.

This chapter discusses these problems, and describes cache and write buffer control facilities that can be
used to work around them. They are common to the Memory Management Unit system architecture
described in Chapter Bdemory Management Unit and the Protection Unit system architecture described

in Chapter B4Protection Unit.

Note

The caches described in this chapter are accessed using the virtual address of the memory access. This
implies that they will need to be invalidated and/or cleaned when the virtual-to-physical address mapping
changes or in certain other circumstances, as descrildéehiary coherency on page B5-10.

If the Fast Context Switch Extension (FCSE) described in Chapter B6 is being used, all references to virtual
addresses in this chapter meanrtioglified virtual address that it generates.

B5-2

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Caches and Write Buffers

52 Cache organization

The basic unit of storagein acacheisthe cacheline. A cachelineissaid to bevalid when it contains cached
dataor instructions, and invalid when it does not. All cachelinesin acache areinvalidated on reset. A cache
line becomes valid when data or instructions are loaded into it from memory.

When acachelineisvalid, it contains up-to-date valuesfor ablock of consecutive main memory locations.
The length of thisblock (and therefore thelength of the cacheline) isalways apower of two, and istypically
16 bytes (4 words) or 32 bytes (8 words). If the cacheline length is 2t bytes, the block of main memory

locations is always 2'--byte aligned. Such blocks of main memory locations are called memory cache lines
or (loosely) just cache lines.

Because of this alignment requirement, virtual address bitg[31:L] are identical for all bytesin acacheline.
A cache hit occurs when bitg[31:L] of the virtua address supplied by the ARM processor match the same
bits of the virtual address associated with avalid cache line.

To simplify and speed up the process of determining whether a cache hit occurs, a cacheisusually divided
into a number of cache sets. The number of cache setsis aways apower of two. If the cachelinelengthis
2t bytes and there are 25 cache sets, bi tg[L+S-1:L] of the virtua address supplied by the ARM processor
are used to select a cache set. Only the cache lines in that set are allowed to hold the data or instructions at
the address.

The remaining bits of the virtual address (bits[31:L+S]) are known asits tag bits. A cache hit occursif the
tag bits of the virtual address supplied by the ARM processor match the tag bits associated with avalid line
in the selected cache set.

Figure 5-1 illustrates how the virtual addressis used to look up data or instructionsin the cache.

31 L+S L+S-1 L L-1 0

Virtual address tag set pos

Select one of 25
cache sets

Look for cache line with
tag in selected cache set

if not found if found
Cache miss Cache hit
Get data from Return data at position pos
main memory in cache line

Figure 5-1 Cache look-up

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B5-3

Caches and Write Buffers

5.2.1

5.2.2

Set-associativity

The set-associativity of acacheisthe number of cache linesin each of its cache sets. It can be any number
=1, and isnot restricted to being a power of two.

Low set-associativity generally simplifies cache look-up. However, if the number of frequently-used
memory cachelines that use a particular cache set exceeds the set-associativity, main memory activity goes
up and performance drops. Thisis known as cache contention, and becomes more likely as the set
associativity is decreased.

The two extreme cases are fully associative caches and direct-mapped caches:

. A fully associative cache has just one cache set, which consists of the entire cache. It is N-way
set-associative, where N is the total number of cache lines in the cache. Any cache look-up in a fully
associative cache needs to check every cache line.

. A direct-mapped cache is a one-way set-associative cache. Each cache set consists of a single cache
line, so cache look-up just needs to select and check one cache line. However, cache contention is
particularly likely to occur in direct-mapped caches.

Within each cache set, the cache lines are numbered from 0 to (set associativity)-1. The number associated
with each cache line is known asiitslex. Some cache operations take a cache line index as a parameter,
to allow a software loop to work systematically through a cache set.

Cache size

Generally, as the size of a cache increases, a higher percentage of memory accesses are cache hits. This
reduces the average time per memory access and so improves performance. However, a large cache
typically uses a significant amount of silicon area and power. Different sizes of cache can therefore be used
in an ARM memory system, depending on the relative importance of performance, silicon area, and power
consumption.

The cache size can be broken down into a product of three factors:
. The cache line length LINELEN, measured in bytes.

. The set-associativity ASSOCIATIVITY. A cache set consists of ASSOCIATIVITY cache lines, so
the size of a cache set is ASSOCIATIVIRYLINELEN.

. The number NSETS of cache sets making up the cache.

If separate data and instruction caches are used, different values of these parameters can be used for each,
and the resulting cache sizes can be different.

If the System Control coprocessor supports the Cache Type register, it can be used to determine these cache
size parameters (s@ache Typeregister on page B2-9).

B5-4

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Caches and Write Buffers

5.3 Types of cache

There are many different possible types of cache, which can be distinguished by implementation choices

such as:

. how big they are

. how they handle instruction fetches

. how they handle data writes

. how much of the cache is eligible to hold any particular item of data.

A number of these implementation choices are detailed in the subsections below. AlaochecB/pe
register on page B2-9 for details of how most of these choices can be determined for implementations which
include a Cache Type register.

Note

A high-performance memory system can contain more than one level of cache, with the first level being
small and very high speed, the next level being bigger and slower, and so on, out to main memory, which
is the largest and slowest component of the memory system. Furthermore, different cache levels can be of
different types.

This chapter only describes the first (or only) level of cache, as does the Cache Type register. If a memory
system implementation provides facilities to control second or higher level caches, details of those facilities
areIMPLEMENTATION DEFINED.

Accordingly, all references tmain memory in the rest of this chapter refer to all of the memory system
beyond the first level cache, including any further levels of cache.

53.1 Unified or separate caches

A memory system can use the same cache when processing instruction fetches as it does when processing
data loads and stores. Such a cache is knownugi§ied cache.

Alternatively, a memory system can use a different cache to process instruction fetches to the cache it uses
to process data loads and stores. In this case, the two caches are known collecgpaiatecaches and
individually as thenstruction cache anddata cache respectively.

The use of separate caches has the advantage that the memory system can often process both an instruction
fetch and a data load/store in the same clock cycle, without a need for the cache memory to be multi-ported.
The main disadvantage is that care must be taken to avoid problems caused by the instruction cache
becoming out-of-date with respect to the data cache and/or main memoje(sery coherency on

page B5-10).

Itis also possible for a memory system to have an instruction cache but no data cache, or vice versa. For the
purpose of the memory system architectures, such a system is treated as having separate caches, where one
cache is not present or has zero size.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B5-5

Caches and Write Buffers

5.3.2 Write-through or write-back caches

When a cache hit occurs for a data store access, the cache line containing the datais updated to contain its

new value. Asthis cachelinewill eventually be re-all ocated to another address, the main memory location

for the data also needs to have the new vaue written to it. There are two common techniques for handling

this:

. In awrite-through cache, the new data is also immediately written to the main memory location.

(This is usually done though a write buffer, to avoid slowing down the processor.)

. In awrite-back cache, the cache line is markeddasgy, which means that it contains data values
which are more up-to-date than those in main memory. Whenever a dirty cache line is selected to be
re-allocated to another address, the data currently in the cache line is written back to main memory.
Writing back the contents of the cache line in this manner is knowleaing the cache line.

Another common term for a write-back cache &py-back cache.

The main disadvantage of write-through caches is that if the processor speed becomes high enough relative

to that of main memory, it generates data stores faster than they can be processed by the write buffer. The

result is that the processor is slowed down by having to wait for the write buffer to be able to accept more
data.

Because a write-back cache only stores to main memory once when a cache line is re-allocated, even if many

stores have occurred to the cache line, write-back caches normally generate fewer stores to main memory

than write-through caches. This helps to alleviate the problem described above for write-through caches.

However, write-back caches have a number of drawbacks, including:

. longer-lasting discrepancies between cache and main memory conteerfseg coherency on
page B5-10)

. a longer worst-case sequence of main memory operations before a data load can be completed, which
can increase the system's worst-case interrupt latency

. increased complexity of implementation.

Some write-back caches allow a choice to be made between write-back and write-through behavior (see

Cachability and bufferability on page B5-8).

5.3.3 Read-allocate or write-allocate caches

There are two common techniques to deal with a cache miss on a data store access:

. In aread-allocate cache, the data is simply stored to main memory. Cache lines are only allocated to
memory locations when data is read/loaded, not when it is written/stored.

. In awrite-allocate cache, a cache line is allocated to the data and the current contents of main
memory are read into it, then the data is written to the cache line. (It can also be written to main
memory, depending on whether the cache is write-through or write-back.)

B5-6 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

5.3.4

Caches and Write Buffers

The main advantages and disadvantages of these techniques are performance-related. Compared with a
read-allocate cache, a write-allocate cache can generate extra main memory read accesses that would not
have otherwise occurred and/or save main memory accesses on subseguent stores because the data is now
in the cache. The balance between these depends mainly on the number and type of the |oad/store accesses
to the data concerned, and on whether the cache is write-through or write-back.

Whether write-allocate or read-allocate caches are used in an ARM memory system iS IMPLEMENTATION
DEFINED.

Replacement strategies

If acacheis not direct-mapped, a cache miss for amemory address requires one of the cache linesin the
cache set associ ated with the addressto bere-allocated. Theway in which this cache lineis chosenisknown
as the replacement strategy of the cache.

Two typical replacement strategies are:

Random replacement

The cache control logic contains a pseudo-random number generator, the output of whichis
used to select the cache line to be re-all ocated.

Round-robin replacement

The cache control logic contains a counter which is used to select the cache line to be
re-alocated. Each timethisis done, the counter isincremented, so that a different choiceis
made next time.

Some caches allow a choice of the replacement strategy in use. Typically, one choiceisasimple, easily
predictable strategy like round-robin replacement, which alows the worst-case cache performance for a
code sequence to be determined reasonably easily. The main drawback of such strategiesis that their
average performance can change abruptly when comparatively minor details of the program change.

For example, suppose aprogram is accessing dataitems D1, D2, ..., Dn cyclically and that all of these data
items happen to use the same cache set. With round-robin replacement in an m-way set-associative cache,
the program isliable to get:

. nearly 100% cache hits on these data items whemn

. 0% cache hits as soon as n becomes m+1 or greater.

In other words, a minor increase in the amount of data being processed can lead to a major change in how
effective the cache is.

When a cache allows a choice of replacement strategies, the second choice is normally a strategy like
random replacement which has less easily predictable behavior. This makes the worst-case behavior harder
to determine, but also makes the average performance of the cache vary more smoothly with parameters like
working set size.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B5-7

Caches and Write Buffers

5.4

Cachability and bufferability

Because caches and write buffers change the number, type and timing of accessesto main memory, they are
not suitable for some types of memory location. In particular, cachesrely on norma memory characteristics
such as:

. A load from a memory location returns the last value stored to the location, with no side-effects.
. A store to a memory location has no side-effects other than to change the memory location value.
. Two consecutive loads from a memory location both get the same value.

. Two consecutive stores to a memory location result in its value becoming the second value stored,
and the first value stored is discarded.

Memory-mapped /O locations usually lack one or more of these characteristics, and so are unsuitable for
caching.

Also, write buffers and write-back caches rely on it being possible to delay a store to main memory so that
it actually occurs at a later time than the store instruction was executed by the ARM processor. Again, this
might not be valid for memory-mapped I/O locations. A typical example is an ARM interrupt handler which
stores to an /O device to acknowledge an interrupt it is generating, and then re-enables interrupts (either
explicitly or as a result of the SPSR CPSR transfer performed on return from the interrupt handler).

If the actual store to the 1/O device occurs when the ARM store instruction is executed, the I/O device is no
longer requesting an interrupt by the time that interrupts are re-enabled. But if a write buffer or write-back
cache delays the store, the /O device might still be requesting the interrupt. If so, this results in a spurious
extra call to the interrupt handler.

Because of problems like these, both the Memory Management Unit and the Protection Unit architectures
allow a memory area to be designated as uncachable, unbufferable or both. This is done by using the
memory address to generate two bits (C and B) for each memory access. Details of how the C and B bits
are produced for each architecture can be found in ChaptéeBBry Management Unit and Chapter B4
Protection Unit.

Table 5-1 shows how the C and B bits are interpreted for write-through caches, write-back caches without
selectable write-through behavior, and write-back caches with selectable write-through behavior.

Table 5-1 Interpretation of Cachable and Bufferable bits

Write-through Write-back only Write-back/write-through
cache cache cache

0 0 Uncached/unbuffered Uncached/unbuffered Uncached/unbuffered

0 1 Uncached/buffered Uncached/buffered Uncached/buffered

1 0 Cached/unbuffered UNPREDICTABLE Write-through cached/buffered

1 1 Cached/buffered Cached/buffered Write-back cached/buffered

B5-8

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Caches and Write Buffers

The purpose of making amemory area unbufferable isto prevent storesto it being delayed. However, if the
areaiscachable and awrite-back cacheisin use, stores can be delayed anyway. This meansthat the obvious
interpretation of C == 1, B == 0 as cached/unbuffered is not useful for write-back caches. It therefore only
has this interpretation in write-through caches. In write-back caches, it instead results in UNPREDICTABLE
behavior or selects write-through caching, as shown in Table 5-1 on page B5-8.

Note

The reason that a memory-mapped /O location generally needs to be marked as uncachable is
effectively to prevent the memory system hardware from incorrectly optimizing away loads and
stores to the location. If the 1/O system is being programmed in a high-level language, this is not
enough. The compiler also needs to be told not to optimize away these loads and stores. In C and
related languages, the way to do this is to use theat i | e qualifier in the declaration of the
memory-mapped I/O location.

It can also be desirable to mark a memory area as uncachable for performance reasons. This typically
occurs for large arrays which are used frequently, but whose access pattern contains little temporal
or spatial locality. Making such arrays uncachable avoids the cost of loading a whole cache line when
only a single access is typically going to occur. It also means that other data items are evicted from
the cache less frequently, which increases the effectiveness of the cache on the rest of the data.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. B5-9

Caches and Write Buffers

5.5

551

Memory coherency

When a cache and/or awrite buffer isused, the system can hold multiple versions of the value of amemory
location. Possible physical locations for these values are main memory, the write buffer and the cache. If
separate caches are used, either or both of the instruction cache and the data cache can contain a value for
the memory location.

Not all of these physical locations necessarily contain the value most recently written to the memory
location. The memory coherency problem isto ensure that when amemory location isread (either by adata
read or an instruction fetch), the value actually obtained is aways the value that was most recently written
to the location.

In the ARM memory system architectures, some aspects of memory system coherency are required to be
provided automatically by the system. Other aspects are dealt with by memory coherency rules, which are
limitations on how programs must behave if memory coherency isto be maintained. The behavior of a
program that breaks a memory coherency rule is UNPREDICTABLE.

The following subsections discuss particular aspects of memory coherency in more detail:
. Address mapping changes

. Ingtruction cache coherency on page B5-11

. Direct Memory Access (DMA) operations on page B5-12

. Other memory coherency issues on page B5-13.

Address mapping changes

In an ARM memory system that implements virtual-to-physical address mapping (such as the MMU-based
memory system described in ChapteBdnory Management Unit), there are two implementation choices
for the address associated with a cache line:

. It can be the virtual address of the data in the cache line. This is the more usual choice, because it
allows cache line look-up to proceed in parallel with address translation.

. It can be the physical address of the data in the cache line.

If an implementation is designed to use the virtual address, a change to the virtual-to-physical address
mapping can cause major memory coherency problems, as any data in the remapped address range which
is in the cache ceases to be associated with the correct physical memory location.

Similarly, the data in a write buffer can have virtual or physical addresses associated with it, depending on
whether the address mapping is done when data is placed in the write buffer or when it is stored from the
write buffer to main memory. If a write buffer is designed to use the virtual address, a change to the
virtual-to-physical address mapping can again cause memory coherency problems.

These problems can be avoided by performingu@®EMENTATION DEFINED sequence of cache and/or
write buffer operations before a change of virtual-to-physical address mapping. Typically, this sequence
contains one or more of the following:

B5-10

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Caches and Write Buffers

. cleaning the data cache if it is a write-back cache
. invalidating the data cache

. invalidating the instruction cache

. draining the write buffer.

There might also be requirements for the code that performs the change of address mapping and any data it
accesses to be uncachable, unbufferable or both.

55.2 Instruction cache coherency

A memory system is permitted to satisfy an instruction fetch request from a separate instruction cache. An
instruction cache line fetch can be satisfied from main memory, and there is no requirement for data stores
to update a separate instruction cache. This means that the following sequence of events causes a potential
memory coherency problem:

1. An instruction is fetched from an address A1, causing the cache line containing that address to be
loaded into the instruction cache.

2. A data store occurs to an address A2 in the same cache line as Al, causing an update to one or more
of the data cache, the write buffer and main memory, but not to the instruction cache. (A2 might be
the same address as Al, or a different address in the same cache line. The same considerations apply
in both cases.)

3. An instruction is executed from the address A2. This could result in either the old contents or the new
contents of the memory location being executed, depending on whether the cache line is still present
in the instruction cache or needs to be reloaded.

This problem can be avoided by performingRLEMENTATION DEFINED sequence of cache control
operations between steps 2 and 3. Typically, this sequence consists of:

. nothing at all for an implementation with a unified cache

. invalidating the instruction cache for an implementation with separate caches and a write-through
data cache

. cleaning the data cache followed by invalidating the instruction cache for an implementation with

separate caches and a write-back data cache.

Therefore, the memory coherency rule to maintain instruction cache coherency is that: if a data store writes
an instruction to memory, thiSIPLEMENTATION DEFINED sequence must be executed before the instruction

is executed. A typical case where this needs to be done is when an executable file is loaded into memory.
After loading the file and before branching to the entry point of the newly loaded code, the
IMPLEMENTATION DEFINED sequence must be executed to ensure that the newly loaded program executes
correctly.

The performance cost of the cache cleaning and invalidating required when this happens can be large, both
as a direct result of executing the cache control operations and indirectly because the instruction cache needs
to be reloaded. This means that programming techniques that involve frequent real-time generation and
execution of small code fragments must be treated with care, as porting them to a new memory system can
require careful redesign and re-optimization to avoid excessive performance loss.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B5-11

Caches and Write Buffers

Note

. The sequence required to maintain instruction cache coherency is part of the sequence executed by
an Instruction Memory Barrier, but not necessarily all of it.IBsteuction Memory Barriers (IMBs)
on page A2-28 for more details.

. On some implementations, it is possible to exploit knowledge of the range of addresses occupied by
newly stored instructions to reduce the cost of the required cache operations. For example, it might
be possible to restrict the cache cleaning and invalidating to that address range. Whether this is
possible iSMPLEMENTATION DEFINED.

. If it is known that none of the range of addresses containing newly stored instructions is in the
instruction cache, the memory coherency problem described above cannot occur. However, it is
difficult to be certain of this across all ARM implementations because:

— Afetch of any instruction in a cache line caualé®f the instructions in that cache line to be
loaded into the instruction cache.

— Typically, some instructions are fetched but never executed, so it is possible for an instruction
cache line to have been loaded but not to contain any executed instructions. Also, although
instructions that are fetched but not executed are typically close to instructions that have been
executed, this need not be the case in implementations that use branch prediction or similar
techniques.

As a result, code that uses this technique to avoid the instruction cache coherency problem is not fully
implementation-independent.

5.5.3 Direct Memory Access (DMA) operations

I/O devices can performirect Memory Access (DMA) operations, in which they access main memory
directly, without the processor performing any accesses to the data concerned.

If a DMA operation stores to main memory without updating the cache and/or write buffer, some rules
normally relied upon to simplify memory coherency issues might be violated. For example, it is normally
the case that if a data item is in the cache, the copy of it in main memory is not newer than the copy in the
cache. This allows the value in the cache to be returned for a data load without explicitly checking whether
there is a more recently written version in main memory. However, a DMA store to main memory can cause
the main memory value to be more recently written than the cache value.

Similarly, if a DMA operation loads data from main memory without also checking the cache and/or write
buffer to see whether they contain more recent versions, it might get an out-of-date version of the data.

In both cases, a possible solution would be for DMA to also access the cache and write buffer. However,
this would significantly complicate the memory system.

So, a memory system implementation can hsNveEMENTATION DEFINED memory coherency rules for
handling DMA operations.

Typically, these involve one or more of the following:

. marking the memory areas involved in the DMA operation as uncachable and/or unbufferable

B5-12 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Caches and Write Buffers

. cleaning and/or invalidating the data cache, at least with respect to the address range involved in the
DMA operation

. draining the write buffer

. restrictions on processor accesses to the address range involved in the DMA operation until it is
known that the DMA operation is complete.

5.5.4 Other memory coherency issues

Memory coherency issues not covered above are those involving the data cache, main memory and/or the
write buffer, and which do not involve a change of virtual-to-physical address mapping or a DMA operation.
All such issues must be dealt with automatically by the memory system, so that the value returned to the
ARM processor is the most up-to-date of the values in the possible physical locations.

Note

This requirement applies to a single processor only. If a system contains multiple ARM processors, all
issues relating to memory coherency between the separate processors are system-dependent.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B5-13

Caches and Write Buffers

5.6 CP15 registers

Caches and write buffers are controlled with System Control coprocessor registers 7 and 9, and some bits
of register 1.

5.6.1 Cache and write buffer control bits in register 1

The following bitsin register 1 of the System Control Coprocessor control caches and write buffers:

C (bit[2]) If aunified cache is used, thisisthe enable/disable bit for the unified cache. If separate
caches are used, thisis the enable/disable bit for the data cache. In either case:
0 = Cache disabled
1 = Cache enabled.
If the cache is not implemented, this bit reads as 0 and ignores writes. If the cache cannot
be disabled, this bit reads as 1 and ignores writes.

W (bit[3]) Thisis the enable/disable bit for the write buffer:
0 = Write buffer disabled
1 = Write buffer enabled.

If the write buffer is not implemented, thisbit readsas0 and ignore writes. If the write buffer
cannot be disabled, this bit reads as 1 and ignores writes.

I (bit[12]) If separate caches are used, thisis the enable/disable bit for the instruction cache:
0 = Cache disabled
1 = Cache enabled.

If aunified cacheisused or theinstruction cacheis not implemented, this bit readsas 0 and
ignores writes. If the instruction cache cannot be disabled, this bit reads as 1 and ignores
writes.

RR (bit[14]) If the cache allows an alternative replacement strategy to be used which has a more easily
predictable worst-case performance, this bit selectsit:

0 = Normal replacement strategy (for example, random replacement)
1 = Predictable strategy (for example, round-robin replacement).

B5-14 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Caches and Write Buffers

5.6.2 Register 7: Cache functions

The System Control coprocessor register 7 isawrite-only register which is used to control caches and write
buffers. It is also used to implement some similar functions on prefetch buffers and branch target caches, if
they exist, and to implement the wait for interrupt clock control function. Table 5-2 lists the functions
available by using an MCR p15, 0, <Rd>, c7, <CRm>, <opcode2> instruction to write to register 7.

Writing to register 7 with a combination of <CRn> and <opcode2> which isnot listed in Table 5-2 has
UNPREDICTABLE results.

Not all functions listed in Table 5-2 are necessarily relevant to or supported by an implementation.
Attempting to perform afunction which is not supported by theimplementation has UNPREDICTABLE results.

Reading register 7 with an MRC instruction has UNPREDICTABLE results.

In Table 5-2, the following terms apply:

Clean

Invalidate

Prefetch

Drain write buffer

Wait for interrupt

Prefetch buffer
Branch target cache

Data

Applies to write-back data caches, and meansthat if the cache line contains stored
datathat has not yet been written out to main memory, it is written to main memory
now.

Means that the cache line (or dl thelines in the cache) is marked as invalid, so that
no cache hits occur for that line until it is re-allocated to an address.

For write-back data caches, this does not include cleaning the cache line unlessthat
isalso stated.

Means the memory cache line at the specified virtual address (which must be cache
line aligned) is loaded into the cache.

Stops the ARM from executing further until all datain the write buffer has been
stored to main memory. It can be used instead of unbufferable memory when the
timing of specific main memory stores needs to be controlled (for example, when a
store to an interrupt acknowledge location needsto compl ete before interrupts are
enabled).

Putsthe ARM into alow power state and stopsit executing further until an interrupt
occurs.

When an interrupt does occur, the MCR instruction completes and the IRQ or FIQ
handler is entered as normal. The return link in R14_irg or R14_fiq contains the
address of the MCRinstruction plus 8, so that the normal instruction used for
interrupt return (SUBS PC, R14, #4) returnsto the instruction following the MCR.

Operations are IMPLEMENTATION DEFINED.
Operations are IMPLEMENTATION DEFINED.

Isthe value that is written to register 7, which isthe value in the register <Rd>
specified in the MCR instruction.
If the datais stated to be avirtual address, it must be cache line aligned. This means

that if the cache linelengthis 2t bytes, bitgL-1:0] of the address must be zero. This
address is looked up in the cache. If a cache hit occurs, the specified operation

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. B5-15

Caches and Write Buffers

occurs on the cache line it identifies. If a cache miss occurs, nothing moreis done.
A loop of operations of this type can be used to clean and/or invaidate all cache
lines relating to a specified range of addresses.

Note

If the Fast Context Switch Extension (FCSE) described in Chapter B6 isbeing used,
the virtual addresses passed to CP15 by some of the functionsin Table 5-2 on
page B5-16 are passed as data. This means that no address modification is
performed for them by the FCSE.

If the datais stated to be set/index, it identifies the cache line that the operationisto
be applied to by specifying which cache set it bel ongsto and what itsindex iswithin
the set. A loop of operations of thistype can be used to clean and/or invalidate an
entire cache, or al of the non-locked down portion of the cache (see Register 9:
Cache lockdown on page B5-18).

If L, A, and S are the |ogarithms base 2 of the cache size parameters LINELEN,
ASSOCIATIVITY and NSETS, rounded up to an integer in the case of A, the
format of set/index datais:

31 32-A 31-A L+S L+S1 L L-1 0

index SBZ set SBZ

For the definitions of the cache size parameters, see Cache size on page B5-4. If the
implementation includes a Cache Type register, these parameters can be determined
from it (see Cache Type register on page B2-9).

Table 5-2 Cache and similar functions

<CRm> <opcode2> Function Data

c0 4 Wait for interrupt SBZ

c5 0 Invalidate entire instruction cache SBz

c5 1 Invalidate instruction cache line Virtual address
c5 2 Invalidate instruction cache line Set/index

c5 4 Flush prefetch buffer SBZ

c5 6 Flush entire branch target cache SBZ

c5 7 Flush branch target cache entry IMP

c6 0 Invalidate entire data cache SBz

c6 1 Invalidate data cache line Virtual address

B5-16 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Caches and Write Buffers

Table 5-2 Cache and similar functions (Continued)

<CRm> <opcode2> Function Data
c6 2 Invalidate data cache line Set/index
c7 0 Invalidate entire unified cache or both instruction and SBzZ

data caches
c7 1 Invalidate unified cache line Virtual address
(74 2 Invalidate unified cache line Set/index
c8 2 Wait for interrupt (alternative, deprecated encoding) SBZ
c10 1 Clean data cache line Virtual address
c10 2 Clean data cache line Set/index
c10 4 Drain write buffer SBz
cl1 1 Clean unified cacheline Virtual address
cl1 2 Clean unified cacheline Set/index
c13 1 Prefetch instruction cache line Virtual address
cl4 1 Clean and invalidate data cache line Virtual address
cl4 2 Clean and invalidate data cache line Set/index
c15 1 Clean and invalidate unified cache line Virtual address
c15 2 Clean and invalidate unified cache line Set/index

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

B5-17

Caches and Write Buffers

5.6.3

Register 9: Cache lockdown

One problem with cachesis that while they normally improve average access time to dataand instructions,

they usually make the worst-case access time worse. This occurs for a number of reasons, including:

. There is a delay before the system determines that a cache miss has occurred and starts the main
memory access.

. If a write-back cache is being used, there might be a further delay due to the need to store the contents
of the cache line that is being re-allocated.

. A whole cache line is loaded from main memory, not just the data requested by the ARM processor.

In real-time applications, this increase in the worst-case access time can be very significant.

Cachelockdownis a feature of some ARM memory systems designed to alleviate this. It allows critical code
and data (such as high-priority interrupt routines and the data they access) to be loaded into the cache in
such a way that the cache lines containing them are not subsequently re-allocated. This ensures that all
subsequent accesses to the code and data concerned are cache hits and therefore complete quickly.

In the description that follows, LINELEN, ASSOCIATIVITY and NSETS are the cache size parameters
described irCache size on page B5-4.

For lockdown purposes, the cache is divided iotkdown blocks, each of which consists of one line from
each cache set. The lockdown blocks are indexed from 0 to ASSOCIATIVITY-1. The cache lines in a
lockdown block are chosen to have the same index as the lockdown blo8kt{asmciativity on

page B5-4). So lockdown block O consists of the cache line with index 0 from each cache set, etc.

Cache lockdown can be performed with a granularity of a lockdown block. Any number of lockdown blocks
from 1 to ASSOCIATIVITY-1 can be chosen. If N lockdown blocks are locked down, they have indices 0
to N-1, and lockdown blocks N to ASSOCIATIVITY-1 are available for normal cache operation.

Note

You cannot lock down the entire cache. At least one lockdown block must be left for normal cache
operation.

Each lockdown block can hold NSETS memory cache lines, provided each of the memory cache lines is
associated with a different cache set. It is recommended that systems are designed so that each lockdown
block contains a set of NSETS consecutive memory cache lines. This is NSENIELEN consecutive

memory locations, starting at a cache line boundary. (Such sets are easily identified and are guaranteed to
consist of one cache line associated with each cache set.)

The System Control coprocessor primary register 9 is used to control cache lockdown. If separate caches
are used, there are two variants of this register, selected byppo@de2> field of theMCR or MRC
instruction used to access register 9:

<opcode2> == 0 Selects the data cache lockdown register.
<opcode2> == 1 Selects the instruction cache lockdown register.
If a unified cache is used, there is only one variant of this registesgpmode2> should be 0.

<CRn> must always be 0 for MCR andMRC instructions that access register 9.

B5-18

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Caches and Write Buffers

Formats for the cache lockdown register

There are two possible formats for the cache lockdown register. These are shown in the following text as
Format A and Format B, and it is IMPLEMENTATION DEFINED which one an implementation uses.

Both formats include an index field, which is chosen to be wide enough to hold alockdown block index.
So, itswidth W is the logarithm base 2 of ASSOCIATIVITY, rounded up to an integer if necessary.

If the implementation includes a Cache Typeregister, it can be used to determine the register 9 format (see
Cache Type register on page B2-9).

Format A:

31 32-W 31-W 0

index UNP/SBZ

Reading a Format A register returns the value last written to it.

Writing a Format A register has the following effects:

. The next cache miss in each cache set replaces the cache line with the specified index in that cache
set.
. The replacement strategy for the cache is constrained so that it can only select cache lines with the

specified index and higher, until the register is written again.

Format B:

31 30 W W-1 0

L UNP/SBZ index

Reading a Format B register returns the value last written to it.
Writing a Format B register has the following effects:

. If L == 1, all cache misses replace the cache line with the specified index in the relevant cache set
until the register is written again.

. If L == 0, then:
— Ifthe previous value of L was 0 and the previous value of index is smaller than the new value,
the behavior i9NPREDICTABLE.

— Otherwise, the replacement strategy for the cache is constrained so that it can only select cache
lines with the specified index and higher, until the register is written again.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B5-19

Caches and Write Buffers

Cache lockdown procedure

The procedure to lock down N lockdown blocks is as follows:

1

Ensure that no processor exceptions can occur during the execution of this procedure, by disabling

interrupts, for example. If for somereason thisisnot possible, all code and dataused by any exception
handlers that can get called must be treated as code and data used by this procedure for the purpose
of steps2 and 3.

If an ingtruction cache or a unified cache is being locked down, ensurethat al the code executed by
this procedure is in an uncachable area of memory.

If adata cache or a unified cache is being locked down, ensure that all data used by the following
codeisin an uncachable area of memory, apart from the data which isto be locked down.

Ensure that the data/instructions that are to be locked down are in a cachable area of memory.

Ensure that the data/instructions that are to be locked down are not already in the cache, using cache
clean and/or invalidate instructions as appropriate.

For each of i =0to N-1:
a Write to register 9 with index ==i (for Formats A and B), and L == 1 (for Format B).
b. For each of the cache lines to be locked down in lockdown block i:
If adata cache or aunified cache is being locked down, use an LDRinstruction to load aword

from the memory cache line, which ensures that the memory cache lineis|oaded into the
cache.

If an instruction cacheis being locked down, usetheregister 7 prefetch instruction cacheline
operation (<CRm> == c13, <opcode2> == 1) to fetch the memory cache line into the cache.

Write to register 9 with index == N (for Formats A and B), and L == 0 (for Format B).

Note

If the Fast Context Switch Extension (FCSE) described in Chapter B6 is being used, care needsto be taken
in step 6b. Thisis because:

To minimise the possible confusion caused by this, it is recommended that the lockdown procedure should:

If a data cache or a unified cache is being locked down, the address used_faR thetruction is
subject to modification by the FCSE.

If an instruction cache is being locked down, the address used for the register 7 operation is being

treated as data and so is not subject to modification by the FCSE.

start by disabling the FCSE (by setting the PID to zero)

where appropriate, generate modified virtual addresses itself by ORing the appropriate PID value into

the top 7 bits of the virtual addresses it uses.

Cache unlock procedure

To unlock the locked-down portion of the cache, write to register 9 with index == 0 (for Formats A and B),

and L == 0 (for Format B).

B5-20

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Caches and Write Buffers

Interactions with register 7 operations

Cache lockdown only prevents the normal replacement strategy used on cache misses from choosing to
re-allocate cachelinesin thelocked-down region. Register 7 operationsthat invalidate cache contents affect
locked-down cachelines as normal. If such operationsareused, ensurethat they do not use virtual addresses
or cache set/index combinations that affect the locked-down cache lines. (Or if it is difficult to avoid
affecting the locked-down cache lines, repeat the cache lockdown procedure afterwards.)

Also, on some implementations and under some circumstances, the clean single Dcacheline and clean and
invalidate single Dcache line register 7 operations (see Table 5-2 on page B5-16) which identify a cache
line by set/index can disrupt the constraints on the normal replacement strategy. To avoid this affecting the
locked-down area of the cache, read register 9 immediately before code that usesthese operations, and write
the value read back to register 9 immediately afterwards.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B5-21

Caches and Write Buffers

B5-22 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter B6
Fast Context Switch Extension

This chapter describes the Fast Context Switch Extension (FCSE). It contains the following sections:
. About the FCSE on page B6-2

. Modified virtual addresses on page B6-3

. Enabling the FCSE on page B6-5

. CP15 registers on page B6-6.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B6-1

Fast Context Switch Extension

6.1

About the FCSE

The Fast Context Switch Extension (FCSE) modifies the behavior of an ARM memory system. This
modification allowsmultiple programsrunning on the ARM processor to use identical addressranges, while
ensuring that the addresses they present to the rest of the memory system differ.

Normally, a swap between two software processes whose address ranges overlap requires changes to be
made to the virtual-to-physical address mapping defined by the MM U’s page tables (see Chapter B3
Memory Management Unit). It also typically causes cache and TLB contents to become invalid (because
they relate to the old virtual-to-physical address mapping), and so requires caches and TLBsto be flushed.
As aresult, each process swap has a considerable overhead, both directly because of the cost of changing
the page tables and indirectly because of the cost of subsequently reloading caches and TLBs.

By presenting different addresses to the rest of the memory system for different software processes even
when they are using identical addresses, the FCSE avoids this overhead. It also all ows software processes
touseidentica addressrangesevenwhen therest of the memory system does not support virtual-to-physical
address mapping.

B6-2

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Fast Context Switch Extension

6.2 Modified virtual addresses

The 4GB virtual address space is divided into 128 process blocks, each of size 32MB. Each process block
can contain a program which has been compiled to use the address range 0x00000000 to Ox01FFFFFF.
For each of i=0to 127, processblock i runsfrom address (i x 0x02000000) to address (i x 0x02000000
+ 0x01FFFFFF).

The FCSE processes each virtual address for amemory access generated by the ARM processor to produce
amodified virtual address, which is sent to the rest of the memory system to be used in place of the normal
virtual address. For an MM U-based memory system, the processisillustrated in Figure 6-1:

Modified
Virtual virtual Physical
address address address
(VA) (MVA) (PA) .
Main
ARM FCSE MMU
memory

Cache

Figure 6-1 Address flow in MMU memory system with FCSE

When the ARM processor generates a memory access, the relationship between the Virtual Address (VA)
and Modified Virtual Address (MVA) is:

if (VA[31:25] == 0b0000000) then
MVA = VA | (PID << 25)

el se
MWA = VA

where Pl Dis a 7-bit number that identifies which process block the current processis loaded into. Thisis
also known as the process | D of the current process.

Note

Virtua addresses are sometimes passed to the memory system as data, as for example in some of the cache
control operations described in Register 7: Cache functionson page B5-15. For these operations, no address
modification occurs, and MVA = VA.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B6-3

Fast Context Switch Extension

Each processis compiled to use the address range 0x00000000 to 0Ox 01 FFFFFF. When referring to its
own instructions and data, therefore, the program generates VAs whose top seven hits are all zero. The
resulting MV As have their top seven bitsreplaced by PID, and so lie in the process block of the current
process.

Theprogramisalso allowed to generate V Aswhosetop 7 bitsare not al zero. When this happens, theMV A
isequal to the VA. This dlows the program to address the process block of another process, provided the
other process does hot have process ID 0. Provided access permissions are set correctly, this can be used for
inter-process communication.

Note

It is recommended that only process IDs 1 and above are used for genera -purpose processes, because the
process with process ID 0 cannot be communicated with in this fashion.

Use of the FCSE therefore allows the cost of a process swap to be reduced to:
. The cost of a write of the PID.

. The cost of changing access permissions if they need changing for the new process. In an

MMU-based system, this might require a TLB flush. However, this is usually significantly cheaper
than the cache flush that would have been required without the FCSE. Furthermore, even the TLB
flush can often be avoided by the use of domains. This reduces the cost to that of a write to the
Domain Access Control Register (d@emains on page B3-17).

B6-4

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Fast Context Switch Extension

6.3 Enabling the FCSE
When PID == 0b0000000, the rulesfor processing aVA awaysresultinMVA == VA, asif the FCSE were
not present.
There is therefore no specific FCSE enable bit. Instead, the PID isinitialized to 0b0000000 on reset,
resulting in the FCSE being effectively disabled.

The FCSE can then be enabled by writing a non-zero value to the PID, and disabled by writing 0b0000000
to the PID.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. B6-5

Fast Context Switch Extension

6.4

6.4.1

CP15 registers

The FCSE only uses one coprocessor 15 register, namely register 13.

Register 13: Process ID

31 25 24 0

PID UNP/SBZP

Reading register 13 returns the PID in bits[31:25]. Bitg24:0] of the value read are UNPREDICTABLE.

Writing register 13 setsthe PID to bits[31:25] of the value written. Bits[24:0] of the value written should be
zero or hitg[24:0] of avalue previously read from register 13. The results of writing any other value to
bitg[24:0] are UNPREDICTABLE.

In MCR and MRC instructions used to write and read register 13, <CRm> should be c0 and <opcode2>
should be 0 (or omitted). If they have other values, the instruction is UNPREDICTABLE.

Note

When the PID iswritten, the overall virtual-to-physical address mapping changes. Because of this, care
must be taken to ensure that instructions which might have aready been prefetched are not affected by the
address mapping change.

Formally, thismeansthat an IM B sequenceisrequired, asdescribed in I nstruction Memory Barriers (IMBs)
on page A2-28. However, the mapping from the modified virtua address to the physical addressis
unchanged, so typically thereisno need to flush caches, etc. Thismeans that an implementation can usually
specify arestricted form of the IMB sequence to be used after using an MCR to write to register 13.

Typically, this means that all instructions reached by predictable subsequent execution from the MCR
instruction must be fetched with addresses whose top seven bits are not 0b0000000. For the definition of
predictable subsequent execution and further details, see Other uses for IMBs on page A2-30.

B6-6

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Part C

Vector Floating-point Architecture

Chapter C1

Introduction to the Vector Floating-point
Architecture

This chapter gives an introduction to the V ector Floating-Point (VFP) architecture, and its compliance with
the IEEE 754 standard. It contains the following sections:

. About the Veector Floating-point architecture on page C1-2

. Overview of the VFP architecture on page C1-3
. Compliance with the | EEE 754 standard on page C1-7
. |EEE 754 implementation choices on page C1-8.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C1l-1

Introduction to the Vector Floating-point Architecture

1.1

About the Vector Floating-point architecture

The Vector Floating-Point (VFP) architecture is a coprocessor extension to the ARM architecture. It
provides single-precision and double-precision floating-point arithmetic, as defined by ANS/IEEE Sd.
754-1985 |EEE Sandard for Binary Floating-Point Arithmetic. This document is referred to as the IEEE
754 standard in the following text.

Short vectors of up to 8 single-precision or 4 double-precision numbers are handled particularly efficiently
by the VFP architecture. Most arithmetic instructions can be used on these vectors, alowing
single-instruction, multiple-data (SIM D) parallelism. Furthermore, the floating-point load and store
instructions have multipleregister forms, allowing vectorsto be transferred to and from memory efficiently.

To date, there has only been one major version of the VFP architecture (Version 1, or VFPv1).
Double-precision support is optional, with its presence being indicated by the variant letter D. So the
VFPv1D variant has both single precision and double precision, while VFPvIxD supports single precision
only. By default, double-precision support is present.

C1-2

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Introduction to the Vector Floating-point Architecture

1.2 Overview of the VFP architecture

Thissection provides abrief overview of the VFP architecture. More extensive and detailed information on
the architectureis given in Chapter C2 VFP Programmer’s Model

1.2.1 Registers

VFP has 32 general-purpose registers, each capable of holding a single-precision floating-point number or
a 32-hit integer. In D variants of the architecture, these registers can also be used in pairs to hold up to 16
double-precision floating-point numbers. There are a so three or more system registers:

FPSID Isread-only. It can be read to determine which implementation of the VFP architecture is
being used.
FPSCR Supplies al user-level status and control. Status bits hold comparison results and

cumulative flags for floating-point exceptions. Control bits are provided to select rounding
options and vector length/stride, and to enable floating-point exception traps.

FPEXC Contains afew bits for system-leve status and control.

The remaining bits of the FPEXC register and any further system registers are IMPLEMENTATION DEFINED,
and aretypically used for internal communication between the hardware and software components of aVFP
implementation (see Hardware and software implementatioors page C1-4).

1.2.2 Instructions

Instructions are provided to:

Load floating-point values into registers from memory, and store floating-point values in registers to
memory. Some of these instructions allow multiple register values to be transferred, providing
floating-point equivalents to ARMDMandSTMinstructions. Among other purposes, such
instructions can be used to load and store short vectors of floating-point values.

Transfer 32-bit values directly between VFP and ARM general-purpose registers.
Transfer 32-bit values directly between VFP system registers and ARM general-purpose registers.

Add, subtract, multiply, divide, and take the square root of floating-point register values. These
instructions can be used on short vectors as well as on individual floating-point values.

Copy floating-point values between registers. In the process, the sign bit can be inverted or cleared
(or left unchanged), providing negation and absolute value instructions as well as straightforward
copies. All of these instructions can also be used on short vectors.

Perform combined multiply-accumulate operations on floating-point values and short vectors,
providing space-efficient equivalents for common sequences of multiply, negate, add, and subtract.

Perform conversions between single-precision values, double-precision values, unsigned 32-bit
integers and two's complement signed 32-bit integers.

Compare floating-point values in registers with each other or with zero.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C1-3

Introduction to the Vector Floating-point Architecture

1.2.3

1.2.4

Floating-point exceptions

The VFP architecture supports all five of the floating-point exceptions defined in the IEEE 754 standard:
. Invalid Operation

. Division by Zero

. Overflow

. Underflow

. Inexact.

These are supported in both untrapped and trapped forms:

Untrapped handling of an exception

This causes the appropriate cumulative flag in the FPSCR to be set to 1, and any result
registers of the exception-generating instruction to be set to the result values specified by
the standard. Execution of the program containing the exception-generating instruction then
continues.

Trapped handling of an exception

This is selected by setting the appropriate control bit in the FPSCR. When the exception
occurs, a trap handler software routine is called. Details of how trap handler routines are
called and of the facilities available to them BeLEMENTATION DEFINED.

Hardware and software implementations

Because of the existence of trapped floating-point exceptions, any implementation of the VFP architecture
must include a software component. This is typically installed on the ARM undefined instruction vector,
and has the job of catching a trapped exception and converting it into a trap handler call.

The software component of a VFP implementation can perform other tasks in addition to trap handler calls.
The division of labour between the hardware and software components of a VFP implementation is
IMPLEMENTATION DEFINED.

VFP implementations can be classified according to whether they also include a hardware component:

Software implementation

This implementation consists of software only, with all floating-point arithmetic being
emulated by ARM routines. A software implementation is also sometimes callgel a
emulator.

Hardwar e implementation

This implementation contains both hardware and software components. Typically, the
hardware is designed to handle all common cases, to optimize performance. When a case
where the hardware cannot handle on its own is encountered, the software component (also
known assupport code for the hardware) is called to deal with it. Details of how the

hardware and its support code interactisi EMENTATION DEPENDENT.

Cl-4

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

1.25

Introduction to the Vector Floating-point Architecture

Interactions with the ARM architecture

The VFP architecture has been designed to conform fully with the ARM coprocessor architecture. All VFP
instructions are special cases of the ARM’s generic coprocessor instructions (CDP, LDC, MCR, MRC, and
STC), using coprocessor numbers 10 and 11. Asagenera rule, coprocessor 10 is used for single-precision
instructions and coprocessor 11 for double-precision instructions.

All coprocessor 10 and 11 instructions that have not been allocated meanings as VFP instructions are
reserved for future expansion of the VFP architecture, and must be treated as UNDEFINED. Hardware
coprocessor implementations of the VFP architecture will fail to respond to these instructions, causing the
ARM'’s Undefined Instruction exception to occur. For more details, see Undefined | nstruction exception on
page A2-15.

The recommended way for a VFP coprocessor to invoke its support code uses the same mechanism:

1 Beforethe VFP hardwareisenabled, the support codeisinstalled on the ARM’sundefined instruction
vector.

2. When the hardware needs assistance from the support code, it failsto respond to aV FP instruction.
3. Thisresultsin an Undefined Instruction exception, causing the support code to be executed.

In such a system, the support code is responsible for distinguishing these Undefined Instruction exceptions
from those caused by the reserved instructions and taking different actions accordingly.

The ARM testswhether a coprocessor instruction satisfies its condition (as described in The condition field
on page A3-5), using the CPSR flags, and treats it asa NOP if the condition fails. If this happens, the ARM
signals coprocessors not to execute the instruction, so they also treat the instruction asaNOP. Thisimplies
that all VFP instructions are treated as NOPsiif their condition check fails.

The condition code check is based on the ARM processor's CPSR flags, not on the similarly named flagsin
the VFP FPSCR register. To use the FPSCR flags for conditiona execution, they must first be transferred
to the CPSR by an FMSTAT instruction.

VFP load and store instructions are allowed to produce data aborts, and so VFP implementations are able
to cope with a data abort on any memory access caused by such instructions.

Interrupts

As described above, hardware VFP implementations typically use the Undefined Instruction exception to
communicate between their hardware and software components. Software VFP implementations a so use
the Undefined Instruction exception, since al coprocessor instructions that are not claimed by a hardware
coprocessor are treated as undefined instructions.

Entry to the Undefined Instruction exception causes |RQs to be disabled (see Undefined Instruction
exception on page A2-15), and they will not normally be re-enabled until the exception handler returns.
Straightforward use of VFP in a system therefore increases worst case IRQ latency considerably.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C1-5

Introduction to the Vector Floating-point Architecture

Itis possible to reduce this IRQ latency pendty considerably by explicitly re-enabling interrupts soon after
entry to the Undefined Instruction handler. This requires careful integration of the Undefined Instruction
handler into the rest of the operating system. Details of how this should be done are highly system-specific
and go beyond the scope of this manual.

In a hardware implementation, if the IRQ handler is going to use the VFP coprocessor itself, thereisa
second potential cause of increased IRQ latency. Thisisthat along latency VFP operation initiated by the
interrupted program will deny the use of the VFP hardware to the IRQ handler for a significant number of
cycles.

If asystem contains IRQ handlerswhich require both low interrupt latency and the use of VFP instructions,
therefore, it is recommended that the use of the highest latency VFP instructions is avoided. In particul ar,
the use of vector division instructions and vector square root instructions is not recommended in such
systems, because these instructions typically have very long latencies.

Note

FIQs are not disabled by entry to the Undefined Instruction handler, and so FIQ latency is not affected by
the way that a VVFP implementation uses the Undefined Instruction exception.

However, thisa so meansthat an FIQ can occur at any point during the execution of aVFPimplementation’s
software component, including during the entry and exit sequences of the Undefined Instruction handler. If
aFIQ handler is going to do anything other than leave the VVFP implementation’s state entirely unchanged,
great care must be taken to ensure that it handles every case correctly. Thisis usually incompatible with the
intention that FIQs should provide fast interrupt processing, and so it is recommended that FIQ handlers
should not use VFP.

C1-6

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Introduction to the Vector Floating-point Architecture

1.3 Compliance with the IEEE 754 standard

The VFP architecture supplies a subset of IEEE 754 functionality. The following operations are mandatory
under the standard, but not supplied by the VFP architecture:

. the remainder operation

. the binary~ decimal conversions

. the Round Floating-Point Number to Integer Value operation

. in D variants of the VFP architecture, comparisons directly between single-precision and

double-precision values without first converting the single-precision value to double precision.

To obtain a fully compliant implementation of the standard, the VFP architecture must be augmented with
these operations (typically in the form of software library routines).

Note

In some environments, not all of these operations are required. For example, the C language specifies that
if af | oat and adoubl e are compared, the first argument must be convertedoaibl e by the usual

binary conversionbefore the comparison is performed. So, C code never specifies a direct comparison of

a single-precision value and a double-precision value.

Also, when thd-lush to Zero (FZ) bit in the FPSCR is set to 1, the way the VFP architecture handles
denormalized numbers and underflow exceptions does not comply with the standard. To obtain fully
compliant behavior from the VFP architecture, the FZ bit must be set to Bl (sheto-zero mode on

page C2-13 for more details).

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C1-7

Introduction to the Vector Floating-point Architecture

1.4

141

1.4.2

IEEE 754 implementation choices

Many design choices about a compliant floating-point system are left as an implementation option by the
|EEE 754 standard. The VVFP architecture specifies how many of these choices are to be made. Therest of
this section briefly describes these implementation choices.

Supported formats

The VFP architecture supports the basic single floating-point format from the standard, and D variantsalso
support the basic double floating-point format. These are known as single precision and double precision
in this manual .

The standard’s extended formats are not supported.

Supported integer formats are unsigned 32-bit integers and two’s complement signed 32-bit integers.

NaNs

The |EEE 754 standard only specifies that there must be at least one signaling NaN and at least one quiet
NaN, and partly specifies what the representation of NaNs should be (for any NaN, the exponent field
should be maximum, and the fraction field non-zero). The VFP architecture specifiesits NaNs more fully:

. In each formatall values with the exponent field maximum and the fraction field non-zero are valid
NaNs. Two such values represent distinct NaNs if their sign bits and/or fraction fields are different.

. Copying a signaling NaN with a change of format does not generate an Invalid Operation exception.

. Signaling NaNs are distinguished from quiet NaNs by the most significant fraction bit. The NaN is
signaling if this bit is 0, and quiet if it is 1.

. There are precise rules in the VFP architecture about which NaN is produced for each operation with
a NaN result. These rules are describeaNs on page C2-5.

Note

The fact that NaNs whose sign or fraction bits differ are treated as distinct NaNs in the VFP architecture
does not mean that the floating-point comparison instructions can be used to distinguish them from each
other. The IEEE 754 standard requires all NaNs to compammedered with every value, including
themselves.

What it does mean is that the distinct NaNs can be distinguished by using ARM code that looks at their
precise bit patterns, and that the NaN handling rules are designed not to change bits in NaN values except
where this is required by the standard.

C1-8

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Introduction to the Vector Floating-point Architecture

1.4.3 Comparison results

The results of comparison instructions are delivered as condition codes. In particular, they are flag
combinations (N,Z,C,V), compatible with those used by the ARM program status registers.

To assist with the alternative approach of testing predicates, each comparison instruction is supplied in two
variants whose behavior differs with respect to NaNs, and the flag combinations (N,Z,C,V) for the four
possible comparison results are chosen to maximize the number of predicates that can betested withasingle
ARM condition check. See Testing the |EEE 754 predicates on page C3-8 for more details.

1.4.4 Underflow exception
Underflow is detected using the after rounding form of tininess and the denor malization loss form of loss
of accuracy, as defined in the |EEE 754 standard.

1.45 Exception traps

The FPSCR contains bits to specify whether exception traps are enabled, and the VFP implementation
determines whether atrapped exception as defined by the IEEE 754 standard does in fact occur. All further
details of trapped exception handling are IMPLEMENTATION DEFINED.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C1-9

Introduction to the Vector Floating-point Architecture

C1-10 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter C2
VFP Programmer’s Model

This chapter gives details of the VFP programmer’s model. It contains the following sections:
. Floating-point formats on page C2-2

. Rounding on page C2-9

. Floating-point exceptions on page C2-10

. Flush-to-zero mode on page C2-13

. Floating-point general-purpose registers on page C2-14

. System registers on page C2-19

. Reset behavior and initialization on page C2-26.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. Cc2-1

VFP Programmer’s Model

2.1 Floating-point formats

This section outlines the basic single-precision and double-precision floating-point formats, as defined by
the IEEE 754 standard and used by the VVFP architecture. In addition, it describes V FP-specific detail s of
these formatsthat are left open by the standard.

All versions and variants of the VFP architecture support the single-precision format. D variants also
support the double-precision format. The VVFP architecture does not support either of the extended formats
described in the IEEE 754 standard.

This section is only intended as an introduction to these formats and to the various types of value they can
contain, not as comprehensive reference material on them. For full details, especially of the handling of
infinities, NaNs and signed zeros, see the IEEE 754 standard.

211 Single-precision format

A single-precision value is a 32-bit word, and must be word-aligned when held in memory. It has the
following format:

31 30 23 22 0

S exponent fraction

The value represented depends primarily on the exponent field:

. If 0 < exponenk OxFF, the value is aormalized number and is equal to:
-15 x 2&ponent=127 . (1 fraction)
Themantissa of the value is the number 1.fraction, consisting of:
— 1
— abinary point
— the 23 fraction bits.
The mantissa therefore lies in the rangerhantissa< 2 and is a multiple of 22,
Theunbiased exponent of the value is the power to which 2 is raised in this formula. In this case, it
is (exponentl27).

The minimum positive normalized number i3%, or approximately 1.178 10°38. The maximum
positive normalized number is<2723) x 2127, or approximately 3.408 10%.

. If exponent == 0, the value is either a zero derarmalized number, depending on the fraction bits:
— If fraction == 0, the value is a zero.

There are two distinct zeros:
+0 with S==0
-0 with S==1.

C2-2 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Programmer’s Model

These behave identically in most circumstances, including getting an equal result if +0 and -0
are compared as floating-point numbers. However, they yield different results in some
exceptional circumstances (for example, they affect the sign of the infinity produced as the
default result for a Division by Zero exception). They can also be distinguished from each
other by performing an integer comparison of the two words.

— If fraction != 0, the value is a denormalized number and is equal to:

-15 x 27126 x (0. fraction)

In this case, the mantissa of the value has a zero before the binary point, rather than the one
used by a normalized number. It lies in the rangentantissa< 1 and is a multiple of 23.
The value's unbiased exponenti®6.

The minimum positive denormalized number 1%, or approximately 1.40% 107,

. If exponent ==0xFF, the value is either anfinity or aNot a Number (NaN), depending on the
fraction bits.

If fraction == 0, the value is an infinity. There are two infinities:

+00 Has S==0 and represents all positive numbers which are too big to be represented
accurately as a normalized number.

—00 Has S==1 and represents all negative numbers which are too big to be represented
accurately as a normalized number.

If fraction != 0, the value is a NaN, and can be eithguiet NaN or asignaling NaN (seeNaNs on
page C2-5 for details of these types of NaN).

In the VFP architecture, the two types of NaN are distinguished on the basis of their most significant
fraction bit (bit[22]):
— Ifbit[22] == 0, the NaN is a signaling NaN. The sign bit can take any value, and the remaining

fraction bits can take any value except all zeros, so therea(@%—l) = 8388606 possible
signaling NaNs.

— If bit[22] == 1, the NaN is a quiet NaN. The sign bit and remaining fraction bits can take any
value, so there arex2%? = 8388608 possible quiet NaNs.
Two NaNs are treated as being different values in the VFP architecture if their sign bits and/or any

of their fraction bits differ. This implies that aﬁ’ZZpossible word values are treated as distinct from
each other by the VFP architecture.

Note

The fact that NaNs with different sign and/or fraction bits are distinct NaNs does not mean that
floating-point comparison instructions can be used to distinguish them. This is because the IEEE 754
standard specifies that a NaN comparesnasdered with everything, including itself.

However, different NaNs can be distinguished by using integer comparisons. Also, the rules for handling
NaNs are designed not to arbitrarily change one NaN into anothédgsis®n page C2-5).

These rules about NaNs also ensure that single-precision registers can be used to hold integer values without
any risk of corrupting them (séolding integersin single-precision registers on page C2-18).

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C2-3

VFP Programmer’s Model

2.1.2

Double-precision format
A double-precision value consists of two 32-bit words, with the following formats:
M ost significant word:

31 30 20 19 0

S exponent fraction[51:32]

Least significant word:

31 0

fraction[31:0]

When held in memory, the two words must appear consecutively and must both be word-aligned. The order
of the two words depends on the endianness of the memory system:

. In a little-endian memory system, the least significant word appears at the lower memory address and
the most significant word at the higher memory address.

. In a big-endian memory system, the most significant word appears at the lower memory address and
the least significant word at the lower memory address.

A VFP implementation must use the same endianness as the ARM implementation it is attached to. If the
ARM implementation has configurable endianness, double-precision values must not be loaded or stored
before the ARM processor endianness has been set to match that of the memory syEmiaeess on

page A2-23 for more details).

Note

The word order defined here for the VFP architecture differs from that of the earlier FPA floating-point
architecture. In the FPA architecture, the most significant word always appeared at the lower memory
address, with the least significant word at the higher, regardless of the memory system endianness.

Double-precision values represent numbers, infinities and NaNs analogously to single-precision values:

. If 0 < exponenk Ox7FF, the value is a normalized number and is equal to:
—1S x pexponent-1023 » (1 fraction)

The mantissa of the value is the number 1.fraction, consisting of a one, followed by a binary point,
followed by the 52 fraction bits. The mantissa therefore lies in the rangeahtissa< 2 and is a

multiple of 25
The unbiased exponent of the value is (expofi3).

The minimum positive normalized number i©%2, or approximately 2.228 103%. The

maximum positive normalized number is-22°%) x 21923 or approximately 1.798 10°%8.

C2-4

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Programmer’s Model

. If exponent == 0, the value is either a zero or a denormalized number, depending on the fraction bits.
If fraction == 0, the value is a zero. There are two distinct zeros which behave analogously to the two
single-precision zeros:
+0 with S==0
-0 with S==1.

If fraction != 0, the value is a denormalized number and is equal to:

-15 x 271022 x (0 fraction)

In this case, the mantissa of the value has a zero before the binary point, rather than the one used by

a normalized number. It lies in the range fhantissa< 1 and is a multiple of 22. The unbiased
exponent of the value #51022.

The minimum positive denormalized number 18%*, or approximately 4.94% 107324,

. If exponent ==0x7FF, the value is either an infinity or a NaN, depending on the fraction bits.

— If fraction == 0, the value is an infinity. As for single precision, there are two infinities:
+00 Plus infinity with S==0
+00 Minus infinity with S==1.

— Iffraction != 0, the value is a NaN. The rules about interpreting NaN values are analogous to
those for single precision:
— The type of a NaN is determined by the most significant fraction bit (bit[19] of the most

significant word). A 0 indicates a signaling NaN and a 1 indicates a quiet NaN.

— Two NaNs whose sign bits and/or fractions differ are different NaNs.

2.1.3 NaNs

NaNs are special floating-point values which can be used when neither a numeric value nor an infinity is
appropriate. There are two types of NaN, each of which can be used for a variety of purposes:

Quiet NaNs These propagate unchanged through most floating-point operations. They can be
generated by floating-point arithmetic operations in some rare circumstances when
there is no other sensible result. Any further calculations which depend on the result
of such an operation then also produce a quiet NaN result. (Quiet NaNs can only be
generated in this way if the associated Invalid Operation exception is untrapped. If
it is trapped, a trap handler is called instead.) Another typical use for quiet NaNs is
to represent missing or unavailable data values. The results of any calculations that
depend on the missing values are then also quiet NaNs.

Signaling NaNs These cause an Invalid Operation exception whenever any floating-point operation
receives a signaling NaN as an operand.

One possible use for signaling NaNs is in debugging, to track down some uses of
uninitialized variables. To do this, pre-load memory with copies of a signaling NaN,
then load and run the program with Invalid Operation traps enabled. Any
floating-point operation whose operand has been loaded from uninitialized memory
then calls the Invalid Operation trap handler.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C2-5

VFP Programmer’s Model

ThelEEE 754 standard does not specify how the two types of NaN are distinguished or how many different
NaNs of each type can exist in a floating-point system. However, these details are specified by the VFP
architecture, as described in Sngle-precision format on page C2-2 and Double-precision format on

page C2-4.

The following subsections describe the main requirements of the | EEE 754 standard about how
floating-point operations involving NaNs behave, and additional requirements on such operations imposed
by the VFP architecture.

Instructions with non floating-point results

The V FP architecture contains instructions to convert floating-point values to integers. In accordance with
the |EEE 754 standard, these instructions always generate an Invalid Operation exception if their operand
isaNaN, regardless of whether itisasignaling NaN or aquiet NaN. If thisexception is untrapped, the VFP
architecture specifies that the integer result must be 0.

The VFP architecture also contains comparison instructions, which deliver condition code results. These
instructions generate Invaid Operation exceptions for signaling NaN operands. For quiet NaN operands,
some of them a so generate Invalid Operation exceptions, while others generate an unordered condition
code result. The condition code result is aso unordered in all cases where an Invalid Operation exception
is generated but the exception is untrapped. For more details, see Comparison instructions on page C3-6.

All other VFP instructions that process NaNs have floating-point result val ues.

Instructions with floating-point results

If one or more of the operands to an operation with a floating-point result isa NaN, the | EEE 754 standard
requires that:

. If any of the NaN operands is a signaling NaN, an Invalid Operation exception must be generated. If
this exception is untrapped, the result must be a quiet NaN.

. If all of the NaN operands are quiet NaNs, the result must be a quiet NaN, and must be equal to one
of the NaN operands.

Note

For this purpose, the standard permits some copy operations on floating-point numbers to be treated as
non floating-point operations, so that they do not process NaNs in this fashion. The VFP architecture
requires these copy operations to be treated as non floating-point operations.

Instructions affected by this are describe@apy, negation and absol ute value instructions on page C3-11,
Load and Store instructions on page C3-13 an@egister transfer instructions on page C3-17.

Most floating-point instructions in the VFP architecture use the same format for their operands and results.
For these, the VFP architecture specifies that the correct quiet NaN result in either of the above cases is
determined as follows:

C2-6

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Programmer’s Model

1 For instructions acting on vector operands, rules 2 through 4 below are applied independently to each
individual operation on vector el ements.

2. The FMAC, FMSC, FNMAC, and FNMSC instructions each specify two floating-point operations, each
with two operands. If either of the operands to the first operation isaNaN, itsresult is determined
according to rules 3 and 4 below. Then the third operand and result of thefirst operation (withitssign
bit inverted for FNMAC and FNMSC) become the operands of the second operation. If either of them
isaNaN, the final result is determined according to rules 3 and 4 below.

3. If an operand is asignaling NaN, the result is the quiet NaN constructed by taking a copy of that
operand and changing its most significant fraction bit from 0 to 1. If both operands of atwo-operand
operation are signaling NaNs, the first operand is the one used to generate the result in this fashion.

4, If no operand isasignaling NaN, but an operand isaquiet NaN, theresult isacopy of the quiet NaN
operand. If both operands of a two-operand operation are quiet NaNs, the first operand is the one
copied to generate the result.

The | EEE 754 standard al so specifies that an Invalid Operation exception must be generated for certain
operationswhose operands are not NaNs. The following operationsyielding floati ng-point results can cause
this to happen:

. Additions, when the two operands are infinities with opposite signs. VFP instructions affected by this
areFADD, FMAC, andFNVAC.

. Subtractions, when the two operands are infinities with the same sign. VFP instructions affected by
this areFMSC, FNVBC, andFSUB.

. Multiplications, when one operand is a zero and the other is an infinity. VFP instructions affected by
this areFMAC, FMSC, FMUL, FNVAC, FNMSC, andFNMUL.

. Divisions, when both operands are zeros or both operands are infinities. The only VFP instruction
affected by this i$-DI V.

. Square roots, whose operands are negative, incledinginus infinity) but excluding0. The only
VFP instruction affected by this ESQRT.

In each case, if the exception is untrapped, the result must be a quiet NaN. The VFP architecture specifies
that the quiet NaN produced in these cases must have sign bit equal to 0, most significant fraction bit equal
to 1, and all remaining fraction bits equal to 0.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C2-7

VFP Programmer’s Model

Special cases

There are two instructions whose operands and results have different floating-point formats. These have
special rules for handling NaNs, as follows:

TheFCVTDS instruction converts a single-precision value to double precision. If its operand is a
single-precision quiet NaN, the result is the double-precision quiet NaN with:

S S bit of operand

fraction[51: 29] fraction[22:0] of operand

fraction[28:0] =0

If its operand is a single-precision signaling NaN, an Invalid Operation exception is generated. If the
exception is untrapped, the result is the double-precision quiet NaN with:

S

S bit of operand

fraction[51] =1
fraction[50:29] = fraction[21:0] of operand
fraction[28:0] =0

TheFCVTSD instruction converts a double-precision value to single precision. If its operand is a
double-precision quiet NaN, the result is the single-precision quiet NaN with:

S = S bit of operand
fraction[22:0] = fraction[51:29] of operand

If its operand is a double-precision signaling NaN, an Invalid Operation exception is generated. If the
exception is untrapped, the result is the single-precision quiet NaN with:

S
fraction[22]
fraction[21:0]

S bit of operand
1
fraction[50:29] of operand

C2-8

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Programmer’s Model

2.2 Rounding

Floating-point arithmetic inherently only has limited accuracy, because the exact mathematical result of an
arithmetic operation often has more significant bits than can fit in its destination format. To deal with this,
theresult is rounded to fit in the destination format, by choosing a representable number in that format
which is a close approximation to the exact result.

The | EEE 754 standard specifies four rounding modes, each of which specifies how the exact result of an
operation is rounded. In the following descriptions of the rounding modes, the rounding error is defined to
be the value of:

(rounded result) - (exact result)
The rounding modes are as follows:

Round to Nearest (RN) mode

In thismode, the rounded result isthe nearest representabl e number to the unrounded result,
that is, the representable number that minimizes abs(rounding error). If the unrounded result
lies precisely halfway between two representable numbers, the one whose | east significant
bitis0isused.

Thisisthe default rounding mode, and generadly yieldsthe most accurate results. The other
rounding modes are mostly used for specialized purposes, such asinterval arithmetic.

Round towards Plus Infinity (RP) mode

In this mode, the rounded result isthe nearest representabl e number which is greater than or
equal to the exact result, that is, the one that minimizes abs(rounding error) subject to the
requirement (rounding error) = 0. If the exact result is greater than the largest positive
normalized number of the destination format, the rounded result is +oo (plusinfinity).

Round towards Minus I nfinity (RM) mode

In this mode, the rounded result is the nearest representable number which is less than or
equal to the exact result, that is, the one that minimizes abs(rounding error) subject to the
requirement (rounding error) < 0. If the exact result is less than the largest negative
normalized number of the destination format, the rounded result is —co (minus infinity).

Round towards Zero (RZ) mode

In this mode, results are rounded to the nearest representable number which isno greater in
magnitude than the unrounded result, that is, the one that minimizes abs(rounding error)
subject to the requirement abs(rounded result) < abs(exact result).

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C2-9

VFP Programmer’s Model

2.3

Floating-point exceptions

The |EEE 754 standard specifies five classes of floating-point exception:

Invalid Operation exceptions

Occur in various cases where neither a numeric value nor an infinity isa sensible
result of afloating-point operation, and a so when an operand of a floating-point
operation isasignaling NaN. For more details of Invalid Operation exceptions, see
NaNs on page C2-5.

Division by Zer o exceptions

Overflow exceptions

Occur when a normalized or denormalized number is divided by a zero.

Occur when result of a floating-point operation is too big in magnitude for it to be
represented in the destination format without an unusually large rounding error for
the rounding mode in use. More precisely, the ideal rounded result of a
floating-point operation is defined to be the result that its rounding mode would
produce if the destination format had no limits on the unbiased exponent range. If
the ideal rounded result has unbiased exponent too big for the destination format
(that is, >127 for single precision or >1023 for double precision), it differs from the
actual rounded result, and an Overflow exception occurs.

Underflow exceptions

Occur when a floating-point operation’s result istoo small in magnitude for it to be
represented in the destination format without an unusually large rounding error for
therounding modein use. The exact conditionsfor an Underflow exception to occur
vary dightly depending on the value of the Underflow exception enable (UFE) bit
(whichisbit[11] of the FPSCR), that is, on whether the Underflow exception isto
be trapped.

In each case, one condition isthat theideal rounded result (as defined above) hasan
unbiased exponent too small for the destination format (that is, < =126 for single
precision or < —1022 for double precision). If UFE == 1, thisisthe only condition
and atrapped Underflow exception occurs when it is detected. If UFE == 0, an
untrapped Underflow exception only occursif the idea rounded result is also
different from the result produced by actua rounding (which might be a zero, a
denormalized number or the minimum possible normalized number).

Note

The | EEE 754 standard leaves two choices open in its definition of the underflow
exception. In the terminology of the standard, the above description means that the
VFP architecture reguires these choices to be:

. theafter rounding form of tininess
. the denormalization loss form of loss of accuracy.

C2-10

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Programmer’s Model

Inexact exceptions Occur whenever the rounded result of afloating-point operation isdifferent from its

exact unrounded result, that is, whenever a non-zero rounding error occurs. They

also occur:
. whenever an untrapped Overflow exception occurs
. whenever a denormalized operand is treated as +0 or a result is forced to +0

by flush-to-zero mode.

Note

Despite being called an exception, the Inexact exception occurs frequently in
normal floating-point calculations. Other than in some specialized uses of
floating-point arithmetic, the Inexact exception does not indicate that anything
unusual has occurred.

Each of these exceptions can be handled in one of two ways, selectedbgble bit associated with

the exception:

Trap enablebit isO

Untrapped exception handling is selected.

This causes the result of the operation to be a default value specified by the IEEE 754
standard, and@mulative exception bit associated with the exception becomes 1. Table 2-1
on page C2-12 shows how the result value is determined for each exception.

The cumulative exception bits can only become 0 as the result of an explicit write to the
FPSCR using thEMXR instruction. Other floating-point instructions only leave them
unchanged (if no untrapped exceptions occurred) or set one or more of them to 1 depending
on which untrapped exceptions occurred. A program can therefore test whether untrapped
exceptions occurred during a calculation, by setting these bits to zero before the calculation
and testing them afterwards.

Trap enablebit is1

Trapped exception handling is selected.

This causes a trap handler routine for the exception to be called. Details of how trap handlers
are selected and of the interfaces via which they are calletl RTEMENTATION DEFINED.

The call to the trap handler routine is allowed tarbyerecise, that is, it might occur at a

later point during program execution than the floating-point instruction that caused the
exception. However, it always occurs before execution of any subsequent instruction that
depends on the results of that instruction, or ofnializing instruction (seeFMRX on

page C4-58 anBMXR on page C4-70).

Trapped exception handling does not cause the cumulative exception bit to become set. If
this behavior is desired, the trap handler routine can uB&RK ORR/FMXR sequence on
the FPSCR to set the bit.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C2-11

VFP Programmer’s Model

Table 2-1 Exception default results

Exception type Default result for positive sign Default result for negative sign

Invalid Operation Quiet NaN Quiet NaN

Division by Zero +0o (plus infinity) —oo (minus infinity)

Overflow RN,RP: +0o (plus infinity) RN,RM: —oo (minus infinity)
RM,RZ: +MaxNorm RP,RZ: —MaxNorm

Underflow Normal rounded result Normal rounded result

Inexact Normal rounded result Normal rounded result

The following notes apply to Table 2-1:

. For Invalid Operation exceptions, déaNs on page C2-5 for details of which quiet NaN is produced
as the default result.

. For Division by Zero exceptions, the default result depends on the sign bit as normally determined
for a division - that is, on the exclusive OR of the two operand sign bits.

. For Overflow exceptions, the default result depends on the sign bit as normally determined for the
overflowing operation, and also on which rounding mode is being used. MaxNorm means the
maximum normalized number of the destination precision.

2.3.1 Combinations of exceptions

It is possible for more than one exception to occur on the same operation. The only combinations of
exceptions that can occur are Overflow/Inexact and Underflow/Inexact. In these cases, the Inexact
exception is treated as lower priority, as follows:

. If the Overflow or Underflow exception is trapped, its trap handler is calledMPiEMENTATION
DEFINED whether the parameters to the trap handler include information about the Inexact exception.
Apart from this, the Inexact exception is ignored in this case.

. If the Overflow or Underflow exception is untrapped, its cumulative bit is set to 1 and its default
result is evaluated. Then the Inexact exception is handled normally, with this default result being
treated as the normal rounded result of the operation.

C2-12 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Programmer’s Model

2.4 Flush-to-zero mode

The performance of some VFP implementations is significantly lower than norma when performing
calculations involving denormalized numbers and Underflow exceptions. Typicdly, this occurs for
hardware implementations which only handle normalized numbers and zeros in hardware, and invoketheir
support code when they encounter other types of value.

If asignificant number of the operands and intermediate results in an algorithm are denormalized numbers,
this can result in a considerable loss of performance. In some (but not all) of these algorithms, this
performance can be recovered by replacing the denormalized operands and intermediate results with zeros,
without significantly affecting the accuracy of their final results. To allow this optimization, VFP
implementations have a special processing mode called flush-to-zero mode. The behavior in flush-to-zero
mode differsfrom normal |EEE 754 arithmetic in the following ways:

. All inputs to floating-point operations which are denormalized numbers are treated as though they
were +0.
. All results of single-precision floating-point operations which lie in the raﬂjé26 <x<+27126

before rounding are forced to +0.

. Al results of double-precision floating-point operations which lie in the ra@ig’?? < x < +271022
before rounding are forced to +0.
. Whenever an operation has an operand treated as +0 or a result forced to +0 in any of the above ways,

an Inexact exception occurs (this normally just causes the IXC bit in the FPSCR to become set).
. Underflow exceptions never occur in flush-to-zero mode.

Copy operations are not treated as floating-point operations for the purpose of flush-to-zero mode. The
operations not affected by flush-to-zero mode are precisely the same as those that do not generate Invalid
Operation exceptions when their operands are signaling NaNs. For more det&lsp\s@egation and

absolute value ingtructions on page C3-11,0ad and Store instructions on page C3-13, arfgegister

transfer instructions on page C3-17.

Note

Flush-to-zero mode is incompatible with the IEEE 754 standard, and must not be used when IEEE 754
compatibility is a requirement. Flush-to-zero mode must be treated with great care. As stated above, it can
lead to a major performance increase on some algorithms, but there are a number of pitfalls when using it.
These pitfalls include:

. On many algorithms, it has no noticeable effect, because the algorithm does not normally use
denormalized numbers.

. On many other algorithms, it can cause exceptions to occur or seriously impact the accuracy of the
results of the algorithm.

It is strongly recommended that flush-to-zero mode is only used after ascertaining that performance is
indeed being degraded by the occurrence of denormalized numbers, and that its use is not going to upset the
accuracy and/or stability of the algorithm.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C2-13

VFP Programmer’s Model

2.5 Floating-point general-purpose registers

A VFP implementation contains 32 general-purpose registers, each capable of holding a single-precision
floating-point number or a 32-bit integer. These are named S0-S31.

In D variants of the VFP architecture, these registers are also treated as 16 double-precision registers, with
names DO-D15. Double-precision register DO overlaps single-precision registers SO and S1,
double-precision register D1 overlapssingle-precision registers S2 and S3, and so on, asillustrated in Figure
2-1.

SO S1 DO
S2 S3 D1
S4 S5 D2
S6 s7 D3
S8 S9 D4
S10 S11 D5
S12 S13 D6
S14 S15 D7
overlapped with
S16 S17 D8
S18 S19 D9
S20 S21 D10
8§22 S23 D11
S24 S25 D12
S26 S27 D13
S28 S29 D14
S30 S31 D15

Figure 2-1 VFP general-purpose registers

The VFP architecture does not specify how a double-precision register is overlapped with its pair of
single-precision registers. Different implementations make different decisions about which bits are
overlapped and about how the overlapping bits match up.

Also, implementations are free to convert numbers of either precision (or both) to an internal register format
when they are loaded (or transferred from the ARM), and convert them back when stored (or transferred to
the ARM), aslong as the overall results are correct.

As aresult, software must not rely on any particular type of overlap between the registers. More formally,
therulesfor this are:

C2-14 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Programmer’s Model

When a single-precision value or a 32-bit integer is written to single-precision register Si, the value
in the overlapped double-precision register £Xil) become&NPREDICTABLE.

When a double-precision value is written to double-precision register Di, the values in the overlapped
single-precision registers Sg2) and S(2x i + 1) becomeJNPREDICTABLE.

Any instruction which reads one or more registers WNRREDICTABLE contents produces
UNPREDICTABLE results.

Accordingly, most VFP instructions must only be used when it is known that the values in their source
registers have the precision expected by the instruction. No facility exists in the architecture to detect or
correct an inconsistency between the precision expected by an instruction and the precision of the numbers
last written to its source registers. Such inconsistencies pratr&EDICTABLE behavior.

25.1 Storing and reloading values of unknown precision

Programs sometimes need to store register values to memory and later reload them without determining
whether they contain single-precision or double-precision values. Two typical cases in which this happens

are:

Procedure-calling standards often specify that registersaHee-save registers (that is, that the

called procedure must preserve them). If the called procedure needs to use a callee-save register, its
entry sequence must store the register value to the stack. Later, the return sequence of the procedure
must reload the value from the stack in order to restore the original contents of the register.

However, the contents of the register(s) being stored on the stack depend on how they were being
used by the caller, and different callers can use the registers differently. So the entry sequence of the
called procedure must treat the callee-save registers as containing values of unknown precision.

Process swap code needs to store the contents of registers when a process is swapped out, and later
reload them when the process is swapped back in. As different processes probably use the registers
in different ways, process swap code needs to treat the VFP registers as containing values of
unknown precision.

Two VFP instructionsKLDMX andFSTMX) are used in such situations. These instructions are exceptions
to the normal rule that the source precision must match the precision of the instruction.

FSTMX Stores one or more double-precision registers, usingrRAEMENTATION DEFINED memory
format
FLDMX Reloads registers that have been stored in that format.

The only architectural constraints on ti8TMX/FLDMX format are that:

N double-precision registers are stored in at mostl2hords.

A matchingFLDMX reloads the original contents of the registers correctly, regardless of whether they
originally contained single-precision or double-precision values. For this purposéhang

FLDMX means one that loads precisely the same set of registerskSTiHe stored and generates

the same memory addresses aHBEMX.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C2-15

VFP Programmer’s Model

Theonly operation which isnormally performed on data stored with FSTMX isto reload it using amatching
FLDMX. However, debug software might need to interpret and/or modify the contents of stack frames or
process control blocks, and so might need to know the FSTMX/FL DMX memory format. There are two
standard options for the format:

In standard format ESTMX stores the register contents in exactly the same wayRSTavD of the

same registers would store them. The first double-precision register value is stored as two words, in
the correct order for the configured endianness of the processor. Then the next double-precision
register value is stored similarly, and so on, until the N registers have been stored in 2N memory
words. The (2N1)th memory word is unused.

The matchind-LDMX instruction reloads the data as double-precision values, precisely like an
FLDMD of the same registers. This format is only used for implementations in which storing and
reloading double-precision registers in this fashion correctly reload their contents even if they happen
to contain single-precision values.

In standard format 2, the first word stored feranat word, and then each double-precision register
specified in the instruction is stored as two words, in ascending order of register number. This option
uses all 2N1 available words of memory.

The format word has the following format:

31 16 15 0

SBZ format bits

For each double-precision register Di which is stored by 8¥éMX instruction, bit[i] of the format

word indicates how it is stored:

— If bit[i] == 0, the register contained single-precision data, and the two words stored are the
contents of S(% i) followed by the contents of S@ i + 1), both in single-precision format.

— If bit[i] == 1, the register contained double-precision data, and the two words stored are the
contents of Di, stored as two words in the correct order for the configured endianness of the
processor.

For each double-precision register Di which is not stored b &1@&X instruction, bit[i] of the
format word iSUNPREDICTABLE.

Example

For example, Figure 2-2 on page C2-17 shows how the instruction:

FSTM AX Rn, { D4- D6}

would store the registers using each standard option, on the assumption that D4 and D6 contain
double-precision values and S10 and S11 (which overlap D5) contain single-precision values.

C2-16

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

25.2

VFP Programmer’s Model

Address Standard format 1 Standard format 2
Rn+24 Unused D6, second word
Rn+20 D6, second word De, first word
Rn+16 D6, first word S11

Rn+12 D5, second word S10

Rn+8 D5, first word D4, second word
Rn+4 D4, second word D4, first word

Rn D4, first word Format word

Figure 2-2 Standard FSTMX/FLDMX memory formats
In the second column of Figure 2-2, the format word is:

31 16 15 7 6 4 3 0

000O0OO0OOOOOOOOOOOO UNP 101 UNP

Short vectors

The single-precision registers can be used to hold short vectorsof up to 8 single-precision values. Arithmetic
operations on all the elements of such a vector can be specified by just one single-precision arithmetic
instruction. For detail sof how thisis done, see Addressing Mode 1 - Single-precision vectors (non-monadic)
on page C5-2 and Addressing Mode 3 - Single-precision vectors (monadic) on page C5-14.

Similarly, the double-precision registers can be used to hold short vectors of up to 4 double-precision values,
and double-precision arithmetic instructions can specify operations on these vectors. For details, see
Addressing Mode 2 - Double-precision vectors (hon-monadic) on page C5-8 and Addressing Mode 4 -
Double-precision vectors (monadic) on page C5-19.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C2-17

VFP Programmer’s Model

253

Holding integers in single-precision registers

Each single-precision register can hold a 32-bit integer instead of a single-precision floating-point number.
Theregister contents are identical for a 32-bit integer and for the single-precision value represented by the
same word. This means that FMRS, FMSR and the single-precision load/store instructions can be used to
transfer either integers or single-precision values.

The single-precision floating-point number represented by the same word as a 32-hit integer does not
normally have the samevalueastheinteger. For example, theintegers2 and -1 are represented by the words
0x00000002 and Ox FFFFFFFF. As single-precision floating-point numbers, the same words represent

the denormalized number 27248 and a quiet NaN respectively.

Aninteger held in afl oating-point register can therefore not be used directly as asingle-precision value, nor
can asingle-precision value be used directly as an integer. If conversions between integers and
floating-point values are wanted, explicit conversion instructions must be used, as described in the
following two subsections.

Floating-point to integer
Two instructions are used to convert a floating-point number to an integer:

1. Thefirst instruction isFTOSI D, FTCSI S, FTOUI D, or FTOUI S, depending on whether the
floating-point operand is double-precision or single-precision, and whether a signed or unsigned
integer result is wanted. After thisinstruction, the required result isheld as an integer in a
single-precision register.

The special forms FTCSI ZD, FTOSI ZS, FTOUI ZD, and FTOUI ZS of these instructions allow the
conversion to be done using Round towards Zero (RZ) mode, without changing the rounding mode
specified by the FPSCR. Thisis the form of floating-point to integer conversion required by the C,
C++ and related languages.

2. The second instruction istypically an FMRS instruction, which transferstheinteger result toan ARM
register, but can also be various other instructions (see Conversion instructions on page C3-10).

Integer to floating-point

Similarly, two instructions are used to convert an integer to a floating-point number:

1 Thefirst instruction istypically FMSR, to transfer the integer operand to a single-precision register,
but can also be various other instructions (see Conversion instructions on page C3-10).

2. The second instruction isFSI TOD, FSI TGS, FUl TOD or FUI TGS, depending on whether the
integer operand is to be treated as signed or unsigned and whether a double-precision or
single-precision floating-point result is wanted.

C2-18

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Programmer’s Model

2.6 System registers

A VFP implementation contains three or more special-purpose system registers:

The Floating-point System ID register (FPSID) is a read-only register whose value indicates which
VFP implementation is being used. $&SD on page C2-20 for details.

The Floating-point Status and Control register (FPSCR) is a read/write register which provides all
user-level status and control of the floating-point system FBEER on page C2-21 for details of
the FPSCR.

The Floating-point Exception register (FPEXC) is a read/write register, two bits of which provide
system-level status and control. The remaining bits of this register can be used to communicate
exception information between the hardware and software components of the implementation, in an
IMPLEMENTATION DEFINED manner. SeEPEXC on page C2-24 for details of the FPEXC.

Individual VFP implementations can define and use further system registers for the purpose of
communicating between the hardware and software components of the implementation. All such
registers areMPLEMENTATION DEFINED. They may not be used outside the implementation itself,
except as described in implementation-specific documentation.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C2-19

VFP Programmer’s Model

2.6.1 FPSID
The FPSID has the following format:

31 24 23 22 21 20 19 16 15 8 7 4 3 0

implementor SW | format [SNG| architecture part number variant revision

Bitg[31:24] Contain an implementor code. The following code is defined:
0x41 = A (ARM Ltd)

All other values of the implementor code are reserved by ARM Ltd.

Bit[23] Contains 0 if the implementation contains a hardware coprocessor, or 1if it isapure
software implementation.

Bitg[22:21] Indicatewhich FSTMX/FL DMX format isused (see Storing and reloading val ues of unknown
precision on page C2-15):

0b00 Indicates standard format 1.
0b01 Indicates standard format 2.
0b10 Isreserved.
Ob11 Indicates a non-standard format.
Bit[20] Contains 0 if the implementation supports both single precision and double precision (a D

variant of the architecture), or 1if it only supports single precision (a non-D variant).
Bitg[19:16] Contain the architecture version number, encoded as follows:

O0b0000 indicates VFPv1.

All other values of this architecture version code are reserved by ARM Ltd.

Bitg[15:8] Contain an IMPLEMENTATION DEFINED representation of the primary part number of the
VFP implementation.

Bits[7:4] Contain an IMPLEMENTATION DEFINED variant number. Thisistypically used to distinguish
variants of the same primary part. For example, two variants of the same VFP
implementation might have hardware coprocessor interfaces designed to work with
different ARM processors.

Bits[3:0] Contain the IMPLEMENTATION DEFINED revision number of the part.

The FPSID register isread-only, and can be accessed in both privileged and unprivileged modes. Attempts
to write the FPSID register are ignored.

C2-20 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

26.2

VFP Programmer’s Model

FPSCR

The FPSCR has the following format:

3130292827262524 23 22 21 2019 18 17 16 151413121110 9 8 7 6 54 3 2 1 0
D [TUJOTD]JI TUJO[DTI

N|{Z|C|V| DNM |FZRMODESTRIDE/N| LEN DNM |X|F|F|[Z|O| DNM |X|F|F|Z|O
M E|E|E|E|E C|C|C|C|C

All of these bits can be read and written, and can be accessed in both privileged and unprivileged modes.

Note

All bitsdescribed as DNM (Do Not Modify) in the diagram are reserved for future expansion. They are
initialized to zeros. Non-initiaization code must use read/modify/write techniques when handling the
FPSCR, in order to ensure that these bits are not modified. Failure to observe this rule can result in code
which has unexpected side effects on future systems.

The FPSCR bits are described in the following subsections.

Condition flags

Bitg[31:28] of the FPSCR contain the results of the most recent floating-point comparison:

N Is 1if the comparison produced a less than result

z Is 1 if the comparison produced an equal result

C Is 1if the comparison produced an equal, greater than or unordered result
\% Is 1if the comparison produced an unordered result.

These condition flags do not directly affect conditional execution, either of ARM instructions or of VFP
instructions. A comparison instruction is normaly followed by an FMSTAT instruction. This transfers the
FPSCR condition flags to the ARM CPSR flags, after which they can affect conditional execution.

For more detail s of how comparisons are performed, see Comparison instructions on page C3-6.

Flush-to-zero mode control

Bit[24] of the FPSCR isthe FZ bit and controls flush-to-zero mode. See Flush-to-zero mode on page C2-13
for details of this processing mode.

FzZ == Flush-to-zero mode is disabled and the behavior of the floating-point system is fully
compliant with the | EEE 754 standard.

FZ == Flush-to-zero mode is enabled.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C2-21

VFP Programmer’s Model

Rounding mode control

Bits[23:22] of the FPSCR select the current rounding mode. This rounding mode is used for almost all
floating-point instructions. The only floating-point instructions which do not use it are FTOSI ZD,
FTOSI ZS, FTOUl ZDand FTOUl ZS, which always use RZ mode.

The rounding modes are encoded as follows:

0b00 Indicates Round to Nearest (RN) mode

0b01 Indicates Round towards Plus Infinity (RP) mode
0b10 Indicates Round towards Minus I nfinity (RM) mode
Ob11 Indicates Round towards Zero (RZ) mode.

See Rounding on page C2-9 for details of the rounding modes.

Vector length/stride control

The LEN field (bits[18:16]) of the FPSCR controls the vector length for VFP instructions that operate on
short vectors, that is, how many registers arein avector operand. Similarly, the STRIDE field (bits[21:20])
controlsthe vector stride, that is, how far apart the registersin avector liein the register bank. The allowed
combinations of LEN and STRIDE are shown in Table 2-2 on page C2-23.

All other combinations of LEN and STRIDE produce UNPREDICTABLE results.

The combination LEN == 0b000, STRIDE == 0b00 is sometimes caled scalar mode. When it isin effect,
all arithmetic instructions specify simple sca ar operations. Otherwise, most arithmetic instructions specify
ascalar operation if their destination liesin the range SO-S7 (for single precision) or DO-D3 (for double
precision). The full rules used to determine which operands are vectors and full details of how vector
operands are specified can be found in Chapter C5 VFP Addressing Modes and in theindividua instruction
descriptions.

Therulesfor vector operandsdo not all ow the same register to appear twice or morein avector. Theallowed
LEN/STRIDE combinationslisted in Table 2-2 never cause thisto happen for single-precision instructions,
so single-precision scalar and vector instructions can be used with all of these LEN/STRIDE combinations.

For double-precision vector instructions, some of the allowed L EN/STRIDE combinationswould causethe
same register to appear twice in avector. If adouble-precision vector instruction is executed with such a
LEN/STRIDE combination in effect, the instruction is UNPREDICTABLE. The last column of Table 2-2
indicates which LEN/STRIDE combinations this applies to. Double-precision scalar instructions work
normally with all of the allowed LEN/STRIDE combinations.

C2-22

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Programmer’s Model

Table 2-2 Vector length/stride combinations

LEN STRIDE I\f;lcgt:)hr \S/Sicéc;r Double-precision vector instructions
0b000 0b00 1 - All instructions are scalar
0b001 0b00 2 1 Work normally

0b001 Ob11 2 2 Work normally

0b010 0b00 3 1 Work normally

0b010 Ob11l 3 2 UNPREDICTABLE

0b011 0b00 4 1 Work normally

Ob011 Ob11l 4 2 UNPREDICTABLE

0b100 0b00 5 1 UNPREDICTABLE

Ob101 (0/s[00] 6 1 UNPREDICTABLE

0b110 0b00 7 1 UNPREDICTABLE

Ob111 0b00 8 1 UNPREDICTABLE

Exception status and control

Bitg[12:8] and hits[4:0] of the FPSCR are the trap enabl e bits and cumulative exception bits respectively for
the five types of exception. For details of what these do, see Floating-point exceptions on page C2-10.

Table 2-3 shows which hits are associated with each exception.

Table 2-3 Exception status and control bits

Exception type

Trap enable bit

Cumulative exception bit

Invalid Operation |OE (bit[8]) 10C (bit[0])
Division by Zero DZE (bit[9]) DZC (bit[1])
Overflow OFE (bit[10]) OFC (bit[2])
Underflow UFE (bit[11]) UFC (bit[3])
Inexact IXE (bit[12]) IXC (bit[4])

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

C2-23

VFP Programmer’s Model

2.6.3 FPEXC
The FPEXC register has the following format:

31 30 29 0

EXEN IMPLEMENTATION DEFINED

This register can only be accessed in privileged modes.

The EX bit

The EX bit (bit[31]) is a tatus bit which specifies how much information needs to be saved to record the
state of the floating-point system. It can be read on all VFP implementations, and is mainly of interest to
process swap code.

EX == In this case, the only significant state in the floating-point system is the contents of the
architecturally defined writable registers, that is, of the general-purpose registers, FPSCR
and FPEXC. If EX == 0 when a process is swapped out, only these registers need to be
saved, or rel oaded when the process is swapped back in. Also, no unexpected ARM
exceptions (such as an undefined instruction exception to process apending exceptioninthe
hardware) must occur during the saving and rel oading of the registers.

EX == Here, there is additional IMPLEMENTATION DEFINED significant state in the floating-point
system which process swap code needsto handle. Thistypically occurswhen VFP hardware
requires support code assi stance to handle a potential exception, and one or more of the
additional hardware system registers contains details of the potential exception. (Some
implementations describe this by saying that the hardwareis in an exceptional state.) The
actions required to swap a process out when EX == 1 and to swap such a process back in
are IMPLEMENTATION DEFINED.

The behavior of the EX bit when FPEXC iswritten is IMPLEMENTATION DEFINED, subject to the constraint
that writing a 0 to the EX bit must be alegitimate action. Otherwise, the process swap technique described
above for the case EX == 0 cannot work.

The EN bit

The EN bit (bit[30]) is aglobal enable bit, and can be both read and written.

EN == In this case, the floating-point system is enabled and operates normally.

EN == Here, the floating-point system is disabled. In this state, all VFP ingtructions are treated as
undefined instructions when executed in an unprivileged ARM processor mode, and al
except the following are treated as undefined instructions when executed in a privileged
ARM processor mode:

. anFMXR to the FPEXC or FPSID register

. anFMRX from the FPEXC or FPSID register.

C2-24 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Programmer’s Model

Note

An FMXR to the FPSCR or an FIVRX from the FPSCR istreated as an undefined instruction when EN == 0.
If aVFP implementation contains additional system registers besides FPSID, FPSCR, and FPEXC, the
behavior of FMXR instructions to them and FMRX instructions from them iS IMPLEMENTATION DEFINED.

Other bits

All bits of the FPSCR other than the EX and EN bitsare IMPLEMENTATION DEFINED, including whether they
are readable, writable or both. They are typically used in hardware implementations for communicating
exception information between the VFP hardware and its support code.

A constraint on how these bits are defined isthat when the EX bit is0, it must be possibleto save and reload
all significant state in the floating-point system by saving and reloading only the VFP general-purpose
registers, FPSCR and FPEXC.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C2-25

VFP Programmer’s Model

2.7 Reset behavior and initialization
When a hardware VFP implementation is reset, the FPEXC EN hit isreset to 0. The behavior of all other
VFP registers and of the remaining bits of FPEXC on hardware reset iSIMPLEMENTATION DEFINED.
When the software component of a VFP implementation has finished initializing, the following are true:
. The FPEXC EN bit is setto 1
. The FPEXC EX bit is setto 0
. All bits of the FPSCR are set to 0, with the possible exception of the condition code flags in some
cases. This selects the following settings:
— normal IEEE 754 mode, not flush-to-zero mode
— theRound to Nearest rounding mode
— scalar mode (vector length 1)
— all exceptions are untrapped, and their cumulative status bits indicate that no exceptions of that
type have been detected yet.
It is IMPLEMENTATION DEFINED whether the VFP general-purpose registers and the FPSCR condition flags
are initialized, and if so, what values they are initialized to.
C2-26 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter C3
VFP Instruction Set Overview

This chapter gives an overview of the VFP instruction set. It contains the following sections:

. Data-processing instructions on page C3-2
. Load and Soreingructions on page C3-13

. Register transfer instructions on page C3-17.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C3-1

VFP Instruction Set Overview

3.1 Data-processing instructions

All VFP data-processing instructions are CDP instructions for coprocessors 10 or 11, with the following

format:

31 30 29 28 27 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

1110p0DOdg Fn Fd cp_num [N |s |[M|0 Fm

p,q.r,s

Fdand D

Fnand N

Fm and M

cp_num

These bits collectively form the instruction’s primary opcode. See Table 3-1 for the
assignment of these opcodes. When al of p, g, r and sare 1, theingtruction isatwo-operand
extension instruction, with an extension opcode specified by the Fn and N bits.

These bits normally specify the destination register of the instruction:

. For a single-precision instruction, Fd holds the top 4 bits of the register number and
D holds the bottom bit.

. For a double-precision instruction, Fd holds the register number and D must be 0.

If D is 1 in a double-precision instruction, the instructionN®EFINED.

For multiply-accumulate instructions, this register is also the accumulate operand register.

For comparison instructions, it is the first operand register rather than a destination register.

These bits normally specify the first operand register of the instruction.

. For a single-precision instruction, Fn holds the top 4 bits of the register number and
N holds the bottom bit.
. For a double-precision instruction, Fn holds the register number and N must be 0.

However, if p, q, r and s are all 1, the instruction is an extension instruction, and the Fn and
N fields form an extension opcode instead of specifying a register. See Table 3-2 for the
assignment of these extension opcodes.

If N is 1 in a double-precision non-extension instruction, the instructioRD&FINED.

These bits specify the second operand register of the instruction, or the only operand register
for some extension instructions.

. For a single-precision instruction, Fm holds the top 4 bits of the register number and
M holds the bottom bit.

. For a double-precision instruction, Fm holds the register number and M must be 0.

If M is 1 in a double-precision instruction, the instructionN®EFINED.

If cp_num is 0b1010 (coprocessor number 10), the instruction is a single-precision

instruction. If cp_num is 0b1011 (coprocessor number 11), the instruction is a
double-precision instruction.

For the instructions that convert between single-precision and double-preEiSWIOS
andFCVTSD), cp_num matches the source precision.

C3-2

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instruction Set Overview

Table 3-1 and Table 3-2 show the assignment of VFP data-processing opcodes. |n these tables, Fd is used
to mean a destination register of the appropriate precision, that is, Sd for single-precision instructions and
Dd for double-precision instructions. Fn and Fm are used similarly.

Table 3-1 VFP data-processing primary opcodes

Instruction name Instruction name

p q r s cp._num=10 cp_num=11 Instruction functionality

0 0 O FMACS FMACD Fd=Fd + (Fn* Fm)

0 0 O FNVACS FNMACD Fd=Fd- (Fn* Fm)

0 0 1 FMSCS FMSCD Fd=-Fd + (Fn* Fm)

0 0 1 FNVBCS FNNMSCD Fd=-Fd- (Fn* Fm)

0 1 O FMULS FMULD Fd=Fn* Fm

0 1 O FNMULS FNMULD Fd=-(Fn* Fm)

0 1 1 FADDS FADDD Fd=Fn+Fm

0 1 1 FSUBS FSUBD Fd=Fn-Fm

1 0 O FDI VS FDI VD Fd=Fn/Fm

1 0 O - - UNDEFINED

1 0 1 - - UNDEFINED

1 0 1 - - UNDEFINED

1 1 0 - - UNDEFINED

1 1 0 - - UNDEFINED

1 1 1 - - UNDEFINED

1 1 1 See Table3-2 0n See Table 3-2 on Extension instructions
page C3-4 page C3-4

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C3-3

VFP Instruction Set Overview

Table 3-2 VFP data-processing extension opcodes

Extension opcode

Instruction name

Fn N cp_num=10 cp_num=11 Instruction functionality
0000 0 FCPYS FCPYD Fd=Fm
0000 1 FABSS FABSD Fd = abs(Fm)
0001 0 FNEGS FNEGD Fd=-Fm
0001 1 FSQRTS FSQRTD Fd = sqgrt(Fm)
001x X - - UNDEFINED
0100 0 FCMPS FCMPD Compare Fd with Fm, no exceptions on quiet NaNs
0100 1 FCVPES FCMPED Compare Fd with Fm, with exceptions on quiet NaNs
0101 0 FCWPZS FCMPZD Compare Fd with 0, no exceptions on quiet NaNs
0101 1 FCMPEZS FCMPEZD Compare Fd with 0, with exceptions on quiet NaNs
0110 X - - UNDEFINED
0111 0 - - UNDEFINED
0111 1 FCVTDS FCVTSD Single ~ double precision conversions
1000 0 FUl TOS FUI TOD Unsigned integer — floating-point conversions
1000 1 FSI TOS FSI TOD Signed integer — floating-point conversions
1001 X - - UNDEFINED
101x X - - UNDEFINED
1100 0 FTOU S FTQUI D Floating-point - unsigned integer conversions
1100 1 FTOU ZS FTQUI ZD Floating-point - unsigned integer conversions, RZ
mode
1101 0 FTOSI S FTOSI D Floating-point - signed integer conversions
1101 1 FTOSI ZS FTOSI ZD Floating-point — signed integer conversions, RZ mode
111x X - - UNDEFINED
C3-4 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instruction Set Overview

3.1.1 Basic arithmetic instructions and square root

The FADDS, FSUBS, FMJLS, FDI VS, and FSQRTS instructions provide the four basic arithmetic
operations and square root on single-precision values. Similarly, the FADDD, FSUBD, FMULD, FDI VD, and
FSQRTD instructions supply these operations on double-precision vaues. In addition, the FNMUL'S and
FNMULD instructions supply negated multiplications in single and double precision respectively. Their
results are precisely equivalent to those of performing an FMULS or FMULD instruction followed by an
FNEGS or FNEGD ingtruction (which inverts the sign of the result).

All of these instructions can be made to operate on short vectors by setting the FPSCR LEN and STRIDE
fields appropriately (see Chapter C5 VFP Addressing Modes for details).

The operations performed by all these instructions are always treated as floating-point operations, both for
NaN handling and flush-to-zero mode. In particular, signaling NaN operands cause Invalid Operand
exceptions, and in flush-to-zero mode, denormalized operands are treated as +0 and sufficiently small
results are forced to +0.

3.1.2 Multiply-accumulate instructions

FMACS, FMACD, FNVACS, FNVACD, FMSCS, FMBCD, FNMSCS, and FNMSCD are multiply-accumulate
instructions. They multiply their two main operands, possibly invert the sign bit of the product, add or
subtract the value in the destination register and write the result back to the destination register. They arein
all respects equivalent to the following sequences of basic arithmetic and negation instructions:

FMACS Sd, Sn, Sm FMJLS St, Sn, Sm
FADDS Sd, St, Sd

FMACD Dd, Dn,Dm FMJLD Dt, Dn, Dm
FADDD Dd, Dt, Dd

FNMACS Sd, Sn, Sm FMJULS St, Sn, Sm
FNEGS St, St
FADDS Sd, St, Sd

FNMACD Dd, Dn, Dm FMJULD Dt, Dn, Dm
FNEGD Dt, Dt
FADDD Dd, Dt, Dd

FMSCS Sd, Sn, Sm FMJLS St, Sn, Sm
FSUBS Sd, St, Sd

FMSCD Dd, Dn,Dm FMJLD Dt, Dn, Dm
FSuUBD Dd, Dt, Dd

FNMSCS Sd, Sn, Sm FMJULS St, Sn, Sm
FNEGS St, St
FSUBS Sd, St, Sd

FNMSCD Dd, Dn, Dm FMJLD Dt, Dn, Dm
FNEGD St, St
FSuUBD Dd, Dt, Dd

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C3-5

VFP Instruction Set Overview

where St or Dt describes anotional register used to hold intermediate results, treated as being a scalar if Sd
or Dd isascalar and avector if Sd or Dd is a vector.

Note
Thisimplies that each multiply-accumul ate operation involves two roundings:
. one on the multiplication result
. one on the result of the final addition or subtraction.

Both of these roundings are performed fully and as defined by the IEEE 754 standard. In particular, these
instructions do not specifyused multiply-accumulates as used in a number of other architectures.

All of these instructions can be made to operate on short vectors by setting the FPSCR LEN and STRIDE
fields appropriately (see Chapter @BP Addressing Modes for details). The operations performed by all

these instructions are always treated as floating-point operations, both for NaN handling and flush-to-zero
mode. In particular, signaling NaN operands cause Invalid Operand exceptions, and in flush-to-zero mode,
denormalized operands are treated as +0 and sufficiently small results are forced to +0.

3.1.3 Comparison instructions

The FCMPS, FCMPD, FCVPES, andFCMPED instructions perform comparisons between two register
values. Thé=CMPZS, FCMPZD, FCMPEZS, andFCMPEZD instructions perform comparisons between a
register value and the constant +0.

The IEEE 754 standard specifies that precisely one of four relationships holds between any two values being
compared. These are as follows:

. Two values are considered equal if any of the following conditions holds:

— They are both numeric and have the same numerical value. This usually means that they have
precisely the same representation, but also includes the case that one is +0 and the other is -0.

— They are bothw (plus infinity).
— They are botho (minus infinity).

. The first value is considered less than the second value if any of the following conditions holds:
— They are both numeric and the numeric value of the first is less than that of the second.
— The first is—c0 (minus infinity) and the second is numeric.
— The firstis numeric and the second-is (plus infinity).
— The first is—co (minus infinity) and the second 130 (plus infinity).

. The first value is considered greater than the second value if any of the following conditions holds:
— They are both numeric and the numeric value of the first is greater than that of the second.
— The firstist+oo (plus infinity) and the second is humeric.
— The firstis numeric and the second-s (minus infinity).
— The firstist+oo (plus infinity) and the second ®0 (minus infinity).

. Two values areinordered if either or both of them are NaNs.

C3-6 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instruction Set Overview

Note

If both values are the same NaN, the comparison result is unordered, not equal. If an exact bit-by-bit
comparison is wanted, the ARM comparison instructions must be used rather than VFP comparison
instructions, both for this reason and because +0 and -0 compare as equal.

For al the comparison instructions, the result of the comparison is placed in the FPSCR flags, as shownin
Table 3-3:

Table 3-3 VFP comparison flag values

Comparison result N zZ C V
Equal 0 1 1 0
Less than 1 0 0 0
Greater than 0 0 1 0
Unordered 0 0 1 1

These FPSCR flag val ues need to be copied to the ARM CPSR flags before ARM conditional execution can
be based on them. For this purpose, a specia form of the FMRX instruction (called FMSTAT) isused. This
is described in System register transfer instructions on page C3-20.

When the result of the comparison is unordered, it is possible that the comparison can also generate an
Invalid Operation exception because of the NaN operand(s). These instructions supply two distinct forms
of Invalid Operation exception generation:

. TheFCMPS, FCMPD, FCMPZS, andFCMPZD instructions have the normal behavior of generating an
Invalid Operation exception when either or both of their operands are signaling NaNs. If neither
operand is a signaling NaN, but one or both are quiet NaNs, they genanatedsned result without
an accompanying Invalid Operation exception.

. The FCVPES, FCMPED, FCMPEZS, andFCMPEZD instructions generate an Invalid Operation
exception when either or both of their operands are NaNs, regardless of whether they are signaling
or quiet NaNs. It is not possible to getwmordered result from these instructions without an
accompanying Invalid Operation exception.

The VFP comparison instructions always treat their operands as scalars, regardless of the settings of the
FPSCR LEN and STRIDE fields.

The operations performed by all these instructions are always treated as floating-point operations, both for
NaN handling and flush-to-zero mode. In particular, signaling NaN operands cause Invalid Operand
exceptions, and in flush-to-zero mode, denormalized operands are treated as +0.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C3-7

VFP Instruction Set Overview

Testing the IEEE 754 predicates

The |EEE 754 standard specifies two waysin which a floating-point comparison can deliver its results:

. As acondition code result, identifying one of the four relations:

equal

less than
greater than
unordered.

. As a true-or-false result to one of twenty-ghedicates, each of which specifies a particular test on
the values. Six of these are the standard ==, !=, <, <=, > and >= comparisons, used in common
languages like C, C++ and related languages.

The VFP architecture uses the first approach. However, its condition code results have been carefully
chosen to allow ARM conditional execution to test as many of the predicates as possible after a sequence
of a VFP comparison instruction andBMSTAT instruction. This includes all six of the commonly-used

predicates.

Table 3-4 shows how each predicate must be tested to get the correct results according to the IEEE 754

standard:

Table 3-4 VFP predicate testing

Common language

IEEE predicate

Instruction type

ARM condition

condition
== = FCMP EQ
I= <> FCMP NE
> > FCMPE GT
>= >= FCMPE GE
< < FCMPE Ml or CC
<= <= FCMPE LS
? FCMP VS
<> FCMPE Two conditions
<=> FCMPE VvC
?> FCMP HI
?>= FCMP PLor CS
?< FCMP LT

C3-8

Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

VFP Instruction Set Overview

Table 3-4 VFP predicate testing (Continued)

Common language

condition IEEE predicate Instruction type ARM condition
?<= FCMP LE
?= FCMP Two conditions
NOT(>) FCMPE LE
NOT(>=) FCMPE LT
NOT(<) FCMPE PL or CS
NOT(<=) FCMPE HI
NOT(?) FCMP vC
NOT(<>) FCMPE Two conditions
NOT(<=>) FCMPE VS
NOT(?>) FCMP LS
NOT(?>=) FCMP Ml or CC
NOT(?<) FCMP GE
NOT(?<=) FCMP GT
NOT(?=) FCMP Two conditions

In each case, the two main choices to be made are:

. Whether to use an FCMP-type instruction (that is, the appropriate &:@B5, FCMPD, FCMPZS
or FCMPZD) or an FCMPE-type instruction (the appropriate onE@¥PES, FCMPED, FCMPEZS
or FCMPEZD). This choice causes the predicate to have the correct behavior with regard to Invalid
Operation exceptions.

. Which ARM condition is to be used. This is not always obvious. For example, a standard
comparison on floating-point numbers must use the ARM MI or LO/CC condition, not LT, despite
the fact that floating-point comparisons are always signed.

If this column containswo conditions, no single ARM condition can be used to test the predicate.
Each of these predicates can be tested using a suitable combination of two ARM conditions, in
several different ways. For example, #repredicate can be tested by checking that NE and VC are
both true, or that either of GT and Ml is true.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C3-9

VFP Instruction Set Overview

3.1.4

Conversion instructions

All of the VFP conversion instructions always treat their operands as scal ars, regardless of the settings of
the FPSCR LEN and STRIDE fields.

Conversions between single and double precision

The FCVTDS and FCVTSD ingtructions perform conversions between single-precision and
double-precision values. FCVTDS converts single precision to double precision and is a coprocessor 10
instruction, while FCVT SD convertsdouble precision to single precision and is acoprocessor 11 instruction.

The FCVTDS and FCVTSD conversions are always treated as floating-point operations, both for NaN
handling and flush-to-zero mode. In particular, signaling NaN operands cause Invalid Operand exceptions,
and in flush-to-zero mode, denormalized operands are treated as +0.

The only exception possible for FCVTDS is an Invalid Operation exception caused by a signaling NaN
operand, as single-precision humbers can dways be represented exactly in double precision. FCVTSD can
additionally generate Overflow, Underflow and/or Inexact exceptions.

Conversions from floating-point to integers

TheFTCOSI S and FTOSI D ingtructions convert floating-point vaues to signed integers, and the FTOUl S
and FTQUI Dinstructions convert floating-point values to unsigned integers, using the rounding mode
specified by the FPSCR.

Variants of these instructions called FTOSI ZS, FTOSI ZD, FTOUl ZS, and FTQUI ZD perform similar
conversions, but using Round towards Zero mode. These are useful because C and rel ated languages specify
that floating-point — integer conversions use this mode, whereas almost all other operations normally use
Round to Nearest mode. Using these instructions avoids the need to change the FPSCR rounding mode
every time afloating-point — integer conversion is wanted.

All of the floating-point — integer conversion instructions place their integer result in a single-precision
register. Thisresult can then be used in any of the following ways:

. store it to memory usingSTS or FSTMS

. transfer it to an ARM register usikgvVRS

. convert it to a floating-point number using anyF& TOS, FSI TOD, FUI TOS or FUI TOD.

The operations performed by all these instructions are always treated as floating-point operations, both for
NaN handling and flush-to-zero mode. In particular, signaling NaN operands cause Invalid Operand
exceptions, and in flush-to-zero mode, denormalized operands are treated as +0.

Most exceptional conditions that can occur during these instructions are signaled as Invalid Operation
exceptions. These cannot produce the normal quiet NaN value as their result, as the destination is an integer.
Instead, the following list of values that generate Invalid Operation exceptions also specifies the integer
default result in each case:

C3-10

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

3.15

VFP Instruction Set Overview

. If the operand is numeric, but converting it to an integer using the appropriate rounding mode would
produce an integer that is greater than the maximum possible destination integer, the default result is
the maximum possible destination integer.

. If the operand is numeric, but converting it to an integer using the appropriate rounding mode would
produce an integer that is less than the minimum possible destination integer, the default result is the
minimum possible destination integer.

. If the operand is (plus infinity), the default result is the maximum possible destination integer.
. If the operand isc (minus infinity), the default result is the minimum possible destination integer.
. If the operand is a NaN (either signaling or quiet), the default result is 0.

Apart from these Invalid Operation exceptions, the only exceptions that can be produced by the
floating-point - integer conversions are Inexact exceptions.

Conversions from integers to floating-point

TheFSI TOS andFSI TOD instructions convert signed integers to floating-point values, ane@th&0S

andFUI TOD instructions convert unsigned integers to floating-point values. All of them take their integer
operand from a single-precision register. This operand can have been placed in the register earlier in any of
the following ways:

. loading it from memory usingLDS or FLDVS
. transferring it from an ARM register usifd/SR

. converting a floating-point number to an integer using arfiyT&@S| S, FTCOSI D, FTCSI ZS,
FTOSI ZD, FTQUI S, FTOUI D, FTQUI ZS, or FTOUI ZD.

When an integer 0 is converted to floating-point, the resultis +0. FBBIHECS andFUI TGS instructions,

some integer operands that exceétia magnitude cannot be converted exactly. Conversions of these
operands are rounded according to the rounding mode specified in the FPSCR, with an Inexact exception
being generated. Otherwise, no exceptions are possible with the inteftgating-point conversions.

Copy, negation and absolute value instructions

The FCPYS andFCPYD instructions perform an exact copy of a floating-point value from one register to
another.

TheFNEGS andFNEGD instructions do the same BEPYS andFCPYD, except that they invert the sign bit
during the copy. This negates numerical values and infinities, in the way described in the Appendix to the
IEEE 754 standard.

The FABSS andFABSD instructions do the same BEPYS andFCPYD, except that they change the sign
bit to 0 during the copy. This takes the absolute value of numerical values and infinities, in the way
described in the Appendix to the IEEE 754 standard.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C3-11

VFP Instruction Set Overview

All of these instructions can be made to operate on short vectors by setting the FPSCR LEN and STRIDE
fields appropriately (see Chapter C5 VFP Addressing Modes).

The |EEE 754 standard and its Appendix allow all these operations to be treated as non floating-point
operations with regard to NaN handling. The VFP architecture requires this to be done. In particular, this
implies the following:

. The VFP architecture requires these instructimtgo generate Invalid Operation when their
operands are signaling NaNs.

. The results of these instructions are generated by copying their operands (with appropriate sign bit
adjustments), even when their operands are NaNs. This overrides the normal rules for generating the
results of instructions with one or more NaN operands (describdaNaon page C2-5).

In addition, the VFP architecture requires these instructions to be treated as non floating-point operations
with regard to flush-to-zero mode. In flush-to-zero mode, they copy denormalized operands in the same way
as they do in normal mode, and do not treat the operands as +0.

Note

Calculating the value of -x usiffNEGS or FNEGD does not produce exactly the same results as calculating
either (+0 - x) or (-0 - x) usingSUBS or FSUBD. The differences are:

. FSUBS or FSUBD produces an Invalid Operation exception if x is a signaling NaN, whENESS
or FNEGD produces x with its sign bit inverted, without an exception.

. FSUBS or FSUBD produces an exact copy of x if x is a quiet NaN, whelf®&sGS or FNEGD
produces x with its sign bit inverted.

. FNEGS or FNEGD applied to a zero always produces an oppositely signed zero. Calculating the value
of (+0 - x) using=SUBS or FSUBD does this in RM rounding mode, but always produces +0 in RN,
RP or RZ rounding mode. Calculating (-0 - x) always produces -0 in RM rounding mode, and
produces an oppositely signed zero in RN, RP or RZ rounding mode.

. In flush-to-zero mode, the calculation usiR§UBS or FSUBD treats denormalized operands as +0,
and therefore produce a zero result if x is denormal &GS or FNEGD ignore flush-to-zero mode
and produce a result of x with its sign bit inverted.

C3-12 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instruction Set Overview

3.2 Load and Store instructions

All VFP Load and Storeinstructionsare LDCand STCinstructions respectively for coprocessors 10 and 11,
with the following format:

31 30 29 28 27 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 11 0RUDWL Rn Fd cp_num offset
P,U W These bits specify an addressing mode for the LDC or STC instruction, as described in ARM

Addressing Mode 5 - Load and Store Coprocessor on page A5-56. In addition, a VFP
implementation uses them to determine which | oad/store operation is required, as shown in
Table 3-5 on page C3-14.

Fdand D These bits specify the destination floating-point register of aload instruction, or the source
floating-point register of a store instruction.

. For a single-precision instruction, Fd holds the top 4 bits of the register number and
D holds the bottom bit.

. For a double-precision instruction, Fd holds the register number and D must be 0.
If D is 1 in a double-precision instruction, the instructiodN®EFINED.

For Load Multiple and Store Multiple instructions, the register specified by these fields is
the lowest-numbered register to be transferred. Subsequent registers are transferred in order
of register number, up to the number of registers determined by the offset field. If this would
result in a register after S31 or D15 being transferred, the resulisiRREDICTABLE.

L bit This bit determines whether the instruction is a load (L == 1) or a store (L == 0).

Rn This specifies the ARM register used as the base register for the address calculation, as
described iPARM Addressing Mode 5 - Load and Store Coprocessor on page A5-56.

cp_num If cp_num is 0b1010 (coprocessor number 10), the instruction is a single-precision
instruction. If cp_num is Ob1011 (coprocessor number 11), the instruction is either a
double-precision instruction or one of the instructions used to handle values of unknown
precision (se&oring and rel oading values of unknown precision on page C2-15).

offset These bits specify the word offset which is applied to the base register value to obtain the
starting memory address for the transfer, as describ&BNhAddressing Mode 5 - Load
and Sore Coprocessor on page A5-56.

The least significant bit of this offset also helps to determine which load/store operation is
required, as shown in Table 3-5 on page C3-14. In addition, for Load Multiple and Store
Multiple instructions, the offset determines how many registers are to be transferred.

Table 3-5 shows how the name and other details of the instruction are determined from the P, U, W, and L
bits and the cp_num and offset fields:

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C3-13

VFP Instruction Set Overview

Table 3-5 VFP load and store instructions

PUW ﬁﬂm o{fos]et :_nzs:tguction :_n:sztrluction gc:)c(jjre Registers transferred
00x X X UNDEFINED - - -
010 0b1010 x FSTMS FLDMS Unindexed (offset) single-precision registers
010 0Ob1011 O FSTMD FLDVD Unindexed (offset)/2 double-precision registers
010 Ob1011 1 FSTMX FLDMX Unindexed (offset-1)/2 double-precision registers
011 O0b1010 x FSTMS FLDVS Increment (offset) single-precision registers
011 0Ob1011 O FSTMD FLDVD Increment (offset)/2 double-precision registers
011 Ob1011 1 FSTMX FLDMX Increment (offset-1)/2 double-precision registers
100 0bl010 x FSTS FLDS Negative One single-precision register

offset
100 0bl011 x FSTD FLDD Negative One double-precision register

offset
101 0bl010 x FSTMS FLDMVS Decrement (offset) single-precision registers
101 0bl011 O FSTMD FLDVD Decrement (offset)/2 double-precision registers
101 0Obl011 1 FSTMX FLDMX Decrement (offset-1)/2 double-precision registers
110 0bl010 x FSTS FLDS Positive One single-precision register

offset
110 O0bl011 x FSTD FLDD Positive One double-precision register

offset
111 x X UNDEFINED - - -

All load ingtructions perform a copy of theloaded val ue(s) from memory, and all store instructions perform
acopy of the stored value(s) to memory. No exceptions are ever raised and the value(s) transferred are not
changed, except possibly for areversible conversion to the internal register format of an
implementation. The copy istreated as a non floating-point operation for the purposes of NaN handling and
flush-to-zero mode. In particular, the VVFP architecture requires:

. a load or store of a signaling NaN not to raise an Invalid Operation exception, nor to change the
signaling NaN into a quiet NaN

. a load or store of a denormalized number in flush-to-zero mode not to change it into +0.

C3-14 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

3.2.1

3.2.2

VFP Instruction Set Overview

Load/store one value

The FLDS and FSTS instructions alow single-precision values and 32-bit integers to be loaded and stored,
and the FLDD and FSTD instructions allow double-precision values to be |oaded and stored. Each of these
instructions transfers just one register of the type concerned.

Of the addressing modes described in ARM Addressing Mode 5 - Load and Store Coprocessor on

page A5-56, only the Immediate offset mode (see Load and Sore Coprocessor - Immediate offset on
page A5-58) is allowed for these instructions. This addressing mode allows the address to be specified by
the base register value Rn, plus or minus an immediate offset which liesin therange 0 to 1020 and is a
multiple of 4. No base register writeback is available.

Load/store multiple values

The FLDMVS and FSTMS instructionsallow multiple single-precision values and/or integersto beloaded and
stored, and the FLDIVD and FSTMD ingtructions alow multiple double-precision values to be loaded and
stored.

Each of these instructions transfers a number of registers determined by the offset field of the instruction.
The offset field isequal to the total number of words transferred for all of theseinstructions, that is, itisthe
number of registers for FLDMS and FSTMS, and twice the number of registers for FLDVD and FSTIVD.

In addition, the FSTMX instruction can be used to store double-precision registers when it is not known
whether they contain single-precision or double-precision va ues, in aformat that allowsamatching FLDVX
instruction to reload them correctly (see Soring and rel oading val ues of unknown precision on page C2-15).
In theseinstructions, the offset field istwice the number of double-precision registersto betransferred, plus
one. Thisisthe maximum number of words these instructions can transfer. Some implementations transfer
one fewer word than this maximum, leaving a memory word unused.

The FSTMX and FLDMX instructions are encoded as coprocessor 11 instructions, like FSTMD and FLDVD.
They are distinguished from the latter by the fact that the offset field isodd in FSTMX and FLDMX
instructions, and even in FSTMD and FLDMD instructions.

The FSTMX and FLDMX instructions are the only coprocessor 11 instructions which are present in
single-precision-only variants (non-D variants) of the VFP architecture. To aid software portability, it is
recommended that programs written for such variants must use them in the same situations as a program
written for aD variant would, even though the registers are known to hold single-precision valuesin non-D
variants. The main situations affected are when storing and rel oading callee-save registers, and in process
swap code.

Three addressing modes are availabl e for these instructions:

. Unindexed mode is the same as t¥/STC Unindexed addressing mode (¢®@ad and Store

Coprocessor - Unindexed on page A5-64). The base register Rn determines the starting address for

the transfer and is left unchanged.

The offset field determines the number of registers to transfer, but does not affect the address

calculations.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C3-15

VFP Instruction Set Overview

. Increment mode is the same aslti¢/STC Immediate post-indexed addressing mode with a
positive offset (sekoad and Store Coprocessor - Immediate post-indexed on page A5-62). The base
register Rn determines the starting address for the transfer. The offset field determines the number of
registers to transfer, and is also multiplied by 4, added to the value of Rn and written back to Rn.

After the transfer, Rn therefore points to the memory word immediately after the last word to be
transferred (or the last word thauld have been transferred in the casE8TMX andFLDMX). This

means that it is suitable for pushing values on to an Empty Ascending stack or for popping them from
a Full Descending stack.

. Decrement mode is the same asltb€/STC Immediate pre-indexed addressing mode with a
negative offset (sdeoad and Store Coprocessor - |mmediate pre-indexed on page A5-60). The offset
is multiplied by 4 and added to the value of the base register Rn to determine the starting address for
the transfer, and this starting address is written back to Rn. The offset field also determines the
number of registers to transfer.

Before the transfer, Rn therefore points to the memory word immediately after the last word to be
transferred (or the last word thauld have been transferred in the case8TMX andFLDMX). This

means that it is suitable for pushing values on to a Full Descending stack or for popping them from
an Empty Ascending stack.

Note

There are no short vector forms of the load and store instructions as such Fibise FLDVD, FSTMS
andFSTMD instructions can be used to load and store many of the possible short vectors. However, note
that short vectors wrap around within banks as described in ChaptdfRCAddressing Modes, while the

load multiple and store multiple instructions simply advance linearly through S0-S31 or DO-D15. If a short
vector that wraps around is to be loaded or stored, two or more instructions are needed.

C3-16

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instruction Set Overview

3.3 Register transfer instructions

All VFP register transfer ingtructions are MCR and MRC instructions for coprocessors 10 and 11, with the
following format:

31 30 29 28 27 24 23 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 1 1 1 O opcode L Fn Rd cp_num |N O Of1 SBZ
opcode This determines which register transfer operation is required, as shown in Table 3-6.
L bit This bit determines the direction of the transfer:
. from an ARM register to a VFP register (§BR instruction, with L == 0)
. from a VFP register to an ARM register (&RC instruction, with L == 1).
Fn and N bit These bits specify the VFP register involved in the transfer:

. For a single-precision register, Fn holds the top 4 bits of the register number, and N
holds the bottom bit.

. For a double-precision register, Fn holds the register number, and N must be 0.

. For a system register, Fn and N specify the register as shown in Table 3-7 on
page C3-18.

If N is 1 in an instruction that transfers a double-precision register, the instruction is

UNDEFINED.

Rd This specifies the ARM register involved in the transfer. If Rd is R15, the behavior is as
specified for the generic ARM instruction:

. For anMCR instruction (L == 0), the instruction iS8NPREDICTABLE.

. For anMRC instruction (L == 1), the top 4 bits of the value transferred are placed in
the ARM condition code flags, and the remaining 28 bits are discardeBNBTAT
instruction uses this behavior to transfer comparison results to the ARM.

cp_num If cp_num is 0b1010 (coprocessor number 10), the instruction is a single-precision or

system register transfer.

If cp_num is 0b1011 (coprocessor number 11), the instruction is a double-precision register
transfer.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C3-17

VFP Instruction Set Overview

Table 3-6 shows the assignment of register transfer opcodes and other details of the instructions:

Table 3-6 VFP register transfer instructions

opcode cp_num L Instruction name Instruction functionality
000 0b1010 0 FMSR Sn=Rd

000 0b1010 1 FMRS Rd = Sn

000 0b1011 0 FMDLR Dn[31:0] =Rd

000 0b1011 1 FMRDL Rd = Dn[31:0]

001 0b1010 X - UNDEFINED

001 0b1011 0 FMDHR Dn[63:32] = Rd

001 0b1011 1 FMRDH Rd = Dn[63:32]

01x 0b101x X - UNDEFINED

10x 0b101x X - UNDEFINED

110 0b101x X - UNDEFINED

111 0b1010 0 FMXR SystemReg(Fn,N) = Rd
111 0b1010 1 FMRX Rd = SystemReg(Fn,N)
111 Ob1011 X - UNDEFINED

Table 3-7 shows how system registers are encoded in FMXR and FMRX instructions:

Table 3-7 VFP system register encodings

Fn N System register
0b0000 0 FPSID
0b0001 0 FPSCR
0b1000 0 FPEXC
Encodings that are not shown in thistable are:
. Reserved for future expansion if the top bit of Fn IENIXR andFMRX instructions using these
encodings areNDEFINED.
. Reserved for additionaliPLEMENTATION DEFINED system registers if the top bit of Fn isFIMXR

andFMRX instructions using these encodings @BLEMENTATION DEFINED.

C3-18 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

3.3.1

VFP Instruction Set Overview

General-purpose register transfer instructions

The FMRS instruction allows a single-precision value or a 32-bit integer in asingle-precision register to be
transferred to an ARM register, and the FMSR instruction allows asimilar transfer from an ARM register to
asingle-precision register.

The FIMRDH and FMRDL instructions allow a double-precision vaue in a double-precision register to be
transferred to a pair of ARM registers. The FMRDH instruction transfers the most significant word of the
double-precision value, which contains the sign, exponent and 20 most significant fraction bits. The FMRDL
instruction transfers the least significant word, which contains the remaining fraction bits.

Similarly, the FMDHR and FMDL R instructions allow adouble-precision valuein apair of ARM registersto
betransferred to a double-precision register. FMDHR transfers the most significant word and FMDLR
transfers the least significant word.

Note

The FMDHR and FMDLR instructions must be used in pairs, writing to the same double-precision register.
These need not be executed consecutively, but while one of a pair has been executed and the other has not,
the only valid uses of the destination double-precision register are:

. as the destination register of the second instruction of the pair

. storing it withFSTMX and reloading it witlrL DMX, and using it for other purposes between the store
and the reload.

All of these instructions always treat their floating-point operand as a scalar, regardless of the settings of the
FPSCR LEN and STRIDE fields.

The register transfer performed is always a simple copy. No exceptions are ever raised and the value
transferred is not changed, except possibly for a reversible conversion to or from the internal register format
of an implementation.

The copy is treated as a non floating-point operation for the purposes of NaN handling and flush-to-zero
mode. In particular, the VFP architecture requires:

. a load or store of a signaling NaN not to raise an Invalid Operation exception, nor to change the
signaling NaN into a quiet NaN

. a load or store of a denormalized number in flush-to-zero mode not to change it into +0.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C3-19

VFP Instruction Set Overview

3.3.2 System register transfer instructions
The FMRX instruction transfers a system register value to an ARM register, and the FMXR instruction
transfers an ARM register value to a system register. Their exact effects depend on the definition of the
system register concerned. For more details, see System registers on page C2-19 for the architecturally
defined system registers, or implementation documentation for IMPLEMENTATION DEFINED System registers.
Theseingtructionsareserializing instructions. When one of them is executed, the register transfer isdelayed
until:
. all floating-point operations in progress have determined whether they are going to generate an
exception
. any trapped exception handling or other software processing of floating-point operations in progress
has completed
. all effects of floating-point operations in progress on system register contents (such as setting
cumulative exception flags for untrapped exceptions) have occurred
. all floating-point operations in progress are no longer affected by changes to system register contents
(for example, by rounding mode or flush-to-zero mode changes).
C3-20 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter C4
VFP Instructions

This chapter describes the syntax and usage of each VFP instruction, in the section:

. Alphabetical list of VFP instructions on page C4-2.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-1

VFP Instructions

4.1 Alphabetical list of VFP instructions

Each VFP instruction is described in detail on the following pages.

4.1.1 FABSD

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 121110 9 8 7 6 5 4 3 0

cond 1110101 1(0000 Dd 1011|1|1(0(0 Dm

The FABSD (Floating-point Absolute VValue, Double-precision) instruction writes the absolute value of a
double-precision register to another double-precision register. It can also perform avector version of this
operation.

Syntax
FABSD{<cond>} <Dd>, <Dnp

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Dd> Specifies the destination register.

<Dnw Specifies the source register.

Architecture version

D variants only

Exceptions

None

Operation

i f ConditionPassed(cond) then
for i =0 to vec_len-1

DA[i] = abs(Dnfi])

C4-2 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Absolute value function

The function abs(x) means acopy of x with its sign bit forced to zero, as defined in the
Appendix to the IEEE 754-1985 standard.

Flush-to-zero mode
The FZ hit of the FPSCR does not affect the operand or result of thisinstruction.

Vectors Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FABSDperforms
just one absolute value operation, and vec_| en=1, Dd[0] =Dd, and Dn{ 0] =Dm

When the LEN field indicates a vector mode (vector length > 1), FABSD might perform
more than one absol ute val ue operation. Addressing Mode 4 - Double-precision vectors
(monadic) on page C5-19 describes how FABSD encodes the registers it uses and how
vec_len, Dd[i],andDnfi] aredetermined.

Signaling NaNs
To comply with the VFP architecture, FABSD must not generate an exception even if the

valueinits sourceregister isasignaing NaN. Thisisamore stringent requirement than the
onein the Appendix to the IEEE 754-1985 standard.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-3

VFP Instructions

4.1.2 FABSS

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 121110 9 8 7 6 5 4 3 0

cond 11101Dj11(0000 Fd 1010|1|{12(M|O Fm

The FABSS (Floating-point Absolute Value, Single-precision) instruction writes the absolute value of a
single-precision register to another single-precision register. It can also perform a vector version of this
operation.

Syntax

FABSS{<cond>} <Sd>, <Snp

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register. Its number is encoded as Fd (top 4 bits) and D (bottom
bit).

<Sne Specifies the source register. Its number is encoded as Fm (top 4 bits) and M (bottom bit).

Architecture version

All
Exceptions
None
Operation
i f ConditionPassed(cond) then
for i =0 to vec_len-1
Sd[i] = abs(Snii])

C4-4 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Absolute value function

The function abs(x) means acopy of x with its sign bit forced to zero, as defined in the
Appendix to the IEEE 754-1985 standard.

Flush-to-zero mode
The FZ hit of the FPSCR does not affect the operand or result of thisinstruction.

Vectors Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FABSS performs
just one absolute value operation, and vec_| en=1, Sd[0] =Sd, and Sn{ 0] =Sm

When the LEN field indicates a vector mode (vector length > 1), FABSS might perform
more than one absol ute val ue operation. Addressing Mode 3 - Single-precision vectors
(monadic) on page C5-14 describes how FABSS encodes the registers it uses and how
vec_len,Sd[i],andSnii] aredetermined.

Signaling NaNs
To comply with the VFP architecture, FABSS must not generate an exception even if the

valueinits sourceregister isasignaing NaN. Thisisamore stringent requirement than the
onein the Appendix to the IEEE 754-1985 standard.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-5

VFP Instructions

4.1.3 FADDD

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 11100011 Dn Dd 1 011(0(0[|0|0 Dm
The FADDD (Floating-point Addition, Double-precision) instruction adds together two double-precision
registers and writestheresult to athird double-precision register. It can also perform avector version of this
operation.
Syntax
FADDD{ <cond>} <Dd>, <Dn>, <Dn»
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Dd> Specifies the destination register.
<Dn> Specifies the register that contains the first operand for the addition.
<Dnw Specifies the register that contains the second operand for the addition.
Architecture version
D variants only
Exceptions
Floating-point exceptions: Invalid Operation, Overflow, Inexact
Operation
i f ConditionPassed(cond) then
for i =0 to vec_len-1
DA[i] = Dn[i] + Dnfi]
C4-6 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Vectors Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FADDD performs
just one addition, and vec_I en=1, Dd[0] =Dd, Dn[0] =Dn, and Dni 0] =Dm

When the LEN field indicates a vector mode (vector length > 1), FADDD might perform
more than one addition. Addressing Mode 2 - Double-precision vectors (non-monadic) on
page C5-8 describes how FADDD encodes theregistersit usesand how vec_| en,Dd[i],
Dn[i],andDnji] aredetermined.

Rounding Theoperation isafully-rounded addition. The rounding mode is determined by the FPSCR.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-7

VFP Instructions

4.1.4 FADDS
31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 11100(D|11 Fn Fd 1 01O0[NIOM|O Fm

The FADDS (Floating-point Addition, Single-precision) instruction adds together two single-precision

registersand writes the result to athird single-precision register. It can also perform avector version of this

operation.

Syntax

FADDS{ <cond>} <Sd>, <Sn>, <Sn»

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register. Its number is encoded as Fd (top 4 bits) and D (bottom
bit).

<Sn> Specifies the register that contains the first operand for the addition. Its number is encoded
as Fn (top 4 hits) and N (bottom bit).

<Sne Specifies the register that contains the second operand for the addition. Its number is
encoded as Fm (top 4 bits) and M (bottom bit).

Architecture version

All

Exceptions

Floating-point exceptions: Invalid Operation, Overflow, Inexact

Operation

i f ConditionPassed(cond) then

for i =0 to vec_len-1
Sd[i] = Sn[i] + Snfi]
C4-8 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes

Vectors

Rounding

VFP Instructions

Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FADDS performs
just one addition, and vec_I en=1, Sd[0] =Sd, Sn[0] =Sn, and Sni 0] =Sm

When the LEN field indicates a vector mode (vector length > 1), FADDS might perform
more than one addition. Addressing Mode 1 - Single-precision vectors (non-monadic) on
page C5-2 describes how FADDS encodes theregistersit usesand how vec_| en, Sd[i],
Sn[i],andSn{i] aredetermined.

Theoperation isafully-rounded addition. The rounding mode is determined by the FPSCR.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-9

VFP Instructions

4.1.5 FCMPD
31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 111010/2 1|01 00 Dd 1 011(0(1]{0|0 Dm
The FCMPD (Floating-point Compare, Double-precision) instruction compares two double-precision
registers, writing the result to the FPSCR flags (which isnormally transferred to the ARM flags by a
subsequent FMSTAT instruction).
Syntax
FCWPD{<cond>} <Dd>, <Dnp
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Dd> Specifies the register which contains the first operand for the comparison.
<Dnw Specifies the register which contains the second operand for the comparison.
Architecture version
D variants only
Exceptions
Floating-point exceptions: Invalid Operation
Operation
i f ConditionPassed(cond) then

if (Dd is a signaling NaN) or (Dmis a signaling NaN) then

raise Invalid Operation exception

FPSCR N flag = if (Dd < Dn) then 1 else O

FPSCR Z flag = if (Dd == Dn) then 1 else O

FPSCR C flag = if (Dd < Dn) then 0 else 1

FPSCR V flag = if (Dd and Dm conpare as unordered) then 1 else 0

C4-10 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes
Vectors

NaNs

VFP Instructions

FCMPD always specifies a scalar operation, regardless of the LEN field of the FPSCR.

The |EEE 754 standard specifies that the result of acomparison is precisely oneof <, ,
> or unordered. If either or both of Dd and Dm are NaNs, they are unordered, and all three

of (Dd < Dm), (Dd == Dm) and (Dd > Dm) are false. Thisresultsin the FPSCR flags being
set as N=0, Z=0, C=1 and V=1.

FCMPD only raises an Invalid Operation exception if one or both operands are signaing
NaNs, and is suitable for testing for ==, | =, unorderedness, and other predicates which do
not raise an exception when the operands are unordered.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-11

VFP Instructions

4.1.6 FCMPED
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 121110 9 8 7 6 5 4 3 0
cond 111010/2 1|01 00 Dd 1011(1(1/0|0 Dm
The FCMPED (Floating-point Compare (NaN Exceptions), Double-precision) instruction compares two
double-precision registers, writing the result to the FPSCR flags (which isnormally transferred to the ARM
flags by a subsequent FMSTAT instruction).
Syntax
FCMPED{ <cond>} <Dd>, <Dn»
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Dd> Specifies the register which contains the first operand for the comparison.
<Dnw Specifies the register which contains the second operand for the comparison.
Architecture version
D variants only
Exceptions
Floating-point exceptions: Invalid Operation
Operation
i f ConditionPassed(cond) then

if (Dd is a NaN) or (Dmis a NaN) then

raise Invalid Operation exception

FPSCR N flag = if (Dd < Dn) then 1 else O

FPSCR Z flag = if (Dd == Dn) then 1 else O

FPSCR C flag = if (Dd < Dn) then 0 else 1

FPSCR V flag = if (Dd and Dm conpare as unordered) then 1 else 0

C4-12 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes
Vectors FCMPED always specifies a scalar operation, regardless of the LEN field of the FPSCR.
NaNs The |EEE 754 standard specifies that the result of acomparison isprecisely oneof <, ==,

> or unordered. If either or both of Dd and Dm are NaNs, they are unordered, and all three
of (Dd < Dm), (Dd == Dm) and (Dd > Dm) are false. Thisresultsin the FPSCR flags being
set as N=0, Z=0, C=1 and V=1.

FCMPED raises an Invalid Operation exception if one or both operands are any type of NaN,
and is suitable for testing for <, <=, >, >=, and other predicates which raise an exception
when the operands are unordered.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-13

VFP Instructions

4.1.7 FCMPES
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 121110 9 8 7 6 5 4 3 0
cond 11101D|1 10100 Fd 1010(1(1|M|O Fm
The FCMPES (Floating-point Compare (NaN Exceptions), Single-precision) instruction compares two
single-precision registers, writing the result to the FPSCR flags (which is normally transferred to the ARM
flags by a subsequent FMSTAT instruction).
Syntax
FCVMPES{ <cond>} <Sd>, <Sn»
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Sd> Specifies the register which contains the first operand for the comparison. The register
number is encoded as Fd (top 4 bits) and D (bottom bit).
<Sne Specifies the register which contains the second operand for the comparison. The register
number is encoded as Fm (top 4 bits) and M (bottom bit).
Architecture version
All
Exceptions
Floating-point exceptions: Invalid Operation
Operation
i f ConditionPassed(cond) then
if (Sd is a NaN) or (Smis a NaN) then
raise Invalid Operation exception
FPSCR N flag = if (Sd < Sn) then 1 else O
FPSCR Z flag = if (Sd == Sn) then 1 else O
FPSCR C flag = if (Sd < Sn) then 0 else 1
FPSCR V flag = if (Sd and Sm conpare as unordered) then 1 else 0
C4-14 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes
Vectors

NaNs

VFP Instructions

FCMPES always specifies a scalar operation, regardless of the LEN field of the FPSCR.

The |EEE 754 standard specifies that the result of acomparison isprecisely oneof <, ==,
> or unordered. If either or both of Dd and Dm are NaNs, they are unordered, and all three
of (Dd < Dm), (Dd == Dm) and (Dd > Dm) are false. Thisresultsin the FPSCR flags being
set as N=0, Z=0, C=1 and V=1.

FCMPES raises an Invalid Operation exception if the operand is any type of NaN, and is
suitablefor testing for <, <=, >, >=, and other predicates which raise an exception when the
operands are unordered.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-15

VFP Instructions

4.1.8 FCMPEZD

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1211109 8 7 6 5 4 3 2 1 O

cond 111010110101 Dd 1011|1|1(0(0 SBZ

The FCMPEZD (Floating-point Compare (NaN Exceptions) with Zero, Double-precision) instruction
compares a double-precision register with zero, writing the result to the FPSCR flags (which is normally
transferred to the ARM flags by a subsequent FMSTAT instruction).

Syntax

FCMPEZD{ <cond>} <Dd>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Dd> Specifies the register which contains the first operand for the comparison.

Architecture version

D variants only

Exceptions

Floating-point exceptions: Invalid Operation

Operation

i f ConditionPassed(cond) then
if (Dd is a NaN) then
raise Invalid Operation exception

FPSCR N flag = if (Dd < 0.0) then 1 else O
FPSCR Z flag = if (Dd == 0.0) then 1 else 0
FPSCR C flag = if (Dd < 0.0) then 0 else 1
FPSCR V flag = if (Dd is a NaN) then 1 else O

C4-16 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes
Vectors FCMPEZD dways specifies a scalar operation, regardless of the LEN field of the FPSCR.
NaNs The |EEE 754 standard specifies that the result of a comparison is precisely one of <, ==,

> or unordered. If Dd isaNaN, it compares as unordered with zero, and all three of (Dd <
0.0), (Dd==0.0) and (Dd > 0.0) arefalse. Thisresultsin the FPSCR flags being set asN=0,
Z=0,C=1and V=1.

FCMPEZD raises an Invalid Operation exception if the operand is any type of NaN, and is
suitable for testing for <, <=, >, >=, and other predicates which raise an exception when
the operands are unordered.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-17

VFP Instructions

41.9 FCMPEZS

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1211109 8 7 6 5 4 3 2 1 O

cond 11101Dj11(0101 Fd 1010|1|1(0(0 SBZ

The FCMPEZS (Floating-point Compare (NaN Exceptions) with Zero, Single-precision) instruction
compares a single-precision register with zero, writing the result to the FPSCR flags (which is normally
transferred to the ARM flags by a subsequent FMSTAT instruction).

Syntax

FCMPEZS{ <cond>} <Sd>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the register which contains the first operand for the comparison. The register

number is encoded as Fd (top 4 bits) and D (bottom bit).

Architecture version

All

Exceptions

Floating-point exceptions: Invalid Operation

Operation

i f ConditionPassed(cond) then
if (Sd is a NaN) then
raise Invalid Operation exception

FPSCR N flag = if (Sd < 0.0) then 1 else O
FPSCR Z flag = if (Sd == 0.0) then 1 else 0
FPSCR C flag = if (Sd < 0.0) then 0 else 1
FPSCR V flag = if (Sd is a NaN) then 1 else O

C4-18 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes
Vectors FCMPEZS dways specifies a scalar operation, regardless of the LEN field of the FPSCR.
NaNs The |EEE 754 standard specifies that the result of a comparison is precisely one of <, ==,

> or unordered. If Dd isaNaN, it compares as unordered with zero, and all three of (Dd <
0.0), (Dd==0.0) and (Dd > 0.0) arefalse. Thisresultsin the FPSCR flags being set asN=0,
Z=0,C=1and V=1.

FCMPEZS raises an Invalid Operation exception if the operand is any type of NaN, and is
suitablefor testing for <, <=, >, >=, and other predicates which raise an exception when the
operands are unordered.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-19

VFP Instructions

4.1.10 FCMPS
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 121110 9 8 7 6 5 4 3 0
cond 11101D|1 10100 Fd 1 010(0(1]M|O Fm
The FCMPS (Floating-point Compare, Single-precision) instruction compares two single-precision
registers, writing the result to the FPSCR flags (which isnormally transferred to the ARM flags by a
subsequent FMSTAT instruction).
Syntax
FCWPS{<cond>} <Sd>, <Sne
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Sd> Specifies the register which contains the first operand for the comparison. The register
number is encoded as Fd (top 4 bits) and D (bottom bit).
<Sne Specifies the register which contains the second operand for the comparison. The register
number is encoded as Fm (top 4 bits) and M (bottom bit).
Architecture version
All
Exceptions
Floating-point exceptions: Invalid Operation
Operation
i f ConditionPassed(cond) then
if (Sd is a signaling NaN) or (Smis a signaling NaN) then
raise Invalid Operation exception
FPSCR N flag = if (Sd < Sn) then 1 else O
FPSCR Z flag = if (Sd == Sn) then 1 else O
FPSCR C flag = if (Sd < Sn) then 0 else 1
FPSCR V flag = if (Sd and Sm conpare as unordered) then 1 else 0
C4-20 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes
Vectors

NaNs

VFP Instructions

FCMPS always specifies a scalar operation, regardless of the LEN field of the FPSCR.

The |EEE 754 standard specifies that the result of acomparison isprecisely oneof <, ==,
> or unordered. If either or both of Dd and Dm are NaNs, they are unordered, and all three

of (Dd < Dm), (Dd == Dm) and (Dd > Dm) are false. Thisresultsin the FPSCR flags being
set as N=0, Z=0, C=1 and V=1.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-21

VFP Instructions

4111 FCMPZD

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1211109 8 7 6 5 4 3 2 1 O

cond 111010110101 Dd 1011|0(1(0(0 SBZ

The FCMPZD (Floating-point Compare with Zero, Double-precision) instruction compares a
double-precision register with zero, writing the result to the FPSCR flags (which is normally transferred to
the ARM flags by a subsequent FMSTAT instruction).

Syntax

FCWPZD{ <cond>} <Dd>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Dd> Specifies the register which contains the first operand for the comparison.

Architecture version

D variants only

Exceptions

Floating-point exceptions: Invalid Operation

Operation

i f ConditionPassed(cond) then
if (Dd is a signaling NaN) then
raise Invalid Operation exception

FPSCR N flag = if (Dd < 0.0) then 1 else O
FPSCR Z flag = if (Dd == 0.0) then 1 else 0
FPSCR C flag = if (Dd < 0.0) then 0 else 1
FPSCR V flag = if (Dd is a NaN) then 1 else O

C4-22 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes
Vectors

NaNs

VFP Instructions

FCMPZD always specifies a scalar operation, regardless of the LEN field of the FPSCR.

The |EEE 754 standard specifies that the result of a comparison is precisely one of <, ==,
> or unordered. If Dd isaNaN, it compares as unordered with zero, and all three of (Dd <

0.0), (Dd==0.0) and (Dd > 0.0) arefalse. Thisresultsin the FPSCR flags being set asN=0,
Z=0,C=1and V=1.

FCMPZD only raises an Invalid Operation exception if the operand is asignaling NaN, and
issuitable for testing for ==, | =, unorderedness, and other predicates which do not raise an
exception when the operands are unordered.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-23

VFP Instructions

4112 FCMPZS

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1211109 8 7 6 5 4 3 2 1 O

cond 11101Dj11(0101 Fd 1010|0|1(0(|0 SBZ

TheFCMPZS (Floating-point Compare with Zero, Single-precision) instruction compares asingle-precision
register with zero, writing the result to the FPSCR flags (which is normally transferred to the ARM flags by
a subsequent FMSTAT instruction).

Syntax

FCWPZS{ <cond>} <Sd>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the register which contains the first operand for the comparison. The register

number is encoded as Fd (top 4 bits) and D (bottom bit).

Architecture version

All

Exceptions

Floating-point exceptions: Invalid Operation

Operation

i f ConditionPassed(cond) then
if (Sd is a signaling NaN) then
raise Invalid Operation exception

FPSCR N flag = if (Sd < 0.0) then 1 else O
FPSCR Z flag = if (Sd == 0.0) then 1 else 0
FPSCR C flag = if (Sd < 0.0) then 0 else 1
FPSCR V flag = if (Sd is a NaN) then 1 else O

C4-24 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes
Vectors FCMPZS always specifies a scalar operation, regardless of the LEN field of the FPSCR.
NaNs The |EEE 754 standard specifies that the result of a comparison is precisely one of <, ==,

> or unordered. If Dd isaNaN, it compares as unordered with zero, and all three of (Dd <
0.0), (Dd==0.0) and (Dd > 0.0) arefalse. Thisresultsin the FPSCR flags being set asN=0,
Z=0,C=1and V=1.

FCMPZS only raises an I nvalid Operation exception if the operand isasignaling NaNs, and
is suitable for testing for ==, ! =, unorderedness, and other predicates which do not raise
an exception when the operands are unordered.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-25

VFP Instructions

4113 FCPYD

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 121110 9 8 7 6 5 4 3 0

cond 1110101 1(0000 Dd 1011|0(1(0(0 Dm

The FCPYD (Floating-point Copy, Double-precision) instruction copies one double-precision register to
another double-precision register. It can a so perform a vector version of this operation.

Syntax
FCPYD{<cond>} <Dd>, <Dnp

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Dd> Specifies the destination register.

<Dnw Specifies the source register.

Architecture version

D variants only

Exceptions
None
Operation
i f ConditionPassed(cond) then
for i =0 to vec_len-1
Dd[i] = Dnfi]

C4-26 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Vectors Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FCPYDperforms
just one copy, and vec_| en=1, Dd[0] =Dd, and Dn{ 0] =Dm

When the LEN field indicates a vector mode (vector length > 1), FCPYD might perform
more than one copy. Addressing Mode 4 - Double-precision vectors (monadic) on

page C5-19 describes how FCYPD encodes the registersit uses and how vec_| en,
Dd[i],andDnji] aredetermined.

Flush-to-zero mode
The FZ hit of the FPSCR does not affect the operand or result of thisinstruction.
Signaling NaNs

To comply with the VFP architecture, FCPYD must not generate an exception even if the
valueinits sourceregister isasignaing NaN. Thisisamore stringent requirement than the
onein the |EEE 754-1985 standard.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-27

VFP Instructions

4114 FCPYS

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 121110 9 8 7 6 5 4 3 0

cond 11101Dj11(0000 Fd 1010|0[1(M|O Fm

The FCPYS (Floating-point Copy, Single-precision) instruction copies one single-precision register to
another single-precision register. It can also perform a vector version of this operation.

Syntax

FCPYS{<cond>} <Sd>, <Sm»>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register. The register number is encoded as Fd (top 4 bits) and D
(bottom hit).

<Sne Specifies the source register. The register number is encoded as Fm (top 4 bits) and M

(bottom hit).

Architecture version

All
Exceptions
None
Operation
i f ConditionPassed(cond) then
for i =0 to vec_len-1
Sd[i] = snfi]

C4-28 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Vectors Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FCPYS performs
just one copy, and vec_| en=1, Sd[0] =Sd, and Sn{ 0] =Sm

When the LEN field indicates a vector mode (vector length > 1), FCPYD might perform
more than one copy. Addressing Mode 3 - Single-precision vectors (monadic) on

page C5-14 describes how FCYPS encodes the registersit uses and how vec_| en,
Sd[i],andSn{i] aredetermined.

Flush-to-zero mode
The FZ hit of the FPSCR does not affect the operand or result of thisinstruction.

Signaling NaNs
To comply with the VFP architecture, FCPYS must not generate an exception even if the

valueinits sourceregister isasignaing NaN. Thisisamore stringent requirement than the
onein the |EEE 754-1985 standard.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-29

VFP Instructions

4115 FCVTDS

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 121110 9 8 7 6 5 4 3 0

cond 1110101210111 Dd 1010|1|{12(M|O Fm

The FCVTDS (Floating-point Convert to Double-precision from Single-precision) instruction converts the
value in asingle-precision register to double precision and writes the result to a double-precision register.

Syntax

FCVTDS{ <cond>} <Dd>, <Sn»

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Dd> Specifies the destination register.

<Sne Specifies the source register. The register number is encoded as Fm (top 4 bits) and M

(bottom hit).

Architecture version

D variants only

Exceptions

Floating-point exception: Invalid Operation

Operation

i f ConditionPassed(cond) then
Dd = Convert Si ngl eToDoubl e(Sm)

Notes

Vectors FCVTDS aways specifies ascalar operation, regardless of the LEN field of the FPSCR.

C4-30 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

4116 FCVTSD

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 121110 9 8 7 6 5 4 3 0

cond 11101Dj11(0111 Fd 1011]1|1|0]|0 Dm

The FCVTSD (Floating-point Convert to Single-precision from Double-precision) instruction convertsthe
value in adouble-precision register to single precision and writes the result to a single-precision register.

Syntax

FCVTSD{<cond>} <Sd>, <Dnp

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register. The register number is encoded as Fd (top 4 bits) and D
(bottom bit).

<Dn® Specifies the source register.

Architecture version

D variants only

Exceptions

Floating-point exceptions: Invalid Operation, Overflow, Underflow, Inexact

Operation

i f ConditionPassed(cond) then
Sd = Convert Doubl eToSi ngl e(Dm)

Notes
Vectors FCVTSD always specifies a scalar operation, regardless of the LEN field of the FPSCR.

Rounding FCVTSD performs a fully-rounded conversion. The rounding mode is determined by the
FPSCR.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-31

VFP Instructions

4.1.17 FDIVD

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 11101(0{00 Dn Dd 1 011(0(0[|0|0 Dm
TheFDI VD (Floating-point Divide, Double-precision) instruction divides one double-precision register by
another double-precision register and writes the result to athird double-precision register. It can also
perform avector version of this operation.
Syntax
FDI VD{<cond>} <Dd>, <Dn>, <Dn»
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Dd> Specifies the destination register.
<Dn> Specifies the register that contains the first operand for the division.
<Dnw Specifies the register that contains the second operand for the division.
Architecture version
D variants only
Exceptions
Floating-point exceptions: Invalid Operation, Division by Zero, Overflow, Underflow, Inexact
Operation
i f ConditionPassed(cond) then
for i =0 to vec_len-1
Dd[i] = Dn[i] / Dnfi]

Usage
Divisionstake alarge number of cycles on most implementations, and vector divisionstake proportionately
longer. This can have amajor effect on performance.
If alot of divisions by the same number are wanted, the performance can usually be improved by using one
division to calculate the number’s reciprocal, followed by alot of multiplications by that reciprocal. This
slightly reduces the accuracy of the calculations, since they incur two rounding errors rather than one, but
this is often an acceptabl e tradeoff.
Also see Interrupts on page C1-5 for adescription of some implications for interrupt latency.

C4-32 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Vectors Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FDI VDperforms
just onedivision, andvec_| en=1, Dd[0] =Dd, Dn[0] =Dn, and Dn{ 0] =Dm
When the LEN field indicates a vector mode (vector length > 1), FDI VD might perform
more than one division. Addressing Mode 2 - Doubl e-precision vectors (non-monadic) on
page C5-8 describeshow FDI VD encodes theregistersit usesand how vec_| en,Dd[i],
Dn[i],andDnji] aredetermined.

Rounding Theoperation isafully-rounded division. The rounding modeis determined by the FPSCR.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-33

VFP Instructions

4.1.18 FDIVS

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11101D|j0O Fn Fd 101O0|N|OM|O Fm

The FDI VS (Floating-point Divide, Single-precision) instruction divides one single-precision register by
another single-precision register and writesthe result to a third single-precision register. It can aso perform
avector version of this operation.

Syntax

FDI VS{<cond>} <Sd>, <Sn>, <Snp

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register. The register number is encoded as Fd (top 4 bits) and D
(bottom hit).

<Sn> Specifiesthe register that contains the first operand for the division. The register number is
encoded as Fn (top 4 bits) and N (bottom hit).

<Sne Specifiestheregister that contains the second operand for the division. Theregister number

is encoded as Fm (top 4 bits) and M (bottom hit).

Architecture version

All

Exceptions

Floating-point exceptions: Invalid Operation, Division by Zero, Overflow, Underflow, Inexact

Operation

i f ConditionPassed(cond) then
for i =0 to vec_len-1
Sd[i] = sn[i] / sSnfi]

C4-34 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Usage

Divisionstake alarge number of cycles on most implementations, and vector divisionstake proportionately
longer. This can have amajor effect on performance.

If alot of divisions by the same number are wanted, the performance can usually be improved by using one
division to calculate the number’s reciprocal, followed by alot of multiplications by that reciprocal. This
dlightly reduces the accuracy of the calculations, since they incur two rounding errors rather than one, but
this is often an acceptable tradeoff.

Also see Interrupts on page C1-5 for a description of some implications for interrupt latency.

Notes

Vectors Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FDI VS performs
just onedivision, andvec_| en=1, Sd[0] =Sd, Sn[0] =Sn, and Sn{ 0] =Sm
When the LEN field indicates a vector mode (vector length > 1), FDI VS might perform
more than one division. The way FDI VS encodes the registersit uses and how vec_| en,
Sd[i],Sn[i],andSn{i] aredetermined isdescribed on Addressing Mode 1 -
Single-precision vectors (non-monadic) on page C5-2.

Rounding The operation isafully-rounded division. The rounding modeis determined by the FPSCR.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-35

VFP Instructions

4.1.19

FLDD

31 28 27 26 25 24 23 22 21 20 19

16 15

121110 9 8 7

cond 1101Uj0j0 1

Rn

Dd

1011

offset

The FLDD (Floating-point Load, Double-precision) instruction loads a double-precision register from

memory.

Syntax

FLDD{ <cond>} <Dd>, [<Rn>{, #+/-(<offset>*4)}]

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Dd> Specifies the destination register.

<Rn> Specifies the register holding the base address for the transfer.

<of fset > Specifiesan offset to be multiplied by 4, then added to the base address (if U == 1) or
subtracted from it (if U == 0) in order to form the actua address of thetransfer. If this offset

is omitted, it defaults to +0.

Architecture version

D variants only

Exceptions

Data Abort

Operation

i f ConditionPassed(cond) then
if (U==1)

address = Rn + offset * 4

el se

address = Rn - offset * 4

i f (big-endian)

Dd = [Menory[address, 4] << 32) OR Menory[address+4, 4]

el se

Dd = [Menory[address+4, 4] << 32) OR Menory[address, 4]

C4-36

Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

VFP Instructions

Notes
Addressing mode
Thisis aspecial case of Addressing Mode 5 - VFP load/store multiple on page C5-24.

Conversions In the programmer’s moddrL DD does not perform any conversion on the value
transferred. Implementations are free to convert the value transferred to an internal format,
provided they can recover the correct double-precision value as necessary.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-37

VFP Instructions

4.1.20 FLDMD

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 0

cond 110|PlUlOW|1 Rn Dd 1011 offset

The FLDVD (Floating-point Load Multiple, Double-precision) instruction loads a sequence of consecutive

double-precision registers from memory.

Syntax

FLDWkaddr essi ng_node>D{ <cond>} <Rn>{!}, <registers>

where:

<addr essi ng_node>
Specifies the addressing mode, which determines the values of start_address and
end_address used by the instruction. See Addressing Mode 5 - VFP load/store
multiple on page C5-24.

<cond> Isthe condition under which theinstruction is executed. The conditions are defined
in The condition field on page A3-5. If <cond> is omitted, the AL (always)
condition is used.

<Rn> Specifies the base register used by <addr essi ng_node>.

! Setsthe W bit of theinstruction to 1, specifying that the base register <Rn> isto be
updated by the instruction. If it isomitted, the W bit of theinstruction isset to 0 and
the base register <Rn> is left unchanged. Some combinations of
<addr essi ng_node> and the presence or absence of ! are not allowed. For
details, see Addressing Mode 5 - VFP |oad/store multiple on page C5-24.

<regi sters> Specifies which registers are to be loaded, as alist of consecutively numbered
double-precision registers, separated by commas and surrounded by brackets. It is
encoded in theinstruction by setting Dd to the number of thefirst register in thelist,
and of f set to twice the number of registersin thelist. At least one register must
be specified in the list.

For example, if <r egi st er s>is{ D2, D3, D4} , theDdfield of theinstructionis
2 and the offset field is 6.

Architecture version

D variants only

Exceptions

Data Abort

C4-38 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Operation

i f ConditionPassed(cond) then
address = start_address
for i =0 to (offset-2)/2
/* d is the nunber of register Dd; */
/* D(n) is the doubl e-precision register nunbered n */
i f (big-endian)
D(d+i) = (Menory[address,] << 32) OR Menory[address+4, 4]
el se
D(d+i) = (Menory[address+4,4] << 32) OR Menory[address, 4]
address = address + 8
assert end_address = address - 4

Notes

Encoding If P=1 and W=0, the instruction is an FLDD instruction instead. Otherwise, if offset isodd,
the instruction is an FL DMX instruction instead.

Vectors The FLDMD instruction is unaffected by the LEN and STRIDE fields of the FPSCR, and
does not wrap around at bank boundariesin the way that vector operandsto data-processing
instructions do. Registers are loaded in simple increasing order of register number.

Invalid register lists

If Dd and of f set do not specify avalid register list, the instruction is UNPREDICTABLE.
This happensin two cases.

. if of f set == 0, thatis, if an attempt is made to transfer no registers
. ifd + offset/2 > 16, thatis, if an attempt is made to transfer another register
after D15.

Conversions In the programmer’s moddrLDVD does not perform any conversion on the value
transferred. Implementations are free to convert the value transferred to an internal format,
provided they can recover the correct double-precision value as necessary.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-39

VFP Instructions

4.1.21 FLDMS

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 0

cond 110|PlUDW1 Rn Fd 1010 offset

The FLDMS (Floating-point Load Multiple, Single-precision) instruction loads a sequence of consecutive

single-precision registers from memory.

Syntax

FLDW<kaddr essi ng_node>S{<cond>} <Rn>{!}, <registers>

where:

<addr essi ng_node>
Specifies the addressing mode, which determines the values of start_address and
end_address used by the instruction. See Addressing Mode 5 - VFP load/store
multiple on page C5-24 for details.

<cond> Isthe condition under which theinstruction is executed. The conditions are defined
in The condition field on page A3-5. If <cond> is omitted, the AL (always)
condition is used.

<Rn> Specifies the base register used by <addr essi ng_node>.

! Setsthe W bit of theinstruction to 1, specifying that the base register <Rn> isto be
updated by the instruction. If it isomitted, the W bit of theinstruction isset to 0 and
the base register <Rn> is left unchanged. Some combinations of
<addr essi ng_node> and the presence or absence of ! are not allowed. For
details, see Addressing Mode 5 - VFP |oad/store multiple on page C5-24.

<regi sters> Specifies which registers are to be loaded, as alist of consecutively numbered
single-precision registers, separated by commas and surrounded by brackets. If d is
the number of the first register in the list, the list is encoded in the instruction by
setting Fd and Dto thetop 4 bits and the bottom bit respectively of d, and of f set
to the number of registersin thelist. At least one register must be specified in the
list.

For example, if <r egi st er s>is{ S5, S6, S7}, the Fd field of theinstructionis
0b0010, the D bit is 1 and the offset field is 3.

Architecture version

All

Exceptions

Data Abort

C4-40 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Operation

i f ConditionPassed(cond) then

address = start_address

for i =0 to offset-1
/* dis as defined for <registers> above; */
/* S(n) is the single-precision register nunbered n */
S(d+i) = Menory[address, 4]
address = address + 4

assert end_address = address - 4

Notes

Encoding If P=1 and W=0, the instruction is an FLDS instruction instead.

Vectors The FLDVS instruction is unaffected by the LEN and STRIDE fields of the FPSCR, and
does not wrap around at bank boundariesin the way that vector operandsto data-processing
instructions do. Registers are loaded in simple increasing order of register number.

Invalid register lists

If Fd, Dand of f set do not specify avalid register list, theinstruction iS UNPREDICTABLE.
This happensin two cases.

. if of f set == 0, thatis, if an attempt is made to transfer no registers
. if d + of fset > 32,thatis, if an attempt is made to transfer another register after
S31.

Conversions In the programmer’s moddrL DMS does not perform any conversion on the values
transferred. The memory words can hold either integers or single-precision floating-point
numbers. Most VFP arithmetic instructions treat the loaded values as single-precision
floating-point numbers. If they are integers, they need to be converted using the
integer-to-floating-point conversion instructions before such arithmetic instructions can
yield sensible results.Implementations are free to convert the values transferred to an
internal format, provided they can recover either the correct single-precision value or the
correct integer value for each one (depending on how the registers are subsequently used).

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-41

VFP Instructions

4.1.22 FLDMX
31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 0
cond 110|PlUIOW|1 Rn Dd 1011 offset

The FLDMX (Floating-point Load Multiple, Unknown precision) instruction loads a sequence of

consecutive double-precision registers from memory, using the same IMPLEMENTATION DEFINED format as

the FSTMX instruction. This allows the registers to be reloaded correctly with integers, single-precision
values or double-precision va ues.

Syntax

FLDMWkaddr essi ng_node>X{ <cond>} <Rn>{!}, <registers>

where:

<addr essi ng_node>
Specifies the addressing mode, which determines the values of start_address and
end_address used by the instruction. See Addressing Mode 5 - VFP load/store
multiple on page C5-24 for details.

<cond> Isthe condition under which theinstruction is executed. The conditions are defined
in The condition field on page A3-5. If <cond> is omitted, the AL (always)
condition is used.

<Rn> Specifies the base register used by <addr essi ng_node>.

! Setsthe W bit of theinstruction to 1, specifying that the base register <Rn> isto be
updated by the instruction. If it isomitted, the W bit of theinstruction isset to 0 and
the base register <Rn> is left unchanged. Some combinations of
<addr essi ng_node> and the presence or absence of ! are not allowed. For
details, see Addressing Mode 5 - VFP |oad/store multiple on page C5-24.

<regi sters> Specifies which registers are to be loaded, as alist of consecutively numbered
double-precision registers, separated by commas and surrounded by brackets. It is
encoded in theinstruction by setting Dd to the number of thefirst register in thelist,
and of f set to twicethe number of registersinthelist, plus1. At least oneregister
must be specified in the list.

For example, if <r egi st er s>is{ D2, D3, D4} , theDdfield of theinstructionis
2 and the offset field is 7.
Architecture version
All
C4-42 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Exceptions

Data Abort

Operation

i f ConditionPassed(cond) then
/* d is the nunber of register Dd; */
/* D(n) is the doubl e-precision register nunbered n */
Load registers D(d) to D(d+(offset-3)/2) fromnenory words
Menory[start_address, 4] through to Menory[end_address- 4, 4]

Usage

FLDMXisused to reload V FPregister val ues from memory when FSTMX was previoudly used to store them.
Typical casesinwhichitisused are:

. in procedure exit sequences when a callee-save procedure-calling standard is being used
. in process swap code.

Notes

Encoding If P=1 and W=0, the instruction is &b.DD instruction instead. Otherwise af f set is
even, the instruction is &_DMD instruction instead.

Vectors The FLDMX instruction is unaffected by the LEN and STRIDE fields of the FPSCR, and
does not wrap around at bank boundaries in the way that vector operands to data-processing
instructions do. Registers are loaded in simple increasing order of register number.

Invalid register lists
If Dd andof f set do not specify a valid register list, the instructionNs®REDICTABLE.
This happens in two cases:
. if of f set == 0, thatis, if an attempt is made to transfer no registers
. ifd + (of fset-1)/2 > 16, thatis, if an attempt is made to transfer another
register after D15.

Memory format
The memory format used IBIPLEMENTATION DEFINED. The only requirements on it are:

. FLDMX must reload the register values stored by a matdFTdvX instruction
correctly, regardless of whether they originally contained integers, single-precision
values or double-precision values. ForFrDMX instruction and aRrSTMX
instruction to count as matching, they must specify identical register lists and must
generate the sansd art _addr ess andend_addr ess when executed.

. It must not use more than the allowed number of memory words, tRati,
memory words for storinyl double-precision registers.

Non implementation-specific code must not do anything ®itBMX other than reload the
results of a matchingSTMX instruction.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-43

VFP Instructions

4.1.23 FLDS

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 0

cond 1101UuDj01 Rn Fd 1010 offset

The FLDS (Floating-point Load, Single-precision) instruction loads a single-precision register from
memory.

Syntax

FLDS{ <cond>} <Sd>, [<Rn>{, #+/-(<offset>*4)}]

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register. Its number is encoded as Fd (top 4 bits) and D (bottom
bit).

<Rn> Specifies the register holding the base address for the transfer.

<of fset > Specifiesan offset to be multiplied by 4, then added to the base address (if U == 1) or
subtracted from it (if U == 0) in order to form the actua address of thetransfer. If this offset
is omitted, it defaults to +0.

Architecture version

All
Exceptions
Data Abort
Operation
i f ConditionPassed(cond) then
if (U==1)
address = Rn + offset * 4
el se

address = Rn - offset * 4
Sd = Menory[address, 4]

C4-44 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes

VFP Instructions

Addressing mode

Conversions

Thisis aspecial case of Addressing Mode 5 - VFP load/store multiple on page C5-24.

In the programmer’s moddFLDS does not perform any conversion on the value
transferred. The memory word can hold either an integer or a single-precision floating-point
number. Most VFP arithmetic instructions treat 8zevalue as a single-precision
floating-point number. If it is an integer, one of the integer-to-floating-point conversion
instructions needs to be executed before such arithmetic instructions can yield sensible
results. Implementations are free to convert the value transferred to an internal format,
provided they can recover either the correct single-precision value or the correct integer
value (depending on ho®d is subsequently used).

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-45

VFP Instructions

4.1.24 FMACD

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11100|0(00 Dn Dd 1011|0/0(0|0 Dm

The FMACD (Floating-point Multiply and Accumulate, Double-precision) instruction multiplies together
two double-precision registers, adds a third double-precision register to the product and writes the result to
the third register. It can also perform a vector version of this operation.

Syntax

FMACD{ <cond>} <Dd>, <Dn>, <Dn»

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Dd> Specifies the destination register, which is a so used as the second operand for the addition.

<Dn> Specifies the register that contains the first operand for the multiplication.

<Dnw Specifies the register that contains the second operand for the multiplication.

Architecture version

D variants only

Exceptions

Floating-point exceptions: Invalid Operation, Overflow, Underflow, Inexact

Operation

i f ConditionPassed(cond) then
for i =0 to vec_len-1
DA[i] = Dn[i] * Dnfi] + Dd[i]

C4-46 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes

Vectors

Rounding

VFP Instructions

Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FMACD performs
just one multiply-add operation, and vec_I| en=1, Dd[0] =Dd, Dn[0] =Dn, and

Dn{ 0] =Dm

When the LEN field indicates a vector mode (vector length > 1), FMACD might perform
more than one multiply-add operation. Addressing Mode 2 - Double-precision vectors
(non-monadic) on page C5-8 describes how FMACD encodes the registers it uses and how
vec_len, Dd[i],Dn[i] andDnii] aredetermined.

The operation is a fully-rounded multiplication followed by afully-rounded addition. The
rounding mode is determined by the FPSCR.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-47

VFP Instructions

4125 FMACS

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11100|D|0OO Fn Fd 101O0|N|OM|O Fm

The FMACS (Floating-point Multiply and Accumulate, Single-precision) instruction multipliestogether two
single-precision registers, adds a third single-precision register to the product and writes the result to the
third register. It can also perform avector version of this operation.

Syntax

FMACS{ <cond>} <Sd>, <Sn>, <Snp

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register, which isalso used as the second operand for the addition.
The register number is encoded as Fd (top 4 bits) and D (bottom bit).

<Sn> Specifies the register that contains the first operand for the multiplication. The register
number is encoded as Fn (top 4 bits) and N (bottom bit).

<Sne Specifies the register that contains the second operand for the multiplication. The register

number is encoded as Fm (top 4 bits) and M (bottom bit).

Architecture version

All

Exceptions

Floating-point exceptions: Invalid Operation, Overflow, Underflow, Inexact

Operation

i f ConditionPassed(cond) then
for i =0 to vec_len-1
Sd[i] = Sn[i] * Snfi] + Sd[i]

C4-48 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes

Vectors

Rounding

VFP Instructions

Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FMACS performs
just one multiply-add operation, and vec_I| en=1, Sd[0] =Sd, Sn[0] =Sn, and
Sn{ 0] =Sm

When the LEN field indicates a vector mode (vector length > 1), FMACS might perform
more than one multiply-add operation. Addressing Mode 1 - Sngle-precision vectors
(non-monadic) on page C5-2 shows how FMACS encodes registers and determines
vec_len,Sd[i],Sn[i] andSnii].

The operation is a fully-rounded multiplication followed by afully-rounded addition. The
rounding mode is determined by the FPSCR.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-49

VFP Instructions

4.1.26 FMDHR
31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 11100010 Dn Rd 1011|0(/SBz|1 SBzZ
The FMDHR (Floating-point Move to Double-precision High from Register) instruction transfers the
contents of the ARM register Rd to the upper half of the double-precision register Dn. It isused in
conjunction with FMDLR to transfer double-precision values between ARM registers and floating-point
registers.
Syntax
FMDHR{ <cond>} <Dn>, <Rd>
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Dn> Specifies the destination register.
<Rd> Specifies the source ARM register.
Architecture version
D variants only
Exceptions
None
Operation
i f ConditionPassed(cond) then
Dn[63:32] = Rd
C4-50 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Usewith FMDLR

FMDHR must be used in conjunction with an FMDL R instruction specifying the same
destination register. Between these two instructions, the value of Dn is UNPREDICTABLE for
all purposes except:

. the execution of the second instruction must resubnircontaining the
double-precision number transferred by the two instructions
. if Dn is saved to memory by &8TMX instruction and subsequently reloaded by a

correctly matchind-LDMX instruction, the final value dn must be functionally
equivalent to its original value.

Conversions In the programmer's model, the combinatiofrPHR andFMDLR does not perform any
conversion. Implementations are free to convert the value transferred to an internal format,
provided they can recover the correct double-precision value when b&tkDRR and the
FMDLR instructions have been executed.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-51

VFP Instructions

4.1.27 FMDLR

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 11100000 Dn Rd 1011|0(/SBz|1 SBzZ
The FMDLR (Floating-point Move to Double-precision Low from Register) instruction transfers the
contents of the ARM register Rd to the lower haf of the double-precision register Dn. Used with FIVDHR,
it transfers double-precision values between ARM registers and floating-point registers.
Syntax
FMDLR{ <cond>} <Dn>, <Rd>
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Dn> Specifies the destination register.
<Rd> Specifies the source ARM register.
Architecture version
D variants only
Exceptions
None
Operation
i f ConditionPassed(cond) then
Dn[31:0] = Rd
C4-52 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Usewith FMDHR

FMDL R must be used in conjunction with an FMDHR instruction specifying the same
destination register. Between these two instructions, the value of Dn is UNPREDICTABLE for
all purposes except:

. the execution of the second instruction must resubnircontaining the
double-precision number transferred by the two instructions
. if Dn is saved to memory by &8TMX instruction and subsequently reloaded by a

correctly matchind-LDMX instruction, the final value dn must be functionally
equivalent to its original value.

Conversions In the programmer’s model, the combinatior-MDHR andFMDLR does not perform any
conversion. Implementations are free to convert the value transferred to an internal format,
provided they can recover the correct double-precision value when b&kDRR and the
FMDLR instructions have been executed.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-53

VFP Instructions

4.1.28 FMRDH
31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 11100011 Dn Rd 1011|0(/SBz|1 SBzZ

The FIMRDH (Floating-point M ove to Register from Double-precision High) instruction transfers the upper

half of the contents of the double-precision register Dn to the ARM register Rd. It is used in conjunction

with FIMRDL to transfer double-precision values between ARM registers and floating-point registers.

Syntax

FMRDH{ <cond>} <Rd>, <Dn>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination ARM register.

<Dn> Specifies the source register.

Architecture version

D variants only

Exceptions

None

Operation

i f ConditionPassed(cond) then

Rd = Dn[63: 32]

Notes

Conversions If animplementation uses an internal format for double-precision values, it must convert
that format back to the external double-precision format. Otherwise, no conversion is
required.

C4-54 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

41.29 FMRDL

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11100001 Dn Rd 10110|SBzZz|1 SBZ

The FMRDL (Floating-point Move to Register from Double-precision Low) instruction transfers the lower
half of the contents of the double-precision register Dn to the ARM register Rd. It is used in conjunction
with FMRDH to transfer double-precision values between ARM registers and floating-point registers.
Syntax

FMRDL{ <cond>} <Rd>, <Dn>

where:

<cond> Is the condition under which theinstruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination ARM register.

<Dn> Specifies the source register.

Architecture version

D variants only

Exceptions

None

Operation

i f ConditionPassed(cond) then
Rd = Dn[31:0]

Notes

Conversions If an implementation uses an internal format for double-precision values, it must convert
that format back to the external double-precision format. Otherwise, no conversionis
required.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-55

VFP Instructions

4130 FMRS

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11100001 Fn Rd 101O0|N|SBZ|1 SBZ

The FMRS (Floating-point Moveto Register from Single-precision) instruction transfers the contents of the
single-precision register Fn to the ARM register Rd. The value transferred can be an integer (typically
generated by aFTCSI D, FTCOSI S, FTOUI Dor FTQUI S instruction) or a single-precision floating-point
number (typically generated by other arithmetic instructions).

Syntax

FMRS{ <cond>} <Rd>, <Sn>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination ARM register.

<Sn> Specifies the source register. Its number is encoded as Fn (top 4 bits) and N (bottom hit).

Architecture version

All

Exceptions

None

Operation

i f ConditionPassed(cond) then
Rd = Sn

C4-56 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes

Conversions

VFP Instructions

In the programmer’s moddFMRS does not perform any conversion on the value

transferred. Both the source register Sn and the destination register Rd can contain either an
integer or a single-precision floating-point number. Arithmetic instructions on the ARM

treat the Rd value as an integer, whereas most arithmetic instructions on the VFP
coprocessor treat the Sn value as a single-precision floating-point number. One of the
floating-point-to-integer conversion instructions needs to be executed beféieRBe

instruction if they are to agree on the number being represented.

Implementations are free to hold the value in Sn in an internal format, providédvR&t
converts it to external format and this conversion recovers the correct data, regardless of
whether the register contains a single-precision floating-point number or an integer.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-57

VFP Instructions

4131 FMRX

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11101111 reg Rd 1010|0|SBZ|1 SBZ

The FMRX (Floating-point Moveto Register from System Register) instruction transfersthe contents of one
of the VFP system registers to the ARM register Rd.

Syntax

FMRX{ <cond>} <Rd>, <reg>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination ARM register.

<reg> Specifies the source system register as follows:

<reg> = 0b0000: FPSID
<reg> = 0b0001l: FPSCR
<reg> = 0b1000: FPEXC

Other values of <r eg> can be used by individual VFP implementations for
IMPLEMENTATION DEFINED purposes. Typicaly, they are used to transfer datafrom a
hardware coprocessor to the support code for that coprocessor.

All other code must treat such values of <r eg> as UNPREDICTABLE.

Architecture version

All

Exceptions

None

Operation

i f ConditionPassed(cond) then
Rd = reg

C4-58 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Serialization FMRXisaseriaizing instruction. See System register transfer instructions on page C3-20
for details of what this means.

Exception processing
After serialization, if the VFP system contains a hardware coprocessor, that coprocessor
might have a pending exception to process. Whether the FMRX instruction triggers the
processing of such an instruction depends on which system register is being transferred, as

described in the following notes. If exception processing istriggered, this causes the FMRX
instruction to take the ARM’s undefined instruction trap.

Reading FPSID

An FMRX ingtruction with source FPSI D can be executed in any ARM processor mode.
After serialization, it writes the value of the FPSID to Rd, and does not trigger exception
processing.

Reading FPSCR

An FMRX instruction with source FPSCR can be executed in any ARM processor mode.
After serialization, exception processing istriggered if necessary. Otherwise, the value of
the FPSCR is written to Rd.

Reading FPEXC

An FMRX ingtruction with source FPEXC can only be executed in privileged ARM
processor modes. An attempt to execute it in User mode causes the ARM’s undefined
instruction trap to be taken.

After serialization, it writes the value of FPEXC to Rd, and does not trigger exception
processing. Because all but bitg31:30] of FPEXC iSIMPLEMENTATION DEFINED,
non implementation-specific code must only rely on bits[31:0] of the value written to Rd.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-59

VFP Instructions

4.1.32 FMSCD

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 11100(0(01 Dn Dd 1 011(0(0[|0|0 Dm
The FMSCD (Floating-point Multiply and Subtract, Double-precision) instruction multiplies together two
double-precision registers, subtracts a third double-precision register from the product and writes the result
to the third register. It can a so perform a vector version of this operation.
Syntax
FMSCD{ <cond>} <Dd>, <Dn>, <Dn»
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Dd> Specifies the destination register, which is also the second operand for the subtraction.
<Dn> Specifies the register that contains the first operand for the multiplication.
<Dnw Specifies the register that contains the second operand for the multiplication.
Architecture version
D variants only
Exceptions
Floating-point exceptions: Invalid Operation, Overflow, Underflow, Inexact
Operation
i f ConditionPassed(cond) then
for i =0 to vec_len-1
DA[i] = Dn[i] * Dnfi] - Dd[i]
C4-60 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Vectors Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FMSCDperforms
just one multiply-subtract operation, and vec_I| en=1, Dd[0] =Dd, Dn[0] =Dn, and
Dn{ 0] =Dm

When the LEN field indicates a vector mode (vector length > 1), FMSCD might perform
more than one multiply-subtract operation. Addressing Mode 2 - Double-precision vectors
(non-monadic) on page C5-8 describes how FMSCD encodes the registers it uses and how
vec_len,Dd[i],Dn[i],andDn{i] aredetermined.

Rounding The operation is a fully-rounded multiplication followed by a fully-rounded subtraction.
The rounding mode is determined by the FPSCR.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-61

VFP Instructions

4.1.33 FMSCS

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11100|D|j01 Fn Fd 101O0|N|OM|O Fm

The FMSCS (Floating-point Multiply and Subtract, Single-precision) instruction multiplies together two
single-precision registers, subtracts a third single-precision register from the product and writes the result
to the third register. It can a so perform a vector version of this operation.

Syntax

FMBCS{ <cond>} <Sd>, <Sn>, <Sn»

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register, which is also used as the second operand for the
subtraction. The register number is encoded as Fd (top 4 bits) and D (bottom bit).

<Sn> Specifies the register that contains the first operand for the multiplication. The register
number is encoded as Fn (top 4 bits) and N (bottom bit).

<Sne Specifies the register that contains the second operand for the multiplication. The register

number is encoded as Fm (top 4 bits) and M (bottom bit).

Architecture version

All

Exceptions

Floating-point exceptions: Invalid Operation, Overflow, Underflow, Inexact

Operation

i f ConditionPassed(cond) then
for i =0 to vec_len-1
Sd[i] = Sn[i] * Snfi] - Sd[i]

C4-62 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Vectors Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FMSCS performs
just one multiply-subtract operation, wherevec _| en=1, Sd[0] =Sd, Sn[0] =Sn, and
Sn{ 0] =Sm

When the LEN field indicates a vector mode (vector length > 1), FMSCS might perform
more than one multiply-subtract operation. Addressing Mode 1 - Single-precision vectors
(non-monadic) on page C5-2 shows how FMSCS encodes registers and determines
vec_len,Sd[i],Sn[i],andSn{i].

Rounding The operation is a fully-rounded multiplication followed by a fully-rounded subtraction.
The rounding mode is determined by the FPSCR.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-63

VFP Instructions

4.1.34 FMSR

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 11100000 Fn Rd 1 01O0[NISBZ|1 SBZ
The FVSR (Floating-point Moveto Single-precision from Register) instruction transfers the contents of the
ARM register Rd tothesingle-precision register Fn. Thevaluetransferred can subsequently betreated either
as an integer (if used asthe sourceregister of aFSI TOD, FSI TOS, FUl TODor FUI TOS ingtruction) or as
asingle-precision floating-point number (if used by other arithmetic instructions).
Syntax
FMBR{ <cond>} <Sn>, <Rd>
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Sn> Is the destination register. Its number is encoded as Fn (top 4 bits) and N (bottom bit).
<Rd> Isthe source ARM register.
Architecture version
All
Exceptions
None
Operation
i f ConditionPassed(cond) then
Sn = Rd
C4-64 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes

Conversions

VFP Instructions

In the programmer’s moddkMSR does not perform any conversion on the value
transferred. Both the source regididrand the destination regist@m can contain either an
integer or a single-precision floating-point number. Arithmetic instructions on the ARM
treat theRd value as an integer, whereas most VFP arithmetic instructions tré&at #adue

as a single-precision floating-point number. If an integer is transferred, one of the
integer-to-floating-point conversion instructions need to be executed affeiiie
instruction if subsequent VFP instructions are to yield sensible results.

Implementations are free to convert the value transferred to an internal format, provided
they can recover either the correct single-precision value or the correct integer value
(depending on hown is subsequently used).

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-65

VFP Instructions

4135 FMSTAT

31 28 27 26 2524 23 22 21 20 19 18 17 16 1514 1312 11 10 9 8 7 5 4 3 0

cond 1110111100011 111|121 010 SBz |1 SBZ

The FMSTAT (Floating-point Move Status) instruction transfersthe N, Z, C, and V flagsin the FPSCR to
the corresponding flags in the ARM’s CPSR, and is normally used after one of the VFP comparison
instructions has set the FPSCR flags.

Syntax

FMSTAT{ <cond>}

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The

condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

Architecture version

All

Exceptions

None

Operation

i f ConditionPassed(cond) then
CPSR N Flag = FPSCR N Fl ag
CPSR Z Flag = FPSCR Z Fl ag
CPSR C Flag = FPSCR C Fl ag
CPSR V Flag = FPSCR V Fl ag

Notes

Encoding The instruction FMSTAT{ <cond>} isencoded as:
FMRX{ <cond>} r15, FPSCR
See also FMRX on page C4-58.

C4-66 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

4.1.36

VFP Instructions

FMULD

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11100(0(10 Dn Dd 10110|0|0]|0 Dm

The FMULD (Floating-point Multiply, Double-precision) instruction multiplies together two
double-precision registers and writes the result to a third double-precision register. It can also perform a
vector version of this operation.

Syntax

FMULD{ <cond>} <Dd>, <Dn>, <Dn»

where:

<cond> Is the condition under which theinstruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Dd> Specifies the destination register.

<Dn> Specifies the register that contains the first operand for the multiplication.

<Dn® Specifies the register that contains the second operand for the multiplication.

Architecture version

D variants only

Exceptions

Floating-point exceptions: Invalid Operation, Overflow, Underflow, Inexact

Operation

i f ConditionPassed(cond) then
for i =0 to vec_len-1

DA[i] = Dn[i] * Dnfi]

Notes

Vectors Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FMULDperforms
one multiplication, and vec_I| en=1, Dd[0] =Dd, Dn[0] =Dn, and Dni 0] =Dm

When the LEN field indicates a vector mode (vector length > 1), FMULD might perform
more than one multiplication. Addressing Mode 2 - Double-precision vectors
(non-monadic) on page C5-8 describes how FMULD encodes the registers it uses and how
vec_len,Dd[i],Dn[i],andDnii] aredetermined.

Rounding Thisisafully-rounded multiplication. The rounding mode is determined by the FPSCR.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-67

VFP Instructions

4.1.37 FMULS
31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 11100(D|1O Fn Fd 1 01O0[NIOM|O Fm

The FMULS (Floating-point Multiply, Single-precision) instruction multipliestogether two single-precision

registersand writes the result to athird single-precision register. It can also perform avector version of this

operation.

Syntax

FMULS{ <cond>} <Sd>, <Sn>, <Sn»

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register. Its number is encoded as Fd (top 4 bits) and D (bottom
bit).

<Sn> Specifies the register that contains the first operand for the multiplication. Its number is
encoded as Fn (top 4 bits) and N (bottom hit).

<Sne Specifies the register that contains the second operand for the multiplication. Its number is
encoded as Fm (top 4 bits) and M (bottom bit).

Architecture version

All

Exceptions

Floating-point exceptions: Invalid Operation, Overflow, Underflow, Inexact

Operation

i f ConditionPassed(cond) then

for i =0 to vec_len-1
Sd[i] = sSn[i] * Snfi]
C4-68 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes

Vectors

Rounding

VFP Instructions

Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FMULS performs
just one multiplication, and vec_I| en=1, Sd[0] =Sd, Sn[0]=Sn, and Sn{ 0] =Sm

When the LEN field indicates a vector mode (vector length > 1), FMULS might perform
more than one multiplication. Addressing Mode 1 - Single-precision vector s (non-monadic)
on page C5-2 shows how FMUL S encodes the registers it uses and determinesvec_| en,
Sd[i],Sn[i],andSn{i].

The operation is a fully-rounded multiplication. The rounding mode is determined by the
FPSCR.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-69

VFP Instructions

4.1.38 FMXR

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11101110 reg Rd 1010|0|SBZ|1 SBZ

The FMXR (Floating-point Move to System Register from Register) instruction transfers the contents of the
ARM register Rd to one of the VFP system registers.

Syntax
FMXR{ <cond>} <reg> <Rd>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<reg> Specifies the destination system register as follows:

<reg> = 0b0000: FPSID
<reg> = 0b0001l: FPSCR
<reg> = 0b1000: FPEXC

Other values of <r eg> can be used by individual VFP implementations for
IMPLEMENTATION DEFINED purposes. Typically, they are used to transfer datato ahardware
coprocessor from the support code for that coprocessor.

All other code must treat such values of <r eg> as UNPREDICTABLE and not to be relied
upon.

<Rd> Specifies the source ARM register.

Architecture version

All

Exceptions

None

Operation

i f ConditionPassed(cond) then
reg = Rd

C4-70 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Serialization FMXRisaseriaizing instruction. See System register transfer instructions on page C3-20
for details of what this means.

Exception processing
After serialization, if the VFP system contains a hardware coprocessor, that coprocessor
might have a pending exception to process. Whether the FMXR instruction triggers the
processing of such an instruction depends on which system register is being transferred, as
described in the following notes. If exception processing istriggered, this causes the FMXR
instruction to take the ARM’s undefined instruction trap.

Writing FPSID

An FMXRingtruction with destination FPSID can be executed in any ARM processor mode.
It isaseriaizing no-op, because FPSID is aread-only register, and does not trigger
exception processing.

Writing FPSCR

An FMXRinstruction with destination FPSCR can be executedinany ARM processor mode.
After serialization, exception processing istriggered if necessary. Otherwise, the value of
Rd iswritten to the FPSCR.

Writing FPEXC

An FMXRingtruction with destination FPEXC can only be executed in privileged ARM
processor modes. An attempt to execute it in User mode causes the ARM’s undefined
instruction trap to be taken.

After serialization, it writes the value of Rd to FPEXC, and does not trigger exception
processing. Because all but bitg31:30] of FPEXC isIMPLEMENTATION DEFINED,

non implementation-specific code must only use such an instruction as part of a
read/modify bits[31:0]/write sequence.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-71

VFP Instructions

41.39 FNEGD

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 1110101 1(0001 Dd 1011|0(1(0(0 Dm

The FNEGD (Floating-point Negate, Double-precision) instruction negates the value of a double-precision
register and writesthe result to another double-precision register. It can also perform avector version of this
operation.

Syntax
FNEGD{ <cond>} <Dd>, <Dnp

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Dd> Specifies the destination register.

<Dnw Specifies the source register.

Architecture version

D variants only

Exceptions

None

Operation

i f ConditionPassed(cond) then
for i =0 to vec_len-1

Dd[i] = -(Dnfi])

C4-72 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Negation Thefunction - (x) meansacopy of x withitssign bit reversed, as defined in the Appendix
to the |EEE 754-1985 standard.

Flush-to-zero mode
The FZ hit of the FPSCR does not affect the operand or result of thisinstruction.

Vectors Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FNEGD performs
just one negation operation, and vec_| en=1, Dd[0] =Dd, and Dn{ 0] =Dm

When the LEN field indicates a vector mode (vector length > 1), FNEGD might perform
more than one negation operation. Addressing Mode 4 - Double-precision vectors
(monadic) on page C5-19 shows how FNEGD encodes its registers and determines the
valuesof vec_| en,Dd[i],andDn{i].

Signaling NaNs
To comply with the VFP architecture, FNEGD must not generate an exception even if the

valueinits sourceregister isasignaing NaN. Thisisamore stringent requirement than the
onein the Appendix to the IEEE 754-1985 standard.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-73

VFP Instructions

4.1.40 FNEGS

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11101Dj11(0001 Fd 1010|0[1(M|O Fm

The FNEGS (Floating-point Negate, Single-precision) instruction negates the value of a single-precision
register and writes the result to another single-precision register. It can also perform avector version of this
operation.

Syntax

FNEGS{<cond>} <Sd>, <Snp

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register. Its number is encoded as Fd (top 4 bits) and D (bottom
bit).

<Sne Specifies the source register. Its number is encoded as Fm (top 4 bits) and M (bottom bit).

Architecture version

All

Exceptions

None

Operation

i f ConditionPassed(cond) then
for i =0 to vec_len-1

Sdfi] = -(sn{i])

C4-74 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Negation Thefunction - (x) meansacopy of x withitssign bit reversed, as defined in the Appendix
to the |EEE 754-1985 standard.

Flush-to-zero mode
The FZ hit of the FPSCR does not affect the operand or result of thisinstruction.

Vectors Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FNEGS performs
just one negation operation, and vec_| en=1, Sd[0] =Sd, and Sn{ 0] =Sm

When the LEN field indicates a vector mode (vector length > 1), FNEGS might perform
more than one negation operation. Addressing Mode 3 - Single-precision vectors (monadic)
on page C5-14 shows how FNEDS encodesitsregistersand determinesvec_| en,Sd[i],
andSnfi].

Signaling NaNs
To comply with the VFP architecture, FNEGS must not generate an exception even if the

valueinits sourceregister isasignaing NaN. Thisisamore stringent requirement than the
onein the Appendix to the IEEE 754-1985 standard.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-75

VFP Instructions

4.1.41 FNMACD

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11100|0(00 Dn Dd 1011|0(1(0(0 Dm

The FNMACD (Floating-point Negated Multiply and Accumulate, Double-precision) instruction multiplies
together two double-precision registers, adds athird double-precision register to the negation of the product
and writes the result to the third register. It can aso perform a vector version of this operation.

Syntax

FNMACD{ <cond>} <Dd>, <Dn>, <Dnp

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Dd> Specifies the destination register, which is a so used as the second operand for the addition.

<Dn> Specifies the register that contains the first operand for the multiplication.

<Dnw Specifies the register that contains the second operand for the multiplication.

Architecture version

D variants only

Exceptions

Floating-point exceptions: Invalid Operation, Overflow, Underflow, Inexact

Operation

i f ConditionPassed(cond) then
for i =0 to vec_len-1

Dd[i] = -(Dn[i] * Dnfi]) + Dd[i]

C4-76 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes

Vectors

Rounding

VFP Instructions

When the LEN field of the FPSCR indicates scalar mode (vector length 1), FNMACD
performs just one multiply-negate-add operation, and vec_| en=1, Dd[0] =Dd,
Dn[0] =Dn, and D 0] =Dm

When the LEN field indicates a vector mode (vector length > 1), FNMACD might perform
more than one multiply-negate-add operation. Addressing Mode 4 - Double-precision
vectors (monadic) on page C5-19 shows how FNMACD encodesits registers and determines
vec_len,Dd[i],Dn[i],andDnii].

The operation is a fully-rounded multiplication with the rounding mode determined by the
FPSCR, followed by reversal of the sign bit and a fully-rounded addition, using the same
rounding mode.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-77

VFP Instructions

4.1.42 FNMACS

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11100|D|0OO Fn Fd 101O0|N|1M|O Fm

The FNMACS (Floating-point Negated Multiply and Accumulate, Single-precision) instruction multiplies
together two single-precision registers, adds a third single-precision register to the negation of the product
and writes the result to the third register. It can aso perform avector version of this.

Syntax

FNMACS{ <cond>} <Sd>, <Sn>, <Snp

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register, which isalso used as the second operand for the addition.
Its number is encoded as Fd (top 4 bits) and D (bottom hit).

<Sn> Specifies the register that contains the first operand for the multiplication. Its number is
encoded as Fn (top 4 bits) and N (bottom hit).

<Sne Specifies the register that contains the second operand for the multiplication. Its number is

encoded as Fm (top 4 bits) and M (bottom bit).

Architecture version

All

Exceptions

Floating-point exceptions: Invalid Operation, Overflow, Underflow, Inexact

Operation

i f ConditionPassed(cond) then
for i =0 to vec_len-1
Sd[i] = -(Sn[i] * Sn{i]) + Sd[i]

C4-78 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes

Vectors

Rounding

VFP Instructions

When the LEN field of the FPSCR indicates scalar mode (vector length 1), FNMACS
performs just one multiply-negate-add operation, and vec_| en=1, Sd[0] =Sd,
Sn[0] =Sn, and Sn{ 0] =Sm

When the LEN field indicates a vector mode (vector length > 1), FNMACS might perform
more than one multiply-negate-add operation. Addressing Mode 1 - Single-precision vectors
(non-monadic) on page C5-2 describes how FNMACS encodes the registersit uses and how
vec_len,Sd[i],Sn[i],andSn{i] aredetermined.

The operation is a fully-rounded multiplication with the rounding mode determined by the
FPSCR, followed by reversal of the sign bit and a fully-rounded addition, using the same
rounding mode.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-79

VFP Instructions

4.1.43 FNMSCD

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 11100(0(01 Dn Dd 1 011(0(1]{0|0 Dm
The FNMSCD (Floating-point Negated Multiply and Subtract, Double-precision) instruction multiplies
together two double-precision registers, subtracts athird double-precision register from the negation of the
product and writes the result to the third register. It can also perform a vector version of this operation.
Syntax
FNMSCD{ <cond>} <Dd>, <Dn>, <Dnp
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Dd> Specifies the destination register, and is a so used asthe second operand for the subtraction.
<Dn> Specifies the register that contains the first operand for the multiplication.
<Dnw Specifies the register that contains the second operand for the multiplication.
Architecture version
D variants only
Exceptions
Floating-point exceptions: Invalid Operation, Overflow, Underflow, Inexact
Operation
i f ConditionPassed(cond) then
for i =0 to vec_len-1
DA[i] = -(Dn[i] * Dnfi]) - Dd[i]
C4-80 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes

Vectors

Rounding

VFP Instructions

When the LEN field of the FPSCR indicates scalar mode (vector length 1), FNMSCD
performs just one multiply-negate-subtract operation, and vec_I| en=1, Dd[0] =Dd,
Dn[0] =Dn, and D[0] =Dm

When the LEN field indicates a vector mode (vector length > 1), FNMSCD might perform
more than one multiply-negate-subtract operation. Addressing Mode 2 - Double-precision
vectors (non-monadic) on page C5-8 describes how FNMSCD encodes the registers it uses
and howvec_l en,Dd[i],Dn[i],andDn{i] aredetermined.

The operation is a fully-rounded multiplication with the rounding mode determined by the
FPSCR, followed by reversal of the sign bit and afully-rounded subtraction, using the same
rounding mode.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-81

VFP Instructions

4.1.44 FNMSCS

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11100|D|j01 Fn Fd 101O0|N|1M|O Fm

The FNMSCS Floating-point Negated Multiply and Subtract, Single-precision() instruction multiplies
together two single-precision registers, subtracts a third single-precision register from the negation of the
product and writes the result to the third register. It can also perform a vector version of this operation.

Syntax

FNMSCS{ <cond>} <Sd>, <Sn>, <Snp

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register, which is also used as the second operand for the
subtraction. The register number is encoded as Fd (top 4 bits) and D (bottom bit).

<Sn> Specifies the register that contains the first operand for the multiplication. The register
number is encoded as Fn (top 4 bits) and N (bottom bit).

<Sne Specifies the register that contains the second operand for the multiplication. The register

number is encoded as Fm (top 4 bits) and M (bottom bit).

Architecture version

All

Exceptions

Floating-point exceptions: Invalid Operation, Overflow, Underflow, Inexact

Operation

i f ConditionPassed(cond) then
for i =0 to vec_len-1
Sd[i] = -(Sn[i] * Sni]) - Sd[i]

C4-82 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes

Vectors

Rounding

VFP Instructions

When the LEN field of the FPSCR indicates scalar mode (vector length 1), FNMSCS
performs just one multiply-negate-subtract operation, and vec_I| en=1, Sd[0] =Sd,
Sn[0] =Sn, and Sn{ 0] =Sm

When the LEN field indicates a vector mode (vector length > 1), FNMSCS might perform
more than one multiply-negate-subtract operation. Addressing Mode 1 - Single-precision
vectors (non-monadic) on page C5-2 describes how FNMSCS encodes the registers it uses
and howvec_l en,Sd[i],Sn[i],andSn{i] aredetermined.

The operation is a fully-rounded multiplication with the rounding mode determined by the
FPSCR, followed by reversal of the sign bit and afully-rounded subtraction, using the same
rounding mode.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-83

VFP Instructions

4.1.45 FNMULD
31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 11100(0(20 Dn Dd 1 011(0(1]{0|0 Dm
The FNMULD (Fl oating-point Negated M ultiply, Double-precision) instruction multiplies together two
double-precision registers, and writes the negation of the result to a third double-precision register. It can
also perform avector version of this operation.
Syntax
FNMULD{ <cond>} <Dd>, <Dn>, <Dn®
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Dd> Specifies the destination register.
<Dn> Specifies the register that contains the first operand for the multiplication.
<Dnw Specifies the register that contains the second operand for the multiplication.
Architecture version
D variants only
Exceptions
Floating-point exceptions: Invalid Operation, Overflow, Underflow, Inexact
Operation
i f ConditionPassed(cond) then
for i =0 to vec_len-1
Dd[i] = -(Dn[i] * Dnfi])
C4-84 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes

Vectors

Rounding

VFP Instructions

When the LEN field of the FPSCR indicates scalar mode (vector length 1), FNMULD
performsjust one negated multiplication, and vec_| en=1, Dd[0] =Dd, Dn[0] =Dn, and
Dn{ 0] =Dm

When the LEN field indicates a vector mode (vector length > 1), FNMUL D might perform
more than one negated multiplication. Addressing Mode 2 - Double-precision vectors
(non-monadic) on page C5-8 describes how FNMUL D encodes the registersit uses and how
vec_len,Dd[i],Dn[i],andDn{i] aredetermined.

The operation is a fully-rounded multiplication. The rounding mode is determined by the
FPSCR, followed by reversal of the sign bit of the result.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-85

VFP Instructions

4.1.46 FNMULS

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11100|Dj1 O Fn Fd 101O0|N|1M|O Fm

The FNMULS (F oating-point Negated M ultiply, Single-precision) instruction multiplies together two
single-precision registers, and writes the negation of the result to athird single-precision register. It can also
perform avector version of this operation.

Syntax

FNMULS{ <cond>} <Sd>, <Sn>, <Sm»

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register. The register number is encoded as Fd (top 4 bits) and D
(bottom hit).

<Sn> Specifies the register that contains the first operand for the multiplication. The register
number is encoded as Fn (top 4 bits) and N (bottom bit).

<Sne Specifies the register that contains the second operand for the multiplication. The register

number is encoded as Fm (top 4 bits) and M (bottom bit).

Architecture version

All

Exceptions

Floating-point exceptions: Invalid Operation, Overflow, Underflow, Inexact

Operation

i f ConditionPassed(cond) then
for i =0 to vec_len-1
Sdfi] = -(Sn[i] * snfi])

C4-86 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes

Vectors

Rounding

VFP Instructions

When the LEN field of the FPSCR indicates scalar mode (vector length 1), FNMULS
performsjust one negated multiplication, andvec_| en=1, Sd[0] =Sd, Sn[0] =Sn, and
Sn{ 0] =Sm

When the LEN field indicates a vector mode (vector length > 1), FNMULS might perform
more than one negated multiplication. Addressing Mode 1 - Single-precision vectors
(non-monadic) on page C5-2 shows how FNMULS encodes its registers and determines
vec_len,Sd[i],Sn[i],andSn{i].

The operation is a fully-rounded multiplication. The rounding mode is determined by the
FPSCR, followed by reversal of the sign bit of the result.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-87

VFP Instructions

4.1.47 FSITOD

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 1110101 1(1 000 Dd 1011|1|1(M|0 Fm

The FSI TOD (Floating-point Convert Signed Integer to Double-precision) instruction converts a signed
integer value held in a single-precision register to double precision and writes the result to a
double-precision register. The integer value will normally have been transferred from memory by a
single-precision load instruction or from an ARM register by an FMSR instruction.

Syntax
FSI TOD{ <cond>} <Dd>, <Sn»

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Dd> Specifies the destination register.

<Sne Specifies the source register. The register number is encoded as Fm (top 4 bits) and M

(bottom hit).

Architecture version

D variants only

Exceptions

None

Operation

i f ConditionPassed(cond) then
Dd = Convert Si gnedl nt eger ToDoubl e(Sm

Notes
Vectors FSI TOD always specifies ascalar operation, regardless of the LEN field of the FPSCR.
Zero If Smcontainsan integer zero, the result isadouble-precision +0. 0, hot adouble-precision

-0.0.

C4-88 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

4.1.48

VFP Instructions

FSITOS

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11101Df11{1 000 Fd 1010|1|1|M|O Fm

The FSI TOS (Floating-point Convert Signed Integer to Single-precision) instruction converts a signed
integer value held in a single-precision register to single precision and writes the result to a second
single-precision register. The integer value will normally have been transferred from memory by a
single-precision load instruction or from an ARM register by an FMSR instruction.

Syntax

FSI TOS{<cond>} <Sd>, <Sm»>

where:

<cond> Is the condition under which theinstruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register. The register number is encoded as Fd (top 4 bits) and D
(bottom bit).

<Sne Specifies the source register. The register number is encoded as Fm (top 4 bits) and M

(bottom bit).

Architecture version

All

Exceptions

Floating-point exception: Inexact

Operation

i f ConditionPassed(cond) then
Sd = Convert Si gnedl nt eger ToSi ngl e(Sm

Notes
Vectors FSI TGS always specifies a scalar operation, regardless of the LEN field of the FPSCR.
Zero If Smcontains an integer zero, the result isa single-precision +0. 0, not asingle-precision

-0.0.

Rounding Rounding is needed for some large operand values. The rounding mode is determined by
the FPSCR.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-89

VFP Instructions

4149 FSQRTD

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 1110101 1(0001 Dd 1011|1|1(0(0 Dm

The FSQRTD (Floating-point Square Root, Double-precision) instruction calculates the square root of the
value in adouble-precision register and writes the result to another double-precision register. It can also
perform avector version of this operation.

Syntax
FSQRTD{ <cond>} <Dd>, <Dn®

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Dd> Specifies the destination register.

<Dnw Specifies the source register.

Architecture version

D variants only

Exceptions

Floating-point exceptions: Invalid Operation, Inexact

Operation

i f ConditionPassed(cond) then
for i =0 to vec_len-1

Dd[i] = sqrt(Dnfi])
Usage

Square roots take a large number of cycles on most implementations, and vector square roots take
proportionately longer. This can have amajor effect on performance, and so the use of large numbers of
sguare roots should be avoided where possible.

Also see Interrupts on page C1-5 for adescription of some implications for interrupt latency.

C4-90 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Vectors When the LEN field of the FPSCR indicates scalar mode (vector length 1), FSQRTD
performs just one square root operation, and vec_| en=1, Dd[0] =Dd, and Dn{ 0] =Dm

When the LEN field indicates a vector mode (vector length > 1), FSQRTD might perform
more than one sgquare root operation. Addressing Mode 4 - Double-precision vectors
(monadic) on page C5-19 describes how FSQRTD encodes the registers it uses and how
vec_len,Dd[i],andDnii] aredetermined.

Rounding The operation is a fully-rounded square root operation. The rounding mode is determined
by the FPSCR.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-91

VFP Instructions

4150 FSQRTS

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11101Dj11(0001 Fd 1010|1|{12(M|O Fm

The FSQRTS (Floating-point Square Root, Single-precision) instruction cal cul ates the square root of the
value in a single-precision register and writes the result to another single-precision register. It can also
perform avector version of this operation.

Syntax
FSQRTS{ <cond>} <Sd>, <Sn»

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register. The register number is encoded as Fd (top 4 bits) and D
(bottom hit).

<Sne Specifies the source register. The register number is encoded as Fm (top 4 bits) and M

(bottom hit).

Architecture version

All

Exceptions

Floating-point exceptions: Invalid Operation, Inexact

Operation

i f ConditionPassed(cond) then
for i =0 to vec_len-1

Sd[i] = sqgrt(Snii])
Usage

Square roots take a large number of cycles on most implementations, and vector square roots take
proportionately longer. This can have amajor effect on performance, and so the use of large numbers of
sguare roots should be avoided where possible.

Also see Interrupts on page C1-5 for a description of some implications for interrupt latency.

C4-92 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Vectors When the LEN field of the FPSCR indicates scalar mode (vector length 1), FSQRTS
performs just one square root operation, and vec_| en=1, Sd[0] =Sd, and Sn{ 0] =Sm
When the LEN field indicates a vector mode (vector length > 1), FSQRTS might perform
more than one sgquare root operation. Addressing Mode 3 - Sngle-precision vectors
(monadic) on page C5-14 describes how FSQRTS encodes the registers it uses and how
vec_len,Sd[i],andSnii] aredetermined.

Rounding Thisisafully-rounded square root operation. The FPSCR determines the rounding mode.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-93

VFP Instructions

4.1.51 FSTD
31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 110 1Ujojo o0 Rn Dd 1011 offset
The FSTD (Floating-point Store, Double-precision) instruction stores a double-precision register to
memory.
Syntax
FSTD{ <cond>} <Dd>, [<Rn>{, #+/-(<offset>*4)}]
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Dd> Specifies the source register.
<Rn> Specifies the register holding the base address for the transfer.
<of fset > Specifiesan offset to be multiplied by 4, then added to the base address (if U == 1) or
subtracted fromit (if U == 0) to form the actual address of thetransfer. If of f set is
omitted, it defaultsto +0.
Architecture version
D variants only
Exceptions
Data Abort
Operation
i f ConditionPassed(cond) then
if (U==1)
address = Rn + offset * 4
el se
address = Rn - offset * 4
i f (big-endian)
Menor y[addr ess, 4] = Dd[63: 32]
Menor y[addr ess+4, 4] = Dd[31: 0]
el se
Menor y[addr ess, 4] = Dd[31: 0]
Menor y[addr ess+4, 4] = Dd[63: 32]
C4-94 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Addressing mode
Thisis aspecial case of Addressing Mode 5 - VFP load/store multiple on page C5-24.

Conversions Animplementation using an internal format for double-precision values must convert that
format back to the external double-precision format. Otherwise, no conversion is required.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-95

VFP Instructions

4.1.52 FSTMD

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 110|PUlOW|O Rn Dd 1011 offset

The FSTMD (Floating-point Store M ultiple, Double-precision) instruction stores a sequence of consecutive

double-precision registers to memory.

Syntax

FSTMcaddr essi ng_node>D{ <cond>} <Rn>{!}, <registers>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<addr essi ng_node>
Specifies the addressing mode, which determines the values of st art _addr ess and
end_addr ess used by theinstruction. See Addressing Mode 5 - VFP load/store multiple
on page C5-24 for details.

<Rn> Specifies the base register used by <addr essi ng_node>.

! Setsthe W bit of theinstruction to 1, specifying that the base register <Rn> isto be updated
by theinstruction. If it isomitted, the W bit of theinstruction isset to 0 and the base register
<Rn> isleft unchanged. Some combinations of <addr essi ng_node> and the presence
or absence of | arenot allowed. For details, see Addressing Mode 5 - VFP |oad/store
multiple on page C5-24.

<regi sters>
Specifies which registers are to be stored, asalist of consecutively numbered
double-precision registers, separated by commas and surrounded by brackets. It is encoded
inthe instruction by setting Dd to the number of thefirst register inthelist, and of f set to
twice the number of registersin the list. At least one register must be specified in the list.
For example, if <r egi st er s>is{ D2, D3, D4}, the Dd field of the instruction is 2 and
the offset field is 6.

Architecture version

D variants only

Exceptions

Data Abort

C4-96 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Operation

i f ConditionPassed(cond) then
address = start_address
for i =0 to (offset-2)/2
/* d is the nunber of register Dd; */
/* D(n) is the doubl e-precision register nunbered n */
i f (big-endian)
Menory[address, 4] = D(d+i)[63: 32]
Menory[address+4, 4] = D(d+i)[31: 0]
el se
Menor y[address, 4] = D(d+i)[31: 0]
Menory[address+4, 4] = D(d+i)[63: 32]
address = address + 8
assert end_address = address - 4

Notes

Encoding If P=1 and W=0, the instruction is instead an FSTD instruction. Otherwise, if offset isodd,
the instruction is instead an FSTMX instruction.

Vectors The FSTMD instruction is unaffected by the LEN and STRIDE fields of the FPSCR, and
does not wrap around at bank boundariesin the way that vector operandsto data-processing
instructions do. Registers are stored in simple increasing order of register number.

Invalid register lists

If Dd and of f set do not specify avalid register list, the instruction is UNPREDICTABLE.
This happensin two cases.

. if of f set == 0, thatis, if an attempt is made to transfer no registers
. ifd + offset/2 > 16, thatis, if an attempt is made to transfer another register
after D15.

Conversions If an implementation uses an internal format for double-precision values, it must convert
that format back to the external double-precision format. Otherwise, no conversion is
required.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-97

VFP Instructions

4.1.53 FSTMS

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 110|PUDWO Rn Fd 1010 offset

The FSTMS (Floating-point Store Multiple, Single-precision) instruction stores a sequence of consecutive

single-precision registers to memory.

Syntax

FSTMcaddr essi ng_node>S{<cond>} <Rn>{!}, <registers>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<addr essi ng_node>
Specifies the addressing mode, which determines the values of st art _addr ess and
end_addr ess used by theinstruction. See Addressing Mode 5 - VFP load/store multiple
on page C5-24.

<Rn> Specifies the base register used by <addr essi ng_node>.

! Setsthe W bit of theinstruction to 1, specifying that the base register <Rn> isto be updated
by theinstruction. If it isomitted, the W bit of theinstruction isset to 0 and the base register
<Rn> isleft unchanged. Some combinations of <addr essi ng_node> and the presence
or absence of | arenot allowed. For details, see Addressing Mode 5 - VFP |oad/store
multiple on page C5-24.

<regi sters>
Specifies which registers are to be stored, asalist of consecutively numbered
single-precision registers, separated by commas and surrounded by brackets. If d isthe
number of the first register in thelist, thelist is encoded in theinstruction by setting Fd and
Dto thetop 4 bits and the bottom bit respectively of d, and of f set to the number of
registersin thelist. At least one register must be specified in the list.

For example, if <r egi st er s>is{ S5, S6, S7}, theFdfield of theinstruction is0b0010,
the D bit will be 1 and the offset field is 3.

Architecture version

All

Exceptions

Data Abort

C4-98 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Operation

i f ConditionPassed(cond) then

address = start_address

for i =0 to offset-1
/* dis as defined for <registers> above; */
/* S(n) is the single-precision register nunbered n */
Menor y[address, 4] = S(d+i)
address = address + 4

assert end_address = address - 4

Notes
Encoding If P=1 and W=0, the instruction isinstead an FSTS instruction.

Vectors The FSTMS instruction is unaffected by the LEN and STRIDE fields of the FPSCR, and
does not wrap around at bank boundariesin the way that vector operandsto data-processing
instructions do. Registers are stored in simple increasing order of register number.

Invalid register lists

If Fd, Dd and of f set donot specify avalid register list, theinstructioniSUNPREDICTABLE.
This happensin two cases.

. if of f set == 0, thatis, if an attempt is made to transfer no registers
. if d + of fset > 32,thatis, if an attempt is made to transfer another register after
S31.

Conversions In the programmer’s model is thiaSTMS does not perform any conversion on the value
transferred. The source registers can each contain either a single-precision floating-point
number or an integer. The latter is typically obtained as the result of one of the
floating-point-to-integer conversion instructions.

Implementations are free to hold the values in the source registers in an internal format,
provided thaFESTMS converts it to external format and this conversion recovers the correct
data, regardless of whether the register contains a single-precision floating-point number or
an integer.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-99

VFP Instructions

4.1.54 FSTMX

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 110|PUlOW|O Rn Dd 1011 offset

The FSTMX (Floating-point Store Multiple, Unknown precision) instruction stores a sequence of

consecutive double-precision registers to memory, in an IMPLEMENTATION DEFINED format that allowsthe

registers to be reloaded correctly regardless of whether they contain integers, single-precision values or
double-precision values.

Syntax

FSTMcaddr essi ng_node>X{ <cond>} <Rn>{!}, <registers>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<addr essi ng_node>
Specifies the addressing mode, which determines the values of st art _addr ess and
end_addr ess used by theinstruction. See Addressing Mode 5 - VFP load/store multiple
on page C5-24 for details.

<Rn> Specifies the base register used by <addr essi ng_node>.

! Setsthe W bit of theinstruction to 1, specifying that the base register <Rn> isto be updated
by theinstruction. If it isomitted, the W bit of theinstruction isset to 0 and the base register
<Rn> isleft unchanged. Some combinations of <addr essi ng_node> and the presence
or absence of | arenot allowed. For details, see Addressing Mode 5 - VFP |oad/store
multiple on page C5-24.

<regi sters>
Specifies which registers are to be stored, asalist of consecutively numbered
double-precision registers, separated by commas and surrounded by brackets. It is encoded
inthe instruction by setting Dd to the number of thefirst register inthelist, and of f set to
twice the number of registersinthelist plus 1. At least oneregister must be named inthelist.
For example, if <r egi st er s>is{ D2, D3, D4}, the Dd field of the instruction is 2 and
the offset field is 7.

Architecture version

All

Exceptions

Data Abort

C4-100 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Operation

i f ConditionPassed(cond) then
/* d is the nunber of register Dd; */
/* D(n) is the doubl e-precision register nunbered n */
Store registers D(d) to D(d+(offset-3)/2) to nenory words
Menory[start_address, 4] through to Menory[end_address- 4, 4]

Usage

FSTMX is used to save VFP register values to memory in circumstances where it is unknown what type of
datathey contain. Typical cases of thisare:

. in procedure entry sequences when a callee-save procedure calling standard is being used
. in process swap code.
Notes

Encoding If P=1 and W=0, the instruction is instead8II D instruction. Otherwise, bf f set is
even, the instruction is instead BETMD instruction.

Vectors The FSTMX instruction is unaffected by the LEN and STRIDE fields of the FPSCR, and
does not wrap around at bank boundaries in the way that vector operands to data-processing
instructions do. Registers are stored in simple increasing order of register number.

Invalid register lists
If Dd andof f set do not specify a valid register list, the instructionNs®REDICTABLE.
This happens in two cases:

. if of f set == 0, thatis, if an attempt is made to transfer no registers

. ifd + (offset-1)/2 > 16, thatis, if an attempt is made to transfer another
register after D15.

Memory format
The memory format used IBIPLEMENTATION DEFINED. The only requirements on it are:

. A matchingFLDMX instruction must reload the registers correctly, regardless of
whether they originally contained integers, single-precision values or
double-precision values. For & DMX instruction and aRSTMX instruction to
count as matching, they must specify identical register lists and must generate the
samest art _addr ess andend_addr ess when executed.

. It must not use more than the allowed number of memory words, tRati,
memory words for storinyl double-precision registers.

Non implementation-specific code must not do anything with the resultsFESBMX
except reload it with a matchirkl. DMX instruction.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-101

VFP Instructions

4155 FSTS
31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 110 1UDj0O Rn Fd 1010 offset
TheFSTS (Floating-point Store, Single-precision) instruction stores a single-precision register to memory.
Syntax
FSTS{ <cond>} <Sd>, [<Rn>{, #+/-(<offset>*4)}]
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Sd> Specifies the source register. Its number is encoded as Fd (top 4 bits) and D (bottom bit).
<Rn> Specifies the register holding the base address for the transfer.
<of fset > Specifiesan offset to be multiplied by 4, then added to the base address (if U == 1) or
subtracted fromit (if U == 0) in order to form the actual address of the transfer. If this
offset is omitted, it defaults to +0.
Architecture version
All
Exceptions
Data Abort
Operation
i f ConditionPassed(cond) then
if (U==1)
address = Rn + offset * 4
el se
address = Rn - offset * 4
Menor y[address, 4] = Sd
C4-102 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes

VFP Instructions

Addressing mode

Conversions

Thisis aspecial case of Addressing Mode 5 - VFP load/store multiple on page C5-24.

In the programmer’s moddkSTS does not perform any conversion on the value
transferred. The source regis8 can contain either a single-precision floating-point
number or an integer. The latter is typically obtained as the result of one of the
floating-point-to-integer conversion instructions.

Implementations are free to hold the valu&ihin an internal format, provided theSTS
converts it to an external format and this conversion recovers the correct data, whether or
notSd contains a single-precision floating-point number or an integer.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-103

VFP Instructions

4156 FSUBD

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11100|0(11 Dn Dd 1011|0(1(0(0 Dm

The FSUBD (Floating-point Subtract, Double-precision) instruction subtracts one double-precision register
from another double-precision register and writes the result to a third double-precision register. It can also
perform avector version of this operation.

Syntax

FSUBD{<cond>} <Dd>, <Dn>, <Dn»

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Dd> Specifies the destination register.

<Dn> Specifies the register that contains the first operand for the subtraction.

<Dnw Specifies the register that contains the second operand for the subtraction.

Architecture version

D variants only

Exceptions

Floating-point exceptions: Invalid Operation, Overflow, Inexact

Operation

i f ConditionPassed(cond) then
for i =0 to vec_len-1

DA[i] = Dn[i] - Dnfi]

C4-104 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Notes

Vectors

Rounding

VFP Instructions

Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FSUBD performs
just one subtraction, and vec _I| en=1, Dd[0] =Dd, Dn[0] =Dn, and D 0] =Dm

When the LEN field indicates a vector mode (vector length > 1), FSUBD might perform
more than one subtraction. Addressing Mode 2 - Double-precision vectors (non-monadic)
on page C5-8 describes how FSUBD encodes the registers it uses and how vec_| en,
Dd[i],Dn[i],andDnf{i] aredetermined.

Thisisafully-rounded subtraction. The rounding mode is determined by the FPSCR.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C4-105

VFP Instructions

4157 FSUBS

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11100|Dj11 Fn Fd 101O0|N|1M|O Fm

The FSUBS (Floating-point Subtract, Single-precision) instruction subtracts one single-precision register
from another single-precision register and writes the result to a third single-precision register. It can also
perform avector version of this operation.

Syntax

FSUBS{<cond>} <Sd>, <Sn>, <Snp

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register. Its number is encoded as Fd (top 4 bits) and D (bottom
bit).

<Sn> Specifiestheregister that containsthefirst operand for the subtraction. The register number
is encoded as Fn (top 4 bits) and N (bottom bit).

<Sne Specifies the register that contains the second operand for the subtraction. The register

number is encoded as Fm (top 4 bits) and M (bottom bit).

Architecture version

All

Exceptions

Floating-point exceptions: Invalid Operation, Overflow, Inexact

Operation

i f ConditionPassed(cond) then
for i =0 to vec_len-1
Sd[i] = sn[i] - sSnfi]

C4-106 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes

Vectors Whenthe LEN field of the FPSCR indicates scalar mode (vector length 1), FSUBS performs
one subtraction, and vec_| en=1, Sd[0] =Sd, Sn[0] =Sn, and Sni 0] =Sm

When the LEN field indicates a vector mode (vector length > 1), FSUBS might perform
more than one subtraction. Addressing Mode 1 - Single-precision vector s (non-monadic) on
page C5-2 describes how FSUBS encodes theregistersit usesand how vec_| en, Sd[i],
Sn[i],andSn{i] aredetermined.

Rounding The operation is a fully-rounded subtraction. Rounding mode is determined by the FPSCR.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-107

VFP Instructions

4158 FTOSID

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11101Dj11(1101 Fd 1011|z|1(0|0 Dm

TheFTGCSI D(Floating-point Convert to Signed I nteger from Doubl e-precision) instruction convertsavalue
held in adouble-precision register to asigned integer and writesthe result to asingle-precision register. The
integer value is normally then transferred to memory by a single-precision store instruction or to an ARM
register by an FVRS instruction.

Syntax
FTOSI { Z} D{<cond>} <Sd>, <Dme

where:

z Setsthe Z bit in the instruction to 1 and means that the operation uses the round towards
zero rounding mode. If Z is not specified, the Z bit of the instruction is 0 and the operation
uses the rounding mode specified by the FPSCR.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register. Its number is encoded as Fd (top 4 bits) and D (bottom
bit).

<Dnw Specifies the source register.

Architecture version

D variants only

Exceptions

Floating-point exceptions: Invalid Operation, Inexact

Operation

i f ConditionPassed(cond) then
Sd = Convert Doubl eToSi gnedl nt eger (Dm)

C4-108 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes
Vectors FTOSI D always specifies a scalar operation, regardless of the LEN field of the FPSCR.

Out-of-range values

If the operand is —co (minusinfinity) or the result after rounding would be lessthan -28% an
invalid operation exception is raised. If thisexception is untrapped, the result is
0x80000000.

If the operand is +eo (plusinfinity) or the result after rounding would be greater than 23171,

an invalid operation exception is raised. If the exception is untrapped, the result is
Ox 7FFFFFFF.

If the operand is aNaN, an invalid operation exception israised. If this exceptionis
untrapped, the result is0x00000000.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-109

VFP Instructions

4159 FTOSIS

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11101Dj11(1101 Fd 1010|Z|1(M|O Fm

TheFTQOSI S (Floating-point Convert to Signed Integer from Single-precision) instruction convertsavalue
held in asingle-precision register to asigned integer and writes the result to a second single-precision
register. The integer vaue isnormally then transferred to memory by a single-precision store instruction or
to an ARM register by an FMRS instruction.

Syntax

FTOSI { Z} S{<cond>} <Sd>, <Sn»

where:

z Setsthe Z bit in the instruction to 1 and means that the operation uses the round towards
zero rounding mode. If Z is not specified, the Z bit of the instruction is 0 and the operation
uses the rounding mode specified by the FPSCR.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register. Its number is encoded as Fd (top 4 bits) and D (bottom
bit).

<Sne Specifies the source register. Its number is encoded as Fm (top 4 bits) and M (bottom bit).

Architecture version

All

Exceptions

Floating-point exceptions: Invalid Operation, Inexact

Operation

i f ConditionPassed(cond) then
Sd = Convert Si ngl eToSi gnedl nt eger (Sm

C4-110 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes
Vectors FTOSI S always specifies a scalar operation, regardless of the LEN field of the FPSCR.

Out-of-range values

If the operand is —co (minusinfinity) or the result after rounding would be lessthan -28% an
invalid operation exception is raised. If thisexception is untrapped, the result is
0x80000000.

If the operand is +o (plusinfinity) or the result after rounding would be greater than 2811,
an invalid operation exception is raised. If this exception is untrapped, the result is
Ox 7FFFFFFF.

If the operand is aNaN, an invalid operation exception israised. If this exceptionis
untrapped, the result is0x00000000.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-111

VFP Instructions

4.1.60 FTOUID

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11101Dj11(1100 Fd 1011|z|1(0|0 Dm

The FTOUI D (Foating-point Convert to Unsigned Integer from Double-precision) instruction converts a
value held in a double-precision register to an unsigned integer and writes the result to a single-precision
register. The integer vaue isnormally then transferred to memory by a single-precision store instruction or
to an ARM register by an FMRS instruction.

Syntax
FTOU {Z} D{<cond>} <Sd>, <Dm»

where:

z Setsthe Z bit in the instruction to 1 and means that the operation uses the round towards
zero rounding mode. If Z is not specified, the Z bit of the instruction is 0 and the operation
uses the rounding mode specified by the FPSCR.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register. Its number is encoded as Fd (top 4 bits) and D (bottom
bit).

<Dnw Specifies the source register.

Architecture version

D variants only

Exceptions

Floating-point exceptions: Invalid Operation, Inexact

Operation

i f ConditionPassed(cond) then
Sd = Convert Doubl eToUnsi gnedl nt eger (Dm)

C4-112 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes
Vectors FTQUI D always specifies a scalar operation, regardless of the LEN field of the FPSCR.

Out-of-range values

If the operand is —co (minus infinity) or the result after rounding would be less than 0, an
invalid operation exception israised. If thisexception is untrapped, the result is
0x00000000.

If the operand is +eo (plusinfinity) or the result after rounding would be greater than 23271,

an invalid operation exception is raised. If this exception is untrapped, the result is
OxFFFFFFFF.

If the operand isaNaN, an invalid operation exception israised. If this exceptionis
untrapped, the result is0x00000000.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-113

VFP Instructions

4.1.61 FTOUIS

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11101Dj11(1100 Fd 1010|Z|1(M|O Fm

The FTQOUI S (Floating-point Convert to Unsigned Integer from Single-precision) instruction converts a
value held in a single-precision register to an unsigned integer and writes the result to a second
single-precision register. The integer value is normally then transferred to memory by a single-precision
store instruction or to an ARM register by an FMRS instruction.

Syntax

FTOU {Z} S{<cond>} <Sd>, <Sm»

where:

z Setsthe Z bit in the instruction to 1 and means that the operation uses the round towards
zero rounding mode. If Z is not specified, the Z bit of the instruction is 0 and the operation
uses the rounding mode specified by the FPSCR.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register. Its number is encoded as Fd (top 4 bits) and D (bottom
bit).

<Sne Specifies the source register. Its number is encoded as Fm (top 4 bits) and M (bottom bit).

Architecture version

All

Exceptions

Floating-point exceptions: Invalid Operation, Inexact

Operation

i f ConditionPassed(cond) then
Sd = Convert Si ngl eToUnsi gnedl nt eger (Sm

C4-114 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Instructions

Notes
Vectors FTQUI S always specifies a scalar operation, regardless of the LEN field of the FPSCR.

Out-of-range values

If the operand is —co (minus infinity) or the result after rounding would be less than 0, an
invalid operation exception israised. If thisexception is untrapped, the result is
0x00000000.

If the operand is +eo (plusinfinity) or the result after rounding would be greater than 23271,

an invalid operation exception is raised. If this exception is untrapped, the result is
OxFFFFFFFF.

If the operand isaNaN, an invalid operation exception israised. If this exceptionis
untrapped, the result is0x00000000.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-115

VFP Instructions

4.1.62 FUITOD
31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 111010/12 1|12 000 Dd 1011{0(1|M|O Fm
The FUI TOD (Floating-point Convert Unsigned Integer to Double-precision) instruction converts an
unsigned integer value held in a single-precision register to double precision and writes the result to a
double-precision register. The integer value will normally have been transferred from memory by a
single-precision Load instruction or from an ARM register by an FMSR instruction.
Syntax
FUl TOD{ <cond>} <Dd>, <Sn»
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.
<Dd> Specifies the destination register.
<Sne Specifies the source register. The register number is encoded as Fm (top 4 bits) and M
(bottom hit).
Architecture version
D variants only
Exceptions
None
Operation
i f ConditionPassed(cond) then
Dd = Convert Unsi gnedl nt eger ToDoubl e(Sm
Notes
Vectors FUI TOD always specifies ascalar operation, regardless of the LEN field of the FPSCR.
Zero If Smcontainsan integer zero, the result isadouble-precision +0. 0, hot adouble-precision
-0.0.
C4-116 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

4.1.63

VFP Instructions

FUITOS

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11101Df11{1 000 Fd 1010|0[{12|M|O Fm

The FUI TOS (Floating-point Convert Unsigned Integer to Single-precision) instruction converts an
unsigned integer value held in asingle-precision register to single precision and writes the result to asecond
single-precision register. The integer value will normally have been transferred from memory by a
single-precision Load instruction or from an ARM register by an FMSR instruction.

Syntax

FU TOS{<cond>} <Sd>, <Sm»>

where:

<cond> Is the condition under which theinstruction is executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition is used.

<Sd> Specifies the destination register. The register number is encoded as Fd (top 4 bits) and D
(bottom bit).

<Sne Specifies the source register. The register number is encoded as Fm (top 4 bits) and M

(bottom bit).

Architecture version

All

Exceptions

Floating-point exception: Inexact

Operation

i f ConditionPassed(cond) then
Sd = Convert Unsi gnedl nt eger ToSi ngl e(Sm

Notes
Vectors FUI TGS always specifies a scalar operation, regardless of the LEN field of the FPSCR.
Zero If Smcontains an integer zero, the result isa single-precision +0. 0, not asingle-precision

-0.0.

Rounding Rounding is needed for some large operand values. The rounding mode is determined by
the FPSCR.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C4-117

VFP Instructions

C4-118 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Chapter C5
VFP Addressing Modes

Thischapter describesthe syntax and usage of each of the five VFP addressing modes. The chapter contains:

. Addressing Mode 1 - Single-precision vectors (non-monadic) on page C5-2
. Addressing Mode 2 - Double-precision vectors (hon-monadic) on page C5-8
. Addressing Mode 3 - Single-precision vectors (monadic) on page C5-14

. Addressing Mode 4 - Double-precision vectors (monadic) on page C5-19

. Addressing Mode 5 - VFP load/store multiple on page C5-24.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C5-1

VFP Addressing Modes

5.1

Addressing Mode 1 - Single-precision vectors (non-monadic)

31

28 27 26 25 24 23 22 21 20 19 16 15 1211109 8 7 6 5 4 3 0

cond 111 00pD Op Fn Fd 1 0 10 NDPpM|O Fm

When the vector length indicated by the FPSCR is greater than 1, the single-precision two-operand
instructions FADDS, FDI VS, FMULS, FNMULS,and FSUBS can specify three different types of behavior:

One arithmetic operation between two scalar values, yielding a scalar:
Scal ar A op ScalarB - Scal arD

When this case is selected (Seealar operations on page C5-5), it causes just one operation to be
performed, overriding the vector length specified in the FPSCR. This allows scalar operations and
vector operations to be mixed without the need to reprogram the FPSCR between them.

A set ofN arithmetic operations, whelis the vector length specified in the FPSCR, with the first
operand scanning through a vector, the second operand remaining constant and the destination
scanning through a vector:

Vector Al 0] op ScalarB - VectorD[0]
VectorA[1] op ScalarB - VectorD[1]
Vector AIN-1] op ScalarB - VectorD[N 1]
This can be abbreviated to:

Vector A op Scal arB - VectorD
A set of N arithmetic operations, where N is the vector length specified in the FPSCR, with both
operands and the destination scanning through vectors:

Vector Al 0] op VectorB[0] - VectorD[O0]
VectorA[1] op VectorB[1l] - VectorD[1]
Vector AIN-1] op VectorB[N-1] - VectorD[N-1]
This can be abbreviated to:

Vector A op VectorB - VectorD

The single-precision three-operand instructiBRBCS, FMSCS, FNMACS andFNVSCS each use the same
register for their addition/subtraction operand as for their destination. So they have three forms
corresponding to the above three:

A pure scalar form:

+ (Scal arA * ScalarB) + ScalarD - Scal arD

A form in which the second multiplication operand is a scalar and everything else scans through
vectors:

+ (Vector Al O] * Scal ar B)
+ (VectorAl 1] * Scal ar B)

VectorD[0] - VectorD[O0]
VectorD[1] - VectorD[1]

+
+

+ (VectorAlN-1] * ScalarB) + VectorD[N-1] - VectorD N 1]

C5-2

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Addressing Modes

This can be abbreviated to:
+ (VectorA * ScalarB) + VectorD - VectorD

. A form in which everything scans through a vector:
+ (VectorAl O] * VectorB[0O]) * VectorD[0] - VectorDf0]
+ (VectorAl 1] * VectorB[1]) % VectorD[1l] - VectorD[1]

+ (VectorAlN-1] * VectorB[N-1]) + VectorD[N-1] - VectorD[N 1]
This can be abbreviated to:
+ (VectorA * VectorB) + VectorD - VectorD

5.1.1 Register banks

To allow these various forms to be specified, the set of 32 single-precision registers is split into four banks,
each of eight registers. The form used by an instruction depends on which operands are in the first bank.
The general principle behind the rules is that the first bank must be used to hold scalar operands while the
other banks are used to hold vector operands. All destination register writes and many source register reads
adhere to this principle, but some source register reads can result in scalar access to vector elements or
vector accesses to groups of scalars.

A vector operand consists of 2-8 registers from a single bank, with the number of registers being specified
by the vector length field of the FPSCR (S&etor length/stride control on page C2-22). The register

number in the instruction specifies the register that contains the first element of the vector. Each successive
element of the vector is formed by incrementing the register number by the value specified by the vector
stride field of the FPSCR. If this causes the register number to overflow the top of the register bank, the
register number wraps around to the bottom of the bank, as shown in Figure 5-1.

Scalar bank Vector bank Vector bank Vector bank
, | ({ [
¥
sO ‘ s8 s16 s24
s } s9 s17 s25
s2 ‘ s10 s18 s26
s3 ‘ s11 s18 s27
s4 \ s12 s20 s28
s5 \ s13 s21 29
s6 ‘ s14 S22 s30
s7 } s15 s23 s31
) L L L

Figure 5-1 Single-precision register banks

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C5-3

VFP Addressing Modes

5.1.2 Operation

The following sections describe each of the three possible forms of the addressing mode:
. Scalar operations on page C5-5

. Mixed vector/scalar operations on page C5-6

. \ector operations on page C5-7.

In each case, the following values are generated:

vec_l en The number of individual operations specified by the instruction.
Sd[0] ... Sd[vec_I en-1]
Destination registers of the individual operations.
Sn[0] ... Sn[vec_Il en-1]
First source registers of the individual operations.
Sn{0] ... Smvec_Ilen-1]

Second source registers of the individual operations.

In all cases, the registers specified by the instruction are determined by concatenating the Fd, Fn and Fm
fields of the instruction with the D, N and M bits respectively:

d_num= (Fd << 1) | D
n_num= (Fn << 1) | N
mnum= (Fm<< 1) | M

These register numbers are then broken up into bank numbers and indices within the banks as follows:

d_bank d_nunf 4: 3]
d_i ndex = d_nuni 2: 0]

n_bank = n_nuni4: 3]
n_i ndex = n_nuni 2: 0]

m bank = m nuni4: 3]
m_i ndex = m nuni 2: 0]

Note

The case where the FPSCR specifies a vector length of 1 is not in fact a special case, because the rules for
all three forms of the addressing mode simplify to the following when the vector length is 1:

vec_len =1

Sd[0] = d_num
Sn[0] = n_num
S 0] = m.num

C5-4 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Addressing Modes

5.1.3 Scalar operations

If the destination register liesin the first bank of eight registers, the instruction specifies a scalar operation:

if d_bank == 0 then
vec_len =1
Sd[0] = d_num
Sn[0] = n_num
S 0] = m.num

Note

Sour ce operands The source operands are aways scalars, regardless of which bank they arein. This
allowsindividual elements of vectors to be used as scalars.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C5-5

VFP Addressing Modes

5.1.4 Mixed vector/scalar operations

If the destination register specified in theinstruction does not liein thefirst bank of eight registers, but the

second source register does, then the destination register and first source register specify vectors and the
second source register specifies a scalar:

if d_bank !'= 0 and mbank == 0 then
vec_l en = vector |length specified by FPSCR

for i =0 to vec_len-1
Sd[i] = (d_bank << 3) | d_index
Sn[i] = (n_bank << 3) | n_index
Snmi] = m.num

d_index = d_index + (vector stride specified by FPSCR)
if d_index > 7 then

d_index = d_index - 8
n_index = n_index + (vector stride specified by FPSCR)
if n_index > 7 then

n_index = n_index - 8

Notes

First source operand

The first operand is always a vector, regardless of which bank it isin. This allows a set of
consecutive registersin the first bank to be treated as a vector.

Vector wrap-around

A vector operand must not wrap around <o that it re-usesitsfirst element. Otherwise, the
results of the instruction are UNPREDICTABLE. When the FPSCR specifies avector stride of
1, thisisnot arestriction, because the vector length is at most 8. When the FPSCR specifies
avector stride of 2, it implies that the vector length must be at most 4.

Operand overlap

If two operands overlap, they must beidentical both in terms of which registers are accessed
and the order in which they are accessed. Otherwise, the results of the instruction are
UNPREDICTABLE. Thisimplies that:

. If the set of register numbers generatefidpi] overlaps the set of register numbers
generated irsn[i] , thend_numandn_nummust be identical.

. If the set of register numbers generate8nfii] includesm num the vector length
must be 1.

It is impossible for the set of register numbers generat&d(fim] to includem num
because they lie in different banks.

C5-6 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Addressing Modes

5.15 Vector operations

If neither the destination register nor the second source register liesin the first bank of eight registers, then
all register operands specify vectors:

if d_bank !'= 0 and mbank != 0 then
vec_l en = vector |length specified by FPSCR

for i =0 to vec_len-1
Sd[i] = (d_bank << 3) | d_index
Sn[i] = (n_bank << 3) | n_index
Sn{i] = (mbank << 3) | m.index
d_index = d_index + (vector stride specified by FPSCR)
if d_index > 7 then
d_index = d_index - 8
n_index = n_index + (vector stride specified by FPSCR)
if n_index > 7 then
n_index = n_index - 8
m_index = m.index + (vector stride specified by FPSCR)

if mindex > 7 then
m_index = m.index - 8

Notes

Vector wrap-around A vector operand must not wrap around so that it re-uses its first element.

Operand overlap

Otherwise, the results of the instruction are UNPREDICTABLE. When the FPSCR
specifies a vector stride of 1, thisis not arestriction, since the vector length is at
most 8. When the FPSCR specifies a vector stride of 2, it implies that the vector
length must be at most 4.

If two operands overlap, they must be identical both in terms of which registers are
accessed and the order in which they are accessed. Otherwise, the results of the
instruction are UNPREDICTABLE. Thisimplies that:

. If the set of register numbers generate8diii] overlaps the set of register
numbers generated Bn[i], thend_numandn_nummust be identical.

. If the set of register numbers generate8difii]| overlaps the set of register
numbers generated Bn{ i], thend_numandm_nummust be identical.

. If the set of register numbers generate8rifii]| overlaps the set of register
numbers generated Bn{ i], thenn_numandm _nummust be identical.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C5-7

VFP Addressing Modes

5.2

Addressing Mode 2 - Double-precision vectors (non-monadic)

31

28 27 26 25 24 23 22 21 20 19 16 15 1211109 8 7 6 5 4 3 0

cond 11100p0 Op Dn Dd 1 011 |00pl0]|0 Dm

When the vector length indicated by the FPSCR is greater than 1, the double-precision two-operand
instructions FADDD, FDI VD, FMULD, FNMULD, and FSUBD can specify three different types of behavior:

One arithmetic operation between two scalar values, yielding a scalar:
Scal ar A op ScalarB - Scal arD

When this case is selected (Sealar operations on page C5-11), it causes just one operation to be
performed, overriding the vector length specified in the FPSCR. This allows scalar operations and
vector operations to be mixed without the need to reprogram the FPSCR between them.

A set ofN arithmetic operations, whelis the vector length specified in the FPSCR, with the first
operand scanning through a vector, the second operand remaining constant and the destination
scanning through a vector:

Vector Al 0] op ScalarB - VectorD[0]
VectorA[1] op ScalarB - VectorD[1]
Vector AIN-1] op ScalarB - VectorD[N 1]
This can be abbreviated to:

Vector A op Scal arB - VectorD
A set ofN arithmetic operations, wheheis the vector length specified in the FPSCR, with both
operands and the destination scanning through vectors:

Vector Al 0] op VectorB[0] - VectorD[O0]
VectorA[1] op VectorB[1l] - VectorD[1]
Vector AIN-1] op VectorB[N-1] - VectorD[N-1]
This can be abbreviated to:

Vector A op VectorB - VectorD

The double-precision three-operand instructieMaCD, FMSCD, FNMACD andFNMSCD each use the same
register for their addition/subtraction operand as for their destination. So they have three forms
corresponding to the above three:

A pure scalar form:

+ (Scal arA * ScalarB) + ScalarD - Scal arD

A form in which the second multiplication operand is a scalar and everything else scans through
vectors:

+ (VectorAl 0] * Scal arB)
+ (VectorAl 1] * Scal ar B)

VectorD[0] - VectorD[O0]
VectorD[1] - VectorD[1]

+
+

+ (VectorAlN-1] * ScalarB) + VectorD[N-1] - VectorD N 1]

C5-8

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Addressing Modes

This can be abbreviated to:
+ (VectorA * ScalarB) + VectorD - VectorD

. A form in which everything scans through a vector:

(VectorAl O] * VectorB[0O]) + VectorD[0] - VectorD[O0]
(VectorAl 1] * VectorB[1]) * VectorD[1] - VectorD[1]

+
+

+ (VectorAlN-1] * VectorB[N-1]) + VectorD[N-1] - VectorD[N 1]
This can be abbreviated to:
+ (VectorA * VectorB) + VectorD - VectorD

5.2.1 Register banks

To allow these various forms to be specified, the set of 16 double-precision registers is split into four banks,
each of four registers. The form used by an instruction depends on which operands are in the first bank. The
general principle behind the rules is that the first bank must be used to hold scalar operands while the other
banks are used to hold vector operands. All destination register writes and many source register reads adhere
to this principle, but some source register reads can result in scalar access to vector elements or vector
accesses to groups of scalars.

A vector operand consists of 2-4 registers from a single bank, with the number of registers being specified
by the vector length field of the FPSCR (S&etor length/stride control on page C2-22). The register

number in the instruction specifies the register that contains the first element of the vector. Each successive
element of the vector is formed by incrementing the register number by the value specified by the vector
stride field of the FPSCR. If this causes the register number to overflow the top of the register bank, the
register number wraps around to the bottom of the bank, as shown in Figure 5-2.

Scalar bank Vector bank Vector bank Vector bank
.| { [(
do ‘ d4 ds di12
di | ds do d13
d2 } dé d10 di4
d3 | d7 di1 d15
) - — —

Figure 5-2 Double-precision register banks

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C5-9

VFP Addressing Modes

5.2.2 Operation

The following pages describe each of the three possible forms of the addressing mode:
. Scalar operations on page C5-11

. Mixed vector/scalar operations on page C5-12

. \ector operations on page C5-13.

In each case, the following values are generated:
vec_l en The number of individual operations specified by the instruction.
Dd[0] ... Dd[vec_l en-1]
Destination registers of the individual operations.
Dn[0] ... Dn[vec_l en-1]
First source registers of the individual operations.
D 0] ... Dmvec_l en-1]
Second source registers of the individual operations.

The register numbers specified in the instruction are broken up into bank numbers and indices within the
banks as follows:

d_bank = Dd[3:2]

d_i ndex = Dd[1: 0]

n_bank = dn[3:2]

n_i ndex = Dn[1: 0]

m bank = Dnf 3: 2]

m_i ndex = Dnf 1: 0]
Note

The case where the FPSCR specifies a vector length of 1 is not in fact a special case, since the rules for all
three forms of the addressing mode simplify to the following when the vector length is 1:

vec_len =1
Dd[0] = Dd
Dn[0] = Dn
Dn{ 0] = Dm

C5-10 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Addressing Modes

5.2.3 Scalar operations

If the destination register liesin the first bank of four registers, theinstruction specifies a scalar operation:

if d_bank == 0 then
vec_len =1
Dd[0]
Dn[0]
Dni 0]

998

Notes

Sour ce operands The source operands are aways scalars, regardless of which bank they arein. This
allowsindividual elements of vectors to be used as scalars.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C5-11

VFP Addressing Modes

5.24 Mixed vector/scalar operations

If the destination register specified in the instruction does not lie in the first bank of four registers, but the

second source register does, then the destination register and first source register specify vectors and the

second source register specifies a scalar:

if d_bank !'= 0 and mbank == 0 then

vec_l en = vector |length specified by FPSCR
for i =0 to vec_len-1
DA[i] = (d_bank << 2) | d_index
Dn[i] = (n_bank << 2) | n_index
Dn{i] = Dm
d_index = d_index + (vector stride specified by FPSCR)
if d_index > 3 then
d_index = d_index - 4
n_index = n_index + (vector stride specified by FPSCR)
if n_index > 3 then
n_i ndex = n_index - 4

Notes

First sourceoperand Thefirst operand is aways avector, regardless of which bank itisin. Thisallowsa
set of consecutive registersin the first bank to be treated as a vector.

Vector wrap-around A vector operand must not wrap around so that it re-uses its first element.
Otherwise, the results of the instruction are UNPREDICTABLE. When the FPSCR
specifies a vector stride of 1, thisimplies that the vector length must be at most 4.
When the FPSCR specifiesavector strideof 2, itimpliesthat the vector length must
be at most 2.

Operand overlap If two operands overlap, they must beidentical both in terms of which registersare
accessed and the order in which they are accessed. Otherwise, the results of the
instruction are UNPREDICTABLE. Thisimplies that:

. If the set of register numbers generated in Dd[i] overlaps the set of register
numbers generated in Dn[i], then Dd and Dn must be identical.
. If the set of register numbers generated in Dn[i] includes Dm, then the vector
length must be 1.
It is impossible for the set of register numbers generated in Dd[i] to include Dm,
because they lie in different banks.
C5-12 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Addressing Modes

5.2.5 Vector operations

If neither the destination register nor the second source register liesin the first bank of four registers, then
all register operands specify vectors:

if d_bank !'= 0 and mbank != 0 then
vec_l en = vector |length specified by FPSCR

for i =0 to vec_len-1
Dd[i] = (d_bank << 2) | d_index
Dn[i] = (n_bank << 2) | n_index
Dnii] = (mbank << 2) | m.index

d_index = d_index + (vector stride specified by FPSCR)
if d_index > 3 then

d_index = d_index - 4
n_index = n_index + (vector stride specified by FPSCR)
if n_index > 3 then

n_i ndex = n_index - 4
m_index = m.index + (vector stride specified by FPSCR)
if mindex > 3 then

m_index = m.index - 4

Notes

Vector wrap-around A vector operand must not wrap around so that it re-uses its first element.
Otherwise, the results of the instruction are UNPREDICTABLE. When the FPSCR
specifies a vector stride of 1, thisimplies that the vector length must be at most 4.
When the FPSCR specifiesavector stride of 2, it impliesthat the vector |ength must
be at most 2.

Operand overlap If two operands overlap, they must be identical both in terms of which registers are
accessed and the order in which they are accessed. Otherwise, the results of the
instruction are UNPREDICTABLE. Thisimplies that:

. If the set of register numbers generated in Dd[i] overlaps the set of register
numbers generated in Dn[i], then Dd and Dn must be identical.

. If the set of register numbers generated in Dd[i] overlaps the set of register
numbers generated in Dm([i], then Dd and Dm must be identical.

. If the set of register numbers generated in Dn[i] overlaps the set of register
numbers generated in Dm([i], then Dn and Dm must be identical.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C5-13

VFP Addressing Modes

5.3 Addressing Mode 3 - Single-precision vectors (monadic)
31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0
cond 111013011 Op Fd 101 00Opll1|M|O Fm
When the vector length indicated by the FPSCR is greater than 1, the single-precision one-operand
instructions FABSS, FCPYS, FNEGS, and FSQRTS can specify three different types of behavior:
. An operation on a scalar value, yielding a scalar:
Op(Scal arB) - Scal arD
When this case is selected (Sealar-to-scalar operations on page C5-16), it causes just one
operation to be performed, overriding the vector length specified in the FPSCR. This allows scalar
operations and vector operations to be mixed without the need to reprogram the FPSCR between
them.
. An operation on a scalar value, whose result is written to each Nfdlegnents of a vector, where
Nis the vector length specified in the FPSCR:
Op(Scal arB) - VectorD[0]
Op(Scal arB) - VectorD[1]
Op(Scal arB) - VectorD[N-1]
This can be abbreviated to:
Op(Scal arB) - VectorD
. A set ofN operations, whemdis the vector length specified in the FPSCR, with both the operand and
the destination scanning through vectors:
Op(VectorB[0]) - VectorD[O0]
Op(VectorB[1]) - VectorD[1]
Op(VectorB[N-1]) - VectorD[N-1]
This can be abbreviated to:
Op(VectorB) - VectorD
To allow these various forms to be specified, the set of 32 single-precision registers is split into four banks,
each of eight registers. For a description of this Reggster banks on page C5-3.
C5-14 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Addressing Modes

53.1 Operation

The following pages describe each of the three possible forms of the addressing mode:

. Scalar-to-scalar operations on page C5-16
. Scalar-to-vector operations on page C5-17
. \ector-to-vector operations on page C5-18.

In each case, the following values are generated:
vec_l en The number of individual operations specified by the instruction.
Sd[0] ... Sd[vec_len-1]

Destination registers of the individual operations.

S 0] ... Snmvec_len-1]
Source registers of the individual operations.

In all cases, the registers specified by the instruction are determined by concatenating the Fd and Fm fields
of the instruction with the D and M bits respectively:

d_num= (Fd << 1) | D
mnum= (Fm<< 1) | M

These register numbers are then broken up into bank numbers and indices within the banks as follows:

d_bank = d_nuni4: 3]
d_i ndex = d_nuni 2: 0]

m_bank m_nuni 4: 3]
m_i ndex = m nuni 2: 0]

Note

The case where the FPSCR specifies a vector length of 1 is not in fact a special case, since the rules for all
three forms of the addressing mode simplify to the following when the vector length is 1:

vec_len =1
Sd[0] = d_num
S 0] = m.num

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C5-15

VFP Addressing Modes

5.3.2 Scalar-to-scalar operations
If the destination register liesin thefirst bank of eight registers, the instruction specifies a scalar operation:
if d_bank == 0 then
vec_len =1
Sd[0] = d_num
S 0] = m.num
Notes

Source operands The source operand is always a scalar, regardless of which bank it liesin. This
allowsindividua elements of vectorsto be used as scalars.

C5-16 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Addressing Modes

5.3.3 Scalar-to-vector operations

If the destination register specified in the instruction does not lie in the first bank of eight registers, but the
sourceregister does, then the destination register specifiesa vector and the source register specifiesascalar:

if d_bank !'= 0 and mbank == 0 then

vec_l en = vector |length specified by FPSCR

for i =0 to vec_len-1
Sd[i] = (d_bank << 3) | d_index
Smi] = m.num

d_index = d_index + (vector stride specified by FPSCR)
if d_index > 7 then

d_index = d_index - 8

Notes

Vector wrap-around A vector operand must not wrap around so that it re-uses its first element.
Otherwise, the results of the instruction are UNPREDICTABLE. When the FPSCR
specifiesavector stride of 1, thisis not a restriction, because the vector length is at

most 8. When the FPSCR specifies a vector stride of 2, it implies that the vector
length must be at most 4.

Operand overlap If the source and destination overlap, they must beidentical both in terms of which
registers are accessed and the order in which they are accessed. Thisimpliesthat if

the set of register numbers generated in Sn[i] includes m_num the vector length
must be 1.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C5-17

VFP Addressing Modes

5.34 Vector-to-vector operations
If neither the destination register nor the source register liesin the first bank of eight registers, then both
register operands specify vectors:
if d_bank !'= 0 and mbank != 0 then
vec_l en = vector |length specified by FPSCR
for i =0 to vec_len-1
Sd[i] = (d_bank << 3) | d_index
Smi] = (mbank << 3) | m.index
d_index = d_index + (vector stride specified by FPSCR)
if d_index > 7 then
d_index = d_index - 8
m_index = m.index + (vector stride specified by FPSCR)
if mindex > 7 then
m_index = m.index - 8

Notes

Vector wrap-around A vector operand must not wrap around so that it re-uses its first element.
Otherwise, the results of the instruction are UNPREDICTABLE. When the FPSCR
specifies a vector stride of 1, thisis not arestriction, since the vector length is at
most 8. When the FPSCR specifies a vector stride of 2, it implies that the vector
length must be a most 4.

Operand overlap If the source and destination overlap, they must beidentical both in terms of which
registers are accessed and the order in which they are accessed. Otherwise, the
results of the instruction are UNPREDICTABLE. Thisimpliesthat if the set of register
numbers generated in Sd[i] overlapsthe set of register numbers generated in
Sn{i],d_numand m nummust beidentical.

C5-18

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Addressing Modes

54 Addressing Mode 4 - Double-precision vectors (monadic)

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 11102130911 Op Dd 1 0110p|1|0]|0 Dm

When the vector length indicated by the FPSCR is greater than 1, the double-precision one-operand
instructions FABSD, FCPYD, FNEGD, and FSQRTD can specify three different types of behavior:

. An operation on a scalar value, yielding a scalar:
p(ScalarB) --> ScalarD

When this case is selected (Sealar-to-scalar operations on page C5-21), it causes just one
operation to be performed, overriding the vector length specified in the FPSCR. This allows scalar
operations and vector operations to be mixed without the need to reprogram the FPSCR between
them.

. An operation on a scalar value, whose result is written to each Nfdleenents of a vector, where
N is the vector length specified in the FPSCR:

Op(ScalarB) --> VectorD[0]
Op(ScalarB) --> VectorD[1]
.O;).(Scal arB) --> \VectorD[N1]
This can be abbreviated to:

p(ScalarB) --> VectorD

. A set ofN operations, wherd is the vector length specified in the FPSCR, with both the operand and
the destination scanning through vectors:

Op(VectorB[0]) --> VectorD 0]
Op(VectorB[1]) --> VectorD[1]
.O;).(VectorB[N-l]) --> \VectorD[N-1]
This can be abbreviated to:

Op(VectorB) --> VectorD

To allow these various forms to be specified, the set of 16 double-precision registers is split into four banks,
each of four registers. For a description of this,Reggster banks on page C5-9.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C5-19

VFP Addressing Modes

54.1 Operation

The following pages describe each of the three possible forms of the addressing mode:
. Scalar-to-scalar operations on page C5-21
. Scalar-to-vector operations on page C5-22
. \ector-to-vector operations on page C5-23.

In each case, the following values are generated:
vec_l en The number of individual operations specified by the instruction.

Dd[0] ... Dd[vec_l en-1]
Destination registers of the individual operations.
D 0] ... Dmvec_l en-1]

Source registers of the individual operations.

The register numbers specified in the instruction are broken up into bank numbers and indices within the
banks as follows:

d_bank = Dd[3:2]

d_i ndex = Dd[1: 0]

m bank = Dnf 3: 2]

m_i ndex = Dnf 1: 0]
Note

The case where the FPSCR specifies a vector length of 1 is not in fact a special case, since the rules for all
three forms of the addressing mode simplify to the following when the vector length is 1:

vec_len =1
Dd[0]

Dd
Dn{0] = Dm

C5-20 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Addressing Modes

5.4.2 Scalar-to-scalar operations

If the destination register liesin the first bank of four registers, theinstruction specifies a scalar operation:

if d_bank == 0 then
vec_len =1

Dd[0] = Dd
Dn{0] = Dm
Notes

Sour ce operands The source operand is always ascaar, regardless of which bank it liesin. This
allowsindividual elements of vectors to be used as scalars.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C5-21

VFP Addressing Modes

5.4.3 Scalar-to-vector operations

If the destination register specified in the instruction does not lie in the first bank of four registers, but the
source register does, then the destination register specifiesavector and the sourceregister specifiesascalar:

if d_bank !'= 0 and mbank == 0 then
vec_l en = vector |length specified by FPSCR

for i =0 to vec_len-1
Dd[i] = (d_bank << 2) | d_index
Dnii] = mnum

d_index = d_index + (vector stride specified by FPSCR)
if d_index > 3 then
d_index = d_index - 4

Notes

Vector wrap-around A vector operand must not wrap around so that it re-uses its first element.
Otherwise, the results of the instruction are UNPREDICTABLE. When the FPSCR
specifies a vector stride of 1, thisimplies that the vector length must be at most 4.

When the FPSCR specifiesavector strideof 2, itimpliesthat the vector length must
be at most 2.

Operand overlap If the source and destination overlap, they must beidentical both in terms of which
registers are accessed and the order in which they are accessed. Thisimpliesthat if

the set of register numbersgenerated inDn[i] includes Dm the vector length must
be 1.

C5-22 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Addressing Modes

54.4 Vector-to-vector operations

If neither the destination register nor the source register liesin the first bank of four registers, then both
register operands specify vectors:

if d_bank !'= 0 and mbank != 0 then
vec_l en = vector |length specified by FPSCR

for

Notes

=0to vec_len-1
Dd[i] = (d_bank << 2) | d_index
Dnii] = (mbank << 2) | m.index
d_index = d_index + (vector stride specified by FPSCR)
if d_index > 3 then
d_index = d_index - 4
m_index = m.index + (vector stride specified by FPSCR)
if mindex > 3 then
m_index = m.index - 4

Vector wrap-around A vector operand must not wrap around so that it re-uses its first element.

Otherwise, the results of the instruction are UNPREDICTABLE. When the FPSCR
specifies avector stride of 1, thisimplies that the vector length must be at most 4.
When the FPSCR specifiesavector stride of 2, it impliesthat the vector |ength must
be a most 2.

Operand overlap If the source and destination overlap, they must beidentical both in terms of which

registers are accessed and the order in which they are accessed. Otherwise, the
results of the instruction are UNPREDICTABLE. Thisimpliesthat if the set of register
numbersgenerated in Dd[i] overlapsthe set of register numbersgenerated in Dm([i],
then Dd and Dm must be identical.

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. C5-23

VFP Addressing Modes

5.5 Addressing Mode 5 - VFP load/store multiple

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 11 1/P|UD|W|L Rn Fd cp_num offset

The VFP load multiple instructions (FL DVD, FL DMS, FL DMX) are examples of ARM LDC instructions,
whose addressing modes are described in Addressing Mode 5 - Load and Sore Coprocessor on page A5-56.
Similarly, the VFP store multiple instructions (FSTMD, FSTMS, FSTMX) are examples of ARM STC
instructions, which have the same addressing modes. However, the full range of LDC/STC addressing
modesis not available for the VFP load multiple and store multipleinstructions. Thisis partly because the
FLDD, FLDS, FSTD and FSTS ingtructions use some of the options, and partly because the

8_bit _of fset fieldinthe LDC/STCinstruction is used for additional purposesin the VFP instructions.

This section gives details of the LDC/STC addressing modesthat are allowed for the VFP load multiple and
store multiple instructions, and the assembler syntax for each option.
55.1 Summary

Whether an LDC/STC addressing modeis alowed for the VFPload multiple and store multipleinstructions
can be determined by looking at the P, U and W bits of the instruction. Table 5-1 shows details of this.

Table 5-1 VFP load/store addressing modes

P U W Instructions Mode

0 0 O UNDEFINED See Note

o o 1 UNDEFINED See Note

0 1 0 FLDNVD, FLDMS, FLDMX, FSTMD, FSTMS, FSTMX Unindexed

0 1 1 FLDNVD, FLDMS, FLDMX, FSTMD, FSTMS, FSTMX Increment

1 0 0 FLDD, FLDS, FSTD, FSTS (Negative offset)

1 0 1 FLDNVD, FLDMS, FLDMX, FSTMD, FSTMS, FSTMX Decrement

1 1 0 FLDD, FLDS, FSTD, FSTS (Positive offset)

1 1 1 UNDEFINED See following
note

C5-24 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Addressing Modes

Note
For a hardware coprocessor implementation of the VFP instruction set, the UNDEFINED entriesin Table 5-1
mean the coprocessor does not respond to the instruction, which make the ARM’s Undefined I nstruction
exception occur (see Undefined Instruction exception on page A2-15).

For a software implementation, the UNDEFINED entries mean that such instructions must be passed to the
system’s norma mechanism for dealing with non-coprocessor undefined instructions. The exact details of
this are system-dependent.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C5-25

VFP Addressing Modes

5.5.2

VFP load/store multiple - Unindexed

31 28 27 26 25

24 23 22 21 20 19 16 15 12 11 8 7 0

cond 110

0 4y DAQL Rn Fd cp_num offset

This addressing mode is for VFP load multiple and store multiple instructions, and forms a range of
addresses. Thefirst addressformed isthe start_address, and isthe value of the base register Rn. Subsequent
addresses are formed by incrementing the previous address by four.

. For theFLDVS andFSTMS instructions, the offset in the instruction is equal to the number of
single-precision registers to be transferred. One address is generated for each register, so the
end_address is four less than the value of the base register Rn plus four times the offset.

. For theFLDVD andFSTNMD instructions, the offset in the instruction is equal to twice the number of
double-precision registers to be transferred. Two addresses are generated for each register, so the
end_address is four less than the value of the base register Rn plus four times the offset.

. For theFLDMX andFSTMX instructions, the offset in the instruction is one more than twice the
number of double-precision registers to be transferred.

The number of addresses generated is at most equal to the offset, but can be a smaller number (decided by

the implementor) provided the.DMX andFSTMX instructions function correctly (s€é&DMX on
page C4-425 anBSTMX on page C4-100). Accordingly, the end_address is the value of the base register
Rn plus four times the offset, minus I&PLEMENTATION DEFINED amount which is at least four.

Instruction syntax

<opcode>l A<pr eci si
where:

<opcode>

<preci si on>

<cond>

<Rn>

<regi sters>

on>{<cond>} <Rn>, <registers>

Is FLDMor FSTM and controls the value of the L bit.
Is D, S or X, and controls the values of cp_num and offset[0].

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-5. Ikcond> is omitted, theAL (always)
condition is used.

Specifies the base register. If R15 is specifiediem>, the value used is the
address of the instruction plus 8.

Specifies the list of registers loaded or stored by the instruction. See the individual
instructions for details of which registers are specified and how Fd, D and offset are
set in the instruction.

Architecture version

All

C5-26

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Addressing Modes

Operation

if (offset[0] == 1) and (cp_num == 0b1011) then /* FLDWMX or FSTMX */
wor d_count = | MPLEMENTATI ON DEFI NED val ue (<= offset)

el se /* Others */

word_count = of fset
start_address = Rn
end_address = start_address + 4 * word_count - 4

Usage

For FLDVD, FLDMS, FSTMD and FSTMS, this addressing mode istypically used to load or store a short
vector. For example, to load a graphics point consi sting of four single-precision coordinatesinto s8-s11, the
following code might be used:

ADR Rn, Poi nt
FLDM AS Rn, {s8-s11}

For FLDMX and FSTMKX, this addressing mode is typically used as part of loading and saving the VFP state
in process swap code, in sequences like:

Assume Rp points to the process bl ock
ADD Rn, Rp, #O fset_to_VFP_register_dunp
FSTM AX Rn, {dO-d15}

Notes

Offset restrictions The offset value must be at least 1 and at most 33. If the offset is 0 or greater than
33, theinstruction is always UNPREDICTABLE. Each instruction a so imposes further
restrictions on the offset, depending on the values of Fd and D. See the individual
instruction descriptions for details of these.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C5-27

VFP Addressing Modes

5.5.3

VFP load/store multiple - Increment

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 1100213D1L Rn Fd cp_num offset

This addressing mode is for VFP load multiple and store multiple instructions, and forms a range of
addresses. Thefirst addressformed isthe start_address, and isthe value of the base register Rn. Subsequent
addresses are formed by incrementing the previous address by four.

. For theFLDVS andFSTMS instructions, the offset in the instruction is equal to the number of
single-precision registers to be transferred. One address is generated for each register, so the
end_address is four less than the value of the base register Rn plus four times the offset.

. For theFLDVD andFSTNMD instructions, the offset in the instruction is equal to twice the number of
double-precision registers to be transferred. Two addresses are generated for each register, so the
end_address is four less than the value of the base register Rn plus four times the offset.

. For theFLDMX andFSTMX instructions, the offset in the instruction is one more than twice the
number of double-precision registers to be transferred.

The number of addresses generated is at most equal to the offset, but can be a smaller number (decided by
the implementor) provided the.DMX andFSTMX instructions function correctly (s€é&DMX on

page C4-42 anBSTMX on page C4-100). Accordingly, the end_address is the value of the base register Rn
plus four times the offset, minus aMPLEMENTATION DEFINED amount which is at least four.

For all instructions, if the condition specified in the instruction matches the condition code stalilm (see
condition field on page A3-5), Rn is incremented by four times the offset specified in the instruction.

Instruction syntax

<opcode>| A<pr eci si on>{<cond>} <Rn>!, <registers>

where:

<opcode> Is FLDMor FSTM and controls the value of the L bit.

<preci si on> Is D, S or X, and controls the values of cp_num and offset[0].

<cond> Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-5. Ikcond> is omitted, theAL (always)
condition is used.

<Rn> Is the base register. If R15 is specified¥&n>, the instruction i9NPREDICTABLE.

! Indicates the base register writeback that occurs in this addressing mode. If it is
omitted, this is the Unindexed addressing mode \(§¢&load/store multiple -
Unindexed on page C5-26) instead.

<regi sters> Specifies the list of registers loaded or stored by the instruction. For details of which
registers are specified and how Fd, D and offset are set, see individual instructions.

C5-28

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Addressing Modes

Architecture version

All

Operation

if (offset[0] == 1) and (cp_num == 0b1011) then /* FLDWMX or FSTMX */
wor d_count = | MPLEMENTATI ON DEFI NED val ue (<= offset)

el se /* Qthers */

word_count = of fset
start_address = Rn
end_address = start_address + 4 * word_count - 4
i f ConditionPassed(cond) then

Rn = Rn + 4 * offset

Usage

For FLDVD, FLDMS, FSTMD and FSTMS, this addressing mode can be used to load or store an element of
an array of short vectorsand advance the pointer to the next element. For example, if Rn pointsto an element
of an array of graphics points, each consisting of four single-precision co-ordinates, then:

FSTM AS Rn!, {s16-s19}

stores the single-precision registers s16, s17, s18 and s19 to the current element of the array and advances
Rn to point to the next element.

A related use occurswith long vectorsof floating-point data. If Rn pointsto along vector of single-precision
values, the sameinstruction stores s16, s17, s18 and s19 to the next four elements of the vector and advance
Rn to point to the next element after them.

For FSTMD, FSTMS and FSTMX, this addressing modeisuseful for pushing register va ues on to an Empty
Ascending stack. Use FSTNMD or FSTMS respectively when it is known that the registers contain only
double-precision dataor only single-precision data. Use FSTMX when the precision of the data held in the
registers is unknown, and nothing needs to be done with the stored data apart from reloading it with a
matching FLDMX instruction. For instance, for callee-save registersin procedure entry sequences.

If multiple registers holding values of known but different precisions need to be pushed on to a stack,
FSTMX can be used if nothing needs to be done with the stored data apart from reloading it with amatching
FLDMX instruction. Otherwise, a sequence of FSTMD and FSTMS instructions needs to be used.

For FLDVD, FLDMS and FLDMX, this addressing mode is useful for popping data from a Full Descending
stack. The choice of which instruction to use follows the same principles as above.

Notes

Offset restrictions The offset value must at least 1 and a most 33. If the offset is 0 or greater than 33,
the instruction is always UNPREDICTABLE. Each instruction also imposes further
restrictions on the offset, depending on the values of Fd and D. See the individual
instruction descriptions for details of these.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C5-29

VFP Addressing Modes

554

VFP load/store multiple - Decrement

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 11021309gD1L Rn Fd cp_num offset

This addressing mode is for VFP load multiple and store multiple instructions, and forms a range of
addresses. Thefirst address formed isthe start_address, and isthe value of the base register Rn minus four
times the offset. Subsequent addresses are formed by incrementing the previous address by four.

. For theFLDVS andFSTMS instructions, the offset in the instruction is equal to the number of
single-precision registers to be transferred. One address is generated for each register, so the
end_address is four less than the value of the base register Rn.

. For theFLDVD andFSTNMD instructions, the offset in the instruction is equal to twice the number of
double-precision registers to be transferred. Two addresses are generated for each register, so the
end_address is four less than the value of the base register Rn.

. For theFLDMX andFSTMX instructions, the offset in the instruction is one more than twice the
number of double-precision registers to be transferred.

The number of addresses generated is at most equal to the offset, but can be a smaller number (decided by
the implementor) provided the.DMX andFSTMX instructions function correctly (s€é&DMX on

page C4-42 anBSTMX on page C4-100). Accordingly, the end_address is the value of the base register Rn,
minus anMPLEMENTATION DEFINED amount which is at least four.

For all instructions, if the condition specified in the instruction matches the condition code status, Rn is
decremented by four times the offset specified in the instruction. The conditions are défesmbidition
field on page A3-5.

Instruction syntax
<opcode>DB<pr eci si on>{<cond>} <Rn>!, <registers>

where:
<opcode> IsFLDMorFSTM and controls the value of the L bit.
<preci si on>

Is D, S or X, and controls the values of cp# and offset[0].

<cond> Is the condition under which the instruction is executed. The conditions are defifted in
condition field on page A3-5. Ikcond> is omitted, theAL (always) condition is used.

<Rn> Specifies the base register. If R15 is specifieckfem>, the instruction i NPREDICTABLE.

! indicates the base register writeback that occurs in this addressing mode. It cannot be
omitted, as no non-writeback variant of this addressing mode exists.

<regi sters>
Specifies the list of registers loaded or stored by the instruction. See the individual

instructions for details of which registers are specified and how Fd, D and offset are set in
the instruction.

C5-30

Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

VFP Addressing Modes

Architecture version

All

Operation

if (offset[0] == 1) and (cp_num == 0b1011) then /* FLDWMX or FSTMX */
wor d_count = | MPLEMENTATI ON DEFI NED val ue (<= offset)

el se /* Qthers */

word_count = of fset
start_address = Rn - 4 * offset
end_address = start_address - 4 * offset + 4 * word_count - 4
i f ConditionPassed(cond) then

Rn = Rn - 4 * offset

Usage

For FSTMD, FSTMS and FSTMX, this addressing mode is useful for pushing register values on to a Full
Descending stack. Use FSTMVD or FSTMS respectively when it is known that the registers contain only
double-precision dataor only single-precision data. Use FSTMX when the precision of the data held in the
registers is unknown, and nothing needs to be done with the stored data apart from reloading it with a
matching FLDMX instruction. For instance, for calee-save registersin procedure entry sequences.

If multiple registers holding values of known but different precisions need to be pushed on to a stack,
FSTMX can be used if nothing needs to be done with the stored data apart from reloading it with amatching
FLDMX instruction. Otherwise, a sequence of FSTMD and FSTMS instructions needs to be used.

For FLDVD, FLDMS and FLDMX, this addressing modeis useful for popping datafrom an Empty Ascending
stack. The choice of which instruction to use follows the same principles as above.

For FLDVD, FLDMS, FSTMD and FSTMS, this addressing mode can also be used in code that scans
backwards through long vectors or through arrays of short vectors. In each case, it causes a pointer to an
element to be moved backwards past a set of values and loads that set of vauesinto registers.

Notes

Offset restrictions The offset value must at least 1 and at most 33. If the offset is 0 or greater than 33,
the instruction is always UNPREDICTABLE. Each instruction also imposes further
restrictions on the offset, depending on the values of Fd and D. See the individual
instruction descriptions for details of these.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. C5-31

VFP Addressing Modes

5.5.5 VFP load/store multiple addressing modes (alternative names)
Like the ARM load and store multiple addressing modes, these addressing modes are useful for accessing
stacks, but the load (pop) and store (push) instructions need to use different addressing modes. See Load
and Store Multiple addressing modes (alter native names) on page A5-54 for more details.
Asfor the ARM instructions, aternative addressing mode names are provided which are more applicable
to stack operations. FD and EA are used respectively to denote instructions suitable for Full Descending
stacks and Empty Ascending stacks.
Table 5-2 shows the relationship between the non-stacking and stacking names of the instructions:
Table 5-2 VFP load/store multiple addressing modes
Non-stacking mnemonic Stacking mnemonic
FLDM AD FLDMFDD
FLDM AS FLDMFDS
FLDM AX FLDMFDX
FLDVDBD FLDVEAD
FLDVDBS FLDMEAS
FLDVDBX FLDMEAX
FSTM AD FSTMEAD
FSTM AS FSTMEAS
FSTM AX FSTMEAX
FSTMDBD FSTMFDD
FSTMVDBS FSTMFDS
FSTMVDBX FSTMFDX
Note
No mnemonics are provided for Full Ascending or Empty Descending stack types, because the VFP |oad
multiple and store multiple addressing modes do not support these types efficiently. Thisis a consequence
of thefact that the LDC and STC addressing modes do not support these modes efficiently (see Addressing
Mode 5 - Load and Store Coprocessor on page A5-56).
It is therefore recommended that these stack types are not used on systems that use the VFP architecture,
C5-32 Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Glossary

26-bit architecture
Means earlier versions of the ARM architecture which implement only a 26-bit address space. These are
versons ARMv1, ARMv2, and ARMv2a

32-bit architecture
Means versions of the ARM architecture which implement a 32-bit address space. These are ARM
architecture version 3 and above.

Abort Is caused by an illegal memory access. Aborts can be caused by the external memory system or the MMU.

Abort model
Describes what happens to the processor state when a Data Abort exception occurs. Different abort models
behave differently with regard to load/store instructions that specify base register writeback. For more
details, see Effects of data-aborted instructions on page A2-17.

Addressing modes
Generally mean a procedure shared by many different instructions, for generating values used by the
instructions. For four of the ARM addressing modes, the values generated are memory addresses (whichis
thetraditional role of an addressing mode). A fifth addressing mode generates values to be used as operands
by data-processing instructions.

AL (always)
Specifiesthat theinstruction is executed irrespective of thevalue of the condition codeflags. If no condition
code s given with an instruction mnemonic, the AL condition code is used.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. Glossary-i

Glossary

ALU Stands for Arithmetic Logic Unit.
AND Performs a bitwise AND.

Arithmetic_Shift_Right
Performs aright shift, repeatedly inserting the original left-most bit (the sign bit) in the vacated bit positions
on the | eft.

ARM instruction
Is aword which specifies an operation for an ARM processor to perform. ARM instructions must be
word-aigned.

Assert statements
Are used in pseudo-code to indicate that a certain condition has been met.

Assignment
Issignified by =.

Banked registers
Areregister numberswhose physical register isdefined by the current processor mode. The banked registers
areregisters R8 to R14.

Base register
Is aregister specified by aload/store instruction that is used as the base value for the instruction’s address
calculation. Depending on the instruction and its addressing mode, an offset can be added to or subtracted
from the base register value to form the virtual address which is sent to memory.

Base register writeback
Is when the base register used in the address cal culation has a modified value written to it.

Big-endian memory
Means that:

. a byte or halfword at a word-aligned address is the most significant byte or halfword within the word
at that address

. a byte at a halfword-aligned address is the most significant byte within the halfword at that address.

Binary numbers
Are preceded by Ob.

Boolean AND
Is signified by theAND operator.

Boolean OR
Is signified by theOR operator.

BorrowFrom
Returns 1 if the subtraction specified as its parameter caused a borrow (the true result is less than 0, where
the operands are treated as unsigned integers), and returns 0 in all other cases. This delivers further
information about a subtraction which occurred earlier in the pseudo-code. The subtraction is not repeated.

Glossary-ii Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Glossary

Branch prediction
Iswherean ARM implementation chooses afuture execution path to prefetch along (see Prefetching). For
example, after a branch instruction, the implementation can choose to prefetch either the instruction
following the branch or the instruction at the branch target.

Byte Is an 8-bit data item.

Cache Isablock of high-speed memory |ocations whose addresses are changed automatically in response to which
memory locations the processor is accessing, and whose purpose isto increase the average speed of a
memory access.

Cache contention
Iswhen the number of frequently-used memory cache lines that use a particular cache set exceeds the
set-associativity of the cache. In this case, main memory activity goes up and performance drops.

Cache hit
Is amemory access which can be processed at high speed because the data it addressesis already in the
cache.

Cache line
Isthebasic unit of storagein acache. Itssizeisawaysapower of two (usually 4 or 8 words), and isrequired
to bealigned to a suitable memory boundary. A memory cache lineis ablock of memory locations with the
same size and alignment as acache line. Memory cache lines are sometimes |oosely just called cachelines.

Cache line index
Is anumber associated with each cache line in a cache set. Within each cache set, the cache lines are
numbered from O to (set associativity)—1.

Cache lockdown
Alleviates the delays caused by accessing a cache in a worst-case situation. Cache lockdown allows critical
code and data to be loaded into the cache so that the cache lines containing them are not subsequently
re-allocated. This ensures that all subsequent accesses to the code and data concerned are cache hits and so
complete quickly.

Cache lockdown blocks
Consist of one line from each cache set. Cache lockdown is performed in units of a cache lockdown block.

Cache miss
Is a memory access which cannot be processed at high speed because the data it addresses is not in the cache.

Cache sets
Are areas of a cache, divided up to simplify and speed up the process of determining whether a cache hit
occurs. The number of cache sets is always a power of two.

Callee-save registers
Are registers that a called procedure must preserve. To preserve a callee-save register, the called procedure
would normally either not use the register at all, or store the register to the stack during procedure entry and
re-load it from the stack during procedure exit.

Caller-save registers
Are registers that a called procedure need not preserve. If the calling procedure requires their values to be
preserved, it must store and reload them itself.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. Glossary-iii

Glossary

CarryFrom
Returns 1 if the addition specified as its parameter caused a carry (true result is bigger than 2°°-1, where
the operands are treated as unsigned integers), and returns O in all other cases. This delivers further
information about an addition which occurred earlier in the pseudo-code. The addition is not repeated.

232

case ... endcase statements
Are used to indicate a one of many execution option. Indentation indicates the range of statementsin each
option.

Comments
Areenclosedin /* */.

Condition field
Isa4-bit field in an instruction that is used to specify a condition under which the instruction can execute.

Conditional execution
Meansthat if the condition code flags indicate that the corresponding condition is true when the instruction
starts executing, it executes normally. Otherwise, the instruction does nothing.

ConditionPassed(cond)
Returns TRUE if the state of the N, Z, C and V flags fulfils the condition encoded in the cond argument,
and returns FALSE in all other cases.

Control bits
Are the bottom eight bits of a Program Status Register (PSR). The control bits change when an exception
arises and can be altered by software only when the processor isin a privileged mode.

CPSR Isthe Current Program Status Register.

CurrentModeHasSPSR()
Returns TRUE if the current processor mode is not User mode or System mode, and returns FAL SE if the
current mode is User mode or System mode.

Data cache
I's a separate cache used only for processing data loads and stores.

Decode bits
Are bitg[27:20] and bitg7:4] of an ARM instruction, and are the main bits used to determine the type of
instruction to be executed.

Digital signal processing
Refersto avariety of algorithms which are used to process signals that have been sampled and converted to
digital form. Saturated arithmetic is often used in such agorithms.

Direct-mapped cache
Isaone-way set-associative cache. Each cache set consists of asingle cacheline, so cache look-up just
needs to select and check one cache line.

Direct Memory Access
I's an operation that accesses main memory directly, without the processor performing any accesses to the
data concerned.

Glossary-iv Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Glossary

Domain Isacollection of sections, large pages and small pages of memory, which can havetheir access permissions
switched rapidly by writing to the Domain Access Control Register (CP15 register 3).

Do-not-modify fields (DNM)
Means the value must not be altered by software. DNM fields read as UNPREDICTABLE values, and can only
be written with the same value read from the same field on the same processor.

Throughout this manual, DNM fields are sometimes followed by RAZ or RAO in parentheses as a guideline
to implementors as to which way the bits should read for future compatibility, but programmers must not
rely on this behavior.

Double-precision value
Consists of two 32-bit words which must appear consecutively in memory and must both be word-aligned,
and which isinterpreted as abasi ¢ doubl e-precision fl oating-point number according to the IEEE 754-1985
standard.

Doubleword
Is a 64-bit dataitem. Doublewords are normally at least word-aligned in ARM systems.

Doubleword-aligned
Means that the addressis divisible by 8.

DSP See Digital signal processing

Elements
Are separated by | inalist of possible valuesfor avariable.

Endianness
is an aspect of the system’s memory mapping.bgendian andlittle-endian.

EOR Performs a bitwise Exclusive OR.

Exception
Handles an event. For example, an exception could handle an external interrupt or an undefined instruction.

Exception modes
Are privileged modes that are entered when specific exceptions occur.

Exception vector
Is one of a number of fixed addresses in low memory, or in high memory if high vectors are configured.

External abort
Is an abort that is generated by the external memory system.

Fault Is an abort that is generated by the MMU.

FCSE (Fast Context Switch Extension)
Modifies the behavior of an ARM memory system to allow multiple programs running on the ARM
processor to use identical address ranges, while ensuring that the addresses they present to the rest of the
memory system differ.

Flat address mapping
Is where the physical address for every access is equal to its virtual address.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. Glossary-v

Glossary

Flush-to-zero mode
Isaspecia processing mode that optimizes the performance of some VFP algorithms by replacing the
denormalized operands and intermediate results with zeros, without significantly affecting the accuracy of
their final results.

Floating-point Exception Register
Isaread/write register, two bits of which provide system-level statusand control. The remaining bits of this
register can be used to communi cate exception information between the hardware and software components
of the implementation, in an IMPLEMENTATION DEFINED manner.

Floating-point Status and Control Register
Is aread/write register which provides all user-level status and control of the floating-point system.

Floating-point System ID Register
Is aread-only register whose value indicates which VFP implementation is being used.

for ... statements
Are used to indicate aloop over a numeric range. Indentation is used to indicate the range of statementsin
the loop.

FPEXC See Floating-point Exception Register.
FPSCR See Floating-point Status and Control Register.
FPSID See Floating-point System |D Register.

Fully-associative cache
Has just one cache set, which consists of the entire cache. See also direct-mapped cache.

General-purpose register
Is one of the 32-bit genera -purpose integer registers, RO to R15. Note that R15 holds the Program Counter
(and the PSR as well in the 26-bit architectures), and there are often limitations on its use that do not apply
to RO to R14.

Halfword Isa16-bit dataitem. Halfwords are normally halfword-aligned in ARM systems.

Halfword-aligned
Means that the address is divisible by 2.

Hexadecimal numbers
Are preceded by Ox and are given in a monospaced font.

High registers
Are ARM registers 8 to 15, which can be accessed by some Thumb instructions.

High vectors
Are alternative locations for exception vectors. The high vector address range is near the top of the address
space, rather than at the bottom.

if ... elseif ... else statements
Are used to signify conditional statements. Indentation indicates the range of statementsin each option.

Glossary-vi Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Glossary

IGNORE fields (IGN)
Must ignore writes.

IMB See I nstruction Memory Barrier.

Instruction Memory Barrier
Is asequence of operations that can be used in the middle of aself-modifying code sequence to make it
execute reliably. This sequence often depends both on the ARM processor implementation and on the
memory system implementation.

Immediate and offset fields
Are unsigned unless otherwise stated.

Immediate values
Are values which are encoded directly in the instruction and used as numeric data when the instruction is
executed. Many ARM and Thumb instructions allow small numeric values to be encoded as immediate
values within the instruction that operates on them.

IMP Is an abbreviation used in diagrams to indicate that the bit or bits concerned have IMPLEMENTATION
DEFINED behavior.

IMPLEMENTATION DEFINED fields
Means that the behavior is not architecturally defined, but should be defined and documented by individual
implementations.

InAPrivilegedMode()
Returns TRUE if the current processor mode is not User mode, and returns FAL SE if the current mode is
User mode.

Index register
Is aregister specified in some |oad/store instructions. The value of this register is used as an offset to be
added to or subtracted from the base register value to form the virtual address which is sent to memory.
Some addressing modes optionally allow the index register value to be shifted prior to the addition or
subtraction.

Inline literals
These are constant addresses and other data items held in the same area as the code itself. They are
automatically generated by compilers, and can also appear in assembler code.

Instruction cache
Is a separate cache used only for processing instruction fetches.

Interworking
Is amethod of working that allows branches between ARM and Thumb code.

Little-endian memory
Means that:

. a byte or halfword at a word-aligned address is the least significant byte or halfword within the word
at that address

. a byte at a halfword-aligned address is the least significant byte within the halfword at that address.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. Glossary-vii

Glossary

Load/Store architecture
I's an architecture where data-processing operations only operate on register contents, not directly on
memory contents.

Logical_Shift_Left
Performs aleft shift, inserting zeros in the vacated bit positions on the right. << is used as ashort form for
Logi cal _Shift_Left.

Logical_Shift_Right
Performs aright shift, inserting zeros in the vacated bit positions on the left.

Long branch
Isthe use of aload instruction to branch to anywhere in the 4GB address space.

LR (Link Register)
Isinteger register R14.

Memory[<address>,<size>]
Refersto adataitem in memory of length <si ze>, at address <addr ess>, aligned on a<si ze> byte
boundary. The dataitem is zero-extended to 32 bits. Currently defined sizes are:

1 for bytes
2 for halfwords
4 for words

Toalign ona<si ze> boundary, halfword accessesignore <addr ess>[0] and word accesses ignore
<addr ess>[1:0].

Memory coherency
I sthe problem of ensuring that when amemory location isread (either by adataread or an instruction fetch),
the value actually obtained is always the vaue that was most recently written to the location. This can be
difficult when there are multiple possible physical locations, such as main memory, awrite buffer and/or
cache(s).

Memory Management Unit
Allows detailed control of amemory system. Most of the control is provided viatranslation tables held
in memory.

Memory-mapped I/O
Uses special memory addresses which supply /O functions when they are loaded from or stored to.

Modified Virtual Address
I's the address produced by the FCSE which is sent to the rest of the memory system to be used in place of
the normal virtua address.

MMU See Memory Management Unit.
MVA See Modified Virtual Address.

NaN Means Not a Number, and is a type of floating-point value.

Glossary-viii Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Glossary

NOT Performs a bitwise complement.

NotFinished(CP_number)
Returns TRUE if the coprocessor signified by the CP_nunber argument has signalled that the current
operation isincomplete, and returns FAL SE if the operation is complete.

NumberOfSetBitsin(bitfield)
Performs a popul ation count on (counts the set bits in) the bitfield argument.

Object[from:to]
Indicates the bit field extracted from Object starting at bit “from”, ending with bit “to” (inclusive)

Offset addressing
Means that the memory address is formed by adding or subtracting an offset to or from the base register
value.

Optional parts of instructions
Are surrounded by and} .

OR Performs a bitwise Inclusive OR.

OverflowFrom
Returns 1 if the addition or subtraction specified as its parameter caused a 32-bit signed overflow. Addition
generates an overflow if both operands have the same sign (bit[31]), and the sign of the result is different to
the sign of both operands. Subtraction causes an overflow if the operands have different signs, and the first
operand and the result have different signs.

This delivers further information about an addition or subtraction which occurred earlier in the pseudo-code.
The addition or subtraction is not repeated.

PC (Program Counter)
Is integer register R15 (or bits[25:2] of R15 on 26-bit architectures).

PCB (Process Control Block)
In software systems that support multiple software processes, is a data structure associated with each
process that holds the process's state while it is not executing.

Physical address
Identifies a main memory location.

Predictable subsequent execution
Means execution of any instructions that can be reached subsequently by any combination of normal
sequential execution and executing branches with statically-determined targets. Any instruction which
branches to a location which depends on register values (silWaPC, LR) terminates predictable
subsequent execution

Post-indexed addressing
Means that the memory address is the base register value, but an offset is added to or subtracted from the
base register value and the result is written back to the base register.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. Glossary-ix

Glossary

Prefetching
Isthe process of fetching instructions from memory before theinstructions that precede them have finished
executing. Prefetching an instruction does not mean that the instruction has to be executed.

Pre-indexed addressing
M eans that the memory addressis formed in the same way as for offset addressing, but the memory
address is also written back to the base register.

Privileged mode
I's any processor mode other than User mode. Memory systems typically check memory accesses from
privileged modes against supervisor access permissions rather than the more restrictive user access
permissions. The use of some instructions is also restricted to privileged modes.

Process ID
In the FCSE, thisis a 7-bit number that identifies which process block the current process is loaded into.

Protection region
Is a memory range whose position, size, and other properties are defined by Protection Unit registers.

Protection Unit
I's a hardware unit whose registers provide simple control of alimited number of protection regionsin
memory.

PSR Isthe CPSR or one of the SPSRs (or bitg[31:26] and bitg1:0] of register 15 on 26-bit architectures).

Quiet NaN
IsaNaN that propagates unchanged through most floating-point operations.

Read-allocate cache
Isacache in which a cache miss on storing data causes the data to be written to main memory. Cache lines
are only allocated to memory locations when data is read/loaded, not when it is written/stored.

Read-As-Zero fields (RAZ)
Appear as zero when read.

Read-Modify-Write fields (RMW)
Areread to a general-purpose register, the relevant fields updated in the register, and the register value
written back.

RISC Stands for Reduced Instruction Set Computer.

Rotate_Right
Performs aright rotate, where each bit that is shifted off the right is inserted on the | ft.

Rounding error
I's defined to be the val ue of the rounded result of an arithmetic operation minus the exact result of the
operation.

Rounding modes
Specify how the exact result of afloating-point operation is rounded to avalue which isrepresentable in the
destination format.

Glossary-x Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Glossary

Round to Nearest (RN) mode
Means that the rounded result is the nearest representable number to the unrounded resullt.

Round towards Plus Infinity (RP) mode
Meansthat the rounded result isthe nearest representable number which is greater than or equal to the exact
result.

Round towards Minus Infinity (RM) mode
Means that the rounded result is the nearest representable number which isless than or equal to the exact
result.

Round towards Zero (RZ) mode
Means that results are rounded to the nearest representabl e number which is no greater in magnitude than
the unrounded resullt.

Saturated arithmetic
Isinteger arithmetic in which aresult that would be greater than the largest representable number is set to
the largest representable number, and a result that would be less than the smallest representable number is
set to the smallest representable number. Signed saturated arithmetic is often used in DSP algorithms. It
contrasts with the normal signed integer arithmetic used in ARM processors, in which overflowing results

wrap around from +231-1 to -2 or vice versa.

Security hole
Is an illegal mechanism that bypasses system protection.

Self-modifying code
Is code which writes one or more instructions to memory and then executes them. This type of code cannot
be relied on without the use of &viB.

Set-associativity
Is the number of cache lines in each of the cache sets in a cache. It can be anyryrahdris not
restricted to being a power of two.

Shifter operand
Is one of the source operands of an ARM data-processing instruction. It is either an immediate value or a
register.

Should-Be-One fields (SBO)
Should be written as 1 (or all 1s for bit fields) by software. Values other than 1 pradeREDICTABLE
results.

Should-Be-One-or-Preserved fields (SBOP)
Should be written as 1 (or all 1s for bit fields) or preserved by writing the same value that has been
previously read from the same fields on the same processor.

Should-Be-Zero fields (SBZ)
Should be written as zero (or all Os for bit fields) by software. Non-zero values prageREDICTABLE
results.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. Glossary-xi

Glossary

Should-Be-Zero-or-Preserved fields (SBZP)
Should be written as zero (or all Os for bit fields) or preserved by writing the same value that has been
previoudy read from the same fields on the same processor.

Signaling NaNs
Cause an Invalid Operation exception whenever any floating-point operation receives a signaling NaN as
an operand. Signaling Nans can be used in debugging, to track down some uses of uninitialized variables.

Signed data types
Represent an integer in the range—2N"1to +2N~1- 1, using two's complement format.

Signed immediate and offset fields
Are encoded in two’s complement notation unless otherwise stated.

SignedDoesSat(x,n)

Returns 0 if x lies inside the range of an n-bit signed integer (that idmiftlex < 21— 1), and 1
otherwise.

This operation delivers further information about a SignedSat(x, n) operation which occurred earlier in the
pseudo-code. Any operations used to calculate x or n are not repeated.

SignExtend(arg)
Sign-extends (propagates the sign bit) its argument to 32 bits.

SignedSat(x,n)
Returns x saturated to the range of an n-bit signed integer.

That is, it returns:
o X Dijfx < A1)
. x if =2 D<x <21 _ 1

o 2D _qifx>dD_q,
SIMD Means Single-Instruction, Multiple-Data operations.

Single-precision value
Is a 32-bit word, and must be word-aligned when held in memory, and which is interpreted as a basic
single-precision floating-point number according to the IEEE 754-1985 standard.

SP (Stack Pointer)
Is integer register R13.

Spatial locality
Is the observed effect that after a program has accessed a memory location, it is likely to also access nearby
memory locations in the near future. Caches with multi-word cache lines exploit this effect to improve
performance.

SPSR Is the Saved Program Status Register which is associated with the current processor mode (and is undefined
if there is no such Saved Program Status Register, as in User mode or System mode).

Glossary-xii Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Glossary

SWiI Is a software interrupt.

Status registers
See CPSR and SPSR.

Tag bits Arebitg31:L+S]) of avirtual address, where L and S are the logarithmsbase 2 of the cache line length and
the number of cache sets respectively. A cache hit occursiif the tag bits of the virtual address supplied by
the ARM processor match the tag bits associated with avalid line in the selected cache set.

Temporal locality
Isthe observed effect that after a program has accesses a memory location, it is likely to access the same
memory location again in the near future. Caches exploit this effect to improve performance.

Test for equality
Issignified by ==.

Thumb instruction
Is a halfword which specifies an operation for an ARM processor in Thumb state to perform. Thumb
instructions must be halfword-aligned.

TLB See Trand ation L ookaside Buffer.

TLB lockdown
Isaway to prevent specific translation table walk results being accessed. This ensures that accesses to the
associated memory areas never cause atrandation table walk.

Translation Lookaside Buffer
Isamemory structure containing the results of translation table walks. They help to reduce the average cost
of amemory access. Usually, thereisa TLB for each memory interface of the ARM implementation.

Translation tables
Aretables held in memory. They define the properties of memory areas of various sizes from 1KB to 1IMB.

Translation table walk
Is the process of doing afull trandation table lookup. It is performed automatically by hardware.

Trap enable bits
Determine whether trapped or untrapped exception handling is selected. If trapped exception handling is
selected, the way it is carried out iS IMPLEMENTATION DEFINED.

Unaffected items
Are not changed by a particular operation.

Unaligned memory accesses
Are memory accesses that are not appropriately word-aligned or halfword-aligned.

Unbanked registers
Are general-purpose registers that refer to the same 32-bit physical register in all processor modes.
Unbanked registers are registers RO to R7.

UNDEFINED
Indicates an instruction that generates an undefined instruction trap. See Undefined I nstruction exception
on page A2-15 for information on undefined instruction traps.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. Glossary-xiii

Glossary

Unified cache
I's a cache used for both processing instruction fetches and processing data loads and stores.

Unindexed addressing
Indicates addressing in which the base register value is used directly as the virtual address to send to
memory, without adding or subtracting an offset. In most types of addressing mode, unindexed addressing
is performed by using offset addressing with an immediate offset of 0. ARM Addressing Mode 5 (used for
LDCand STCinstructions) has an explicit unindexed addressing mode which allows the offset field in the
instruction to be used to specify additional coprocessor options.

UNPREDICTABLE
Means the result of an instruction cannot be relied upon. UNPREDICTABLE instructions or results must not
represent security holes. UNPREDICTABLE instructions must not hat or hang the processor, or any parts of
the system.

UNPREDICTABLE fields (UNP)
Do not contain valid data, and a value can vary from moment to moment, instruction to instruction, and
implementation to implementation.

Unsigned data types
Represent a non-negative integer in the range 0 to +2N-1, us ng normal binary format.

Variable parts of instructions
Are surrounded by < and >.

VFP See Vector Floating-point Architecture.

Vector Floating-point Architecture
I's a coprocessor extension to the ARM architecture. It provides single-precision and double-precision
floating-point arithmetic.

VFP emulator
I's an implementation which consists of software only, with all floating-point arithmetic being emulated by
ARM routines.

Virtual address
I's an address generated by an ARM processor.

while statements
Areused to indicate aloop. Indentation indicates the range of statementsin the loop.

Word Isa32-bit dataitem. Words are normally word-aligned in ARM systems.

Word-alighed
Means that the address is divisible by 4.

Write-allocate cache
Is acache in which a cache miss on storing data causes a cache line to be alocated and main memory
contentsto be read into it, followed by writing the stored datainto the cache line.

Glossary-xiv Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Glossary

Write-back cache

Is acache in which when a cache hit occurs on a store access, the data is only written to the cache. Datain
the cache can therefore be more up-to-date than datain main memory. Any such dataiswritten back to main
memory when the cache lineis cleaned or re-allocated. Another common term for awrite-back cacheisa

copy-back cache.
Write-through cache
Is a cache in which when a cache hit occurs on a store access, the data is written both to the cache and to
main memory. Thisis normally done via awrite buffer, to avoid slowing down the processor.
Write buffer
Isablock of high-speed memory whose purpose isto optimize stores to main memory.

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. Glossary-xv

Glossary

Glossary-xvi Copyright © 1996-2000 ARM Limited. All rights reserved. ARM DDI 0100E

Index

Theitemsin thisindex are listed in aphabetical order, with symbols and numerics appearing at the end.

The references given are to page numbers.

A

Aborts
external B3-22
Access permissions B3-16
ADC instruction
ARM A4-4
Thumb A7-4
ADD instruction
ARM A4-6
Thumb A7-5,A7-6, A7-7,A7-8, A7-10, A7-11, A7-12
Add with Carry (ADC) ingtruction
ARM A4-4
Thumb A7-4
Add with Saturation (QADD) instruction A10-16,
A10-31, A10-33
Add (ADD) instruction
ARM A4-6
Thumb
high registers A7-8
immediate A7-5
immediateto PC A7-10
immediateto SP A7-11
increment stack pointer A7-12

large constant to register A7-6
registers A7-7
Addition
saturated addition A10-7
Address exceptions, 26-bit architectures A8-8
Address space A2-22
Addressing modes A1-2
data-processing
arithmetic shift right by immediate A5-13
arithmetic shift right by register A5-14
immediate A5-6
logica shift left by immediate A5-9
logical shift left by register A5-10
logica shift right by immediate A5-11
logica shift right by register A5-12
register A5-8
rotate right and extend A5-17
rotate right by immediate A5-15
rotate right by register A5-16
load and store coprocessor
immediate offset A5-58
immediate post-indexed A5-62
immediate pre-indexed A5-60
unindexed A5-64

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

Index-i

Index

load and store multiple
decrement after A5-52
decrement before A5-53
increment after A5-50
increment before A5-51
stack operations A5-54
load and store word or unsigned byte
immediate offset A5-20
immediate post-indexed offset A5-28
immediate pre-indexed A5-24
register offset A5-21
register post-indexed offset A5-30, A5-32
register pre-indexed offset A5-25
scaled register offset A5-22
scaled register post-indexed A5-32
scaled register pre-indexed A5-26
miscellaneous loads and stores
immediate offset A5-36
immediate post-indexed A5-44
immediate pre-indexed A5-40
register offset A5-38
register post-indexed A5-46
register pre-indexed A5-42
Alignment fault B3-21
AND instruction
ARM A4-8
Thumb A7-13
Architecture version 4T (Thumb) AG6-2, A7-104
Architecture version 5TE instructions A10-8
Arithmetic instructions A1-6
extension space A3-29
Arithmetic shift right (ASR) instruction
ARM
as addressing mode A5-22, A5-26, A5-32, A5-46
by immediate A5-13
by register A5-14
Thumb
by immediate A7-14
by register A7-16
ARM
branch instructions A3-7
coprocessor instructions A3-25
data-processing instructions A3-9
extending the instruction set A3-27
instruction set A3-2
see also individua instruction names
load ingtructions A3-17
addressing modes A3-17
multiply instructions A3-12
semaphore instructions A3-23

status register access instructions A3-15
store instructions A3-17
addressing modes A3-17
ARM architecture
interaction with VFP architecture C1-5
list of instructions by architecture version A4-113
overview Al-2
26-bit A8-1
ASR instruction
ARM A5-13, A5-14, A5-22, A5-26, A5-32, A5-46
Thumb A7-14, A7-16
Atomic update A1-8

B

B instruction
ARM A4-10
Thumb A7-18, A7-20
BIC ingtruction
ARM A4-12
Thumb A7-22
Big-endian memory system A2-24
Bit clear (BIC) instruction
ARM A4-12
Thumb A7-22
Bit manipulation A9-18
Bits
decode A3-27
T A6-3
T bit A3-15
trap enable C2-11
BKPT instruction
ARM A4-14
Thumb A7-24
BL instruction
ARM A4-10
Thumb A7-26
Block copy A9-10
BLX instruction
ARM A4-16, A4-18
Thumb A7-26, A7-30
Branch instructions
ARM A3-7,A3-8
examples A3-7,A9-5
long branch A9-9
Thumb A6-6, A6-7
examples A6-7
26-bit architectures A8-2
Branch prediction A2-27

Index-ii

Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

Branch with exchange (BX) instruction
ARM A4-19
Thumb A7-32
Branch with link and exchange (BL X) instruction
ARM AA4-16, A4-18
Thumb A7-26, A7-30
Branch with link (BL) instruction A1-3, A1-5, A3-7
ARM A4-10
Thumb A7-26
Branch (B) instruction A1-5
ARM A4-10
Thumb
conditional A7-18
unconditional A7-20
Breakpoint instructions A1-9
Breakpoint (BKPT) instruction
ARM A4-14
Thumb A7-24
BX instruction
ARM A4-19
Thumb A7-32
Byte Al-7
order (endianness) A9-4

C

Caches B1-4, B5-15
preloading the data cache A10-7
Callee-saveregisters C2-15
CDPinstruction A4-20
CDP2 ingtruction A4-20
CLZ ingtruction
ARM A4-22
CMN instruction
ARM A4-23
Thumb A7-34
CMP instruction
ARM A4-25
Thumb A7-35, A7-36, A7-37
Code
self-modifying A2-28
Code samples
branch instructions A9-5
load and store multiple instructions A9-10
semaphore instructions A9-11
Compare instructions A1-6
conditional A9-5

Index

Compare negative (CMN) instruction
ARM A4-23
Thumb A7-34
Compare (CMP) instruction
ARM A4-25
Thumb
high registers A7-37
registers A7-36
Comparing strings A9-7
Condition codeflags Al-4, A1-7, A2-9, A4-62, A4-63
carry (C) A2-9, A3-5
floating-point comparisons C2-21
negative (N) A2-9, A3-5
overflow (V) A2-10,A3-5
zero (Z) A2-9,A3-5
26-bit architectures A8-2
Condition codeOb1111 A3-5
Conditional branch A3-7
Conditional execution A1-2, A3-5
examples A9-5
Configuration
26-bit A8-11
32-bit A8-10
Constant value
see Immediate value
Congtants
dividing by A5-11
multiplyingby A9-2
Context switch A9-16
Control bits A2-10
Control instruction extension space A3-30
Control register
coprocessor 15 B2-13
Coprocessor
external A2-15
instructions A1-8, A3-25
extension space A3-33
software emulation A2-15
two word register transfer A10-7
Coprocessor data processing (CDP2) instruction A4-20
Coprocessor data processing (CDP) instruction A4-20
Coprocessor 10 C1-5
Coprocessor 11 C1-5
Coprocessor 15
control register (architecture version 4) B2-13
domain access control register (architecture version 4)
B3-24
fault address register B3-25
fault status register B3-24
trandation table base register B3-23

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

Index-iii

Index

Count Leading Zeros (CLZ) instruction
ARM A3-14, A4-22

CPSR Al-4,A1-7,A2-9,A3-15
condition code flags A3-5
control bits A2-10, Glossary-iv
26-bit architectures A8-2

D

Dataabort A2-13
See also Exceptions, data abort
Datatypes A2-2
Data-processing instructions
ARM A1-6, A3-9, A3-11
Thumb A6-8, A6-9, A6-13
DATA32signal A8-10
Decode bits A3-27
Default shifter operand A5-4
Denormalized numbers C1-7, C2-2, C2-5, C2-13
Digital signal processing A10-2, A10-3
ingtructions A10-8
integer arithmetic A10-6
Division by constant A5-11
Division by zero exceptions C2-10
DMA transfer examples A9-13
Domain access control register
coprocessor 15 B3-24
Domain fault B3-21
Domains, MMU B3-17
Double and Add with Saturation (QDADD) instruction
A10-18, A10-24, A10-29, A10-31, A10-33
Doubleand Subtract with Saturation (QDSUB) instruction
A10-20, A10-31, A10-33
Double-precision floating-point arithmetic C1-2
Double-precision operations C2-13
Double-precision registers
short vectors C2-17
DSP
and saturated arithmetic A10-3
instructions A10-8
integer multiply and multiply-accumulateinstructions
A10-6
saturated addition and subtraction instructions A10-7
saturated arithmetic A10-4
DSP agorithms A10-2

E

Endianness A2-23

swapping byte order A9-4
Enhanced DSP instructions A10-8

LDRD A10-8

MCRR A10-10

MRRC A10-12

PLD A10-14

QADD A10-16

QDADD A10-18, A10-24, A10-29

QDSUB A10-20

QSUB A10-22

SMLABB A10-23

SMLABT A10-23

SMLALBB A10-26

SMLALBT A10-26

SMLALTB A10-26

SMLALTT A10-26

SMLAL<x><y> A10-26

SMLATB A10-23

SMLATT A10-23

SMLAWB A10-28

SMLAWT A10-28

SMLAW<y> A10-28

SMLA<x><y> A10-23

SMULBB A10-30

SMULBT A10-30

SMULTB A10-30

SMULTT A10-30

SMULWB A10-32

SMULWT A10-32

SMULW<y> A10-32

SMUL<x><y> A10-30
EOR instruction

ARM A4-26

Thumb A7-39
Examples of code A9-5
Exception handler Al-4
Exception-generating instructions A1-9
Exceptions A2-13

dataabort A2-17

fast interrupt request A2-19

floating-point C1-4, C2-10

interrupt request A2-19

invalid operation C2-5

prefetch abort A2-16

priorities A2-20

return from A4-57

software interrupt A2-16, A4-100

Index-iv Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

Thumb A6-3
trapped C1-9
undefined instruction A2-15
underflow C1-7, C1-9, C2-10
vector AS8-11, B3-21

26-bit architectures A8-10
26-bit address A8-8
26-bit architectures A8-2

Exchanging ARM and Thumb state A6-2

Exclusive OR (EOR) instruction
ARM A4-26
Thumb A7-39

Extending the ARM ingtruction set A3-27

External aborts B3-22

F

FABSD ingtruction C4-2
FABSSinstruction C4-4
FADDD instruction C2-7, C4-6
FADDS ingtruction C2-7, C4-8
Fast interrupt A1-3, A2-13
Fault addressregister B3-18

coprocessor 15 B3-25
Fault status register B3-18

coprocessor 15 B3-24
Faults

alignment B3-21

domain B3-21

permission B3-22

translation B3-21
FCMPD instruction C4-10
FCMPED instruction C4-12
FCMPES instruction C4-14
FCMPEZD instruction C4-16
FCMPEZS instruction C4-18
FCMPS ingruction C4-20
FCMPZD instruction C4-22
FCMPZS instruction C4-24
FCPYD ingruction C4-26
FCPYSinstruction C4-28
FCVTDS ingtruction C4-30
FCVTSD instruction C4-31
FDIVD instruction C2-7, C4-32
FDIVSinstruction C2-7, C4-34

FIQ. See Processor mode, Fast interrupt mode

FLDD instruction C4-36
FLDMD instruction C4-38

Index

FLDMSinstruction C4-40
FLDMSX ingtruction C4-42
FLDMX instruction C2-15
FLDSinstruction C4-44
Floating-point
arithmetic C1-2
exceptions C1-4
values of unknown precison C2-15
Floating-point Absolute Vaue instruction
double-precision (FABSD) C4-2
single-precision (FABSS) C4-4
Floating-point Addition instruction
double-precison (FADDD) C4-6
single-precision (FADDS) C4-8
Floating-point Compare instruction
double-precision (FCMPD) C4-10
single-precision (FCMPS) C4-20
Floating-point Compare with Zero instruction
double-precison (FCMPZD) C4-22
single-precision (FCMPZS) C4-24
Floating-point Compare (NaN Exceptions) instruction
double-precison (FCMPED) C4-12
single-precision (FCMPES) C4-14
Floating-point Compare (NaN Exceptions) with Zero
instruction
double-precison (FCMPEZD) C4-16
single-precision (FCMPEZS) C4-18
Floating-point comparisons
condition flags C2-21
Floating-point conversions
floating-point number to integer C2-18
integer to floating-point number C2-18
Floating-point Convert instruction
to double-precision from single-precision (FCVTDS)
C4-30
to single-precision from double-precision (FCVTSD)
C4-31
Floating-point Convert Signed | nteger instruction
to double-precision (FSITOD) C4-88
to single-precision (FSITOS) C4-89
Floating-point Convert to Signed Integer instruction
from double-precision (FTOSID) C4-108
from single-precision (FTOSIS) C4-110
Floating-point Convert to Unsigned I nteger instruction
from double-precision (FTOUID) C4-112
from single-precision (FTOUIS) C4-114
Floating-point Convert Unsigned Integer instruction
to double-precision (FUITOD) C4-116
to single-precision (FUITOS) C4-117

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. Index-v

Index

Floating-point Copy instruction
double-precision (FCPYD) C4-26
single-precision (FCPYS) C4-28
Floating-point Divide instruction
double-precision (FDIVD) C4-32
single-precision (FDIVS) C4-34
Floating-point exceptions C2-10
combinationsof C2-12
denormalization loss C2-10
divison by zero C2-10
inexact C2-13
invalid operation C2-10
loss of accuracy C2-10
overflow C2-10
tininess C2-10
underflow C2-11, C2-13
Floating-point formats C1-8
double precison C2-4
single precision C2-2
Floating-point instructions. See VFP instructions
Floating-point Load instruction
double-precision (FLDD) C4-36
single-precision (FLDS) C4-44
Floating-point Load Multiple instruction
double-precision (FLDMD) C4-38
single-precision (FLDMS) C4-40
unknown precision (FLDMX) C4-42
Floating-point Move instruction
to double-precision high register from register
(FMDHR) C4-50
to double-precision low register from register
(FMDLR) C4-52
to register from double-precision high register
(FMRDH) C4-54
to register from double-precision low register
(FMRDL) C4-55
to register from single-precision (FMRS) C4-56
to register from system register (FMRX) C4-58
to single-precision from register (FMSR) C4-64
to system register from register (FMXR) C4-70
Floating-point Move Statusinstruction (FMSTAT) C4-66
Floating-point Multiply and Accumulate instruction
double-precison (FMACD) C4-46
single-precision (FMACS) C4-48
Floating-point Multiply and Subtract instruction
double-precision (FMSCD) C4-60
single-precision (FMSCS) C4-62
Floating-point Multiply instruction
double-precison (FMULD) C4-67
single-precision (FMULS) C4-68

Floating-point Negate instruction
double-precision (FNEGD) C4-72
single-precision (FNEGS) C4-74

Floating-point Negated Multiply and Accumulate

instruction
double-precision (FNMACD) C4-76
single-precision (FNMACS) C4-78

Floating-point Negated Multiply and Subtract instruction
double-precision (FNMSCD) C4-80
single-precision (FNMSCS) C4-82

Floating-point Negated Multiply instruction
double-precision (FNMULD) C4-84
single-precision (FNMULS) C4-86

Floating-point registers C1-3
general-purpose C2-14

Floating-point Square Root instruction
double-precision (FSQRTD) C4-90
single-precision (FSQRTS) C4-92

Floating-point Store instruction
double-precision (FSTD) C4-94
single-precision (FSTS) C4-102

Floating-point Store Multiple instruction
double-precision (FSTMD) C4-96
single-precision (FSTMS) C4-98
unknown precision (FSTMX) C4-100

Floating-point Subtract instruction
double-precision (FSUBD) C4-104
single-precision (FSUBS) C4-106

Flush-to-zero mode C2-13
compatability with IEEE754 C2-13
controlling C2-21
copy operations C2-13

FMACD instruction C2-7, C4-46

FMACD ingtructions C2-7

FMACS instruction C2-7, C4-48

FMACS instructions C2-7

FMDHR ingtruction C4-50

FMDLR instruction C4-52

FMRDH ingtruction C4-54

FMRDL instruction C4-55

FMRS instruction C2-18, C4-56

FMRX instruction C4-58

FMSCD instruction C2-7, C4-60

FMSCD instructions C2-7

FMSCSinstruction C2-7, C4-62

FMSCSinstructions C2-7

FMSR instruction C2-18, C4-64

FMSTAT instruction C4-66

FMULD instruction C2-7, C4-67

FMULS instruction C2-7, C4-68

Index-vi

Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

FMXR instruction C4-70

FNEGD instruction C4-72

FNEGS instruction C4-74

FNMACD instruction C2-7, C4-76

FNMACS instruction C2-7, C4-78

FNMACSi instructions C2-7

FNMSCD instruction C2-7, C4-80

FNMSCSinstruction C2-7, C4-82

FNMULD instruction C2-7, C4-84

FNMULS instruction C2-7, C4-86

FPEXC register C1-3, C2-19, C2-24

FPSCRregister C1-3, C2-19, C2-21
controlling flush-to zero mode C2-21
controlling the rounding mode C2-22
IXC bit C2-13

FPSID register C1-3, C2-19, C2-20

FSITOD instruction C4-88

FSITOS instruction C4-89

FSQRTD instruction C2-7, C4-90

FSQRTS instruction C2-7, C4-92

FSTD instruction C4-94

FSTMD instruction C4-96

FSTMSinstruction C4-98

FSTMX instruction C2-15, C4-100

FSTSinstruction C4-102

FSUBD instruction C2-7, C4-104

FSUBS instruction C2-7, C4-106

FTOSID instruction C2-18, C4-108

FTOSISinstruction C2-18, C4-110

FTOSIZD instruction C2-18, C2-22

FTOSIZSinstruction C2-18, C2-22, C4-110

FTOUID instruction C2-18, C4-112

FTOUISinstruction C2-18, C4-114

FTOUIZD instruction C2-18, C2-22, C4-112

FTOUIZS instruction C2-18, C2-22, C4-114

FUITOD instruction C4-116

FUITOS instruction C4-117

functionsof B5-15

FZ bit C1-7

H

Halfwords A1-7
High registers A6-10
High vectors A2-21

Index

IEEE 754 C1-7
implementation choices C1-8
Immediate
operand A5-4
value A5-6
Indivisible bus operation A1-8
Inexact exceptions C2-13
Instruction fetches from memory-mapped I/0 A2-32
Instruction memory barriers (IMBs) A2-28
Instruction sets
ARM A3-1
Thumb A6-2
Instructions
ARM
listed by architecture version A4-113
ADC A4-4,A45
ADD A4-6
AND A4-8
ASR Ab5-13, A5-14, A5-22, A5-26, A5-32, A5-46
B A4-10
BIC A4-12
BKPT A4-14
BL A4-10
BLX A4-16,A4-18
BX A4-19
CDP A4-20
CDP2 A4-20
CLZ A4-22
CMN A4-23
CMP A4-25
EOR A4-26
LDC A4-28
LDC2 A4-28
LDM AA4-30, A4-32, A4-34
LDR A4-37
LDRB A4-40
LDRBT A4-42
LDRH A4-45
LDRSB A4-46
LDRSH A4-48
LDRT A4-50
LSL A5-9,A5-10, A5-22, A5-26, A5-32
LSR A5-11, A5-12, A5-22, A5-26, A5-32
MCR A4-52
MCR2 A4-52
MLA A4-54
MOV A4-56
MRC A4-58

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. Index-vii

MRC2 AA4-58
MRS A4-60

MSR A4-62

MUL A4-66
MVN A4-68
ORR A4-70

ROR AB5-15, A5-16, A5-22, A5-26, A5-32
RRX A5-17, A5-22, A5-26, A5-32
RSB A4-72

RSC A4-74

SBC A4-76
SMLAL A4-78
SMULL A4-80
STC A4-82

STC2 A4-82

STM A4-84, A4-86
STR A4-88

STRB A4-90
STRBT A4-92
STRH A4-94
STRT A4-96
SUB A4-98

SWI A4-100
SWP A4-102
SWPB A4-104
TEQ A4-106

TST A4-107
UMLAL A4-109
UMULL A4-111

Enhanced DSP

LDRD A10-8

MCRR A10-10

MRRC A10-12

PLD A10-14

QADD A10-16, A10-31, A10-33
QDADD A10-18, A10-24, A10-29, A10-31,
A10-33

QDSUB A10-20, A10-31, A10-33
QSUB A10-22

SMLABB A10-23

SMLABT A10-23

SMLALBB A10-26

SMLALBT A10-26

SMLALTB A10-26

SMLALTT A10-26
SMLAL<x><y> A10-26
SMLATB A10-23

SMLATT A10-23

SMLAWB A10-28

SMLAWT A10-28

SMLAW<y> A10-28
SMLA<x><y> A10-23
SMULBB A10-30
SMULBT A10-30
SMULTB A10-30
SMULTT A10-30
SMULWB A10-32
SMULWT A10-32
SMULW<y> A10-32
SMUL<x><y> A10-30
STRD A10-34

prefetching A2-27
Thumb

listed by architecture version A7-104
ADC A7-4

ADD A7-5,A7-6,A7-7,A7-8, A7-10, A7-11,
AT-12

AND A7-13

ASR A7-14, A7-16

B A7-18, A7-20

BIC A7-22

BKPT A7-24

BL A7-26

BLX A7-26, A7-30

BX A7-32

CMN A7-34

CMP AT7-35,A7-36, A7-37

EOR A7-39

LDR A7-41, A7-42, A7-44, AT7-46, A7-48
LDRB A7-50, A7-51

LDRH A7-52, A7-54

LDRSB A7-56

LDRSH A7-57

LSL A7-59, A7-60

LSR A7-62,A7-64

MOV A7-66, A7-67, A7-68

MUL A7-70

MVN A7-72

NEG A7-73

ORR A7-74

POP A7-75, A7-76

PUSH A7-78

ROR A7-80

STMIA A7-85

STR A7-86, A7-88, A7-90

STRB A7-92, A7-93

STRH A7-94, A7-96

SUB A7-98, A7-99, A7-100, A7-101
SWI A7-102

TST A7-103

Index-viii

Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

Index

VFP FSTD C4-94
FABSD C4-2 FSTMD C4-96
FABSS C4-4 FSTMS C4-98
FADDD C2-7,C4-6 FSTMX C2-15, C4-100
FADDS C2-7,C4-8 FSTS C4-102
FCMPD C4-10 FSUBD C2-7,C4-104
FCMPED C4-12 FSUBS C2-7, C4-106
FCMPES C4-14 FTOSID C2-18, C4-108
FCMPEZD C4-16 FTOSIS C2-18, C4-110
FCMPEZS C4-18 FTOSIZD C2-18, C2-22
FCMPS C4-20 FTOSIZS C2-18, C2-22, C4-110
FCMPZD C4-22 FTOUID C2-18, C4-112
FCMPZS C4-24 FTOUIS C2-18,C4-114
FCPYD C4-26 FTOUIZD C2-18, C2-22, C4-112
FCPYS C4-28 FTOUIZS C2-18, C2-22, C4-114
FCVTDS C4-30 FUITOD C4-116
FCVTSD C4-31 FUITOS C4-117
FDIVD C2-7,C4-32 Integer arithmetic for digital signal processng A10-6
FDIVS C2-7, C4-34 Integers
FLDD C4-36 in single-precision registers C2-18
FLDMD C4-38 Interrupt
FLDMS C4-40 disable bits A1-4, A2-10
FLDMX C2-15, C4-42 in 26-bit architectures A8-2
FMACD C2-7, C4-46 enable bits A1-7, A4-63
FMACS C2-7,C4-48 handlers A9-12, A9-15
FMDHR C4-50 modes A2-13
FMDLR C4-52 priority A9-15
FMRDH C4-54 Interrupts
FMRDL C4-55 typesof A1-3,B1-5
FMRS C2-18, C4-56 Interworking
FMRX C4-58 ARM and Thumb code A3-7
FMSCD C2-7, C4-60 Invalid Operation exceptions C2-5, C2-10
FMSCS C2-7, C4-62 IRQ (interrupt request) A2-3
FMSR C2-18, C4-64 1/0
FMSTAT C4-66 memory-mapped A2-22, A2-31

FMULD C2-7, C4-67
FMULS C2-7, C4-68

FMXR C4-70 L

FNEGD C4-72

FNEGS C4-74 LDCinstruction A4-28
FNMACD C2-7, C4-76 LDC2instruction A4-28
FNMACS C2-7, C4-78 LDM instruction

FNMSCD C2-7, C4-80 ARM A4-30, A4-32, A4-34
FNMSCS C2-7, C4-82 memory-mapped I/O A2-33
FNMULD C2-7,C4-84 LDMIA instruction

FNMULS C2-7,C4-86 Thumb A7-41

FSITOD C4-88 LDRinstruction A10-6
FSITOS C4-89 ARM AA4-37

FSQRTD C2-7,C4-90 Thumb A7-42, A7-44, A7-46, A7-48

FSQRTS C2-7, C4-92

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. Index-ix

Index

LDRB instruction
ARM A4-40
Thumb A7-50, A7-51
LDRBT ingtruction A4-42
LDRD instruction A10-8
LDRH instruction
ARM A4-45
Thumb A7-52, A7-54
LDRSB instruction
ARM A4-46
Thumb A7-56
LDRSH instruction
ARM A4-48
Thumb A7-57
LDRT instruction A4-50
Link register (LR) A1-3,Al-5
Linked lists A9-7
list of instructionsin A7-104
Little-endian memory system A2-24
Load and Store
addressing modes
offset A1-7
post-indexed A1-7
pre-indexed A1-7
doublewords A10-7, A10-8, A10-34
instructions A1-7, A3-18
extension space A3-32
Thumb A6-15
Thumb A6-15, A6-17
examples A6-16
Load and Store Coprocessor
addressing modes A5-56—A5-62
instructions A3-25, A3-26
Load and Store Halfword and Load Signed Byte
instructions A3-18, A3-20
Load and Store Multiple
addressing modes A5-48—A5-55
post-decrement Al1-8
post-increment A1-8
pre-decrement A1-8
pre-increment Al-8
instructions A1-8, A3-21, A3-22
base address A1-8
examples A9-10
Thumb instructions A6-18, A6-19
Load and Store Word and Unsigned Byte
addressing modes A5-18—A5-33
Load Coprocessor (LDC2) instruction A4-28
Load Coprocessor (LDC) instruction A4-28

Load instructions A3-18
addressing modes A3-17
ARM A3-17
floating-point values C1-3, C2-15
used as a branch A9-9
Load Multiple (LDMIA) instruction
Thumb A7-41
Load Multiple (LDM) instruction
ARM A4-30, A4-32
Load Multiple (LDM) with Restore CPSR instruction
ARM A4-34
Load Register Byte with Translation (LDRBT) instruction
A4-42
Load Register Byte (LDRB) instruction
ARM A4-40
Thumb
immediate offset A7-50
register offset A7-51
Load Register Doubleword (LDRD) instruction A10-8
Load Register Halfword (LDRH) instruction
ARM A4-45
Thumb
immediate offset A7-52
register offset A7-54
Load Register Signed Byte (LDRSB) instruction
ARM A4-46
Thumb A7-56
Load Register Signed Halfword (LDRSH) instruction
ARM A4-48
Thumb A7-57
Load Register with Translation (LDRT) instruction
A4-50
Load Register (LDR) instruction
ARM A4-37
Thumb
immediate A7-42
PC-relative A7-46
register offset A7-44
SP-relative A7-48
Load-Store architecture Al-2
Logical OR (ORR) instruction
ARM A4-70
Thumb A7-74
Logical Shift Left (LSL) instruction
ARM A5-10
as addressing mode A5-22, A5-26, A5-32
immediate A5-9
Thumb
register A7-59, A7-60

Index-x Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

Logical Shift Right (LSR) instruction
ARM AB5-11, A5-12

as addressing mode A5-22, A5-26, A5-32

Thumb
immediate A7-62
register A7-64
Long branch A3-7
Loop counter A9-6
LSL instruction
ARM A5-9, A5-10, A5-22, A5-26, A5-32
Thumb A7-59, A7-60
LSR instruction
ARM AbB-11, A5-12, A5-22, A5-26, A5-32
Thumb A7-62, A7-64

M

MCR instruction A4-52, A10-7
MCRR instruction A10-7, A10-10
MCR2 instruction A4-52
Memory
aborts A1-3
access A2-33
protection A1-3
unaligned accesses A2-26
virtua A1-3
Memory Management Unit. See MMU
Memory-mapped I/0 A2-22, A2-31
instruction fetches from A2-32
LDM and STM instructions A2-33
Miscellaneous L oads and Stores
addressing modes A5-34-A5-46
MLA instruction A4-54
MMU
architecture B3-2
domains B3-17
faults B3-18
Mode bits A2-11
MOV instruction
ARM A4-56
Thumb A7-66, A7-67, A7-68

Index

Thumb A7-72
Move Status Register to General-Purpose Register (MRS)
instruction A4-60
Move to ARM Register from Coprocessor (MRC?2)
instruction A4-58
Move to ARM Register from Coprocessor (MRC)
instruction A4-58
Move to Coprocessor from ARM Register (MCR2)
instruction A4-52
Move to Coprocessor from ARM Register (MCR)
instruction A4-52
Move to Coprocessor from two ARM registers (MCRR)
instruction A10-10
Move to two ARM Registers from Coprocessor (MRRC)
instruction A10-12
Move (MOV) instruction
ARM A4-56
Thumb
high register A7-68
immediate A7-67
large constant to register A7-66
low register A7-67
MRC instruction A4-58, A10-7
MRC?2 instruction A4-58
MRRC instruction A10-7, A10-12
MRS instruction A4-60
and the Q flag A10-5
MSR instruction A4-62
and the Q flag A10-5
MUL instruction
ARM A4-66
Thumb A7-70
Multiply
by constant A5-9
example A9-2
instructions A1-6, A3-12, A3-13
32-bit A3-12
64-bit A3-12
Multiply Accumulate (MLA) instruction A4-54
Multiply and multiply-accumulate instructions A10-6
Multiply (MUL) instruction
ARM A4-66

Move General-purpose Register or Immediate to Status Thumb A7-70

Register (MSR) instruction A4-62
Move not (MVN) instruction
ARM A4-68

MVN instruction
ARM A4-68
Thumb A7-72

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved. Index-xi

Index

N

NaNs C1-8, C2-3
quiet C1-8,C2-5
signaling C1-8, C2-5
special cases C2-8
used in debugging C2-5
NEG instruction A7-73
Negate (NEG) instruction A7-73
Normalized numbers A3-14, C2-2, C2-4, C2-13
Not a Number. See NaNs
Numbers
denormalized C1-7, C2-2, C2-5, C2-13
normaized C2-2, C2-4, C2-13

O

Operands

immediate A5-4

shifted register A5-4
Operating system A1-3, A2-16, A4-100
ORR ingtruction

ARM A4-70

Thumb A7-74
Overflow exceptions C2-10
Overlapping regions B4-5

P

Page table descriptor B3-9, B3-10
Permission fault B3-22
PLD instruction A10-7, A10-14
POP ingtruction A7-75, A7-76
Pop multiple registers (POP) instruction A7-75, A7-76
Prefetch abort A2-13
Prefetching instructions A2-27
Preload cache (PLD) instruction A10-14
Procedure
cal and return A9-5
entry and exit (example) A9-10
Processor modes A1-3, Al-4, A1-7
Abort mode A2-3
changing A2-3, A4-63
Fast Interrupt mode A2-3
Interrupt mode A2-3
privileged A1-3
reset A2-14
Supervisor mode A2-3

System mode A2-3
Undefined mode A2-3
User mode A2-3
26-bit architectures A8-2, A8-9
32-bit architectures A8-9
Program Counter (PC) A1-3, A1-5 A2-7
reading A2-7
writing A2-8
26-bit architecture A8-2
Program Status Register accessingtructions A3-15
Program Status Register transfer instructions A1-7
Program Status Register (PSR) A2-9, A3-15
accessinstructions A3-15
control bits A2-10
26-bit architectures A8-6
PROG32signal A8-10
Protection unit B4-4
PUSH instruction A7-78
Push Multiple Registers (PUSH) instruction A7-78

Q

Qflag A10-5

Q numbers A10-2

QADD instruction A10-16, A10-31, A10-33

QDADD ingtruction A10-18, A10-24, A10-29, A10-31,
A10-33

QDSUB instruction A10-20, A10-31, A10-33

QSUB instruction A10-22

Quiet NaNs C1-8, C2-3

Q15 and Q31 arithmetic A10-4

Q15 numbers A10-2

Q31 numbers A10-2

R

Regions
overlapping B4-5
Register 13 A2-6
Register 14 A2-6
Register 15
26-bit architectures A8-2
program counter bits A8-4
Registers A2-4
banked A1-3,A2-5
banksof A2-4
calee-save C2-15
CPSR A2-9

Index-xii

Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

floating-point C1-3, C2-14
FPEXC C1-3,C2-19, C2-24
FPSCR C1-3,C2-19, C2-21
FPSID C1-3, C2-19, C2-20
general-purpose A2-5
high A6-10
operand value A5-4
overview of A1-2
shifted operand value A5-4
SPSR A2-9
unbanked A2-5
Reset A2-13
Return address A3-7
Reverse Subtract with Carry (RSC) instruction A4-74
Reverse Subtract (RSB) instruction A4-72
RISC (Reduced Instruction Set Computer) A1-2
ROR instruction
ARM AB5-15, A5-16, A5-22, A5-26, A5-32
Thumb A7-80
Rotate Left with Extend operation A4-5
Rotate Right with Extend (RRX) instruction A5-17,
A5-26
as addressing mode A5-22, A5-26, A5-32
Rotate Right (ROR) instruction
ARM
as addressing mode A5-22, A5-26, A5-32
immediate A5-16
register A5-15
Thumb
register A7-80
Round to Nearest rounding mode C2-9
Round towards Minus Infinity rounding mode C2-9
Round towards Plus Infinity rounding mode C2-9
Round towards Zero rounding mode C2-9, C2-22
Rounding C2-9
Rounding error C2-9
Rounding modes C2-9
controlling C2-22
default C2-9
RRX instruction A5-17, A5-22, A5-26, A5-32
RSB instruction A4-72
RSC instruction A4-74

S

Saturated Add (QADD) ingtruction A10-16, A10-31,
A10-33
Saturated arithmetic A10-4
andthe Q flag A10-5

Index

Saturated Doubleand Add (QDADD) instruction A10-18,
A10-24, A10-29, A10-31, A10-33
Saturated Double and Subtract (QDSUB) instruction
A10-20, A10-31, A10-33
Saturated integer arithmetic A10-7
Saturated Subtract (QSUB) instruction A10-22
SBC instruction
ARM A4-76
Thumb A7-82
Section descriptor B3-8
Section references B3-8
Self-modifying code A2-28
Semaphores A1-8,B1-6
examplesof A9-11
ingructions A3-23
Shift A1-6, A3-9, A4-57
ingructions A1-6
register Al-6
Shifter operand A5-4
default A5-4
register A5-4
Shifts
ARM
ASR A5-13,A5-14
LSL A5-9,A5-10
LSR A5-11, A5-12
ROR A5-15,A5-16
RRX A5-17
Thumb
ASR A7-14,A7-16
LSL A7-59, A7-60
LSR A7-62, A7-64
ROR A7-80
Short vectors C2-17
Sign bit
floating-point operations C1-3
Signaling NaNs C1-8, C2-3
Signals
DATA32 A8-10
PROG32 A8-10
Signed Multiply Accumulate Long (SMLAL) instruction
A4-78
Signed Multiply Halfwords and Accumulate Long
(SMLAL<x><y>) instructions A10-26
Signed Multiply Halfwords and Accumulate
(SMLA<x><y>) instructions A10-23
Signed Multiply Halfwords (SMUL <x><y>) instructions
A10-30
Signed Multiply Long (SMULL) instruction A4-80

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

Index-xiii

Index

Signed Multiply Word by Halfword and Accumulate
(SMLAW<y>) ingtructions A10-28
Signed Multiply Word by Halfword (SMULW<y>)
instructions A10-32
Sign-extend A1-7,A2-2
Single-ingtruction multiple-data (SIMD) parallelism C1-2
Single-precision floating-point arithmetic C1-2
Single-precision operations C2-13
Single-precision registers
integers C2-18
short vectors C2-17
SMLABB instruction A10-23
SMLABT instruction A10-23
SMLAL ingtruction A4-78
SMLALBB instruction A10-26
SMLALBT instruction A10-26
SMLALTB ingtruction A10-26
SMLALTT instruction A10-26
SMLAL<x><y> ingtructions A10-26
SMLATB instruction A10-23
SMLATT instruction A10-23
SMLAW<y> instructions A10-28
SMLA<x><y> instructions A10-23
SMULBB instruction A10-30
SMULBT insgtruction A10-30
SMULL ingtruction A4-80
SMULTB instruction A10-30
SMULTT instruction A10-30
SMULWSB instruction A10-32
SMULWT instruction A10-32
SMULW<y> instructions A10-32
SMUL<x><y> instructions A10-30
Software interrupt instructions A1-9
Software Interrupt (SWI) A1-3, A2-13
examples A9-12
Software Interrupt (SWI) instruction
ARM A4-100
Thumb A7-102
SPSR A1l-4,A1-7,A2-9, A3-15
26-bit architectures A8-2
Stack Pointer (SP) A1-3
incrementing A7-12
Status Registers. See Program Status Registers
STCinstruction A4-82
STC2 instruction A4-82
Sticky overflow flag A10-5
STM ingtruction
ARM A4-84, A4-86
memory-mapped 1/0 A2-33

STMIA instruction
Thumb A7-85
Store Coprocessor (STC?2) instruction A4-82
Store Coprocessor (STC) instruction A4-82
Storeinstructions A3-18
addressing modes A3-17
ARM A3-17
floating-point values C1-3, C2-15
Store Multiple (STMIA) instruction
Thumb A7-85
Store Multiple (STM) instruction
ARM A4-84, A4-86
Store Register Bytewith Translation (STRBT) instruction
A4-92
Store Register Byte (STRB) instruction
ARM A4-90
Thumb
immediate A7-92
Store Register Byte(STRB) instruction
Thumb
register A7-93
Store Register Doubleword (STRD) instruction A10-34
Store Register Halfword (STRH) instruction
ARM A4-94
Thumb
immediate A7-94
register A7-96
Store Register with Trandation (STRT) instruction A4-96
Store Register (STR) instruction
ARM A4-88
Thumb
immediate A7-86
register A7-88
SP-relative A7-90
STRinstruction
ARM A4-88
Thumb A7-86, A7-88, A7-90
STRB instruction
ARM A4-90
Thumb A7-92, A7-93
STRBT instruction A4-92
STRD instruction A10-34
STRH instruction
ARM A4-94
Thumb A7-94, A7-96
String compare A9-7
STRT instruction A4-96
SUB instruction
ARM A4-98
Thumb A7-98, A7-99, A7-100, A7-101

Index-xiv

Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

Subroutine
cal A1-3,A3-7, A4-10, A4-16, A4-18
call and return A1-8
return A4-57
return address A1-8
Subtract with Carry (SBC) instruction
ARM A4-76
Subtract with Saturation (QSUB) instruction A10-22
Subtract (SUB) instruction
ARM A4-98
Thumb
decrement stack pointer A7-101
immediate A7-98
largeimmediate A7-99
largeregister A7-100
Subtraction
saturated subtraction A10-7
Swap Byte (SWPB) instruction A4-104
Swap Word (SWP) instruction A4-102
Swapping
byte order (endianness) A9-4
register and memory values A1-8
SWI instruction
ARM A4-100
Thumb A7-102
SWI ingtruction, and IMBs A2-29
SWPinstruction A4-102
SWPB instruction A4-104
System mode A1l-4
System registers
VFP C2-19

T

T bit A3-15,A6-3
TEQ instruction A4-106
Test Equivalence (TEQ) instruction A4-106
Test (TST) instruction
ARM A4-107
Thumb A7-103
Thumb A6-15
architecture A6-2
list of instructions by architecture version A7-104
branch instructions A6-6, A6-7
data-processing instructions A6-8, A6-9, A6-13
exceptions A6-3
instruction set A6-2
overview A6-4

Index

load and store instructions A6-17
examples A6-16
load and store multiple instructions A6-18, A6-19
examples A6-18
T flag A4-19
undefined instructions A6-21
Tininess C2-10
Trandating
large page references B3-13
section references B3-8
small page references B3-14
Trandation fault B3-21
Trandation table
base B3-6
base register
coprocessor 15 B3-23
Trap enable bits C2-11
Trapped exceptions C1-9
TST instruction
ARM A4-107
Thumb A7-103

U

UMLAL ingtruction A4-109
UMULL ingtruction A4-111
Unaligned data accesses A2-26
Unaligned memory accesses A2-26
Unconditional instruction extension space A3-34
Undefined ingtruction space A3-28, A6-21
Undefined instructions A1-3, A2-13
Underflow exceptions C1-7, C1-9, C2-10, C2-11, C2-13
Unsigned Multiply Accumulate Long (UMLAL)
instruction A4-109
Unsigned Multiply Long (UMULL) instruction A4-111
User mode Al-2
context switch A9-16
User Registers Load Multiple (LDM) instruction
ARM AA4-32
User Registers Store Multiple (STM) instruction
ARM A4-86

Variables A9-6

Vector exception A8-10, A8-11, B3-21
Vector Floating-point. See VFP.
Vectors Al-4

ARM DDI 0100E

Copyright © 1996-2000 ARM Limited. All rights reserved.

Index-xv

Index

VFP

coprocessor 10 C1-5
coprocessor 11 C1-5
floating-point results C2-6
flush-to-zero mode C2-13

compatability with IEEE754 C2-13

controlling C2-21

copy operations C2-13
implementations C1-4, C2-14
non-floating-point results C2-6
optimization C2-13
performance C2-13
programmer’s model C2-1
registers C1-3
system registers C2-19

VFP architecture

compliance with IEEE 754 C1-7
interaction with ARM architecture C1-5
introduction C1-1

VFP instructions

FABSD C4-2
FABSS C4-4
FADDD C2-7,C4-6
FADDS C2-7,C4-8
FCMPD C4-10
FCMPED C4-12
FCMPES C4-14
FCMPEZD C4-16
FCMPEZS C4-18
FCMPS C4-20
FCMPZD C4-22
FCMPZS C4-24
FCPYD C4-26
FCPYS C4-28
FCVTDS C4-30
FCVTSD C4-31
FDIVD C2-7, C4-32
FDIVS C2-7,C4-34
FLDD C4-36
FLDMD C4-38
FLDMS C4-40
FLDMX C2-15, C4-42
FLDS C4-44
FMACD C2-7, C4-46
FMACS C2-7,C4-48
FMDHR C4-50
FMDLR C4-52
FMRDH C4-54
FMRDL C4-55
FMRS C2-18, C4-56

FMRX C4-58
FMSCD C2-7, C4-60
FMSCS C2-7, C4-62
FMSR C2-18, C4-64
FMSTAT C4-66
FMULD C2-7, C4-67
FMULS C2-7, C4-68
FMXR C4-70
FNEGD C4-72
FNEGS C4-74
FNMACD C2-7,C4-76
FNMACS C2-7, C4-78
FNMSCD C2-7, C4-80
FNMSCS C2-7, C4-82
FNMULD C2-7,C4-84
FNMULS C2-7, C4-86
FSITOD C4-88
FSITOS C4-89
FSQRTD C2-7,C4-90
FSQRTS C2-7, C4-92
FSTD C4-94
FSTMD C4-96
FSTMS C4-98
FSTMX C2-15, C4-100
FSTS C4-102
FSUBD C2-7,C4-104
FSUBS C2-7, C4-106
FTOSID C2-18, C4-108
FTOSIS C2-18, C4-110
FTOSIZD C2-18,C2-22
FTOSIZS C2-18, C2-22, C4-110
FTOUID C2-18, C4-112
FTOUIS C2-18, C4-114
FTOUIZD C2-18, C2-22, C4-112
FTOUIZS C2-18, C2-22,C4-114
FUITOD C4-116
FUITOS C4-117
Virtual memory A1-3

w

Word A1-7
Write buffers B1-4

Z

Zero-extend Al-7, A2-2

Index-xvi

Copyright © 1996-2000 ARM Limited. All rights reserved.

ARM DDI 0100E

Numerics

16-bit instructions A6-2
26-bit
addressing A8-10
architectures A8-1
address exceptions A8-8
compatibility with 32-bit architectures A8-9
program counter A8-4
program status register A8-6
configuration A8-11

Index

32-hit
address space A8-2
addressing A8-10
architecture A8-3
compatibility with 26-bit architectures A8-9
configuration A8-10
immediate A5-6
multiply A3-12
transfer between ARM and VFP C1-3
64-bit
multiply A3-12
value A3-12, A4-76, A4-78, A4-80, A4-109, A4-111

ARM DDI 0100E Copyright © 1996-2000 ARM Limited. All rights reserved. Index-xvii

	ARM Architecture Reference�Manual
	Preface
	Preface
	About this manual
	Architecture versions and variants
	The Thumb instruction set (T variants)
	Thumb instruction set versions

	Long multiply instructions (M variants)
	Enhanced DSP instructions (E variants)
	The ARMv5TExP architecture version

	Naming of ARM/Thumb architecture versions

	Using this manual
	Part A - CPU Architectures
	Part B - Memory and System Architectures
	Part C - Vector Floating-point Architecture

	Conventions
	General typographic conventions
	Pseudo-code descriptions of instructions
	Assembler syntax descriptions

	Contents

	Contents
	Preface
	Chapter A1 Introduction to the ARM Architecture
	Chapter A2 Programmer’s Model
	Chapter A3 The ARM Instruction Set
	Chapter A4 ARM Instructions
	Chapter A5 ARM Addressing Modes
	Chapter A6 The Thumb Instruction Set
	Chapter A7 Thumb Instructions
	Chapter A8 The 26-bit Architectures
	Chapter A9 ARM Code Sequences
	Chapter A10 Enhanced DSP Extension
	Chapter B1 Introduction to Memory and System Architectures
	Chapter B2 The System Control Coprocessor
	Chapter B3 Memory Management Unit
	Chapter B4 Protection Unit
	Chapter B5 Caches and Write Buffers
	Chapter B6 Fast Context Switch Extension
	Chapter C1 Introduction to the Vector Floating-point Architecture
	Chapter C2 VFP Programmer’s Model
	Chapter C3 VFP Instruction�Set�Overview
	Chapter C4 VFP Instructions
	Chapter C5 VFP Addressing Modes

	Part A
	Introduction to the ARM Architecture
	1.1 About the ARM architecture
	1.1.1 ARM registers
	1.1.2 Exceptions
	The exception process

	1.1.3 Status registers

	1.2 ARM instruction set
	1.2.1 Branch instructions
	1.2.2 Data-processing instructions
	Arithmetic/logic instructions
	Comparison instructions
	Multiply instructions
	Count Leading Zeros instruction

	1.2.3 Status register transfer instructions
	1.2.4 Load and store instructions
	Load and Store Register
	Load and Store Multiple registers
	Swap register and memory contents

	1.2.5 Coprocessor instructions
	1.2.6 Exception-generating instructions

	Programmer’s Model
	2.1 Data types
	2.2 Processor modes
	2.3 Registers
	2.4 General-purpose registers
	2.4.1 The unbanked registers, R0-R7
	2.4.2 The banked registers, R8-R14
	2.4.3 The program counter, R15
	Reading the program counter
	Writing the program counter

	2.5 Program status registers
	2.5.1 The condition code flags
	The Q flag

	2.5.2 The control bits
	Interrupt disable bits
	The T bit
	Mode bits

	2.5.3 Other bits

	2.6 Exceptions
	2.6.1 Reset
	2.6.2 Undefined Instruction exception
	2.6.3 Software Interrupt exception
	2.6.4 Prefetch Abort (instruction fetch memory abort)
	2.6.5 Data Abort (data access memory abort)
	Effects of data-aborted instructions
	Abort models

	2.6.6 Interrupt request (IRQ) exception
	2.6.7 Fast interrupt request (FIQ) exception
	2.6.8 Exception priorities
	2.6.9 High vectors

	2.7 Memory and memory-mapped I/O
	2.7.1 Address space
	2.7.2 Endianness
	2.7.3 Unaligned memory accesses
	Unaligned instruction fetches
	Unaligned data accesses

	2.7.4 Prefetching and self-modifying code
	Instruction Memory Barriers (IMBs)
	Other uses for IMBs

	2.7.5 Memory-mapped I/O
	Instruction fetches from memory-mapped I/O
	Data accesses to memory-mapped I/O
	Time ordering of LDM and STM instructions

	The ARM Instruction Set
	3.1 Instruction set encoding
	3.1.1 Multiplies and extra load/store instructions
	3.1.2 Miscellaneous instructions

	3.2 The condition field
	3.2.1 Condition code 0b1111

	3.3 Branch instructions
	3.3.1 Examples
	3.3.2 List of branch instructions

	3.4 Data-processing instructions
	3.4.1 Instruction encoding
	3.4.2 List of data-processing instructions

	3.5 Multiply instructions
	3.5.1 Normal multiply
	3.5.2 Long multiply
	3.5.3 Examples
	3.5.4 List of multiply instructions

	3.6 Miscellaneous arithmetic instructions
	3.6.1 Instruction encoding
	3.6.2 List of miscellaneous arithmetic instructions

	3.7 Status register access instructions
	3.7.1 CPSR value
	3.7.2 Examples
	3.7.3 List of status register access instructions

	3.8 Load and store instructions
	3.8.1 Addressing modes
	3.8.2 Load and Store word or unsigned byte instructions
	3.8.3 Load and Store Halfword and Load Signed Byte
	3.8.4 Examples
	3.8.5 List of load and store instructions

	3.9 Load and Store Multiple instructions
	3.9.1 Examples
	3.9.2 List of Load and Store Multiple instructions

	3.10 Semaphore instructions
	3.10.1 Examples
	3.10.2 List of semaphore instructions

	3.11 Exception-generating instructions
	3.11.1 Instruction encodings
	3.11.2 List of exception-generating instructions

	3.12 Coprocessor instructions
	3.12.1 Examples
	3.12.2 List of coprocessor instructions

	3.13 Extending the instruction set
	3.13.1 Undefined instruction space
	3.13.2 Arithmetic instruction extension space
	3.13.3 Control instruction extension space
	3.13.4 Load/store instruction extension space
	3.13.5 Coprocessor instruction extension space
	3.13.6 Unconditional instruction extension space

	ARM Instructions
	4.1 Alphabetical list of ARM instructions
	4.1.1 General notes
	Syntax abbreviations
	Encoding diagram and assembler syntax
	Architecture versions
	Exceptions
	Operation
	Information on usage

	4.1.2 ADC
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage

	4.1.3 ADD
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage

	4.1.4 AND
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage

	4.1.5 B, BL
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.6 BIC
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage

	4.1.7 BKPT
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.8 BLX (1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.9 BLX (2)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.10 BX
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.11 CDP
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.12 CLZ
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage

	4.1.13 CMN
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage

	4.1.14 CMP
	Syntax
	Architecture version
	Exceptions
	Operation

	4.1.15 EOR
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage

	4.1.16 LDC
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.17 LDM (1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.18 LDM (2)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.19 LDM (3)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.20 LDR
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.21 LDRB
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.22 LDRBT
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.23 LDRH
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.24 LDRSB
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.25 LDRSH
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.26 LDRT
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.27 MCR
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.28 MLA
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.29 MOV
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage

	4.1.30 MRC
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.31 MRS
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.32 MSR
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.33 MUL
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.34 MVN
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage

	4.1.35 ORR
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage

	4.1.36 RSB
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.37 RSC
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.38 SBC
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.39 SMLAL
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.40 SMULL
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.41 STC
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.42 STM(1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.43 STM (2)
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.44 STR
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.45 STRB
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.46 STRBT
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.47 STRH
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.48 STRT
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.49 SUB
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.50 SWI
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage

	4.1.51 SWP
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.52 SWPB
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.53 TEQ
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage

	4.1.54 TST
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage

	4.1.55 UMLAL
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.56 UMULL
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.2 ARM instructions and architecture versions

	ARM Addressing Modes
	5.1 Addressing Mode 1 - Data-processing operands
	5.1.1 Encoding
	32-bit immediate
	Immediate shifts
	Register shifts

	5.1.2 The shifter operand
	Immediate operand value
	Register operand value
	Shifted register operand value

	5.1.3 Data-processing operands - Immediate
	Syntax
	Architecture version
	Operation
	Notes

	5.1.4 Data-processing operands - Register
	Syntax
	Architecture version
	Operation
	Notes

	5.1.5 Data-processing operands - Logical shift left by immediate
	Syntax
	Architecture version
	Operation
	Notes

	5.1.6 Data-processing operands - Logical shift left by register
	Syntax
	Architecture version
	Operation
	Notes

	5.1.7 Data-processing operands - Logical shift right by immediate
	Syntax
	Architecture version
	Operation
	Notes

	5.1.8 Data-processing operands - Logical shift right by register
	Syntax
	Architecture version
	Operation
	Notes

	5.1.9 Data-processing operands - Arithmetic shift right by immediate
	Syntax
	Architecture version
	Operation
	Notes

	5.1.10 Data-processing operands - Arithmetic shift right by register
	Syntax
	Architecture version
	Operation
	Notes

	5.1.11 Data-processing operands - Rotate right by immediate
	Syntax
	Architecture version
	Operation
	Notes

	5.1.12 Data-processing operands - Rotate right by register
	Syntax
	Architecture version
	Operation
	Notes

	5.1.13 Data-processing operands - Rotate right with extend
	Syntax
	Architecture version
	Operation
	Notes

	5.2 Addressing Mode 2 - Load and Store Word or Unsigned Byte
	5.2.1 Encoding
	Immediate offset/index
	Register offset/index
	Scaled register offset/index

	5.2.2 Load and Store Word or Unsigned Byte - Immediate offset
	Syntax
	Architecture version
	Operation
	Usage
	Notes

	5.2.3 Load and Store Word or Unsigned Byte - Register offset
	Syntax
	Architecture version
	Operation
	Usage
	Notes

	5.2.4 Load and Store Word or Unsigned Byte - Scaled register offset
	Syntax
	Architecture version
	Operation
	Usage
	Notes

	5.2.5 Load and Store Word or Unsigned Byte - Immediate pre-indexed
	Syntax
	Architecture version
	Operation
	Usage
	Notes

	5.2.6 Load and Store Word or Unsigned Byte - Register pre-indexed
	Syntax
	Architecture version
	Operation
	Notes

	5.2.7 Load and Store Word or Unsigned Byte - Scaled register pre-indexed
	Syntax
	Architecture version
	Operation
	Notes

	5.2.8 Load and Store Word or Unsigned Byte - Immediate post-indexed
	Syntax
	Architecture version
	Operation
	Usage
	Notes

	5.2.9 Load and Store Word or Unsigned Byte - Register post-indexed
	Syntax
	Architecture version
	Operation
	Notes

	5.2.10 Load and Store Word or Unsigned Byte - Scaled register post-indexed
	Syntax
	Architecture version
	Operation
	Notes

	5.3 Addressing Mode 3 - Miscellaneous Loads and Stores
	5.3.1 Encoding
	Immediate offset/index
	Register offset/index

	5.3.2 Miscellaneous Loads and Stores - Immediate offset
	Syntax
	Architecture version
	Operation
	Usage
	Notes

	5.3.3 Miscellaneous Loads and Stores - Register offset
	Syntax
	Architecture version
	Operation
	Usage
	Notes

	5.3.4 Miscellaneous Loads and Stores - Immediate pre-indexed
	Syntax
	Architecture version
	Operation
	Usage
	Notes

	5.3.5 Miscellaneous Loads and Stores - Register pre-indexed
	Syntax
	Architecture version
	Operation
	Notes

	5.3.6 Miscellaneous Loads and Stores - Immediate post-indexed
	Syntax
	Architecture version
	Operation
	Usage
	Notes

	5.3.7 Miscellaneous Loads and Stores - Register post-indexed
	Syntax
	Architecture version
	Operation
	Notes

	5.4 Addressing Mode 4 - Load and Store Multiple
	5.4.1 Encoding
	5.4.2 Load and Store Multiple - Increment after
	Syntax
	Architecture version
	Operation
	Notes

	5.4.3 Load and Store Multiple - Increment before
	Syntax
	Architecture version
	Operation
	Notes

	5.4.4 Load and Store Multiple - Decrement after
	Syntax
	Architecture version
	Operation
	Notes

	5.4.5 Load and Store Multiple - Decrement before
	Syntax
	Architecture version
	Operation
	Notes

	5.4.6 Load and Store Multiple addressing modes (alternative�names)
	Stack operations

	5.5 Addressing Mode 5 - Load and Store Coprocessor
	5.5.1 Encoding
	5.5.2 Load and Store Coprocessor - Immediate offset
	Syntax
	Architecture version
	Operation
	Notes

	5.5.3 Load and Store Coprocessor - Immediate pre-indexed
	Syntax
	Architecture version
	Operation
	Notes

	5.5.4 Load and Store Coprocessor - Immediate post-indexed
	Syntax
	Architecture version
	Operation
	Notes

	5.5.5 Load and Store Coprocessor - Unindexed
	Syntax
	Architecture version
	Operation
	Notes

	The Thumb Instruction Set
	6.1 About the Thumb instruction set
	6.1.1 Entering Thumb state
	6.1.2 Exceptions

	6.2 Instruction set encoding
	6.2.1 Miscellaneous instructions

	6.3 Branch instructions
	6.3.1 Conditional branch
	6.3.2 Unconditional branch
	6.3.3 Branch with exchange
	6.3.4 Examples
	6.3.5 List of branch instructions

	6.4 Data-processing instructions
	6.4.1 High registers
	6.4.2 Formats
	Format 1
	Format 2
	Format 3
	Format 4
	Format 5
	Format 6
	Format 7
	Format 8

	6.4.3 List of data-processing instructions

	6.5 Load and Store Register instructions
	6.5.1 Formats
	Format 1
	Format 2
	Format 3
	Format 4

	6.5.2 List of Load and Store Register instructions

	6.6 Load and Store Multiple instructions
	6.6.1 Formats
	Format 1
	Format 2

	6.6.2 Examples
	6.6.3 List of Load and Store Multiple instructions

	6.7 Exception-generating instructions
	6.7.1 Instruction encodings
	6.7.2 List of exception-generating instructions

	6.8 Undefined instruction space

	Thumb Instructions
	7.1 Alphabetical list of Thumb instructions
	7.1.1 General notes
	Syntax abbreviations
	Architecture version
	Equivalent ARM syntax and encoding
	Information on usage

	7.1.2 ADC
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.3 ADD (1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.4 ADD (2)
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.5 ADD (3)
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.6 ADD (4)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.7 ADD (5)
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.8 ADD (6)
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.9 ADD (7)
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes
	Equivalent ARM syntax and encoding

	7.1.10 AND
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.11 ASR (1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.12 ASR (2)
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.13 B (1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes
	Equivalent ARM syntax and encoding

	7.1.14 B (2)
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes
	Equivalent ARM syntax and encoding

	7.1.15 BIC
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.16 BKPT
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes
	Equivalent ARM syntax and encoding

	7.1.17 BL, BLX(1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes
	Equivalent ARM syntax and encoding

	7.1.18 BLX(2)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.19 BX
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes
	Equivalent ARM syntax and encoding

	7.1.20 CMN
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.21 CMP (1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.22 CMP (2)
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.23 CMP (3)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.24 EOR
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.25 LDMIA
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes
	Equivalent ARM syntax and encoding

	7.1.26 LDR (1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.27 LDR (2)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.28 LDR (3)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.29 LDR (4)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.30 LDRB (1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.31 LDRB (2)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.32 LDRH (1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.33 LDRH (2)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.34 LDRSB
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.35 LDRSH
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.36 LSL (1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.37 LSL (2)
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.38 LSR (1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.39 LSR (2)
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.40 MOV (1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.41 MOV (2)
	Syntax
	Architecture Version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.42 MOV (3)
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes
	Equivalent ARM syntax and encoding

	7.1.43 MUL
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.44 MVN
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.45 NEG
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.46 ORR
	Syntax
	Architecture version
	Exceptions
	Operation
	Operation

	7.1.47 POP
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes
	Equivalent ARM syntax and encoding

	7.1.48 PUSH
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes
	Equivalent ARM syntax and encoding

	7.1.49 ROR
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.50 SBC
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.51 STMIA
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes
	Equivalent ARM syntax and encoding

	7.1.52 STR (1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.53 STR (2)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.54 STR (3)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.55 STRB (1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.56 STRB (2)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.57 STRH (1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.58 STRH (2)
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes
	Equivalent ARM syntax and encoding

	7.1.59 SUB (1)
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.60 SUB (2)
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.61 SUB (3)
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.62 SUB (4)
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes
	Equivalent ARM syntax and encoding

	7.1.63 SWI
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.1.64 TST
	Syntax
	Architecture version
	Exceptions
	Operation
	Equivalent ARM syntax and encoding

	7.2 Thumb instructions and architecture versions

	The 26-bit Architectures
	8.1 Overview of the 26-bit architectures
	8.2 Format of register 15
	8.2.1 Reading register 15
	8.2.2 Writing register 15

	8.3 26-bit PSR update instructions
	8.3.1 Syntax
	8.3.2 Exceptions
	8.3.3 Operation

	8.4 Address exceptions
	8.4.1 Returning from an address exception

	8.5 Backwards compatibility from 32-bit architectures
	8.5.1 32-bit and 26-bit configuration
	32-bit configuration
	26-bit configuration

	8.5.2 Vector exceptions

	ARM Code Sequences
	9.1 Arithmetic instructions
	9.1.1 Bit field manipulation
	9.1.2 Multiplication by constant
	9.1.3 Multi-precision arithmetic
	9.1.4 Swapping endianness

	9.2 Branch instructions
	9.2.1 Procedure call and return
	9.2.2 Conditional execution
	9.2.3 Conditional compare instructions
	9.2.4 Loop variables
	9.2.5 Multi-way branch

	9.3 Load and Store instructions
	9.3.1 Linked lists
	9.3.2 Simple string compare
	9.3.3 Long branch
	9.3.4 Multi-way branches

	9.4 Load and Store Multiple instructions
	9.4.1 Simple block copy
	9.4.2 Procedure entry and exit

	9.5 Semaphore instructions
	9.6 Other code examples
	9.6.1 Software interrupt dispatch
	9.6.2 Single-channel DMA transfer
	9.6.3 Dual-channel DMA transfer
	9.6.4 Interrupt prioritization
	9.6.5 Context switch

	Enhanced DSP Extension
	10.1 About the enhanced DSP instructions
	10.2 Saturated integer arithmetic
	10.3 Saturated Q15 and Q31 arithmetic
	10.4 The Q flag
	10.5 Enhanced DSP instructions
	10.5.1 Integer multiply and multiply-accumulate instructions
	10.5.2 Saturated addition and subtraction instructions
	10.5.3 Two-word load and store instructions
	10.5.4 Cache preload instruction
	10.5.5 Two-word coprocessor register transfer instructions

	10.6 Alphabetical list of enhanced DSP instructions
	10.6.1 LDRD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	10.6.2 MCRR
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	10.6.3 MRRC
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	10.6.4 PLD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	10.6.5 QADD
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	10.6.6 QDADD
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	10.6.7 QDSUB
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	10.6.8 QSUB
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	10.6.9 SMLA<x><y>
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	10.6.10 SMLAL<x><y>
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	10.6.11 SMLAW<y>
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	10.6.12 SMUL<x><y>
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	10.6.13 SMULW<y>
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	10.6.14 STRD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	Part B
	Introduction to Memory and System Architectures
	1.1 About the memory system
	1.2 System-level issues
	1.2.1 Memory systems, write buffers and caches
	Write buffers
	Caches

	1.2.2 Interrupts
	Canceling interrupts

	1.2.3 Semaphores

	The System Control Coprocessor
	2.1 About the System Control coprocessor
	2.2 Registers
	2.2.1 Register access instructions
	2.2.2 Primary register allocation

	2.3 Register 0: ID codes
	2.3.1 Main ID register
	Post-ARM7 processors
	ARM7 family processors
	Pre-ARM7 processors

	2.3.2 Cache Type register
	2.3.3 Cache size fields

	2.4 Register 1: Control register
	2.5 Registers 2-15

	Memory Management Unit
	3.1 About the MMU architecture
	3.2 Memory access sequence
	3.2.1 Enabling and disabling the MMU

	3.3 Translation process
	3.3.1 Translation table base
	3.3.2 First-level fetch
	3.3.3 First-level descriptors
	3.3.4 Section descriptor and translating section references
	3.3.5 Coarse page table descriptor
	3.3.6 Fine page table descriptor
	3.3.7 Second-level descriptor
	Large page descriptor fields
	Small page descriptor fields
	Tiny page descriptor fields

	3.3.8 Translating large page references
	3.3.9 Translating small page references
	3.3.10 Translating tiny page references

	3.4 Access permissions
	3.5 Domains
	3.6 Aborts
	3.6.1 MMU faults
	Fault Address Register (FAR) and Fault Status Register (FSR)
	Fault-checking sequence
	Terminal exception
	Vector exception
	Alignment fault
	Translation fault
	Domain fault
	Permission fault

	3.6.2 External aborts

	3.7 CP15 registers
	3.7.1 MMU control bits in register 1
	3.7.2 Register 2: Translation table base
	3.7.3 Register 3: Domain access control
	3.7.4 Register 4: Reserved
	3.7.5 Register 5: Fault status
	3.7.6 Register 6: Fault address
	3.7.7 Register 8: TLB functions
	3.7.8 Register 10: TLB lockdown
	TLB lockdown procedure
	TLB unlock procedure

	Protection Unit
	4.1 About the Protection Unit
	4.1.1 Protection regions
	4.1.2 Memory access sequence
	4.1.3 Enabling the Protection Unit

	4.2 Overlapping regions
	4.2.1 Background regions

	4.3 CP15 registers
	4.3.1 Protection Unit control bits in register 1
	4.3.2 Register 2: Cachability bits
	4.3.3 Register 3: Bufferability bits
	4.3.4 Registers 4, 8, 10: Reserved
	4.3.5 Register 5: Access permission bits
	4.3.6 Register 6: Protection area control

	Caches and Write Buffers
	5.1 About caches and write buffers
	5.2 Cache organization
	5.2.1 Set-associativity
	5.2.2 Cache size

	5.3 Types of cache
	5.3.1 Unified or separate caches
	5.3.2 Write-through or write-back caches
	5.3.3 Read-allocate or write-allocate caches
	5.3.4 Replacement strategies

	5.4 Cachability and bufferability
	5.5 Memory coherency
	5.5.1 Address mapping changes
	5.5.2 Instruction cache coherency
	5.5.3 Direct Memory Access (DMA) operations
	5.5.4 Other memory coherency issues

	5.6 CP15 registers
	5.6.1 Cache and write buffer control bits in register 1
	5.6.2 Register 7: Cache functions
	5.6.3 Register 9: Cache lockdown
	Formats for the cache lockdown register
	Cache lockdown procedure
	Cache unlock procedure
	Interactions with register 7 operations

	Fast Context Switch Extension
	6.1 About the FCSE
	6.2 Modified virtual addresses
	6.3 Enabling the FCSE
	6.4 CP15 registers
	6.4.1 Register 13: Process ID

	Part C
	Introduction to the Vector Floating-point Architecture
	1.1 About the Vector Floating-point architecture
	1.2 Overview of the VFP architecture
	1.2.1 Registers
	1.2.2 Instructions
	1.2.3 Floating-point exceptions
	1.2.4 Hardware and software implementations
	1.2.5 Interactions with the ARM architecture
	Interrupts

	1.3 Compliance with the IEEE 754 standard
	1.4 IEEE 754 implementation choices
	1.4.1 Supported formats
	1.4.2 NaNs
	1.4.3 Comparison results
	1.4.4 Underflow exception
	1.4.5 Exception traps

	VFP Programmer’s Model
	2.1 Floating-point formats
	2.1.1 Single-precision format
	2.1.2 Double-precision format
	2.1.3 NaNs
	Instructions with non floating-point results
	Instructions with floating-point results
	Special cases

	2.2 Rounding
	2.3 Floating-point exceptions
	2.3.1 Combinations of exceptions

	2.4 Flush-to-zero mode
	2.5 Floating-point general-purpose registers
	2.5.1 Storing and reloading values of unknown precision
	Example

	2.5.2 Short vectors
	2.5.3 Holding integers in single-precision registers
	Floating-point to integer
	Integer to floating-point

	2.6 System registers
	2.6.1 FPSID
	2.6.2 FPSCR
	Condition flags
	Flush-to-zero mode control
	Rounding mode control
	Vector length/stride control
	Exception status and control

	2.6.3 FPEXC
	The EX bit
	The EN bit
	Other bits

	2.7 Reset behavior and initialization

	VFP Instruction�Set�Overview
	3.1 Data-processing instructions
	3.1.1 Basic arithmetic instructions and square root
	3.1.2 Multiply-accumulate instructions
	3.1.3 Comparison instructions
	Testing the IEEE 754 predicates

	3.1.4 Conversion instructions
	Conversions between single and double precision
	Conversions from floating-point to integers
	Conversions from integers to floating-point

	3.1.5 Copy, negation and absolute value instructions

	3.2 Load and Store instructions
	3.2.1 Load/store one value
	3.2.2 Load/store multiple values

	3.3 Register transfer instructions
	3.3.1 General-purpose register transfer instructions
	3.3.2 System register transfer instructions

	VFP Instructions
	4.1 Alphabetical list of VFP instructions
	4.1.1 FABSD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.2 FABSS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.3 FADDD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.4 FADDS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.5 FCMPD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.6 FCMPED
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.7 FCMPES
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.8 FCMPEZD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.9 FCMPEZS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.10 FCMPS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.11 FCMPZD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.12 FCMPZS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.13 FCPYD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.14 FCPYS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.15 FCVTDS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.16 FCVTSD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.17 FDIVD
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.18 FDIVS
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.19 FLDD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.20 FLDMD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.21 FLDMS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.22 FLDMX
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.23 FLDS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.24 FMACD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.25 FMACS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.26 FMDHR
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.27 FMDLR
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.28 FMRDH
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.29 FMRDL
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.30 FMRS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.31 FMRX
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.32 FMSCD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.33 FMSCS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.34 FMSR
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.35 FMSTAT
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.36 FMULD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.37 FMULS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.38 FMXR
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.39 FNEGD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.40 FNEGS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.41 FNMACD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.42 FNMACS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.43 FNMSCD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.44 FNMSCS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.45 FNMULD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.46 FNMULS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.47 FSITOD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.48 FSITOS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.49 FSQRTD
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.50 FSQRTS
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.51 FSTD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.52 FSTMD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.53 FSTMS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.54 FSTMX
	Syntax
	Architecture version
	Exceptions
	Operation
	Usage
	Notes

	4.1.55 FSTS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.56 FSUBD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.57 FSUBS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.58 FTOSID
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.59 FTOSIS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.60 FTOUID
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.61 FTOUIS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.62 FUITOD
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	4.1.63 FUITOS
	Syntax
	Architecture version
	Exceptions
	Operation
	Notes

	VFP Addressing Modes
	5.1 Addressing Mode 1 - Single-precision vectors (non-monadic)
	5.1.1 Register banks
	5.1.2 Operation
	5.1.3 Scalar operations
	Note

	5.1.4 Mixed vector/scalar operations
	Notes

	5.1.5 Vector operations
	Notes

	5.2 Addressing Mode 2 - Double-precision vectors (non-monadic)
	5.2.1 Register banks
	5.2.2 Operation
	5.2.3 Scalar operations
	Notes

	5.2.4 Mixed vector/scalar operations
	Notes

	5.2.5 Vector operations
	Notes

	5.3 Addressing Mode 3 - Single-precision vectors (monadic)
	5.3.1 Operation
	5.3.2 Scalar-to-scalar operations
	Notes

	5.3.3 Scalar-to-vector operations
	Notes

	5.3.4 Vector-to-vector operations
	Notes

	5.4 Addressing Mode 4 - Double-precision vectors (monadic)
	5.4.1 Operation
	5.4.2 Scalar-to-scalar operations
	Notes

	5.4.3 Scalar-to-vector operations
	Notes

	5.4.4 Vector-to-vector operations
	Notes

	5.5 Addressing Mode 5 - VFP load/store multiple
	5.5.1 Summary
	5.5.2 VFP load/store multiple - Unindexed
	Instruction syntax
	Architecture version
	Operation
	Usage
	Notes

	5.5.3 VFP load/store multiple - Increment
	Instruction syntax
	Architecture version
	Operation
	Usage
	Notes

	5.5.4 VFP load/store multiple - Decrement
	Instruction syntax
	Architecture version
	Operation
	Usage
	Notes

	5.5.5 VFP load/store multiple addressing modes (alternative names)

	Glossary
	Index
	A
	B
	C
	D E
	F
	H I
	L
	M
	N O P Q R
	S
	T U V
	W Z
	Numerics

