NASM — The Netwide Assembler

version 0.98.38

© 2003 The NASM Development Team

All rights reserved. This document is redistributable under the licence given in the file "COPYING"
distributed in the NASM archive.

Contents

Chapter lintroduction 20
LAIWhat Is NASM? L e 20
1.1.1Why Yet Another Assembler?. 20
1.1.2Licence Conditions. 20
1.2Contact Information 20
L3Installation. 21
1.3.1linstalling NASM under MS-DOS orWindows 21
1.3.2Installing NASM under Unix. 21
Chapter 2Running NASM 23
2.1NASM Command-Line Syntax 23
2.1.1The-o Option: Specifying the Output FileName. 23
2.1.2The-f Option: Specifying the Output File Format. 24
2.1.3The-l Option: GeneratingalListingFile 24
2.1.4The-MOption: Generate Makefile Dependencies.. 24
2.1.5The-F Option: Selecting a Debug Information Format. 24
2.1.6The—g Option: Enabling Debug Information.. 24
2.1.7The—-X Option: Selecting an Error Reporting Format 25
2.1.8The—-E Option: Send Errorstoa File. 25
2.1.9The-s Option: Send Errors tetdout 25
2.1.10The-i Option: Include File Search Directories. 25
2.1.11The—-p Option: Pre—-Include aFile 26
2.1.12The—-d Option: Pre-DefineaMacro 26
2.1.13The-u Option: UndefineaMacro. 26
2.1.14The-e Option: Preprocess Only. 26
2.1.15The-a Option: Don't Preprocess AtAIL 27
2.1.16The—-On Option: Specifying Multipass Optimization.. 27
2.1.17The-t option: Enable TASM Compatibility Mode 27
2.1.18The-w Option: Enable or Disable Assembly Warnings 28
2.1.19The-v Option: Display VersionInfa 28
2.1.20The-y Option: Display Available Debug Info Formats. 28

2.1.21The——prefix —and--postfix Options. 28

2.1.22TheNASMEN¥Environment Variable 28
2.2Quick Start for MASM USers. e 29
2.2 INASMIs Case-Sensitive e 29
2.2.2NASM Requires Square Brackets For Memory References. 29
2.2.3NASM Doesn't Store Variable Types 30
2.24NASM D0oesn'tASSUME. e 30
2.2.5NASM Doesn’t Support Memory Models 30
2.2.6Floating—Point Differences 30
2.2.70ther Differences. e 30
Chapter 3The NASM Language i ittt 31
3.1Layoutof aNASM Source Line 31
3.2Pseudo-INnstructions. 32
3.2.1DBand friends: Declaring Initialised Data. 32
3.2.2RESBand friends: Declaring Uninitialised Data. 32
3.2.3INCBIN : Including External Binary Files 32
3.24EQUDefining Constants. 33
3.2.5TIMES: Repeating InstructionsorData 33
3.3Effective Addresses. 33
34CoNnstants. 34
3.4 ANumeric Constants. 34
3.4.2Character Constants. 35
3.4.3StringConstants 35
3.4.4Floating—PointConstants 35
3 EXPIESSIONS. L e 36
3.5.1] : Bitwise OR Operator i 36
3.5.2": Bitwise XOR Operator.o 36
3.5.3& Bitwise AND Operator. 36
3.5.4<< and>>:; Bit Shift Operators. 36
3.5.5+ and-: Addition and Subtraction Operators. 36
3.5.6*%,/,/l ,%and%%Multiplication and Division. 36
3.5.7Unary Operatorst,—,~andSEG 36
3.6SEGanNdWRT. e 37
3.7STRICT: Inhibiting Optimization. 37

3.8Critical EXpressions 38

3.9Local Labels e e 39

Chapter 4The NASM PreproCessor o o i i e e e e e e 41
4.1Single—Line Macros e 41
4.1.1The Normal Way%define 41
4.1.2Enhancing %definéoxdefine 42
4.1.3Concatenating Single Line Macro Tokef&t+. 43
4.1.4Undefining macros®undef L 43
4.1.5Preprocessor Variable®assign 43
4.2 String Handling in Macrosestrlen and%substr oL 44
4.2.1String Length%strlen 44
4.2.2Sub-strings%substr 44
4.3Multi—Line Macros:%macroo e 44
4.3.10verloading Multi-Line Macros. 45
4.3.2Macro-Local Labels 46
4.3.3Greedy Macro Parameters 46
4.3.4Default Macro Parameters. a7
4.3.5%0Q Macro Parameter Counter e 48
4.3.6%rotate : Rotating Macro Parameters 48
4.3.7Concatenating Macro Parameters. 49
4.3.8Condition Codes as Macro Parameters. 50
4.3.9Disabling Listing Expansion. 50
4.4Conditional Assembly. e 50
4.4.1%ifdef : Testing Single-Line Macro Existence 51
4.4 2ifmacro : Testing Multi-Line Macro Existence 51
4.4.3%ifctx : Testingthe ContextStack 51
4.4.4%if : Testing Arbitrary Numeric Expressions. 52
4.4.5%ifidn and%ifidni : Testing Exact Text Identity 52
4.4.6%ifid , %ifnum , %ifstr : Testing Token Types. 52
4.4.7%error : Reporting User-Defined Errors. 53
4.5Preprocessor Loopdbrep e e 54
4.6Including Other Files. e 54
47The Context Stack. e 55
4.7.1%push and%pop Creating and Removing Contexts. 55
4.7.2Context-Local Labels 55
4.7.3Context-Local Single-LineMacros 56

4.7.4%repl : RenamingaContext 56

4.7.5Example Use of the Context Stack: Block IFs 56
4.8Standard Macras. e 58
4.8.1__NASM_MAJOR_, NASM_MINOR_, NASM_SUBMINOR_and
___NASM_PATCHLEVEL_ : NASM Version 58
4.8.2__NASM_VERSION_ID_:NASM VersionID 58
4.8.3 _NASM _VER :NASMVersionstring 58
48.4__FILE__ and__LINE__ : File Name and Line Number. 58
4.8.5STRUCandENDSTRUDeclaring Structure Data Types 59
4.8.6ISTRUC, AT andIEND: Declaring Instances of Structures 60
4.8.7ALIGN andALIGNB: Data Alignment. 60
4.9TASM Compatible Preprocessor Directives 61
4.9.1%arg Directive. 61
4.9.2%stacksize Directive. 62
4.9.3%local Directive. 62
4.100ther Preprocessor Directives e 63
4.10.1%line Directive e 63
4.10.2%!<env>: Read an environmentvariable.. 63
Chapter 5Assembler Directives. e 64
5.1BITS: Specifying Target ProcessorMode. 64
5.1.1USE16& USE32 Aliases for BITS i .. 64
5.2SECTIONor SEGMENTChanging and Defining Sections 64
5.21The SECT__MacCro e 65
5.3ABSOLUTEDefining Absolute Labels. 65
5.4EXTERN Importing Symbols from Other Modules.\ 66
5.5GLOBAL Exporting Symbols to OtherModules\ 67
5.6 COMMOMefining Common Data Areas v 67
5.7CPU Defining CPU Dependencies e 67
Chapter 60utput Formats 69
6.1bin : Flat-Form Binary Output. 69
6.1.10RGBinary File Program Origin 69
6.1.2bin Extensions to thBECTIONDirective 69
6.1.3Multisection supportforthe BIN format. 70
6.1.4Mapfiles. 70

6.20bj : Microsoft OMF ObjectFiles 70

6.2.1obj Extensions to thEEGMENTDirective 71

6.2.2GROUPDefining Groups of Segments. 72
6.2.3UPPERCASHDisabling Case Sensitivity in Output. 72
6.2.4IMPORT Importing DLL Symbols. 73
6.2.5EXPORTExporting DLL Symbols. 73
6.2.6..start : Defining the Program Entry Point. 73
6.2.70bj Extensions to thEXTERNDirective 74
6.2.80bj Extensions to thEOMMOMDirective 74
6.3win32 : Microsoft Win32 Object Files., 75
6.3.1win32 Extensions to th8ECTIONDirective. 75
6.4coff : Common ObjectFile Format. 76
6.5elf : Executable and Linkable Format ObjectFiles. 76
6.5.1elf Extensions to thEECTIONDirective 76
6.5.2Position-Independent Codelf Special Symbols and/RT. 76
6.5.3elf Extensions to th&LOBALDirective 77
6.5.4elf Extensions to thEOMMORDIirective 78
6.5.516-bitcodeand ELF. 78
6.6aout : Linuxa.out ObjectFiles. 78
6.7aoutb : NetBSD/FreeBSD/OpenBS&out ObjectFiles. 78
6.8as86 : Minix/Linux as86 ObjectFiles. 78
6.9rdf : Relocatable Dynamic Object File Format 79
6.9.1Requiring a Library: Th&IBRARY Directive. 79
6.9.2Specifying a Module Name: TRdODULBirective. 79
6.9.3rdf Extensions to th&LOBALdirective. 79
6.10dbg: Debugging Format. 80
Chapter 7Writing 16—bit Code (DOS, Windows 3/3.1) 81
7.1ProducingEXE Files. 81
7.1.1Using theobj Format To Generat&EXE Files. 81
7.1.2Using thebin Format To GeneratEXE Files. 82
7.2ProducingCOMEFIles. 83
7.2.1Using thebin Format To Generat€OMFiles. 83
7.2.2Using theobj Format To Generat€OMFiles. 84
7.3ProducingSYS Files. 84
7.4Interfacing to 16—-bit C Programs 84
7.4.1External Symbol Names. 84

7.4.2Memory Models. e 85

7.4.3Function Definitions and Function Calls. 86
7.4.4Accessing Data ltems L 38
7.4.5cl6.mac : Helper Macros for the 16-bit C Interface. 89
7.5Interfacing to Borland Pascal Programs 90
7.5.1The Pascal Calling Convention. 90
7.5.2Borland Pascal Segment Name Restrictions. 91
7.5.3Usingcl6.mac With Pascal Programs 92
Chapter 8Writing 32—-bit Code (Unix, Win32, DIJGPP) 93
8.1lInterfacing to 32-bit C Programs 93
8.1.1External Symbol Names. 93
8.1.2Function Definitions and FunctionCalls. 93
8.1.3Accessing Data ltems 95
8.1.4c32.mac : Helper Macros for the 32-bit C Interface. 95
8.2Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries 96
8.2.10btaining the Address of the GOT. 96
8.2.2Finding Your Local Dataltems 97
8.2.3Finding External and Common Dataltems. 98
8.2.4Exporting Symbolsto the Library User. 98
8.2.5Calling Procedures Outside the Library 99
8.2.6Generating the Library File 99
Chapter 9Mixing 16 and 32 BitCode 100
9.1Mixed=Size JUMPS. 100
9.2 Addressing Between Different-Size Segments. 100
9.30ther Mixed—Size INStructions. 101
Chapter 10Troubleshooting 103
10.1Common Problems. 103
10.1.1NASM Generates InefficientCode, 103
10.1.2My Jumps are Outof Range. 103
10.1.30RGDoesNt Work. 103
10.24TIMES Doesn't Work o 104
10.2BUGS - . . v e 104
Appendix A:Ndisasm. 106
Al Introduction. L e 106

A.2 Getting Started: Installation 106

A.3RuUNNing NDISASM e e 106

A.3.1COM Files: Specifyingan Origin. i 106
A.3.2Code Following Data: Synchronisation. 106
A.3.3Mixed Code and Data: Automatic (Intelligent) Synchronisation. 107
A3 40ther OptioNS. v v i e e 108
A.4Bugs and Improvements. e e 108
Appendix B:x86 Instruction Reference. o 109
B.1Key to Operand Specifications 109
B.2Key to Opcode DesCriptions. 0 o 109
B.2.1Register Values. 110
B.2.2Condition Codes 111
B.2.3SSE Condition Predicates. 111
B.24Status Flags. 112
B.2.5Effective Address Encoding: ModR/Mand SIB 113
B.3KeytoInstruction Flags. 114
B.4x86 Instruction Set 115
B.4.1AAA AAS AAMAAD ASCII Adjustments 115
B.4.2ADCAddwith Carry e 115
B.4.3ADD Add Integers e 116
B.4.4ADDPDADD Packed Double-Precision FP Values. 117
B.4.5ADDPSADD Packed Single-Precision FP Values 117
B.4.6 ADDSDADD Scalar Double-Precision FP Values 117
B.4.7ADDSSADD Scalar Single-Precision FP Values. 117
B.4.8AND Bitwise AND 117

B.4.9 ANDNPDBItwise Logical AND NOT of Packed Double—Precision FP Values. .118
B.4.10ANDNPSBitwise Logical AND NOT of Packed Single—Precision FP Values .118

B.4.11ANDPDBitwise Logical AND For Single FP. 118
B.4.12ANDPSBitwise Logical AND For Single FP. 119
B.4.13ARPL Adjust RPL Field of Selector. 119
B.4.14BOUNDCheck Array Index againstBounds. 119
B.4.15BSF,BSR BitScan 119
B.4.16BSWAPByte Swap e 119
B.4.17BT,BTCBTRBTS BitTest. e 120
B.4.18CALL: Call Subroutine 120
B.4.19CBWCWDCDQCWDESIign Extensions 121

10

B.4.20CLC CLD CLI,CLTS ClearFlags 121

B.4.21CLFLUSHFlush Cache Line 121
B.4.22CMCComplement Carry Flag. 122
B.4.23CMOVcc Conditional Move 122
B.4.24CMPCompare Integers e e 122
B.4.25CMPccPD Packed Double—Precision FP Compare 122
B.4.26CMPccPS Packed Single-Precision FP Compare 123
B.4.27CMPSBCMPSWCMPSDCompare Strings. oo v v i e e 124
B.4.28CMPccSD Scalar Double—Precision FP Compare 124
B.4.29CMPccSS Scalar Single—Precision FP Compare 125
B.4.30CMPXCH&MPXCHG488Compare and Exchange 125
B.4.31CMPXCHG8E ompare and Exchange EightBytes 126

B.4.32COMISD Scalar Ordered Double—-Precision FP Compare and Set EFLAGS .126
B.4.33COMISS Scalar Ordered Single—Precision FP Compare and Set EFLAGS. .126
B.4.34CPUID: Get CPU Identification Code. 127
B.4.35CVTDQ2PDbPacked Signed INT32 to Packed Double—-Precision FP Conversid27
B.4.36CVTDQ2PSPacked Signed INT32 to Packed Single—Precision FP Conversioh27
B.4.37CVTPD2DQPacked Double—-Precision FP to Packed Signed INT32 Conversidi27
B.4.38CVTPD2PI: Packed Double-Precision FP to Packed Signed INT32 Conversid28
B.4.39CVTPD2PSPacked Double-Precision FP to Packed Single—Precision FP

CoNVersioN. 128
B.4.40CVTPI2PD: Packed Signed INT32 to Packed Double—Precision FP Conversid28
B.4.41CVTPI2PS: Packed Signed INT32 to Packed Single-FP Conversion 128

B.4.42CVTPS2DQPacked Single—-Precision FP to Packed Signed INT32 Conversioh28
B.4.43CVTPS2PDPacked Single-Precision FP to Packed Double—Precision FP

CoNVErSION. e e e 129
B.4.44CVTPS2PI: Packed Single—Precision FP to Packed Signed INT32 Conversioh29
B.4.45CVTSD2SI: Scalar Double—Precision FP to Signed INT32 Conversion129
B.4.46CVTSD2SS Scalar Double-Precision FP to Scalar Single—Precision FP

CoNnversion. 129
B.4.47CVTSI2SD: Signed INT32 to Scalar Double—Precision FP Conversion129
B.4.48CVTSI2SS: Signed INT32 to Scalar Single-Precision FP Conversion. 130
B.4.49CVTSS2SD Scalar Single—Precision FP to Scalar Double—Precision FP

CoNVversion. e 130
B.4.50CVTSS2SI: Scalar Single—Precision FP to Signed INT32 Conversion. 130

B.4.51CVTTPD2DQPacked Double—Precision FP to Packed Signed INT32 Conversion

with Truncation e 130
B.4.52CVTTPD2PI: Packed Double—Precision FP to Packed Signed INT32 Conversion
with Truncation 130
B.4.53CVTTPS2DQPacked Single—Precision FP to Packed Signed INT32 Conversion
with Truncation 131
B.4.54CVTTPS2PI: Packed Single—Precision FP to Packed Signed INT32 Conversion
with Truncation 131
B.4.55CVTTSD2SI: Scalar Double—Precision FP to Signed INT32 Conversion with
Truncation e 131
B.4.56CVTTSS2SI: Scalar Single-Precision FP to Signed INT32 Conversion with
Truncation e e e e e 131
B.4.57DAA DAS Decimal Adjustments 131
B.4.58DEC DecrementInteger. e 132
B.4.59DIV: Unsigned Integer Divide. 132
B.4.60DIVPD: Packed Double-Precision FP Divide. 132
B.4.61DIVPS: Packed Single-Precision FP Divide 133
B.4.62DIVSD: Scalar Double-Precision FP Divide 133
B.4.63DIVSS: Scalar Single-Precision FP Divide. 133
B.4.64AEMMSEmpty MMX State. 133
B.4.65ENTER Create Stack Frame. 133
B.4.66F2XMI Calculate 2**X-=1 134
B.4.67FABS Floating—Point Absolute Value 134
B.4.68FADD FADDP Floating—Point Addition. 134
B.4.69FBLD, FBSTP. BCD Floating—Point Load and Store.. 134
B.4.70FCHS Floating—Point Change Sign 135
B.4.71FCLEX FNCLEX Clear Floating—Point Exceptions. 135
B.4.72FCMOVcc Floating—Point Conditional Move 135
B.4.73FCOMFCOMPFCOMPPFCOMI FCOMIPR Floating—Point Compare. 136
B.4.7AFCOS COSING i 136
B.4.75FDECSTP Decrement Floating—Point Stack Pointer. 136
B.4.76FxDISI , FXENI : Disable and Enable Floating—Point Interrupts. 136
B.4.77FDIV, FDIVP, FDIVR, FDIVRP: Floating—Point Division 137
B.4.78FEMMSFaster Enter/Exit of the MMX or floating—point state. 137
B.4.79FFREE Flag Floating—Point RegisterasUnused 137
B.4.80FIADD: Floating—Point/Integer Addition. 138
B.4.81FICOM FICOMP Floating—Point/Integer Compate. 138

11

12

B.4.82FIDIV , FIDIVR : Floating—Point/Integer Division 138

B.4.83FILD, FIST, FISTP : Floating—Point/Integer Conversion. 138
B.4.84FIMUL: Floating—Point/Integer Multiplication. 138
B.4.85FINCSTP: Increment Floating—Point Stack Pointer 138
B.4.86FINIT , FNINIT : Initialise Floating—PointUnit 139
B.4.87FISUB: Floating—Point/Integer Subtraction. 139
B.4.88FLD: Floating—PointLoad, 139
B.4.89FLDxx: Floating—Point Load Constants. 139
B.4.90FLDCWLoad Floating—Point ControlWord 139
B.4.91FLDENYV Load Floating—Point Environment. 140
B.4.92FMUL FMULP Floating—Point Multiply 140
B.4.93FNOP Floating—Point No Operation 140
B.4.94FPATANFPTAN Arctangentand Tangent 140
B.4.95FPREMFPREM1Floating—Point Partial Remainder. 140
B.4.96FRNDINT: Floating—Point Round to Integer. 141
B.4.97FSAVE FRSTORSave/Restore Floating-Point State 141
B.4.98FSCALE Scale Floating—Point Value by Powerof Two. 141
B.4.99FSETPMSet Protected Mode. 141
B.4.100FSIN, FSINCOS Sineand Cosine 141
B.4.101FSQRT Floating—Point Square Raot 141
B.4.102FST, FSTP. Floating—Point Store 142
B.4.103FSTCWStore Floating—Point ControlWord 142
B.4.104FSTENV Store Floating—Point Environment. 142
B.4.105FSTSWStore Floating—Point Status Word. 142
B.4.106FSUB FSUBR FSUBR FSUBRP Floating—Point Subtract 142
B.4.107FTST: TestSTO AgaiNSt Zero. o v it e e e e e 143
B.4.108FUCOMxxFloating—Point Unordered Compare. 143
B.4.109FXAM Examine Classof Value ®TO 144
B.4.110FXCH Floating—Point Exchange. 144
B.4.111FXRSTORRestoredFP, MMXandSSEState 144
B.4.112FXSAVE StoreFP, MMXandSSEState. 144
B.4.113FXTRACT Extract Exponent and Significand 144
B.4.114FYL2X, FYL2XP1: Compute Y times Log2(X) or Log2(X+1) 145
B.4.115HLT: Halt Processor. 145
B.4.116IBTS: InsertBitString. 145

B.4.117IDIV : Signed Integer Divide. 145

B.4.118IMUL: Signed Integer Multiply L 146
B.4.119IN: Inputfrom /O Port 146
B.4.120INC: Increment Integer. 146
B.4.121INSB, INSW, INSD: Input String from /O Port. 147
B.4.122INT: Software Interrupt. 147
B.4.123INT3, INT1,ICEBP,INTO1 : Breakpoints 147
B.4.124INTO: Interrupt if Overflow. 148
B.4.125INVD: Invalidate Internal Caches 148
B.4.126INVLPG: Invalidate TLBEntry. 148
B.4.127IRET, IRETW, IRETD: Return from Interrupt. 148
B.4.128Jcc : Conditional Branch 148
B.4.129JCXZ, JECXZ Jump if CXIECX Zero. o v v v it i e e i 148
B.4.130IMP. JUMP e 149
B.4.131LAHE Load AHfrom Flags. 149
B.4.132LAR Load Access Rights. 149
B.4.133LDMXCSRLoad Streaming SIMD Extension Control/Status 150
B.4.134LDS LES, LFS, LGS LSS: Load Far Pointer. 150
B.4.135LEA: Load Effective Address. 150
B.4.136LEAVE Destroy Stack Frame 150
B.4.137LFENCE Load Fence e 151
B.4.138LGDT, LIDT, LLDT: Load Descriptor Tables. 151
B.4.139LMSWLoad/Store Machine Status Word. 151
B.4.140LOADALL LOADALL286 Load Processor State 151
B.4.141LODSBLODSW.ODSDLoad from String 152
B.4.142LOOR LOOPELOOPZ LOOPNELOOPNZLoop with Counter. 152
B.4.143LSL: Load Segment Limit 152
B.4.144LTR: Load Task Register. 153
B.4.145MASKMOVDQBYyte Mask Write 153
B.4.146MASKMOV@yte Mask Write. o 153
B.4.147MAXPDReturn Packed Double-Precision FP Maximum 153
B.4.148MAXPSReturn Packed Single—-Precision FP Maximum. 153
B.4.149MAXSDReturn Scalar Double—Precision FP Maximum 153
B.4.150MAXSSReturn Scalar Single-Precision FP Maximum. 153
B.4.15IMFENCEMemory Fence e e 154

13

14

B.4.152MINPD Return Packed Double—Precision FP Minimum. 154

B.4.153MINPS Return Packed Single-Precision FP Minimum 154
B.4.154MINSD Return Scalar Double—Precision FP Minimum 154
B.4.155MINSS Return Scalar Single-Precision FP Minimum. 154
B.4.156MOVMove Data e e 155
B.4.157MOVAPDMove Aligned Packed Double-Precision FP Values 155
B.4.158MOVAPSMove Aligned Packed Single-Precision FP Values. 156
B.4.159MOVDMove Doubleword to/from MMX Register 156
B.4.160MOVDQ2Move Quadword from XMM to MMX register. 156
B.4.161MOVDQAMove Aligned Double Quadword. 156
B.4.162MOVDQWIove Unaligned Double Quadword. 156
B.4.163MOVHLPSMove Packed Single-Precision FP HightoLow. 156
B.4.164MOVHPDMove High Packed Double-PrecisionFEP. 157
B.4.165MOVHPSMove High Packed Single-Precision FP. 157
B.4.166MOVLHPSMove Packed Single-Precision FP Lowto High. 157
B.4.167MOVLPDMove Low Packed Double-PrecisionFP. 157
B.4.168MOVLPSMove Low Packed Single-Precision kR 158
B.4.169MOVMSKPIExtract Packed Double—Precision FP Sign Mask 158
B.4.170MOVMSKPExtract Packed Single—Precision FP Sign Mask. 158
B.4.171IMOVNTDMMove Double Quadword Non Temporal. 158
B.4.172MOVNTI Move Doubleword Non Temporal 158
B.4.173MOVNTPIMove Aligned Four Packed Single—Precision FP Values Non
Temporal 158
B.4.174MOVNTPMove Aligned Four Packed Single—Precision FP Values Non
Temporal e e 159
B.4.175MOVNTMove Quadword Non Temporal 159
B.4.176MOVQMove Quadword to/from MMX Register 159
B.4.177MOVQ2DMove Quadword from MMX to XMM register. 159
B.4.178MOVSBMOVSWWOVSDMove String o o v oo e e e e e 159
B.4.179MOVSDMove Scalar Double-Precision FP Value 159
B.4.180MOVSSMove Scalar Single-Precision FP Value. 160
B.4.181MOVSXMOVZXMove Data with Signor ZeroExtend 160
B.4.182MOVUPDMove Unaligned Packed Double-Precision FP Values 160
B.4.183MOVUPSMove Unaligned Packed Single—Precision FP Values. 160
B.4.184MUL Unsigned Integer Multiply 160

B.4.185MULPDPacked Single-FP Multiply. 161

B.4.186MULPSPacked Single-FP Multiply. 161
B.4.187MULSDScalar Single-FP Multiply. 161
B.4.188MULSS Scalar Single-FP Multiply. 161
B.4.189NEGNOT Two'sand One’s Complement 161
B.4.190NOP No Operation. e e e e e 161
B.4.1910R Bitwise OR. 161
B.4.1920RPDBit-wise Logical OR of Double-Precision FP Data 162
B.4.1930RPS Bit—-wise Logical OR of Single-Precision FP Data. 162
B.4.1940UT Output Datato /O Port. 162
B.4.1950UTSBOUTSWOUTSDOutput Stringto I/O Port. 162
B.4.196PACKSSDWACKSSWRBACKUSWBrack Data. 163
B.4.197PADDBPADDWADDDAdd Packed Integers. 163
B.4.198PADDQAdd Packed Quadword Integets. 164
B.4.199PADDSBPADDSWAdd Packed Signed Integers With Saturation 164
B.4.200PADDSIWMMX Packed Addition to Implicit Destination 164
B.4.201PADDUSBPADDUSWAdd Packed Unsigned Integers With Saturation164
B.4.202PAND PANDNMMX Bitwise AND and AND-NOT 164
B.4.203PAUSESpinLoop Hint. 165
B.4.204PAVEB MMX Packed Average i 165
B.4.205PAVGBPAVGWAverage Packed Integers 165
B.4.206PAVGUSBAverage of unsigned packed 8-bitvalues 165
B.4.207PCMPxx Compare Packed Integers.. 165
B.4.208PDISTIB : MMX Packed Distance and Accumulate with Implied Register . .166
B.4.209PEXTRWEXtract Word 166
B.4.210PF2ID : Packed Single—Precision FP to Integer Convert 167
B.4.211PF2IW: Packed Single—Precision FP to Integer Word Convert. 167
B.4.212PFACC Packed Single—Precision FP Accumulate 167
B.4.213PFADD Packed Single—Precision FP Addition 167
B.4.214PFCMPxx Packed Single—Precision FP Compare 167
B.4.215PFMAXPacked Single—Precision FP Maximum 168
B.4.216PFMIN: Packed Single—Precision FP Minimum. 168
B.4.217PFMUL Packed Single—Precision FP Multiply. 168
B.4.218PFNACCPacked Single—Precision FP Negative Accumulate. 168
B.4.219PFPNACCPacked Single—Precision FP Mixed Accumulate. 168

15

16

B.4.220PFRCP Packed Single—Precision FP Reciprocal Approximatian. 168
B.4.221PFRCPIT1: Packed Single—Precision FP Reciprocal, First Iteration.Step . .169
B.4.222PFRCPIT2: Packed Single—Precision FP Reciprocal/ Reciprocal Square Root,

Second lteration Step. 169
B.4.223PFRSQIT1: Packed Single-Precision FP Reciprocal Square Root, First
Iteration Step. e 169
B.4.224PFRSQRTPacked Single—-Precision FP Reciprocal Square Root Approximafi6a
B.4.225PFSUB Packed Single—Precision FP Subtract 169
B.4.226PFSUBR Packed Single—Precision FP Reverse Subtract. 169
B.4.227PI12FD : Packed Doubleword Integer to Single—Precision FP Convert. 170
B.4.228PF2IW: Packed Word Integer to Single—Precision FP Convert. 170
B.4.229PINSRW InsertWord 170
B.4.230PMACHRIWPacked Multiply and Accumulate with Rounding. 170
B.4.231PMADDWMMX Packed Multiply and Add. 170
B.4.232PMAGWMMX Packed Magnitude 171
B.4.233PMAXSWPacked Signed Integer Word Maximum 171
B.4.234PMAXUBPacked Unsigned Integer Byte Maximum 171
B.4.235PMINSWPacked Signed Integer Word Minimum. 171
B.4.236PMINUB Packed Unsigned Integer Byte Minimum. 171
B.4.237PMOVMSKB/ove Byte Mask To Integer. 171
B.4.238PMULHRWE@MULHRIWMultiply Packed 16-bit Integers With Rounding, and
Store HighWord. 172
B.4.239PMULHRWMultiply Packed 16-bit Integers With Rounding, and Store High
WOrd. . . o 172
B.4.240PMULHUWHultiply Packed 16-bit Integers, and Store High Word. 172
B.4.241PMULHWPMULLWMultiply Packed 16-bit Integers, and Store. 172
B.4.242PMULUDMultiply Packed Unsigned 32-bit Integers, and Store.. 173
B.4.243PMVccZB MMX Packed Conditional Move 173
B.4.244POPRP Pop Datafrom Stack 173
B.4.245POPAX Pop All General-Purpose Registers 174
B.4.246POPFx Pop Flags Register. 174
B.4.247TPORMMX Bitwise OR 174
B.4.248PREFETCHPrefetch DataInto Caches. 174
B.4.249PREFETCHhPrefetch Data Into Caches. 175
B.4.250PSADBWPacked Sum of Absolute Differences. 175
B.4.251PSHUFDShuffle Packed Doublewords. 175

B.4.252PSHUFHWShuffle Packed HighWords. 175

B.4.253PSHUFLWShuffle Packed LowWords. 176
B.4.254PSHUFWShuffle Packed Words. 176
B.4.255PSLLx: Packed Data Bit Shift Left Logical. 176
B.4.256PSRAx Packed Data Bit Shift Right Arithmetic. 176
B.4.257PSRLx Packed Data Bit Shift Right Logical. 177
B.4.258PSUBXx Subtract Packed Integers., 177
B.4.259PSUBSxx PSUBUSx Subtract Packed Integers With Saturation. 178
B.4.260PSUBSIW MMX Packed Subtract with Saturation to Implied Destination. . .178
B.4.261PSWAPDSwap Packed Data. 178
B.4.262PUNPCKxxx Unpack and Interleave Data. 179
B.4.263PUSHPush Dataon Stack. 179
B.4.264PUSHAX Push All General-Purpose Registers. 180
B.4.265PUSHFx Push Flags Register. 180
B.4.266PXORMMX Bitwise XOR. 181
B.4.267RCL, RCR Bitwise Rotate through Carry Bit. 181
B.4.268RCPPS Packed Single—Precision FP Reciprocal. 181
B.4.269RCPSS Scalar Single-Precision FP Recipracal. 182
B.4.270RDMSRRead Model-Specific Registers. 182
B.4.271RDPMCRead Performance—Monitoring Counters 182
B.4.272RDSHRRead SMM Header Pointer Register 182
B.4.273RDTSCRead Time-Stamp Counter 182
B.4.274RET, RETEF RETN Return from Procedure Call 182
B.4.275ROL RORBIitwise Rotate. i 182
B.4.276RSDC Restore Segment Register and Descriptor. 183
B.4.277RSLDT Restore Segment Register and Descriptor. 183
B.4.278RSM Resume from System—-ManagementMade. 183
B.4.279RSQRTPSPacked Single—Precision FP Square Root Reciprocal 183
B.4.280RSQRTSSScalar Single—-Precision FP Square Root Reciprocal. 183
B.4.281RSTS Restore TSR and Descriptor. 184
B.4.282SAHE Store AHtoFlags 184
B.4.283SAL, SAR Bitwise Arithmetic Shifts. 184
B.4.284SALC SetALfromCarryFlag. 184
B.4.285SBB Subtractwith Borrow 185
B.4.286SCASBSCASWSCASDScan String v v i v i e 185

17

18

B.4.287SETcc: Set Register from Condition 185

B.4.288SFENCEStore Fence. 186
B.4.289SGDTSIDT, SLDT: Store Descriptor Table Pointers. 186
B.4.290SHL, SHR Bitwise Logical Shifts. 186
B.4.291SHLDQ SHRD Bitwise Double—Precision Shifts. 187
B.4.292SHUFPDShuffle Packed Double—Precision FP Values 187
B.4.293SHUFPS Shuffle Packed Single—Precision FP Values. 188
B.4.294SMI: System Management Interrupt oL 188
B.4.295SMINT, SMINTOLD Software SMM Entry (CYRIX). 188
B.4.296SMSWStore Machine StatusWard oL 188
B.4.297SQRTPDPacked Double-Precision FP Square Raot 188
B.4.298SQRTPSPacked Single-Precision FP Square Root. 188
B.4.299SQRTSDScalar Double—-Precision FP Square Roat. 188
B.4.300SQRTSSScalar Single—Precision FP Square Root 189
B.4.301STC STD STI:SetFlags. i 189
B.4.302STMXCSRStore Streaming SIMD Extension Control/Status 189
B.4.303STOSBSTOSWSTOSD Store Byteto String. 189
B.4.304STR Store Task Register. 189
B.4.305SUB SubtractIntegers 190
B.4.306SUBPD Packed Double-Precision FP Subtract. 190
B.4.307SUBPS Packed Single—Precision FP Subtract 190
B.4.308SUBSD Scalar Single-FP Subtract. 190
B.4.309SUBSS Scalar Single-FP Subtract. 190
B.4.310SVDC Save Segment Register and Descriptor 191
B.4.311SVLDT Save LDTR and Descriptor. 191
B.4.312SVTS Save TSR and Descriptor 191
B.4.313SYSCALL Call Operating System. 191
B.4.314SYSENTERFastSystem Call 191
B.4.315SYSEXIT: Fast Return From System Call. 192
B.4.316SYSRET Return From Operating System 192
B.4.317TEST: Test Bits (notional bitwise AND). 193

B.4.318UCOMISDUnordered Scalar Double—Precision FP compare and set EFLAG®3
B.4.319UCOMISSUnordered Scalar Single—Precision FP compare and set EFLAG393
B.4.320UDQ UD], UD2 Undefined Instruction 193
B.4.321UMOVUser Move Data. 194

B.4.322UNPCKHPDUnpack and Interleave High Packed Double—Precision FP Valué94
B.4.323UNPCKHPSUnpack and Interleave High Packed Single—Precision FP Value$94
B.4.324UNPCKLPDUnpack and Interleave Low Packed Double—Precision FP.Data 194
B.4.325UNPCKLPSUnpack and Interleave Low Packed Single—Precision FP Data.194

B.4.326VERR VERWVerify Segment Readability/Writability 195
B.4.327WAIT: Wait for Floating—Point Processor. 195
B.4.328WBINVD Write Back and Invalidate Cache 195
B.4.329WRMSRNrite Model-Specific Registers. 195
B.4.330WRSHRWrite SMM Header Pointer Register 195
B.4.331XADDExchangeand Add 195
B.4.332XBTS ExtractBit String. 196
B.4.333XCHGEXchange. e 196
B.4.334XLATB: Translate Byte in Lookup Table 196
B.4.335X0OR Bitwise Exclusive OR. e 196
B.4.336XORPDBitwise Logical XOR of Double—Precision FP Values 197
B.4.337XORPSBitwise Logical XOR of Single-Precision FP Values. 197

19

Chapter 1: Introduction

1.1 What Is NASM?

The Netwide Assembler, NASM, is an 80x86 assembler designed for portability and modularity. It
supports a range of object file formats, including Linux &&tBSD/FreeBSD a.out , ELF,

COFF, Microsoft 16-bitOBJ and Win32. It will also output plain binary files. Its syntax is
designed to be simple and easy to understand, similar to Intel's but less complex. It supports
Pentium , P6, MMX3DNow!, SSEandSSE2 opcodes, and has macro capability.

1.1.1 Why Yet Another Assembler?

The Netwide Assembler grew out of an idea oomp.lang.asm.x86 (or possibly
alt.lang.asm — | forget which), which was essentially that there didn't seem to be afigeod
x86—series assembler around, and that maybe someone ought to write one.

e aB6 is good, but not free, and in particular you don'’t get any 32-hit capability until you pay. It's
DOS only, too.

e gas is free, and ports over DOS and Unix, but it's not very good, since it's designed to be a back
end togcc , which always feeds it correct code. So its error checking is minimal. Also, its syntax
is horrible, from the point of view of anyone trying to actualiyte anything in it. Plus you can’t
write 16-bit code in it (properly).

e as86 is Minix— and Linux—specific, and (my version at least) doesn’t seem to have much (or
any) documentation.

* MASMsn't very good, and it's (was) expensive, and it runs only under DOS.

« TASMis better, but still strives for MASM compatibility, which means millions of directives and
tons of red tape. And its syntax is essentially MASM'’s, with the contradictions and quirks that
entails (although it sorts out some of those by means of Ideal mode). It's expensive too. And it's
DOS-only.

So here, for your coding pleasure, is NASM. At present it's still in prototype stage — we don’t
promise that it can outperform any of these assemblers. But pfdaasesend us bug reports,

fixes, helpful information, and anything else you can get your hands on (and thanks to the many
people who've done this already! You all know who you are), and we’ll improve it out of all
recognition. Again.

1.1.2 Licence Conditions

Please see the filEOPYING supplied as part of any NASM distribution archive, for libence
conditions under which you may use NASM. NASM is now under the so-called GNU Lesser
General Public License, LGPL.

1.2 Contact Information

The current version of NASM (since about 0.98.08) are maintained by a team of developers,
accessible through theasm-devel mailing list (see below for the link). If you want to report a
bug, please reagkction 10.Zirst.

NASM has aWWW page ahttp://nasm.sourceforge.net . If it’s not there, google for us!

http://nasm.sourceforge.net

The original authors are—mailable agules@dsf.org.uk and anakin@pobox.com . The
latter is no longer involved in the development team.

New releases of NASM are uploaded to the official ditiys://nasm.sourceforge.net
and toftp.kernel.org andibiblio.org

Announcements are posted tocomp.lang.asm.x86 , altlang.asm and
comp.os.linux.announce

If you want information about NASM beta releases, and the current development status, please
subscribe to the nasm-devel emalil list by registering at
http://sourceforge.net/projects/nasm :

1.3 Installation
1.3.1 Installing NASM under MS-DOS or Windows

Once you've obtained th®OS archive for NASM,nasmXXX.zip (where XXX denotes the
version number of NASM contained in the archive), unpack it into its own directory (for example
c:\nasm).

The archive will contain four executable files: the NASM executable filasm.exe and
nasmw.exe , and the NDISASM executable fileglisasm.exe andndisasmw.exe . In each
case, the file whose name endsviis aWin32 executable, designed to run untidindows 95 or
Windows NT Intel, and the other one is a 16-biDSexecutable.

The only file NASM needs to run is its own executable, so copy (at least) orasmiexe and
nasmw.exe to a directory on your PATH, or alternatively edittoexec.bat to add thenasm
directory to youPATH (If you're only installing theNVin32 version, you may wish to rename it to
nasm.exe .)

That's it — NASM is installed. You don't need the nasm directory to be present to run NASM
(unless you've added it to yo®ATH, so you can delete it if you need to save space; however, you
may want to keep the documentation or test programs.

If you've downloaded thédOS source archivenasmXXXs.zip , the nasm directory will also
contain the full NASMsource code, and a selectionMdikefiles you can (hopefully) use to rebuild
your copy of NASM from scratch.

Note that the source filéasnsa.c , insnsd.c ,insnsi.h andinsnsn.c are automatically
generated from the master instruction tabkns.dat by a Perl script; the filenacros.c is
generated fronstandard.mac by another Perl script. Although the NASM source distribution
includes these generated files, you will need to rebuild them (and hence, will need a Perl interpreter)
if you change insns.dat, standard.mac or the documentation. It is possible future source distributions
may not include these files at all. Ports Rédrl for a variety of platforms, including DOS and
Windows, are available fromrww.cpan.org

1.3.2 Installing NASM under Unix

Once you've obtained thenix source archive for NASMpasm—-X.XX.tar.gz (where X. XX
denotes the version number of NASM contained in the archive), unpack it into a directory such as
/usr/local/src . The archive, when unpacked, will create its own subdirectsyn—X.XX.

NASM is anauto—configuring package: once you've unpackeddt, to the directory it's been
unpacked into and typéconfigure . This shell script will find the best C compiler to use for
building NASM and set upakefiles accordingly.

Once NASM has auto—configured, you can typake to build thenasm andndisasm binaries,
and thenmake install to install them in/ust/local/bin and install theman pages
nasm.l and ndisasm.1l in /usr/local/man/manl . Alternatively, you can give options

21

mailto:jules@dsf.org.uk
mailto:anakin@pobox.com
http://nasm.sourceforge.net
ftp://ftp.kernel.org/pub/software/devel/nasm/
ftp://ibiblio.org/pub/Linux/devel/lang/assemblers/
news:comp.lang.asm.x86
news:alt.lang.asm
news:comp.os.linux.announce
http://sourceforge.net/projects/nasm
http://www.cpan.org/ports/

22

such as——prefix to the configure script (see the fINSTALL for more details), or install the
programs yourself.

NASM also comes with a set of utilities for handling RBOFFcustom object—file format, which
are in therdoff subdirectory of the NASM archive. You can build these wiidke rdf and
install them withmake rdf_install , if you want them.

If NASM fails to auto—configure, you may still be able to make it compile by using the fall-back
Unix makefile Makefile.unx . Copy or rename that file thakefile and try typingmake.
There is also a Makefile.unx file in théoff subdirectory.

Chapter 2: Running NASM

2.1 NASM Command-Line Syntax
To assemble a file, you issue a command of the form
nasm —f <format> <filename> [-0 <output>]
For example,
nasm —f elf myfile.asm
will assemblanyfile.asm into anELF object filemyfile.o . And
nasm —f bin myfile.asm —o myfile.com
will assemblemyfile.asm into a raw binary filanyfile.com

To produce a listing file, with the hex codes output from NASM displayed on the left of the original
sources, use thd option to give a listing file name, for example:

nasm —f coff myfile.asm —I myfile.Ist

To get further usage instructions from NASM, try typing

nasm —h

As —hf , this will also list the available output file formats, and what they are.

If you use Linux but aren’t sure whether your systemasit or ELF, type

file nasm

(in the directory in which you put the NASM binary when you installed it). If it says something like
nasm: ELF 32-bit LSB executable i386 (386 and up) Version 1

then your system iELF, and you should use the optiehelf ~ when you want NASM to produce
Linux object files. If it says

nasm: Linux/i386 demand-paged executable (QMAGIC)

or something similar, your systemdsut , and you should usef aout instead (Linuxa.out
systems have long been obsolete, and are rare these days.)

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won't see any
output at all, unless it gives error messages.

2.1.1 The —o Option: Specifying the Output File Name

NASM will normally choose the name of your output file for you; precisely how it does this is
dependent on the object file format. For Microsoft object file formaltg (andwin32), it will
remove theasm extension (or whatever extension you like to use — NASM doesn't care) from
your source file name and substitutdj . For Unix object file formatsaput , coff , elf and
as86) it will substitute.o . Forrdf , it will use .rdf , and for thebin format it will simply
remove the extension, so tmayfile.asm produces the output filmyfile

If the output file already exists, NASM will overwrite it, unless it has the same name as the input
file, in which case it will give a warning and usasm.out as the output file name instead.

23

For situations in which this behaviour is unacceptable, NASM provides-aheommand-line
option, which allows you to specify your desired output file name. You invokby following it
with the name you wish for the output file, either with or without an intervening space. For example:

nasm —f bin program.asm —o program.com
nasm —f bin driver.asm —odriver.sys

Note that this is a small o, and is different from a capital O , which is used to specify the number of
optimisation passes required. Seetion 2.1.16

2.1.2 The —f Option: Specifying the Output File Format

If you do not supply thef option to NASM, it will choose an output file format for you itself. In
the distribution versions of NASM, the default is always ; if you've compiled your own copy of
NASM, you can redefin®©F_DEFAULTat compile time and choose what you want the default to
be.

Like —o, the intervening space betweeh and the output file format is optional; sbelf and
—felf are both valid.

A complete list of the available output file formats can be given by issuing the command
nasm —hf .

2.1.3 The - Option: Generating aListing File

If you supply the-l option to NASM, followed (with the usual optional space) by a file name,
NASM will generate aource-listing file for you, in which addresses and generated code are listed
on the left, and the actual source code, with expansions of multi-line macros (except those which
specifically request no expansion in source listingsseetion 4.3.pon the right. For example:

nasm —f elf myfile.asm —I myfile.Ist

If a list file is selected, you may turn off listing for a section of your source [iisth-] , and
turn it back on with[list +] , (the default, obviously). There is no "user form" (without the
brackets). This can be used to list only sections of interest, avoiding excessively long listings.

2.1.4 The -MOption: Generate Makefile Dependencies.

This option can be used to generate makefile dependencies on stdout. This can be redirected to a file
for further processing. For example:

NASM —-M myfile.asm > myfile.dep
2.1.5 The —F Option: Selecting aDebug Information Format

This option is used to select the format of the debug information emitted into the output file, to be
used by a debugger (a4l be). Use of this switch do@®t enable output of the selected debug info
format. Use-g, seesection 2.1.6to enable output.

A complete list of the available debug file formats for an output format can be seen by issuing the
commandnasm —f <format> -y . (only "borland" in "-f obj", as of 0.98.35, but "watch this
space") Seesection 2.1.20

This should not be confused with the "-f dbg" output format option which is not built into NASM
by default. For information on how to enable it when building from the sourcesecien 6.10

2.1.6 The —g Option: Enabling Debug Information.

This option can be used to generate debugging information in the specified formate Gt

2.1.5 Using —g without —F results in emitting debug info in the default format, if any, for the
selected output format. If no debug information is currently implemented in the selected output
format,—g is silently ignored

2.1.7 The —X Option: Selecting anError Reporting Format

This option can be used to select an error reporting format for any error messages that might be
produced by NASM.

Currently, two error reporting formats may be selected. They areXthe option and the-Xgnu
option. The GNU format is the default and looks like this:

filename.asm:65: error: specific error message

wherefilename.asm is the name of the source file in which the error was dete6feds the
source file line number on which the error was deteadedy is the severity of the error (this
could bewarning), andspecific error message is a more detailed text message which
should help pinpoint the exact problem.

The other format, specified byXvc is the style used by Microsoft Visual C++ and some other
programs. It looks like this:

filename.asm(65) : error: specific error message

where the only difference is that the line number is in parentheses instead of being delimited by
colons.

See also th¥isual C++ output formatsection 6.3
2.1.8 The —E Option: Send Errors to a File

UnderMS-DOSt can be difficult (though there are ways) to redirect the standard—error output of a
program to a file. Since NASM usually produces its warningernot messages astderr , this
can make it hard to capture the errors if (for example) you want to load them into an editor.

NASM therefore provides theE option, taking a filename argument which causes errors to be sent
to the specified files rather than standard error. Therefore yotedarct the errors into a file by

typing
nasm —E myfile.err —f obj myfile.asm
2.1.9 The —s Option: Send Errors to stdout

The —s option redirecterror messages tstdout rather thanstderr , so it can be redirected
underMS-DOSTo assemble the filmyfile.asm and pipe its output to thmore program, you
can type:

nasm —s —f obj myfile.asm | more
See also theE option,section 2.1.8
2.1.10 The —i Option: Include File Search Directories

When NASM sees th&include orincbin directive in a source file (sexction 4.60r section
3.2.3, it will search for the given file not only in the current directory, but also in any directories
specified on the command line by the use of-theoption. Therefore you can include files from a
macro library, for example, by typing

nasm —ic:\\macrolib\\ -f obj myfile.asm
(As usual, a space between and the path name is allowed, and optional).

NASM, in the interests of complete source—code portability, does not understand the file naming
conventions of the OS it is running on; the string you provide as an argumentio tipéion will
be prepended exactly as written to the name of the include file. Therefore the trailing backslash in
the above example is necessary. Under Unix, a trailing forward slash is similarly necessary.

25

(You can use this to your advantage, if you're repliyverse, by noting that the optieifoo will

cause&include "bar.i" to search for the fileoobar.i ...)

If you want to define astandardinclude search path, similar fosr/include on Unix systems,
you should place one or more directives in theNASMEN\énvironment variable (segection
2.1.2).

For Makefile compatibility with many C compilers, this option can also be specifield.as

2.1.11 The —p Option: Pre-Include a File

NASM allows you to specify files to bere—includedinto your source file, by the use of thp
option. So running

nasm myfile.asm —p myinc.inc

is equivalent to running nasm myfile.asm and placing the directive
%include "myinc.inc" at the start of the file.

For consistency with thel , —D and-U options, this option can also be specified-Bs
2.1.12 The —d Option: Pre—-Define a Macro

Just as the-p option gives an alternative to placifginclude directives at the start of a source
file, the—d option gives an alternative to placin§aefine directive. You could code

nasm myfile.asm —dFOO=100
as an alternative to placing the directive
%define FOO 100

at the start of the file. You can miss off the macro value, as well: the efe@Ois equivalent to
coding %define FOO . This form of the directive may be useful for selectaggembly—-time
options which are then tested ustgfdef , for example-dDEBUG

For Makefile compatibility with many C compilers, this option can also be specifield.as
2.1.13 The —u Option: Undefine a Macro

The —u option undefines a macro that would otherwise have been pre—defined, either automatically
or by a—p or—d option specified earlier on the command lines.

For example, the following command line:
nasm myfile.asm —dFO0=100 -uFOO

would result inFOOnot being a predefined macro in the program. This is useful to override options
specified at a different point in a Makefile.

For Makefile compatibility with many C compilers, this option can also be specified.as
2.1.14 The —e Option: Preprocess Only

NASM allows thepreprocessor to be run on its own, up to a point. Using-¢heption (which
requires no arguments) will cause NASM to preprocess its input file, expand all the macro
references, remove all the comments and preprocessor directives, and print the resulting file on
standard output (or save it to a file, if the option is also used).

This option cannot be applied to programs which require the preprocessor to exglwassions
which depend on the values of symbols: so code such as

%assign tablesize ($-tablestart)

will cause an error ipreprocess—only mode.
2.1.15 The —a Option: Don’t Preprocess At Al

If NASM is being used as the back end to a compiler, it might be desirabdeiporess
preprocessing completely and assume the compiler has already done it, to save time and increase
compilation speeds. Thea option, requiring no argument, instructs NASM to replace its powerful
preprocessor with stub preprocessor which does nothing.

2.1.16 The —On Option: Specifying Multipass Optimization.

NASM defaults to being a two pass assembler. This means that if you have a complex source file
which needs more than 2 passes to assemble optimally, you have to enable extra passes.

Using the-O option, you can tell NASM to carry out multiple passes. The syntax is:

—00 strict two—pass assembly, JMP and Jcc are handled more like v0.98, except that backward
JMPs are short, if possible. Immediate operands take their long forms if a short form is not
specified.

—0O1 strict two—pass assembly, but forward branches are assembled with code guaranteed to
reach; may produce larger code than —O0, but will produce successful assembly more often if
branch offset sizes are not specified. Additionally, immediate operands which will fit in a signed
byte are optimised, unless the long form is specified.

—On multi-pass optimization, minimize branch offsets; also will minimize signed immediate
bytes, overriding size specification unless s$kréct keyword has been used (sstion 3.7.

The number specifies the maximum number of passes. The more passes, the better the code, bu
the slower is the assembly.

Note that this is a capital O, and is different from a small o, which is used to specify the output
format. Seesection 2.1.1

2.1.17 The -t option: Enable TASM Compatibility Mode

NASM includes a limited form of compatibility with Borlandl®ASM When NASM’s—t option is
used, the following changes are made:

local labels may be prefixed with @nhstead of

TASM-style response files beginning wi@may be specified on the command line. This is
different from the-@resp style that NASM natively supports.

size override is supported within brackets. In TASM compatible mode, a size override inside
square brackets changes the size of the operand, and not the address type of the operand as
does in NASM syntax. E.gnov eax,[DWORD val] is valid syntax in TASM compatibility

mode. Note that you lose the ability to override the default address type for the instruction.

%arg preprocessor directive is supported which is similar to TASAR&directive.
%local preprocessor directive
%stacksize preprocessor directive

unprefixed forms of some directives supportedg(, elif , else , endif , if , ifdef
ifdifi ,ifndef ,include ,local)

more...

For more information on the directives, see the section on TASM Compatiblity preprocessor
directives insection 4.9

27

28

2.1.18 The —w Option: Enable or Disable AssemblyVarnings

NASM can observe many conditions during the course of assembly which are worth mentioning to
the user, but not a sufficiently severe error to justify NASM refusing to generate an output file.
These conditions are reported like errors, but come up with the word ‘warning’ before the message.
Warnings do not prevent NASM from generating an output file and returning a success status to the
operating system.

Some conditions are even less severe than that: they are only sometimes worth mentioning to the
user. Therefore NASM supports th&v command-line option, which enables or disables certain
classes of assembly warning. Such warning classes are described by a name, for example
orphan-labels ; you can enable warnings of this class by the command-line option
-w+orphan-labels and disable it byw—orphan-Ilabels

Thesuppressible warning classes are:

e macro—params covers warnings abounulti-line macros being invoked with the wrong
number of parameters. This warning class is enabled by defauttectien 4.3.Xor an example
of why you might want to disable it.

¢ macro-selfref warns if a macro references itself. This warning class is enabled by default.

¢ orphan-labels covers warnings about source lines which contain no instruction but define a
label without a trailing colon. NASM does not warn about this somewhat obscure condition by
default; seesection 3.%for an example of why you might want it to.

« number—overflow covers warnings about numeric constants which don't fit in 32 bits (for

example, it's easy to type one too many Fs and pro@ueéffffff by mistake). This
warning class is enabled by default.
¢ gnu-elf-extensions warns if 8—bit or 16—bit relocations are used-frelf format. The

GNU extensions allow this. This warning class is enabled by default.

* In addition, warning classes may be enabled or disabled across sections of source code with
[warning +warning—name] or [warning -warning—name] . No ‘"user form"
(without the brackets) exists.

2.1.19 The —v Option: Display Version Info

Typing NASM -v will display the version of NASM which you are using, and the date on which it
was compiled. This replaces the deprecated

You will need the version nhumber if you report a bug.
2.1.20 The -y Option: Display Available Debug Info Formats

Typing nasm —f <option> -y will display a list of the available debug info formats for the
given output format. The default format is indicated by an asteriskn&sga —f obj -y yields
*porland . (as of 0.98.35, thenly debug info format implemented).

2.1.21 The ——prefix ~and——postfix Options.

The ——prefix ~and--postfix options prepend or append (respectively) the given argument to
all global orextern variables. E.g-—prefix_ will prepend the underscore to all global and
external variables, as C sometimes (but not always) likes it.

2.1.22 The NASMEN¥Environment Variable

If you define an environment variable callS®ASMENVthe program will interpret it as a list of
extra command-line options, which are processed before the real command line. You can use this to
define standard search directories for include files, by putiingptions in theNASMENWariable.

The value of the variable is split up at white space, so that the valui:\nasmlib will be
treated as two separate options. However, that means that the-g&AlAME="my name" won't

do what you might want, because it will be split at the space and the NASM command-line
processing will get confused by the two nonsensical weddsAME="myandname" .

To get round this, NASM provides a feature whereby, if you begilN\h8 MEN\environment
variable with some character that isn't a minus sign, then NASM will treat this character as the
separator character for options. So setting thNASMENV variable to the value
I-sl-ic:\nasmlib iSs equivalent to setting it to-s -ic:\\nasmlib , but
I-dNAME="my name" will work.

This environment variable was previously calM8SMThis was changed with version 0.98.31.

2.2 Quick Start for MASM Users

If you're used to writing programs with MASM, or witASM in MASM-compatible (non-ldeal)
mode, or witha86, this section attempts to outline the major differences between MASM'’s syntax
and NASM’s. If you're not already used to MASM, it's probably worth skipping this section.

2.2.1 NASM Is Case—-Sensitive

One simple difference is that NASM is case-sensitive. It makes a difference whether you call your
label foo , Foo or FOO If you're assembling tdOSor OS/2 .0OBJ files, you can invoke the
UPPERCASHlirective (documented isection 6.2 to ensure that all symbols exported to other
code modules are forced to be upper case; but even wlighim a single module, NASM wiill
distinguish between labels differing only in case.

2.2.2 NASM Requires Square Brackets ForMemory References

NASM was designed with simplicity of syntax in mind. One ofdksign goals of NASM is that it
should be possible, as far as is practical, for the user to look at a single line of NASM code and tell
what opcode is generated by it. You can't do this in MASM: if you declare, for example,

foo equ 1
bar dw 2

then the two lines of code

mov ax,foo
mov ax,bar

generate completely different opcodes, despite having identical-looking syntaxes.

NASM avoids this undesirable situation by having a much simpler syntax for memory references.
The rule is simply that any access to tmntentsof a memory location requires square brackets
around the address, and any access tadaeessof a variable doesn’t. So an instruction of the
form mov ax,foo will alwaysrefer to a compile-time constant, whether it's BQU or the
address of a variable; and to access tomtents of the variablebar, you must code

mov ax,[bar]

This also means that NASM has no need for MASMIBFSETkeyword, since the MASM code

mov ax,offset bar means exactly the same thing as NASM@v ax,bar . If you're trying
to get large amounts of MASM code to assemble sensibly under NASM, you can always code
%idefine offset to make the preprocessor treat @ieFSETkeyword as a no—op.

This issue is even more confusingai®6 , where declaring a label with a trailing colon defines it to
be a ‘label’ as opposed to a ‘variable’ and cawds to adopt NASM-style semantics; sod86,
mov ax,var has different behaviour depending on whetrar was declared agar: dw 0 (a
label) orvar dw 0 (a word-size variable). NASM is very simple by comparisrerythingis a
label.

29

30

NASM, in the interests of simplicity, also does not support Higlerid syntaxes supported by

MASM and its clones, such asov ax,table[bx] , Where a memory reference is denoted by

one portion outside square brackets and another portion inside. The correct syntax for the above is
mov ax,[table+bx] . Likewise, mov ax,es:[di] is wrong andmov ax,[es:di] is

right.

2.2.3 NASM Doesn’t StoreVariable Types

NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM
will remember, on seeingar dw 0 , that you declaredar as a word-size variable, and will then

be able to fill in theambiguity in the size of the instructionov var,2 , NASM will deliberately
remember nothing about the symivalr except where it begins, and so you must explicitly code
mov word [var],2

For this reason, NASM doesn’t support theDS MOVS STOS SCAS CMPS INS, or OUTS
instructions, but only supports the forms suchL@SB MOVSWand SCASD which explicitly
specify the size of the components of the strings being manipulated.

2.2.4 NASM Doesn't ASSUME

As part of NASM'’s drive for simplicity, it also does not support A8SUMHlirective. NASM will
not keep track of what values you choose to put in your segment registers, and will never
automaticallygenerate aegment override prefix.

2.2.5 NASM Doesn’t Support Memory Models

NASM also does not have any directives to support different 16—bit memory models. The
programmer has to keep track of which functions are supposed to be calledaritalhand which

with anear call, and is responsible for putting the correct forfRET instruction RETNor RETF,

NASM acceptsRET itself as an alternate form fdRETN; in addition, the programmer is
responsible for coding CALL FAR instructions where necessary when caliggnal functions,

and must also keep track of which external variable definitions are far and which are near.

2.2.6 Floating—Point Differences

NASM uses different names to refer to floating—point registers from MASM: where MASM would
call themST(0) , ST(1) and so on, and86 would call them simph0, 1 and so on, NASM
chooses to call thestO , st1 etc.

As of version 0.96, NASM now treats the instructions witbwait’ forms in the same way as
MASM-compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was
based on a misunderstanding by the authors.

2.2.7 Other Differences

For historical reasons, NASM uses the keywdWlORDBvhere MASM and compatible assemblers
useTBYTE

NASM does not declaraninitialised storage in the same way as MASM: where a MASM
programmer might usstack db 64 dup (?) , NASM requiresstack resb 64 , intended

to be read as ‘reserve 64 bytes’. For a limited amount of compatibility, since NASM2raata
valid character in symbol names, you can cddequ 0 and then writingdw ? will at least do
something vaguely usefubUPis still not a supported syntax, however.

In addition to all of this, macros and directives work completely differently to MASMcBaater
4 andchapter Sor further details.

Chapter 3: The NASM Language

3.1 Layout of a NASM Source Line

Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor
directive or an assembler directive: skapter dandchapter some combination of the four fields

label: instruction operands ; comment

As usual, most of these fields are optional; the presence or absence of any combination of a label,
an instruction and a comment is allowed. Of course, the operand field is either required or forbidden
by the presence and nature of the instruction field.

NASM uses backslash (\) as the line continuation character; if a line ends with backslash, the next
line is considered to be a part of the backslash—ended line.

NASM places no restrictions on white space within a line: labels may have white space before
them, or instructions may have no space before them, or anything:oldreafter a label is also
optional. (Note that this means that if you intend to dodsb alone on a line, and typedab

by accident, then that's still a valid source line which does nothing but define a label. Running
NASM with the command-line optiorw+orphan—-labels will cause it to warn you if you
define a label alone on a line withoutrailing colon.)

Valid characters in labels are letters, numbers§, #, @ ~, . , and?. The only characters which

may be used as tHast character of an identifier are letters(with special meaning: sesection

3.9, _ and?. An identifier may also be prefixed with$ato indicate that it is intended to be read as

an identifier and not a reserved word; thus, if some other module you are linking with defines a
symbol calledeax, you can refer tdbeax in NASM code to distinguish the symbol from the
register.

The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU
instructions, MMX instructions and even undocumented instructions are all supported. The
instruction may be prefixed byOCK REP, REPEREPZ or REPNEREPNZ in the usual way.
Explicit address—size andperand-size prefixed16, A32, O16 and O32 are provided — one
example of their use is given ahapter 9 You can also use the name ofegment register as an
instruction prefix: codinges mov [bx],ax is equivalent to codingnov [es:bx],ax . We
recommend the latter syntax, since it is consistent with other syntactic features of the language, but
for instructions such asODSB which has no operands and yet can require a segment override,
there is no clean syntactic way to proceed apart &shodsb

An instruction is not required to use a prefix: prefixes sucBRA32, LOCKor REPEcan appear
on a line by themselves, and NASM will just generate the prefix bytes.

In addition to actual machine instructions, NASM also supports a nhumber of pseudo—-instructions,
described irsection 3.2

Instructionoperands may take a number of forms: they can be registers, described simply by the
register name (e.@x, bp, ebx, crO : NASM does not use thgas —style syntax in which register
names must be prefixed byasign), or they can beffective addresses (ssection 3.3 constants
(section 3.4 or expressionsséction 3.5

For floating—point instructions, NASM accepts a wide range of syntaxes: you can use two—operand
forms like MASM supports, or you can use NASM'’s native single—operand forms in most cases.

31

Details of all forms of each supported instruction are giveapipendix B For example, you can

code:
fadd stl ; this sets stO ;= st0 + stl
fadd stO,stl : so does this
fadd st1,stO : this sets stl ;= stl1 + stO
fadd to stl : so does this

Almost any floating—point instruction that references memory must use one of the pbafKeRD
QWORDr TWORID indicate what size ahemory operand it refers to.

3.2 Pseudo-Instructions

Pseudo-instructions are things which, though not real x86 machine instructions, are used in the
instruction field anyway because that's the most convenient place to put them. The current
pseudo-instructions arBB, DW DD DQ and DT, their uninitialised counterpartRESB RESW

RESD RESQandREST, theINCBIN command, th&QUcommand, and thEIMES prefix.

3.2.1 DBand friends: Declaring Initialised Data

DB DWDD DQandDT are used, much as in MASM, to declare initialised data in the output file.
They can be invoked in a wide range of ways:

db 0x55 ; just the byte 0x55

db 0x55,0x56,0x57 ; three bytes in succession
db 'a’,0x55 : character constants are OK
db ’hello’,13,10,’$’ ; so are string constants

dw 0x1234 : 0x34 0x12

dw 'a’ ; Ox61 0x00 (it's just a number)
dw ‘ab’ ; 0x61 0x62 (character constant)
dw ’abc’ ; Ox61 0x62 0x63 0x00 (string)
dd 0x12345678 ; OX78 0x56 0x34 0x12

dd 1.234567e20 ; floating—point constant

dg 1.234567e20 ; double—precision float

dt 1.234567e20 ; extended-precision float

DQandDT do not acceptumeric constants or string constants as operands.
3.2.2 RESBand friends: Declaring Uninitialised Data

RESB RESWRESD RESQandRESTare designed to be used in the BSS section of a module: they
declareuninitialised storage space. Each takes a single operand, which is the number of bytes,
words, doublewords or whatever to reserve. As statsddtion 2.2.7NASM does not support the
MASM/TASM syntax of reserving uninitialised space by writiDyV ? or similar things: this is

what it does instead. The operand tRESB-type pseudo-instruction isaitical expressionsee

section 3.8

For example:

buffer: resb 64 ; reserve 64 bytes
wordvar: resw 1 : reserve a word
realarray resq 10 ; array of ten reals

3.2.3 INCBIN : Including External Binary Files

INCBIN is borrowed from the old Amiga assemb®vPac: it includes a binary file verbatim into
the output file. This can be handy for (for example) includjraphics andound data directly into
a game executable file. It can be called in one of these three ways:

incbin "file.dat" ; include the whole file

incbin "file.dat",1024 ; skip the first 1024 bytes

inchbin “file.dat",1024,512 ; skip the first 1024, and
; actually include at most 512

3.2.4 EQU Defining Constants

EQUdefines a symbol to a given constant value: wB&twis used, the source line must contain a
label. The action oEQUis to define the given label name to the value of its (only) operand. This
definition is absolute, and cannot change later. So, for example,

message db ’hello, world’
msglen equ $-message

definesmsglen to be the constant 12sglen may not then be redefined later. This is not a
preprocessor definition either: the valueno$glen is evaluatednce using the value of (see
section 3.5or an explanation o$) at the point of definition, rather than being evaluated wherever
it is referenced and using the valuebadit the point of reference. Note that the operand #©Qldis

also acritical expressiongection 3.8

3.2.5 TIMES: Repeating Instructions or Data

The TIMES prefix causes the instruction to be assembled multiple times. This is partly present as
NASM’s equivalent of theDUP syntax supported biMASM-compatible assemblers, in that you
can code

zerobuf: times 64 db O

or similar things; bufTIMES is more versatile than that. The argumenfTthIES is not just a
numeric constant, but a numeegpressionso you can do things like

buffer: db 'hello, world’
times 64-$+buffer db '’

which will store exactly enough spaces to make the total lengthuféér up to 64. Finally,
TIMES can be applied to ordinary instructions, so you can code tinialled loops in it:

times 100 movsb

Note that there is no effective difference betwtsmes 100 resb 1 andresb 100 , except
that the latter will be assembled about 100 times faster due to the internal structure of the assembler.

The operand tdIMES, like that of EQUand those oRESBand friends, is a critical expression
(section 3.8

Note also thaffIMES can't be applied tanacros: the reason for this is tHHMES is processed

after the macro phase, which allows the argumenTIMES to contain expressions such as
64-$+buffer as above. To repeat more than one line of code, or a complex macro, use the
preprocessdiorep directive.

3.3 Effective Addresses

An effective address is any operand to an instruction wigitdrences memory. Effective addresses,
in NASM, have a very simple syntax: they consist of an expression evaluating to the desired
address, enclosed sguare brackets. For example:

wordvar dw 123
mov ax,[wordvar]
mov ax,[wordvar+1]
mov ax,[es:wordvar+bx]

33

Anything not conforming to this simple system is not a valid memory reference in NASM, for
examplees:wordvar[bx]

More complicated effective addresses, such as those involving more than one register, work in
exactly the same way:

mov eax,[ebx*2+ecx+offset]
mov ax,[bp+di+8]

NASM is capable of doingalgebra on these effective addresses, so that things which don't
necessarilyook legal are perfectly all right:

mov eax,[ebx*5] ; assembles as [ebx*4+ebx]
mov eax,[label1*2-label2] ;ie [labell+(labell-label?)]

Some forms of effective address have more than one assembled form; in most such cases NASM
will generate the smallest form it can. For example, there are distinct assembled forms for the
32-bit effective address¢eax*2+0] and[eax+eax] , and NASM will generally generate the

latter on the grounds that the former requires four bytes to store a zero offset.

NASM has a hinting mechanism which will cau@ax+ebx] and[ebx+eax] to generate
different opcodes; this is occasionally useful becdeseebp] and[ebp+esi] have different
default segment registers.

However, you can force NASM to generate an effective address in a particular form by the use of
the keywordBYTE WORIDWORRNANOSPLIT. If you needeax+3] to be assembled using a
double-word offset field instead of the one byte NASM will normally generate, you can code
[dword eax+3] . Similarly, you can force NASM to use a byte offset for a small value which it
hasn’'t seen on the first pass (stion 3.8for an example of such a code fragment) by using
[byte eax+offset] . As special casefhyte eax] will code [eax+0] with a byte offset

of zero, anddword eax] will code it with a double—word offset of zero. The normal form,
[eax] , will be coded with no offset field.

The form described in the previous paragraph is also useful if you are trying to access data in a
32-bit segment from within 16 bit code. For more information on this see the section on
mixed-size addressingdction 9.2 In particular, if you need to access data with a known offset
that is larger than will fit in a 16-bit value, if you don't specify that it is a dword offset, nasm will
cause the high word of the offset to be lost.

Similarly, NASM will split [eax*2] into [eax+eax] because that allows the offset field to be

absent and space to be saved; in fact, it will also sj@#éx*2+offset] into
[eax+eax+offset] . You can combat this behaviour by the use of N@SPLIT keyword:
[nosplit eax*2] will force [eax*2+0] to be generated literally.

3.4 Constants
NASM understands four different types of constant: numeric, character, string and floating—point.
3.4.1 Numeric Constants

A numeric constant is simply a number. NASM allows you to specify numbers in a variety of
number bases, in a variety of ways: you can sifiQ or O, andB for hex, octal andbinary, or you

can prefixOx for hex in the style of C, or you can prefixfor hex in the style of Borland Pascal.
Note, though, that th® prefix does double duty as a prefix on identifiers @stion 3.], so a hex
number prefixed with & sign must have a digit after tBerather than a letter.

Some examples:

mov ax,100 : decimal
mov ax,0a2h : hex

mov ax,$0a2 ; hex again: the 0 is required

mov ax,0xa2 ; hex yet again
mov ax,777q ; octal
mov ax, 7770 ; octal again

mov ax,10010011b ; binary
3.4.2 Character Constants

A character constant consists of up to four characters enclosed in either single or double quotes. The
type of quote makes no difference to NASM, except of course that surrounding the constant with
single quotes allows double quotes to appear within it and vice versa.

A character constant with more than one character will be arrangetitthgtfendian order in mind:
if you code

mov eax,’abcd’

then the constant generated is G861626364 , but 0x64636261 , so that if you were then to
store the value into memory, it would reaticd rather thandcba. This is also the sense of
character constants understood by the Penti@RUID instruction (sesection B.4.3%

3.4.3 String Constants

String constants are only acceptable to some pseudo-instructions, naméhs family and
INCBIN .

A string constant looks like a character constant, only longer. It is treated as a concatenation of
maximum-size character constants for the conditions. So the following are equivalent:

db ’hello’ ; string constant

db 'h’e’I'I')0’ ; equivalent character constants
And the following are also equivalent:

dd ’ninechars’ ; doubleword string constant

dd ’nine’,’char’,)s’ ; becomes three doublewords
db ’'ninechars’,0,0,0 ; and really looks like this

Note that when used as an operandilbo a constant likéab’ is treated as a string constant
despite being short enough to be a character constant, because ottieraise would have the
same effect aglb 'a’ , which would be silly. Similarly, three—character or four—character
constants are treated as strings when they are operashds to

3.4.4 Floating—Point Constants

Floating—point constants are acceptable only as argumebi§ @QandDT. They are expressed in
the traditional form: digits, then a period, then optionally more digits, then optionalyf@dlowed
by an exponent. The period is mandatory, so that NASM can distinguish bedaielen which
declares an integer constant, aadl.0 which declares a floating—point constant.

Some examples:

dd 1.2 ; an easy one

dg 1.e10 ; 10,000,000,000

dg 1.e+10 ; synonymous with 1.e10
dg 1l.e-10 ; 0.000 000 000 1

dt 3.141592653589793238462 ; pi

NASM cannot do compile—time arithmetic on floating—point constants. This is because NASM is
designed to be portable — although it always generates code to run on x86 processors, the assemble
itself can run on any system with an ANSI C compiler. Therefore, the assembler cannot guarantee

35

36

the presence of a floating—point unit capable of handlinginked number formats, and so for
NASM to be able to do floating arithmetic it would have to include its own complete set of
floating—point routines, which would significantly increase the size of the assembler for very little
benefit.

3.5 Expressions
Expressions in NASM are similar in syntax to those in C.

NASM does not guarantee the size of the integers used to evaluate expressions at compile time:
since NASM can compile and run on 64-bit systems quite happily, don’'t assume that expressions
are evaluated in 32-bit registers and so try to make deliberate ugegar overflow. It might not

always work. The only thing NASM will guarantee is what's guaranteed by ANSI C: you always
haveat least32 bits to work in.

NASM supports two special tokens in expressions, allowing calculations to involve the current
assembly position: th® and$$ tokens$ evaluates to the assembly position at the beginning of the
line containing the expression; so you can codafanite loop usingJMP $. $$ evaluates to the
beginning of the current section; so you can tell how far into the section you are bisusigy .

The arithmetioperators provided by NASM are listed here, in increasing ordeeoédence.
3.5.1 | : Bitwise OR Operator

The | operator gives a bitwise OR, exactly as performed byORenachine instruction. Bitwise
OR is the lowest-priority arithmetic operator supported by NASM.

3.5.2 ~: Bitwise XOR Operator

A provides the bitwise XOR operation.
3.5.3 &: Bitwise AND Operator

& provides the bitwise AND operation.
3.5.4 << and >>: Bit Shift Operators

<< gives a bit-shift to the left, just as it does in C.58&3 evaluates to 5 times 8, or 48> gives
a bit=shift to the right; in NASM, such a shiftaivaysunsigned, so that the bits shifted in from the
left—-hand end are filled with zero rather than a sign—extension of the previous highest bit.

3.5.5 + and —: Addition and Subtraction Operators
The+ and- operators do perfectly ordinary addition and subtraction.
3.5.6*,/,/l ,%and%%Multiplication and Division

* is the multiplication operatof. and// are both division operators:is unsigned division and
is signed division. Similarly%and%%provideunsigned angdigned modulo operators respectively.

NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo
operator.

Since thébcharacter is used extensively by the mameprocessor, you should ensure that both the
signed and unsigned modulo operators are followed by white space wherever they appear.

3.5.7 Unary Operators: +, —, ~ and SEG

The highest—priority operators in NASM'’s expression grammar are those which only apply to one
argument— negates its operand, does nothing (it's provided for symmetry wit), ~ computes

the one’s complement of its operand, aB&G provides thesegment address of its operand
(explained in more detail ipection 3.5

3.6 SEGand WRT

When writing large 16-bit programs, which must be split into multggdgments, it is often
necessary to be able to refer to gegment part of the address of a symbol. NASM supports the
SEGoperator to perform this function.

The SEG operator returns thpreferred segment base of a symbol, defined as the segment base
relative to which the offset of the symbol makes sense. So the code

mov ax,seg symbol
mov es,ax
mov bx,symbol

will load ES:BX with a valid pointer to the symbs{mbol .

Things can be more complex than this: since 16-bit segmentgranps mayoverlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one.
NASM lets you do this, by the use of tiRT(With Reference To) keyword. So you can do things

like

mov ax,weird_seg ; weird_seg is a segment base
mov es,ax _
mov bx,symbol wrt weird_seg

to loadES:BX with a different, but functionally equivalent, pointer to the synsiyahbol .

NASM supports far (inter-segment) calls and jumps by means of the syntax
call segment:offset , Wwheresegment andoffset both represent immediate values. So to
call a far procedure, you could code either of

call (seg procedure):procedure
call weird_seg:(procedure wrt weird_seq)

(The parentheses are included for clarity, to show the intended parsing of the above instructions.
They are not necessary in practice.)

NASM supports the syntagall far procedure as a synonym for the first of the above
usagesJMPworks identically taCALL in these examples.

To declare dar pointer to a data item in a data segment, you must code
dw symbol, seg symbol

NASM supports no convenient synonym for this, though you can always invent one using the
macro processor.

3.7 STRICT: Inhibiting Optimization

When assembling with the optimizer set to level 2 or higher gseton 2.1.1% NASM will use

size specifiersRYTE WORPDWORBWORDr TWORJ but will give them the smallest possible
size. The keywor@&TRICT can be used to inhibit optimization and force a particular operand to be
emitted in the specified size. For example, with the optimizer on, BITHH 16 mode,

push dword 33
is encoded in three byté6 6A 21 , whereas
push strict dword 33
is encoded in six bytes, with a full dword immediate opef @8 21 00 00 00

37

38

With the optimizer off, the same code (six bytes) is generated wheth&8TRIET keyword was
used or not.

3.8 Critical Expressions

A limitation of NASM is that it is dwo—pass assembler; unlike TASM and others, it will always do
exactly twoassembly passes. Therefore it is unable to cope with source files that are complex
enough to require three or more passes.

The first pass is used to determine the size of all the assembled code and data, so that the secon
pass, when generating all the code, knows all the symbol addresses the code refers to. So one thing
NASM can’t handle is code whose size depends on the value of a symbol declared after the code in
guestion. For example,

times (label-$) db 0
label: db 'Where am 1?’

The argument t@IMES in this case could equally legally evaluate to anything at all; NASM will
reject this example because it cannot tell the size of fHES line when it first sees it. It will just
as firmly reject the slightlparadoxical code

times (label-$+1) db 0
label: db 'NOW where am |?’

in whichanyvalue for thelTIMES argument is by definition wrong!

NASM rejects these examples by means of a concept catigtical expressionwhich is defined

to be an expression whose value is required to be computable in the first pass, and which must
therefore depend only on symbols defined before it. The argument ToMIES prefix is a critical
expression; for the same reason, the arguments RESBfamily of pseudo-instructions are also
critical expressions.

Critical expressions can crop up in other contexts as well: consider the following code.

mov ax,symboll
symboll equ symbol2
symbol2:

On the first pass, NASM cannot determine the valugyofboll , becausesymboll is defined to

be equal tosymbol2 which NASM hasn't seen yet. On the second pass, therefore, when it
encounters the linenov ax,symboll , it is unable to generate the code for it because it still
doesn’'t know the value afymboll . On the next line, it would see tE€Uagain and be able to
determine the value afymboll , but by then it would be too late.

NASM avoids this problem by defining the right—-hand side oE&Jstatement to be a critical
expression, so the definition sfmboll would be rejected in the first pass.

There is a related issue involvifmyward references: consider this code fragment.

mov eax,[ebx+offset]
offset equ 10

NASM, on pass one, must calculate the size of the instruction eax,[ebx+offset]

without knowing the value afffset . It has no way of knowing thafffset is small enough to

fit into a one-byte offset field and that it could therefore get away with generating a shorter form of
the effective—address encoding; for all it knows, in pass offegt could be a symbol in the

code segment, and it might need the full four-byte form. So it is forced to compute the size of the
instruction to accommodate a four—byte address part. In pass two, having made this decision, it is
now forced to honour it and keep the instruction large, so the code generated in this case is not as

small as it could have been. This problem can be solved by defifised before using it, or by
forcing byte size in the effective address by codliiyge ebx+offset]

Note that use of theOn switch (with n>=2) makes some of the above no longer truesgssmn
2.1.16.

3.9 Local Labels

NASM gives special treatment to symbols beginning wigeraod. A label beginning with a single
period is treated aslacal label, which means that it is associated with the previous non-local label.
So, for example:

labell ; some code

Joop
; some more code
jne .loop
ret

label2 ; some code

Jloop
: some more code
jne .loop
ret

In the above code fragment, ealXE instruction jumps to the line immediately before it, because
the two definitions ofloop are kept separate by virtue of each being associated with the previous
non-local label.

This form of local label handling is borrowed from the old Amiga assenfildePac; however,
NASM goes one step further, in allowing access to local labels from other parts of the code. This is
achieved by means afefining a local label in terms of the previous non-local label: the first
definition of .loop above is really defining a symbol callémbell.loop , and the second
defines a symbol callddbel2.loop . So, if you really needed to, you could write

label3 ; some more code
: and some more

jmp labell.loop

Sometimes it is useful — in a macro, for instance — to be able to define a label which can be
referenced from anywhere but which doesn't interfere with the normal local-label mechanism. Such
a label can’t be non-local because it would interfere with subsequent definitions of, and references
to, local labels; and it can’t be local because the macro that defined it wouldn’t know the label’s full
name. NASM therefore introduces a third type of label, which is probably only useful in macro
definitions: if a label begins with thepecial prefix..@ , then it does nothing to the local label
mechanism. So you could code

labell: : a non-local label

Jlocal: ; this is really labell.local
..@@foo: ; this is a special symbol
label2: ; another non-local label
Jocal: ; this is really label2.local

39

40

jmp .. @@foo ; this will jump three lines up

NASM has the capacity to define other special symbols beginning with a double period: for
example,.start is used to specify the entry point in tig output format (sesection 6.2.%

Chapter 4: The NASM Preprocessor

NASM contains a powerfuhacro processor, which supports conditional assembly, multi-level file
inclusion, two forms of macro (single-line and multi-line), and a ‘context stack’ mechanism for
extra macro power. Preprocessor directives all begin viitisign.

The preprocessor collapses all lines which end with a backslash (\) character into a single line. Thus:

%define THIS_VERY_LONG_MACRO_NAME_IS_DEFINED_TO \\
THIS_VALUE

will work like a single—line macro without the backslash—newline sequence.

4.1 Single-Line Macros
4.1.1 The Normal Way: %define

Single-line macros are defined using #define preprocessor directive. The definitions work in
a similar way to C; so you can do things like

%define ctrl Ox1F &
%define param(a,b) ((a)+(a)*(b))

mov byte [param(2,ebx)], ctrl 'D’
which will expand to

mov byte [(2)+(2)*(ebx)], OX1F & 'D’

When the expansion of a single-line macro contains tokens which invoke another macro, the
expansion is performed at invocation time, not at definition time. Thus the code

%define a(x) 1+b(x)
%define b(x) 2*x
mov ax,a(8)

will evaluate in the expected way moov ax,1+2*8 , even though the mactowasn’t defined at
the time of definition of.

Macros defined withodefine are case sensitive: afté¥odefine foo bar , only foo will
expand tdbar : Foo or FOOwill not. By using%idefine instead oRodefine (the ‘I’ stands for
‘insensitive’) you can define all the case variants of a macro at once, Séitledine foo bar
would causdoo , Foo, FOQfOO and so on all to expand bar .

There is a mechanism which detects when a macro call has occurred as a result of a previous
expansion of the same macro, to guard againgilar references and infinite loops. If this happens,
the preprocessor will only expand the first occurrence of the macro. Hence, if you code

%define a(x) 1+a(x)

mov ax,a(3)

the macroa(3) will expand once, becoming+a(3) , and will then expand no further. This
behaviour can be useful: sgection 8.XFor an example of its use.

41

42

You canoverload single-line macros: if you write

%define foo(x) 1+x
%define foo(x,y) 1+x*y

the preprocessor will be able to handle both types of macro call, by counting the parameters you
pass; sdoo(3) will becomel+3 whereasoo(ebx,2) will becomel+ebx*2 . However, if
you define

%define foo bar

then no other definition ofoo will be accepted: a macro with no parameters prohibits the
definition of the same name as a maeith parameters, and vice versa.

This doesn’t prevent single—line macros beiedefined you can perfectly well define a macro with
%define foo bar

and then re—define it later in the same source file with

%define foo baz

Then everywhere the macfoo is invoked, it will be expanded according to the most recent
definition. This is particularly useful when defining single—line macros %#ssign (seesection
4.1.5.

You canpre—define single-line macros using the ‘—d’ option on the NASM command line: see
section 2.1.12

4.1.2 Enhancing %define: %xdefine

To have a reference to an embedded single—line macro resolved at the time that it is embedded, as
opposed to when the calling macro is expanded, you need a different mechanism to the one offered
by %define . The solution is to us¥xdefine , or it's case—insensitive counterp&ixidefine

Suppose you have the following code:

%define isTrue 1
%define isFalse isTrue
%define isTrue 0

vall: db isFalse
%define isTrue 1

val2: db isFalse

In this caseyall is equal to 0, andal2 is equal to 1. This is because, when a single-line macro
is defined using%define , it is expanded only when it is called. AsFalse expands to
isTrue , the expansion will be the current valuasdfrue . The first time it is called that is 0, and
the second time it is 1.

If you wantedisFalse to expand to the value assigned to the embedded nsdote at the
time thatisFalse was defined, you need to change the above code &hxoefine .

%xdefine isTrue 1
%xdefine isFalse isTrue
%xdefine isTrue 0

vall: db isFalse

%xdefine isTrue 1

val2: db isFalse

Now, each time thaisFalse is called, it expands to 1, as that is what the embedded macro
isTrue expanded to at the time thaFalse was defined.

4.1.3 Concatenating Single Line Macro Tokens%o+

Individual tokens in single line macros can be concatenated, to produce longer tokens for later
processing. This can be useful if there are several similar macros that perform similar functions.

As an example, consider the following:
%define BDASTART 400h ; Start of BIOS data area

struc tBIOSDA : its structure
.COM1laddr RESW 1
.COM2addr RESW 1
;..and so on

endstruc

Now, if we need to access the elements of tBIOSDA in different places, we can end up with:

mov ax,BDASTART + tBIOSDA.COM1addr
mov bx,BDASTART + tBIOSDA.COM2addr

This will become pretty ugly (and tedious) if used in many places, and can be reduced in size
significantly by using the following macro:

; Macro to access BIOS variables by their names (from tBDA):
%define BDA(X) BDASTART + tBIOSDA. %+ x
Now the above code can be written as:

mov ax,BDA(COM1laddr)
mov bx,BDA(COM2addr)

Using this feature, we can simplify references to a lot of macros (and, in turn, reduce typing errors).
4.1.4 Undefining macros: %oundef

Single-line macros can be removed with #teindef command. For example, the following
sequence:

%define foo bar
%undef foo
mov eax, foo

will expand to the instructiomov eax, foo , since afteoundef the macrdoo is no longer
defined.

Macros that would otherwise be pre—defined can be undefined on the command-line using the ‘-u’
option on the NASM command line: seection 2.1.13

4.1.5 Preprocessor Variables%oassign

An alternative way to define single—line macros is by means ofdhssign command (and its
case-insensitive counterpa&diassign , which differs from%assign in exactly the same way
that%idefine differs from%define).

43

%assign is used to define single-line macros which take no parameters and have a numeric value.
This value can be specified in the form of an expression, and it will be evaluated once, when the
%assign directive is processed.

Like %define , macros defined usirfpassign can be re—defined later, so you can do things like
%assign i i+1
to increment the numeric value of a macro.

%assign is useful for controlling the termination &frep preprocessor loops: seection 4.5or
an example of this. Another use fassign is given insection 7.4andsection 8.1

The expression passed%eassign is acritical expression (sesection 3.8 and must also evaluate
to a pure number (rather than a relocatable reference such as a code or data address, or anythin
involving a register).

4.2 String Handling in Macros: %strlen and %substr

It's often useful to be able to handle strings in macros. NASM supports two simple string handling
macro operators from which more complex operations can be constructed.

4.2.1 String Length: %strlen

The %strlen macro is liked%assign macro in that it creates (or redefines) a numeric value to a
macro. The difference is that wittbstrlen , the numeric value is the length of a string. An
example of the use of this would be:

%strlen charcnt ‘'my string’

In this examplecharcnt would receive the value 8, just as if @assign had been used. In this
example,’my string’ was a literal string but it could also have been a single-line macro that
expands to a string, as in the following example:

%define sometext 'my string’
%strlen charcnt sometext

As in the first case, this would resultéharcnt being assigned the value of 8.
4.2.2 Sub-strings: %substr

Individual letters in strings can be extracted usigubstr . An example of its use is probably
more useful than the description:

%substr mychar 'xyz' 1 ; equivalent to %define mychar 'x’
%substr mychar 'xyz’' 2 ; equivalent to %define mychar 'y’
%substr mychar 'xyz’ 3 ; equivalent to %define mychar 'z’

In this example, mychar gets the value of 'y’. As witistrlen (seesection 4.2.)}, the first
parameter is the single—line macro to be created and the second is the string. The third parameter
specifies which character is to be selected. Note that the first index is 1, not 0 and the last index is
equal to the value th&strlen would assign given the same string. Index values out of range
result in an empty string.

4.3 Multi-Line Macros: %macro

Multi-line macros are much more like the type of macro seen in MASM and TASM: a multi-line
macro definition in NASM looks something like this.

%macro prologue 1

push ebp

mov ebp,esp
sub esp, %l
%endmacro

This defines a C-like function prologue as a macro: so you would invoke the macro with a call such
as

myfunc: prologue 12
which would expand to the three lines of code

myfunc: push ebp
mov ebp,esp
sub esp,12

The numberl after the macro name in tlémacro line defines the number of parameters the
macroprologue expects to receive. The use%f inside the macro definition refers to the first
parameter to the macro call. With a macro taking more than one parameter, subsequent parameters
would be referred to &2 %3and so on.

Multi-line macros, like single-line macros, arase—sensitive, unless you define them using the
alternative directivéoimacro .

If you need to pass a comma @art of a parameter to a multi-line macro, you can do that by
enclosing the entire parameteriraces. So you could code things like

%macro silly 2

%2:db %1

%endmacro
silly 'a’, letter_a ; letter_a: db’a’
silly "ab’, string_ab ; string_ab: db 'ab’
silly @\{13,10@\}, crlf ;erif: db 13,10

4.3.1 Overloading Multi-Line Macros

As with single-line macros, multi-line macros can be overloaded by defining the same macro name
several times with different numbers of parameters. This time, no exception is made for macros
with no parameters at all. So you could define

%macro prologue 0

push ebp
mov ebp,esp

%endmacro
to define an alternative form of the function prologue which allocates no local stack space.

Sometimes, however, you might want to ‘overload’ a machine instruction; for example, you might
want to define

%macro push 2

push %1
push %2

45

%endmacro
so that you could code

push ebx : this line is not a macro call
push eax,ecx : but this one is

Ordinarily, NASM will give a warning for the first of the above two lines, sipash is now
defined to be a macro, and is being invoked with a number of parameters for which no definition
has been given. The correct code will still be generated, but the assembler will give a warning. This
warning can be disabled by the use of the-macro—params command-line option (sesection

2.1.18.

4.3.2 Macro—Local Labels

NASM allows you to define labels within a multi-line macro definition in such a way as to make
them local to the macro call: so calling the same macro multiple times will use a different label each
time. You do this by prefixingo%to the label name. So you can invent an instruction which
executes ®RETIf the Z flag is set by doing this:

%macro retz 0

jnz %%skip
ret
%%skip:

%endmacro

You can call this macro as many times as you want, and every time you call it NASM will make up
a different ‘real’ name to substitute for the laB&¥oskip. The names NASM invents are of the
form ..@2345.skip , where the number 2345 changes with every macro call...@eprefix
prevents macro-local labels from interfering with the local label mechanism, as descsbetian

3.9 You should avoid defining your own labels in this form (i@ prefix, then a number, then
another period) in case they interfere with macro-local labels.

4.3.3 Greedy Macro Parameters

Occasionally it is useful to define a macro which lumps its entire command line into one parameter
definition, possibly after extracting one or two smaller parameters from the front. An example

might be a macro to write a text string to a file in MS-DOS, where you might want to be able to

write

writefile [filehandle],"hello, world",13,10

NASM allows you to define the last parameter of a macro gréedy meaning that if you invoke
the macro with more parameters than it expects, all the spare parameters get lumped into the last
defined one along with the separating commas. So if you code:

%macro writefile 2+

jmp %%endstr
%%ostr: db %2
%%endstr:

mov dx,%%str

mov cX,%%endstr—%%str

mov bx,%1

mov ah,0x40

int 0x21

%endmacro

then the example call toritefile above will work as expected: the text before the first comma,
[filehandle] , is used as the first macro parameter and expanded%hereferred to, and all
the subsequent text is lumped ift@and placed after thib.

The greedy nature of the macro is indicated to NASM by the use of $iyn after the parameter
count on thé¯o line.

If you define a greedy macro, you are effectively telling NASM how it should expand the macro
given any number of parameters from the actual number specified up to infinity; in this case, for

example, NASM now knows what to do when it sees a callritefile with 2, 3, 4 or more
parameters. NASM will take this into account when overloading macros, and will not allow you to
define another form ofritefile taking 4 parameters (for example).

Of course, the above macro could have been implemented as a non—-greedy macro, in which case
the call to it would have had to look like

writefile [filehandle], @\{"hello, world",13,10@\}

NASM provides both mechanisms for puttiogmmas in macro parameters, and you choose which
one you prefer for each macro definition.

Seesection 5.2.Xor a better way to write the above macro.
4.3.4 Default Macro Parameters

NASM also allows you to define a multi-line macro withaage of allowable parameter counts. If
you do this, you can specify defaults onitted parameters. So, for example:

%macro die 0—-1 "Painful program death has occurred."

writefile 2,%1
mov ax,0x4c01
int 0x21

%endmacro

This macro (which makes use of theitefile macro defined irsection 4.3.B can be called

with an explicit error message, which it will display on the error output stream before exiting, or it
can be called with no parameters, in which case it will use the default error message supplied in the
macro definition.

In general, you supply a minimum and maximum number of parameters for a macro of this type; the
minimum number of parameters are then required in the macro call, and then you provide defaults
for the optional ones. So if a macro definition began with the line

%macro foobar 1-3 eax,[ebx+2]

then it could be called with between one and three parameter¥lamduld always be taken from
the macro call%?2 if not specified by the macro call, would defauletx , and%3if not specified
would default tgebx+2]

You may omit parameter defaults from the macro definition, in which case the parameter default is
taken to be blank. This can be useful for macros which can take a variable number of parameters,
since the%o0token (seesection 4.3.pallows you to determine how many parameters were really
passed to the macro call.

47

This defaulting mechanism can be combined with the greedy—parameter mechanismgliso the
macro above could be made more powerful, and more useful, by changing the first line of the
definition to

%macro die 0—1+ "Painful program death has occurred.",13,10

The maximum parameter count can be infinite, denoted Iy this case, of course, it is impossible
to provide dull set of default parameters. Examples of this usage are sheection 4.3.6

4.3.5 %0Q Macro Parameter Counter

For a macro which can take a variable number of parameters, the parameter rét®wilicesturn

a numeric constant giving the number of parameters passed to the macro. This can be used as ar
argument to%rep (seesection 4.% in order to iterate through all the parameters of a macro.
Examples are given igection 4.3.6

4.3.6 %rotate : Rotating Macro Parameters

Unix shell programmers will be familiar with thehift shell command, which allows the
arguments passed to a shell script (referencéil a$2 and so on) to be moved left by one place,
so that the argument previously referenced$asbecomes available &l, and the argument
previously referenced & is no longer available at all.

NASM provides a similar mechanism, in the form%fotate . As its name suggests, it differs
from the Unixshift in that no parameters are lost: parameters rotated off the left end of the
argument list reappear on the right, and vice versa.

%rotate is invoked with a single numeric argument (which may be an expression). The macro
parameters are rotated to the left by that many places. If the arguniérdtiade is negative, the
macro parameters are rotated to the right.

So a pair of macros to save and restore a set of registers might work as follows:
%macro multipush 1-*

%rep %0
push %1

%rotate 1

%endrep

%endmacro

This macro invokes thPUSHinstruction on each of its arguments in turn, from left to right. It
begins by pushing its first argumeft], then invokesdbrotate to move all the arguments one
place to the left, so that the original second argument is now availal8fel aRepeating this
procedure as many times as there were arguments (achieved by supfdasgthe argument to
%rep) causes each argument in turn to be pushed.

Note also the use df as the maximum parameter count, indicating that there is no upper limit on
the number of parameters you may supply tatth#tipush macro.

It would be convenient, when using this macro, to haP®©Requivalent, whictdidn’t require the
arguments to be given in reverse order. Ideally, you would writenthépoush macro call, then
cut—and—-paste the line to where the pop needed to be done, and change the name of the callec
macro tomultipop , and the macro would take care of popping the registers in the opposite order
from the one in which they were pushed.

This can be done by the following definition:

%macro multipop 1-*

%rep %0

%rotate -1
pop %l

%endrep

%endmacro

This macro begins by rotating its arguments one place taghie so that the origindhst argument
appears a%2l This is then popped, and the arguments are rotated right again, so the second-to—-last
argument becomeé®1 Thus the arguments are iterated through in reverse order.

4.3.7 Concatenating Macro Parameters

NASM can concatenate macro parameters on to other text surrounding them. This allows you to
declare a family of symbols, for example, in a macro definition. If, for example, you wanted to
generate a table of key codes along with offsets into the table, you could code something like

%macro keytab_entry 2

keypos%l equ $-keytab
db %2

%endmacro

keytab:
keytab_entry F1,128+1
keytab_entry F2,128+2
keytab_entry Return,13

which would expand to

keytab:

keyposF1 equ $-keytab
db 128+1

keyposF2 equ $—keytab
db 128+2

keyposReturn equ $-keytab
do 13

You can just as easily concatenate text on to the other end of a macro parameter, byodfiting

If you need to append @igit to a macro parameter, for example defining labmtd andfoo2
when passed the parameteo , you can't codéoll because that would be taken as the eleventh
macro parameter. Instead, you must c&dé}1l , which will separate the firgt (giving the number

of the macro parameter) from the second (literal text to be concatenated to the parameter).

This concatenation can also be applied to other preprocessor in—-line objects, such as macro-local
labels 6ection 4.3.2and context-local labelséction 4.7.2 In all cases, ambiguities in syntax can

be resolved by enclosing everything after #esign and before the literal text in braces: so
%{%foo}bar concatenates the teklir to the end of the real name of the macro—local label
%%foo. (This is unnecessary, since the form NASM uses for the real names of macro-local labels
means that the two usag#g%foolbar and%%foobar would both expand to the same thing
anyway; nevertheless, the capability is there.)

49

4.3.8 Condition Codes as Macro Parameters

NASM can give special treatment to a macro parameter which contains a condition code. For a
start, you can refer to the macro paramétdrby means of the alternative synt8é+1, which

informs NASM that this macro parameter is supposed to contain a condition code, and will cause
the preprocessor to report an error message if the macro is called with a parameter mdtieh is
valid condition code.

Far more usefully, though, you can refer to the macro parameter by me#nd, affhich NASM
will expand as thénversecondition code. So theetz macro defined irsection 4.3.2can be
replaced by a generabnditional-return macro like this:

%macro retc 1

j%-1 %%skip
ret
%%skip:

%endmacro

This macro can now be invoked using calls lig&e ne , which will cause the conditional-jump
instruction in the macro expansion to come oufasor retc po which will make the jump a
JPE.

The %+1 macro—parameter reference is quite happy to interpret the argu@Xatsnd ECXZas
valid condition codes; howeve®—1 will report an error if passed either of these, because no
inverse condition code exists.

4.3.9 Disabling Listing Expansion

When NASM is generating a listing file from your program, it will generally expand multi-line
macros by means of writing the macro call and then listing each line of the expansion. This allows
you to see which instructions in the macro expansion are generating what code; however, for some
macros this clutters the listing up unnecessarily.

NASM therefore provides thaolist qualifier, which you can include in a macro definition to
inhibit the expansion of the macro in the listing file. Thelist qualifier comes directly after
the number of parameters, like this:

%macro foo 1.nolist
Or like this:
%macro bar 1-5+.nolist a,b,c,d,e,f,g,h

4.4 Conditional Assembly

Similarly to the C preprocessor, NASM allows sections of a source file to be assembled only if
certain conditions are met. The general syntax of this feature looks like this:

%if<condition>

; some code which only appears if <condition> is met
%elif<condition2>

; only appears if <condition> is not met but <condition2> is
%else

; this appears if neither <condition> nor <condition2> was met
%endif

The%else clause is optional, as is tB&elif clause. You can have more than ébelif clause
as well.

4.4.1 %ifdef : Testing Single-Line Macro Existence

Beginning a conditional-assembly block with the libGifdef MACRO will assemble the
subsequent code if, and only if, a single-line macro calddCROs defined. If not, then the
%elif and%else blocks (if any) will be processed instead.

For example, when debugging a program, you might want to write code such as

; perform some function
%ifdef DEBUG

writefile 2,"Function performed successfully”,13,10
%endif

; go and do something else

Then you could use the command-line opt@DEBUGt0 create a version of the program which
produced debugging messages, and remove the option to generate the final release version of the
program.

You can test for a macnoot being defined by usingpifndef instead ofsifdef . You can also
test for macro definitions i%oelif blocks by usingoelifdef and%elifndef

4.4.2 ifmacro : Testing Multi-Line Macro Existence

The %ifmacro directive operates in the same way as%ifelef directive, except that it checks
for the existence of a multi-line macro.

For example, you may be working with a large project and not have control over the macros in a
library. You may want to create a macro with one name if it doesn't already exist, and another name
if one with that name does exist.

The %ifmacro is considered true if defining a macro with the given name and number of
arguments would cause a definitions conflict. For example:

%ifmacro MyMacro 1-3
%error "MyMacro 1-3" causes a conflict with an existing macro.
%else
%macro MyMacro 1-3
: insert code to define the macro
%endmacro

%endif

This will create the macro "MyMacro 1-3" if no macro already exists which would conflict with it,
and emits a warning if there would be a definition conflict.

You can test for the macro not existing by using t#h#dnmacro instead of%ifmacro .
Additional tests can be performeddeelif blocks by usingoelifmacro and%elifnmacro

4.4.3 %ifctx : Testing the Context Stack

The conditional-assembly construifctx ctxname will cause the subsequent code to be
assembled if and only if the top context on the preprocessor’s context stack has the name
ctxname . As with %ifdef , the inverse andoelif forms %ifnctx , %elifctx and
%elifnctx are also supported.

51

For more details of the context stack, seetion 4.7 For a sample use @bifctx , seesection
4.7.5

4.4.4 %if : Testing Arbitrary Numeric Expressions

The conditional-assembly constr®if expr will cause the subsequent code to be assembled if
and only if the value of the numeric expressempr is non-zero. An example of the use of this
feature is in deciding when to break out cfoeep preprocessor loop: seection 4.5or a detailed
example.

The expression given &if , and its counterpagbelif , is a critical expression (ssection 3.3

%if extends the normal NASM expression syntax, by providing a setational operators which

are not normally available in expressions. The operators, >, <=, >= and <> test equality,
less—than, greater—than, less—or—equal, greater—or—equal and not-equal respectively. The C-like
forms== and!= are supported as alternative forms=odnd<>. In addition, low—priority logical
operatork& ™ and|| are provided, supplyinipgical AND, logical XOR andogical OR. These

work like the C logical operators (although C has no logical XOR), in that they always return either
0 or 1, and treat any non-zero input as 1 (so“thatfor example, returns 1 if exactly one of its
inputs is zero, and O otherwise). The relational operators also return 1 for true and O for false.

4.4.5 %ifidn and %ifidni : Testing Exact Text Identity

The construc®oifidn textl,text2 will cause the subsequent code to be assembled if and
only if textl andtext2 , after expanding single-line macros, are identical pieces of text.
Differences in white space are not counted.

%ifidni is similar to%ifidn , but iscase—insensitive.

For example, the following macro pushes a register or number on the stack, and allows you to treat
IP as areal register:

%macro pushparam 1

%ifidni %1,ip

call %%label
%%label:
%else

push %1
%endif

%endmacro

Like most other%if constructs,%ifidn has a counterpadoeelifidn , and negative forms
%ifnidn and%elifnidn . Similarly, %ifidni has counterparelifidni , %ifnidni and
%elifnidni

4.4.6 %ifid , %ifnum , %ifstr : Testing Token Types

Some macros will want to perform different tasks depending on whether they are passed a number,
a string, or an identifier. For example, a string output macro might want to be able to cope with
being passed either a string constant or a pointer to an existing string.

The conditional assembly constr@étfid , taking one parameter (which may be blank), assembles
the subsequent code if and only if the first token in the parameter exists and is an identifier.
%ifnum works similarly, but tests for the token being a numeric constaifistr tests for it

being a string.

For example, thevritefile macro defined irsection 4.3.3an be extended to take advantage of
%ifstr in the following fashion:

%macro writefile 2—-3+

%ifstr %2
jmp %%endstr
%if %0 = 3
%%str: db %2,%3
%else
%%str: db %2
%endif
%%endstr: mov dx,%%str
mov cx,%%endstr—%%str
%else
mov dx,%2
mov ¢x,%3
%endif
mov bx,%1
mov ah,0x40

int 0x21
%endmacro
Then thewritefile macro can cope with being called in either of the following two ways:

writefile [file], strpointer, length
writefile [file], "hello”, 13, 10

In the first, strpointer is used as the address of an already—declared strindemgtth is
used as its length; in the second, a string is given to the macro, which therefore declares it itself and
works out the address and length for itself.

Note the use oftif inside the%ifstr : this is to detect whether the macro was passed two
arguments (so the string would be a single string constantaf6R would be adequate) or more
(in which case, all but the first two would be lumped together d®oanddb %2,%3 would be
required).

The usuabkoelifXXX , %ifnXXX and%elifnXXX versions exist for each &bifid , %ifnum
and%ifstr

4.4.7 %error : Reporting User—Defined Errors

The preprocessor directividerror will cause NASM to report an error if it occurs in assembled
code. So if other users are going to try to assemble your source files, you can ensure that they define
the right macros by means of code like this:

%ifdef SOME_MACRO
; do some setup
%elifdef SOME_OTHER_MACRO
; do some different setup
%else
%error Neither SOME_MACRO nor SOME_OTHER_MACRO was defined.
%endif

Then any user who fails to understand the way your code is supposed to be assembled will be
quickly warned of their mistake, rather than having to wait until the program crashes on being run
and then not knowing what went wrong.

53

4.5 Preprocessor Loops %rep

NASM'’s TIMES prefix, though useful, cannot be used to invoke a multi-line macro multiple times,
because it is processed by NASM after macros have already been expanded. Therefore NASM
provides another form of loop, this time at the preprocessor Bvep.

The directiveorep and%endrep (%orep takes a numeric argument, which can be an expression;
%endrep takes no arguments) can be used to enclose a chunk of code, which is then replicated as
many times as specified by the preprocessor:

%assign i 0
Y%rep 64
inc word [table+2*i]
%assign i i+1
%endrep

This will generate a sequence of BMC instructions, incrementing every word of memory from
[table] to [table+126]

For more complex termination conditions, or to break out of a repeat loop part way along, you can
use théoexitrep directive to terminate the loop, like this:

fibonacci:
%assign i 0
%assign j 1
%rep 100
%if j > 65535

%exitrep
%endif

dw j

%assign k j+i
%assign i j
%assign j k
%endrep

fib_number equ ($-fibonacci)/2

This produces a list of all the Fibonacci numbers that will fit in 16 bits. Note that a maximum repeat
count must still be given téorep. This is to prevent the possibility of NASM getting into an
infinite loop in the preprocessor, which (on multitasking or multi—user systems) would typically
cause all the system memory to be gradually used up and other applications to start crashing.

4.6 Including Other Files

Using, once again, a very similar syntax to the C preprocessor, NASM’s preprocessor lets you
include other source files into your code. This is done by the use %fitiobude directive:

%include "macros.mac"

will include the contents of the filmacros.mac into the source file containing tBéinclude
directive.

Include files aresearched for in the current directory (the directory you're in when you run NASM,
as opposed to the location of the NASM executable or the location of the source file), plus any
directories specified on the NASM command line using-th@ption.

The standard C idiom for preventing a file being included more than once is just as applicable in
NASM: if the file macros.mac has the form

%ifndef MACROS_MAC
%define MACROS_MAC
; now define some macros
%endif

then including the file more than once will not cause errors, because the second time the file is
included nothing will happen because the maACROS MAMI already be defined.

You can force a file to be included even if there i9iaclude directive that explicitly includes
it, by using the-p option on the NASM command line (ssection 2.1.11

4.7 The Context Stack

Having labels that are local to a macro definition is sometimes not quite powerful enough:
sometimes you want to be able to share labels between several macro calls. An example might be a
REPEAT... UNTIL loop, in which the expansion of tiREPEATmMacro would need to be able to

refer to a label which theJNTIL macro had defined. However, for such a macro you would also
want to be able to nest these loops.

NASM provides this level of power by means afantext stackThe preprocessor maintains a stack

of contexts each of which is characterised by a name. You add a nhew context to the stack using the
%push directive, and remove one usifgpop. You can define labels that are local to a particular
context on the stack.

4.7.1 %push and %pop Creating and Removing Contexts

The %push directive is used to create a new context and place it on the top of the context stack.
%push requires one argument, which is the name of the context. For example:

%push foobar

This pushes a new context calliedbar on the stack. You can have several contexts on the stack
with the same name: they can still be distinguished.

The directive%pop, requiring no arguments, removes the top context from the context stack and
destroys it, along with any labels associated with it.

4.7.2 Context—Local Labels

Just as the usagé%foo defines a label which is local to the particular macro call in which it is
used, the usag®&$foo is used to define a label which is local to the context on the top of the
context stack. So tiREPEATandUNTIL example given above could be implemented by means of:

%macro repeat O

%push repeat
%3$begin:

%endmacro
%macro until 1

j%-1 %3$begin
%pop

%endmacro
and invoked by means of, for example,

55

mov cx,string
repeat

add cx,3
scasb

until e

which would scan every fourth byte of a string in search of the byk.in

If you need to define, or access, labels local to the cohtdatvthe top one on the stack, you can
use%sfoo, or%$$$foo for the context below that, and so on.

4.7.3 Context-Local Single-Line Macros

NASM also allows you to define single—line macros which are local to a particular context, in just
the same way:

%define %3$localmac 3

will define the single-line macrée$localmac to be local to the top context on the stack. Of
course, after a subsequéfpush, it can then still be accessed by the nda$$localmac .

4.7.4 %repl : Renaming a Context

If you need to change the name of the top context on the stack (in order, for example, to have it
respond differently t@sifctx), you can execute #pop followed by a%push; but this will have
the side effect of destroying all context—local labels and macros associated with the context that was

just popped.

NASM provides the directivéerepl , which replacesa context with a different name, without
touching the associated macros and labels. So you could replace the destructive code

%pop
%push newname

with the non—destructive versiéfrepl newname .

4.7.5 Example Use of theContext Stack: Block IFs

This example makes use of almost all the context-stack features, including the
conditional-assembly construittifctx , to implement a block IF statement as a set of macros.

%macro if 1

%push if
j%-1 %S$ifnot

%endmacro
%macro else 0

%ifctx if

%repl else

jmp %$%ifend

%3S$ifnot:
%else

%error "expected ‘if before ‘else™
%endif

%endmacro

%macro endif O

%ifctx if
%3$ifnot:
%pop
Y%elifctx else
%$ifend:
%pop
Y%else
%error "expected ‘if’ or ‘else’ before ‘endif™
%endif

%endmacro

This code is more robust than tREPEATandUNTIL macros given irsection 4.7.2because it
uses conditional assembly to check that the macros are issued in the right order (for example, not
callingendif beforeif) and issues %error if they're not.

In addition, theendif macro has to be able to cope with the two distinct cases of either directly
following anif , or following anelse . It achieves this, again, by using conditional assembly to do
different things depending on whether the context on top of the stéckoiselse .

Theelse macro has to preserve the context on the stack, in order to haX$ifhet referred to
by theif macro be the same as the one defined byetidf macro, but has to change the
context’s name so thandif will know there was an intervenirglse . It does this by the use of
%repl .

A sample usage of these macros might look like:
cmp ax,bx

if ae
cmp bx,cx
if ae
mov ax,cx
else
mov ax,bx
endif
else
cmp ax,cx
if ae
_mov ax,cx
endif
endif

The block+F macros handle nesting quite happily, by means of pushing another context,
describing the inneif , on top of the one describing the oufer, thuselse andendif always
refer to the last unmatché&d orelse .

57

4.8 Standard Macros

NASM defines a set of standard macros, which are already defined when it starts to process any
source file. If you really need a program to be assembled with no pre—defined macros, you can use
the%oclear directive to empty the preprocessor of everything.

Most user-level assembler directives (sd®apter % are implemented as macros which invoke
primitive directives; these are describectiapter 5The rest of the standard macro set is described
here.

4.8.1 _ NASM_MAJOR_, NASM_MINOR_, _ NASM_SUBMINOR__ and
—__NASM PATCHLEVEL - NASM Version

The single-line macros NASM_MAJOR_, NASM_MINOR_ , NASM_SUBMINOR_and
___NASM_PATCHLEVEL__expand to the me major, minor, subminor and patch level parts of the
version number of NASM being used. So, under NASM 0.98. 32pl for example,
__NASM_MAJOR__would be defined to be 0, NASM_MINOR__would be defined as 98,
NASM_SUBMINOR_ would be defined to 32 and _NASM_PATCHLEVEL__ would be
defined as 1.

4.8.2 __NASM_VERSION_ID_: NASM Version ID

The single-line macro NASM_VERSION_ID__expands to a dword integer representing the full
version number of the version of nasm being used. The value is the equivalent to
__NASM_MAJOR_, NASM_MINOR_,_ NASM_SUBMINOR and

NASM PATCHLEVEL concatenated to produce a single doubleword. Hence, for 0.98.32p1,
the returned number would be equivalent to:

dd 0x00622001
or
db 1,32,98,0

Note that the above lines are generate exactly the same code, the second line is used just to give al
indication of the order that the separate values will be present in memory.

4.8.3 __NASM_VER_: NASM Version string

The single-line macro_NASM_VER__expands to a string which defines the version number of
nasm being used. So, under NASM 0.98.32 for example,

db _ NASM_VER__
would expand to
db "0.98.32"

484 FILE__ and__LINE__ : File Name and Line Number

Like the C preprocessor, NASM allows the user to find out the file name and line number
containing the current instruction. The macrdFILE__ expands to a string constant giving the
name of the current input file (which may change through the course of assehclifide
directives are used), and LINE___ expands to a numeric constant giving the current line number
in the input file.

These macros could be used, for example, to communicate debugging information to a macro, since
invoking__LINE__ inside a macro definition (either single—line or multi-line) will return the line
number of the macroeall, rather thardefinition So to determine where in a piece of code a crash is
occurring, for example, one could write a routsti#ihere , which is passed a line number in
EAXand outputs something like ‘line 155: still here’. You could then write a macro

%macro notdeadyet 0

push eax

mov eax, LINE
call stillhere

pop eax

%endmacro
and then pepper your code with calls)ideadyet until you find the crash point.
4.8.5 STRUCand ENDSTRUCDeclaring Structure Data Types

The core of NASM contains no intrinsic means of defining data structures; instead, the preprocessor
is sufficiently powerful that data structures can be implemented as a set of macros. The macros
STRUCandENDSTRU@re used to define a structure data type.

STRUCtakes one parameter, which is the name of the data type. This hame is defined as a symbol
with the value zero, and also has the suffsize appended to it and is then defined asEqU

giving the size of the structure. On8&RUChas been issued, you are defining the structure, and
should define fields using tHRESBfamily of pseudo-instructions, and then invdkdDSTRUGo

finish the definition.

For example, to define a structure callegtype containing a longword, a word, a byte and a
string of bytes, you might code

struc mytype

mt_long: resd 1
mt word: resw 1
mt_byte: resb 1
mt_str: resb 32

endstruc

The above code defines six symbats: long as 0 (the offset from the beginning ofrgitype
structure to the longword fieldimt word as 4mt_byte as 6,mt_str as 7,mytype_size as
39, andmytype itself as zero.

The reason why the structure type name is defined at zero is a side effect of allowing structures to
work with the local label mechanism: if your structure members tend to have the same names in
more than one structure, you can define the above structure like this:

struc mytype

long: resd 1

.word: resw 1

.byte: resb 1

.str: resb 32
endstruc

This defines the offsets to the structure fieldsngtype.long , mytype.word , mytype.byte
andmytype.str

NASM, since it has nintrinsic structure support, does not support any form of period notation to
refer to the elements of a structure once you have one (except the above local-label notation), so
code such amov ax,[mystruc.mt_word] is not valid.mt_word is a constant just like any

59

other constant, so the correct syntax imov ax,[mystruc+mt_word] or
mov ax,[mystruc+mytype.word]

4.8.6 ISTRUC, AT and IEND: Declaring Instances of Structures

Having defined a structure type, the next thing you typically want to do is to declare instances of
that structure in your data segment. NASM provides an easy way to do this ISTIR&C
mechanism. To declare a structure of typgype in a program, you code something like this:

mystruc:
istruc mytype

atmt_long, dd 123456

at mt_word, dw 1024

atmt_byte,db X

at mt_str, db 'hello, world’, 13, 10, O

iend

The function of theAT macro is to make use of tA&MES prefix to advance the assembly position

to the correct point for the specified structure field, and then to declare the specified data. Therefore
the structure fields must be declared in the same order as they were specified in the structure
definition.

If the data to go in a structure field requires more than one source line to specify, the remaining
source lines can easily come after &¥eline. For example:

atmt_str, db 123,134,145,156,167,178,189
db 190,100,0

Depending on personal taste, you can also omit the code partAf time completely, and start the
structure field on the next line:

at mt_str
db 'hello, world’
db 13,10,0

4.8.7 ALIGN and ALIGNB: Data Alignment

The ALIGN and ALIGNB macros provides a convenient way to align code or data on a word,
longword, paragraph or other boundary. (Some assemblers call this dilEe¢&M) The syntax of
the ALIGN andALIGNB macros is

align 4 ; align on 4-byte boundary

align 16 ; align on 16-byte boundary
align 8,db 0 ; pad with Os rather than NOPs
align 4,resb 1 ; align to 4 in the BSS

alignb 4 ; equivalent to previous line

Both macros require their first argument to be a power of two; they both compute the number of
additional bytes required to bring the length of the current section up to a multiple of that power of
two, and then apply thEIMES prefix to their second argument to perform the alignment.

If the second argument is not specified, the defaulAfdGN is NOR and the default foALIGNB

is RESB 1. So if the second argument is specified, the two macros are equivalent. Normally, you
can just usALIGN in code and data sections aAHIGNB in BSS sections, and never need the
second argument except for special purposes.

ALIGN and ALIGNB, being simple macros, perform no error checking: they cannot warn you if
their first argument fails to be a power of two, or if their second argument generates more than one
byte of code. In each of these cases they will silently do the wrong thing.

ALIGNB (or ALIGN with a second argument RESB 1) can be used within structure definitions:
struc mytype2

mt_byte:
resb 1
alignb 2
mt_word:
resw 1
alignb 4
mt_long:
resd 1
mt_str:
resh 32

endstruc

This will ensure that the structure members are sensibly aligned relative to the base of the structure.

A final caveat ALIGN andALIGNB work relative to the beginning of tlsection not the beginning

of the address space in the final executable. Aligning to a 16-byte boundary when the section
you'’re in is only guaranteed to be aligned to a 4-byte boundary, for example, is a waste of effort.

Again, NASM does not check that the section’s alignment characteristics are sensible for the use of
ALIGN or ALIGNB.

4.9 TASM Compatible Preprocessor Directives

The following preprocessor directives may only be used when TASM compatibility is turned on
using the-t command line switch (This switch is describeddation 2.1.1J

* %arg (seesection 4.9.1

e Opstacksize (seesection 4.9.p

¢ %local (seesection 4.9.3
4.9.1 %arg Directive

The %arg directive is used to simplify the handling of parameters passed on the stack. Stack based
parameter passing is used by many high level languages, including C, C++ and Pascal.

While NASM comes with macros which attempt to duplicate this functionality qsetion 7.4.5
the syntax is not particularly convenient to use and is not TASM compatible. Here is an example
which shows the use &barg without any external macros:

some_function:
%push mycontext ; save the current context
%stacksize large ; tell NASM to use bp
%arg i:word, |_ptr:word

mov ax,|[i]

mov bx,[j_ptr]
add ax,[bx]
ret

61

%pop ; restore original context

This is similar to the procedure definedsiection 7.4.5and adds the value in i to the value pointed
to by j_ptr and returns the sum in the ax register.see@on 4.7.%or an explanation gbush and
pop and the use of context stacks.

4.9.2 %stacksize Directive

The %stacksize directive is used in conjunction with tléarg (seesection 4.9.1 and the
%local (seesection 4.9.Bdirectives. It tells NASM the default size to use for subsequemy
and%local directives. Thébstacksize directive takes one required argument which is one of
flat ,large orsmall .

%stacksize flat

This form causes NASM to use stack—based parameter addressing relainye and it assumes
that a near form of call was used to get to this label (i.eethats on the stack).

%stacksize large

This form usedp to do stack—-based parameter addressing and assumes that a far form of call was
used to get to this address (i.e. tipatandcs are on the stack).

%stacksize small

This form also usebp to address stack parameters, but it is different fiange because it also
assumes that the old value of bp is pushed onto the stack (i.e. it exp&®NJ BRinstruction). In
other words, it expects thhp, ip andcs are on the top of the stack, underneath any local space
which may have been allocated BNTER This form is probably most useful when used in
combination with théslocal directive (seeection 4.9.8

4.9.3 %local Directive

The %local directive is used to simplify the use of local temporary stack variables allocated in a
stack frame. Automatic local variables in C are an example of this kind of variablésldbal
directive is most useful when used with thetacksize (seesection 4.9.2and is also compatible

with the %arg directive (seesection 4.9.1 It allows simplified reference to variables on the stack
which have been allocated typically by using BBRETERinstruction (seesection B.4.65for a
description of that instruction). An example of its use is the following:

silly_swap:
%push mycontext ; save the current context
%stacksize small ; tell NASM to use bp
%assign %$localsize 0 ; see text for explanation

%local old_ax:word, old_dx:word

enter %$%localsize,0 ; see text for explanation
mov [old _ax],ax ;swap ax & bx

mov [old_dx],dx ;and swap dx & cx

mov ax,bx

mov dx,cx

mov bx,[old_ax]

mov cx,[old_dx]

leave ; restore old bp

ret ;

%pop ; restore original context

The %$localsize variable is used internally by thlocal directive andmustbe defined
within the current context before tB&local directive may be used. Failure to do so will result in
one expression syntax error for ea¥flocal variable declared. It then may be used in the
construction of an appropriately sized ENTER instruction as shown in the example.

4.10 Other Preprocessor Directives

NASM also has preprocessor directives which allow access to information from external sources.
Currently they include:

The following preprocessor directive is supported to allow NASM to correctly handle output of the
cpp C language preprocessor.

* %line enables NAsM to correctly handle the output of the cpp C language preprocessor (see
section 4.10.1

* 9! enables NASM to read in the value of an environment variable, which can then be used in
your program (sesection 4.10.p

4.10.1 %line Directive

The %line directive is used to notify NASM that the input line corresponds to a specific line
number in another file. Typically this other file would be an original source file, with the current
NASM input being the output of a pre—processor. Whime directive allows NASM to output
messages which indicate the line number of the original source file, instead of the file that is being
read by NASM.

This preprocessor directive is not generally of use to programmers, by may be of interest to
preprocessor authors. The usage offiiee preprocessor directive is as follows:

%line nnn[+mmm] [filename]

In this directive,nnn indentifies the line of the original source file which this line corresponds to.
mmnms an optional parameter which specifies a line increment value; each line of the input file read
in is considered to correspond namniines of the original source file. Finallfijename is an
optional parameter which specifies the file name of the original source file.

After reading a%line preprocessor directive, NASM will report all file name and line numbers
relative to the values specified therein.

4.10.2 %!<env> : Read an environment variable.

The %!<env> directive makes it possible to read the value of an environment variable at assembly
time. This could, for example, be used to store the contents of an environment variable into a string,
which could be used at some other point in your code.

For example, suppose that you have an environment vaf&®and you want the contents of
FOOto be embedded in your program. You could do that as follows:

%define FOO %!FOO
%define quote ’

tmpstr db quote FOO quote

At the time of writing, this will generate an "unterminated string" warning at the time of defining
"guote”, and it will add a space before and after the string that is read in. | was unable to find a
simple workaround (although a workaround can be created using a multi-line macro), so | believe
that you will need to either learn how to create more complex macros, or allow for the extra spaces
if you make use of this feature in that way.

63

Chapter 5: Assembler Directives

NASM, though it attempts to avoid the bureaucracy of assemblers like MASM and TASM, is
nevertheless forced to suppoffeavdirectives. These are described in this chapter.

NASM’s directives come in two typesiser—leveldirectives andorimitive directives. Typically,

each directive has a user—level form and a primitive form. In almost all cases, we recommend that
users use the user-level forms of the directives, which are implemented as macros which call the
primitive forms.

Primitive directives are enclosed in square brackets; user—level directives are not.

In addition to the universal directives described in this chapter, each object file format can
optionally supply extra directives in order to control particular features of that file format. These
format—specificdirectives are documented along with the formats that implement thehapter 6

5.1 BITS: Specifying TargetProcessor Mode

The BITS directive specifies whether NASM should generate amtgned to run on a processor
operating in 16-bit mode, or code designed to run on a processor operating in 32—-bit mode. The
syntax isBITS 16 orBITS 32 .

In most cases, you should not need to BEES explicitly. Theaout , coff , elf andwin32

object formats, which are designed for use in 32-bit operating systems, all cause NASM to select
32-bit mode by default. Thebj object format allows you to specify each segment you define as
either USE16 or USE32 and NASM will set its operating mode accordingly, so the use of the
BITS directive is once again unnecessary.

The most likely reason for using tB&TS directive is to write 32-bit code in a flat binary file; this
is because théin output format defaults to 16—bit mode in anticipation of it being used most
frequently to write DOSCOMprograms, DOSSYS device drivers and boot loader software.

You donot need to specifBITS 32 merely in order to use 32-bit instructions in a 16—bit DOS
program; if you do, the assembler will generate incorrect code because it will be writing code
targeted at a 32-bit platform, to be run on a 16-bit one.

When NASM is inBITS 16 state, instructions which use 32-bit data are prefixed with an 0x66
byte, and those referring to 32-bit addresses have an 0x67 preBKI 3n32 state, the reverse is

true: 32-bit instructions require no prefixes, whereas instructions using 16-bit data need an 0x66
and those working on 16-bit addresses need an 0x67.

TheBITS directive has an exactly equivalent primitive fofBITS 16] and[BITS 32] . The
user—level form is a macro which has no function other than to call the primitive form.

Note that the space is neccessBiy,S32 will notwork!
5.1.1 USE16& USE32 Aliases for BITS

The ‘USE16 and ‘USE32 directives can be used in place &ITS 16 ' and ‘BITS 32 ', for
compatibility with other assemblers.

5.2 SECTIONor SEGMENTChanging andDefining Sections

The SECTION directive GSEGMENTs an exactly equivalent synonym) changes which section of
the output file the code you write will be assembled into. In some object file formats, the number

and names of sections are fixed; in others, the user may make up as many as they wish. Hence
SECTIONmay sometimes give an error message, or may define a new section, if you try to switch
to a section that does not (yet) exist.

The Unix object formats, and thiein object format (but seesection 6.1.3 all support the
standardised section namgext , .data and.bss for the code, data and uninitialised—data
sections. Th@bj format, by contrast, does not recognise these section names as being special, and
indeed will strip off the leading period of any section name that has one.

5.2.1 The _ SECT__ Macro

The SECTION directive is unusual in that its user—level form functions differently from its
primitive form. The primitive form[SECTION xyz] , simply switches the current target section
to the one given. The user-level for®RECTION xyz , however, first defines the single-line
macro__ SECT__ to be the primitivd SECTION] directive which it is about to issue, and then
issues it. So the user—level directive

SECTION .text
expands to the two lines

%define _ SECT__ [SECTION .text]
[SECTION .text]

Users may find it useful to make use of this in their own macros. For exampleritisfde
macro defined isection 4.3.2an be usefully rewritten in the following more sophisticated form:

%macro writefile 2+
[section .data]

%%ostr: db %2
%%endstr:

__SECT__

mov dx,%%str

mov ¢X,%%endstr—%%str
mov bx,%1

mov ah,0x40

int 0x21

%endmacro

This form of the macro, once passed a string to output, first switches temporarily to the data section
of the file, using the primitive form of th@ECTION directive so as not to modify SECT . It

then declares its string in the data section, and then invok8&CT _ to switch back to
whicheversection the user was previously working in. It thus avoids the need, in the previous
version of the macro, to includeJ&P instruction to jump over the data, and also does not falil if, in

a complicatedOBJ format module, the user could potentially be assembling the code in any of

several separate code sections.

5.3 ABSOLUTEDefining Absolute Labels

The ABSOLUTEdirective can be thought of as an alternative forrSBCTION it causes the
subsequent code to be directed at no physical section, but at the hypothetical section starting at the
given absolute address. The only instructions you can use in this mode RESBmily.

65

66

ABSOLUTHSs used as follows:
absolute Ox1A
kbuf chr resw 1

kbuf free resw 1
kbuf resw 16

This example describes a section of the PC BIOS data area, at segment address 0x40: the above
code definegbuf _chr to be Ox1Akbuf free to be Ox1C, anddbuf to be Ox1E.

The user-level form oABSOLUTE like that of SECTION redefines the SECT__ macro when
it is invoked.

STRUCandENDSTRUGre defined as macros which u.s##SOLUTHand also SECT_).

ABSOLUTEdoesn’'t have to take an absolute constant as an argument: it can take an expression
(actually, acritical expression: segection 3.8 and it can be a value in a segment. For example, a
TSR can re—use its setup code as run-time BSS like this:

org 100h ; i's a .COM program
jmp setup ; setup code comes last

; the resident part of the TSR goes here
setup:
; how write the code that installs the TSR here

absolute setup

runtimevarl resw 1
runtimevar2 resd 20

tsr_end:

This defines some variables ‘on top of the setup code, so that after the setup has finished running,
the space it took up can be re—used as data storage for the running TSR. The symbol ‘tsr_end’ can
be used to calculate the total size of the part of the TSR that needs to be made resident.

5.4 EXTERN Importing Symbols from Other Modules

EXTERNIs similar to the MASM directiveEXTRNand the C keyworaxtern : it is used to

declare a symbol which is not defined anywhere in the module being assembled, but is assumed to
be defined in some other module and needs to be referred to by this one. Not every object-file
format can support external variables: tie format cannot.

The EXTERN(directive takes as many arguments as you like. Each argument is the name of a
symbol:

extern _printf
extern _sscanf, fscanf

Some object-file formats provide extra features to EXG ERNdirective. In all cases, the extra
features are used by suffixing a colon to the symbol name followed by object-format specific text.
For example, th@bj format allows you to declare that the default segment base of an external
should be the grougigroup by means of the directive

extern _variable:wrt dgroup

The primitive form ofEXTERNdiffers from the user—level form only in that it can take only one
argument at a time: the support for multiple arguments is implemented at the preprocessor level.

You can declare the same variableEBSTERNmore than once: NASM will quietly ignore the
second and later redeclarations. You can’t declare a variaBlEHSRNas well as something else,
though.

5.5 GLOBAL Exporting Symbols to Other Modules

GLOBALis the other end d&XTERN if one module declares a symbolEBSTERNand refers to it,
then in order to prevent linker errors, some other module must acteflhye the symbol and
declare it a&SLOBAL Some assemblers use the nd&hdBLIC for this purpose.

The GLOBALdirective applying to a symbol must appbaforethe definition of the symbol.

GLOBALuses the same syntax BXTERN except that it must refer to symbols whate defined
in the same module as tfed OBALdirective. For example:

global _main
_main;
: some code

GLOBAL like EXTERN allows object formats to define private extensions by means of a colon. The
elf object format, for example, lets you specify whether global data items are functions or data:

global hashlookup:function, hashtable:data

Like EXTERN the primitive form ofGLOBALdiffers from the user—level form only in that it can
take only one argument at a time.

5.6 COMMQDefining Common Data Areas

The COMMONHNirective is used to declaemmmon variablesA common variable is much like a
global variable declared in the uninitialised data section, so that

common intvar 4

is similar in function to
global intvar

section .bss

intvar resd 1

The difference is that if more than one module defines the same common variable, then at link time
those variables will benerged and references timtvar in all modules will point at the same
piece of memory.

Like GLOBALandEXTERN COMMOSUpports object-format specific extensions. For example, the
obj format allows common variables to be NEAR or FAR, andetfie format allows you to
specify the alignment requirements of a common variable:

common commvar 4:near ; works in OBJ
common intarray 100:4 ; works in ELF: 4 byte aligned

Once again, likeeXTERNand GLOBAL. the primitive form ofCOMMOWiffers from the user—level
form only in that it can take only one argument at a time.

5.7 CPU Defining CPU Dependencies

The CPUdirective restricts assembly to those instructions which are available on the specified CPU.

67

68

Options are:

All options are case insensitive. All instructions will be selected only if they apply to the selected

CPU 8086 Assemble only 8086 instruction set

CPU 186 Assemble instructions up to the 80186 instruction set
CPU 286 Assemble instructions up to the 286 instruction set
CPU 386 Assemble instructions up to the 386 instruction set
CPU 486 486 instruction set

CPU 586 Pentium instruction set

CPU PENTIUMSame as 586

CPU 686 P6 instruction set

CPU PPROSame as 686

CPU P2 Same as 686

CPU P3 Pentium Il (Katmai) instruction sets

CPU KATMAI Same as P3

CPU P4 Pentium 4 (Willamette) instruction set

CPU WILLAMETTESame as P4

CPU PRESCOTPrescott instruction set

CPU IA64 1A64 CPU (in x86 mode) instruction set

CPU or lower. By default, all instructions are available.

Chapter 6: Output Formats

NASM is a portable assembler, designed to be able to compile on any ANSI C-supporting platform
and produce output to run on a variety of Intel x86 operating systems. For this reason, it has a large
number of available output formats, selected using—theoption on the NASMcommand line.

Each of these formats, along with its extensions to the base NASM syntax, is detailed in this chapter.

As stated irsection 2.1.LNASM chooses default name for your output file based on the input file
name and the chosen output format. This will be generated by removiegtémsion @sm, .s ,

or whatever you like to use) from the input file name, and substituting an extension defined by the
output format. The extensions are given with each format below.

6.1 bin : Flat—-Form Binary Output

Thebin format does not produce object files: it generates nothing in the output file except the code
you wrote. Such ‘pure binary’ files are used MB-DOS:.COM executables andSYS device
drivers are pure binary files. Pure binary output is also usefdderating system arfabot loader
development.

The bin format supportsnultiple section names. For details of how nasm handles sections in the
bin format, seeection 6.1.3

Using thebin format puts NASM by default into 16—-bit mode (sstion 5.1 In order to use
bin to write 32-bit code such as an OS kernel, you need to explicitly issBEMBe82 directive.

bin has no default output file name extension: instead, it leaves your file name as it is once the
original extension has been removed. Thus, the default is for NASM to asdaniey.asm
into a binary file calledbinprog

6.1.1 ORGBInary File Program Origin

Thebin format provides an additional directive to the list giveshapter 5ORG The function of
the ORGdirective is to specify the origin address which NASM will assume the program begins at
when it is loaded into memory.

For example, the following code will generate the longwi@0000104 :

org 0x100
dd label
label:

Unlike the ORGdirective provided by MASM-compatible assemblers, which allows you to jump
around in the object file and overwrite code you have already generated, NOR@3oes exactly

what the directive saysrigin. Its sole function is to specify one offset which is added to all internal
address references within the section; it does not permit any of the trickery that MASM’s version
does. Sesection 10.1.3or further comments.

6.1.2 bin Extensions to theSECTIONDirective

The bin output format extends tHeECTION (or SEGMEN)Tdirective to allow you to specify the
alignment requirements of segments. This is done by appendidg.t&& qualifier to the end of
the section—definition line. For example,

section .data align=16

69

70

switches to the sectiadata and also specifies that it must be aligned on a 16—byte boundary.

The parameter tALIGN specifies how many low bits of the section start address must be forced to
zero. The alignment value given may be any power of two.

6.1.3 Multisection support for the BIN format.

The bin format allows the use of multiple sections, of arbitrary names, besides the "known"
text ,.data , and.bss names.

» Sections may be designat@dogbits or nobits . Default is progbits (except.bss |,
which defaults taobits , of course).

e Sections can be aligned at a specified boundary following the previous sectialigvith , or
at an arbitrary byte—granular position witart= .

¢ Sections can be given a virtual start address, which will be used for the calculation of all memory
references within that section wiitart=

. Section_s can be _or_dered usilﬁ_g!ows=<section> or vfollows=<section> as an
alternative to specifying an explicit start address.

e Arguments toorg , start , vstart , andalign= are critical expressions. Ssection 3.8E.g.
align=(1 << ALIGN_SHIFT) —ALIGN_SHIFT must be defined before it is used here.

* Any code which comes before an expliGECTION directive is directed by default into the
text section.

» If an ORGstatement is not giveQRG 0is used by default.

« The.bss section will be placed after the lgsogbits section, unlesstart= , vstart=
follows= , orvfollows= has been specified.

« All sections are aligned on dword boundaries, unless a different alignment has been specified.
¢ Sections may not overlap.

¢ Nasm creates thgection.<secname>.start for each section, which may be used in your
code.

6.1.4 Map files

Map files can be generated+f bin format by means of thgnap] option. Map types odll
(default), brief , sections , segments , or symbols may be specified. Output may be
directed to stdout (default), stderr or a specified file. E.g.
[map symbols myfile.map] . No "user form" exists, the square brackets must be used.

6.2 obj : Microsoft OMF Object Files

Theobj file format (NASM calls itobj rather tharomf for historical reasons) is the one produced
by MASM and TASM, which is typically fed to 16—bit DOS linkers to produ&XE files. It is
also the format used [S/2.

obj provides a default output file—name extensiorobf .

obj is not exclusively a 16-bit format, though: NASM has full support for the 32-bit extensions to
the format. In particular, 32—batbj format files are used yorland’s Win32 compilers, instead of
using Microsoft's newewin32 obiject file format.

The obj format does not define any special segment names: you can call your segments anything
you like. Typical names for segmentsoinj format files areCODEDATAandBSS

If your source file contains code before specifying an ex@EiGMENWirective, then NASM will
invent its own segment called NASMDEFSE®r you.

When you define a segment in abj file, NASM defines the segment name as a symbol as well,
so that you can access the segment address of the segment. So, for example:

segment data
dvar: dw 1234

segment code

function:
mov ax,data ; get segment address of data
mov ds,ax ; and move it into DS
inc word [dvar] ; now this reference will work
ret

The obj format also enables the use of BEGand WRToperators, so that you can write code
which does things like

extern foo
mov ax,seg foo ; get preferred segment of foo
mov ds,ax
mov ax,data ; a different segment
mov es,ax
mov ax,[ds:foo] : this accesses ‘foo’

mov [es:foo wrt data],bx ; so does this
6.2.1 obj Extensions to theSEGMENTDirective

The obj output format extends thEEGMENTor SECTION directive to allow you to specify
various properties of the segment you are defining. This is done by appending extra qualifiers to the
end of the segment—definition line. For example,

segment code private align=16

defines the segmenbde , but also declares it to be a private segment, and requires that the portion
of it described in this code module must be aligned on a 16—-byte boundary.

The available qualifiers are:

 PRIVATE, PUBLIC, COMMOMNd STACK specify the combination characteristics of the
segmentPRIVATE segments do not get combined with any others by the lifk&BLIC and
STACKsegments get concatenated together at link timeCadMOBEgments all get overlaid
on top of each other rather than stuck end-to—end.

« ALIGN is used, as shown above, to specify how many low bits of the segment start address must
be forced to zero. The alignment value given may be any power of two from 1 to 4096; in reality,
the only values supported are 1, 2, 4, 16, 256 and 4096, so if 8 is specified it will be rounded up
to 16, and 32, 64 and 128 will all be rounded up to 256, and so on. Note that alignment to
4096-byte boundaries is RharLap extension to the format and may not be supported by all
linkers.

e CLASScan be used to specify the segment class; this feature indicates to the linker that segments
of the same class should be placed near each other in the output file. The class name can be any
word, e.gCLASS=CODE

71

« OVERLAY like CLASS is specified with an arbitrary word as an argument, and provides overlay
information to an overlay—capable linker.

* Segments can be declaredUsSE16 or USE32 which has the effect of recording the choice in
the object file and also ensuring that NASM’s default assembly mode when assembling in that
segment is 16—bit or 32-bit respectively.

* When writingOS/2 obiject files, you should declare 32-bit segmen&LAS, which causes the
default segment base for anything in the segment to be the speciaFylipand also defines
the group if it is not already defined.

« The obj file format also allows segments to be declared as having a pre—defined absolute
segment address, although no linkers are currently known to make sensible use of this feature;
nevertheless, NASM allows you to declare a segment such as
SEGMENT SCREEN ABSOLUTE=0xB800f you need to. TheABSOLUTEand ALIGN
keywords are mutually exclusive.

NASM’s default segment attributes &&BLIC, ALIGN=1, no class, no overlay, aliSE16.
6.2.2 GROUPDefining Groups of Segments

The obj format also allows segments to be grouped, so that a single segment register can be used
to refer to all the segments in a group. NASM therefore suppligSR@URIirective, whereby you
can code

segment data
; some data
segment bss
: some uninitialised data

group dgroup data bss

which will define a group calledgroup to contain the segmendsta andbss . Like SEGMENT
GROURauses the group name to be defined as a symbol, so that you can refer to aveari@ile
the data segment asar wrt data or asvar wrt dgroup , depending on which segment
value is currently in your segment register.

If you just refer tovar , however, andar is declared in a segment which is part of a group, then
NASM will default to giving you the offset ofar from the beginning of thgroup not the
segmentThereforeSEG var , also, will return the group base rather than the segment base.

NASM will allow a segment to be part of more than one group, but will generate a warning if you
do this. Variables declared in a segment which is part of more than one group will default to being
relative to the first group that was defined to contain the segment.

A group does not have to contain any segments; you can still WiRHeeferences to a group which
does not contain the variable you are referring to. OS/2, for example, defines the special group
FLAT with no segments in it.

6.2.3 UPPERCASHDisabling Case Sensitivity in Output

Although NASM itself iscase sensitive, some OMF linkers are not; therefore it can be useful for
NASM to output single—case object files. TAEPPERCASHormat-specific directive causes all
segment, group and symbol names that are written to the object file to be forced to upper case just
before being written. Within a source file, NASM is still case—sensitive; but the object file can be
written entirely in upper case if desired.

UPPERCASES used alone on a line; it requires no parameters.
6.2.4 IMPORT Importing DLL Symbols

The IMPORTformat-specific directive defines a symbol to be imported from a DLL, for use if you
are writing a DLL’simport library in NASM. You still need to declare the symboE26TERNas
well as using th&MPORTdirective.

The IMPORT directive takes two required parameters, separated by white space, which are
(respectively) the name of the symbol you wish to import and the name of the library you wish to
import it from. For example:

import WSAStartup wsock32.dll

A third optional parameter gives the name by which the symbol is known in the library you are
importing it from, in case this is not the same as the name you wish the symbol to be known by to
your code once you have imported it. For example:

import asyncsel wsock32.dll WSAAsyncSelect
6.2.5 EXPORTExporting DLL Symbols

The EXPORTformat—specific directive defines a global symbol to be exported as a DLL symbol,
for use if you are writing a DLL in NASM. You still need to declare the symbGILla8BALas well
as using th&XPORTdirective.

EXPORTtakes one required parameter, which is the name of the symbol you wish to export, as it
was defined in your source file. An optional second parameter (separated by white space from the
first) gives theexternalname of the symbol: the name by which you wish the symbol to be known

to programs using the DLL. If this name is the same as the internal name, you may leave the second
parameter off.

Further parameters can be given to define attributes of the exported symbol. These parameters, like
the second, are separated by white space. If further parameters are given, the external name mus
also be specified, even if it is the same as the internal name. The available attributes are:

» resident indicates that the exported name is to be kept resident by the system loader. This is
an optimisation for frequently used symbols imported by nhame.

e nodata indicates that the exported symbol is a function which does not make use of any
initialised data.

« parm=NNN whereNNNis an integer, sets the number of parameter words for the case in which
the symbol is a call gate between 32-bit and 16-bit segments.

e An attribute which is just a number indicates that the symbol should be exported with an
identifying number (ordinal), and gives the desired number.

For example:

export myfunc

export myfunc TheRealMoreFormalLookingFunctionName
export myfunc myfunc 1234 ; export by ordinal

export myfunc myfunc resident parm=23 nodata

6.2.6 ..start : Defining the Program Entry Point

OMFlinkers require exactly one of the object files being linked to define the program entry point,
where execution will begin when the program is run. If the object file that defines the entry point is
assembled using NASM, you specify the entry point by declaring the special systdndl at

the point where you wish execution to begin.

73

6.2.7 obj Extensions to theEXTERNDiIrective
If you declare an external symbol with the directive
extern foo

then references such awv ax,foo will give you the offset ofoo from its preferred segment
base (as specified in whichever modtde is actually defined in). So to access the contents of
foo you will usually need to do something like

mov ax,seg foo ; get preferred segment base
mov es,ax ; move it into ES
mov ax,[es:foo] ; and use offset ‘foo’ from it

This is a little unwieldy, particularly if you know that an external is going to be accessible from a
given segment or group, sdgroup . So ifDSalready containedgroup , you could simply code

mov ax,[foo wrt dgroup]

However, having to type this every time you want to act@sscan be a pain; so NASM allows
you to declardoo in the alternative form

extern foo:wrt dgroup

This form causes NASM to pretend that the preferred segment bése @ in factdgroup ; so
the expressiorseg foo will now return dgroup , and the expressiofoo is equivalent to
foo wrt dgroup

This default-WRTmechanism can be used to make externals appear to be relative to any group or
segment in your program. It can also be applied to common variablesctien 6.2.8

6.2.8 obj Extensions to theCOMMORDirective

The obj format allows common variables to be either neafar, NASM allows you to specify
which your variables should be by the use of the syntax

common nearvar 2:near ; ‘nearvar’ is a near common
common farvar 10:far ; and ‘farvar’ is far

Far common variables may be greater in size than 64Kb, and so the OMF specification says that
they are declared as a numbee@fmentf a given size. So a 10-byte far common variable could

be declared as ten one-byte elements, five two—byte elements, two five-byte elements or one
ten—byte element.

SomeOMFlinkers require theelement size, as well as the variable size, to match when resolving
common variables declared in more than one module. Therefore NASM must allow you to specify
the element size on your far common variables. This is done by the following syntax:

common c¢_5by2 10:far5 ; two five—byte elements
common c_2by5 10:far 2 ; five two—byte elements

If no element size is specified, the default is 1. Also, RAR keyword is not required when an
element size is specified, since only far commons may have element sizes at all. So the above
declarations could equivalently be

common c¢_5by2 10:5 ; two five—byte elements
common c¢_2by5 10:2 ; five two—byte elements

In addition to these extensions, tl@OMMONMlirective in obj also supports defauNWRT
specification likeEXTERNdJoes (explained isection 6.2.Y. So you can also declare things like

common foo 10:wrt dgroup
common bar 16:far 2:wrt data
common baz 24:wrt data:6

6.3 win32 : Microsoft Win32 Obiject Files

Thewin32 output format generates Microsoft Win32 object files, suitable for passing to Microsoft
linkers such a¥isual C++. Note that Borland Win32 compilers do not use this format, buhjise
instead (sesection 6.2

win32 provides a default output file—name extensiorobf .

Note that although Microsoft say that Win32 object files follow @@FF(Common Object File
Format) standard, the object files produced by Microsoft Win32 compilers are not compatible with
COFF linkers such as DJGPP’s, and vice versa. This is due to a difference of opinion over the
precise semantics of PC-relative relocations. To produce COFF files suitable for DJGPP, use
NASM’s coff output format; conversely, theoff format does not produce object files that
Win32 linkers can generate correct output from.

6.3.1 win32 Extensions to theSECTIONDirective

Like the obj format, win32 allows you to specify additional information on t&&ECTION
directive line, to control the type and properties of sections you declare. Section types and
properties are generated automatically by NASM fordfamdard section namegxt , .data

and.bss , but may still be overridden by these qualifiers.

The available qualifiers are:

e code, or equivalentlytext , defines the section to be a code section. This marks the section as
readable and executable, but not writable, and also indicates to the linker that the type of the
section is code.

e data andbss define the section to be a data section, analogousipde . Data sections are
marked as readable and writable, but not executdbla. declares an initialised data section,
whereadss declares an uninitialised data section.

e rdata declares an initialised data section that is readable but not writable. Microsoft compilers
use this section to place constants in it.

» info defines the section to be arformational section, which is not included in the executable
file by the linker, but may (for example) pass informatiothe linker. For example, declaring an
info —type section calleddrectve causes the linker to interpret the contents of the section as
command-line options.

e align= , used with a trailing number asabj , gives thealignment requirements of the section.
The maximum you may specify is 64: the Win32 object file format contains no means to request
a greater section alignment than this. If alignment is not explicitly specified, the defaults are
16-byte alignment for code sections, 8—byte alignment for rdata sections and 4-byte alignment
for data (and BSS) sections. Informational sections get a default alignment of 1 byte (no
alignment), though the value does not matter.

The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text code align=16
section .data data align=4
section .rdata rdata align=8
section .bss bss align=4

Any other section name is treated by default lileat

75

6.4 coff : Common Object File Format
Thecoff output type produceSOFFobject files suitable for linking with thBJGPP linker.
coff provides a default output file—name extensioroof

The coff format supports the same extensions toSEBE€TION directive asnvin32 does, except
that thealign qualifier and thénfo section type are not supported.

6.5 elf : Executable and Linkable Format Object Files

Theelf output format generatdd_F32 (Executable and Linkable Format) object files, as used by
Linux as well adJnix System V, includingsolaris x86,UnixWare andSCO Unix.elf provides a
default output file—name extension.of.

6.5.1 elf Extensions to theSECTIONDirective

Like theobj format,elf allows you to specify additional information on tBECTIONdirective

line, to control the type and properties of sections you declare. Section types and properties are
generated automatically by NASM for teeandard section namdsxt , .data and.bss , but

may still be overridden by these qualifiers.

The available qualifiers are:

» alloc defines the section to be one which is loaded into memory when the program is run.
noalloc defines it to be one which is not, such as an informational or comment section.

e exec defines the section to be one which should have execute permission when the program is
run.noexec defines it as one which should not.

- write defines the section to be one which should be writable when the program is run.
nowrite defines it as one which should not.

e progbits defines the section to be one with explicit contents stored in the object file: an
ordinary code or data section, for exampiepits defines the section to be one with no
explicit contents given, such as a BSS section.

« align= , used with a trailing number asadbj , gives thealignment requirements of the section.
The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text progbits alloc exec nowrite align=16
section .rodata progbits alloc noexec nowrite align=4
section .data progbits alloc noexec write align=4
section .bss nobits alloc noexec write align=4
section other progbits alloc noexec nowrite align=1

(Any section name other thatext , .rodata , .data and.bss is treated by default like
other in the above code.)

6.5.2 Position—Independent Codeelf Special Symbols andVRT

The ELF specification contains enough features to allow position—independent code (PIC) to be
written, which make&LF shared libraries very flexible. However, it also means NASM has to be
able to generate a variety of strange relocation types in ELF object files, if it is to be an assembler
which can write PIC.

SinceELF does not support segment-base referencedVlR&operator is not used for its normal
purpose; therefore NASM'slf output format makes use WRTfor a different purpose, namely
the PIC-specificelocation types.

elf defines five special symbols which you can use as the right-hand sideVuR{faperator to
obtain PIC relocation types. They argotpc , ..gotoff , ..got ,..plt and..sym . Their
functions are summarised here:

« Referring to the symbol marking the global offset table base wgihggotpc will end up
giving the distance from the beginning of the current section to the global offset table.
(_GLOBAL_OFFSET_TABLE s the standard symbol name used to refer tda®d.) So you
would then need to adgh to the result to get the real address of the GOT.

« Referring to a location in one of your own sections ugirg .gotoff will give the distance
from the beginning of the GOT to the specified location, so that adding on the address of the
GOT would give the real address of the location you wanted.

« Referring to an external or global symbol usug ..got causes the linker to build an entry
in the GOT containing the address of the symbol, and the reference gives the distance from the
beginning of the GOT to the entry; so you can add on the address of the GOT, load from the
resulting address, and end up with the address of the symbol.

¢ Referring to a procedure name usimg ..plt causes the linker to buildmocedure linkage
table entry for the symbol, and the reference gives the address BEThentry. You can only
use this in contexts which would generate a PC-relative relocation normally (i.e. as the
destination forCALL or JMP), since ELF contains no relocation type to refer to PLT entries
absolutely.

» Referring to a symbol name usimgt ..sym causes NASM to write an ordinary relocation,
but instead of making the relocation relative to the start of the section and then adding on the
offset to the symbol, it will write a relocation record aimed directly at the symbol in question.
The distinction is a necessary one due to a peculiarity of the dynamic linker.

A fuller explanation of how to use these relocation types to write shared libraries entirely in NASM
is given insection 8.2

6.5.3 elf Extensions to theGLOBALDirective

ELF object files can contain more information about a global symbol than just its address: they can
contain thesize of the symbol and itgpe as well. These are not merely debugger conveniences, but
are actually necessary when the program being writteshsi@d library. NASM therefore supports
some extensions to tli&l OBALdirective, allowing you to specify these features.

You can specify whether a global variable is a function or a data object by suffixing the name with a
colon and the woréunction ordata . (object is a synonym fodata .) For example:

global hashlookup:function, hashtable:data
exports the global symbblshlookup as a function andashtable as a data object.

You can also specify the size of the data associated with the symbol, as a numeric expression
(which may involve labels, and even forward references) after the type specifier. Like this:

global hashtable:data (hashtable.end — hashtable)
hashtable:

db this,that,theother ; some data here
.end:

This makes NASM automatically calculate the length of the table and place that information into
the ELF symbol table.

Declaring the type and size of global symbols is necessary when writing shared library code. For
more information, segection 8.2.4

77

78

6.5.4 elf Extensions to theCOMMORNirective

ELF also allows you to specify alignment requiremenmitscommon variables. This is done by
putting a number (which must be a power of two) after the name and size of the common variable,
separated (as usual) by a colon. For example, an array of doublewords would benefit from 4-byte
alignment:

common dwordarray 128:4

This declares the total size of the array to be 128 bytes, and requires that it be aligned on a 4-byte
boundary.

6.5.5 16—bit code and ELF

6.6

6.7

6.8

The ELF32 specification doesn’t provide relocations for 8— and 16-bit values, but the IGNU
linker adds these as an extension. NASM can generate GNU-compatible relocations, to allow
16-bit code to be linked as ELF using GNW . If NASM is used with the
-w+gnu-elf-extensions option, a warning is issued when one of these relocations is
generated.

aout : Linux a.out Object Files

Theaout format generatea.out object files, in the form used by early Linux systems (current
Linux systems use ELF, seection 6.5 These differ from othea.out object files in that the
magic number in the first four bytes of the file is different; also, some implementatiansuof

for example NetBSD'’s, support position—independent code, which Linux’s implementation does not.

a.out provides a default output file—name extensioroof

a.out is a very simple object format. It supports no special directives, no special symbols, no use
of SEGor WRT and no extensions to any standard directives. It supports only thestaneard
section namegext ,.data and.bss .

aoutb : NetBSDFreeBSDOpenBSDa.out Object Files

Theaoutb format generatea.out object files, in the form used by the various fB&D Unix
clones,NetBSD, FreeBSD andOpenBSD For simple object files, this object format is exactly the
same amout except for the magic number in the first four bytes of the file. Howevegdhtd
format supportposition—independent code in the same way agltheformat, so you can use it to
write BSDshared libraries.

aoutb provides a default output file—name extensioroof

aoutb supports no special directives, no special symbols, and only the staredard section
namestext ,.data and.bss . However, it also supports the same us#&Taself does, to
provide position—-independent code relocation types.s8etion 6.5.Zor full documentation of this
feature.

aoutb also supports the same extensions toGh®BALdirective aslf does: sesection 6.5.3
for documentation of this.

as86 : Minix/Linux as86 Object Files

The Minix/Linux 16—bit assembleas86 has its own non-standard object file format. Although its
companion linkefd86 produces something close to ordinargut binaries as output, the object
file format used to communicate betwees86 andld86 is not itselfa.out .

NASM supports this format, just in case it is useful,aa86 . as86 provides a default output
file—name extension ab .

as86 is a very simple object format (from the NASM user’s point of view). It supports no special
directives, no special symbols, no uses&Gor WRT and no extensions to any standard directives.
It supports only the threstandard section namdsxt ,.data and.bss .

6.9 rdf : Relocatable Dynamic Object File Format

The rdf output format produceRDOFFobject files.RDOFF(Relocatable Dynamic Object File
Format) is a home—grown object—file format, designed alongside NASM itself and reflecting in its
file format the internal structure of the assembler.

RDOFFis not used by any well-known operating systems. Those writing their own systems,
however, may well wish to useDOFFas their object format, on the grounds that it is designed
primarily for simplicity and contains very little file—header bureaucracy.

The Unix NASM archive, and the DOS archive which includes sources, both contedofin
subdirectory holding a set of RDOFF utilities: an RDF linker R static—library manager, an
RDF file dump utility, and a program which will load and execute an RDF executable under Linux.

rdf supports only thetandard section namdext ,.data and.bss .
6.9.1 Requiring a Library: The LIBRARY Directive

RDOFFcontains a mechanism for an object file to demand a given library to be linked to the
module, either at load time or run time. This is done byLIB&RARY directive, which takes one
argument which is the name of the module:

library mylib.rdl
6.9.2 Specifying a Module Name: TheMODULBirective

SpecialRDOFFheader record is used to store the name of the module. It can be used, for example,
by run—time loader to perform dynamic linkindODULEHlirective takes one argument which is the
name of current module:

module mymodname

Note that when you statically link modules and tell linker to strip the symbols from output file, all
module names will be stripped too. To avoid it, you should start module name® ikt

module $kernel.core
6.9.3 rdf Extensions to theGLOBALdirective

RDOFFglobal symbols can contain additional information needed by the static linker. You can

mark a global symbol as exported, thus telling the linker do not strip it from target executable or
library file. Like in ELF, you can also specify whether an exported symbol is a procedure (function)

or data object.

Suffixing the name with a colon and the weixport you make the symbol exported:
global sys_open:export

To specify that exported symbol is a procedure (function), you add thepnard or function
after declaration:

global sys_open:export proc
Similarly, to specify exported data object, add the vataé orobject to the directive:
global kernel_ticks:export data

79

80

6.10 dbg: Debugging Format

Thedbg output format is not built into NASM in the default configuration. If you are building your
own NASM executable from the sources, you can defie DBGin outform.h or on the
compiler command line, and obtain tileg output format.

Thedbg format does not output an object file as such; instead, it outputs a text file which contains a
complete list of all the transactions between the main body of NASM and the output—format back
end module. It is primarily intended to aid people who want to write their own output drivers, so
that they can get a clearer idea of the various requests the main program makes of the output driver,
and in what order they happen.

For simple files, one can easily use thg format like this:
nasm —f dbg filename.asm

which will generate a diagnostic file callétename.dbg . However, this will not work well on

files which were designed for a different object format, because each object format defines its own
macros (usually user—level forms of directives), and those macros will not be defineddivgthe
format. Therefore it can be useful to run NASM twice, in order to do the preprocessing with the
native object format selected:

nasm —e —f rdf —o rdfprog.i rdfprog.asm
nasm —a —f dbg rdfprog.i

This preprocessesdfprog.asm into rdfprog.i , keeping thedf object format selected in
order to make sure RDF special directives are converted into primitive form correctly. Then the
preprocessed source is fed throughdhg format to generate the final diagnostic output.

This workaround will still typically not work for programs intended &tnj format, because the

obj SEGMEN&ndGROURIirectives have side effects of defining the segment and group names as
symbols;dbg will not do this, so the program will not assemble. You will have to work around that
by defining the symbols yourself (usiBEcKTERN for example) if you really need to getlg trace

of anobj —specific source file.

dbg accepts any section name and any directives at all, and logs them all to its output file.

Chapter 7: Writing 16—bit Code (DOS, Windows 3/3.1)

This chapter attempts to cover some of the common issues encountered when writing 16-bit code to
run undemMS-DOSDr Windows 3.x . It covers how to link programs to produéeXE or .COM

files, how to write.SYS device drivers, and how to interface assembly language code with 16-bit

C compilers and with Borland Pascal.

7.1 Producing .EXE Files

Any large program written under DOS needs to be built ZX& file: only .EXE files have the
necessary internal structure required to span more than one 64K sagfineioivs programs, also,
have to be built a€£XE files, since Windows does not support i8©Mformat.

In general, you generatEXE files by using thebj output format to produce one or mo@BJ

files, and then linking them together using a linker. However, NASM also supports the direct
generation of simple DOSEXE files using thebin output format (by usindB and DWto
construct theEXE file header), and a macro package is supplied to do this. Thanks to Yann Guidon
for contributing the code for this.

NASM may also suppotEXE natively as another output format in future releases.

7.1.1 Using theobj Format To Generate.EXE Files
This section describes the usual method of generdiXg files by linking.OBJ files together.

Most 16-bit programming language packages come with a suitable linker; if you have none of
these, there is a free linker call¢dL, available inLZH archive format fromx2ftp.oulu.fi

An LZH archiver can be found é&ip. simtel.net . There is another ‘free’ linker (though this

one doesn’'t come with sources) calle@EELINK, available fromvww. pcorner.com . A third,

djlink , written by DJ Delorie, is available satww.delorie.com . A fourth Iinker,ALINK,

written by Anthony A.J. Williams, is available alink.sourceforge.net

When linking severalOBJ files into a.EXE file, you should ensure that exactly one of them has a
start point defined (using thestart special symbol defined by thebj format: seesection
6.2.9. If no module defines a start point, the linker will not know what value to give the
entry—point field in the output file header; if more than one defines a start point, the linker will not
knowwhichvalue to use.

An example of a NASM source file which can be assembled®@Ba file and linked on its own to

a .EXE is given here. It demonstrates the basic principles of defining a stack, initialising the
segment registers, and declaring a start point. This file is also providedtésthesubdirectory of

the NASM archives, under the namligexe.asm

segment code

..start:
mov ax,data
mov ds,ax
mov ax,stack
mov ss,ax
mov sp,stacktop

81

ftp://x2ftp.oulu.fi/pub/msdos/programming/lang/
ftp://ftp.simtel.net/pub/simtelnet/msdos/arcers
http://www.pcorner.com/tpc/old/3-101.html
http://www.delorie.com/djgpp/16bit/djlink/
http://alink.sourceforge.net

82

This initial piece of code sets WSto point to the data segment, and initialiS&andSP to point

to the top of the provided stack. Notice that interrupts are implicitly disabled for one instruction
after a move int&S, precisely for this situation, so that there’s no chance of an interrupt occurring
between the loads &S andSP and not having a stack to execute on.

Note also that the special symbditart is defined at the beginning of this code, which means
that will be the entry point into the resulting executable file.

mov dx,hello
mov ah,9
int 0x21

The above is the main program: loB&:DX with a pointer to the greeting messagellp is
implicitly relative to the segmerdata , which was loaded int®S in the setup code, so the full
pointer is valid), and call the DOS print—string function.

mov ax,0x4c00
int 0x21

This terminates the program using another DOS system call.
segment data

hello: db ’hello, world’, 13, 10,’$’
The data segment contains the string we want to display.

segment stack stack
resb 64
stacktop:

The above code declares a stack segment containing 64 bytes of uninitialised stack space, and
points stacktop at the top of it. The directiveegment stack stack defines a segment

called stack , and also otype STACK The latter is not necessary to the correct running of the
program, but linkers are likely to issue warnings or errors if your program has no segment of type
STACK

The above file, when assembled intoaCBJ file, will link on its own to a validEXE file, which
when run will print ‘hello, world’ and then exit.

7.1.2 Using thebin Format To Generate.EXE Files

The .EXE file format is simple enough that it's possible to buildEXE file by writing a
pure—binary program and sticking a 32—-byte header on the front. This header is simple enough that
it can be generated usiB andDWcommands by NASM itself, so that you can usebihe output

format to directly generat&XE files.

Included in the NASM archives, in thmisc subdirectory, is a filexebin.mac of macros. It
defines three macroEXE_begin , EXE_stack andEXE_end.

To produce aEXE file using this method, you should start by ushinclude to load the
exebin.mac macro package into your source file. You should then issueXBEe begin macro

call (which takes no arguments) to generate the file header data. Then write code as normal for the
bin format — you can use all three standard secti@x$, .data and.bss . At the end of the

file you should call theeEXE_end macro (again, no arguments), which defines some symbols to
mark section sizes, and these symbols are referred to in the header code gené&lékebyin .

In this model, the code you end up writing start®x00 , just like a.COMfile — in fact, if you
strip off the 32-byte header from the resultiBXE file, you will have a validCOM program. All
the segment bases are the same, so you are limited to a 64K program, again justQikéfite.

Note that arORGdirective is issued by theEXE_begin macro, so you should not explicitly issue
one of your own.

You can't directly refer to your segment base value, unfortunately, since this would require a
relocation in the header, and things would get a lot more complicated. So you should get your
segment base by copying it out@$instead.

On entry to yourEXE file, SS:SP are already set up to point to the top of a 2Kb stack. You can
adjust the default stack size of 2Kb by calling B¥E_ stack macro. For example, to change the
stack size of your program to 64 bytes, you wouldEAE_stack 64

A sample program which generate€£XE file in this way is given in théest subdirectory of the
NASM archive, abinexe.asm

7.2 Producing .COMFiles

While large DOS programs must be written.BXE files, small ones are often better written as
.COMfiles. .COMfiles are pure binary, and therefore most easily produced usirgrthe@utput
format.

7.2.1 Using thebin Format To Generate.COMFiles

.COMfiles expect to be loaded at off4€l0h into their segment (though the segment may change).
Execution then begins 400h, i.e. right at the start of the program. So to writ€@M program,
you would create a source file looking like

org 100h
section .text

start:
; put your code here

section .data
; put data items here
section .bss

; put uninitialised data here

The bin format puts thetext section first in the file, so you can declare data or BSS items
before beginning to write code if you want to and the code will still end up at the front of the file
where it belongs.

The BSS (uninitialised data) section does not take up space irCOM file itself: instead,
addresses of BSS items are resolved to point at space beyond the end of the file, on the grounds tha
this will be free memory when the program is run. Therefore you should not rely on your BSS being
initialised to all zeros when you run.

To assemble the above program, you should use a command line like
nasm myprog.asm —fbin —o myprog.com

Thebin format would produce a file calledyprog if no explicit output file name were specified,
so you have to override it and give the desired file name.

83

7.2.2 Using theobj Format To Generate. COMFiles

If you are writing a.COM program as more than one module, you may wish to assemble several
.OBJ files and link them together into .£OM program. You can do this, provided you have a
linker capable of outputtingCOM files directly TLINK does this), or alternatively a converter
program such aBXE2BIN to transform theEXE file output from the linker into a&COMfile.

If you do this, you need to take care of several things:

» The first object file containing code should start its code segment with a lineE&8 100h .
This is to ensure that the code begins at ofif¥ih relative to the beginning of the code
segment, so that the linker or converter program does not have to adjust address references within
the file when generating th€OMfile. Other assemblers use @RGdirective for this purpose,
but ORGIin NASM is a format—specific directive to then output format, and does not mean
the same thing as it does in MASM-compatible assemblers.

* You don't need to define a stack segment.

< All your segments should be in the same group, so that every time your code or data references a
symbol offset, all offsets are relative to the same segment base. This is because,@dkh a
file is loaded, all the segment registers contain the same value.

7.3 Producing .SYS Files

MS-DOS device drivers :SYS files — are pure binary files, similar t6OMfiles, except that they
start at origin zero rather thd®0h . Therefore, if you are writing a device driver using ltie
format, you do not need ti@RCdirective, since the default origin fom is zero. Similarly, if you
are usingbj , you do not need tHRESB 100h at the start of your code segment.

.SYS files start with a header structure, containing pointers to the various routines inside the driver
which do the work. This structure should be defined at the start of the code segment, even though it
is not actually code.

For more information on the format ddYS files, and the data which has to go in the header
structure, a list of books is given in the Frequently Asked Questions list for the newsgroup
comp.os.msdos.programmer

7.4 Interfacing to 16—bit C Programs

This section covers the basics of writing assembly routines that call, or are called from, C programs.
To do this, you would typically write an assembly module a&BJ file, and link it with your C
modules to produceraixed—-language program.

7.4.1 External Symbol Names

C compilers have the convention that the names of all global symbols (functions or data) they
define are formed by prefixing an underscore to the name as it appears in the C program. So, for
example, the function a C programmer thinks ofpastf appears to an assembly language
programmer as printf . This means that in your assembly programs, you can define symbols
without a leading underscore, and not have to worry about name clashes with C symbols.

If you find the underscores inconvenient, you can define macros to replaceL®BAL and
EXTERNdirectives as follows:

%macro cglobal 1

global %1
%define %1 %1

news:comp.os.msdos.programmer

%endmacro
%macro cextern 1

extern %1
%define %1 %1

%endmacro

(These forms of the macros only take one argument at a tithesaconstruct could solve this.)
If you then declare an external like this:

cextern printf

then the macro will expand it as

extern _printf
%define printf _printf

Thereafter, you can referengeintf as if it was a symbol, and the preprocessor will put the
leading underscore on where necessary.

The cglobal macro works similarly. You must usmlobal before defining the symbol in
guestion, but you would have had to do that anyway if you G&€BAL

Also seesection 2.1.21

7.4.2 Memory Models

NASM contains no mechanism to support the various C memory models directly; you have to keep
track yourself of which one you are writing for. This means you have to keep track of the following
things:

¢ In models using a single code segment (tiny, small and compact), functions are near. This means
that function pointers, when stored in data segments or pushed on the stack as function
arguments, are 16 bits long and contain only an offset fieldG®eegister never changes its
value, and always gives the segment part of the full function address), and that functions are
called using ordinary neaCALL instructions and return usinBETN (which, in NASM, is
synonymous WitrRET anyway). This means both that you should write your own routines to
return withRETN and that you should call external C routines with &L instructions.

* In models using more than one code segment (medium, large and huge), functions are far. This
means that function pointers are 32 bits long (consisting of a 16-bit offset followed by a 16-bit
segment), and that functions are called u€idd.L FAR (or CALL seg:offset) and return
usingRETFE Again, you should therefore write your own routines to return RETF and use
CALL FAR to call external routines.

¢ In models using a single data segment (tiny, small and medium), data pointers are 16 bits long,
containing only an offset field (thBS register doesn't change its value, and always gives the
segment part of the full data item address).

¢ In models using more than one data segment (compact, large and huge), data pointers are 32 bits
long, consisting of a 16—bit offset followed by a 16—bit segment. You should still be careful not
to modify DS in your routines without restoring it afterwards, IE# is free for you to use to
access the contents of 32-bit data pointers you are passed.

* The huge memory model allows single data items to exceed 64K in size. In all other memory
models, you can access the whole of a data item just by doing arithmetic on the offset field of the

85

pointer you are given, whether a segment field is present or not; in huge model, you have to be
more careful of your pointer arithmetic.

¢ In most memory models, there iddafault data segment, whose segment address is kdp®in
throughout the program. This data segment is typically the same segment as the stack&ept in
so that functions’ local variables (which are stored on the stack) and global data items can both
be accessed easily without changidfg Particularly large data items are typically stored in other
segments. However, some memory models (though not the standard ones, usually) allow the
assumption thadS andDS hold the same value to be removed. Be careful about functions’ local
variables in this latter case.

In models with a single code segment, the segment is callEXT, so your code segment must
also go by this name in order to be linked into the same place as the main code segment. In models
with a single data segment, or with a default data segment, it is cRIFETA

7.4.3 Function Definitions and Function Calls

The C calling convention in 16—bit programs is as follows. In the following description, the words
caller andcalleeare used to denote the function doing the calling and the function which gets called.

¢ The caller pushes the function’s parameters on the stack, one after another, in reverse order (right
to left, so that the first argument specified to the function is pushed last).

¢ The caller then executesCA\LL instruction to pass control to the callee. TBALL is either near
or far depending on the memory model.

e The callee receives control, and typically (although this is not actually necessary, in functions
which do not need to access their parameters) starts by saving the vaRien@dP so as to be
able to useBP as a base pointer to find its parameters on the stack. However, the caller was
probably doing this too, so part of the calling convention state®atust be preserved by any
C function. Hence the callee, if it is going to setBlpas aframe pointer must push the previous
value first.

e The callee may then access its parameters relatig®.tdhe word a{BP] holds the previous
value of BP as it was pushed; the next word,[BP+2] , holds the offset part of the return
address, pushed implicitly BALL. In a small-model (near) function, the parameters start after
that, at[BP+4] ; in a large—model (far) function, the segment part of the return address lives at
[BP+4] , and the parameters begin[BP+6] . The leftmost parameter of the function, since it
was pushed last, is accessible at this offset fBinthe others follow, at successively greater
offsets. Thus, in a function such psntf ~ which takes a variable number of parameters, the
pushing of the parameters in reverse order means that the function knows where to find its first
parameter, which tells it the number and type of the remaining ones.

* The callee may also wish to decre&f further, so as to allocate space on the stack for local
variables, which will then be accessible at negative offsets Biem

* The callee, if it wishes to return a value to the caller, should leave the va#lueAX or DX:AX
depending on the size of the value. Floating—point results are sometimes (depending on the
compiler) returned i TO.

* Once the callee has finished processing, it restSRe§rom BP if it had allocated local stack
space, then pops the previous valu8Bf and returns viRETNor RETFdepending on memory
model.

* When the caller regains control from the callee, the function parameters are still on the stack, so
it typically adds an immediate constant3B to remove them (instead of executing a number of
slow POP instructions). Thus, if a function is accidentally called with the wrong number of
parameters due to a prototype mismatch, the stack will still be returned to a sensible state since
the caller, whickknowshow many parameters it pushed, does the removing.

It is instructive to compare this calling convention with that for Pascal programs (described in
section 7.5.1 Pascal has a simpler convention, since no functions have variable numbers of
parameters. Therefore the callee knows how many parameters it should have been passed, and i
able to deallocate them from the stack itself by passing an immediate argumerREY threRETF
instruction, so the caller does not have to do it. Also, the parameters are pushed in left—to-right
order, not right-to-left, which means that a compiler can give better guarantees about sequence
points without performance suffering.

Thus, you would define a function in C style in the following way. The following example is for
small model:

global _myfunc

_myfunc:
push bp
mov bp,sp
sub sp,0x40 ; 64 bytes of local stack space
mov bx,[bp+4] ; first parameter to function

: some more code

mov sp,bp ; undo "sub sp,0x40" above
POtP bp
re

For a large—-model function, you would repl&@ET by RETF, and look for the first parameter at
[BP+6] instead of[BP+4] . Of course, if one of the parameters is a pointer, then the offsets of
subsequenparameters will change depending on the memory model as well: far pointers take up
four bytes on the stack when passed as a parameter, whereas near pointers take up two.

At the other end of the process, to call a C function from your assembly code, you would do
something like this:

extern _printf

: and then, further down...

push word [myint] ; one of my integer variables
push word mystring ; pointer into my data segment
call _printf

add sp,byte 4 ; ‘byte’ saves space

; then those data items...
segment _DATA
myint dw 1234
mystring db 'This number —> %d <- should be 1234’,10,0
This piece of code is the small-model assembly equivalent of the C code

int myint = 1234;
printf("This number —> %d <- should be 1234\\n", myint);
In large model, the function—call code might look more like this. In this example, it is assumed that

DS already holds the segment base of the segmeAfTA If not, you would have to initialise it
first.

87

88

push word [myint]

push word seg mystring ; Now push the segment, and...
push word mystring ; ... offset of "mystring"

call far _printf

add sp,byte 6

The integer value still takes up one word on the stack, since large model does not affect the size of
theint data type. The first argument (pushed lastpriatf , however, is a data pointer, and
therefore has to contain a segment and offset part. The segment should be stored second in memory
and therefore must be pushed first. (Of couRddSH DS would have been a shorter instruction
thanPUSH WORD SEG mystring , if DSwas set up as the above example assumed.) Then the
actual call becomes a far call, since functions expect far calls in large modeébPamas to be
increased by 6 rather than 4 afterwards to make up for the extra word of parameters.

7.4.4 Accessing Data Items

To get at the contents of C variables, or to declare variables which C can access, you need only
declare the names & OBALor EXTERN (Again, the names require leading underscores, as stated
in section 7.4.] Thus, a C variable declarediasi can be accessed from assembler as

extern i
mov ax,[_i]
And to declare your own integer variable which C programs can accesteas int | , you
do this (making sure you are assembling in tDATAsegment, if necessary):
global _j
j dw O
To access a C array, you need to know the size of the components of the array. For axample,
variables are two bytes long, so if a C program declares an arialya$0] , YOU can access

a[3] by codingmov ax,[_a+6] . (The byte offset 6 is obtained by multiplying the desired array
index, 3, by the size of the array element, 2.) The sizes of the C base types in 16—bit compilers are:
1 forchar , 2 forshort andint , 4 forlong andfloat , and 8 fordouble .

To access a @ata structure, you need to know the offset from the base of the structure to the field
you are interested in. You can either do this by converting the C structure definition into a NASM
structure definition (usin@ TRUG, or by calculating the one offset and using just that.

To do either of these, you should read your C compiler's manual to find out how it organises data
structures. NASM gives no special alignment to structure members in itSDRACmMacro, so you

have to specify alignment yourself if the C compiler generates it. Typically, you might find that a
structure like

struct @\{

char c;

inti;
@\} foo;
might be four bytes long rather than three, sinceirthe field would be aligned to a two-byte
boundary. However, this sort of feature tends to be a configurable option in the C compiler, either
using command-line options #pragma lines, so you have to find out how your own compiler
does it.

7.4.5 cl6.mac : Helper Macros for the 16-bit C Interface

Included in the NASM archives, in thaisc directory, is a filecl6.mac of macros. It defines
three macrosproc , arg andendproc . These are intended to be used for C-style procedure
definitions, and they automate a lot of the work involved in keeping track of the calling convention.

(An alternative, TASM compatible form @frg is also now built into NASM'’s preprocessor. See
section 4.9or details.)

An example of an assembly function using the macro set is given here:
proc _nearproc

%3$i arg

%$j arg
mov ax,[bp + %3$i]
mov bx,[bp + %3$j]
add ax,[bx]

endproc

This defines nearproc to be a procedure taking two arguments, the firstaf integer and the
secondj() a pointer to an integer. It returns *j

Note that thearg macro has aEQUas the first line of its expansion, and since the label before the
macro call gets prepended to the first line of the expanded macieQibeorks, defining%$i to

be an offset fronBP. A context—local variable is used, local to the context pushed bprdwe

macro and popped by tlendproc macro, so that the same argument name can be used in later
procedures. Of course, you dohéveto do that.

The macro set produces code for near functions (tiny, small and compact-model code) by default.
You can have it generate far functions (medium, large and huge—model code) by means of coding
%define FARCODE . This changes the kind of return instruction generateghiproc , and also
changes the starting point for the argument offsets. The macro set contains no intrinsic dependency
on whether data pointers are far or not.

arg can take an optional parameter, giving the size of the argument. If no size is given, 2 is
assumed, since it is likely that many function parameters will be ofrtype

The large—model equivalent of the above function would look like this:
%define FARCODE

proc _farproc

%$i arg

%%} arg 4
mov ax,[bp + %3i]
mov bx,[bp + %$j]
mov es,[bp + %$j + 2]
add ax,[bx]

endproc

This makes use of the argument to &ihg macro to define a parameter of size 4, becausenow
a far pointer. When we load from we must load a segment and an offset.

89

90

7.5 Interfacing to Borland Pascal Programs

Interfacing to Borland Pascal programs is similar in concept to interfacing to 16—bit C programs.
The differences are:

The leading underscore required for interfacing to C programs is not required for Pascal.

The memory model is always large: functions are far, data pointers are far, and no data item can
be more than 64K long. (Actually, some functions are near, but only those functions that are local
to a Pascal unit and never called from outside it. All assembly functions that Pascal calls, and all
Pascal functions that assembly routines are able to call, are far.) However, all static data declared
in a Pascal program goes into the default data segment, which is the one whose segment addres:
will be in DSwhen control is passed to your assembly code. The only things that do not live in
the default data segment are local variables (they live in the stack segment) and dynamically
allocated variables. All dagaointers however, are far.

The function calling convention is different — described below.
Some data types, such as strings, are stored differently.

There are restrictions on the segment names you are allowed to use — Borland Pascal will ignore
code or data declared in a segment it doesn't like the name of. The restrictions are described
below.

7.5.1 The Pascal Calling Convention

The 16-bit Pascal calling convention is as follows. In the following description, the waltds
andcalleeare used to denote the function doing the calling and the function which gets called.

The caller pushes the function’s parameters on the stack, one after another, in normal order (left
to right, so that the first argument specified to the function is pushed first).

The caller then executes a 2ALL instruction to pass control to the callee.

The callee receives control, and typically (although this is not actually necessary, in functions
which do not need to access their parameters) starts by saving the vVéaRiéendP so as to be

able to useBP as a base pointer to find its parameters on the stack. However, the caller was
probably doing this too, so part of the calling convention state8&hatust be preserved by any
function. Hence the callee, if it is going to setBipas aframe pointer, must push the previous
value first.

The callee may then access its parameters relatiB®.tdhe word a{BP] holds the previous
value of BP as it was pushed. The next word,[BP+2] , holds the offset part of the return
address, and the next one[BP+4] the segment part. The parameters begiBRt#6] . The
rightmost parameter of the function, since it was pushed last, is accessible at this off&®,from
the others follow, at successively greater offsets.

The callee may also wish to decre&® further, so as to allocate space on the stack for local
variables, which will then be accessible at negative offsetsBfem

The callee, if it wishes to return a value to the caller, should leave the value AX or DX:AX
depending on the size of the value. Floating—point results are returi@&kDirResults of type

Real (Borland’s own custom floating—point data type, not handled directly by the FPU) are
returned inDX:BX:AX. To return a result of typ&tring , the caller pushes a pointer to a
temporary string before pushing the parameters, and the callee places the returned string value at
that location. The pointer is not a parameter, and should not be removed from the stack by the
RETFinstruction.

Once the callee has finished processing, it rest8Refrom BP if it had allocated local stack
space, then pops the previous valu®Bf and returns viRETF It uses the form oRETF with

an immediate parameter, giving the number of bytes taken up by the parameters on the stack.
This causes the parameters to be removed from the stack as a side effect of the return instruction.

« When the caller regains control from the callee, the function parameters have already been
removed from the stack, so it needs to do nothing further.

Thus, you would define a function in Pascal style, taking livteger —type parameters, in the
following way:

global myfunc

myfunc: push bp

mov bp,sp

sub sp,0x40 ; 64 bytes of local stack space
mov bx,[bp+8] ; first parameter to function
mov bx,[bp+6] ; second parameter to function

; some more code

mov sp,bp ; undo "sub sp,0x40" above
pop bp _ _
retf 4 ; total size of params is 4

At the other end of the process, to call a Pascal function from your assembly code, you would do
something like this:

extern SomeFunc
: and then, further down...

push word seg mystring ; Now push the segment, and...
push word mystring ; ... offset of "mystring"

push word [myint] ; one of my variables

call far SomeFunc

This is equivalent to the Pascal code

procedure SomeFunc(String: PChar; Int: Integer);
SomeFunc(@ @mystring, myint);

7.5.2 Borland PascalSegment Name Restrictions

Since Borland Pascal’s internal unit file format is completely different f@Bg, it only makes a

very sketchy job of actually reading and understanding the various information contained in a real
OBJfile when it links that in. Therefore an object file intended to be linked to a Pascal program
must obey a number of restrictions:

« Procedures and functions must be in a segment whose name iEMDEICSEG or something
ending in_TEXT.

« Initialised data must be in a segment whose name is €@d@®STor something ending in
_DATA

¢ Uninitialised data must be in a segment whose name is WEA DSEG or something ending
in _BSS.

« Any other segments in the object file are completely ignoBRIOURirectives and segment
attributes are also ignored.

91

92

7.5.3 Usingcl6.mac With Pascal Programs

The c16.mac macro package, described saction 7.4.5can also be used to simplify writing
functions to be called from Pascal programs, if you ctakefine PASCAL . This definition
ensures that functions are far (it implle8RCODE and also causes procedure return instructions to
be generated with an operand.

Defining PASCAL does not change the code which calculates the argument offsets; you must
declare your function’'s arguments in reverse order. For example:

%define PASCAL
proc _pascalproc

%$] arg4

%% arg
mov ax,[bp + %3i]
mov bx,[bp + %$j]
mov es,[bp + %$j + 2]
add ax,[bx]

endproc

This defines the same routine, conceptually, as the exampleciion 7.4.5it defines a function

taking two arguments, an integer and a pointer to an integer, which returns the sum of the integer
and the contents of the pointer. The only difference between this code and the large-model C
version is thatPASCALIis defined instead dFARCODEand that the arguments are declared in
reverse order.

Chapter 8: Writing 32—bit Code (Unix, Win32, DJGPP)

This chapter attempts to cover some of the common issues involved when writing 32—bit code, to
run underwWin32 or Unix, or to be linked with C code generated by a Unix—style C compiler such
asDJGPP. It covers how to write assembly code to interface with 32—bit C routines, and how to
write position—independent code for shared libraries.

Almost all 32-bit code, and in particular all code running uniler32, DJGPPor any of the PC

Unix variants, runs irflat memory model. This means that the segment registers and paging have
already been set up to give you the same 32-bit 4Gb address space no matter what segment yol
work relative to, and that you should ignore all segment registers completely. When writing
flat-model application code, you never need to use a segment override or modify any segment
register, and the code-section addresses you p&hlib andJMP live in the same address space

as the data—section addresses you access your variables by and the stack—section addresses yc
access local variables and procedure parameters by. Every address is 32 bits long and contains only
an offset part.

8.1 Interfacing to 32—-bit C Programs

A lot of the discussion isection 7.4 about interfacing to 16-bit C programs, still applies when
working in 32 bits. The absence of memory models or segmentation worries simplifies things a lot.

8.1.1 External Symbol Names

Most 32-bit C compilers share the convention used by 16-bit compilers, that the names of all
global symbols (functions or data) they define are formed by prefixing an underscore to the name as
it appears in the C program. However, not all of them do:BhE specification states that C
symbols danot have a leading underscore on their assembly—-language names.

The older Linuxa.out C compiler, allWin32 compilers,DJGPP andNetBSD andFreeBSD,
all use the leading underscore; for these compilers, the meexteyn andcglobal , as given
in section 7.4.1will still work. For ELF, though, the leading underscore should not be used.

See als®ection 2.1.21
8.1.2 Function Definitions and Function Calls

The C calling conventionThe C calling convention in 32-bit programs is as follows. In the
following description, the wordsaller andcallee are used to denote the function doing the calling
and the function which gets called.

e The caller pushes the function’'s parameters on the stack, one after another, in reverse order (right
to left, so that the first argument specified to the function is pushed last).

¢ The caller then executes a n€a&LL instruction to pass control to the callee.

« The callee receives control, and typically (although this is not actually necessary, in functions
which do not need to access their parameters) starts by saving the vabe iofEBP so as to
be able to us&BP as a base pointer to find its parameters on the stack. However, the caller was
probably doing this too, so part of the calling convention statesEEBRtmust be preserved by
any C function. Hence the callee, if it is going to seER® as aframe pointer, must push the
previous value first.

93

e The callee may then access its parameters relatig®® The doubleword EBP] holds the
previous value oEBP as it was pushed; the next doubleword[E&P+4] , holds the return
address, pushed implicitly b§ALL. The parameters start after that[EBP+8] . The leftmost
parameter of the function, since it was pushed last, is accessible at this offs&BRihe
others follow, at successively greater offsets. Thus, in a function sumindis which takes a
variable number of parameters, the pushing of the parameters in reverse order means that the
function knows where to find its first parameter, which tells it the number and type of the
remaining ones.

* The callee may also wish to decre&®P further, so as to allocate space on the stack for local
variables, which will then be accessible at negative offsets EBR

* The callee, if it wishes to return a value to the caller, should leave the vahie AX or EAX
depending on the size of the value. Floating—point results are typically retur@&f.in

« Once the callee has finished processing, it resteg#from EBPif it had allocated local stack
space, then pops the previous valu&EBP, and returns ViRET (equivalently RETN.

* When the caller regains control from the callee, the function parameters are still on the stack, so
it typically adds an immediate constant&8Pto remove them (instead of executing a number of
slow POP instructions). Thus, if a function is accidentally called with the wrong number of
parameters due to a prototype mismatch, the stack will still be returned to a sensible state since
the caller, whickknowshow many parameters it pushed, does the removing.

There is an alternative calling convention used by Win32 programs for Windows API calls, and also
for functions calledby the Windows API such as window procedures: they follow what Microsoft
calls the__stdcall convention. This is slightly closer to the Pascal convention, in that the callee
clears the stack by passing a parameter tdRIB€ instruction. However, the parameters are still
pushed in right-to—left order.

Thus, you would define a function in C style in the following way:
global _myfunc

_myfunc:
push ebp
mov ebp,esp
sub esp,0x40 ; 64 bytes of local stack space

mov ebx,[ebp+8] ; first parameter to function
: some more code

leave ; mov esp,ebp / pop ebp

ret

At the other end of the process, to call a C function from your assembly code, you would do
something like this:

extern _printf
: and then, further down...

push dword [myint] ; one of my integer variables
push dword mystring ; pointer into my data segment
call _printf

add esp,byte 8 ; ‘byte’ saves space

; then those data items...
segment DATA
myint dd 1234
mystring db 'This number —> %d <- should be 1234',10,0
This piece of code is the assembly equivalent of the C code

int myint = 1234;
printf("This number —> %d <- should be 1234\\n", myint);

8.1.3 Accessing Data Items

To get at the contents of C variables, or to declare variables which C can access, you need only
declare the names &_OBALor EXTERN (Again, the names require leading underscores, as stated
in section 8.1.) Thus, a C variable declarediasi can be accessed from assembler as

extern _i
mov eax,[_i]
And to declare your own integer variable which C programs can accesteas int | , you
do this (making sure you are assembling in tBATAsegment, if necessary):
global _j
| dd o
To access a C array, you need to know the size of the components of the array. For axample,
variables are four bytes long, so if a C program declares an ariatyag$0] , YOU can access

a[3] by codingmov ax,[_a+12] . (The byte offset 12 is obtained by multiplying the desired
array index, 3, by the size of the array element, 4.) The sizes of the C base types in 32-bit compilers
are: 1 forchar , 2 forshort , 4 forint , long andfloat , and 8 fordouble . Pointers, being

32-bit addresses, are also 4 bytes long.

To access a @ata structure, you need to know the offset from the base of the structure to the field
you are interested in. You can either do this by converting the C structure definition into a NASM
structure definition (usin TRUG, or by calculating the one offset and using just that.

To do either of these, you should read your C compiler's manual to find out how it organises data
structures. NASM gives no special alignment to structure members in itSDRACmacro, so you

have to specify alignment yourself if the C compiler generates it. Typically, you might find that a
structure like

struct @\{

char c;

inti;
@\} foo;
might be eight bytes long rather than five, sinceittie field would be aligned to a four-byte
boundary. However, this sort of feature is sometimes a configurable option in the C compiler, either
using command-line options #pragma lines, so you have to find out how your own compiler
does it.

8.1.4 c32.mac : Helper Macros for the 32-bit C Interface

Included in the NASM archives, in thmisc directory, is a filec32.mac of macros. It defines
three macrosproc , arg andendproc . These are intended to be used for C-style procedure
definitions, and they automate a lot of the work involved in keeping track of the calling convention.

An example of an assembly function using the macro set is given here:

95

proc _proc32

%3$i arg

%$j arg
mov eax,[ebp + %$i]
mov ebx,[ebp + %$j]
add eax,[ebx]

endproc

This defines_proc32 to be a procedure taking two arguments, the firytap integer and the
secondj() a pointer to an integer. It returns *j

Note that thearg macro has aEQUas the first line of its expansion, and since the label before the
macro call gets prepended to the first line of the expanded macieQibeorks, defining%$i to

be an offset fronBP. A context—local variable is used, local to the context pushed bprdwe

macro and popped by tlendproc macro, so that the same argument name can be used in later
procedures. Of course, you dohéveto do that.

arg can take an optional parameter, giving the size of the argument. If no size is given, 4 is
assumed, since it is likely that many function parameters will be oiriypeor pointers.

8.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELFShared Libraries

ELF replaced the oldea.out object file format under Linux because it contains support for
position—independent codePIC), which makes writing shared libraries much easier. NASM
supports thé&eLF position—independent code features, so you can write LEhxshared libraries

in NASM.

NetBSD, and its close cousifseeBSD andpenBSD, take a different approach by hacking PIC
support into the.out format. NASM supports this as theutb output format, so you can write
BSD shared libraries in NASM too.

The operating system loads a PIC shared library by memory—mapping the library file at an
arbitrarily chosen point in the address space of the running process. The contents of the library’s
code section must therefore not depend on where it is loaded in memory.

Therefore, you cannot get at your variables by writing code like this:
mov eax,[myvar] ; WRONG

Instead, the linker provides an area of memory calledjlibigal offset tableor GOT; the GOT is
situated at a constant distance from your library’s code, so if you can find out where your library is
loaded (which is typically done usingGRALL andPOPcombination), you can obtain the address of

the GOT, and you can then load the addresses of your variables out of linker—generated entries in
the GOT.

The data section of a PIC shared library does not have these restrictions: since the data section is
writable, it has to be copied into memory anyway rather than just paged in from the library file, so
as long as it's being copied it can be relocated too. So you can put ordinary types of relocation in
the data section without too much worry (but seetion 8.2.4or a caveat).

8.2.1 Obtaining the Address of the GOT
Each code module in your shared library should define the GOT as an external symbol:

extern _GLOBAL_OFFSET_TABLE_ ;in ELF
extern __GLOBAL_OFFSET TABLE_ :in BSD a.out

At the beginning of any function in your shared library which plans to access your data or BSS
sections, you must first calculate the address of the GOT. This is typically done by writing the
function in this form:

func: push ebp
mov ebp,esp
push ebx
call .get GOT
.get_GOT:
pop ebx
add ebx, GLOBAL_OFFSET_TABLE_+$$-.get GOT wrt ..gotpc

; the function body comes here

mov ebx,[ebp—-4]
mov esp,ebp

pop ebp
ret

(For BSD, again, the symboGLOBAL_OFFSET_TABLIEequires a second leading underscore.)

The first two lines of this function are simply the standard C prologue to set up a stack frame, and
the last three lines are standard C function epilogue. The third line, and the fourth to last line, save
and restore thEBXregister, because PIC shared libraries use this register to store the address of the
GOT.

The interesting bit is th&€ALL instruction and the following two lines. THeALL and POP
combination obtains the address of the laget GOT , without having to know in advance where

the program was loaded (since BALL instruction is encoded relative to the current position). The
ADDinstruction makes use of one of the special PIC relocation t@@$PC relocation. With the

WRT ..gotpc qualifier specified, the symbol referenced (he@LOBAL_OFFSET_TABLE_

the special symbol assigned to the GOT) is given as an offset from the beginning of the section.
(Actually, ELF encodes it as the offset from the operand field ofAB®instruction, but NASM
simplifies this deliberately, so you do things the same way for Bt#h and BSD) So the
instruction theraddsthe beginning of the section, to get the real address of the GOT, and subtracts
the value of.get_GOT which it knows is inEBX Therefore, by the time that instruction has
finished,EBXcontains the address of the GOT.

If you didn’t follow that, don’t worry: it's never necessary to obtain the address of the GOT by any
other means, so you can put those three instructions into a macro and safely ignore them:

%macro get GOTO

call %%getgot
%%getgot:

pop ebx

add ebx,_ GLOBAL_OFFSET_TABLE_+$$-%%getgot wrt ..gotpc
%endmacro

8.2.2 Finding Your Local Data Items

Having got the GOT, you can then use it to obtain the addresses of your data items. Most variables
will reside in the sections you have declared; they can be accessed usimpttifé special
WRTtype. The way this works is like this:

lea eax,[ebx+myvar wrt ..gotoff]

97

The expressiomyvar wrt ..gotoff is calculated, when the shared library is linked, to be the
offset to the local variablmyvar from the beginning of the GOT. Therefore, adding IERBX as
above will place the real addresshoyvar in EAX

If you declare variables aSLOBALwithout specifying a size for them, they are shared between
code modules in the library, but do not get exported from the library to the program that loaded it.
They will still be in your ordinary data and BSS sections, so you can access them in the same way
as local variables, using the abowgpotoff mechanism.

Note that due to a peculiarity of the way B&ldut format handles this relocation type, there
must be at least one non-local symbol in the same section as the address you're trying to access.

8.2.3 Finding External and Common Data Iltems

If your library needs to get at an external variable (external tdilifery, not just to one of the
modules within it), you must use thgot type to get at it. Thegot type, instead of giving

you the offset from the GOT base to the variable, gives you the offset from the GOT base to a GOT
entry containing the address of the variable. The linker will set up this GOT entry when it builds the
library, and the dynamic linker will place the correct address in it at load time. So to obtain the
address of an external varialebetvar in EAX you would code

mov eax,[ebx+extvar wrt ..got]

This loads the address etvar out of an entry in the GOT. The linker, when it builds the shared
library, collects together every relocation of tympot , and builds the GOT so as to ensure it has
every necessary entry present.

Common variables must also be accessed in this way.
8.2.4 Exporting Symbols to the Library User

If you want to export symbols to the user of the library, you have to declare whether they are
functions or data, and if they are data, you have to give the size of the data item. This is because the
dynamic linker has to builghrocedure linkage table entries for any exported functions, and also
moves exported data items away from the library’s data section in which they were declared.

So to export a function to users of the library, you must use
global func:function ; declare it as a function

func: push ebp

; etc.
And to export a data item such as an array, you would have to code
global array:data array.end-array ; give the size too

array: resd 128
.end:

Be careful: If you export a variable to the library user, by declaring @La3BALand supplying a

size, the variable will end up living in the data section of the main program, rather than in your
library’s data section, where you declared it. So you will have to access your own global variable
with the..got mechanism rather thargotoff , as if it were external (which, effectively, it has
become).

Equally, if you need to store the address of an exported global in one of your data sections, you
can't do it by means of the standard sort of code:

dataptr: dd global_data_item ; WRONG

NASM will interpret this code as an ordinary relocation, in wigtdbal_data_item is merely
an offset from the beginning of thdata section (or whatever); so this reference will end up
pointing at your data section instead of at the exported global which resides elsewhere.

Instead of the above code, then, you must write
dataptr: dd global data_item wrt ..sym

which makes use of the specidRTtype..sym to instruct NASM to search the symbol table for a
particular symbol at that address, rather than just relocating by section base.

Either method will work for functions: referring to one of your functions by means of
funcptr: dd my_function

will give the user the address of the code you wrote, whereas

funcptr: dd my_function wrt .sym

will give the address of the procedure linkage table for the function, which is where the calling
program willbelievethe function lives. Either address is a valid way to call the function.

8.2.5 Calling Procedures Outside the Library

Calling procedures outside your shared library has to be done by meanwarfedure linkage

table or PLT. The PLT is placed at a known offset from where the library is loaded, so the library
code can make calls to the PLT in a position-independent way. Within the PLT there is code to
jump to offsets contained in the GOT, so function calls to other shared libraries or to routines in the
main program can be transparently passed off to their real destinations.

To call an external routine, you must use another special PIC relocatioMiigde,.plt . This is
much easier than the GOT-based ones: you simply replace calls sGét lagprintf with the
PLT-relative versiolCALL printf WRT ..plt :

8.2.6 Generating the Library File

Having written some code modules and assembled them fides, you then generate your shared
library with a command such as

Id —shared —o library.so modulel.0 module2.o0 # for ELF
Id —Bshareable —o library.so modulel.o module2.0 # for BSD

For ELF, if your shared library is going to reside in system directories sufinsisb or
Nib it is usually worth using thesoname flag to the linker, to store the final library file name,
with a version number, into the library:

Id —shared —soname library.so0.1 —o library.s0.1.2 *.0

You would then copyibrary.so.1.2 into the library directory, and credlibrary.so.1
as a symbolic link to it.

99

100

Chapter 9: Mixing 16 and 32 Bit Code

This chapter tries to cover some of the issues, largely related to unusual forms of addressing and
jump instructions, encountered when writing operating system code such as protected—-mode
initialisation routines, which require code that operates in mixed segment sizes, such as code in a
16-bit segment trying to modify data in a 32-bit one, or jumps between different-size segments.

9.1 Mixed—-Size Jumps

The most common form amixed-size instruction is the one used when writing a 32-bit OS:
having done your setup in 16-bit mode, such as loading the kernel, you then have to boot it by
switching into protected mode and jumping to the 32-bit kernel start address. In a fully 32-bit OS,
this tends to be thenly mixed—-size instruction you need, since everything before it can be done in
pure 16-bit code, and everything after it can be pure 32-bit.

This jump must specify a 48-bit far address, since the target segment is a 32-bit one. However, it
must be assembled in a 16—bit segment, so just coding, for example,

jmp 0x1234:0x56789ABC ; wrong!

will not work, since the offset part of the address will be truncat€@28BC and the jump will be
an ordinary 16-bit far one.

The Linux kernel setup code gets round the inabilitygs#6 to generate the required instruction by
coding it manually, usin®B instructions. NASM can go one better than that, by actually generating
the right instruction itself. Here’s how to do it right:

jmp dword 0x1234:0x56789ABC ; right

The DWORDDrefix (strictly speaking, it should conadter the colon, since it is declaring tléfset

field to be a doubleword; but NASM will accept either form, since both are unambiguous) forces
the offset part to be treated as far, in the assumption that you are deliberately writing a jump from a
16-bit segment to a 32-bit one.

You can do the reverse operation, jumping from a 32-bit segment to a 16-bit one, by means of the
WORDrefix:

jmp word 0x8765:0x4321 ; 32 to 16 bit

If the WORDrefix is specified in 16-bit mode, or tBVORDPrefix in 32-bit mode, they will be
ignored, since each is explicitly forcing NASM into a mode it was in anyway.

9.2 Addressing Between Different—-Size Segments

If your OS is mixed 16 and 32-bit, or if you are writing a DOS extender, you are likely to have to
deal with some 16-bit segments and some 32-bit ones. At some point, you will probably end up
writing code in a 16—bit segment which has to access data in a 32-bit segment, or vice versa.

If the data you are trying to access in a 32-bit segment lies within the first 64K of the segment, you
may be able to get away with using an ordinary 16-bit addressing operation for the purpose; but
sooner or later, you will want to do 32-bit addressing from 16—bit mode.

The easiest way to do this is to make sure you use a register for the address, since any effective
address containing a 32-bit register is forced to be a 32-bit address. So you can do

mov eax,offset_into_32_bit_segment_specified_by fs
mov dword [fs:eax],0x11223344

This is fine, but slightly cumbersome (since it wastes an instruction and a register) if you already
know the precise offset you are aiming at. The x86 architecture does allow 32-bit effective

addresses to specify nothing but a 4-byte offset, so why shouldn't NASM be able to generate the
best instruction for the purpose?

It can. As insection 9.1you need only prefix the address with I&/ORReyword, and it will be
forced to be a 32-bit address:

mov dword [fs:dword my_offset],0x11223344

Also as insection 9.1 NASM is not fussy about whether tBAVORIPrefix comes before or after
the segment override, so arguably a nicer—looking way to code the above instruction is

mov dword [dword fs:my_offset],0x11223344

Don't confuse theDWORDrefix outsidethe square brackets, which controls the size of the data
stored at the address, with the anside the square brackets which controls the length of the
address itself. The two can quite easily be different:

mov word [dword 0x12345678],0x9ABC
This moves 16 bits of data to an address specified by a 32-bit offset.

You can also specifWORDr DWORDrefixes along with th&AR prefix to indirect far jumps or
calls. For example:

call dword far [fs:word 0x4321]

This instruction contains an address specified by a 16-bit offset; it loads a 48-bit far pointer from
that (16—bit segment and 32-bit offset), and calls that address.

9.3 Other Mixed-Size Instructions

The other way you might want to access data might be using the string instrut@DSx(

STOSx and so on) or th&LATB instruction. These instructions, since they take no parameters,
might seem to have no easy way to make them perform 32-bit addressing when assembled in a
16-hbit segment.

This is the purpose of NASM’al6 and a32 prefixes. If you are codingODSBin a 16-bit
segment but it is supposed to be accessing a string in a 32-bit segment, you should load the desirec
address int&SI and then code

a32 lodsb

The prefix forces the addressing size to 32 bits, meaningLtbBXSBloads from[DS:ESI]
instead of[DS:SI] . To access a string in a 16-bit segment when coding in a 32-bit one, the
correspondin@g16 prefix can be used.

Theal6 anda32 prefixes can be applied to any instruction in NASM'’s instruction table, but most
of them can generate all the useful forms without them. The prefixes are necessary only for
instructions with implicit addressingZMPSx(section B.4.2), SCASX (section B.4.285 LODSx
(section B.4.14), STOSKxX (section B.4.308 MOVSx(section B.4.178 INSx (section B.4.12)}
OUTSx (section B.4.195 and XLATB (section B.4.33% Also, the various push and pop
instructions PUSHAandPOPFas well as the more usudUSHandPOB can accepal6 or a32

prefixes to force a particular one 8P or ESP to be used as a stack pointer, in case the stack
segment in use is a different size from the code segment.

101

102

PUSHand POR when applied to segment registers in 32-bit mode, also have the slightly odd
behaviour that they push and pop 4 bytes at a time, of which the top two are ignored and the bottom
two give the value of the segment register being manipulated. To force the 16-bit behaviour of
segment-register push and pop instructions, you can use the operand-sizglgrefix

016 push ss
016 push ds

This code saves a doubleword of stack space by fitting two segment registers into the space which
would normally be consumed by pushing one.

(You can also use tre82 prefix to force the 32-bit behaviour when in 16—-bit mode, but this seems
less useful.)

Chapter 10: Troubleshooting

This chapter describes some of the common problems that users have been known to encounter with
NASM, and answers them. It also gives instructions for reporting bugs in NASM if you find a
difficulty that isn’t listed here.

10.1 Common Problems
10.1.1 NASM Generateslnefficient Code

We sometimes get ‘bug’ reports about NASM generating inefficient, or even ‘wrong’, code on
instructions such a&DD ESP,8. This is a deliberate design feature, connected to predictability of
output: NASM, on seeingDD ESP,8, will generate the form of the instruction which leaves room
for a 32-bit offset. You need to cod®D ESP,BYTE 8 if you want the space—efficient form of

the instruction. This isn't a bug, it's user error: if you prefer to have NASM produce the more
efficient code automatically enable optimization with t{@n option (seesection 2.1.1%

10.1.2 My Jumps are Out of Range

Similarly, people complain that when they issmmditional jumps (which ar8HORTby default)
that try to jump too far, NASM reports ‘short jump out of range’ instead of making the jumps longer.

This, again, is partly a predictability issue, but in fact has a more practical reason as well. NASM
has no means of being told what type of processor the code it is generating will be run on; so it
cannot decide for itself that it should generdte NEAR type instructions, because it doesn't
know that it's working for a 386 or above. Alternatively, it could replace the out-of-range short
JNE instruction with a very shodE instruction that jumps over #MP NEAR this is a sensible
solution for processors below a 386, but hardly efficient on processors which have good branch
predictionand could have usedNE NEAR instead. So, once again, it's up to the user, not the
assembler, to decide what instructions should be generatese@enm 2.1.16

10.1.3 OR@oesn’t Work

People writingboot sector programs in then format often complain thadRGdoesn't work the
way they’d like: in order to place tfBxAA55 signature word at the end of a 512-byte boot sector,
people who are used to MASM tend to code

ORGO
: some boot sector code

ORG 510
DW 0xAA55

This is not the intended use of tBd&RCGdirective in NASM, and will not work. The correct way to
solve this problem in NASM is to use theMES directive, like this:

ORGO
: some boot sector code

TIMES 510-($-$$) DB 0
DW OXAA55

103

The TIMES directive will insert exactly enough zero bytes into the output to move the assembly
point up to 510. This method also has the advantage that if you accidentally fill your boot sector too
full, NASM will catch the problem at assembly time and report it, so you won't end up with a boot
sector that you have to disassemble to find out what’s wrong with it.

10.1.4 TIMES Doesn’t Work

104

The other common problem with the above code is people who wriTdMHES line as
TIMES 510-$ DB 0

by reasoning tha should be a pure number, just like 510, so the difference between them is also a
pure number and can happily be fedtMES.

NASM is amodularassembler: the various component parts are designed to be easily separable for
re—use, so they don’'t exchange information unnecessarily. In consequenuie, tbatput format,

even though it has been told by B&Cdirective that thetext section should start at 0, does not

pass that information back to the expression evaluator. So from the evaluator's point d view,
isn't a pure number: it's an offset from a section base. Therefore the difference bgtaeerb10

is also not a pure number, but involves a section base. Values involving section bases cannot be
passed as argumentstMES.

The solution, as in the previous section, is to codd lES line in the form
TIMES 510—-($-$$) DB 0

in which$ and$$ are offsets from the same section base, and so their difference is a pure number.
This will solve the problem and generate sensible code.

10.2 Bugs

We have never yet released a version of NASM with lamywnbugs. That doesn’t usually stop
there being plenty we didn't know about, though. Any that you find should be reported firstly via
thebugtracker athttps://sourceforge.net/projects/nasm/ (click on "Bugs"), or

if that fails then through one of the contactséation 1.2

Please readection 2.4irst, and don’t report the bug if it's listed in there as a deliberate feature. (If
you think the feature is badly thought out, feel free to send us reasons why you think it should be
changed, but don't just send us mail saying ‘This is a bug’ if the documentation says we did it on
purpose.) Then reaskction 10.1and don't bother reporting the bug if it’s listed there.

If you do report a bugpleasegive us all of the following information:

* What operating system you’re running NASM under. DOS, Linux, NetBSD, Win16, Win32,
VMS (I'd be impressed), whatever.

e If you're running NASM under DOS or Win32, tell us whether you've compiled your own
executable from the DOS source archive, or whether you were using the standard distribution
binaries out of the archive. If you were using a locally built executable, try to reproduce the
problem using one of the standard binaries, as this will make it easier for us to reproduce your
problem prior to fixing it.

* Which version of NASM you're using, and exactly how you invoked it. Give us the precise
command line, and the contents of MMeSMEN¥nvironment variable if any.

» Which versions of any supplementary programs you're using, and how you invoked them. If the
problem only becomes visible at link time, tell us what linker you're using, what version of it
you've got, and the exact linker command line. If the problem involves linking against object
files generated by a compiler, tell us what compiler, what version, and what command line or

https://sourceforge.net/projects/nasm/

options you used. (If you're compiling in an IDE, please try to reproduce the problem with the
command-line version of the compiler.)

If at all possible, send us a NASM source file which exhibits the problem. If this causes
copyright problems (e.g. you can only reproduce the bug in restricted—distribution code) then
bear in mind the following two points: firstly, we guarantee that any source code sent to us for
the purposes of debugging NASM will be usady for the purposes of debugging NASM, and
that we will delete all our copies of it as soon as we have found and fixed the bug or bugs in
guestion; and secondly, we would prefet to be mailed large chunks of code anyway. The
smaller the file, the better. A three-line sample file that does nothing esefptdemonstrate

the problem is much easier to work with than a fully fledged ten—-thousand-line program. (Of
course, some errod® only crop up in large files, so this may not be possible.)

A description of what the problem actually ‘It doesn’'t work’ isnot a helpful description!
Please describe exactly what is happening that shouldn't be, or what isn’'t happening that should.
Examples might be: ‘NASM generates an error message saying Line 3 for an error that's actually
on Line 5’; ‘NASM generates an error message that | believe it shouldn’'t be generating at all’;
‘NASM fails to generate an error message that | beliegsaauldbe generating’; ‘the object file
produced from this source code crashes my linker’; ‘the ninth byte of the output file is 66 and |
think it should be 77 instead’.

If you believe the output file from NASM to be faulty, send it to us. That allows us to determine
whether our own copy of NASM generates the same file, or whether the problem is related to
portability issues between our development platforms and yours. We can handle binary files
mailed to us as MIME attachments, uuencoded, and even BinHex. Alternatively, we may be able
to provide an FTP site you can upload the suspect files to; but mailing them is easier for us.

Any other information or data files that might be helpful. If, for example, the problem involves
NASM failing to generate an object file while TASM can generate an equivalent file without
trouble, then send uxth object files, so we can see what TASM is doing differently from us.

105

Appendix A: Ndisasm

The Netwide Disassembler, NDISASM

A.1 Introduction

The Netwide Disassembler is a small companion program to the Netwide Assembler, NASM. It
seemed a shame to have an x86 assembler, complete with a full instruction table, and not make as
much use of it as possible, so here’s a disassembler which shares the instruction table (and some
other bits of code) with NASM.

The Netwide Disassembler does nothing except to produce disassemubiesrgfsource files.
NDISASM does not have any understanding of object file formatsplj@gump , and it will not
understandOS .EXE files like debug will. It just disassembles.

A.2 Getting Started: Installation

Seesection 1.3for installation instructions. NDISASM, like NASM, hasrean page which you
may want to put somewhere useful, if you are on a Unix system.

A.3 Running NDISASM
To disassemble a file, you will typically use a command of the form
ndisasm [-b16 | —b32] filename

NDISASM can disassemble 16-bit code or 32-bit code equally easily, provided of course that you
remember to specify which it is to work with. If ndd switch is present, NDISASM works in
16-bit mode by default. Theu switch (for USE32) also invokes 32-bit mode.

Two more command line options are which reports the version number of NDISASM you are
running, and-h which gives a short summary of command line options.

A.3.1 COM Files: Specifying an Origin

To disassemble BOS .COMfile correctly, a disassembler must assume that the first instruction in
the file is loaded at addre6s100 , rather than at zero. NDISASM, which assumes by default that
any file you give it is loaded at zero, will therefore need to be informed of this.

The —o option allows you to declare a different origin for the file you are disassembling. Its
argument may be expressed in any of the NASM numeric formats: decimal by default, if it begins
with ‘$’ or ‘Ox’ or ends in H it's hex, if it ends in Q it's octal , and if it ends inB' it's

binary

Hence, to disassemble@OMfile:
ndisasm —0100h filename.com
will do the trick.
A.3.2 Code Following Data: Synchronisation

Suppose you are disassembling a file which contains some data which isn’t machine ctue and
contains some machine code. NDISASM will faithfully plough through the data section, producing
machine instructions wherever it can (although most of them will look bizarre, and some may have

106

unusual prefixes, e.gFS OR AX,0x240A), and generating ‘DB’ instructions ever so often if
it's totally stumped. Then it will reach the code section.

Supposing NDISASM has just finished generating a strange machine instruction from part of the
data section, and its file position is now one hyéfore the beginning of the code section. It's
entirely possible that another spurious instruction will get generated, starting with the final byte of
the data section, and then the correct first instruction in the code section will not be seen because the
starting point skipped over it. This isn't really ideal.

To avoid this, you can specify aynchronisation ' point, or indeed as many synchronisation
points as you like (although NDISASM can only handle 8192 sync points internally). The definition
of a sync point is this: NDISASM guarantees to hit sync points exactly during disassembly. If it is
thinking about generating an instruction which would cause it to jump over a sync point, it will
discard that instruction and outputdb’ instead. So iwill start disassembly exactly from the sync
point, and so yowill see all the instructions in your code section.

Sync points are specified using the option: they are measured in terms of the program origin, not
the file position. So if you want to synchronise after 32 bytes 6 file, you would have to do

ndisasm —0100h —s120h file.com
rather than
ndisasm —0100h —s20h file.com

As stated above, you can specify multiple sync markers if you need to, just by repeatisg the
option.

A.3.3 Mixed Code and Data: Automatic (Intelligent) Synchronisation

Suppose you are disassembling the boot sectoD@%loppy (maybe it has a virus, and you need

to understand the virus so that you know what kinds of damage it might have done you). Typically,
this will contain aIMP instruction, then some data, then the rest of the code. So there is a very good
chance of NDISASM beingisalignedwhen the data ends and the code begins. Hence a sync point
is needed.

On the other hand, why should you have to specify the sync point manually? What you'd do in
order to find where the sync point would be, surely, would be to reatMBénstruction, and then
to use its target address as a sync point. So can NDISASM do that for you?

The answer, of course, is yes: using either of the synonymous switghésr automatic sync) or

—i (for intelligent sync) will enablauto—sync mode. Auto—sync mode automatically generates

a sync point for any forward-referring PC-relative jump or call instruction that NDISASM
encounters. (Since NDISASM is one-pass, if it encounters a PC-relative jump whose target has
already been processed, there isn’t much it can do about it...)

Only PC-relative jumps are processed, since an absolute jump is either through a register (in which
case NDISASM doesn’'t know what the register contains) or involves a segment address (in which
case the target code isn't in the same segment that NDISASM is working in, and so the sync point
can't be placed anywhere useful).

For some kinds of file, this mechanism will automatically put sync points in all the right places, and
save you from having to place any sync points manually. However, it should be stressed that
auto—sync mode isot guaranteed to catch all the sync points, and you may still have to place some
manually.

Auto—sync mode doesn’t prevent you from declaring manual sync points: it just adds automatically
generated ones to the ones you provide. It's perfectly feasible to specifyd some-s options.

107

Another caveat with auto—sync mode is that if, by some unpleasant fluke, something in your data
section should disassemble to a PC-relative call or jump instruction, NDISASM may obediently
place a sync point in a totally random place, for example in the middle of one of the instructions in
your code section. So you may end up with a wrong disassembly even if you use auto—sync. Again,
there isn’t much | can do about this. If you have problems, you'll have to use manual sync points, or
use the-k option (documented below) to suppress disassembly of the data area.

A.3.4 Other Options

108

A4

The —e option skips a header on the file, by ignoring the first N bytes. This means that the header is
not counted towards the disassembly offset: if you gig&0 —010 , disassembly will start at byte
10 in the file, and this will be given offset 10, not 20.

The —k option is provided with two comma-separated numeric arguments, the first of which is an
assembly offset and the second is a number of bytes to skipwilhisount the skipped bytes
towards the assembly offset: its use is to suppress disassembly of a data section which wouldn't
contain anything you wanted to see anyway.

Bugs and Improvements

There are no known bugs. However, any you find, with patches if possible, should be sent to
jules@dsf.org.uk or anakin@pobox.com , or to the developer's site at
https://sourceforge.net/projects/nasm/ and we’ll try to fix them. Feel free to send
contributions and new features as well.

Future plans include awareness of which processors certain instructions will run on, and marking of
instructions that are too advanced for some processor (BPafestructions, or are undocumented
opcodes, or are privileged protected—mode instructions, or whatever).

That's All Folks!
| hope NDISASM is of some use to somebody. Including me. :-)

| don’t recommend taking NDISASM apart to see how an efficient disassembler works, because as
far as | know, it isn’t an efficient one anyway. You have been warned.

mailto:jules@dsf.org.uk
mailto:anakin@pobox.com
https://sourceforge.net/projects/nasm/

B.1

B.2

Appendix B: x86 Instruction Reference

This appendix provides a complete list of the machine instructions which NASM will assemble, and
a short description of the function of each one.

It is not intended to be exhaustive documentation on the fine details of the instructions’ function,
such as which exceptions they can trigger: for such documentation, you should go to Intel's Web
site, http://developer.intel.com/design/Pentium4/manuals/ .

Instead, this appendix is intended primarily to provide documentation on the way the instructions
may be used within NASM. For example, looking LPOPwill tell you that NASM allowsCX or

ECXto be specified as an optional second argument to@@@Pinstruction, to enforce which of the

two possible counter registers should be used if the default is not the one desired.

The instructions are not quite listed in alphabetical order, since groups of instructions with similar
functions are lumped together in the same entry. Most of them don’'t move very far from their
alphabetic position because of this.

Key to Operand Specifications
The instruction descriptions in this appendix specify their operands using the following notation:

* Registersireg8 denotes an 8-bhiggeneral purpose registaeglé denotes a 16-bit general
purpose register, arég32 a 32-bit onefpureg denotes one of the eight FPU stack registers,
mmxreg denotes one of the eight 64-bit MMX registers, @&egreg denotes a segment
register. In addition, some registers (sucllbsDXor ECX may be specified explicitly.

« Immediate operandémm denotes a generimmediate operandmm8, imm16 andimm32 are
used when the operand is intended to be a specific size. For some of these instructions, NASM
needs an explicit specifier: for exampl&DD ESP,16 could be interpreted as either
ADD r/m32,imm32 or ADD r/m32,imm8 . NASM chooses the former by default, and so you
must speciffADD ESP,BYTE 16 for the latter.

« Memory referencesnemdenotes a generimemory referencanem8 mem16 mem32 mem64
andmem80are used when the operand needs to be a specific size. Again, a specifier is needed in
some casedPDEC [address] is ambiguous and will be rejected by NASM. You must specify
DEC BYTE [address] , DEC WORD [address] or DEC DWORD [address] instead.

« Restricted memory references: one form of M@Vinstruction allows a memory address to be
specified without allowing the normal range of register combinations and effective address
processing. This is denoted imemoffs8 , memoffs16 andmemoffs32 .

* Register or memory choices: many instructions can accept either a regiseermemory
reference as an operandn8 is a shorthand foreg8/mem8 ; similarly /m16 andr/m32 .
r/m64 is MMX-related, and is a shorthand famxreg/mem64.

Key to Opcode Descriptions

This appendix also provides the opcodes which NASM will generate for each form of each
instruction. The opcodes are listed in the following way:

« A hex number, such &, indicates a fixed byte containing that number.

109

http://developer.intel.com/design/Pentium4/manuals/

A hex number followed by+r, such asC8+r, indicates that one of the operands to the
instruction is a register, and the ‘register value’' of that register should be added to the hex
number to produce the generated byte. For example, EDX has register value 2, so the code
C8+r, when the register operand is EDX, generates the hexC#ytRegister values for specific
registers are given isection B.2.1

A hex number followed bytcc, such as40+cc, indicates that the instruction name has a
condition code suffix, and the numeric representation of the condition code should be added to
the hex number to produce the generated byte. For example, thed@ede, when the
instruction contains th&E condition, generates the hex byté. Condition codes and their
numeric representations are giverséction B.2.2

A slash followed by a digit, such &, indicates that one of the operands to the instruction is a
memory address or register (denotegimor r/m , with an optional size). This is to be encoded as
an effective address, withModR/M byte, an optionaBIB byte, and an optional displacement,
and the spare (register) field of the ModR/M byte should be the digit given (which will be from 0
to 7, so it fits in three bits). The encoding of effective addresses is gigention B.2.5

The codéer combines the above two: it indicates that one of the operands is a memory address
orr/m , and another is a register, and that an effective address should be generated with the spare
(register) field in the ModR/M byte being equal to the ‘register value’ of the register operand.
The encoding of effective addresses is giveseiction B.2.5register values are given &ection

B.2.1

The codesb , iw andid indicate that one of the operands to the instruction is an immediate
value, and that this is to be encoded as a byte, little—endian word or little—endian doubleword
respectively.

The codegb, rw andrd indicate that one of the operands to the instruction is an immediate
value, and that thdifferencebetween this value and the address of the end of the instruction is to
be encoded as a byte, word or doubleword respectively. Where thenidrth appears, it
indicates that eithemv orrd should be used according to whether assembly is being performed
in BITS 16 orBITS 32 state respectively.

The codesow andod indicate that one of the operands to the instruction is a reference to the
contents of a memory address specified as an immediate value: this encoding is used in some
forms of the MOV instruction in place of the standard effective—address mechanism. The
displacement is encoded as a word or doubleword. Agaifod denotes thadw or od should

be chosen according to tB¢TS setting.

The code®16 ando32 indicate that the given form of the instruction should be assembled with
operand size 16 or 32 bits. In other word%6 indicates &6 prefix in BITS 32 state, but
generates no code BITS 16 state; and32 indicates a66 prefix in BITS 16 state but
generates nothing BITS 32 .

The codesal6 anda32, similarly tool6 ando32, indicate the address size of the given form
of the instruction. Where this does not matchBRES setting, &7 prefix is required.

B.2.1 Register Values

Where an instruction requires a register value, it is already implicit in the encoding of the rest of the
instruction what type of register is intended: an 8-bit general-purpose register, a segment register, a
debug register, an MMX register, or whatever. Therefore there is no problem with registers of
different types sharing an encoding value.

The encodings for the various classes of register are:

110

8-bit general register&L is 0,CLis 1,DLis 2,BL is 3,AHis 4,CHis 5,DHis 6, andBHis 7.

e 16-bit general register&Xis 0,CXis 1,DXis 2,BXis 3,SPis 4,BPis 5,SI is 6, andDI is 7.

» 32-bit general register&AXis 0,ECXis 1,EDXis 2,EBXis 3,ESPis 4,EBPis 5,ESI is 6,
andEDI is 7.

* Segment registerE€Sis 0,CSis 1,SSis 2,DSis 3,FSiis 4, andGSis 5.

¢ Floating—point registerssTO0 is 0,ST1 is 1,ST2is 2,ST3 is 3,ST4 is 4,ST5 is 5,ST6 is 6,
andST7is 7.

e 64-bitMMX registers:MMQis 0, MM1is 1,MM2is 2, MM3is 3, MMd4is 4, MM5is 5, MM6is 6, and
MM7is 7.

e Control registersCRO0is 0,CR2is 2,CR3is 3, andCR4is 4.
« Debug registerdR0is 0,DR1is 1,DR2is 2,DR3is 3,DR6is 6, andDR7is 7.
e TestregistersTR3is 3,TR4is 4,TR5is 5,TR6is 6, andTR7 is 7.

(Note that wherever a register name contains a number, that number is also the register value for
that register.)

B.2.2 Condition Codes

The available condition codes are given here, along with their numeric representations as part of
opcodes. Many of these condition codes have synonyms, so several will be listed at a time.

In the following descriptions, the word ‘either’, when applied to two possible trigger conditions, is
used to mean ‘either or both’. If ‘either but not both’ is meant, the phrase ‘exactly one of’ is used.

* Qis 0 (trigger if the overflow flag is set}{Ois 1.

« B, CandNAEare 2 (trigger if the carry flag is sefE, NBandNCare 3.

» EandZ are 4 (trigger if the zero flag is sedjyEandNZare 5.

» BEandNAare 6 (trigger if either of the carry or zero flags is #egndNBEare 7.

» Sis 8 (trigger if the sign flag is sef}Sis 9.

e PandPEare 10 (trigger if the parity flag is seljyPandPOare 11.

» L andNGEare 12 (trigger if exactly one of the sign and overflow flags is G&gndNL are 13.

« LE andNGare 14 (trigger if either the zero flag is set, or exactly one of the sign and overflow
flags is set)GandNLE are 15.

Note that in all cases, the sense of a condition code may be reversed by changing the low bit of the
numeric representation.

For details of when an instruction sets each of the status flags, see the individual instruction, plus
the Status Flags referencesiection B.2.4

B.2.3 SSE Condition Predicates

The condition predicates for SSE comparison instructions are the codes used as part of the opcode,
to determine what form of comparison is being carried out. In each case, the imm8 value is the final
byte of the opcode encoding, and the predicate is the code used as part of the mnemonic for the
instruction (equivalent to the "cc" in an integer instruction that used a condition code). The
instructions that use this will give details of what the various mnemonics are, this table is used to
help you work out details of what is happening.

Predi- imm8 Description Relation where: Emula— Result QNaN
cate Encod- A Is 1st Operand tion if NaN Signal

111

ing B Is 2nd Operand Operand Invalid

EQ 000B equal A=B False No
LT O001B less-than A<B False Yes
LE O010B less-than- A<=B False Yes
or—equal
—-—— ———— greater A>B Swap False Yes
than Operands,
Use LT
-—— ———— greater- A>=B Swap False Yes
than—-or—equal Operands,
Use LE

UNORD 011B unordered A, B = Unordered True No

NEQ 100B not-equal A!=B True No

NLT 101B not-less— NOT(A < B) True Yes
than

NLE 110B not-less— NOT(A <=B) True Yes
than-or-
equal

—-—— ———— not—greater NOT(A > B) Swap True Yes
than Operands,

Use NLT

—-—— ———— not—greater NOT(A >= B) Swap True Yes
than— Operands,
or—equal Use NLE

ORD 111B ordered A, B = Ordered False No

The unordered relationship is true when at least one of the two values being compared is a NaN or

in an unsupported format.

Note that the comparisons which are listed as not having a predicate or encoding can only be
achieved through software emulation, as described in the "emulation” column. Note in particular
that an instruction such ageater—than is not the same aNLE, as, unlike with theCMP
instruction, it has to take into account the possibility of one operand containing a NaN or an

unsupported numeric format.

B.2.4 Status Flags

112

The status flags provide some information about the result of the arithmetic instructions. This
information can be used by conditional instructions (sudbca andCMOVc¢ as well as by some

of the other instructions (such ABDCandINTO).
There are 6 status flags:
CF - Carry flag.

Set if an arithmetic operation generates a carry or a borrow out of the most-significant bit of the
result; cleared otherwise. This flag indicates an overflow condition for unsigned-integer arithmetic.
It is also used in multiple—precision arithmetic.

PF — Parity flag.
Set if the least-significant byte of the result contains an even number of 1 bits; cleared otherwise.
AF - Adjust flag.

Set if an arithmetic operation generates a carry or a borrow out of bit 3 of the result; cleared
otherwise. This flag is used in binary—coded decimal (BCD) arithmetic.

ZF - Zero flag.
Set if the result is zero; cleared otherwise.
SF - Sign flag.

Set equal to the most-significant bit of the result, which is the sign bit of a signed integer. (0
indicates a positive value and 1 indicates a negative value.)

OF - Overflow flag.

Set if the integer result is too large a positive number or too small a negative number (excluding the
sign—bit) to fit in the destination operand; cleared otherwise. This flag indicates an overflow
condition for signed-integer (two’s complement) arithmetic.

B.2.5 Effective Address Encoding:ModR/M and SIB

An effective address is encoded in up to three parts: a ModR/M byte, an optional SIB byte, and an
optional byte, word or doubleword displacement field.

The ModR/M byte consists of three fields: thed field, ranging from 0 to 3, in the upper two bits

of the byte, the/m field, ranging from O to 7, in the lower three bits, and the spare (register) field
in the middle (bit 3 to bit 5). The spare field is not relevant to the effective address being encoded,
and either contains an extension to the instruction opcode or the register value of another operand.

The ModR/M system can be used to encode a direct register reference rather than a memory access
This is always done by setting theod field to 3 and the/m field to the register value of the
register in question (it must be a general—-purpose register, and the size of the register must already
be implicit in the encoding of the rest of the instruction). In this case, the SIB byte and displacement
field are both absent.

In 16-bit addressing mode (eithRITS 16 with no67 prefix, orBITS 32 with a67 prefix), the
SIB byte is never used. The general rulesriod andr/m (there is an exception, given below) are:

« Themod field gives the length of the displacement field: 0 means no displacement, 1 means one
byte, and 2 means two bytes.

« Ther/m field encodes the combination of registers to be added to the displacement to give the
accessed address: 0 me8is+Sl, 1 mean8X+Dl, 2 mean8P+SI, 3 mean8P+DI, 4 means
Sl only, 5 mean®I only, 6 mean8P only, and 7 meanBX only.

However, there is a special case:

« If modis 0 andr/m is 6, the effective address encoded is[B&t] as the above rules would
suggest, but insteddisp16] : the displacement field is present and is two bytes long, and no
registers are added to the displacement.

113

Therefore the effective addref8P] cannot be encoded as efficiently [8X] ; so if you code
[BP] in a program, NASM adds a notional 8-bit zero displacement, andhseét® 1,r/m to 6,
and the one-byte displacement field to 0.

In 32-bit addressing mode (eithBITS 16 with a67 prefix, orBITS 32 with no67 prefix) the
general rules (again, there are exceptionsjniod andr/m are:

* Themod field gives the length of the displacement field: 0 means no displacement, 1 means one
byte, and 2 means four bytes.

* If only one register is to be added to the displacement, and it ES#®tther/m field gives its
register value, and the SIB byte is absent. Ifrthe field is 4 (which would encodESP), the
SIB byte is present and gives the combination and scaling of registers to be added to the
displacement.

If the SIB byte is present, it describes the combination of registers (an optional base register, and an
optional index register scaled by multiplication by 1, 2, 4 or 8) to be added to the displacement. The
SIB byte is divided into thecale field, in the top two bits, thendex field in the next three, and
thebase field in the bottom three. The general rules are:

¢ Thebase field encodes the register value of the base register.

e Theindex field encodes the register value of the index register, unless it is 4, in which case no
index register is used (&SP cannot be used as an index register).

e Thescale field encodes the multiplier by which the index register is scaled before adding it to
the base and displacement: 0 encodes a multiplier of 1, 1 encodes 2, 2 encodes 4 and 3 encodes 8

The exceptions to the 32-bit encoding rules are:

* If modis 0 andr/m is 5, the effective address encoded is[E®&P] as the above rules would
suggest, but insteddisp32] : the displacement field is present and is four bytes long, and no
registers are added to the displacement.

e If modis O,r/m is 4 (meaning the SIB byte is present) drage is 4, the effective address
encoded is not [EBP+index] as the above rules would suggest, but instead
[disp32+index] : the displacement field is present and is four bytes long, and there is no
base register (but the index register is still processed in the normal way).

B.3 Key to Instruction Flags

Given along with each instruction in this appendix is a set of flags, denoting the type of the
instruction. The types are as follows:

- 8086, 186, 286, 386, 486, PENTandP6 denote the lowest processor type that supports the
instruction. Most instructions run on all processors above the given type; those that do not are
documented. The Pentium Il contains no additional instructions beyond the P6 (Pentium Pro);
from the point of view of its instruction set, it can be thought of as a P6 with MMX capability.

» 3DNOWhdicates that the instruction is a 3DNow! one, and will run on the AMD K6-2 and later
processors. ATHLON extensions to the 3DNow! instruction set are documented as such.

¢ CYRIX indicates that the instruction is specific to Cyrix processors, for example the extra MMX
instructions in the Cyrix extended MMX instruction set.

« FPUindicates that the instruction is a floating—point one, and will only run on machines with a
coprocessor (automatically including 486DX, Pentium and above).

« KATMAI indicates that the instruction was introduced as part of the Katmai New Instruction set.
These instructions are available on the Pentium Il and later processors. Those which are not
specifically SSE instructions are also available on the AMD Athlon.

114

« MMXindicates that the instruction is an MMX one, and will run on MMX-capable Pentium
processors and the Pentium 1.

¢ PRIV indicates that the instruction is a protected—-mode management instruction. Many of these
may only be used in protected mode, or only at privilege level zero.

e SSE and SSEZ2 indicate that the instruction is a Streaming SIMD Extension instruction. These
instructions operate on multiple values in a single operation. SSE was introduced with the
Pentium Il and SSE2 was introduced with the Pentium 4.

* UNDOGndicates that the instruction is an undocumented one, and not part of the official Intel
Architecture; it may or may not be supported on any given machine.

« WILLAMETTEindicates that the instruction was introduced as part of the new instruction set in
the Pentium 4 and Intel Xeon processors. These instructions are also known as SSE2 instructions.

B.4 x86 Instruction Set
B.4.1 AAA AAS AAM AAD ASCII Adjustments

AAA ; 37 [8086]
AAS ; 3F [8086]
AAD ; D5 0A [8086]
AAD imm ;D51ib [8086]
AAM : D4 0A [8086]
AAM imm ;D4 ib [8086]

These instructions are used in conjunction with the add, subtract, multiply and divide instructions to
perform binary—coded decimal arithmeticunpackedone BCD digit per byte — easy to translate to
and fromASCII , hence the instruction names) form. There are also packed BCD instrizfiéns
andDAS seesection B.4.57

* AAA (ASCIl Adjust After Addition) should be used after a one—b&@D instruction whose
destination was th&L register: by means of examining the value in the low nibblaLoand
also the auxiliary carry flagF, it determines whether the addition has overflowed, and adjusts it
(and sets the carry flag) if so. You can add long BCD strings together by AIDH&AA on the
low digits, then doindADGAAA0N each subsequent digit.

e AAS (ASCII Adjust AL After Subtraction) works similarly t&AA but is for use afteEUB
instructions rather thaADD

* AAM(ASCII Adjust AX After Multiply) is for use after you have multiplied two decimal digits
together and left the result AL it dividesAL by ten and stores the quotientAR| leaving the
remainder inAL. The divisor 10 can be changed by specifying an operand to the instruction: a
particularly handy use of this 8AM 16, causing the two nibbles KL to be separated inthH
andAL.

* AAD(ASCII Adjust AX Before Division) performs the inverse operatio®#fiM it multiplies AH
by ten, adds it téd\L, and set®\Hto zero. Again, the multiplier 10 can be changed.

B.4.2 ADC Add with Carry

ADC r/m8,reg8 ;10 /r [8086]
ADC r/m16,reg16 ;016 11 /r [8086]
ADC r/m32,reg32 ;03211 /r [386]

115

ADC reg8,r/m8 ;12 r [8086]
ADC reg16,r/m16 ;016 13 /r [8086]
ADC reg32,r/m32 ;03213 /r [386]
ADC r/m8,imm8 ; 80/2ib [8086]
ADC r/m16,imm16 ;016 81 /2 iw [8086]
ADC r/m32,imm32 :03281/2id [386]
ADC r/m16,imm8 ;016 83/21ib [8086]
ADC r/m32,imm8 ;03283/21ib [386]
ADC AL,imm8 ; 14 ib [8086]
ADC AX,imm16 ;016 15 iw [8086]
ADC EAX,imm32 ;03215id [386]

ADCperforms integer addition: it adds its two operands together, plus the value of the carry flag,
and leaves the result in its destination (first) operand. The destination operand can be a register or a
memory location. The source operand can be a register, a memory location or an immediate value.

The flags are set according to the result of the operation: in particular, the carry flag is affected and
can be used by a subsequaBCinstruction.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand
is considered to be signed, and is sign—extended to the length of the first operand. In these cases, the
BYTEqualifier is necessary to force NASM to generate this form of the instruction.

To add two numbers without also adding the contents of the carry flagPDi3gection B.4.3
B.4.3 ADD Add Integers

ADD r/m8,reg8 ; 00 /r [8086]
ADD r/m16,reg16 ;016 01 /r [8086]
ADD r/m32,reg32 ;03201 /r [386]
ADD reg8,r/m8 ;02 /r [8086]
ADD regl16,r/m16 ; 016 03 /r [8086]
ADD reg32,r/m32 ;03203 /r [386]
ADD r/m8,imm8 ;80 /0 ib [8086]
ADD r/m16,imm16 ;016 81 /0 iw [8086]
ADD r/m32,imm32 ;03281/0id [386]
ADD r/m16,imm8 :01683/01ib [8086]
ADD r/m32,imm8 ;03283/01ib [386]
ADD AL,imm8 ; 04 b [8086]
ADD AX,imm16 ; 016 05 iw [8086]
ADD EAX,imm32 ;03205id [386]

ADD performs integer addition: it adds its two operands together, and leaves the result in its
destination (first) operand. The destination operand can be a register or a memory location. The
source operand can be a register, a memory location or an immediate value.

The flags are set according to the result of the operation: in particular, the carry flag is affected and
can be used by a subsequ&BCinstruction.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand
is considered to be signed, and is sign—extended to the length of the first operand. In these cases, the
BYTEqualifier is necessary to force NASM to generate this form of the instruction.

116

B.4.4 ADDPDADD Packed Double—Precision FP Values
ADDPD xmm1,xmm2/mem128 ;66 OF 58 /r [WILLAMETTE,SSEZ2]
ADDPDperforms addition on each of two packed double—precision FP value pairs.

dst[0-63] :=dst[0-63] + src[0-63],
dst[64-127] := dst[64-127] + src[64-127].

The destination is akMMregister. The source operand can be eithexMiregister or a 128-bit
memory location.

B.4.5 ADDPSADD Packed Single—Precision FP Values
ADDPS xmm1,xmm2/mem128 ; OF 58 /r [KATMAI,SSE]
ADDPSperforms addition on each of four packed single—precision FP value pairs

dst[0-31] :=dst[0-31] + src[0-31],
dst[32-63] := dst[32-63] + src[32-63],
dst[64-95] .= dst[64-95] + src[64-95],
dst[96-127] := dst[96-127] + src[96-127].

The destination is akMMregister. The source operand can be eitheXMMregister or a 128-bit
memory location.

B.4.6 ADDSDADD Scalar Double—-Precision FP Values
ADDSD xmm1,xmm2/mem64 ; F20F 58 /r [KATMAI,SSE]

ADDSDadds the low double—precision FP values from the source and destination operands and
stores the double—precision FP result in the destination operand.

dst[0-63] := dst[0-63] + src[0-63],
dst[64-127) remains unchanged.

The destination is akMMregister. The source operand can be eitheXMivregister or a 64-bit
memory location.

B.4.7 ADDSSADD Scalar Single—Precision FP Values
ADDSS xmm1,xmm2/mem32 ; F30F 58 /r [WILLAMETTE,SSEZ?]

ADDSSadds the low single—precision FP values from the source and destination operands and
stores the single—precision FP result in the destination operand.

dst[0-31] :=dst[0-31] + src[0-31],
dst[32-127] remains unchanged.

The destination is akMMregister. The source operand can be eitheXMiVregister or a 32-bit
memory location.

B.4.8 AND Bitwise AND

AND r/m8,reg8 ; 20 /r [8086]
AND r/m16,regl6 ;016 21 /r [8086]
AND r/m32,reg32 ;03221 /r [386]
AND reg8,r/m8 ;22 r [8086]
AND reg16,r/m16 ;016 23 /r [8086]
AND reg32,r/m32 ;03223 /r [386]

117

AND r/m8,imm8 ;80 /4 ib [8086]

AND r/m16,imm16 ; 016 81 /4 iw [8086]
AND r/m32,imm32 ;03281 /4id [386]
AND r/m16,imm8 ;01683 /4 ib [8086]
AND r/m32,imm8 ;03283/41b [386]
AND AL,imm8 ;24 0b [8086]
AND AX,imm16 ; 016 25 iw [8086]
AND EAX,imm32 ;03225id [386]

ANDperforms a bitwise AND operation between its two operands (i.e. each bit of the result is 1 if

and only if the corresponding bits of the two inputs were both 1), and stores the result in the
destination (first) operand. The destination operand can be a register or a memory location. The
source operand can be a register, a memory location or an immediate value.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand
is considered to be signed, and is sign—extended to the length of the first operand. In these cases, the
BYTEqualifier is necessary to force NASM to generate this form of the instruction.

The MMXinstructionPAND(seesection B.4.20P performs the same operation on the 64X
registers.

B.4.9 ANDNPDBItwise Logical AND NOT of Packed Double—-Precision FP Values

ANDNPD xmm1,xmm2/mem128 ;66 OF 55 /r [WILLAMETTE,SSEZ2]

ANDNPDinverts the bits of the two double—precision floating—point values in the destination
register, and then performs a logical AND between the two double—precision floating—point values
in the source operand and the temporary inverted result, storing the result in the destination register.

dst[0-63] :=src[0-63] AND NOT dst[0-63],
dst[64-127] := src[64-127] AND NOT dst[64-127].

The destination is akMMregister. The source operand can be eitheXMMregister or a 128-bit
memory location.

B.4.10 ANDNPSBItwise Logical AND NOT of Packed Single—Precision FP Values

ANDNPS xmm1,xmm2/mem128 :OF 55 /r [KATMAI,SSE]

ANDNPSinverts the bits of the four single—precision floating—point values in the destination
register, and then performs a logical AND between the four single—precision floating—point values
in the source operand and the temporary inverted result, storing the result in the destination register.

dst[0-31] :=src[0-31] AND NOT dst[0-31],
dst[32-63] :=src[32-63] AND NOT dst[32-63],
dst[64-95] :=src[64-95] AND NOT dst[64-95],
dst[96-127] := src[96-127] AND NOT dst[96-127].

The destination is akMMregister. The source operand can be eitheXMiregister or a 128-bit
memory location.

B.4.11 ANDPDBItwise Logical AND For Single FP

118

ANDPD xmm1,xmm2/mem128 ;66 OF 54 /r [WILLAMETTE,SSEZ2]

ANDPDperforms a bitwise logical AND of the two double—precision floating point values in the
source and destination operand, and stores the result in the destination register.

dst[0-63] :=src[0-63] AND dst[0-63],

dst[64-127] := src[64—127] AND dst[64-127].

The destination is akMMregister. The source operand can be eitheXMMregister or a 128-bit
memory location.

B.4.12 ANDPSBitwise Logical AND For Single FP
ANDPS xmm1,xmm2/mem128 :OF 54 /r [KATMAI,SSE]

ANDPSperforms a bitwise logical AND of the four single—precision floating point values in the
source and destination operand, and stores the result in the destination register.

dst[0-31] :=src[0-31] AND dst[0-31],
dst[32-63] :=src[32-63] AND dst[32-63],
dst[64-95] := src[64-95] AND dst[64-95],
dst[96-127] := src[96-127] AND dst[96-127].

The destination is akMMregister. The source operand can be eitheXMiregister or a 128-bit
memory location.

B.4.13 ARPL Adjust RPL Field of Selector
ARPL r/m16,reg16 163 /r [286,PRIV]

ARPLexpects its two word operands to be segment selectors. It adjuRBliieequested privilege

level — stored in the bottom two bits of the selector) field of the destination (first) operand to ensure
that it is no less (i.e. no more privileged than) R field of the source operand. The zero flag is

set if and only if a change had to be made.

B.4.14 BOUNDCheck Array Index against Bounds

BOUND regl6,mem ;016 62 /r [186]
BOUND reg32,mem ;03262 /r [386]

BOUNDexpects its second operand to point to an area of memory containing two signed values of
the same size as its first operand (i.e. two words for the 16-bit form; two doublewords for the
32-bit form). It performs two signed comparisons: if the value in the register passed as its first
operand is less than the first of the in—-memory values, or is greater than or equal to the second, it
throws aBR exception. Otherwise, it does nothing.

B.4.15 BSF, BSR Bit Scan

BSF reg16,r/m16 ; 016 OF BC /r [386]
BSF reg32,r/m32 ; 032 OF BC /r [386]
BSR regl6,r/m16 ; 016 OF BD /r [386]
BSR reg32,r/m32 ; 032 OF BD /r [386]

» BSF searches for the least significant set bit in its source (second) operand, and if it finds one,
stores the index in its destination (first) operand. If no set bit is found, the contents of the
destination operand are undefined. If the source operand is zero, the zero flag is set.

 BSR performs the same function, but searches from the top instead, so it finds the most
significant set bit.

Bit indices are from 0O (least significant) to 15 or 31 (most significant). The destination operand can
only be a register. The source operand can be a register or a memory location.

B.4.16 BSWAPByte Swap
BSWAP reg32 - 032 OF C8+r [486]

BSWAPswaps the order of the four bytes of a 32-bit register: bits 0-7 exchange places with bits
24-31, and bits 8-15 swap with bits 16—-23. There is no explicit 16-bit equivalent: to byte—swap

119

AX, BX, CX or DX XCHGcan be used. WheRSWAHs used with a 16-bit register, the result is
undefined.

B.4.17 BT, BTC BTR BTS: Bit Test

BT r/m16,reg16 ; 016 OF A3 /r [386]
BT r/m32,reg32 ;032 0F A3 /Ir [386]
BT r/m16,imm8 ;016 OF BA/4ib [386]
BT r/m32,imm8 :0320FBA/4ib [386]
BTC r/m16,regl6 ; 016 OF BB /r [386]
BTC r/m32,reg32 ;032 OF BB /r [386]
BTC r/m16,imm8 ;016 OF BA/7ib [386]
BTC r/m32,imm8 ;0320FBA/7ib [386]
BTR r/m16,regl6 ;016 OF B3 /r [386
BTR r/m32,reg32 :0320F B3 /r [386
BTR r/m16,imm8 ;016 OF BA/6ib [386]
BTR r/m32,imm8 ;032 0FBA/6ib [386]
BTS r/m16,regl16 ; 016 OF AB /r [386
BTS r/m32,reg32 ;032 OF AB /Ir [386
BTS r/m16,imm ;016 OF BA/5ib [386]
BTS r/m32,imm :0320FBA/SIb [386]

These instructions all test one bit of their first operand, whose index is given by the second operand,
and store the value of that bit into the carry flag. Bit indices are from 0 (least significant) to 15 or 31
(most significant).

In addition to storing the original value of the bit into the carry lBiGR also resets (clears) the bit
in the operand itselfBTS sets the bit, anBTC complements the biBT does not modify its
operands.

The destination can be a register or a memory location. The source can be a register or an
immediate value.

If the destination operand is a register, the bit offset should be in the range 0-15 (for 16-bit
operands) or 0-31 (for 32—-bit operands). An immediate value outside these ranges will be taken
modulo 16/32 by the processor.

If the destination operand is a memory location, then an immediate bit offset follows the same rules
as for a register. If the bit offset is in a register, then it can be anything within the signed range of
the register used (ie, for a 32—-bit operand, it can be (-2731) to (2*31 — 1)

B.4.18 CALL: Call Subroutine

120

CALL imm ; E8 rw/rd [8086]
CALL imm:imm16 ; 016 9A iw iw [8086]
CALL imm:imm32 ; 032 9A id iw [386]
CALL FAR mem16 ; 016 FF /3 [8086]
CALL FAR mem32 ; 032 FF /3 [386]
CALL r/m16 ; 016 FF /2 [8086]
CALL r/m32 ; 032 FF /2 [386]

CALL calls a subroutine, by means of pushing the current instruction pdijearid optionallyCS
as well on the stack, and then jumping to a given address.

CSis pushed as well dB if and only if the call is a far call, i.e. a destination segment address is
specified in the instruction. The forms involving two colon—separated arguments are far calls; so are
the CALL FAR mem forms.

The immediatenear call takes one of two forms(l imm16/imm32 , determined by the current
segment size limit. For 16-bit operands, you would @a&L 0x1234 , and for 32-bit operands
you would useCALL 0x12345678 . The value passed as an operand is a relative offset.

You can choose between the two immediatecall forms CALL imm:imm) by the use of the
WORD and DWORD keywords: CALL WORD 0x1234:0x5678) or
CALL DWORD 0x1234:0x56789abc

The CALL FAR mem forms execute a far call by loading the destination address out of memory.
The address loaded consists of 16 or 32 bits of offset (depending on the operand size), and 16 bits of
segment. The operand size may be overridden ust@dglL WORD FAR mem or

CALL DWORD FAR mem

The CALL r/m forms execute aear call (within the same segment), loading the destination
address out of memory or out of a register. The keyWE&RmMay be specified, for clarity, in
these forms, but is not necessary. Again, operand size can be overriddeBAISingVORD mem

or CALL DWORD mem

As a convenience, NASM does not require you to call a far procedure symbol by coding the
cumbersome CALL SEG routine:routine , but instead allows the easier synonym
CALL FAR routine

The CALL r/m forms given above are near calls; NASM will accept MeARkeyword (e.g.
CALL NEAR [address]), even though it is not strictly necessary.

B.4.19 CBWCWDCDQCWDESIign Extensions

CBW ; 016 98 [8086]
CWDE ;032 98 [386]
CWD - 016 99 [8086]
CDQ . 032 99 [386]

All these instructions sign—extend a short value into a longer one, by replicating the top bit of the
original value to fill the extended one.

CBWextendsAL into AX by repeating the top bit &L in every bit ofAH CWDEextendsAX into
EAX CWDextendsAX into DX:AX by repeating the top bit &X throughoutDX andCDQextends
EAXinto EDX:EAX

B.4.20 CLC CLD, CLI, CLTS Clear Flags

CLC ' F8 [8086]

CLD ' FC [8086]

CLI L FA [8086]

CLTS - OF 06 [286,PRIV]

These instructions clear various flagi.C clears the carry flagiLD clears the direction flagzLI
clears the interrupt flag (thus disabling interrupts); &hd S clears the task—switched$) flag in
CRQ

To set the carry, direction, or interrupt flags, use $7&C, STD and STI instructions gection
B.4.30). To invert the carry flag, useMsection B.4.2p

B.4.21 CLFLUSH Flush Cache Line
CLFLUSH mem :OF AE /7 [WILLAMETTE,SSEZ?]

CLFLUSHinvalidates the cache line that contains the linear address specified by the source operand
from all levels of the processor cache hierarchy (data and instruction). If, at any level of the cache

121

hierarchy, the line is inconsistent with memory (dirty) it is written to memory before invalidation.
The source operand points to a byte—sized memory location.

Although CLFLUSHIis flaggedSSE2 and above, it may not be present on all processors which have
SSE2 support, and it may be supported on other processor§RbkD instruction éection B.4.3%
will return a bit which indicates support for t@&FLUSHinstruction.

B.4.22 CMCComplement Carry Flag

CMC ; F5 [8086]

CMCchanges the value of the carry flag: if it was 0, it sets it to 1, and vice versa.
B.4.23 CMOVcc Conditional Move

CMOVcc regl6,r/m16 ; 016 OF 40+cc /r [P6]
CMOVcc reg32,r/m32 ; 032 OF 40+cc /r [P6]

CMOWMmoves its source (second) operand into its destination (first) operand if the given condition
code is satisfied; otherwise it does nothing.

For a list of condition codes, ssection B.2.2

Although the CMOVinstructions are flagge®6 and above, they may not be supported by all
Pentium Pro processors; tidUID instruction éection B.4.3% will return a bit which indicates
whether conditional moves are supported.

B.4.24 CMP Compare Integers

CMP r/m8,reg8 ;38 Ir [8086]
CMP r/m16,reg16 ;016 39 /r [8086]
CMP r/m32,reg32 ;03239 /r [386]
CMP reg8,r/m8 ; 3Ar [8086]
CMP reg16,r/m16 ; 016 3B /r [8086]
CMP reg32,r/m32 ;032 3B /r [386]
CMP r/m8,imm8 ; 80/0ib [8086]
CMP r/m16,imm16 ;016 81 /0 iw [8086]
CMP r/m32,imm32 :03281/0id [386]
CMP r/m16,imm8 ;016 83/0ib [8086]
CMP r/m32,imm8 ;03283/01ib [386]
CMP AL,imm8 ;3Cib [8086]
CMP AX,imm16 ; 016 3D iw [8086]
CMP EAX,imm32 ;0323Did [386]

CMPperforms a ‘mental’ subtraction of its second operand from its first operand, and affects the
flags as if the subtraction had taken place, but does not store the result of the subtraction anywhere.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand
is considered to be signed, and is sign—extended to the length of the first operand. In these cases, the
BYTEqualifier is necessary to force NASM to generate this form of the instruction.

The destination operand can be a register or a memory location. The source can be a register,
memory location or an immediate value of the same size as the destination.

B.4.25 CMPccPD Packed Double-Precision FP Compare
CMPPD xmm1,xmm2/mem128,imm8 ; 66 OF C2 /rib [WILLAMETTE,SSE2]

122

CMPEQPD xmm1,xmm2/mem128 ;66 OF C2/r 00 [WILLAMETTE,SSE2]
CMPLTPD xmm1,xmm2/mem128 ;66 OF C2/r 01 [WILLAMETTE,SSEZ?]
CMPLEPD xmm1,xmm2/mem128 ;66 OF C2 /r 02 [WILLAMETTE,SSEZ?]
CMPUNORDPD xmm1,xmm2/mem128 ; 66 OF C2 /r 03 [WILLAMETTE,SSEZ2]
CMPNEQPD xmm1,xmm2/mem128 ;66 OF C2 /r 04 [WILLAMETTE,SSEZ2]
CMPNLTPD xmm1,xmm2/mem128 ;66 OF C2 /r 05 [WILLAMETTE,SSEZ2]
CMPNLEPD xmm1,xmm2/mem128 ;66 OF C2/r 06 [WILLAMETTE,SSEZ2]
CMPORDPD xmm1,xmm2/mem128 ;66 OF C2 /r 07 [WILLAMETTE,SSEZ2]

The CMPccPDinstructions compare the two packed double—precision FP values in the source and
destination operands, and returns the result of the comparison in the destination register. The result
of each comparison is a quadword mask of all 1s (comparison true) or all Os (comparison false).

The destination is akMMregister. The source can be eitherdMregister or a 128-bit memory
location.

The third operand is an 8-bit immediate value, of which the low 3 bits define the type of
comparison. For ease of programming, the 8 two—operand pseudo-instructions are provided, with
the third operand already filled in. THéondition Predicates are:

EQ 0 Equal

LT 1 Less-than

LE 2 Less-than-or-equal
UNORD 3 Unordered

NE 4 Not-equal

NLT 5 Not-less—-than

NLE 6 Not-less—than-or—equal
ORD 7 Ordered

For more details of the comparison predicates, and details of how to emulate the "greater-than"
equivalents, segection B.2.3

B.4.26 CMPccPS Packed Single—Precision FP Compare
CMPPS xmm1,xmm2/mem128,imm8 ; OF C2/rib [KATMAI,SSE]

CMPEQPS xmml,xmm2/mem128 ;O0F C2/r00 [KATMAI,SSE]
CMPLTPS xmm1,xmm2/mem128 ;O0F C2/r01 [KATMAI,SSE]
CMPLEPS xmm1,xmm2/mem128 ;OF C2/r02 [KATMAISSE]
CMPUNORDPS xmm1,xmm2/mem128 ;OF C2/r03 [KATMAI,SSE]
CMPNEQPS xmm1,xmm2/mem128 ;O0F C2/r04 [KATMAI,SSE]
CMPNLTPS xmm1,xmm2/mem128 ;OF C2/r05 [KATMAI,SSE]
CMPNLEPS xmm1,xmm2/mem128 ;0F C2/r06 [KATMAI,SSE]
CMPORDPS xmm1,xmm2/mem128 ;O0F C2/r07 [KATMAI,SSE]

The CMPccPSinstructions compare the two packed single—precision FP values in the source and
destination operands, and returns the result of the comparison in the destination register. The result
of each comparison is a doubleword mask of all 1s (comparison true) or all Os (comparison false).

The destination is akMMregister. The source can be eitherdiMregister or a 128-bit memory
location.

The third operand is an 8-bit immediate value, of which the low 3 bits define the type of
comparison. For ease of programming, the 8 two—operand pseudo-instructions are provided, with
the third operand already filled in. THéondition Predicates are:

EQ O Equal
LT 1 Less-than
LE 2 Less-than-or-equal

123

UNORD 3 Unordered

NE 4 Not-equal

NLT 5 Not-less—than

NLE 6 Not-less—than—-or-equal
ORD 7 Ordered

For more details of the comparison predicates, and details of how to emulate the "greater-than"
equivalents, segection B.2.3

B.4.27 CMPSBCMPSWCMPSDCompare Strings

CMPSB . A6 [8086]
CMPSW ;016 A7 [8086]
CMPSD ;032 A7 [386]

CMPSBcompares the byte §DS:SI] or [DS:ESI] with the byte afES:DI] or [ES:EDI]
and sets the flags accordingly. It then increments or decrements (depending on the direction flag:
increments if the flag is clear, decrements if it is SétandDI (or ESI andEDI).

The registers used a8 andDI if the address size is 16 bits, aB8| andEDI if it is 32 bits. If
you need to use an address size not equal to the cBifeBtsetting, you can use an expliait6
or a32 prefix.

The segment register used to load friah] or [ESI] can be overridden by using a segment
register name as a prefix (for exampgies CMPSB. The use oES for the load from[DI] or
[EDI] cannot be overridden.

CMPSVEndCMPSDwork in the same way, but they compare a word or a doubleword instead of a
byte, and increment or decrement the addressing registers by 2 or 4 instead of 1.

The REPE and REPNE prefixes (equivalentlyREPZ and REPNZ may be used to repeat the
instruction up taCX (or ECX- again, the address size chooses which) times until the first unequal or
equal byte is found.

B.4.28 CMPccSD Scalar Double—Precision FP Compare

124

CMPSD xmm1,xmm2/mem64,imm8 ; F2 OF C2 /rib [WILLAMETTE,SSEZ2]

CMPEQSD xmm1,xmm2/mem64 ; F20F C2 /r 00 [WILLAMETTE,SSEZ?]
CMPLTSD xmm1,xmm2/mem64 ; F2 OF C2 /r 01 [WILLAMETTE,SSEZ2]
CMPLESD xmm1,xmm2/mem64 ; F20F C2 /r 02 [WILLAMETTE,SSEZ2]
CMPUNORDSD xmm1,xmm2/mem64 ; F2 OF C2 /r 03 [WILLAMETTE,SSEZ2]
CMPNEQSD xmm1,xmm2/mem64 ; F2 OF C2/r 04 [WILLAMETTE,SSEZ2]
CMPNLTSD xmm1,xmm2/mem64 ; F2 OF C2 /r 05 [WILLAMETTE,SSEZ2]
CMPNLESD xmm1,xmm2/mem64 ; F2 0F C2/r 06 [WILLAMETTE,SSEZ2]
CMPORDSD xmm1,xmm2/mem64 ; F2 OF C2/r 07 [WILLAMETTE,SSEZ2]

The CMPccSDinstructions compare the low—order double—precision FP values in the source and
destination operands, and returns the result of the comparison in the destination register. The result
of each comparison is a quadword mask of all 1s (comparison true) or all Os (comparison false).

The destination is akMMregister. The source can be eitherdMregister or a 128-bit memory
location.

The third operand is an 8-bit immediate value, of which the low 3 bits define the type of
comparison. For ease of programming, the 8 two—operand pseudo-instructions are provided, with
the third operand already filled in. THeondition Predicates are:

EQ 0 Equal
LT 1 Less-than

LE 2 Less-than-or-equal
UNORD 3 Unordered

NE 4 Not-equal

NLT 5 Not-less—-than

NLE 6 Not-less—than-or—equal
ORD 7 Ordered

For more details of the comparison predicates, and details of how to emulate the "greater-than"
equivalents, segection B.2.3

B.4.29 CMPccSS Scalar Single—Precision FP Compare
CMPSS xmm1,xmm2/mem32,imm8 ; F3 OF C2 /rib [KATMAI,SSE]

CMPEQSS xmm1,xmm2/mem32 ; F3 0F C2 /r 00 [KATMAI,SSE]
CMPLTSS xmm1,xmm2/mem32 ; F30F C2 /r 01 [KATMAI,SSE]
CMPLESS xmm1,xmm2/mem32 ; F3 OF C2 /r 02 [KATMAI,SSE]
CMPUNORDSS xmm1,xmm2/mem32 ; F3 0F C2/r 03 [KATMAI,SSE]
CMPNEQSS xmm1,xmm2/mem32 ; F3 0F C2/r 04 [KATMAI,SSE]
CMPNLTSS xmm1,xmm2/mem32 ; F3 0F C2/r 05 [KATMAI,SSE]
CMPNLESS xmm1,xmm2/mem32 ; F3 0OF C2/r 06 [KATMAI,SSE]
CMPORDSS xmm1,xmm2/mem32 ; F3 OF C2/r 07 [KATMAI,SSE]

The CMPccSSinstructions compare the low—order single—precision FP values in the source and
destination operands, and returns the result of the comparison in the destination register. The result
of each comparison is a doubleword mask of all 1s (comparison true) or all Os (comparison false).

The destination is akMMregister. The source can be eitherdiMregister or a 128-bit memory
location.

The third operand is an 8-bit immediate value, of which the low 3 bits define the type of
comparison. For ease of programming, the 8 two—operand pseudo-instructions are provided, with
the third operand already filled in. THéondition Predicates are:

EQ O Equal

LT 1 Less-than

LE 2 Less-than-or-equal
UNORD 3 Unordered

NE 4 Not-equal

NLT 5 Not-less—than

NLE 6 Not-less—than-or-equal
ORD 7 Ordered

For more details of the comparison predicates, and details of how to emulate the "greater-than"
equivalents, segection B.2.3

B.4.30 CMPXCH&MPXCHG488Compare and Exchange

CMPXCHG r/m8,reg8 ; OF BO /r [PENT]
CMPXCHG r/m16,regl6 ; 016 OF B1 /r [PENT]
CMPXCHG r/m32,reg32 ;0320F Bl /r [PENT]
CMPXCHG486 r/m8,reg8 ; OF A6 /r [486,UNDOC]
CMPXCHGA486 r/m16,reg16 ; 016 OF A7 Ir [486,UNDOC]
CMPXCHGA486 r/m32,reg32 ; 032 0F A7 Ir [486,UNDOC]

These two instructions perform exactly the same operation; however, apparently some (not all) 486
processors support it under a non-standard opcode, so NASM provides the undocumented
CMPXCHG486orm to generate the non-standard opcode.

125

CMPXCH®@ompares its destination (first) operand to the valusLinAX or EAX (depending on the
operand size of the instruction). If they are equal, it copies its source (second) operand into the
destination and sets the zero flag. Otherwise, it clears the zero flag and copies the destination
register to AL, AX or EAX.

The destination can be either a register or a memory location. The source is a register.

CMPXCHGs intended to be used for atomic operations in multitasking or multiprocessor
environments. To safely update a value in shared memory, for example, you might load the value
into EAX load the wupdated value intoEBX and then execute the instruction
LOCK CMPXCHG [value],EBX . If value has not changed since being loaded, it is updated
with your desired new value, and the zero flag is set to let you know it has worked - @Uke

prefix prevents another processor doing anything in the middle of this operation: it guarantees
atomicity.) However, if another processor has modified the value in between your load and your
attempted store, the store does not happen, and you are notified of the failure by a cleared zero flag,
S0 you can go round and try again.

B.4.31 CMPXCHG8RECompare and Exchange Eight Bytes

CMPXCHG8B mem 'OFC7/1 [PENT]

This is a larger and more unwieldy versionGWIPXCHGt compares the 64-bit (eight—byte) value
stored atfmem] with the value InEDX:EAX If they are equal, it sets the zero flag and stores
ECX:EBX into the memory area. If they are unequal, it clears the zero flag and stores the memory
contents int&EDX:EAX

CMPXCHG8RBan be used with theOCK prefix, to allow atomic execution. This is useful in
multi-processor and multi-tasking environments.

B.4.32 COMISD Scalar Ordered Double—Precision FP Compare and Set EFLAGS

COMISD xmm1,xmm2/mem64 ; 66 OF 2F /r [WILLAMETTE,SSEZ?]

COMISDcompares the low-order double—precision FP value in the two source operands. ZF, PF
and CF are set according to the result. OF, AF and AF are cleared. The unordered result is returned
if either source is a NaN (QNaN or SNaN).

The destination operand is XMMregister. The source can be eitherXdVregister or a memory
location.

The flags are set according to the following rules:
Result Flags Values

UNORDERED: ZF,PF,CF <—-111;
GREATER_THAN: ZF,PF,CF <-- 000;
LESS_THAN: ZF,PF,CF <—- 001;
EQUAL: ZF,PF,CF <—-100;

B.4.33 COMISS Scalar Ordered Single—Precision FP Compare and Set EFLAGS

126

COMISS xmm1,xmm2/mem32 ; 66 OF 2F /r [KATMAI,SSE]

COMISScompares the low—order single—precision FP value in the two source operands. ZF, PF and
CF are set according to the result. OF, AF and AF are cleared. The unordered result is returned if
either source is a NaN (QNaN or SNaN).

The destination operand is XMMregister. The source can be eitherXdVregister or a memory
location.

The flags are set according to the following rules:

Result Flags Values

UNORDERED: ZF,PF,CF <—-111;
GREATER_THAN: ZF,PF,CF <—— 000;
LESS_THAN: ZF,PF,CF <—— 001,

EQUAL: ZF,PF,CF <— 100;
B.4.34 CPUID: Get CPU ldentification Code
CPUID : OF A2 [PENT]

CPUID returns various information about the processor it is being executed on. It fills the four
registersEAX EBX ECXandEDXwith information, which varies depending on the input contents
of EAX

CPUID also acts as a barrier to serialise instruction execution: executingPdé&D instruction
guarantees that all the effects (memory modification, flag modification, register modification) of
previous instructions have been completed before the next instruction gets fetched.

The information returned is as follows:

* If EAXis zero on inputEAX on output holds the maximum acceptable input valueAX and
EBX:EDX:ECX contain the stringGenuinelntel” (or not, if you have a clone processor).
That is to sayEBXcontains'Genu" (in NASM’s own sense of character constants, described in
section 3.4. EDXcontains'inel* andECXcontains'ntel"

« If EAXis one on inputEAXon output contains version information about the processoikaixd
contains a set of feature flags, showing the presence and absence of various features. For
example, bit 8 is set if theMPXCHG8Bstruction éection B.4.31Lis supported, bit 15 is set if
the conditional move instructionsgction B.4.23andsection B.4.7Rare supported, and bit 23 is
set ifMMXnstructions are supported.

e If EAXis two on inputEAX EBX ECXandEDXall contain information about caches and TLBs
(Translation Lookahead Buffers).

For more information on the data returned fréfRUID, see the documentation from Intel and other
processor manufacturers.

B.4.35 CVTDQ2PDPacked Signed INT32 to Packed Double—Precision FP Conversion
CVTDQ2PD xmm1l,xmm2/mem64 ;F30FE6/r [WILLAMETTE,SSE?2]

CVTDQ2PDconverts two packed signed doublewords from the source operand to two packed
double—precision FP values in the destination operand.

The destination operand is a&MMregister. The source can be eitherXviMregister or a 64-bit
memory location. If the source is a register, the packed integers are in the low quadword.

B.4.36 CVTDQ2PSPacked Signed INT32 to Packed Single—Precision FP Conversion
CVTDQ2PS xmm1,xmm2/mem128 ;OF 5B /r [WILLAMETTE,SSEZ?]

CVTDQ2PSconverts four packed signed doublewords from the source operand to four packed
single—precision FP values in the destination operand.

The destination operand is XMMregister. The source can be eitherxdiMregister or a 128-bit
memory location.

For more details of this instruction, see the Intel Processor manuals.
B.4.37 CVTPD2DQPacked Double—Precision FP to Packed Signed INT32 Conversion
CVTPD2DQ xmml1,xmm2/mem128 ;F20FE6/r [WILLAMETTE,SSE2]

127

CVTPD2DQconverts two packed double—precision FP values from the source operand to two
packed signed doublewords in the low quadword of the destination operand. The high quadword of
the destination is set to all 0s.

The destination operand is XiMMregister. The source can be eitherXiMregister or a 128-bit
memory location.

For more details of this instruction, see the Intel Processor manuals.

B.4.38 CVTPD2PI: Packed Double—Precision FP to Packed Signed INT32 Conversion

CVTPD2PI mm,xmm/mem128 ;66 OF 2D /r [WILLAMETTE,SSEZ2]

CVTPD2PI converts two packed double—precision FP values from the source operand to two
packed signed doublewords in the destination operand.

The destination operand is MMXregister. The source can be eitherXiMregister or a 128-bit
memory location.

For more details of this instruction, see the Intel Processor manuals.

B.4.39 CVTPD2PSPacked Double—Precision FP to Packed Single—-Precision FP Conversion

CVTPD2PS xmml1,xmm2/mem128 ;66 OF 5A/r [WILLAMETTE,SSEZ?]

CVTPD2PSconverts two packed double—precision FP values from the source operand to two
packed single—precision FP values in the low quadword of the destination operand. The high
guadword of the destination is set to all Os.

The destination operand is XMMregister. The source can be eitherxdiMregister or a 128-bit
memory location.

For more details of this instruction, see the Intel Processor manuals.

B.4.40 CVTPI2PD: Packed Signed INT32 to Packed Double-Precision FP Conversion

CVTPI2PD xmm,mm/mem64 ; 66 OF 2A /r [WILLAMETTE,SSEZ?]

CVTPI2PD converts two packed signed doublewords from the source operand to two packed
double—precision FP values in the destination operand.

The destination operand is &MMregister. The source can be eitherMiXregister or a 64-bit
memory location.

For more details of this instruction, see the Intel Processor manuals.

B.4.41 CVTPI2PS: Packed Signed INT32 to Packed Single—FP Conversion

CVTPI2PS xmm,mm/mem64 ; OF 2A Ir [KATMAI,SSE]

CVTPI2PS converts two packed signed doublewords from the source operand to two packed
single—precision FP values in the low quadword of the destination operand. The high quadword of
the destination remains unchanged.

The destination operand is a&MMregister. The source can be eitherMMXregister or a 64-bit
memory location.

For more details of this instruction, see the Intel Processor manuals.

B.4.42 CVTPS2DQPacked Single—Precision FP to Packed Signed INT32 Conversion

128

CVTPS2DQ xmml,xmm2/mem128 ;66 OF 5B /r [WILLAMETTE,SSEZ2]

CVTPS2DQconverts four packed single—precision FP values from the source operand to four
packed signed doublewords in the destination operand.

The destination operand is XMMMregister. The source can be eitherXiMregister or a 128-bit
memory location.

For more details of this instruction, see the Intel Processor manuals.

B.4.43 CVTPS2PDPacked Single—Precision FP to Packed Double—Precision FP Conversion

CVTPS2PD xmm1,xmm2/mem64 ; OF 5A /r [WILLAMETTE,SSEZ2]

CVTPS2PDconverts two packed single—precision FP values from the source operand to two packed
double—precision FP values in the destination operand.

The destination operand is aMMregister. The source can be eitherX@viMregister or a 64-bit
memory location. If the source is a register, the input values are in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

B.4.44 CVTPS2PI. Packed Single—Precision FP to Packed Signed INT32 Conversion

CVTPS2PI mm,xmm/mem64 :OF 2D /Ir [KATMAI,SSE]

CVTPS2PI converts two packed single—precision FP values from the source operand to two packed
signed doublewords in the destination operand.

The destination operand is MiVIXregister. The source can be eitherX@viMregister or a 64-bit
memory location. If the source is a register, the input values are in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

B.4.45 CVTSD2SI: Scalar Double—Precision FP to Signed INT32 Conversion

CVTSD2SI reg32,xmm/mem64 ; F20F 2D /r [WILLAMETTE,SSEZ2]

CVTSD2SI converts a double—precision FP value from the source operand to a signed doubleword
in the destination operand.

The destination operand is a general purpose register. The source can be iMbraister or a
64-bit memory location. If the source is a register, the input value is in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

B.4.46 CVTSD2SS Scalar Double—Precision FP to Scalar Single—Precision FP Conversion

CVTSD2SS xmm1l,xmm2/mem64 ; F20F5A Ir [KATMAI,SSE]

CVTSD2SSconverts a double—precision FP value from the source operand to a single—precision FP
value in the low doubleword of the destination operand. The upper 3 doublewords are left
unchanged.

The destination operand is &MMregister. The source can be eitherXiMregister or a 64-bit
memory location. If the source is a register, the input value is in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

B.4.47 CVTSI2SD: Signed INT32 to Scalar Double-Precision FP Conversion

CVTSI2SD xmm,r/m32 ; F20F 2A/r [WILLAMETTE,SSEZ2]

CVTSI2SD converts a signed doubleword from the source operand to a double—precision FP value
in the low quadword of the destination operand. The high quadword is left unchanged.

129

The destination operand is ZMMregister. The source can be either a general purpose register or a
32-bit memory location.

For more details of this instruction, see the Intel Processor manuals.

B.4.48 CVTSI2SS: Signed INT32 to Scalar Single—Precision FP Conversion

CVTSI2SS xmm,r/m32 ; F30F 2A /r [KATMAI,SSE]

CVTSIZ2SS converts a signed doubleword from the source operand to a single—precision FP value
in the low doubleword of the destination operand. The upper 3 doublewords are left unchanged.

The destination operand is ZMMregister. The source can be either a general purpose register or a
32-bit memory location.

For more details of this instruction, see the Intel Processor manuals.

B.4.49 CVTSS2SD Scalar Single—Precision FP to Scalar Double—Precision FP Conversion

CVTSS2SD xmml,xmm2/mem32 ;F30F5A/r [WILLAMETTE,SSEZ?]

CVTSS2SDconverts a single—precision FP value from the source operand to a double—precision FP
value in the low quadword of the destination operand. The upper quadword is left unchanged.

The destination operand is a&MMregister. The source can be eitherXviMregister or a 32-bit
memory location. If the source is a register, the input value is contained in the low doubleword.

For more details of this instruction, see the Intel Processor manuals.

B.4.50 CVTSS2SI: Scalar Single—Precision FP to Signed INT32 Conversion

CVTSS2SI reg32,xmm/mem32 ;F30F 2D /r [KATMAI,SSE]

CVTSS2SI converts a single—precision FP value from the source operand to a signed doubleword
in the destination operand.

The destination operand is a general purpose register. The source can be iMbteister or a
32-bit memory location. If the source is a register, the input value is in the low doubleword.

For more details of this instruction, see the Intel Processor manuals.

B.4.51 CVTTPD2DQPacked Double—Precision FP to Packed Signed INT32 Conversion with

Truncation
CVTTPD2DQ xmml,xmm2/mem128 ;66 OF E6/r [WILLAMETTE,SSEZ?]

CVTTPD2DQonverts two packed double—precision FP values in the source operand to two packed
single—precision FP values in the destination operand. If the result is inexact, it is truncated
(rounded toward zero). The high quadword is set to all Os.

The destination operand is XMMMregister. The source can be eitherXiMregister or a 128-bit
memory location.

For more details of this instruction, see the Intel Processor manuals.

B.4.52 CVTTPD2PI: Packed Double—Precision FP to Packed Signed INT32 Conversion with

130

Truncation
CVTTPD2PI mm,xmm/mem128 ;66 OF 2C /r [WILLAMETTE,SSEZ2]

CVTTPDZ2PI converts two packed double—precision FP values in the source operand to two packed
single—precision FP values in the destination operand. If the result is inexact, it is truncated
(rounded toward zero).

The destination operand is MMXregister. The source can be eitherXiMregister or a 128-bit
memory location.

For more details of this instruction, see the Intel Processor manuals.

B.4.53 CVTTPS2DQPacked Single—Precision FP to Packed Signed INT32 Conversion with
Truncation

CVTTPS2DQ xmml1,xmm2/mem128 ;F30F5B/r [WILLAMETTE,SSEZ2]

CVTTPS2D@onverts four packed single—precision FP values in the source operand to four packed
signed doublewords in the destination operand. If the result is inexact, it is truncated (rounded
toward zero).

The destination operand is XiMMregister. The source can be eitherXiMregister or a 128-bit
memory location.

For more details of this instruction, see the Intel Processor manuals.

B.4.54 CVTTPS2PI: Packed Single—Precision FP to Packed Signed INT32 Conversion with
Truncation

CVTTPS2PI mm,xmm/mem64 ; OF 2C Ir [KATMAI,SSE]

CVTTPS2PI converts two packed single—precision FP values in the source operand to two packed
signed doublewords in the destination operand. If the result is inexact, it is truncated (rounded
toward zero). If the source is a register, the input values are in the low quadword.

The destination operand is MiVIXregister. The source can be eitherX@viMregister or a 64-bit
memory location. If the source is a register, the input value is in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

B.4.55 CVTTSD2SI. Scalar Double-Precision FP to Signed INT32 Conversion with
Truncation

CVTTSD2SI reg32,xmm/mem64 ; F2 0F 2C/r [WILLAMETTE,SSEZ?]

CVTTSD2SI converts a double—precision FP value in the source operand to a signed doubleword in
the destination operand. If the result is inexact, it is truncated (rounded toward zero).

The destination operand is a general purpose register. The source can be iMbreister or a
64-bit memory location. If the source is a register, the input value is in the low quadword.

For more details of this instruction, see the Intel Processor manuals.

B.4.56 CVTTSS2SI: Scalar Single—-Precision FP to Signed INT32 Conversion with
Truncation

CVTTSD2SI reg32,xmm/mem32 ; F30F 2C/r [KATMAI,SSE]

CVTTSS2SI converts a single—precision FP value in the source operand to a signed doubleword in
the destination operand. If the result is inexact, it is truncated (rounded toward zero).

The destination operand is a general purpose register. The source can be iMbreister or a
32-bit memory location. If the source is a register, the input value is in the low doubleword.

For more details of this instruction, see the Intel Processor manuals.
B.4.57 DAA DAS Decimal Adjustments

DAA 1 27 [8086]
DAS : 2F [8086]

131

These instructions are used in conjunction with the add and subtract instructions to perform
binary—coded decimal arithmetic jmacked(one BCD digit per nibble) form. For the unpacked
equivalents, segection B.4.1

DAAsshould be used after a one-b¥#BD instruction whose destination was tAé register: by
means of examining the value in tA& and also the auxiliary carry flaF, it determines whether
either digit of the addition has overflowed, and adjusts it (and sets the carry and auxiliary—carry
flags) if so. You can add long BCD strings together by déiBfJDAAon the low two digits, then
doing ADGDAAoN each subsequent pair of digits.

DASworks similarly toDAA but is for use aftésUBinstructions rather thaDD

B.4.58 DEC Decrement Integer

DEC reg16 ; 016 48+r [8086]
DEC reg32 ; 032 48+r [386]
DEC r/m8 ; FE/1 [8086]
DEC r/m16 ;016 FF /1 [8086]
DEC r/m32 ;032 FF /1 [386]

DECsubtracts 1 from its operand. It doast affect the carry flag: to affect the carry flag, use
SUB something,1 (seesection B.4.30p DECaffects all the other flags according to the result.

This instruction can be used with®CKprefix to allow atomic execution.
See alsdNC (section B.4.12p

B.4.59 DIV : Unsigned Integer Divide

DIV r/m8 ; F6 /6 [8086]
DIV r/m16 ; 016 F7 /6 [8086]
DIV r/m32 ; 032 F7 /6 [386]

DIV performs unsigned integer division. The explicit operand provided is the divisor; the dividend
and destination operands are implicit, in the following way:

 For DIV r/m8 , AX is divided by the given operand; the quotient is storedlinand the
remainder ilAH

« ForDIV r/m16 , DX:AX is divided by the given operand; the quotient is storefiXrand the
remainder irbX

* ForDIV r/m32 , EDX:EAXis divided by the given operand; the quotient is stordgAX and
the remainder iEDX

Signed integer division is performed by B8V instruction: sesection B.4.117

B.4.60 DIVPD: Packed Double—Precision FP Divide

132

DIVPD xmm1,xmm2/mem128 ;66 OF 5E /r [WILLAMETTE,SSEZ2]

DIVPD divides the two packed double—precision FP values in the destination operand by the two
packed double—precision FP values in the source operand, and stores the packed double—precisior
results in the destination register.

The destination is akMMregister. The source operand can be eithexMiregister or a 128-bit
memory location.

dst[0-63] :=dst[0-63] [src[0-63],
dst[64-127] := dst[64-127] / src[64-127].

B.4.61 DIVPS: Packed Single—Precision FP Divide
DIVPS xmm1,xmm2/mem128 ; OF 5E /r [KATMAI,SSE]

DIVPS divides the four packed single—precision FP values in the destination operand by the four
packed single—precision FP values in the source operand, and stores the packed single—precision
results in the destination register.

The destination is akMMregister. The source operand can be eithexMiregister or a 128-bit
memory location.

dst[0-31] :=dst[0-31] /[src[0-31],
dst[32-63] := dst[32-63] / src[32-63],
dst[64-95] := dst[64-95] / src[64-95],
dst[96-127] := dst[96—-127] / src[96-127].
B.4.62 DIVSD: Scalar Double-Precision FP Divide
DIVSD xmm1,xmm2/mem64 ;F2OF5E/r [WILLAMETTE,SSEZ?]

DIVSD divides the low-order double—precision FP value in the destination operand by the
low—order double—precision FP value in the source operand, and stores the double—precision result
in the destination register.

The destination is akMMregister. The source operand can be eitheXMiVregister or a 64-bit
memory location.

dst[0-63] := dst[0-63]/ src[0-63],
dst[64-127] remains unchanged.

B.4.63 DIVSS: Scalar Single—Precision FP Divide
DIVSS xmm1,xmm2/mem32 ; F30F5E /r [KATMAI,SSE]

DIVSS divides the low-order single-precision FP value in the destination operand by the
low—order single—precision FP value in the source operand, and stores the single—precision result in
the destination register.

The destination is akMMregister. The source operand can be eithexMivregister or a 32-bit
memory location.

dst[0-31] :=dst[0-31]/ src[0-31],
dst[32-127] remains unchanged.

B.4.64 EMMSEmpty MMX State
EMMS ; OF 77 [PENT,MMX]

EMMSsets the FPU tag word (marking which floating—point registers are available) to all ones,
meaning all registers are available for the FPU to use. It should be used after exikdd¥ng
instructions and before executing any subsequent floating—point operations.

B.4.65 ENTER Create Stack Frame
ENTER imm,imm ; C8iw ib [186]

ENTERCconstructs astack frame for a high-level language procedure call. The first operand
(theiw in the opcode definition above refers to the first operand) gives the amount of stack space to
allocate for local variables; the second (iheabove) gives the nesting level of the procedure (for
languages like Pascal, with nested procedures).

The function oENTER with a nesting level of zero, is equivalent to

133

PUSH EBP ; or PUSH BP in 16 bits
MOV EBP,ESP ; or MOV BP,SP in 16 bits
SUB ESP,operandl ; or SUB SP,operandl in 16 bits

This creates a stack frame with the procedure parameters accessible upwar@BRr@nd local
variables accessible downwards fr&mP.

With a nesting level of one, the stack frame created is 4 (or 2) bytes bigger, and the value of the
final frame pointeEBPis accessible in memory @BP-4] .

This allowsENTER when called with a nesting level of two, to look at the stack frame described by
the previousvalue ofEBP, find the frame pointer at offset —4 from that, and push it along with its
new frame pointer, so that when a level-two procedure is called from within a level-one procedure,
[EBP-4] holds the frame pointer of the most recent level-one procedure c4EBR&8] holds

that of the most recent level-two call. And so on, for nesting levels up to 31.

Stack frames created IBBNTERcan be destroyed by th&AVEinstruction: sesection B.4.136

B.4.66 F2XMI Calculate 2**X-1

F2XM1 - D9 FO [8086,FPU]

F2XM1lraises 2 to the power &TO, subtracts one, and stores the result backSi@ The initial
contents oSTO must be a number in the range —1.0 to +1.0.

B.4.67 FABS Floating—Point Absolute Value

FABS ; D9 E1 [8086,FPU]
FABScomputes the absolute valueSifO,by clearing the sign bit, and stores the result ba&Tin

B.4.68 FADD FADDP Floating—Point Addition

FADD mem32 ; D8 /0 [8086,FPU]
FADD mem64 ; DC /0 [8086,FPU]
FADD fpureg ; D8 CO+r [8086,FPU]
FADD STO,fpureg ; D8 CO+r [8086,FPU]
FADD TO fpureg ; DC CO+r [8086,FPU]
FADD fpureg,STO ; DC CO+r [8086,FPU]
FADDP fpureg ; DE CO+r [8086,FPU]
FADDP fpureg,STO ; DE CO+r [8086,FPU]

* FADD given one operand, adds the operan®T® and stores the result back 870. If the
operand has thEO modifier, the result is stored in the register given rather th&TM

 FADDPperforms the same function 8B8DD TQO but pops the register stack after storing the
result.

The given two—-operand forms are synonyms for the one—operand forms.
To add an integer value 810, use the c{FIADD} instructiongection B.4.8p

B.4.69 FBLD, FBSTP. BCD Floating—Point Load and Store

134

FBLD mem80 ; DF /4 [8086,FPU]
FBSTP mem80 ; DF /6 [8086,FPU]

FBLD loads an 80-bit (ten—-byte) packed binary—coded decimal number from the given memory
address, converts it to a real, and pushes it on the registerFB&kP stores the value @TO, in
packed BCD, at the given address and then pops the register stack.

B.4.70 FCHS Floating—Point Change Sign

FCHS ; D9 EO [8086,FPU]
FCHSnegates the number 80, by inverting the sign bit: negative numbers become positive, and
vice versa.
B.4.71 FCLEX FNCLEX Clear Floating—Point Exceptions
FCLEX ; 9B DB E2 [8086,FPU]
FNCLEX ; DB E2 [8086,FPU]

FCLEX clears any floating—point exceptions which may be pendihNfCLEXdoes the same thing
but doesn't wait for previous floating—point operations (including Hamdling of pending
exceptions) to finish first.

B.4.72 FCMOVcc Floating—Point Conditional Move

FCMOVB fpureg ; DA CO+r [P6,FPU]
FCMOVB STO,fpureg ; DA CO+r [P6,FPU]
FCMOVE fpureg ; DA C8+r [P6,FPU]
FCMOVE STO,fpureg ; DA C8+r [P6,FPU]
FCMOVBE fpureg ; DA DO+r [P6,FPU]
FCMOVBE STO,fpureg ; DA DO+r [P6,FPU]
FCMOVU fpureg : DA D8+r [P6,FPU]
FCMOVU STO,fpureg ; DA D8+r [P6,FPU]
FCMOVNB fpureg ; DB CO+r [P6,FPU]
FCMOVNB STO,fpureg ; DB CO+r [P6,FPU]
FCMOVNE fpureg ; DB C8+r [P6,FPU]
FCMOVNE STO,fpureg ; DB C8+r [P6,FPU]
FCMOVNBE fpureg : DB DO+r [P6,FPU]
FCMOVNBE STO,fpureg ; DB DO+r [P6,FPU]
FCMOVNU fpureg ; DB D8+r [P6,FPU]
FCMOVNU STO,fpureg ; DB D8+r [P6,FPU]

The FCMO\nstructions perform conditional move operations: each of them moves the contents of
the given register int8TO if its condition is satisfied, and does nothing if not.

The conditions are not the same as the standard condition codes used with conditional jump
instructions. The conditiord, BE, NB NBE E andNE are exactly as normal, but none of the other
standard ones are supported. Instead, the conditiand its counterpamlU are provided; théJ
condition is satisfied if the last two floating—point numbers compared weoedered i.e. they

were not equal but neither one could be said to be greater than the other, for example if they were
NaNs. (The flag state which signals this is the setting of the parity flag: sO deadition is
notionally equivalent t&E, andNUis equivalent t&>Q)

The FCMO\conditions test the main processor’s status flags, not the FPU status flags, so using
FCMOWirectly after FCOMwill not work. Instead, you should either uBEOMI which writes
directly to the main CPU flags word, or USBTSWo extract the FPU flags.

Although theFCMO\nstructions are flagged6 above, they may not be supported by all Pentium
Pro processors; thEPUID instruction gection B.4.3% will return a bit which indicates whether
conditional moves are supported.

135

B.4.73 FCOMFCOMPFCOMPPFCOM| FCOMIR Floating—Point Compare

FCOM mem32 ; D8 /2 [8086,FPU]
FCOM mem64 ; DC /2 [8086,FPU]
FCOM fpureg ; D8 DO+r [8086,FPU]
FCOM STO,fpureg ; D8 DO+r [8086,FPU]
FCOMP mem32 ; D8 /3 [8086,FPU]
FCOMP mem64 ; DC /3 [8086,FPU]
FCOMP fpureg ; D8 D8+r [8086,FPU]
FCOMP STO,fpureg ; D8 D8+r [8086,FPU]
FCOMPP : DE D9 [8086,FPU]
FCOMI fpureg ; DB FO+r [P6,FPU]
FCOMI STO,fpureg ; DB FO+r [P6,FPU]
FCOMIP fpureg ; DF FO+r [P6,FPU]
FCOMIP STO,fpureg ; DF FO+r [P6,FPU]

FCOMcomparesSTO with the given operand, and sets the FPU flags accordi&gly.is treated as
the left—-hand side of the comparison, so that the carry flag is set (for a ‘less—than’ re&sUt)isf
less than the given operand.

FCOMPMPdoes the same &COM but pops the register stack afterward€OMPRomparesSTO
with ST1 and then pops the register stack twice.

FCOMI and FCOMIP work like the corresponding forms &fCOMand FCOMP but write their
results directly to the CPU flags register rather than the FPU status word, so they can be
immediately followed by conditional jump or conditional move instructions.

The FCOMnstructions differ from th&UCOMnstructions ¢ection B.4.10B8only in the way they
handle quiet NaNsFUCOMwill handle them silently and set the condition code flags to an
‘unordered’ result, wheredCOMuill generate an exception.

B.4.74 FCOS Cosine

FCOS - D9 FF [386,FPU]

FCOScomputes the cosine &TO (in radians), and stores the resultSi0. The absolute value of
STO must be less than 2**63.

See als¢-SINCOS(section B.4.10pD

B.4.75 FDECSTP Decrement Floating—Point Stack Pointer

FDECSTP ; D9 F6 [8086,FPU]

FDECSTPdecrements the ‘top’ field in the floating—point status word. This has the effect of
rotating the FPU register stack by one, as if the conter8§ fhad been pushed on the stack. See
alsoFINCSTP (section B.4.8h

B.4.76 FxDISI , FXENI : Disable and Enable Floating—Point Interrupts

136

FDISI : 9B DB E1 [8086,FPU]
FNDISI ; DB E1 [8086,FPU]
FENI : 9B DB EO [8086,FPU]
FNENI : DB EO [8086,FPU]

FDISI and FENI disable and enable floating—point interrupts. These instructions are only
meaningful on original 8087 processors: the 287 and above treat them as no—operation instructions.

FNDISI andFNENI do the same thing &DISI andFENI respectively, but without waiting for
the floating—point processor to finish what it was doing first.

B.4.77 FDIV, FDIVP, FDIVR, FDIVRP: Floating—Point Division

FDIV mem32 ; D8 /6 [8086,FPU]
FDIV mem64 ; DC /6 [8086,FPU]
FDIV fpureg ; D8 FO+r [8086,FPU]
FDIV STO,fpureg ; D8 FO+r [8086,FPU]
FDIV TO fpureg ; DC F8+r [8086,FPU]
FDIV fpureg,STO ; DC F8+r [8086,FPU]
FDIVR mem32 ; D8 /0 [8086,FPU]
FDIVR mem64 ; DC /0 [8086,FPU]
FDIVR fpureg ; D8 F8+r [8086,FPU]
FDIVR STO,fpureg ; D8 F8+r [8086,FPU]
FDIVR TO fpureg ; DC FO+r [8086,FPU]
FDIVR fpureg,STO ; DC FO+r [8086,FPU]
FDIVP fpureg ; DE F8+r [8086,FPU]
FDIVP fpureg,STO ; DE F8+r [8086,FPU]
FDIVRP fpureg ; DE FO+r [8086,FPU]
FDIVRP fpureg,STO ; DE FO+r [8086,FPU]

e FDIV divides STO by the given operand and stores the result bacgTif, unless theTO
qualifier is given, in which case it divides the given operan®B§ and stores the result in the
operand.

* FDIVR does the same thing, but does the division the other way up:T€dif not given, it
divides the given operand I§T0 and stores the result 810, whereas ifTOis given it divides
STO by its operand and stores the result in the operand.

« FDIVP operates likéDIV TO , but pops the register stack once it has finished.
« FDIVRP operates liké-DIVR TO, but pops the register stack once it has finished.
For FP/Integer divisions, s&#DIV (section B.4.8p
B.4.78 FEMMSFaster Enter/Exit of the MMX or floating—point state
FEMMS ; OF OE [PENT,3DNOW]

FEMMScan be used in place of tlEMMSnstruction on processors which support the 3DNow!
instruction set. Following execution BEMMSthe state of th#IMX/FPregisters is undefined, and
this allows a faster context switch betwde® and MMXinstructions. Th&FEMMSnstruction can
also be usetleforeexecutingiMXnstructions

B.4.79 FFREE Flag Floating—Point Register as Unused

FFREE fpureg ; DD CO+r [8086,FPU]
FFREEP fpureg ; DF CO+r [286,FPU,UNDOC]

FFREEmarks the given register as being empty.
FFREEPmarks the given register as being empty, and then pops the register stack.

137

B.4.80 FIADD: Floating—Point/Integer Addition

FIADD mem16 ; DE /0 [8086,FPU]
FIADD mem32 ; DA /O [8086,FPU]

FIADD adds the 16-bit or 32-bit integer stored in the given memory locati8i Qo storing the
result inSTO.

B.4.81 FICOM FICOMP Floating—Point/Integer Compare

FICOM mem16 ; DE /2 [8086,FPU]
FICOM mem32 ; DA 2 [8086,FPU]
FICOMP mem16 ; DE /3 [8086,FPU]
FICOMP mem32 ; DA /3 [8086,FPU]

FICOM comparesSTO with the 16-bit or 32-bit integer stored in the given memory location, and
sets the FPU flags accordingflCOMPdoes the same, but pops the register stack afterwards.

B.4.82 FIDIV , FIDIVR : Floating—Point/Integer Division

FIDIV mem16 ; DE /6 [8086,FPU]
FIDIV mem32 ; DA /6 [8086,FPU]
FIDIVR mem16 ; DE /7 [8086,FPU]
FIDIVR mem32 ; DA 7 [8086,FPU]

FIDIV dividesSTO by the 16-bit or 32-bit integer stored in the given memory location, and stores
the result inSTO. FIDIVR does the division the other way up: it divides the intege$hHy, but
still stores the resultiBTO.

B.4.83 FILD, FIST , FISTP : Floating—Point/Integer Conversion

FILD mem16 ; DF /0 [8086,FPU]
FILD mem32 ;DB /0 [8086,FPU]
FILD mem64 ; DF /5 [8086,FPU]
FIST mem16 ; DF /2 [8086,FPU]
FIST mem32 ; DB /2 [8086,FPU]
FISTP mem16 ; DF /3 [8086,FPU]
FISTP mem32 ; DB /3 [8086,FPU]
FISTP mem64 ; DF /7 [8086,FPU]

FILD loads an integer out of a memory location, converts it to a real, and pushes it on the FPU
register stackFIST convertsSTO to an integer and stores that in memdi\STP does the same
asFIST , but pops the register stack afterwards.

B.4.84 FIMUL: Floating—Point/Integer Multiplication

FIMUL mem16 ; DE/1 [8086,FPU]
FIMUL mem32 ; DA /1 [8086,FPU]

FIMUL multiplies STO by the 16-bit or 32-bit integer stored in the given memory location, and
stores the result iSTO.

B.4.85 FINCSTP: Increment Floating—Point Stack Pointer

138

FINCSTP : D9 F7 [8086,FPU]

FINCSTP increments the ‘top’ field in the floating—point status word. This has the effect of rotating
the FPU register stack by one, as if the register stack had been popped; however, unlike the popping

of the stack performed by many FPU instructions, it does not flag th&méWpreviouslySTO) as
empty. See alsBDECSTHRsection B.4.7h

B.4.86 FINIT , ENINIT : Initialise Floating—Point Unit

FINIT : 9B DB E3 [8086,FPU]
FNINIT DB E3 [8086,FPU]

FINIT initialises the FPU to its default state. It flags all registers as empty, without actually change
their values, clears the top of stack pointeNINIT does the same, without first waiting for
pending exceptions to clear.

B.4.87 FISUB: Floating—Point/Integer Subtraction

FISUB mem16 ; DE /4 [8086,FPU]
FISUB mem32 ; DA /4 [8086,FPU]
FISUBR mem16 ; DE /5 [8086,FPU]
FISUBR mem32 ; DA /5 [8086,FPU]

FISUB subtracts the 16-bit or 32-bit integer stored in the given memory locationSf@mand
stores the result iSTO. FISUBR does the subtraction the other way round, i.e. it subt&bds
from the given integer, but still stores the resuBiro.

B.4.88 FLD: Floating—Point Load

FLD mem32 ;D9 /0 [8086,FPU]
FLD mem64 ; DD /0 [8086,FPU]
FLD mem80 ; DB /5 [8086,FPU]
FLD fpureg ; D9 CO+r [8086,FPU]

FLD loads a floating—point value out of the given register or memory location, and pushes it on the
FPU register stack.

B.4.89 FLDxx: Floating—Point Load Constants

FLD1 . D9 E8 [8086,FPU]
FLDL2E - D9 EA [8086,FPU]
FLDL2T : D9 E9 [8086,FPU]
FLDLG2 : D9 EC [8086,FPU]
FLDLN2 : D9 ED [8086,FPU]
FLDPI . D9 EB [8086,FPU]
FLDZ . D9 EE [8086,FPU]

These instructions push specific standard constants on the FPU register stack.
Instruction Constant pushed

FLD1 1

FLDL2E base-2 logarithm of e
FLDL2T base-2 log of 10
FLDLG2 base—-10 log of 2
FLDLN2 base-e log of 2

FLDPI pi
FLDZ zero
B.4.90 FLDCWLoad Floating—Point Control Word
FLDCW mem16 ;D9 /5 [8086,FPU]

139

FLDCWoads a 16-bit value out of memory and stores it into the FPU control word (governing
things like the rounding mode, the precision, and the exception masks). SESaGd(section
B.4.103. If exceptions are enabled and you don’t want to generate on&QldeX or FNCLEX
(section B.4.7Lbefore loading the new control word.

B.4.91 FLDENV Load Floating—Point Environment

FLDENV mem ; D9 /4 [8086,FPU]

FLDENVloads the FPU operating environment (control word, status word, tag word, instruction
pointer, data pointer and last opcode) from memory. The memory area is 14 or 28 bytes long,
depending on the CPU mode at the time. SeeR83ENV/(section B.4.10%

B.4.92 FMUL, FMULP Floating—Point Multiply

FMUL mem32 ; D8 /1 [8086,FPU]
FMUL mem64 ;DC/1 [8086,FPU]
FMUL fpureg ; D8 C8+r [8086,FPU]
FMUL STO,fpureg ; D8 C8+r [8086,FPU]
FMUL TO fpureg ; DC C8+r [8086,FPU]
FMUL fpureg,STO ; DC C8+r [8086,FPU]
FMULP fpureg ; DE C8+r [8086,FPU]
FMULP fpureg,STO ; DE C8+r [8086,FPU]

FMULmultiplies STO by the given operand, and stores the resufiTifi, unless thd O qualifier is
used in which case it stores the result in the operBNMULP performs the same operation as
FMUL TG, and then pops the register stack.

B.4.93 FNOP Floating—Point No Operation

FNOP ; D9 DO [8086,FPU]
FNOPdoes nothing.

B.4.94 FPATAN FPTAN Arctangent and Tangent

FPATAN . D9 F3 [8086,FPU]
FPTAN ; D9 F2 [8086,FPU]

FPATANcomputes the arctangent, in radians, of the result of divislirigby STO, stores the result

in ST1, and pops the register stack. It works like that&h2 function, in that changing the sign of
both STO and ST1 changes the output value by pi (so it performs true rectangular—to—polar
coordinate conversion, witBT1 being the Y coordinate an8TO being the X coordinate, not
merely an arctangent).

FPTANcomputes the tangent of the valué&ifo (in radians), and stores the result back Bi@.
The absolute value &TO must be less than 2**63.

B.4.95 FPREMFPREM1 Floating—Point Partial Remainder

140

FPREM ;D9 F8 [8086,FPU]
FPREM1 DI F5 [386,FPU]

These instructions both produce the remainder obtained by dividii® by ST1. This is
calculated, notionally, by dividinTO by ST1, rounding the result to an integer, multiplying by

ST1 again, and computing the value which would need to be added back on to the result to get back
to the original value I$TO.

The two instructions differ in the way the notional round-to-integer operation is performed.
FPREMdoes it by rounding towards zero, so that the remainder it returns always has the same sign
as the original value if8TO; FPREM1does it by rounding to the nearest integer, so that the
remainder always has at most half the magnitudgTat

Both instructions calculatpartial remainders, meaning that they may not manage to provide the
final result, but might leave intermediate resultST0 instead. If this happens, they will set the C2

flag in the FPU status word; therefore, to calculate a remainder, you should repeatedly execute
FPREMr FPREMuntil C2 becomes clear.

B.4.96 FRNDINT: Floating—Point Round to Integer
FRNDINT ; D9 FC [8086,FPU]

FRNDINT rounds the contents &TO to an integer, according to the current rounding mode set in
the FPU control word, and stores the result backTif.

B.4.97 FSAVE FRSTORSave/Restore Floating—Point State

FSAVE mem ; 9B DD /6 [8086,FPU]
FNSAVE mem ; DD /6 [8086,FPU]
FRSTOR mem ;DD /4 [8086,FPU]

FSAVE saves the entire floating—point unit state, including all the information sav&&DENV
(section B.4.10¥ plus the contents of all the registers, to a 94 or 108 byte area of memory
(depending on the CPU mod&JRSTORrestores the floating—point state from the same area of
memory.

FNSAVEdoes the same #&SAVE without first waiting for pending floating—point exceptions to
clear.

B.4.98 FSCALE Scale Floating—Point Value by Power of Two
FSCALE : D9 FD [8086,FPU]

FSCALEscales a number by a power of two: it rougd4 towards zero to obtain an integer, then
multipliesSTO by two to the power of that integer, and stores the resS8ITth

B.4.99 FSETPM Set Protected Mode
FSETPM ;DB E4 [286,FPU]

This instruction initialises protected mode on the 287 floating—point coprocessor. It is only
meaningful on that processor: the 387 and above treat the instruction as a no—operation.

B.4.100 FSIN, FSINCOS Sine and Cosine

FSIN : D9 FE [386,FPU]
FSINCOS : D9 FB [386,FPU]

FSIN calculates the sine &TO (in radians) and stores the resulSh0. FSINCOSdoes the same,
but then pushes the cosine of the same value on the register stack, so that the sine e8d$ up in
and the cosine iIST0. FSINCOSis faster than executifgSIN andFCOS(seesection B.4.7%in
succession.

The absolute value &TO must be less than 2**63.

B.4.101 FSQRT Floating—Point Square Root
FSQRT ; D9 FA [8086,FPU]
FSQRTcalculates the square root®T0 and stores the result 8ir0.

141

B.4.102 FST, FSTP: Floating—Point Store

FST mem32 ;D9 /2 [8086,FPU]
FST mem64 ;DD /2 [8086,FPU]
FST fpureg ; DD DO+r [8086,FPU]
FSTP mem32 ; D9 /3 [8086,FPU]
FSTP mem64 ; DD /3 [8086,FPU]
FSTP mem80 ; DB /7 [8086,FPU]
FSTP fpureg ; DD D8+r [8086,FPU]

FST stores the value i8TO into the given memory location or other FPU regidESTP does the
same, but then pops the register stack.

B.4.103 FSTCWStore Floating—Point Control Word

FSTCW mem16 ; 9B D9 /7 [8086,FPU]
FNSTCW mem16 ; D9 /7 [8086,FPU]

FSTCWstores thd=PU control word (governing things like the rounding mode, the precision, and
the exception masks) into a 2-byte memory area. Se&bBGW(section B.4.90

FNSTCWloes the same thing BS TCWwithout first waiting for pending floating—point exceptions
to clear.

B.4.104 FSTENV Store Floating—Point Environment

FSTENV mem ; 9B D9 /6 [8086,FPU]
FNSTENV mem ; D9 /6 [8086,FPU]

FSTENVstores thd=PU operating environment (control word, status word, tag word, instruction
pointer, data pointer and last opcode) into memory. The memory area is 14 or 28 bytes long,
depending on the CPU mode at the time. SeeRIBENV/(section B.4.9)1

FNSTENVdoes the same thing d5STENV without first waiting for pending floating—point
exceptions to clear.

B.4.105 FSTSW Store Floating—Point Status Word

FSTSW mem16 ;9B DD /7 [8086,FPU]
FSTSW AX : 9B DF EO [286,FPU)]
FNSTSW mem16 : DD /7 [8086,FPU]
FNSTSW AX - DF EO [286,FPU]

FSTSWstores thé-PU status word inté\X or into a 2—byte memory area.

FNSTSWiloes the same thing BS TSWwithout first waiting for pending floating—point exceptions
to clear.

B.4.106 FSUB FSUBR FSUBR FSUBRP Floating—Point Subtract

142

FSUB mem32 ; D8 /4 [8086,FPU]
FSUB mem64 ;DC /4 [8086,FPU]
FSUB fpureg ; D8 EO+r [8086,FPU]
FSUB STO,fpureg ; D8 EO+r [8086,FPU]
FSUB TO fpureg ; DC E8+r [8086,FPU]
FSUB fpureg,STO ; DC E8+r [8086,FPU]

FSUBR mem32
FSUBR mem64

FSUBR fpureg
FSUBR STO,fpureg

FSUBR TO fpureg
FSUBR fpureg,STO0

FSUBP fpureg
FSUBP fpureg,STO

FSUBRP fpureg

FSUBRP fpureg,STO

;D8 /5

:DC /5

: D8 E8+r
: D8 E8+r

: DC EO+r
: DC EO+r

: DE E8+r
: DE E8+r

; DE EO+r
; DE EO+r

[8086,FPU]
[8086,FPU]

[8086,FPU]
[8086,FPU]

[8086,FPU]
[8086,FPU]

[8086,FPU]
[8086,FPU]

[8086,FPU]
[8086,FPU]

e FSUBsubtracts the given operand fr&m0 and stores the result back $T0, unless thelO
qualifier is given, in which case it subtra&%0 from the given operand and stores the result in

the operand.

« FSUBRdoes the same thing, but does the subtraction the other way upt@dsifhot given, it
subtractsSTO from the given operand and stores the resulsTi®, whereas ifTO is given it
subtracts its operand fro8ir0 and stores the result in the operand.

* FSUBPoperates liké&-SUB TO, but pops the register stack once it has finished.
* FSUBRPoperates liké-SUBR TQ but pops the register stack once it has finished.
B.4.107 FTST: Test STO Against Zero

FTST

; D9 E4

[8086,FPU]

FTST comparesSTO with zero and sets the FPU flags accordin8ly0 is treated as the left-hand
side of the comparison, so that a ‘less—than’ result is gener&8&0 it negative.

B.4.108 FUCOMxxFloating—Point Unordered Compare

FUCOM fpureg

FUCOM STO,fpureg

FUCOMP fpureg

FUCOMP STO,fpureg

FUCOMPP
FUCOMI fpureg

FUCOMI STO,fpureg

FUCOMIP fpureg

FUCOMIP STO,fpureg

; DD EO+r
; DD EO+r

: DD E8+r
: DD E8+r

; DA E9

: DB E8+r
; DB E8+r

: DF E8+r
. DF E8+r

[386,FPU]
[386,FPU]

[386,FPU]
[386,FPU]

[386,FPU]

[P6,FPU]
[P6,FPU]

[P6,FPU]
[P6,FPU]

« FUCOMcomparesSTO with the given operand, and sets the FPU flags accordi&dl9. is
treated as the left-hand side of the comparison, so that the carry flag is set (for a ‘less—than’
result) if STO is less than the given operand.

* FUCOMRIoes the same &JCOMbut pops the register stack afterwaf@dCOMPRompares
STO with ST1 and then pops the register stack twice.

 FUCOMIand FUCOMIPwork like the corresponding forms 8lJCOMand FUCOMPbut write
their results directly to the CPU flags register rather than the FPU status word, so they can be
immediately followed by conditional jump or conditional move instructions.

143

The FUCOMNstructions differ from thé=COMinstructions ¢ection B.4.7Bonly in the way they
handle quiet NaNsFUCOMwill handle them silently and set the condition code flags to an
‘unordered’ result, whered®COMuill generate an exception.

B.4.109 FXAM Examine Class of Value inSTO

FXAM ; D9 E5 [8086,FPU]

FXAMsets the FPU flags3, C2 andCO0 depending on the type of value store&iro:
Register contents Flags

Unsupported format 000

NaN 001
Finite number 010
Infinity 011
Zero 100
Empty register 101
Denormal 110

Additionally, theC1 flag is set to the sign of the number.

B.4.110 FXCH Floating—Point Exchange

FXCH ; D9 C9 [8086,FPU]
FXCH fpureg ; D9 C8+r [8086,FPU]
FXCH fpureg,STO ; D9 C8+r [8086,FPU]
FXCH STO,fpureg ; D9 C8+r [8086,FPU]

FXCHexchangeS$TO0 with a given FPU register. The no—operand form exchaBg@swith ST1.

B.4.111 FXRSTORRestoreFP, MMXand SSE State

FXRSTOR memory ; OF AE /1 [P6,SSE,FPU]

The FXRSTORNstruction reloads thePU MMXand SSE state (environment and registers), from
the 512 byte memory area defined by the source operand. This data should have been written by a
previousFXSAVE

B.4.112 FXSAVE Store FP, MMXand SSE State

FXSAVE memory ; OF AE /O [P6,SSE,FPU]

FXSAVEhe FXSAVE instruction writes the curremPU MMXand SSE technology states
(environment and registers), to the 512 byte memory area defined by the destination operand. It
does this without checking for pending unmasked floating—point exceptions (similar to the
operation oFNSAVE.

Unlike the FSAVE/FNSAVEinstructions, the processor retains the contents oFié¢ MMXand
SSE state in the processor after the state has been saved. This instruction has been optimised tc
maximize floating—point save performance.

B.4.113 FXTRACT Extract Exponent and Significand

144

FXTRACT : D9 F4 [8086,FPU]

FXTRACTseparates the number 8T0 into its exponent and significand (mantissa), stores the
exponent back intdSTO, and then pushes the significand on the register stack (so that the
significand ends up iBTO, and the exponent @T1).

B.4.114 FYL2X, FYL2XP1:. Compute Y times Log2(X) or Log2(X+1)

FYL2X ' D9 F1 [8086,FPU]
FYL2XP1 - D9 F9 [8086,FPU]

FYL2X multiplies ST1 by the base-2 logarithm &TO, stores the result i8T1, and pops the
register stack (so that the result ends upTi0). STO must be non—-zero and positive.

FYL2XP1 works the same way, but replacing the base-2 I0§Tdf with that of STO plus one.
This time,STO must have magnitude no greater than 1 minus half the square root of two.

B.4.115 HLT: Halt Processor
HLT ' F4 [8086,PRIV]

HLT puts the processor into a halted state, where it will perform no more operations until restarted
by an interrupt or a reset.

On the 286 and later processors, this is a privileged instruction.

B.4.116 IBTS: Insert Bit String

IBTS r/m16,regl16 ; 016 OF A7 Ir [386,UNDOC]
IBTS r/m32,reg32 ; 032 OF A7 Ir [386,UNDOC]

The implied operation of this instruction is:

IBTS r/m16,AX,CL,reg16
IBTS r/m32,EAX,CL,reg32

Writes a bit string from the source operand to the destinafibindicates the number of bits to be
copied, from the low bits of the sour¢&)AX indicates the low order bit offset in the destination
that is written to. For example, @L is set to 4 andX (for 16-bit code) is set to 5, bits 0-3t

will be copied to bits 5-8 ofist . This instruction is very poorly documented, and | have been
unable to find any official source of documentation on it.

IBTS is supported only on the early Intel 386s, and conflicts with the opcod€ViIBXCHG486
(on early Intel 486s). NASM supports it only for completeness. Its counterp&BiTiS (seesection

B.4.332.
B.4.117 IDIV : Signed Integer Divide

IDIV r/m8 F6 /7 [8086]

IDIV r/m16 ; 016 F7 /7 [8086]

IDIV r/m32 ;032 F7 /7 [386]

IDIV performs signed integer division. The explicit operand provided is the divisor; the dividend
and destination operands are implicit, in the following way:

e For IDIV r/m8 , AX is divided by the given operand; the quotient is storedlinand the
remainder ilAH

« ForIDIVr/im16 , DX:AX is divided by the given operand; the quotient is storedXmand the
remainder irbX

* ForIDIV r/im32 , EDX:EAXis divided by the given operand; the quotient is stordgiAX and
the remainder ifleDX

Unsigned integer division is performed by B/ instruction: sesection B.4.59

145

B.4.118 IMUL: Signed Integer Multiply

IMUL r/m8 ; F6 /5 [8086]

IMUL r/m16 ; 016 F7 /5 [8086]
IMUL r/m32 ; 032 F7 /5 [386]
IMUL reg16,r/m16 ; 016 OF AF /r [386]
IMUL reg32,r/m32 ; 032 OF AF Ir [386]
IMUL reg16,imm8 ;016 6B /rib [186]
IMUL reg16,imm16 ; 016 69 /r iw [186]
IMUL reg32,imm8 ;032 6B /rib [386]
IMUL reg32,imm32 ; 032 69 /r id [386]
IMUL reg16,r/m16,imm8 ;016 6B /rib [186]
IMUL reg16,r/m16,imm16 ;016 69 /riw [186]
IMUL reg32,r/m32,imm8 :0326B/rib [386]

IMUL reg32,r/m32,imm32 ;032 69 /rid [386]

IMUL performs signed integer multiplication. For the single—operand form, the other operand and
destination are implicit, in the following way:

* ForIMUL r/m8 , AL is multiplied by the given operand; the product is storeg&n
e ForIMUL r/m16 , AXis multiplied by the given operand; the product is storddXrmX.
e ForIMUL r/m32 , EAXis multiplied by the given operand; the product is stordeDiX:EAX

The two-operand form multiplies its two operands and stores the result in the destination (first)
operand. The three—operand form multiplies its last two operands and stores the result in the first
operand.

The two-operand form with an immediate second operand is in fact a shorthand for the
three—operand form, as can be seen by examining the opcode descriptions: in the two—operand
form, the codér takes both its register antin parts from the same operand (the first one).

In the forms with an 8-bit immediate operand and another longer source operand, the immediate
operand is considered to be signed, and is sign—extended to the length of the other source operand
In these cases, thBYTE qualifier is necessary to force NASM to generate this form of the
instruction.

Unsigned integer multiplication is performed by MELinstruction: sesection B.4.184

B.4.119 IN: Input from 1/O Port

IN AL,imm8 ; E4 ib [8086]
IN AX,imm8 ;016 E5 ib [8086]
IN EAX,imm8 ;032 E5 ib [386]
IN AL,DX :EC [8086]

IN AX,DX ; 016 ED [8086]
IN EAX,DX ; 032 ED [386]

IN reads a byte, word or doubleword from the specified /O port, and stores it in the given
destination register. The port number may be specified as an immediate value if it is between 0 and
255, and otherwise must be store®i See als®UT(section B.4.19%

B.4.120 INC: Increment Integer

146

INC regl6 ; 016 40+r [8086]
INC reg32 ; 032 40+r [386]
INC r/m8 ; FE /0 [8086]

INC r/m16 ;016 FF /0 [8086]
INC r/m32 ; 032 FF /0 [386]

INC adds 1 to its operand. It doemt affect the carry flag: to affect the carry flag, use
ADD something,1 (seesection B.4.3 INC affects all the other flags according to the result.

This instruction can be used with®CKprefix to allow atomic execution.
See als®EC(section B.4.58
B.4.121 INSB, INSW, INSD: Input String from 1/O Port

INSB - 6C [186]
INSW - 016 6D [186]
INSD - 032 6D [386]

INSB inputs a byte from the I/O port specifiedxX and stores it gES:DI] or [ES:EDI] . It
then increments or decrements (depending on the direction flag: increments if the flag is clear,
decrements if it is sef)l or EDI.

The register used BI if the address size is 16 bits, aBbI if it is 32 bits. If you need to use an
address size not equal to the cur@fitS setting, you can use an explialt6 ora32 prefix.

Segment override prefixes have no effect for this instruction: the Us8 fofr the load froniDI]
or [EDI] cannot be overridden.

INSW andINSD work in the same way, but they input a word or a doubleword instead of a byte,
and increment or decrement the addressing register by 2 or 4 instead of 1.

The REP prefix may be used to repeat the instructd@(or ECX— again, the address size chooses
which) times.

See als®UTSBOUTSVEndOUTSD(section B.4.19p
B.4.122 INT : Software Interrupt
INT imm8 ;CDIib [8086]
INT causes a software interrupt through a specified vector number from 0 to 255.

The code generated by theT instruction is always two bytes long: although there are short forms
for someINT instructions, NASM does not generate them when it seefNfiemnemonic. In
order to generate single—byte breakpoint instructions, uséNthg@ or INT1 instructions (see
section B.4.12Binstead.

B.4.123INT3,INT1, ICEBP, INTO1 : Breakpoints

INT1 F1 [P6]
ICEBP - F1 [P6]
INTO1 “F1 [P6]
INT3 :CC [8086]
INTO3 ‘' CC [8086]

INT1 andINT3 are short one—byte forms of the instructidNg 1 andINT 3 (seesection
B.4.129. They perform a similar function to their longer counterparts, but take up less code space.
They are used as breakpoints by debuggers.

* INT1, and its alternative synonyniBlTO1 andICEBP, is an instruction used by in—circuit
emulators (ICEs). It is present, though not documented, on some processors down to the 286, but
is only documented for the Pentium PHIT3 is the instruction normally used as a breakpoint

by debuggers.

147

« INT3, and its synonyniNTO3 , is not precisely equivalent tblT 3 : the short form, since it is
designed to be used as a breakpoint, bypasses the d@®Rialchecks in virtual-8086 mode,
and also does not go through interrupt redirection.

B.4.124 INTO: Interrupt if Overflow

INTO ; CE [8086]
INTO performs arINT 4 software interrupt (segection B.4.12Rif and only if the overflow flag
is set.
B.4.125 INVD: Invalidate Internal Caches
INVD ; OF 08 [486]

INVD invalidates and empties the processor’s internal caches, and causes the processor to instruct
external caches to do the same. It does not write the contents of the caches back to memory first:
any modified data held in the caches will be lost. To write the data back first/Bi&&/D(section

B.4.329.
B.4.126 INVLPG: Invalidate TLB Entry
INVLPG mem ; OF 01 /7 [486]

INVLPG invalidates the translation lookahead buffer (TLB) entry associated with the supplied
memory address.

B.4.127 IRET, IRETW, IRETD: Return from Interrupt

IRET :CF [8086]
IRETW - 016 CF [8086]
IRETD 032 CF [386]

IRET returns from an interrupt (hardware or software) by means of poppirigr EIP), CS and
the flags off the stack and then continuing execution from theQfW .

IRETW popsIP , CSand the flags as 2 bytes each, taking 6 bytes off the stack inREdID pops
EIP as 4 bytes, pops a further 4 bytes of which the top two are discarded and the bottom two go
into CS and pops the flags as 4 bytes as well, taking 12 bytes off the stack.

IRET is a shorthand for eith#RETWor IRETD, depending on the defalBtTS setting at the time.
B.4.128 Jcc : Conditional Branch

Jccimm ; 70+cc rb [8086]
Jcc NEAR imm ; OF 80+cc rw/rd [386]

The conditional jump instructions execute a near (same segment) jump if and only if their
conditions are satisfied. For exampldlZ jumps only if the zero flag is not set.

The ordinary form of the instructions has only a 128-byte rangéNE#ARform is a 386 extension
to the instruction set, and can span the full size of a segment. NASM will not override your choice
of jump instruction: if you wanilcc NEAR , you have to use tH¢EARkeyword.

The SHORTkeyword is allowed on the first form of the instruction, for clarity, but is not necessary.
For details of the condition codes, seetion B.2.2
B.4.129 JCXZ, JECXZ Jump if CX/ECX Zero

JCXZ imm ;al6 E3rb [8086]
JECXZ imm ;a32 E3rb [386]

148

JCXZ performs a short jump (with maximum range 128 bytes) if and only if the contents@Xthe
register is 0JECXZ does the same thing, but wBCX

B.4.130 JMP. Jump

JMP imm ; E9 rw/rd [8086]

JMP SHORT imm ;EBrb [8086]
JMP imm:imm16 ; 016 EA iw iw [8086]
JMP imm:imm32 ; 032 EAid iw [386]
JMP FAR mem ;016 FF /5 [8086]
JMP FAR mem32 ; 032 FF /5 [386]
JMP r/m16 ; 016 FF /4 [8086]
JMP r/m32 ; 032 FF /4 [386]

JMP jumps to a given address. The address may be specified as an absolute segment and offset, o
as a relative jump within the current segment.

JMP SHORT imm has a maximum range of 128 bytes, since the displacement is specified as only
8 bits, but takes up less code space. NASM does not choose when to giviBr&id ORTfor you:
you must explicitly codSHORTevery time you want a short jump.

You can choose between the two immediatejump forms JMP imm:imm) by the use of the
WORD and DWORD keywords: JMP WORD 0x1234:0x5678) or
JMP DWORD 0x1234:0x56789abc .

The IMP FAR mem forms execute a far jump by loading the destination address out of memory.
The address loaded consists of 16 or 32 bits of offset (depending on the operand size), and 16 bits of
segment. The operand size may be overridden usiMP WORD FAR mem or

JMP DWORD FAR mem

The JMP r/m forms execute anear jump (within the same segment), loading the destination
address out of memory or out of a register. The keyWE&RmMay be specified, for clarity, in
these forms, but is not necessary. Again, operand size can be overriddeiMBIWORD menor

JMP DWORD mem

As a convenience, NASM does not require you to jump to a far symbol by coding the cumbersome
JMP SEG routine:routine , but instead allows the easier synonydMP FAR routine

The CALL r/m forms given above are near calls; NASM will accept MieARkeyword (e.g.
CALL NEAR [address]), even though it is not strictly necessary.

B.4.131 LAHF Load AH from Flags
LAHF ; 9F [8086]
LAHF sets théAHregister according to the contents of the low byte of the flags word.
The operation oEAHF is:
AH <—— SF:ZF:0:AF:0:PF:1:CF
See als®GAHF(section B.4.28p
B.4.132 LAR Load Access Rights

LAR reg16,r/m16 1016 OF 02 /r [286,PRIV]
LAR reg32,r/m32 ; 032 0F 02 /r [286,PRIV]

LAR takes the segment selector specified by its source (second) operand, finds the corresponding
segment descriptor in the GDT or LDT, and loads the access-rights byte of the descriptor into its
destination (first) operand.

149

B.4.133 LDMXCSRLoad Streaming SIMD Extension Control/Status

LDMXCSR mem32 ; OF AE /2 [KATMAI,SSE]

LDMXCSRoads 32-bits of data from the specified memory location intdlKESRcontrol/status
register. MXCSRs used to enable masked/unmasked exception handling, to set rounding modes, to
set flush—to—zero mode, and to view exception status flags.

For details of thtIXCSRegister, see the Intel processor docs.
See als6&TMXCSHKsection B.4.302

B.4.134 LDS, LES, LFS, LGS LSS: Load Far Pointer

LDS regl6,mem ;016 C5/r [8086]
LDS reg32,mem ;032C5 /r [386]

LES regl6,mem ;016 C4 /r [8086]
LES reg32,mem ;032C4 Ir [386]

LFS regl6,mem ;016 OF B4 Ir [386]
LFS reg32,mem ;032 0F B4 Ir [386]
LGS regl6,mem ; 016 OF B5 /r [386]
LGS reg32,mem ;032 0F B5 /r [386]
LSS regl6,mem ; 016 OF B2 /r [386]
LSS reg32,mem ;032 0F B2 /r [386]

These instructions load an entire far pointer (16 or 32 bits of offset, plus 16 bits of segment) out of
memory in one goLDS, for example, loads 16 or 32 bits from the given memory address into the
given register (depending on the size of the register), then loadexhk6 bits from memory into

DS LES, LFS, LGSandLSS work in the same way but use the other segment registers.

B.4.135 LEA: Load Effective Address

LEA regl6,mem ; 016 8D /r [8086]
LEA reg32,mem ;0328D Ir [386]

LEA, despite its syntax, does not access memory. It calculates the effective address specified by its
second operand as if it were going to load or store data from it, but instead it stores the calculated
address into the register specified by its first operand. This can be used to perform quite complex
calculations (e.g.EA EAX,[EBX+ECX*4+100]) in one instruction.

LEA, despite being a purely arithmetic instruction which accesses no memory, still requires square
brackets around its second operand, as if it were a memory reference.

The size of the calculation is the currewldresssize, and the size that the result is stored as is the
currentoperandsize. If the address and operand size are not the same, then if the addressing mode
was 32-bits, the low 16-bits are stored, and if the address was 16-bits, it is zero—extended to
32-bits before storing.

B.4.136 LEAVE Destroy Stack Frame

150

LEAVE : C9 [186]

LEAVEdestroys a stack frame of the form created byE(N& ERinstruction (sesection B.4.6% It
is functionally equivalent ttMOV ESP,EBPfollowed by POP EBP (or MOV SP,BP followed by
POP BPin 16-bit mode).

B.4.137 LFENCE Load Fence
LFENCE :OF AE /5 [WILLAMETTE,SSEZ?]

LFENCEperforms a serialising operation on all loads from memory that were issued before the
LFENCE instruction. This guarantees that all memory reads beforé RE®NCE instruction are
visible before any reads after thEENCEinstruction.

LFENCEIs ordered respective to otheFENCEinstruction, MFENCEany memory read and any
other serialising instruction (such @UID).

Weakly ordered memory types can be used to achieve higher processor performance through such
techniques as out-of-order issue and speculative reads. The degree to which a consumer of date
recognizes or knows that the data is weakly ordered varies among applications and may be
unknown to the producer of this data. THEENCE instruction provides a performance—efficient

way of ensuring load ordering between routines that produce weakly—ordered results and routines
that consume that data.

LFENCEuses the following ModRM encoding:

Mod (7:6) =11B
Reg/Opcode (5:3) = 101B
R/M (2:0) =000B

All other ModRM encodings are defined to be reserved, and use of these encodings risks
incompatibility with future processors.

See als@FENCHSsection B.4.288andMFENCHsection B.4.151
B.4.138 LGDT LIDT, LLDT: Load Descriptor Tables

LGDT mem :0OF 01/2 [286,PRIV]
LIDT mem ;OF 01/3 [286,PRIV]
LLDT r/m16 ; OF 00 /2 [286,PRIV]

LGDTandLIDT both take a 6—-byte memory area as an operand: they load a 32-bit linear address
and a 16-bit size limit from that area (in the opposite order) int&GDiER(global descriptor table
register) oiDTR (interrupt descriptor table register). These are the only instructions which directly
uselinear addresses, rather than segment/offset pairs.

LLDT takes a segment selector as an operand. The processor looks up that selector in the GDT anc
stores the limit and base address given there intbDA& (local descriptor table register).

See als&GDTSIDT andSLDT (section B.4.28p
B.4.139 LMSWLoad/Store Machine Status Word
LMSW r/m16 :0OF01/6 [286,PRIV]

LMSWoads the bottom four bits of the source operand into the bottom four bits ©Rtheontrol
register (or the Machine Status Word, on 286 processors). SeeM®section B.4.296

B.4.140 LOADALL LOADALL286. Load Processor State

LOADALL - OF 07 [386,UNDOC]
LOADALL286 - OF 05 [286,UNDOC]

This instruction, in its two different—opcode forms, is apparently supported on most 286 processors,
some 386 and possibly some 486. The opcode differs between the 286 and the 386.

151

The function of the instruction is to load all information relating to the state of the processor out of a
block of memory: on the 286, this block is located implicitly at absolute addx868€ , and on the
386 and 486 it is §ES:EDI]

B.4.141 LODSBLODSW.ODSD Load from String

LODSB . AC [8086]
LODSW £ 016 AD [8086]
LODSD : 032 AD [386]

LODSBIloads a byte fronjDS:SI] or [DS:ESI] into AL. It then increments or decrements
(depending on the direction flag: increments if the flag is clear, decrements if it$s satiESI .

The register used S| if the address size is 16 bits, aa8| if it is 32 bits. If you need to use an
address size not equal to the curBiitS setting, you can use an explialté ora32 prefix.

The segment register used to load frih] or [ESI] can be overridden by using a segment
register name as a prefix (for exami& LODSB).

LODSWANdLODSDwork in the same way, but they load a word or a doubleword instead of a byte,
and increment or decrement the addressing registers by 2 or 4 instead of 1.

B.4.142 LOOR LOOPELOOPZLOOPNELOOPNZLoop with Counter

LOOP imm yE21r1b [8086]
LOOP imm,CX ;al6 E2rb [8086]
LOOP imm,ECX ;a32E2rb [386]
LOOPE imm ;Elrb [8086]
LOOPE imm,CX ;al6 ELlrb [8086]
LOOPE imm,ECX ;a32Elrb [386]
LOOPZ imm yELrb [8086]
LOOPZ imm,CX ;al6Elrb [8086]
LOOPZ imm,ECX ;a32Elrb [386]
LOOPNE imm ; EOrb [8086]
LOOPNE imm,CX ;al6 EOrb [8086]
LOOPNE imm,ECX ;a32 EOrb [386]
LOOPNZ imm ;EOrb [8086]
LOOPNZ imm,CX ;al6 EOrb [8086]
LOOPNZ imm,ECX ;a32EOrb [386]

LOOPdecrements its counter register (eitlX or ECX — if one is not specified explicitly, the
BITS setting dictates which is used) by one, and if the counter does not become zero as a result of
this operation, it jumps to the given label. The jump has a range of 128 bytes.

LOOPE(or its synonymLOOPZ adds the additional condition that it only jumps if the counter is
nonzeroand the zero flag is set. Similarlf, OOPNE(and LOOPNZX jumps only if the counter is
nonzero and the zero flag is clear.

B.4.143 LSL: Load Segment Limit

152

LSL regl6,r/m16 ;016 OF 03 /r [286,PRIV]
LSL reg32,r/m32 ; 032 0F 03 /r [286,PRIV]

LSL is given a segment selector in its source (second) operand; it computes the segment limit value
by loading the segment limit field from the associated segment descriptor@Diher LDT. (This

involves shifting left by 12 bits if the segment limit is page—granular, and not if it is byte—granular;
so you end up with a byte limit in either case.) The segment limit obtained is then loaded into the
destination (first) operand.

B.4.144 LTR: Load Task Register
LTR r/m16 : OF 00 /3 [286,PRIV]

LTR looks up the segment base and limit in the GDT or LDT descriptor specified by the segment
selector given as its operand, and loads them into the Task Register.

B.4.145 MASKMOVDQBYyte Mask Write
MASKMOVDQU xmm1,xmm2 ;66 OF F7 /r [WILLAMETTE,SSEZ2]

MASKMOVDQdores data from xmml to the location specifiedB8/(E)DI . The size of the
store depends on the address-size attribute. The most significant bit in each byte of the mask
register xmmz2 is used to selectively write the data (0 = no write, 1 = write) on a per—byte basis.

B.4.146 MASKMO\V@yte Mask Write
MASKMOVQ mm1,mm2 OFF7 /r [KATMAI,MMX]

MASKMOV&ores data from mm1 to the location specifiedEl8y(E)DI . The size of the store
depends on the address—size attribute. The most significant bit in each byte of the mask register
mm2 is used to selectively write the data (0 = no write, 1 = write) on a per—byte basis.

B.4.147 MAXPDReturn Packed Double—Precision FP Maximum
MAXPD xmm1,xmm2/m128 ; 66 OF 5F /r [WILLAMETTE,SSE2]

MAXPDperforms a SIMD compare of the packed double—precision FP numbers from xmm1 and
xmm2/mem, and stores the maximum values of each pair of values in xmm1. If the values being
compared are both zeroes, source2 (xmm2/m128) would be returned. If source2 (xmm2/m128) is an
SNaN, this SNaN is forwarded unchanged to the destination (i.e., a QNaN version of the SNaN is
not returned).

B.4.148 MAXPSReturn Packed Single—Precision FP Maximum
MAXPS xmm1,xmm2/m128 ; OF 5F /r [KATMAI,SSE]

MAXPSperforms a SIMD compare of the packed single—precision FP numbers from xmm1l and
xmm2/mem, and stores the maximum values of each pair of values in xmm1. If the values being
compared are both zeroes, source2 (xmm2/m128) would be returned. If source2 (xmm2/m128) is an
SNaN, this SNaN is forwarded unchanged to the destination (i.e., a QNaN version of the SNaN is
not returned).

B.4.149 MAXSDReturn Scalar Double—Precision FP Maximum
MAXSD xmm1,xmm2/m64 ; F20F5F /r [WILLAMETTE,SSEZ]

MAXSDcompares the low-order double—precision FP numbers from xmml1 and xmm2/mem, and
stores the maximum value in xmml. If the values being compared are both zeroes, source2
(xmm2/m64) would be returned. If source2 (xmm2/m64) is an SNaN, this SNaN is forwarded

unchanged to the destination (i.e., a QNaN version of the SNaN is not returned). The high
guadword of the destination is left unchanged.

B.4.150 MAXSSReturn Scalar Single—Precision FP Maximum
MAXSS xmm1,xmm2/m32 ; F30F 5F /r [KATMAI,SSE]

MAXSScompares the low-order single—precision FP numbers from xmm1l and xmm2/mem, and
stores the maximum value in xmml. If the values being compared are both zeroes, source2
(xmm2/m32) would be returned. If source2 (xmm2/m32) is an SNaN, this SNaN is forwarded
unchanged to the destination (i.e., a QNaN version of the SNaN is not returned). The high three
doublewords of the destination are left unchanged.

153

B.4.151 MFENCEMemory Fence

MFENCE ; OF AE /6 [WILLAMETTE,SSEZ2]

MFENCHEperforms a serialising operation on all loads from memory and writes to memory that were
issued before thIFENCEnNstruction. This guarantees that all memory reads and writes before the
MFENCEHnstruction are completed before any reads and writes aftttRE®&CEnstruction.

MFENCEHs ordered respective to othHdFENCEnNstructions LFENCE SFENCE any memory read
and any other serialising instruction (suctC&JID).

Weakly ordered memory types can be used to achieve higher processor performance through such
techniques as out-of-order issue, speculative reads, write—combining, and write—collapsing. The

degree to which a consumer of data recognizes or knows that the data is weakly ordered varies
among applications and may be unknown to the producer of this dataMABENCEnNstruction

provides a performance—efficient way of ensuring load and store ordering between routines that

produce weakly—ordered results and routines that consume that data.

MFENCHises the following ModRM encoding:

Mod (7:6) =11B
Reg/Opcode (5:3) = 110B
R/M (2:0) =000B

All other ModRM encodings are defined to be reserved, and use of these encodings risks
incompatibility with future processors.

See alsc.FENCE(section B.4.13yandSFENCHsection B.4.288

B.4.152 MINPD Return Packed Double—Precision FP Minimum

MINPD xmm1,xmm2/m128 ;66 OF 5D /r [WILLAMETTE,SSEZ2]

MINPD performs a SIMD compare of the packed double—precision FP numbers from xmm1 and
xmm2/mem, and stores the minimum values of each pair of values in xmml. If the values being
compared are both zeroes, source2 (xmm2/m128) would be returned. If source2 (xmm2/m128) is an
SNaN, this SNaN is forwarded unchanged to the destination (i.e., a QNaN version of the SNaN is
not returned).

B.4.153 MINPS Return Packed Single—Precision FP Minimum

MINPS xmm1,xmm2/m128 :OF 5D /r [KATMAI,SSE]

MINPS performs a SIMD compare of the packed single—precision FP numbers from xmm1l and
xmm2/mem, and stores the minimum values of each pair of values in xmml. If the values being
compared are both zeroes, source2 (xmm2/m128) would be returned. If source2 (xmm2/m128) is an
SNaN, this SNaN is forwarded unchanged to the destination (i.e., a QNaN version of the SNaN is
not returned).

B.4.154 MINSD Return Scalar Double—Precision FP Minimum

MINSD xmm1,xmm2/m64 F20F5D /r [WILLAMETTE,SSEZ?]

MINSD compares the low—-order double—precision FP numbers from xmm1 and xmm2/mem, and
stores the minimum value in xmm1. If the values being compared are both zeroes, source2
(xmm2/m64) would be returned. If source2 (xmm2/m64) is an SNaN, this SNaN is forwarded

unchanged to the destination (i.e., a QNaN version of the SNaN is not returned). The high
guadword of the destination is left unchanged.

B.4.155 MINSS Return Scalar Single—Precision FP Minimum

154

MINSS xmm1,xmm2/m32 i F30F5D /r [KATMAI,SSE]

MINSS compares the low-order single—precision FP numbers from xmm1l and xmm2/mem, and
stores the minimum value in xmml. If the values being compared are both zeroes, source2
(xmm2/m32) would be returned. If source2 (xmm2/m32) is an SNaN, this SNaN is forwarded

unchanged to the destination (i.e., a QNaN version of the SNaN is not returned). The high three
doublewords of the destination are left unchanged.

B.4.156 MOV Move Data

MOV r/m8,reg8 ; 88 /r [8086]
MOV r/m16,regl6 ;016 89 /r [8086]
MOV r/m32,reg32 ;03289 /r [386]
MOV reg8,r/m8 ; 8AIr [8086]
MOV reg16,r/m16 ; 016 8B /r [8086]
MOV reg32,r/m32 ;032 8B /Ir [386]
MOV reg8,imm8 ; BO+rib [8086]
MOV regl16,imm16 ; 016 B8+r iw [8086]
MOV reg32,imm32 ; 032 B8+rid [386]
MOV r/m8,imm8 ; C6/0ib [8086]
MOV r/m16,imm16 ; 016 C7 /0 iw [8086]

MOV r/m32,imm32
MOV AL,memoffs8

;032 C7 /0 id [386]
; A0 ow/od [8086]

MOV AX,memoffsl6 ; 016 Al ow/od [8086]
MOV EAX,memoffs32 ; 032 Al ow/od [386]
MOV memoffs8,AL ; A2 ow/od [8086]
MOV memoffs16,AX : 016 A3 ow/od [8086]
MOV memoffs32,EAX : 032 A3 ow/od [386]
MOV r/m16,segreg ;016 8C /Ir [8086]
MOV r/m32,segreg ;0328C Ir [386]
MOV segreg,r/m16 ; 016 8E /r [8086]
MOV segreg,r/m32 ; 032 8E Ir [386]
MOV reg32,CR0/2/3/4 ; OF 20 /r [386]
MOV reg32,DR0/1/2/3/6/7 ;OF 21 /r [386]
MOV reg32,TR3/4/5/6/7 ; OF 24 Ir [386]
MOV CRO0/2/3/4,reg32 ; OF 22 Ir [386]
MOV DRO0/1/2/3/6/7,reg32 ; OF 23 /r [386]
MOV TR3/4/5/6/7,reg32 ;OF 26 /r [386]

MO\topies the contents of its source (second) operand into its destination (first) operand.

In all forms of theMOWinstruction, the two operands are the same size, except for moving between
a segment register and afm32 operand. These instructions are treated exactly like the
corresponding 16-bit equivalent (so that, for examplV DS,EAX functions identically to

MOV DS,AX but saves a prefix when in 32-bit mode), except that when a segment register is
moved into a 32-bit destination, the top two bytes of the result are undefined.

MOWmay not us€Sas a destination.

CR4is only a supported register on the Pentium and above.

Test registers are supported on 386/486 processors and on some non-Intel Pentium class processors
B.4.157 MOVAPDMove Aligned Packed Double-Precision FP Values

MOVAPD xmm1,xmm2/mem128 ; 66 OF 28 /r [WILLAMETTE,SSEZ2]
MOVAPD xmm1/mem128,xmm2 ;66 OF 29 /r [WILLAMETTE,SSEZ?]

155

MOVAPDmoves a double quadword containing 2 packed double—precision FP values from the
source operand to the destination. When the source or destination operand is a memory location, it
must be aligned on a 16-byte boundary.

To move data in and out of memory locations that are not known to be on 16—-byte boundaries, use
the MOVUPInstruction §ection B.4.18R

B.4.158 MOVAPSMove Aligned Packed Single—Precision FP Values

MOVAPS xmm1,xmm2/mem128 :OF 28 /Ir [KATMAI,SSE]
MOVAPS xmm1/mem128,xmm2 ; OF 29 /r [KATMAI,SSE]

MOVAPSmoves a double quadword containing 4 packed single—precision FP values from the
source operand to the destination. When the source or destination operand is a memory location, it
must be aligned on a 16-byte boundary.

To move data in and out of memory locations that are not known to be on 16-byte boundaries, use
theMOVUP$hstruction éection B.4.188

B.4.159 MOVDMove Doubleword to/from MMX Register

MOVD mm,r/m32 ; OF 6E /r [PENT,MMX]
MOVD r/m32,mm OF TE /Ir [PENT,MMX]
MOVD xmm,r/m32 ; 66 OF 6E /r [WILLAMETTE,SSEZ?]
MOVD r/m32,xmm ;66 OF 7TE /r [WILLAMETTE,SSEZ2]

MOVL[xopies 32 bits from its source (second) operand into its destination (first) operand. When the
destination is a 64-bMMXregister or a 128-bXMMregister, the input value is zero—extended to
fill the destination register.

B.4.160 MOVDQ2Move Quadword from XMM to MMX register.

MOVDQ2Q mm,xmm i F2OF D6 /r [WILLAMETTE,SSEZ2]
MOVDQ2@oves the low quadword from the source operand to the destination operand.

B.4.161 MOVDQAMove Aligned Double Quadword

MOVDQA xmm1,xmm2/m128 ; 66 OF 6F /Ir [WILLAMETTE,SSEZ2]
MOVDQA xmm1/m128,xmm2 ;66 OF 7TF Ir [WILLAMETTE,SSEZ?]

MOVDQMnoves a double quadword from the source operand to the destination operand. When the
source or destination operand is a memory location, it must be aligned to a 16—byte boundary.

To move a double quadword to or from unaligned memory locations, us4QR®Qlihstruction
(section B.4.16p

B.4.162 MOVDQWlove Unaligned Double Quadword

MOVDQU xmm1,xmm2/m128 ; F3OF 6F /r [WILLAMETTE,SSEZ?]
MOVDQU xmm1/m128,xmm2 F3OF 7F /r [WILLAMETTE,SSEZ?]

MOVDQUuhoves a double quadword from the source operand to the destination operand. When the
source or destination operand is a memory location, the memory may be unaligned.

To move a double quadword to or from known aligned memory locations, usRIQMDQA
instruction éection B.4.161L

B.4.163 MOVHLPSMove Packed Single—-Precision FP High to Low

156

MOVHLPS xmm1,xmm2 ; OF 12 /r [KATMAI,SSE]

MOVHLPS3noves the two packed single—precision FP values from the high quadword of the source
register xmm2 to the low quadword of the destination register, xmm2. The upper quadword of
xmmdl is left unchanged.

The operation of this instruction is:

dst[0-63] :=src[64-127],
dst[64-127] remains unchanged.

B.4.164 MOVHPIMove High Packed Double-Precision FP

MOVHPD xmm,m64 ;66 OF 16 /r [WILLAMETTE,SSEZ2]
MOVHPD m64,xmm ;66 OF 17 /r [WILLAMETTE,SSEZ2]

MOVHPDnoves a double—precision FP value between the source and destination operands. One of
the operands is a 64—bit memory location, the other is the high quadworXkfagister.

The operation of this instruction is:
mem[0-63] :=xmm[64-127];
or

xmm[0-63] remains unchanged;
xmm[64-127] := mem[0-63].

B.4.165 MOVHPSMove High Packed Single—Precision FP

MOVHPS xmm,m64 ; OF 16 /r [KATMAI,SSE]
MOVHPS m64,xmm ; OF 17 Ir [KATMAI,SSE]

MOVHPSmoves two packed single—precision FP values between the source and destination
operands. One of the operands is a 64-bit memory location, the other is the high quadword of an
XMMegister.

The operation of this instruction is:
mem[0-63] :=xmm[64-127];
or

xmm[0-63] remains unchanged;
xmm[64-127] := mem[0-63].

B.4.166 MOVLHPSMove Packed Single—Precision FP Low to High
MOVLHPS xmm1,xmm?2 :OF 16 /r [KATMAI,SSE]

MOVLHPSnoves the two packed single—precision FP values from the low quadword of the source
register xmma2 to the high quadword of the destination register, xmm2. The low quadword of xmm21
is left unchanged.

The operation of this instruction is:

dst[0-63] remains unchanged,;
dst[64-127] := src[0—-63].

B.4.167 MOVLPBbMove Low Packed Double—Precision FP

MOVLPD xmm,m64 ;66 OF 12 /r [WILLAMETTE,SSEZ?]
MOVLPD m64,xmm ;66 OF 13/r [WILLAMETTE,SSEZ?]

MOVLPDmoves a double—precision FP value between the source and destination operands. One of
the operands is a 64—bit memory location, the other is the low quadworXbdfihegister.

157

The operation of this instruction is:
mem(0-63) :=xmm(0-63);
or

xmm(0-63) :=mem(0-63);
xmm(64-127) remains unchanged.

B.4.168 MOVLPSMove Low Packed Single—Precision FP

MOVLPS xmm,m64 ; OF 12 /r [KATMAI,SSE]
MOVLPS m64,xmm ; OF 13 /r [KATMAI,SSE]

MOVLPSmoves two packed single-precision FP values between the source and destination
operands. One of the operands is a 64-bit memory location, the other is the low quadword of an
XMMegister.

The operation of this instruction is:
mem(0-63) := xmm(0-63);
or

xmm(0-63) :=mem(0-63);
xmm(64-127) remains unchanged.

B.4.169 MOVMSKRI[Extract Packed Double—Precision FP Sign Mask
MOVMSKPD reg32,xmm ; 66 OF 50 /r [WILLAMETTE,SSEZ?]

MOVMSKPDOnserts a 2-bit mask in r32, formed of the most significant bits of each
double—precision FP number of the source operand.

B.4.170 MOVMSKRExtract Packed Single—Precision FP Sign Mask
MOVMSKPS reg32,xmm ;OF50/r [KATMAI,SSE]

MOVMSKPBserts a 4-bit mask in r32, formed of the most significant bits of each single—precision
FP number of the source operand.

B.4.171 MOVNTDove Double Quadword Non Temporal
MOVNTDQ m128,xmm ;66 OF E7 /r [WILLAMETTE,SSEZ]

MOVNTD@oves the double quadword from tK&Msource register to the destination memory
location, using a non—temporal hint. This store instruction minimizes cache pollution.

B.4.172 MOVNTI Move Doubleword Non Temporal
MOVNTI m32,reg32 :OFC3/r [WILLAMETTE,SSE?]

MOVNTImoves the doubleword in the source register to the destination memory location, using a
non—temporal hint. This store instruction minimizes cache pollution.

B.4.173 MOVNTPDMove Aligned Four Packed Single—Precision FP Values Non Temporal
MOVNTPD m128,xmm ;66 OF 2B /r [WILLAMETTE,SSEZ]

MOVNTPDnoves the double quadword from tK&Msource register to the destination memory
location, using a non—-temporal hint. This store instruction minimizes cache pollution. The memory
location must be aligned to a 16-byte boundary.

158

B.4.174 MOVNTPSMove Aligned Four Packed Single—Precision FP Values Non Temporal
MOVNTPS m128,xmm i OF 2B /r [KATMAI,SSE]

MOVNTPSnoves the double quadword from tK&Msource register to the destination memory
location, using a non—-temporal hint. This store instruction minimizes cache pollution. The memory
location must be aligned to a 16-byte boundary.

B.4.175 MOVNTMove Quadword Non Temporal
MOVNTQ m64,mm iOFE7 Ir [KATMAI,MMX]

MOVNT@noves the quadword in tidMXsource register to the destination memory location, using
a non-temporal hint. This store instruction minimizes cache pollution.

B.4.176 MOVQMove Quadword to/from MMX Register

MOVQ mm1,mm2/m64 :OF 6F /Ir [PENT,MMX]
MOVQ mm1/m64,mm2 cOF 7F Ir [PENT,MMX]
MOVQ xmm1,xmm2/m64 ; F30F 7E /r [WILLAMETTE,SSEZ?]
MOVQ xmm1/m64,xmm2 ;66 OF D6 /r [WILLAMETTE,SSE2]

MOV Qopies 64 bits from its source (second) operand into its destination (first) operand. When the
source is alxxMMregister, the low quadword is moved. When the destination Xdviivregister, the
destination is the low quadword, and the high quadword is cleared.

B.4.177 MOVQ2DMove Quadword from MMX to XMM register.
MOVQ2DQ xmm,mm ;F3OF D6 /r [WILLAMETTE,SSEZ?]

MOVQ2D@oves the quadword from the source operand to the low quadword of the destination
operand, and clears the high quadword.

B.4.178 MOVSBMOVSWJIOVSbMove String

MOVSB ; Ad [8086]
MOVSW ; 016 A5 [8086]
MOVSD ; 032 A5 [386]

MOVSR:opies the byte 4DS:SI] or[DS:ESI] to[ES:DI] or[ES:EDI] . It then increments
or decrements (depending on the direction flag: increments if the flag is clear, decrements if it is
set)Sl andDI (or ESI andEDI).

The registers used a8 andDI if the address size is 16 bits, aB8| andEDI if it is 32 bits. If
you need to use an address size not equal to the cBifEBtsetting, you can use an expliait6
ora32 prefix.

The segment register used to load frfh] or [ESI] can be overridden by using a segment
register name as a prefix (for exampme,movsb). The use oES for the store t¢DI] or [EDI]
cannot be overridden.

MOVSVEndMOVSDvork in the same way, but they copy a word or a doubleword instead of a byte,
and increment or decrement the addressing registers by 2 or 4 instead of 1.

The REP prefix may be used to repeat the instructid(or ECX— again, the address size chooses

which) times.

B.4.179 MOVSDbMove Scalar Double—Precision FP Value
MOVSD xmml,xmm2/m64 ;F20F 10 /r [WILLAMETTE,SSEZ?]
MOVSD xmml1/m64,xmm2 F20F 11 /r [WILLAMETTE,SSEZ2]

159

MOVSDmoves a double—precision FP value from the source operand to the destination operand.
When the source or destination is a register, the low—order FP value is read or written.

B.4.180 MOVSSMove Scalar Single-Precision FP Value

MOVSS xmm1,xmm2/m32 ; F30F 10 /r [KATMAI,SSE]
MOVSS xmm1/m32,xmm2 ;F30F 11 /r [KATMAI,SSE]

MOVSSmoves a single—precision FP value from the source operand to the destination operand.
When the source or destination is a register, the low—order FP value is read or written.

B.4.181 MOVSXMOVZXMove Data with Sign or Zero Extend

MOVSX regl16,r/m8 ; 016 OF BE /r [386]
MOVSX reg32,r/m8 ; 032 OF BE /r [386]
MOVSX reg32,r/m16 ; 032 OF BF /r [386]
MOVZX reg16,r/m8 ; 016 OF B6 /r [386]
MOVZX reg32,r/m8 ;0320F B6 /r [386]
MOVZX reg32,r/m16 ;032 0F B7 Ir [386]

MOV SXsign—extends its source (second) operand to the length of its destination (first) operand, and
copies the result into the destination opera@VzZXdoes the same, but zero—extends rather than
sign—extending.

B.4.182 MOVUPDMove Unaligned Packed Double—Precision FP Values

MOVUPD xmm1,xmm2/mem128 ;66 OF 10 /r [WILLAMETTE,SSEZ2]
MOVUPD xmm1/mem128,xmm2 ;66 OF 11 /r [WILLAMETTE,SSEZ2]

MOVUPDmoves a double quadword containing 2 packed double—precision FP values from the
source operand to the destination. This instruction makes no assumptions about alignment of
memory operands.

To move data in and out of memory locations that are known to be on 16-byte boundaries, use the
MOVAPInstruction éection B.4.15)(

B.4.183 MOVUP3Move Unaligned Packed Single—Precision FP Values

MOVUPS xmm1,xmm2/mem128 :OF 10 /r [KATMAI,SSE]
MOVUPS xmm1l/mem128,xmm2 OF 11 /r [KATMAI,SSE]

MOVUPSnoves a double quadword containing 4 packed single—precision FP values from the
source operand to the destination. This instruction makes no assumptions about alignment of
memory operands.

To move data in and out of memory locations that are known to be on 16-byte boundaries, use the
MOVAP$struction §ection B.4.158

B.4.184 MUL Unsigned Integer Multiply

160

MUL r/m8 ; F6 /4 [8086]
MUL r/m16 ;016 F7 /4 [8086]
MUL r/m32 ;032 F7 /4 [386]

MUL performs unsigned integer multiplication. The other operand to the multiplication, and the
destination operand, are implicit, in the following way:

e ForMUL r/m8 , AL is multiplied by the given operand; the product is store&Xn
* ForMUL r/m16 , AXis multiplied by the given operand; the product is storddXpAX.

e ForMUL r/m32 , EAXis multiplied by the given operand; the product is stordeDX:EAX

Signed integer multiplication is performed by tMiL instruction: sesection B.4.118
B.4.185 MULPDPacked Single—FP Multiply

MULPD xmm1,xmm2/mem128 ;66 OF 59 /r [WILLAMETTE,SSEZ2]

MULPDperforms a SIMD multiply of the packed double—precision FP values in both operands, and
stores the results in the destination register.

B.4.186 MULPS Packed Single—FP Multiply
MULPS xmm1,xmm2/mem128 :OF 59 /r [KATMAI,SSE]

MULPSperforms a SIMD multiply of the packed single—precision FP values in both operands, and
stores the results in the destination register.

B.4.187 MULSD Scalar Single—FP Multiply
MULSD xmm1,xmm2/mem32 ;F20F 59 /r [WILLAMETTE,SSEZ?]

MULSDmultiplies the lowest double—precision FP values of both operands, and stores the result in
the low quadword of xmmL1.

B.4.188 MULSS Scalar Single—FP Multiply
MULSS xmm1,xmm2/mem32 ; F30F 59 /r [KATMAISSE]

MULSSmultiplies the lowest single—precision FP values of both operands, and stores the result in
the low doubleword of xmm1.

B.4.189 NEG NOT Two’s and One’s Complement

NEG r/m8 ; F6 /3 [8086]
NEG r/m16 ;016 F7 /3 [8086]
NEG r/m32 ; 032 F7 /3 [386]
NOT r/m8 ; F6 /2 [8086]
NOT r/m16 ;016 F7 /2 [8086]
NOT r/m32 ;032 F7 /2 [386]

NEGreplaces the contents of its operand by the two’s complement negation (invert all the bits and
then add one) of the original vall¢OT similarly, performs one’s complement (inverts all the bits).

B.4.190 NOP No Operation
NOP ;90 [8086]

NOP performs no operation. Its opcode is the same as that generatd@H@ AX,AX or
XCHG EAX,EAX(depending on the processor mode;sssion B.4.333

B.4.191 OR Bitwise OR

OR r/m8,reg8 ; 08 /r [8086]
OR r/m16,reg16 ;016 09 /r [8086]
OR r/m32,reg32 ;03209 /r [386]
OR reg8,r/m8 ; OAIr [8086]
OR regl16,r/m16 ;016 0B /r [8086]
OR reg32,r/m32 ;032 0B /r [386]

161

OR r/m8,imm8 ;80 /1ib [8086]

OR r/m16,imm16 ; 016 81 /1 iw [8086]
OR r/m32,imm32 ;03281 /1id [386]
OR r/m16,imm8 ;01683 /11ib [8086]
OR r/m32,imm8 ;03283/11ib [386]
OR AL,imm8 ;0Cib [8086]

OR AX,imm16 ; 016 0D iw [8086]
OR EAX,imm32 ;0320D id [386]

ORperforms a bitwise OR operation between its two operands (i.e. each bit of the result is 1 if and
only if at least one of the corresponding bits of the two inputs was 1), and stores the result in the
destination (first) operand.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand
is considered to be signed, and is sign—extended to the length of the first operand. In these cases, the
BYTEqualifier is necessary to force NASM to generate this form of the instruction.

The MMX instructionPOR(seesection B.4.24) performs the same operation on the 64-bit MMX
registers.

B.4.192 ORPDBIt-wise Logical OR of Double—Precision FP Data

ORPD xmm1,xmm2/m128 ;66 OF 56 /r [WILLAMETTE,SSEZ2]

ORPDreturn a bit-wise logical OR between xmm1 and xmm2/mem, and stores the result in xmm1.
If the source operand is a memory location, it must be aligned to a 16—byte boundary.

B.4.193 ORPSBit-wise Logical OR of Single-Precision FP Data

ORPS xmm1,xmm2/m128 ; OF 56 /r [KATMAI,SSE]

ORPSreturn a bit-wise logical OR between xmm1 and xmm2/mem, and stores the result in xmm1.
If the source operand is a memory location, it must be aligned to a 16—byte boundary.

B.4.194 OUT Output Data to I/O Port

OUT imm8,AL ; E6 ib [8086]
OUT imm8,AX ;016 E7 ib [8086]
OUT imm8,EAX ;032 E7 ib [386]
OUT DX,AL == [8086]
OUT DX,AX : 016 EF [8086]
OUT DX,EAX ; 032 EF [386]

OUTwrites the contents of the given source register to the specified I/O port. The port number may
be specified as an immediate value if it is between 0 and 255, and otherwise must be &¥red in
See alsdN (section B.4.11p

B.4.195 OUTSBOUTSWOUTSD Output String to 1/0 Port

162

OUTSB . 6E [186]
OUTSW : 016 6F [186]
OUTSD . 032 6F [386]

OUTSBIloads a byte fronfiDS:SI] or [DS:ESI] and writes it to the I/O port specified X It
then increments or decrements (depending on the direction flag: increments if the flag is clear,
decrements if it is se§l orESI.

The register used S| if the address size is 16 bits, aa8l if it is 32 bits. If you need to use an
address size not equal to the curf@iitS setting, you can use an expliat6 ora32 prefix.

The segment register used to load frfh] or [ESI] can be overridden by using a segment
register name as a prefix (for examme,outsb).

OUTSWAnd OUTSDwork in the same way, but they output a word or a doubleword instead of a
byte, and increment or decrement the addressing registers by 2 or 4 instead of 1.

The REP prefix may be used to repeat the instructa(or ECX— again, the address size chooses

which) times.

B.4.196 PACKSSDWPACKSSWHBACKUSWRBPack Data
PACKSSDW mml1,mm2/m64 ; OF 6B /r [PENT,MMX]
PACKSSWB mm1,mm2/m64 :OF 63 /r [PENT,MMX]
PACKUSWB mm1,mm2/m64 ; OF 67 /r [PENT,MMX]

PACKSSDW xmm1,xmm2/m128 ;66 OF 6B /r [WILLAMETTE,SSEZ2]
PACKSSWB xmm1,xmm2/m128 ;66 OF 63 /r [WILLAMETTE,SSEZ2]
PACKUSWB xmm1,xmm2/m128 ;66 OF 67 /r [WILLAMETTE,SSEZ2]

All these instructions start by combining the source and destination operands, and then splitting the
result in smaller sections which it then packs into the destination registeMNIXeersions pack

two 64-bit operands into one 64-bit register, while $8E versions pack two 128-bit operands

into one 128-bit register.

« PACKSSWABplits the combined value into words, and then reduces the words to bytes, using
signed saturation. It then packs the bytes into the destination register in the same order the words
were in.

« PACKSSDWerforms the same operation R&ACKSSW,Bexcept that it reduces doublewords to
words, then packs them into the destination register.

« PACKUSWBerforms the same operation BACKSSWBexcept that it uses unsigned saturation
when reducing the size of the elements.

To perform signed saturation on a number, it is replaced by the largest signed nifrgdr Or

7Fh) thatwill fit, and if it is too small it is replaced by the smallest signed hun80&0h or 80h)

that will fit. To perform unsigned saturation, the input is treated as unsigned, and the input is
replaced by the largest unsigned number that will fit.

B.4.197 PADDBPADDWPADDDAdd Packed Integers

PADDB mm1,mm2/m64 ; OF FC /r [PENT,MMX]

PADDW mm1,mm2/m64 ;OFFD Ir [PENT,MMX]

PADDD mm1,mm2/m64 ;OF FE Ir [PENT,MMX]

PADDB xmm1,xmm2/m128 ;66 OF FC /r [WILLAMETTE,SSEZ?]

PADDW xmml,xmm2/m128 ;66 OF FD /r [WILLAMETTE,SSEZ2]

PADDD xmm1,xmm2/m128 ;66 OF FE /r [WILLAMETTE,SSEZ?]

PADDx performs packed addition of the two operands, storing the result in the destination (first)
operand.

« PADDBreats the operands as packed bytes, and adds each byte individually;
« PADDWteats the operands as packed words;
« PADDUDreats its operands as packed doublewords.

When an individual result is too large to fit in its destination, it is wrapped around and the low bits
are stored, with the carry bit discarded.

163

B.4.198 PADDQAdd Packed Quadword Integers
PADDQ mm1,mm2/m64 ;OF D4 Ir [PENT,MMX]
PADDQ xmm1,xmm2/m128 ; 66 OF D4 /r [WILLAMETTE,SSEZ2]

PADDQadds the quadwords in the source and destination operands, and stores the result in the
destination register.

When an individual result is too large to fit in its destination, it is wrapped around and the low bits
are stored, with the carry bit discarded.

B.4.199 PADDSBPADDSWAdd Packed Signed Integers With Saturation

PADDSB mm1,mm2/m64 ; OF EC /r [PENT,MMX]
PADDSW mm1,mm2/m64 :OF ED /Ir [PENT,MMX]
PADDSB xmm1,xmm2/m128 ;66 OF EC/r [WILLAMETTE,SSEZ?]
PADDSW xmm1,xmm2/m128 ;66 OF ED /r [WILLAMETTE,SSEZ?]

PADDSxperforms packed addition of the two operands, storing the result in the destination (first)
operand.PADDSBtreats the operands as packed bytes, and adds each byte individually; and
PADDSWfeats the operands as packed words.

When an individual result is too large to fit in its destination, a saturated value is stored. The
resulting value is the value with the largest magnitude of the same sign as the result which will fit in
the available space.

B.4.200 PADDSIWMMX Packed Addition to Implicit Destination
PADDSIW mmxreg,r/m64 ;OF 51 /r [CYRIX,MMX]

PADDSIW specific to the Cyrix extensions to the MMX instruction set, performs the same function
asPADDSWexcept that the result is placed in an implied register.

To work out the implied register, invert the lowest bit in the register number. So
PADDSIW MMO,MM2vould put the result iMM1 but PADDSIW MM1,MM2vould put the result

in MMO

B.4.201 PADDUSBPADDUSWAdd Packed Unsigned Integers With Saturation
PADDUSB mm1,mm2/m64 ; OF DC Ir [PENT,MMX]
PADDUSW mm1,mm2/m64 ; OF DD /r [PENT,MMX]
PADDUSB xmm1,xmm2/m128 ;66 OF DC /r [WILLAMETTE,SSEZ2]
PADDUSW xmm1,xmm2/m128 ;66 OF DD /r [WILLAMETTE,SSEZ?]

PADDUSxperforms packed addition of the two operands, storing the result in the destination (first)
operand.PADDUSBIreats the operands as packed bytes, and adds each byte individually; and
PADDUSWeats the operands as packed words.

When an individual result is too large to fit in its destination, a saturated value is stored. The
resulting value is the maximum value that will fit in the available space.

B.4.202 PAND PANDNMMX Bitwise AND and AND-NOT

PAND mm1,mm2/m64 :OF DB /r [PENT,MMX]
PANDN mm1,mm2/m64 :OF DF Ir [PENT,MMX]
PAND xmm1,xmm2/m128 ;66 OF DB /r [WILLAMETTE,SSEZ?]
PANDN xmm1,xmm2/m128 ;66 OF DF /r [WILLAMETTE,SSE2]

164

PANDperforms a bitwise AND operation between its two operands (i.e. each bit of the result is 1 if
and only if the corresponding bits of the two inputs were both 1), and stores the result in the
destination (first) operand.

PANDNperforms the same operation, but performs a one’s complement operation on the destination
(first) operand first.

B.4.203 PAUSE Spin Loop Hint
PAUSE ; F3 90 [WILLAMETTE,SSEZ?]

PAUSEprovides a hint to the processor that the following code is a spin loop. This improves
processor performance by bypassing possible memory order violations. On older processors, this
instruction operates asNOPR

B.4.204 PAVEB MMX Packed Average
PAVEB mmxreg,r/m64 : OF 50 /r [CYRIX,MMX]

PAVERB specific to the Cyrix MMX extensions, treats its two operands as vectors of eight unsigned
bytes, and calculates the average of the corresponding bytes in the operands. The resulting vector of
eight averages is stored in the first operand.

This opcode maps tdOVMSKPS r32, xmm on processors that support the SSE instruction set.
B.4.205 PAVGBPAVGWAverage Packed Integers

PAVGB mm1,mm2/m64 ; OF EO /r [KATMAI,MMX]

PAVGW mm1,mm2/m64 ; OF E3 /r [KATMAILMMX,SM]
PAVGB xmm1,xmm2/m128 ;66 OF EO/r [WILLAMETTE,SSEZ2]
PAVGW xmm1,xmm2/m128 ;66 OF E3/r [WILLAMETTE,SSEZ?]

PAVGBand PAVGWAdd the unsigned data elements of the source operand to the unsigned data
elements of the destination register, then adds 1 to the temporary results. The results of the add are
then each independently right—shifted by one bit position. The high order bits of each element are
filled with the carry bits of the corresponding sum.

« PAVGBoperates on packed unsigned bytes, and
* PAVGVéperates on packed unsigned words.
B.4.206 PAVGUSBAverage of unsigned packed 8-bit values
PAVGUSB mm1,mm2/m64 ; OF OF /r BF [PENT,3DNOW]

PAVGUSEadds the unsigned data elements of the source operand to the unsigned data elements of
the destination register, then adds 1 to the temporary results. The results of the add are then eact
independently right—shifted by one bit position. The high order bits of each element are filled with
the carry bits of the corresponding sum.

This instruction performs exactly the same operations asP&GBMMXinstruction éection

B.4.205.
B.4.207 PCMPxx Compare Packed Integers.

PCMPEQB mm1,mm2/m64 ; OF 74 Ir [PENT,MMX]

PCMPEQW mm1,mm2/m64 ;OF 75 /r [PENT,MMX]

PCMPEQD mml1,mm2/m64 ; OF 76 /r [PENT,MMX]

165

PCMPGTB mm1,mm2/m64 ; OF 64 /r [PENT,MMX]

PCMPGTW mm1,mm2/m64 ; OF 65 /r [PENT,MMX]

PCMPGTD mm1,mm2/m64 ; OF 66 /r [PENT,MMX]

PCMPEQB xmm1,xmm2/m128 ;66 OF 74 /r [WILLAMETTE,SSEZ2]
PCMPEQW xmm1,xmm2/m128 ;66 OF 75 /r [WILLAMETTE,SSEZ?]
PCMPEQD xmm1,xmm2/m128 ;66 OF 76 /r [WILLAMETTE,SSEZ2]
PCMPGTB xmm1,xmm2/m128 ;66 OF 64 /r [WILLAMETTE,SSEZ2]
PCMPGTW xmm1,xmm2/m128 ;66 OF 65 /r [WILLAMETTE,SSEZ2]
PCMPGTD xmm1,xmm2/m128 ;66 OF 66 /r [WILLAMETTE,SSEZ2]

The PCMPxx instructions all treat their operands as vectors of bytes, words, or doublewords;
corresponding elements of the source and destination are compared, and the corresponding elemen
of the destination (first) operand is set to all zeros or all ones depending on the result of the
comparison.

« PCMPxxBtreats the operands as vectors of bytes;
 PCMPxxWreats the operands as vectors of words;
 PCMPxxDireats the operands as vectors of doublewords;

« PCMPEQxsets the corresponding element of the destination operand to all ones if the two
elements compared are equal;

« PCMPGTsets the destination element to all ones if the element of the first (destination) operand
is greater (treated as a signed integer) than that of the second (source) operand.

B.4.208 PDISTIB : MMX Packed Distance and Accumulate with Implied Register
PDISTIB mm,m64 ; OF 54 Ir [CYRIX,MMX]

PDISTIB , specific to the Cyrix MMX extensions, treats its two input operands as vectors of eight
unsigned bytes. For each byte position, it finds the absolute difference between the bytes in that
position in the two input operands, and adds that value to the byte in the same position in the
implied output register. The addition is saturated to an unsigned byte in the samePADA$SB

To work out the implied register, invert the lowest bit in the register number. So
PDISTIB MMO,M64 would put the result iMM1 butPDISTIB MM1,M64 would put the result
in MMO

Note thatPDISTIB cannot take a register as its second source operand.
Operation:

dstl[0-7] :=dstl[0-7] + ABS(srcO[0-7] — srcl[0-T7]),
dstl[8-15] :=dstl[8-15] + ABS(srcO[8-15] — src1[8-15]),

dstl[56-63] :=dstl[56-63] + ABS(src0[56-63] — src1[56-63]).
B.4.209 PEXTRWEXxtract Word

PEXTRW reg32,mm,imm8 ;OFC5/rib [KATMAIL,MMX]
PEXTRW reg32,xmm,imm8 ; 66 OF C5 /rib [WILLAMETTE,SSEZ?]

PEXTRWmoves the word in the source register (second operand) that is pointed to by the count
operand (third operand), into the lower half of a 32—-bit general purpose register. The upper half of
the register is cleared to all Os.

166

When the source operand is BiMXregister, the two least significant bits of the count specify the
source word. When it is @SEregister, the three least significant bits specify the word location.

B.4.210 PF2ID : Packed Single—Precision FP to Integer Convert
PF2ID mm1,mm2/m64 ; OF OF /r 1D [PENT,3DNOW]

PF2ID converts two single—precision FP values in the source operand to signed 32-bit integers,
using truncation, and stores them in the destination operand. Source values that are outside the
range supported by the destination are saturated to the largest absolute value of the same sign.

B.4.211 PF2IW: Packed Single—Precision FP to Integer Word Convert
PF2IW mm1,mm2/m64 ; OF OF /r 1C [PENT,3DNOW]

PF2IW converts two single—precision FP values in the source operand to signed 16-bit integers,
using truncation, and stores them in the destination operand. Source values that are outside the
range supported by the destination are saturated to the largest absolute value of the same sign.

¢ In the K6-2 and K6-lll, the 16-bit value is zero—extended to 32-bits before storing.
* In the K6-2+, K6-Illl+ and Athlon processors, the value is sign—extended to 32-bits before

storing.
B.4.212 PFACC Packed Single—Precision FP Accumulate
PFACC mml1,mm2/m64 ; OF OF /r AE [PENT,3DNOW]

PFACCadds the two single—precision FP values from the destination operand together, then adds
the two single—precision FP values from the source operand, and places the results in the low and
high doublewords of the destination operand.

The operation is:

dst[0-31] :=dst[0-31] + dst[32-63],
dst[32-63] :=src[0—31] + src[32-63].

B.4.213 PFADD Packed Single—Precision FP Addition
PFADD mm1,mm2/m64 ; OF OF /r 9E [PENT,3DNOW]
PFADDperforms addition on each of two packed single—precision FP value pairs.

dst[0-31] :=dst[0-31] + src[0-31],
dst[32-63] := dst[32-63] + src[32-63].

B.4.214 PFCMPxx Packed Single—Precision FP Compare

PFCMPEQ mm1,mm2/m64 ; OF OF /r BO [PENT,3DNOW]
PFCMPGE mm1,mm2/m64 ; OF OF /r 90 [PENT,3DNOW]
PFCMPGT mm1,mm2/m64 ; OF OF /r AO [PENT,3DNOW]

The PFCMPxx instructions compare the packed single-point FP values in the source and
destination operands, and set the destination according to the result. If the condition is true, the
destination is set to all 1s, otherwise it's set to all 0s.

* PFCMPEQests whether dst == src;
* PFCMPGHEests whether dst >= src;
* PFCMPGTests whether dst > src.

167

B.4.215 PFMAXPacked Single—Precision FP Maximum
PFMAX mm1,mm2/m64 ; OF OF Ir A4 [PENT,3DNOW]

PFMAXreturns the higher of each pair of single—precision FP values. If the higher value is zero, it is
returned as positive zero.

B.4.216 PFMIN: Packed Single—Precision FP Minimum
PFMIN mm1,mm2/m64 ; OF OF /r 94 [PENT,3DNOW]

PFMIN returns the lower of each pair of single—precision FP values. If the lower value is zero, it is
returned as positive zero.

B.4.217 PFMUL Packed Single—Precision FP Multiply
PFMUL mm1,mm2/m64 ; OF OF /rB4 [PENT,3DNOW]
PFMULreturns the product of each pair of single—precision FP values.
dst[0-31] :=dst[0-31] * src[0-31],
dst[32-63] := dst[32-63] * src[32-63].
B.4.218 PFNACCPacked Single—-Precision FP Negative Accumulate
PFNACC mm1,mm2/m64 ; OF OF /r 8A [PENT,3DNOW]

PFNACCperforms a negative accumulate of the two single—precision FP values in the source and
destination registers. The result of the accumulate from the destination register is stored in the low
doubleword of the destination, and the result of the source accumulate is stored in the high
doubleword of the destination register.

The operation is:
dst[0-31] := dst[0-31] - dst[32-63],
dst[32-63] := src[0—-31] — src[32-63].
B.4.219 PFPNACCPacked Single—Precision FP Mixed Accumulate
PFPNACC mm1,mm2/m64 ; OF OF /r 8E [PENT,3DNOW]

PFPNACCperforms a positive accumulate of the two single-precision FP values in the source
register and a negative accumulate of the destination register. The result of the accumulate from the
destination register is stored in the low doubleword of the destination, and the result of the source
accumulate is stored in the high doubleword of the destination register.

The operation is:
dst[0-31] := dst[0-31] — dst[32-63],
dst[32-63] := src[0—-31] + src[32-63].
B.4.220 PFRCP Packed Single—Precision FP Reciprocal Approximation
PFRCP mm1,mm2/m64 ; OF OF /r 96 [PENT,3DNOW]

PFRCPperforms a low precision estimate of the reciprocal of the low—order single—precision FP
value in the source operand, storing the result in both halves of the destination register. The result is
accurate to 14 bits.

For higher precision reciprocals, this instruction should be followed by two more instructions:
PFRCPIT1 (section B.4.22)l and PFRCPIT2 (section B.4.221 This will result in a 24-bit
accuracy. For more details, see the AMD 3DNow! technology manual.

168

B.4.221 PFRCPIT1: Packed Single-Precision FP Reciprocal, First Iteration Step
PFRCPIT1 mml,mm2/m64 ; OF OF /r A6 [PENT,3DNOW]

PFRCPIT1 performs the first intermediate step in the calculation of the reciprocal of a
single—precision FP value. The first source valmen(is the original value, and the second source
value (nm2/m64is the result of #FRCPinstruction.

For the final step in a reciprocal, returning the full 24-bit accuracy of a single—precision FP value,
seePFRCPIT2 (section B.4.22R For more details, see the AMD 3DNow! technology manual.

B.4.222 PFRCPIT2: Packed Single—Precision FP Reciprocal/ Reciprocal Square Root, Second
Iteration Step

PFRCPIT2 mm1,mm2/m64 ; OF OF /r B6 [PENT,3DNOW]

PFRCPIT2 performs the second and final intermediate step in the calculation of a reciprocal or
reciprocal square root, refining the values returned byPRBCP and PFRSQRTinstructions,
respectively.

The first source valuen{m} is the output of either BFRCPIT1 or aPFRSQIT1 instruction, and
the second source is the output of eitherRRRCPor thePFRSQRTinstruction. For more details,
see the AMD 3DNow! technology manual.

B.4.223 PFRSQIT1: Packed Single—Precision FP Reciprocal Square Root, First Iteration Step
PFRSQIT1 mm1,mm2/m64 ; OF OF /r A7 [PENT,3DNOW]

PFRSQIT1 performs the first intermediate step in the calculation of the reciprocal square root of a
single—precision FP value. The first source valmen(is the square of the result ofPFRSQRT
instruction, and the second source valmen@/m64is the original value.

For the final step in a calculation, returning the full 24-bit accuracy of a single—precision FP value,
seePFRCPIT2 (section B.4.22P For more details, see the AMD 3DNow! technology manual.

B.4.224 PFRSQRTPacked Single—Precision FP Reciprocal Square Root Approximation
PFRSQRT mm1,mm2/m64 ; OF OF /r 97 [PENT,3DNOW]

PFRSQRTperforms a low precision estimate of the reciprocal square root of the low-order
single—precision FP value in the source operand, storing the result in both halves of the destination
register. The result is accurate to 15 bits.

For higher precision reciprocals, this instruction should be followed by two more instructions:
PFRSQIT1 (section B.4.22B and PFRCPIT2 (section B.4.22L This will result in a 24-bit
accuracy. For more details, see the AMD 3DNow! technology manual.

B.4.225 PFSUB Packed Single—Precision FP Subtract
PFSUB mm1,mm2/m64 ; OF OF /r 9A [PENT,3DNOW]

PFSUBsubtracts the single—precision FP values in the source from those in the destination, and
stores the result in the destination operand.

dst[0-31] :=dst[0-31] - src[0-31],
dst[32-63] := dst[32-63] — src[32-63].

B.4.226 PFSUBR Packed Single-Precision FP Reverse Subtract
PFSUBR mm1,mm2/m64 : OF OF /r AA [PENT,3DNOW]

PFSUBRsubtracts the single—precision FP values in the destination from those in the source, and
stores the result in the destination operand.

169

dst[0-31] :=src[0-31] - dst[0-31],
dst[32-63] := src[32-63] — dst[32-63].

B.4.227 P12FD : Packed Doubleword Integer to Single—Precision FP Convert
PI2FD mm1,mm2/m64 ; OF OF /r OD [PENT,3DNOW]

PF2ID converts two signed 32-bit integers in the source operand to single—precision FP values,
using truncation of significant digits, and stores them in the destination operand.

B.4.228 PF2IW: Packed Word Integer to Single—Precision FP Convert
PI2FW mm1,mm2/m64 ; OF OF /r OC [PENT,3DNOW]
PF2IW converts two signed 16-bit integers in the source operand to single—precision FP values,

and stores them in the destination operand. The input values are in the low word of each
doubleword.

B.4.229 PINSRW Insert Word

PINSRW mm,r16/r32/m16,imm8 ;0F C4/rib [KATMAIL,MMX]
PINSRW xmm,r16/r32/m16,imm8 ;66 OF C4 /rib [WILLAMETTE,SSEZ2]

PINSRWloads a word from a 16-bit register (or the low half of a 32-bit register), or from memory,
and loads it to the word position in the destination register, pointed at by the count operand (third
operand). If the destination is MMXegister, the low two bits of the count byte are used, if it is an
XMMregister the low 3 bits are used. The insertion is done in such a way that the other words from
the destination register are left untouched.

B.4.230 PMACHRIWPacked Multiply and Accumulate with Rounding
PMACHRIW mm,m64 ; OF 5E /r [CYRIX,MMX]
PMACHRIWakes two packed 16-bit integer inputs, multiplies the values in the inputs, rounds on

bit 15 of each result, then adds bits 15-30 of each result to the corresponding positiamplicide
destination register.

The operation of this instruction is:

dstl[0-15] :=dstl[0-15] + (mm[0—-15] *m64[0-15]
+ 0x00004000)[15-30],
dstl[16-31] := dstl[16—31] + (mm[16-31]*m64[16-31]
+ 0x00004000)[15-30],
dstl[32-47] := dstl[32-47] + (mm[32-47]*m64[32-47]
+ 0x00004000)[15-30],
dstl[48-63] := dstl[48-63] + (mmM[48-63]*M64[48-63]
+ 0x00004000)[15-30].

Note thatPMACHRIWannot take a register as its second source operand.
B.4.231 PMADDWIMMX Packed Multiply and Add

PMADDWD mm1,mm2/m64 iOF F5/r [PENT,MMX]
PMADDWD xmm1,xmm2/m128 ;66 OF F5/r [WILLAMETTE,SSEZ2]

PMADDWT Deats its two inputs as vectors of signed words. It multiplies corresponding elements of
the two operands, giving doubleword results. These are then added together in pairs and stored in

the destination operand.
The operation of this instruction is:

170

dst[0-31] := (dst[0-15] * src[0-15])

+ (dst[16-31] * src[16-31]);
dst[32-63] := (dst[32-47] * src[32-47])

+ (dst[48-63] * src[48-63));

The following apply to th&SEversion of the instruction:

dst[64-95] := (dst[64-79] * src[64-79])
+ (dst[80-95] * src[80-95]);
dst[96-127] := (dst[96-111] * src[96-111])
+ (dst[112-127] * src[112-127]).
B.4.232 PMAGYWIMX Packed Magnitude
PMAGW mm1,mm2/m64 ; OF 52 /r [CYRIX,MMX]

PMAGWspecific to the Cyrix MMX extensions, treats both its operands as vectors of four signed
words. It compares the absolute values of the words in corresponding positions, and sets each word
of the destination (first) operand to whichever of the two words in that position had the larger
absolute value.

B.4.233 PMAXSWPacked Signed Integer Word Maximum

PMAXSW mm1,mm2/m64 ; OF EE /r [KATMAI,MMX]
PMAXSW xmm1,xmm2/m128 ;66 OF EE /r [WILLAMETTE,SSEZ2]

PMAXSWompares each pair of words in the two source operands, and for each pair it stores the
maximum value in the destination register.

B.4.234 PMAXUBPacked Unsigned Integer Byte Maximum

PMAXUB mm1,mm2/m64 :OF DE Ir [KATMAI,MMX]
PMAXUB xmm1,xmm2/m128 ;66 OF DE /r [WILLAMETTE,SSEZ?]

PMAXUBcompares each pair of bytes in the two source operands, and for each pair it stores the
maximum value in the destination register.

B.4.235 PMINSWPacked Signed Integer Word Minimum

PMINSW mm1,mm2/m64 ; OF EA/r [KATMAI,MMX]
PMINSW xmm1,xmm2/m128 ;66 OF EA/r [WILLAMETTE,SSEZ?]

PMINSWcompares each pair of words in the two source operands, and for each pair it stores the
minimum value in the destination register.

B.4.236 PMINUB Packed Unsigned Integer Byte Minimum

PMINUB mm1,mm2/m64 ; OF DA Ir [KATMAI,MMX]
PMINUB xmm1,xmm2/m128 ;66 OF DA /r [WILLAMETTE,SSEZ?]

PMINUB compares each pair of bytes in the two source operands, and for each pair it stores the
minimum value in the destination register.

B.4.237 PMOVMSKB/ove Byte Mask To Integer

PMOVMSKB reg32,mm :OF D7 /Ir [KATMAI,MMX]
PMOVMSKB reg32,xmm ; 66 OF D7 /r [WILLAMETTE,SSEZ?]

PMOVMSKIRBeturns an 8-bit or 16—bit mask formed of the most significant bits of each byte of
source operand (8-bits for &M Xegister, 16—bits for akMMegister).

171

B.4.238 PMULHRW®MULHRIWMultiply Packed 16-bit Integers With Rounding, and Store

High Word
PMULHRWC mm1,mm2/m64 ; OF 59 /r [CYRIX,MMX]
PMULHRIW mm1,mm2/m64 ; OF 5D /r [CYRIX,MMX]

These instructions take two packed 16-bit integer inputs, multiply the values in the inputs, round on
bit 15 of each result, then store bits 15-30 of each result to the corresponding position of the
destination register.

* ForPMULHRW(@he destination is the first source operand.

e For PMULHRIWthe destination is an implied register (worked out as describedADDSIW
(section B.4.20)).

The operation of this instruction is:

dst[0-15] := (src1[0-15] *src2[0-15] + 0x00004000)[15-30]

dst[16-31] := (src1[16-31]*src2[16—31] + 0x00004000)[15-30]
dst[32-47] := (src1[32-47]*src2[32-47] + 0x00004000)[15-30]
dst[48-63] := (src1[48-63]*src2[48-63] + 0x00004000)[15-30]

See als®MULHRW&ection B.4.23pfor a 3DNow! version of this instruction.
B.4.239 PMULHRWMultiply Packed 16-bit Integers With Rounding, and Store High Word
PMULHRWA mm1,mm2/m64 ; OF OF /r B7 [PENT,3DNOW]

PMULHRWakes two packed 16-bit integer inputs, multiplies the values in the inputs, rounds on
bit 16 of each result, then stores bits 16—-31 of each result to the corresponding position of the
destination register.

The operation of this instruction is:

dst[0-15] := (src1l[0-15] *src2[0-15] + 0x00008000)[16-31];

dst[16-31] := (src1[16-31]*src2[16—31] + 0x00008000)[16—-31];
dst[32-47] := (src1[32-47]*src2[32-47] + 0x00008000)[16-31];
dst[48-63] := (src1[48-63]*src2[48-63] + 0x00008000)[16-31].

See als®MULHRW(@@ection B.4.23Bfor a Cyrix version of this instruction.
B.4.240 PMULHUWultiply Packed 16-bit Integers, and Store High Word

PMULHUW mm1,mm2/m64 ; OF E4 Ir [KATMALMMX]
PMULHUW xmm1,xmm2/m128 ;66 OF E4 /r [WILLAMETTE,SSEZ?]

PMULHU\Wékes two packed unsigned 16-bit integer inputs, multiplies the values in the inputs, then
stores bits 16—31 of each result to the corresponding position of the destination register.

B.4.241 PMULHWPMULLWMultiply Packed 16-bit Integers, and Store

PMULHW mm1,mm2/m64 ; OF ES /r [PENT,MMX]
PMULLW mm1,mm2/m64 ; OF D5 /r [PENT,MMX]
PMULHW xmm1,xmm2/m128 ;66 OF E5 /r [WILLAMETTE,SSEZ2]
PMULLW xmm1,xmm2/m128 ;66 OF D5 /r [WILLAMETTE,SSEZ?]

PMULxWakes two packed unsigned 16-bit integer inputs, and multiplies the values in the inputs,
forming doubleword results.

« PMULHMWhen stores the top 16 bits of each doubleword in the destination (first) operand,;
 PMULLWétores the bottom 16 bits of each doubleword in the destination operand.

172

B.4.242 PMULUDMultiply Packed Unsigned 32-bit Integers, and Store.

PMULUDQ mm1,mm2/m64 :OFF4 Ir [WILLAMETTE,SSEZ?]
PMULUDQ xmm1,xmm2/m128 ;66 OF F4 /r [WILLAMETTE,SSEZ2]

PMULUDQ@akes two packed unsigned 32-bit integer inputs, and multiplies the values in the inputs,
forming quadword results. The source is either an unsigned doubleword in the low doubleword of a
64-bit operand, or it's two unsigned doublewords in the first and third doublewords of a 128-bit

operand. This produces either one or two 64-bit results, which are stored in the respective
guadword locations of the destination register.

The operation is:

dst[0-63] :=dst[0-31] * src[0—-31];
dst[64-127] := dst[64-95] * src[64-95].

B.4.243 PMVccZB MMX Packed Conditional Move

PMVZB mmxreg,mem64 :OF 58 /r [CYRIX,MMX]
PMVNZB mmxreg,memé64 :OF BA Ir [CYRIX,MMX]
PMVLZB mmxreg,mem64 ; OF 5B /r [CYRIX,MMX]
PMVGEZB mmxreg,mem64 ; OF 5C /r [CYRIX,MMX]

These instructions, specific to the Cyrix MMX extensions, perform parallel conditional moves. The
two input operands are treated as vectors of eight bytes. Each byte of the destination (first) operand
is either written from the corresponding byte of the source (second) operand, or left alone,
depending on the value of the byte in timplied operand (specified in the same wayPa#DDSIW

in section B.4.20D

« PMVZBperforms each move if the corresponding byte in the implied operand is zero;
« PMVNZBnoves if the byte is non-zero;

* PMVLZBmoves if the byte is less than zero;

« PMVGEZBnoves if the byte is greater than or equal to zero.

Note that these instructions cannot take a register as their second source operand.

B.4.244 POP Pop Data from Stack

POP regl16 ; 016 58+r [8086]

POP reg32 ; 032 58+r [386]

POP r/m16 ; 016 8F /0 [8086]

POP r/m32 ; 032 8F /0 [386]

POP CS ; OF [8086,UNDOC]
POP DS ; 1F [8086]

POP ES ; 07 [8086]

POP SS ;17 [8086]

POP FS ; OF Al [386]

POP GS ; OF A9 [386]
POPIloads a value from the stack (frd®S:SP] or [SS:ESP]) and then increments the stack
pointer.

The address-size attribute of the instruction determines whster ESP is used as the stack
pointer: to deliberately override the default given by BHES setting, you can use @i6 ora32
prefix.

173

The operand-size attribute of the instruction determines whether the stack pointer is incremented by
2 or 4: this means that segment register po@Ti® 32 mode will pop 4 bytes off the stack and
discard the upper two of them. If you need to override that, you can 046 ar 032 prefix.

The above opcode listings give two forms for general-purpose register pop instructions: for
example POP BX has the two form8B and8F C3 . NASM will always generate the shorter form
when giverPOP BX. NDISASM will disassemble both.

POP CSis not a documented instruction, and is not supported on any processor above the 8086
(since they us®Fh as an opcode prefix for instruction set extensions). However, at least some
8086 processors do support it, and so NASM generates it for completeness.

B.4.245 POPAXx Pop All General-Purpose Registers

POPA - 61 [186]
POPAW - 016 61 [186]
POPAD £ 032 61 [386]

« POPAWops a word from the stack into each of, successiidlySl , BP, nothing (it discards a
word from the stack which was a placeholder), BX, DX CX and AX It is intended to
reverse the operation B USHAWseesection B.4.26)4 but it ignores the value f@P that was
pushed on the stack BUSHAW

« POPADpops twice as much data, and places the resuli®in ESI, EBP, nothing (placeholder
for ESP), EBX EDX ECXandEAX It reverses the operation BUSHAD

POPAIs an alias mnemonic for eithe©OPAVWr POPADdepending on the curreBtTS setting.

Note that the registers are popped in reverse order of their numeric values in opcodesti@ee
B.2.1).

B.4.246 POPFx Pop Flags Register

POPF - 9D [8086]
POPFW - 016 9D [8086]
POPFD £ 032 9D [386]

« POPFWops a word from the stack and stores it in the bottom 16 bits of the flags register (or the
whole flags register, on processors below a 386).

* POPFDpops a doubleword and stores it in the entire flags register.
POPFis an alias mnemonic for eitheOPFWr POPFD depending on the curreBiTS setting.
See als@®USHHsection B.4.26pb

B.4.247 POR MMX Bitwise OR

POR mm1,mm2/m64 ; OF EB /r [PENT,MMX]
POR xmm1,xmm2/m128 ;66 OFEB/r [WILLAMETTE,SSEZ2]

PORperforms a bitwise OR operation between its two operands (i.e. each bit of the result is 1 if and
only if at least one of the corresponding bits of the two inputs was 1), and stores the result in the
destination (first) operand.

B.4.248 PREFETCHPrefetch Data Into Caches

174

PREFETCH mem8 ; OF OD /0 [PENT,3DNOW]
PREFETCHW mem38 ; OF 0D /1 [PENT,3DNOW]

PREFETCHand PREFETCHMWeétch the line of data from memory that contains the specified byte.
PREFETCH\Werforms differently on the Athlon to earlier processors.

For more details, see the 3DNow! Technology Manual.
B.4.249 PREFETCHhPrefetch Data Into Caches

PREFETCHNTA m8 ; OF 18 /0 [KATMAI]
PREFETCHTO m8 ;OF 18 /1 [KATMAI]
PREFETCHT1 m8 ; OF 18 /2 [KATMAI]
PREFETCHT2 m8 ; OF 18 /3 [KATMAI]

The PREFETCHUHinstructions fetch the line of data from memory that contains the specified byte. It
is placed in the cache according to rules specified by locality hints

The hints are:
« TO (temporal data) — prefetch data into all levels of the cache hierarchy.
« T1 (temporal data with respect to first level cache) — prefetch data into level 2 cache and higher.

« T2 (temporal data with respect to second level cache) — prefetch data into level 2 cache and
higher.

* NTA (non—temporal data with respect to all cache levels) — prefetch data into non-temporal
cache structure and into a location close to the processor, minimizing cache pollution.

Note that this group of instructions doesn’t provide a guarantee that the data will be in the cache
when it is needed. For more details, see the Intel IA32 Software Developer Manual, Volume 2.

B.4.250 PSADBWPacked Sum of Absolute Differences

PSADBW mm1,mm2/m64 ; OF F6 /r [KATMALLMMX]
PSADBW xmm1,xmm2/m128 ;66 OF F6 /r [WILLAMETTE,SSEZ?]

PSADBWIhe PSADBW instruction computes the absolute value of the difference of the packed
unsigned bytes in the two source operands. These differences are then summed to produce a worc
result in the lower 16-bit field of the destination register; the rest of the register is cleared. The
destination operand is anMXor anXMMregister. The source operand can either be a register or a
memory operand.

B.4.251 PSHUFDShuffle Packed Doublewords
PSHUFD xmm1,xmm2/m128,imm8 ;66 OF 70 /rib [WILLAMETTE,SSEZ2]

PSHUFDshuffles the doublewords in the source (second) operand according to the encoding
specified by imm8, and stores the result in the destination (first) operand.

Bits 0 and 1 of imm8 encode the source position of the doubleword to be copied to position 0 in the
destination operand. Bits 2 and 3 encode for position 1, bits 4 and 5 encode for position 2, and bits 6
and 7 encode for position 3. For example, an encoding of 10 in bits 0 and 1 of imm8 indicates that
the doubleword at bits 64-95 of the source operand will be copied to bits 0-31 of the destination.

B.4.252 PSHUFHWShuffle Packed High Words
PSHUFHW xmm1,xmm2/m128,imm8 ; F3 OF 70 /rib [WILLAMETTE,SSE2]

PSHUFWhuffles the words in the high quadword of the source (second) operand according to the
encoding specified by imm8, and stores the result in the high quadword of the destination (first)
operand.

The operation of this instruction is similar to tREHUFWhnstruction, except that the source and
destination are the top quadword of a 128-bit operand, instead of being 64-bit operands. The low
guadword is copied from the source to the destination without any changes.

175

B.4.253 PSHUFLWShuffle Packed Low Words

PSHUFLW xmm1,xmm2/m128,imm8 ;F2 OF 70 /rib [WILLAMETTE,SSEZ2]

PSHUFLWshuffles the words in the low quadword of the source (second) operand according to the
encoding specified by imm8, and stores the result in the low quadword of the destination (first)
operand.

The operation of this instruction is similar to tREHUFWhnstruction, except that the source and
destination are the low quadword of a 128-bit operand, instead of being 64-bit operands. The high
guadword is copied from the source to the destination without any changes.

B.4.254 PSHUFWShuffle Packed Words

PSHUFW mm1,mm2/m64,imm38 ;OF 70 /rib [KATMAILMMX]

PSHUFW¢huffles the words in the source (second) operand according to the encoding specified by
imm8, and stores the result in the destination (first) operand.

Bits 0 and 1 of imm8 encode the source position of the word to be copied to position 0 in the
destination operand. Bits 2 and 3 encode for position 1, bits 4 and 5 encode for position 2, and bits 6
and 7 encode for position 3. For example, an encoding of 10 in bits 0 and 1 of imm8 indicates that
the word at bits 32—-47 of the source operand will be copied to bits 0-15 of the destination.

B.4.255 PSLLx: Packed Data Bit Shift Left Logical

PSLLW mml1,mm2/m64 ;OFF1/r [PENT,MMX]
PSLLW mm,imm8 ;OF71/6ib [PENT,MMX]

PSLLW xmm1,xmm2/m128 ;66 OF F1/r [WILLAMETTE,SSEZ?]
PSLLW xmm,imm8 ;66 OF 71 /6 ib [WILLAMETTE,SSEZ?]
PSLLD mm1,mm2/m64 ; OF F2 /r [PENT,MMX]

PSLLD mm,imm8 ;0F72/61b [PENT,MMX]

PSLLD xmm1,xmm2/m128 ;66 OF F2 /r [WILLAMETTE,SSEZ?]
PSLLD xmm,imm8 ;66 OF 72 /6 ib [WILLAMETTE,SSEZ?]
PSLLQ mm1,mm2/m64 ; OF F3 /r [PENT,MMX]

PSLLQ mm,imm8 ;OF 73 /6 ib [PENT,MMX]

PSLLQ xmm1,xmm2/m128 ;66 OF F3/r [WILLAMETTE,SSEZ2]
PSLLQ xmm,imm8 ; 66 OF 73 /6 ib [WILLAMETTE,SSEZ?]
PSLLDQ xmm1,imm8 ;66 OF 73 /7 ib [WILLAMETTE,SSEZ]

PSLLx performs logical left shifts of the data elements in the destination (first) operand, moving
each bit in the separate elements left by the number of bits specified in the source (second) operand,
clearing the low—order bits as they are vaca@&RLLDQshifts bytes, not bits.

« PSLLWshifts word sized elements.

e PSLLD shifts doubleword sized elements.

¢ PSLLQshifts quadword sized elements.

* PSLLDQshifts double quadword sized elements.

B.4.256 PSRAX Packed Data Bit Shift Right Arithmetic

176

PSRAW mm1,mm2/m64 ;OFELl/r [PENT,MMX]
PSRAW mm,imm8 ;OF 71 /41b [PENT,MMX]

PSRAW xmm1,xmm2/m128 ;66 OF E1/r [WILLAMETTE,SSEZ2]

PSRAW xmm,imm8 ; 66 OF 71 /4 ib [WILLAMETTE,SSEZ?]
PSRAD mm1,mm2/m64 ; OF E2 /r [PENT,MMX]

PSRAD mm,imm8 ;OF 72 /4 ib [PENT,MMX]

PSRAD xmm1,xmm2/m128 ;66 OF E2 /r [WILLAMETTE,SSEZ2]
PSRAD xmm,imm8 ; 66 OF 72 /4 ib [WILLAMETTE,SSEZ2]

PSRAXx performs arithmetic right shifts of the data elements in the destination (first) operand,
moving each bit in the separate elements right by the number of bits specified in the source (second)
operand, setting the high—order bits to the value of the original sign bit.

« PSRAVWghifts word sized elements.
+ PSRADshifts doubleword sized elements.
B.4.257 PSRLx Packed Data Bit Shift Right Logical

PSRLW mm1,mm2/m64 ;OF D1 /r [PENT,MMX]
PSRLW mm,imm8 ;OF71/21b [PENT,MMX]

PSRLW xmm1,xmm2/m128 ;66 OF D1 /r [WILLAMETTE,SSEZ?]
PSRLW xmm,imm8 ;66 OF 71 /2 ib [WILLAMETTE,SSEZ2]
PSRLD mm1,mm2/m64 ; OF D2 /r [PENT,MMX]

PSRLD mm,imm8 ;OF 72 /2ib [PENT,MMX]

PSRLD xmm1,xmm2/m128 ;66 OF D2 /r [WILLAMETTE,SSEZ2]
PSRLD xmm,imm38 ; 66 OF 72 /2 ib [WILLAMETTE,SSEZ2]
PSRLQ mm1,mm2/m64 ; OF D3 /r [PENT,MMX]

PSRLQ mm,imm8 ;OF 73 /2 ib [PENT,MMX]

PSRLQ xmm1,xmm2/m128 ;66 OF D3 /r [WILLAMETTE,SSEZ?]
PSRLQ xmm,imm8 ; 66 OF 73 /2 ib [WILLAMETTE,SSEZ2]
PSRLDQ xmm1,imm8 ; 66 OF 73 /3 ib [WILLAMETTE,SSEZ2]

PSRLXx performs logical right shifts of the data elements in the destination (first) operand, moving
each bit in the separate elements right by the number of bits specified in the source (second)
operand, clearing the high—order bits as they are vadaBRILD(Bhifts bytes, not bits.

* PSRLWshifts word sized elements.

* PSRLDshifts doubleword sized elements.

» PSRLQshifts quadword sized elements.

e PSRLDG®hifts double quadword sized elements.
B.4.258 PSUBXx Subtract Packed Integers

PSUBB mm1,mm2/m64 :OF F8/r [PENT,MMX]

PSUBW mm1,mm2/m64 cOFF9/r [PENT,MMX]

PSUBD mm1,mm2/m64 ; OF FA Ir [PENT,MMX]

PSUBQ mml1,mm2/m64 ; OF FB /r [WILLAMETTE,SSEZ?]
PSUBB xmm1,xmm2/m128 ;66 OF F8 /r [WILLAMETTE,SSEZ?]
PSUBW xmm1,xmm2/m128 ;66 OF FO /r [WILLAMETTE,SSEZ2]
PSUBD xmm1,xmm2/m128 ;66 OF FA/r [WILLAMETTE,SSEZ?]
PSUBQ xmm1,xmm2/m128 ;66 OF FB /r [WILLAMETTE,SSEZ?]

177

PSUBXx subtracts packed integers in the source operand from those in the destination operand. It
doesn't differentiate between signed and unsigned integers, and doesn'’t set any of the flags.

« PSUBBoperates on byte sized elements.
* PSUBWperates on word sized elements.
e PSUBDoperates on doubleword sized elements.
» PSUBQoperates on quadword sized elements.
B.4.259 PSUBSxx PSUBUSXx Subtract Packed Integers With Saturation

PSUBSB mml,mm2/m64 ; OF E8 /r [PENT,MMX]
PSUBSW mm1,mm2/m64 ; OF E9 Ir [PENT,MMX]

PSUBSB xmm1,xmm2/m128 ;66 OF E8 /r [WILLAMETTE,SSEZ?]
PSUBSW xmm1,xmm2/m128 ;66 OF E9 /r [WILLAMETTE,SSEZ?]
PSUBUSB mm1,mm2/m64 ; OF D8 /r [PENT,MMX]
PSUBUSW mm1,mm2/m64 ; OF D9 /r [PENT,MMX]
PSUBUSB xmm1,xmm2/m128 ;66 OF D8 /r [WILLAMETTE,SSEZ2]
PSUBUSW xmm1,xmm2/m128 ;66 OF D9 /r [WILLAMETTE,SSEZ?]

PSUBSx and PSUBUSKX subtracts packed integers in the source operand from those in the
destination operand, and use saturation for results that are outside the range supported by the
destination operand.

» PSUBSBoperates on signed bytes, and uses signed saturation on the results.

« PSUBSWperates on signed words, and uses signed saturation on the results.

« PSUBUSBperates on unsigned bytes, and uses signed saturation on the results.

« PSUBUSWperates on unsigned words, and uses signed saturation on the results.
B.4.260 PSUBSIW MMX Packed Subtract with Saturation to Implied Destination

PSUBSIW mm1,mm2/m64 ; OF 55 /r [CYRIX,MMX]

PSUBSIW specific to the Cyrix extensions to the MMX instruction set, performs the same function
as PSUBS\Wexcept that the result is not placed in the register specified by the first operand, but
instead in the implied destination register, specified aBADDSIWsection B.4.200

B.4.261 PSWAPDSwap Packed Data
PSWAPD mm1,mm2/m64 ;OF OF /rBB [PENT,3DNOW]

PSWAPDswaps the packed doublewords in the source operand, and stores the result in the
destination operand.

In the K6—-2 andK6-Ill processors, this opcode uses the mnemBBM/APWANd it swaps the
order of words when copying from the source to the destination.

The operation in th&K6-2 andK6-Ill processors is

dst[0-15] = src[48-63];
dst[16—-31] = src[32-47];
dst[32-47] = src[16—-31];
dst[48-63] = src[0-15].

The operation in th&6—-x+, ATHLONand later processors is:

178

dst[0-31] = src[32-63];
dst[32-63] = src[0-31].

B.4.262 PUNPCKxxx Unpack and Interleave Data

PUNPCKHBW mm1,mm2/m64 ; OF 68 /r [PENT,MMX]
PUNPCKHWD mm1,mm2/m64 ; OF 69 Ir [PENT,MMX]
PUNPCKHDQ mm1,mm2/m64 ; OF 6A Ir [PENT,MMX]

PUNPCKHBW xmm1,xmm2/m128 ;66 OF 68 /r [WILLAMETTE,SSEZ2]
PUNPCKHWD xmm1,xmm2/m128 ;66 OF69/r [WILLAMETTE,SSE2]
PUNPCKHDQ xmm1,xmm2/m128 ; 66 OF 6A /r [WILLAMETTE,SSEZ2]
PUNPCKHQDQ xmm1,xmm2/m128 ;66 OF 6D /r [WILLAMETTE,SSEZ?]

PUNPCKLBW mm1,mm2/m32 ; OF 60 /r [PENT,MMX]
PUNPCKLWD mm1,mm2/m32 ; OF 61 /r [PENT,MMX]
PUNPCKLDQ mm1,mm2/m32 ; OF 62 Ir [PENT,MMX]

PUNPCKLBW xmm1,xmm2/m128 ;66 OF 60/r [WILLAMETTE,SSEZ2]
PUNPCKLWD xmm1,xmm2/m128 ;66 OF 61 /r [WILLAMETTE,SSEZ2]
PUNPCKLDQ xmm1,xmm2/m128 ;66 OF 62 /r [WILLAMETTE,SSEZ?]
PUNPCKLQDQ xmm1,xmm2/m128 ;66 OF 6C /r [WILLAMETTE,SSEZ2]

PUNPCKxxall treat their operands as vectors, and produce a new vector generated by interleaving
elements from the two inputs. TR&JINPCKHxxnstructions start by throwing away the bottom half
of each input operand, and tREINPCKLxxinstructions throw away the top half.

The remaining elements, are then interleaved into the destination, alternating elements from the
second (source) operand and the first (destination) operand: so the leftmost part of each element in
the result always comes from the second operand, and the rightmost from the destination.

« PUNPCKxBWlorks a byte at a time, producing word sized output elements.
 PUNPCKxWiorks a word at a time, producing doubleword sized output elements.

« PUNPCKxD@orks a doubleword at a time, producing quadword sized output elements.

« PUNPCKxQD@orks a quadword at a time, producing double quadword sized output elements.

So, for example, foMMXoperands, if the first operand hedd7A6A5A4A3A2A1A0A and the
second hel®x7B6B5B4B3B2B1BO0B, then:

* PUNPCKHBWould returnOx7B7A6B6A5B5A4B4A.
* PUNPCKHWRould return0X7B6B7A6A5B4B5A4A.
* PUNPCKHD@ould return0X7B6B5B4B7A6A5A4A.
* PUNPCKLBWould return0Ox3B3A2B2A1B1A0BOA.
* PUNPCKLWiould return0x3B2B3A2A1BOB1A0A.
* PUNPCKLD®ould returnOx3B2B1BOB3A2A1A0A.

B.4.263 PUSH Push Data on Stack

PUSH regl16 ; 016 50+r [8086]
PUSH reg32 ; 032 50+r [386]
PUSH r/m16 ; 016 FF /6 [8086]
PUSH r/m32 ; 032 FF /6 [386]

179

PUSH CS - OE [8086]

PUSH DS ; 1E [8086]
PUSH ES ; 06 [8086]
PUSH SS ; 16 [8086]
PUSH FS ; OF AO [386]
PUSH GS ; OF A8 [386]
PUSH imm8 ; BA b [186]
PUSH imm16 ; 016 68 iw [186]
PUSH imm32 ;03268 id [386]

PUSHdecrements the stack point&8R or ESP) by 2 or 4, and then stores the given value at
[SS:SP] or[SS:ESP] .

The address-size attribute of the instruction determines whgfher ESP is used as the stack
pointer: to deliberately override the default given by BHhES setting, you can use @i6 or a32
prefix.

The operand-size attribute of the instruction determines whether the stack pointer is decremented
by 2 or 4: this means that segment register pushBslta 32 mode will push 4 bytes on the stack,

of which the upper two are undefined. If you need to override that, you can wudé aor 032

prefix.

The above opcode listings give two forms for general-purpegester push instructions: for
example,PUSH BX has the two form&3 andFF F3 . NASM will always generate the shorter
form when giverPUSH BX NDISASM will disassemble both.

Unlike the undocumented and barely supporf®P CS PUSH CSis a perfectly valid and
sensible instruction, supported on all processors.

The instructionPUSH SP may be used to distinguish an 8086 from later processors: on an 8086,
the value ofSP stored is the value it hadter the push instruction, whereas on later processors it is
the valuebeforethe push instruction.

B.4.264 PUSHAXx Push All General-Purpose Registers

PUSHA - 60 [186]
PUSHAD - 032 60 [386]
PUSHAW - 016 60 [186]

PUSHAWushes, in successiofX, CX DX BX, SP, BP, SI andDI on the stack, decrementing the
stack pointer by a total of 16.

PUSHADpushes, in successioBAX ECX EDX EBX ESP, EBP, ESI and EDI on the stack,
decrementing the stack pointer by a total of 32.

In both cases, the value 8P or ESP pushed is itoriginal value, as it had before the instruction
was executed.

PUSHAIs an alias mnemonic for eith@USHAWor PUSHAD depending on the curre®TS
setting.

Note that the registers are pushed in order of their numeric values in opcodes{ieeeB.2.L
See alsd®OPA(section B.4.24p
B.4.265 PUSHFx Push Flags Register

PUSHF ;9C [8086]
PUSHFD ;032 9C [386]
PUSHFW ;016 9C [8086]

180

« PUSHFWops a word from the stack and stores it in the bottom 16 bits of the flags register (or
the whole flags register, on processors below a 386).

* PUSHFDpops a doubleword and stores it in the entire flags register.

PUSHFis an alias mnemonic for eith@USHFWor PUSHFD depending on the curre® TS
setting.

See alsd®OPF(section B.4.24p

B.4.266 PXORMMX Bitwise XOR

PXOR mml1,mm2/m64 ; OF EF /r [PENT,MMX]
PXOR xmm1,xmm2/m128 ;66 OF EF /r [WILLAMETTE,SSEZ2]

PXORperforms a bitwise XOR operation between its two operands (i.e. each bit of the result is 1 if
and only if exactly one of the corresponding bits of the two inputs was 1), and stores the result in
the destination (first) operand.

B.4.267 RCL, RCR Bitwise Rotate through Carry Bit

RCL r/m8,1 ; DO /2 [8086]
RCL r/m8,CL ; D2 /2 [8086]
RCL r/m8,imm8 ;C0/21ib [186]
RCL r/m16,1 ;016 D1 /2 [8086]
RCL r/m16,CL ;016 D3 /2 [8086]
RCL r/m16,imm8 ;016 C1/2ib [186]
RCL r/m32,1 ;032 D1 /2 [386]
RCL r/m32,CL ;032 D3 /2 [386]
RCL r/m32,imm8 ;032C1/21b [386]
RCR r/m8,1 ; DO /3 [8086]
RCR r/m8,CL ; D2 /3 [8086]
RCR r/m8,imm8 ; CO/3ib [186]
RCR r/m16,1 ;016 D1 /3 [8086]
RCR r/m16,CL ;016 D3 /3 [8086]
RCR r/m16,imm8 ;016 C1/3ib [186]
RCR r/m32,1 ;032D1/3 [386]
RCR r/m32,CL ;032 D3 /3 [386]
RCR r/m32,imm8 ;032 C1/3ib [386]

RCL and RCRperform a 9-bit, 17-bit or 33-bit bitwise rotation operation, involving the given
source/destination (first) operand and the carry bit. Thus, for example, in the opR@tickL,1 ,

a 9-bit rotation is performed in whidkL is shifted left by 1, the top bit &L moves into the carry
flag, and the original value of the carry flag is placed in the low B of

The number of bits to rotate by is given by the second operand. Only the bottom five bits of the
rotation count are considered by processors above the 8086.

You can force the longer (286 and upwards, beginning witi &#yte) form of RCL foo,1 by
using aBYTE prefix: RCL foo,BYTE 1 . Similarly withRCR

B.4.268 RCPPS Packed Single—Precision FP Reciprocal

RCPPS xmm1,xmm2/m128 OF 53 /r [KATMAI,SSE]

RCPPSreturns an approximation of the reciprocal of the packed single—precision FP values from
xmm2/m128. The maximum error for this approximation is: |Error| <= 1.5 x 2712

181

B.4.269 RCPSS Scalar Single—Precision FP Reciprocal
RCPSS xmm1,xmm2/m128 i F30F53/r [KATMAISSE]

RCPSSreturns an approximation of the reciprocal of the lower single—precision FP value from
xmm2/m32; the upper three fields are passed through from xmm1. The maximum error for this
approximation is: |[Error| <= 1.5 x 22-12

B.4.270 RDMSRRead Model-Specific Registers
RDMSR ; OF 32 [PENT,PRIV]

RDMSRreads the processor Model-Specific Register (MSR) whose index is stoEgiXirand
stores the result IBEDX:EAX See als&®WVRMSksection B.4.32p

B.4.271 RDPMCRead Performance—Monitoring Counters
RDPMC : OF 33 [P6]

RDPMQeads the processor performance—monitoring counter whose index is st@&€xX iand
stores the result IBEDX:EAX

This instruction is available on P6 and later processors and on MMX class processors.
B.4.272 RDSHRRead SMM Header Pointer Register
RDSHR r/m32 ; OF 36 /0 [386,CYRIX,SMM]

RDSHRreads the contents of the SMM header pointer register and saves it to the destination
operand, which can be either a 32 bit memory location or a 32 bit register.

See als®WRSHRsection B.4.33D
B.4.273 RDTSCRead Time-Stamp Counter
RDTSC ; OF 31 [PENT]
RDTSQOeads the processor’s time—stamp counter&mX:EAX
B.4.274 RET, RETF, RETN Return from Procedure Call

RET ; C3 [8086]

RET imm16 ; C2iw [8086]
RETF ; CB [8086]
RETF imm16 ; CAiw [8086]
RETN ; C3 [8086]
RETN imm16 ; C2iw [8086]

* RET, and its exact synonyRETN poplIP or EIP from the stack and transfer control to the new
address. Optionally, if a numeric second operand is provided, they increment the stack pointer by
a furtherimm16 bytes after popping the return address.

« RETF executes a far return: after poppil®/EIP, it then popsCS andthen increments the
stack pointer by the optional argument if present.

B.4.275 ROL ROR Bitwise Rotate

ROL r/m8,1 ; DO /0 [8086]
ROL r/m8,CL ; D2 /0 [8086]
ROL r/m8,imm8 ;CO/0ib [186]
ROL r/m16,1 ;016 D1 /0 [8086]
ROL r/m16,CL ;016 D3 /0 [8086]

182

ROL r/m16,imm8 ;016 C1/0ib [186]

ROL r/m32,1 ;032D1/0 [386]
ROL r/m32,CL ;032 D3 /0 [386]
ROL r/m32,imm8 ;032C1/0ib [386]
ROR r/m8,1 ; DO /1 [8086]
ROR r/m8,CL ;D2 /1 [8086]
ROR r/m8,imm8 ;CO/1ib [186]
ROR r/m16,1 ;016 D1/1 [8086]
ROR r/m16,CL ;016 D3 /1 [8086]
ROR r/m16,imm8 ;016 C1/1ib [186]
ROR r/m32,1 ;032D1/1 [386]
ROR r/m32,CL ;032 D3 /1 [386]
ROR r/m32,imm8 ;032C1/11ib [386]

ROLandRORperform a bitwise rotation operation on the given source/destination (first) operand.
Thus, for example, in the operati®OL AL,1 , an 8-bit rotation is performed in whidkL is
shifted left by 1 and the original top bit Af. moves round into the low bit.

The number of bits to rotate by is given by the second operand. Only the bottom five bits of the
rotation count are considered by processors above the 8086.

You can force the longer (286 and upwards, beginning witi &#yte) form of ROL foo,1 by
using aBYTE prefix: ROL foo,BYTE 1 . Similarly withROR

B.4.276 RSDC Restore Segment Register and Descriptor

RSDC segreg,m80 ; OF 79 /r [486,CYRIX,SMM]

RSDGCrestores a segment register (DS, ES, FS, GS, or SS) from mem80, and sets up its descriptor.
B.4.277 RSLDT. Restore Segment Register and Descriptor

RSLDT m80 ;OF 7B /0 [486,CYRIX,SMM]

RSLDTrestores the Local Descriptor Table (LDTR) from mema80.
B.4.278 RSM Resume from System—-Management Mode

RSM ; OF AA [PENT]

RSMreturns the processor to its normal operating mode when it was in System-Management Mode.
B.4.279 RSQRTPSPacked Single—Precision FP Square Root Reciprocal

RSQRTPS xmm1,xmm2/m128 OF 52 /r [KATMAI,SSE]

RSQRTPSomputes the approximate reciprocals of the square roots of the packed single—precision
floating—point values in the source and stores the results in xmml. The maximum error for this
approximation is: |Error| <= 1.5 x 2"-12

B.4.280 RSQRTSSScalar Single—Precision FP Square Root Reciprocal
RSQRTSS xmm1,xmm2/m128 i F30F 52 /r [KATMAI,SSE]

RSQRTSSreturns an approximation of the reciprocal of the square root of the lowest order
single—precision FP value from the source, and stores it in the low doubleword of the destination
register. The upper three fields of xmm1 are preserved. The maximum error for this approximation
is: |Error| <= 1.5 x 2"-12

183

B.4.281 RSTS Restore TSR and Descriptor
RSTS m80 ; OF 7D /0 [486,CYRIX,SMM]
RSTSrestores Task State Register (TSR) from mem80.
B.4.282 SAHE Store AH to Flags
SAHF ; 9E [8086]
SAHFsets the low byte of the flags word according to the contents éafHhegister.
The operation 08AHFis:
AH ——> SF:ZF:0:AF:0:PF:1:CF
See als@. AHF (section B.4.131L
B.4.283 SAL, SAR Bitwise Arithmetic Shifts

SAL r/m8,1 ; DO /4 [8086]
SAL r/m8,CL ;D2 /4 [8086]
SAL r/m8,imm8 ; CO0/4ib [186]
SAL r/m16,1 ;016 D1 /4 [8086]
SAL r/m16,CL ;016 D3 /4 [8086]
SAL r/m16,imm8 ;016 C1/41ib [186]
SAL r/m32,1 ;032D1/4 [386]
SAL r/m32,CL ;032D3/4 [386]
SAL r/m32,imm8 ;032C1l/41b [386]
SAR r/m8,1 ; DO /7 [8086]
SAR r/m8,CL ; D217 [8086]
SAR r/m8,imm8 ; CO/7ib [186]
SAR r/m16,1 ;016 D1 /7 [8086]
SAR r/m16,CL ;016 D3 /7 [8086]
SAR r/m16,imm8 ;016 C1/7 b [186]
SAR r/m32,1 ;032D1/7 [386]
SAR r/m32,CL ;032 D3 /7 [386]
SAR r/m32,imm8 ;032 C1/71ib [386]

SAL andSARperform an arithmetic shift operation on the given source/destination (first) operand.
The vacated bits are filled with zero 8AL, and with copies of the original high bit of the source
operand folSAR

SAL is a synonym fo6SHL (seesection B.4.290 NASM will assemble either one to the same code,
but NDISASM will always disassemble that codeSit.

The number of bits to shift by is given by the second operand. Only the bottom five bits of the shift
count are considered by processors above the 8086.

You can force the longer (286 and upwards, beginning wiii &yte) form of SAL foo,1 by
using aBYTEprefix: SAL foo,BYTE 1 . Similarly with SAR

B.4.284 SALC Set AL from Carry Flag
SALC ; D6 [8086,UNDOC]

SALC is an early undocumented instruction similar in concepbEdcc (section B.4.28) Its
function is to seAL to zero if the carry flag is clear, or@aFF if it is set.

184

B.4.285 SBB Subtract with Borrow

SBB r/m8,reg8 ;18 /r [8086]
SBB r/m16,reg16 ;016 19 /r [8086]
SBB r/m32,reg32 ;03219 /r [386]
SBB reg8,r/m8 y 1A Ir [8086]
SBB reg16,r/m16 ;016 1B /r [8086]
SBB reg32,r/m32 ;032 1B /r [386]
SBB r/m8,imm8 ;80 /3ib [8086]
SBB r/m16,imm16 ; 016 81 /3 iw [8086]
SBB r/m32,imm32 ;03281 /3id [386]
SBB r/m16,imm8 ;016 83 /3 ib [8086]
SBB r/m32,imm8 ;03283/31ib [386]
SBB AL,imm8 ; 1C ib [8086]
SBB AX,imm16 ; 016 1D iw [8086]
SBB EAX,imm32 ;032 1D id [386]

SBB performs integer subtraction: it subtracts its second operand, plus the value of the carry flag,
from its first, and leaves the result in its destination (first) operand. The flags are set according to
the result of the operation: in particular, the carry flag is affected and can be used by a subsequent
SBBinstruction.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand
is considered to be signed, and is sign—extended to the length of the first operand. In these cases, the
BYTEqualifier is necessary to force NASM to generate this form of the instruction.

To subtract one number from another without also subtracting the contents of the carry flag, use
SUB(section B.4.30b

B.4.286 SCASB SCASWSCASD Scan String

SCASB : AE [8086]
SCASW - 016 AF [8086]
SCASD “ 032 AF [386]

SCASBcompares the byte iAL with the byte afES:DI] or [ES:EDI] , and sets the flags
accordingly. It then increments or decrements (depending on the direction flag: increments if the
flag is clear, decrements if it is s&) (or EDI).

The register used BI if the address size is 16 bits, aBbI if it is 32 bits. If you need to use an
address size not equal to the cur@iitS setting, you can use an explialté ora32 prefix.

Segment override prefixes have no effect for this instruction: the Us8 foifr the load froniDI]
or [EDI] cannot be overridden.

SCASVWANdSCASDwork in the same way, but they compare a wordXmr a doubleword t&AX
instead of a byte tAL, and increment or decrement the addressing registers by 2 or 4 instead of 1.

The REPE and REPNE prefixes (equivalentlyREPZ and REPNZ may be used to repeat the
instruction up taCX (or ECX— again, the address size chooses which) times until the first unequal or
equal byte is found.

B.4.287 SETcc: Set Register from Condition
SETcc r/m8 ; OF 90+cc /2 [386]
SETcc sets the given 8-bit operand to zero if its condition is not satisfied, and to 1 if it is.

185

B.4.288 SFENCE Store Fence

SFENCE ; OF AE /7 [KATMAI]

SFENCEperforms a serialising operation on all writes to memory that were issued before the
SFENCEinstruction. This guarantees that all memory writes beforeSEHENCEiInstruction are
visible before any writes after tiB~ENCEnstruction.

SFENCEIis ordered respective to oth8FENCEinstruction, MFENCEany memory write and any
other serialising instruction (such @2UID).

Weakly ordered memory types can be used to achieve higher processor performance through such
techniques as out—of-order issue, write—combining, and write—collapsing. The degree to which a
consumer of data recognizes or knows that the data is weakly ordered varies among applications
and may be unknown to the producer of this data. BR&ENCE instruction provides a
performance—efficient way of insuring store ordering between routines that produce
weakly—ordered results and routines that consume this data.

SFENCEuses the following ModRM encoding:

Mod (7:6) =11B
Reg/Opcode (5:3) = 111B
R/M (2:0) =000B

All other ModRM encodings are defined to be reserved, and use of these encodings risks
incompatibility with future processors.

See alsc.FENCE(section B.4.13yandMFENCHsection B.4.15)

B.4.289 SGDT SIDT, SLDT: Store Descriptor Table Pointers

SGDT mem :OF 01 /0 [286,PRIV]
SIDT mem :OF 01 /1 [286,PRIV]
SLDT r/m16 : OF 00 /0 [286,PRIV]

SGDTand SIDT both take a 6—-byte memory area as an operand: they store the contents of the
GDTR (global descriptor table register) or IDTR (interrupt descriptor table register) into that area as
a 32-bit linear address and a 16-bit size limit from that area (in that order). These are the only
instructions which directly udanear addresses, rather than segment/offset pairs.

SLDT stores the segment selector corresponding to the LDT (local descriptor table) into the given
operand.

See alsa.GDT, LIDT andLLDT (section B.4.138

B.4.290 SHL, SHR Bitwise Logical Shifts

186

SHL r/m8,1 ; DO /4 [8086]
SHL r/m8,CL ;D2 /14 [8086]
SHL r/m8,imm8 ;C0/4ib [186]
SHL r/m16,1 ;016 D1 /4 [8086]
SHL r/m16,CL ;016 D3 /4 [8086]
SHL r/m16,imm8 ;016 C1/41b [186]
SHL r/m32,1 ;032D1/4 [386]
SHL r/m32,CL ;032D3/4 [386]
SHL r/m32,imm8 ;032C1/41b [386]
SHR r/m8,1 ; DO /5 [8086]
SHR r/m8,CL ;D2 /5 [8086]
SHR r/m8,imm8 ; CO/5ib [186]

SHR r/m16,1 ;016 D1 /5 [8086]

SHR r/m16,CL ;016 D3 /5 [8086]
SHR r/m16,imm8 ;016 C1/51ib [186]
SHR r/m32,1 ;032D1/5 [386]
SHR r/m32,CL :032D3/5 [386]
SHR r/m32,imm8 :032C1/5ib [386]

SHL andSHRperform a logical shift operation on the given source/destination (first) operand. The
vacated bits are filled with zero.

A synonym forSHL is SAL (seesection B.4.288 NASM will assemble either one to the same
code, but NDISASM will always disassemble that codStdk

The number of bits to shift by is given by the second operand. Only the bottom five bits of the shift
count are considered by processors above the 8086.

You can force the longer (286 and upwards, beginning witi &#yte) form of SHL foo,1 by
using aBYTEprefix: SHL foo,BYTE 1 . Similarly with SHR

B.4.291 SHLD SHRD Bitwise Double—Precision Shifts

SHLD r/m16,reg16,imm8 ;016 OF A4 /rib [386]
SHLD r/m16,reg32,imm8 :0320F A4 /rib [386]
SHLD r/m16,reg16,CL ; 016 OF A5 /r [386]
SHLD r/m16,reg32,CL 1032 0F A5 /Ir [386]
SHRD r/m16,reg16,imm8 ;016 OF AC /rib [386]
SHRD r/m32,reg32,imm8 ;032 0F AC /rib [386]
SHRD r/m16,reg16,CL ; 016 OF AD /r [386]
SHRD r/m32,reg32,CL ; 032 OF AD /Ir [386]

e SHLDperforms a double—precision left shift. It notionally places its second operand to the right
of its first, then shifts the entire bit string thus generated to the left by a number of bits specified
in the third operand. It then updates only finst operand according to the result of this. The
second operand is not modified.

« SHRDperforms the corresponding right shift: it notionally places the second operandet ¢iie
the first, shifts the whole bit string right, and updates only the first operand.

For example, ifEAX holds 0x01234567 and EBX holds 0x89ABCDEF, then the instruction
SHLD EAX,EBX,4 would updateEAX to hold 0x12345678 . Under the same conditions,
SHRD EAX,EBX,4 would updatd&eAXto holdOxF0123456 .

The number of bits to shift by is given by the third operand. Only the bottom five bits of the shift
count are considered.

B.4.292 SHUFPD Shuffle Packed Double—Precision FP Values
SHUFPD xmm1,xmm2/m128,imm8 ; 66 OF C6 /rib [WILLAMETTE,SSEZ2]

SHUFPDmoves one of the packed double-precision FP values from the destination operand into
the low quadword of the destination operand; the upper quadword is generated by moving one of
the double-precision FP values from the source operand into the destination. The select (third)
operand selects which of the values are moved to the destination register.

The select operand is an 8-bit immediate: bit 0 selects which value is moved from the destination

operand to the result (where 0 selects the low quadword and 1 selects the high quadword) and bit 1
selects which value is moved from the source operand to the result. Bits 2 through 7 of the shuffle

operand are reserved.

187

B.4.293 SHUFPS Shuffle Packed Single—Precision FP Values
SHUFPS xmm1,xmm2/m128,imm8 ;OF C6/rib [KATMAI,SSE]

SHUFPSmoves two of the packed single—precision FP values from the destination operand into the
low quadword of the destination operand; the upper quadword is generated by moving two of the
single—precision FP values from the source operand into the destination. The select (third) operand
selects which of the values are moved to the destination register.

The select operand is an 8-bit immediate: bits 0 and 1 select the value to be moved from the
destination operand the low doubleword of the result, bits 2 and 3 select the value to be moved from
the destination operand the second doubleword of the result, bits 4 and 5 select the value to be
moved from the source operand the third doubleword of the result, and bits 6 and 7 select the value
to be moved from the source operand to the high doubleword of the result.

B.4.294 SMI: System Management Interrupt
SMI ; F1 [386,UNDOC]

SMI puts some AMD processors into SMM mode. It is available on some 386 and 486 processors,
and is only available when DR7 bit 12 is set, otherwise it generates an Int 1.

B.4.295 SMINT, SMINTOLD Software SMM Entry (CYRIX)

SMINT ; OF 38 [PENT,CYRIX]
SMINTOLD ; OF 7E [486,CYRIX]

SMINT puts the processor into SMM mode. The CPU state information is saved in the SMM
memory header, and then execution begins at the SMM base address.

SMINTOLDIs the same a&SMINT, but was the opcode used on the 486.

This pair of opcodes are specific to the Cyrix and compatible range of processors (Cyrix, IBM, Via).
B.4.296 SMSWStore Machine Status Word

SMSW r/m16 ;OF 01 /4 [286,PRIV]

SMSWstores the bottom half of th€RO control register (or the Machine Status Word, on 286
processors) into the destination operand. Sed . M&)\(section B.4.13p

For 32-bit code, this would use the low 16-bits of the specified register (or a 16bit memory
location), without needing an operand size override byte.

B.4.297 SQRTPDPacked Double-Precision FP Square Root
SQRTPD xmm1,xmm2/m128 ;66 OF 51 /r [WILLAMETTE,SSEZ2]

SQRTPDcalculates the square root of the packed double—precision FP value from the source
operand, and stores the double—precision results in the destination register.

B.4.298 SQRTPSPacked Single-Precision FP Square Root
SQRTPS xmm1,xmm2/m128 ;OF 51 /r [KATMAI,SSE]

SQRTPScalculates the square root of the packed single—precision FP value from the source
operand, and stores the single—precision results in the destination register.

B.4.299 SQRTSDScalar Double—Precision FP Square Root
SQRTSD xmm1,xmm2/m128 ;F20F51/r [WILLAMETTE,SSEZ2]

188

SQRTSDcalculates the square root of the low—order double—precision FP value from the source
operand, and stores the double—precision result in the destination register. The high—quadword
remains unchanged.

B.4.300 SQRTSSScalar Single—Precision FP Square Root
SQRTSS xmm1,xmm2/m128 ; F30F 51 /r [KATMAISSE]

SQRTSScalculates the square root of the low—order single—precision FP value from the source
operand, and stores the single—precision result in the destination register. The three high
doublewords remain unchanged.

B.4.301 STC STD, STI : Set Flags

STC = [8086]
STD " FD [8086]
STI - FB [8086]

These instructions set various fla@l C sets the carry flagsTD sets the direction flag; arTl|
sets the interrupt flag (thus enabling interrupts).

To clear the carry, direction, or interrupt flags, use @& CLD and CLI instructions gection
B.4.20. To invert the carry flag, u@M(section B.4.2p

B.4.302 STMXCSRStore Streaming SIMD Extension Control/Status
STMXCSR m32 ; OF AE /3 [KATMAI,SSE]

STMXCSHRtores the contents of tMXCSReontrol/status register to the specified memory location.
MXCSRis used to enable masked/unmasked exception handling, to set rounding modes, to set
flush—to—zero mode, and to view exception status flags. The reserved bitdMX@eRegister are

stored as Os.

For details of théMXCSRegister, see the Intel processor docs.
See alse. DMXCSRsection B.4.138
B.4.303 STOSB STOSWSTOSD Store Byte to String

STOSB ; AA [8086]
STOSW - 016 AB [8086]
STOSD - 032 AB [386]

STOSBstores the byte iL at[ES:DI] or [ES:EDI] , and sets the flags accordingly. It then
increments or decrements (depending on the direction flag: increments if the flag is clear,
decrements if it is sef)l (or EDI).

The register used BI if the address size is 16 bits, aabl if it is 32 bits. If you need to use an
address size not equal to the curBiitS setting, you can use an explialté ora32 prefix.

Segment override prefixes have no effect for this instruction: the Us8 fofr the store tgDI] or
[EDI] cannot be overridden.

STOSWANdSTOSDwork in the same way, but they store the wordfor the doubleword iEAX
instead of the byte iAL, and increment or decrement the addressing registers by 2 or 4 instead of 1.

The REP prefix may be used to repeat the instructi(or ECX— again, the address size chooses

which) times.
B.4.304 STR Store Task Register
STR r/m16 ; OF 00 /1 [286,PRIV]

189

STRstores the segment selector corresponding to the contents of the Task Register into its operand.
When the operand size is a 16-bit register, the upper 16-bits are cleared to 0s. When the destination
operand is a memory location, 16 bits are written regardless of the operand size.

B.4.305 SUB Subtract Integers

SUB r/m8,reg8 ; 28 Ir [8086]
SUB r/m16,reg16 ;016 29 /r [8086]
SUB r/m32,reg32 ;03229 /r [386]
SUB reg8,r/m8 s 2AIr [8086]
SUB reg16,r/m16 ; 016 2B /r [8086]
SUB reg32,r/m32 ;032 2B Ir [386]
SUB r/m8,imm8 ;80/5ib [8086]

SUB r/m16,imm16
SUB r/m32,imm32

SUB r/m16,imm38
SUB r/m32,imm8

SUB AL,imm8
SUB AX,imm16
SUB EAX,imm32

- 016 81 /5 iw [8086]
©03281/5id [386]

- 016 83 /5 ib [8086]
£ 03283 /5 ib [386]

; 2C ib [8086]
: 016 2D iw [8086]
: 032 2D id [386]

SUBperforms integer subtraction: it subtracts its second operand from its first, and leaves the result
in its destination (first) operand. The flags are set according to the result of the operation: in
particular, the carry flag is affected and can be used by a subse&pBrihstruction §ection
B.4.285.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand
is considered to be signed, and is sign—extended to the length of the first operand. In these cases, the
BYTEqualifier is necessary to force NASM to generate this form of the instruction.

B.4.306 SUBPD Packed Double—Precision FP Subtract
SUBPD xmm1,xmm2/m128 ; 66 OF 5C /r [WILLAMETTE,SSEZ2]

SUBPDsubtracts the packed double—precision FP values of the source operand from those of the
destination operand, and stores the result in the destination operation.

B.4.307 SUBPS Packed Single—Precision FP Subtract
SUBPS xmm1,xmm2/m128 ; OF 5C /Ir [KATMAI,SSE]

SUBPSsubtracts the packed single—precision FP values of the source operand from those of the
destination operand, and stores the result in the destination operation.

B.4.308 SUBSD Scalar Single—FP Subtract
SUBSD xmm1,xmm2/m128 ;i F20F5C /r [WILLAMETTE,SSEZ?]

SUBSDsubtracts the low—order double—precision FP value of the source operand from that of the
destination operand, and stores the result in the destination operation. The high quadword is
unchanged.

B.4.309 SUBSS Scalar Single—-FP Subtract
SUBSS xmm1,xmm2/m128 F3OF5C /r [KATMAI,SSE]

190

SUBSSsubtracts the low-order single—precision FP value of the source operand from that of the
destination operand, and stores the result in the destination operation. The three high doublewords
are unchanged.

B.4.310 SVDC Save Segment Register and Descriptor
SVDC m80,segreg ;OF 78 /r [486,CYRIX,SMM]
SVDCsaves a segment register (DS, ES, FS, GS, or SS) and its descriptor to mem80.
B.4.311 SVLDT:. Save LDTR and Descriptor
SVLDT m80 ;OF 7A /0 [486,CYRIX,SMM]
SVLDTsaves the Local Descriptor Table (LDTR) to mem80.
B.4.312 SVTS Save TSR and Descriptor
SVTS m80 ; OF 7C /0 [486,CYRIX,SMM]
SVTSsaves the Task State Register (TSR) to mema80.
B.4.313 SYSCALL Call Operating System

SYSCALL ; OF 05 [P6,AMD]
SYSCALL provides a fast method of transferring control to a fixed entry point in an operating
system.

e TheEIP register is copied into tHECXregister.

e Bits [31-0] of the 64-bit SYSCALL/SYSRET Target Address RegisEarAR are copied into
theEIP register.

« Bits [47-32] of theSTARregister specify the selector that is copied intoGBeegister.
e Bits [47-32]+1000b of th& TARregister specify the selector that is copied into the SS register.

The CS andSS registers should not be modified by the operating system between the execution of
the SYSCALLinstruction and its correspondi&y SRETinstruction.

For more information, see th®YSCALL and SYSRET Instruction Specification
(AMD document number 21086.pdf).

B.4.314 SYSENTERFast System Call
SYSENTER ; OF 34 [P6]

SYSENTERexecutes a fast call to a level 0 system procedure or routine. Before using this
instruction, various MSRs need to be set up:

e SYSENTER_CS MSRontains the 32-bit segment selector for the privilege level 0 code
segment. (This value is also used to compute the segment selector of the privilege level 0 stack
segment.)

« SYSENTER_EIP_MSRontains the 32-bit offset into the privilege level 0 code segment to the
first instruction of the selected operating procedure or routine.

« SYSENTER_ESP_MSgdntains the 32-bit stack pointer for the privilege level 0 stack.
SYSENTERperforms the following sequence of operations:

» Loads the segment selector from 8%SENTER_CS_MSIRto theCSregister.

¢ Loads the instruction pointer from t&&SENTER_EIP_MSHnto theEIP register.

191

e Adds 8 to the value iIBYSENTER_CS_MSa&hd loads it into th8Sregister.
» Loads the stack pointer from t&&SENTER_ESP_MSRto theESPregister.
» Switches to privilege level 0.

¢ Clears the/Mflag in theEFLAGSregister, if the flag is set.

« Begins executing the selected system procedure.

In particular, note that this instruction des not save the valugSof (E)IP . If you need to return
to the calling code, you need to write your code to cater for this.

For more information, see the Intel Architecture Software Developer’'s Manual, Volume 2.

B.4.315 SYSEXIT: Fast Return From System Call

SYSEXIT : OF 35 [P6,PRIV]

SYSEXIT executes a fast return to privilege level 3 user code. This instruction is a companion
instruction to theSYSENTERInstruction, and can only be executed by privilege level 0 code.
Various registers need to be set up before calling this instruction:

e SYSENTER_CS MSRontains the 32-bit segment selector for the privilege level 0 code
segment in which the processor is currently executing. (This value is used to compute the
segment selectors for the privilege level 3 code and stack segments.)

« EDXcontains the 32-bit offset into the privilege level 3 code segment to the first instruction to be
executed in the user code.

» ECXcontains the 32-bit stack pointer for the privilege level 3 stack.

SYSEXIT performs the following sequence of operations:

e Adds 16 to the value IBYSENTER_CS_MS#&hd loads the sum into tkkS selector register.
» Loads the instruction pointer from tE®Xregister into th&IP register.

e Adds 24 to the value IBYSENTER_CS_MS#&hd loads the sum into tI%S selector register.
¢ Loads the stack pointer from tE€ Xregister into th&SPregister.

» Switches to privilege level 3.

e Begins executing the user code atfe address.

For more information on the use of tlYSENTERand SYSEXIT instructions, see the Intel
Architecture Software Developer’'s Manual, Volume 2.

B.4.316 SYSRET Return From Operating System

192

SYSRET ; OF 07 [P6,AMD,PRIV]

SYSRETis the return instruction used in conjunction with 8¥SCALLinstruction to provide fast
entry/exit to an operating system.

« The ECX register, which points to the next sequential instruction after the corresponding
SYSCALLinstruction, is copied into thelP register.

« Bits [63-48] of theSTARregister specify the selector that is copied intoGBeegister.
» Bits [63-48]+1000b of th&TARregister specify the selector that is copied intd38eegister.

e Bits [1-0] of theSSregister are set to 11b (RPL of 3) regardless of the value of bits [49-48] of
the STARregister.

The CS andSS registers should not be modified by the operating system between the execution of
the SYSCALLinstruction and its correspondi®&y SRETinstruction.

For more information, see th®YSCALL and SYSRET Instruction Specification
(AMD document number 21086.pdf).

B.4.317 TEST: Test Bits (notional bitwise AND)

TEST r/m8,reg8 ; 84 r [8086]
TEST r/m16,regl6 ;01685 /r [8086]
TEST r/m32,reg32 ;03285 /r [386]
TEST r/m8,imm8 ;F6/0ib [8086]
TEST r/m16,imm16 ;016 F7 /0 iw [8086]
TEST r/m32,imm32 ; 032 F7 /0 id [386]
TEST AL,imm8 ; A8 ib [8086]
TEST AX,imm16 ;016 A9 iw [8086]
TEST EAX,imm32 ;032 A9 id [386]

TEST performs a ‘mental’ bitwise AND of its two operands, and affects the flags as if the operation
had taken place, but does not store the result of the operation anywhere.

B.4.318 UCOMISDUnordered Scalar Double—Precision FP compare and set EFLAGS
UCOMISD xmm1,xmm2/m128 ;66 OF 2E /r [WILLAMETTE,SSEZ?]

UCOMISDcompares the low—order double—precision FP numbers in the two operands, and sets the
ZF, PF and CF bits in theEFLAGSregister. In addition, th®F SF and AF bits in theEFLAGS

register are zeroed out. The unordered prediZEeRF andCF all set) is returned if either source
operand is &laN(gNaN or sNaN).

B.4.319 UCOMISSUnordered Scalar Single-Precision FP compare and set EFLAGS
UCOMISS xmm1,xmm2/m128 ; OF 2E Ir [KATMAI,SSE]

UCOMISScompares the low—order single—precision FP numbers in the two operands, and sets the
ZF, PF and CF bits in theEFLAGSregister. In addition, th®F, SF and AF bits in theEFLAGS
register are zeroed out. The unordered prediZEeRF andCF all set) is returned if either source
operand is &laN(gNaN or sNaN).

B.4.320 UDQ UD1, UD2 Undefined Instruction

UDO . OF FF [186,UNDOC]
UD1 - OF B9 [186,UNDOC]
UD2 - OF 0B [186]

UDxcan be used to generate an invalid opcode exception, for testing purposes.
UDQOis specifically documented by AMD as being reserved for this purpose.
UD1is documented by Intel as being available for this purpose.

UD2is specifically documented by Intel as being reserved for this purpose. Intel document this as
the preferred method of generating an invalid opcode exception.

All these opcodes can be used to generate invalid opcode exceptions on all currently available
processors.

193

B.4.321 UMOVUser Move Data

UMOV r/m8,reg8 ; OF 10 /r [386,UNDOC]
UMOV r/m16,regl6 ; 016 OF 11 /r [386,UNDOC]
UMOV r/m32,reg32 ; 032 OF 11 /r [386,UNDOC]
UMOV reg8,r/m8 ;OF 12 /r [386,UNDOC]
UMOV reg16,r/m16 ; 016 OF 13 /r [386,UNDOC]
UMOV reg32,r/m32 ; 032 OF 13 /r [386,UNDOC]

This undocumented instruction is used by in—circuit emulators to access user memory (as opposed
to host memory). It is used just like an ordinary memory/register or register/relylSQst
instruction, but accesses user space.

This instruction is only available on some AMD and IBM 386 and 486 processors.
B.4.322 UNPCKHPDUnNnpack and Interleave High Packed Double—Precision FP Values
UNPCKHPD xmm1,xmm2/m128 ;66 OF 15/r [WILLAMETTE,SSEZ2]

UNPCKHPDperforms an interleaved unpack of the high—order data elements of the source and
destination operands, saving the resukrinm1 It ignores the lower half of the sources.

The operation of this instruction is:

dst[63-0] :=dst[127-64];
dst[127-64] := src[127-64].

B.4.323 UNPCKHP3Unpack and Interleave High Packed Single—Precision FP Values
UNPCKHPS xmm1,xmm2/m128 ;OF 15 /r [KATMAI,SSE]

UNPCKHPSerforms an interleaved unpack of the high—order data elements of the source and
destination operands, saving the resukrinm1 It ignores the lower half of the sources.

The operation of this instruction is:

dst[31-0] :=dst[95-64];
dst[63—-32] := src[95-64];
dst[95-64] := dst[127-96];
dst[127-96] := src[127-96].

B.4.324 UNPCKLPDUnpack and Interleave Low Packed Double-Precision FP Data
UNPCKLPD xmm1,xmm2/m128 ;66 OF 14 /r [WILLAMETTE,SSEZ2]

UNPCKLPDperforms an interleaved unpack of the low-order data elements of the source and
destination operands, saving the resukritm1 It ignores the lower half of the sources.

The operation of this instruction is:

dst[63-0] :=dst[63-0];
dst[127-64] := src[63-0].

B.4.325 UNPCKLPSUnpack and Interleave Low Packed Single—Precision FP Data
UNPCKLPS xmm1,xmm2/m128 ;OF 14 /r [KATMAI,SSE]

UNPCKLPSperforms an interleaved unpack of the low-order data elements of the source and
destination operands, saving the resukrinm1 It ignores the lower half of the sources.

The operation of this instruction is:

194

dst[31-0] :=dst[31-0];
dst[63-32] :=src[31-0];
dst[95-64] := dst[63-32];
dst[127-96] := src[63—-32].

B.4.326 VERR VERWVerify Segment Readability/Writability
VERR r/m16 ; OF 00 /4 [286,PRIV]
VERW r/m16 ; OF 00 /5 [286,PRIV]

* VERRsets the zero flag if the segment specified by the selector in its operand can be read from at
the current privilege level. Otherwise it is cleared.

* VERWsets the zero flag if the segment can be written.
B.4.327 WAIT: Wait for Floating—Point Processor

WAIT - 9B [8086]
FWAIT ; 9B [8086]

WAIT, on 8086 systems with a separate 8087 FPU, waits for the FPU to have finished any operation
it is engaged in before continuing main processor operations, so that (for example) an FPU store to
main memory can be guaranteed to have completed before the CPU tries to read the result back out.

On higher processor8VAIT is unnecessary for this purpose, and it has the alternative purpose of
ensuring that any pending unmasked FPU exceptions have happened before execution continues.

B.4.328 WBINVD Write Back and Invalidate Cache
WBINVD : OF 09 [486]

WBINVD invalidates and empties the processor’s internal caches, and causes the processor to
instruct external caches to do the same. It writes the contents of the caches back to memory first, so
no data is lost. To flush the caches quickly without bothering to write the data back fildtVikse
(section B.4.12p

B.4.329 WRMSRNrite Model-Specific Registers
WRMSR ; OF 30 [PENT]

WRMSRuvrites the value irEDX:EAX to the processor Model-Specific Register (MSR) whose
index is stored IECX See als®RDMSHKsection B.4.27D

B.4.330 WRSHRWrite SMM Header Pointer Register
WRSHR r/m32 :OF 37 /0 [386,CYRIX,SMM]

WRSHRoads the contents of either a 32-bit memory location or a 32-bit register into the SMM
header pointer register.

See alscRDSHRsection B.4.27p
B.4.331 XADD Exchange and Add

XADD r/m8,reg8 ;OF CO/r [486]
XADD r/m16,regl6 ;016 OF C1/r [486]
XADD r/m32,reg32 ;032 0F C1/r [486]

XADDexchanges the values in its two operands, and then adds them together and writes the result
into the destination (first) operand. This instruction can be used wittOD@K prefix for
multi—-processor synchronisation purposes.

195

B.4.332 XBTS Extract Bit String

XBTS regl6,r/m16 ; 016 OF A6 /r [386,UNDOC]
XBTS reg32,r/m32 ; 032 OF A6 /r [386,UNDOC]

The implied operation of this instruction is:

XBTS r/m16,reg16,AX,CL
XBTS r/m32,reg32,EAX,CL

Writes a bit string from the source operand to the destinafibindicates the number of bits to be
copied, andE)AX indicates the low order bit offset in the source. The bits are written to the low
order bits of the destination register. For exampl€Liis set to 4 anéX (for 16-bit code) is set to

5, bits 5-8 ofsrc will be copied to bits 0-3 afist . This instruction is very poorly documented,
and | have been unable to find any official source of documentation on it.

XBTS s supported only on the early Intel 386s, and conflicts with the opcod€MBXCHG486
(on early Intel 486s). NASM supports it only for completeness. Its counterpBit$s (seesection

B.4.119.

B.4.333 XCHGExchange
XCHG reg8,r/m8 ; 86 /r [8086]
XCHG reg16,r/m8 ; 016 87 /r [8086]
XCHG reg32,r/m32 ;03287 Ir [386]
XCHG r/m8,reg8 ; 86 /r [8086]
XCHG r/m16,regl6 ;016 87 /r [8086]
XCHG r/m32,reg32 ;03287 Ir [386]
XCHG AX,regl6 ; 016 90+r [8086]
XCHG EAX,reg32 ; 032 90+r [386]
XCHG regl16,AX ; 016 90+r [8086]
XCHG reg32,EAX ; 032 90+r [386]

XCHGexchanges the values in its two operands. It can be used W@ICEprefix for purposes of
multi-processor synchronisation.

XCHG AX,AX or XCHG EAX,EAX (depending on th8ITS setting) generates the opcad@eh,
and so is a synonym fivOP(section B.4.19D

B.4.334 XLATB: Translate Byte in Lookup Table

XLAT . D7 [8086]
XLATB ' D7 [8086]

XLATB adds the value iAL, treated as an unsigned byteB$or EBX and loads the byte from the
resulting address (in the segment specifie@®Byback intoAL.

The base register usedBX if the address size is 16 bits, daBXif it is 32 bits. If you need to use
an address size not equal to the curBdiS setting, you can use an expliait6é ora32 prefix.

The segment register used to load friBX+AL] or [EBX+AL] can be overridden by using a
segment register name as a prefix (for exangdeslatb).

B.4.335 XOR Bitwise Exclusive OR

XOR r/m8,reg8 ;30 /r [8086]
XOR r/m16,reg16 ;016 31 /r [8086]
XOR r/m32,reg32 ;03231 /r [386]

196

XOR reg8,r/m8 ;32 /r [8086]

XOR regl16,r/m16 ;016 33 /r [8086]
XOR reg32,r/m32 ;03233 /r [386]
XOR r/m8,imm8 ; 80 /6 ib [8086]
XOR r/m16,imm16 ; 016 81 /6 iw [8086]
XOR r/m32,imm32 :03281/6id [386]
XOR r/m16,imm8 ;016 83/61ib [8086]
XOR r/m32,imm8 ;03283/61ib [386]
XOR AL,imm8 ;34 1ib [8086]
XOR AX,imm16 ; 016 35 iw [8086]
XOR EAX,imm32 ;03235id [386]

XORperforms a bitwise XOR operation between its two operands (i.e. each bit of the result is 1 if
and only if exactly one of the corresponding bits of the two inputs was 1), and stores the result in
the destination (first) operand.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand
is considered to be signed, and is sign—extended to the length of the first operand. In these cases, the
BYTEqualifier is necessary to force NASM to generate this form of the instruction.

The MMXinstructionPXOR(seesection B.4.26p performs the same operation on the 64-MiiX

registers.
B.4.336 XORPDBiItwise Logical XOR of Double-Precision FP Values
XORPD xmm1,xmm2/m128 ;66 OF 57 /r [WILLAMETTE,SSEZ?]

XORPDreturns a bit-wise logical XOR between the source and destination operands, storing the
result in the destination operand.

B.4.337 XORPSBiItwise Logical XOR of Single—Precision FP Values
XORPS xmm1,xmm2/m128 ; OF 57 Ir [KATMAI,SSE]

XORPSreturns a bit-wise logical XOR between the source and destination operands, storing the
result in the destination operand.

197

198

Index

I= operator 52
§$ token 36,77
Here token 36
prefix 31,34,79
%operator 36
%! 63
%$and%$$ prefixes 55,56
%%operator 36,46
%+ 43
%+1and%-1syntax 50
%0parameter count 47,48
& operator 36
&& operator 52
* operator 36
+ modifier 47

+ operator
binary 36
unary 36

— operator
binary 36
unary 36
..@ symbol prefix 39,46
/ operator 36
/I operator 36
< operator 52
<< operator 36
<= operator 52
<> operator 52
= operator 52
== operator 52
> operator 52
>= operator 52
>> operator 36
? MASM syntax 32
A operator 36
M operator 52
| operator 36
[| operator 52
~ operator 36
—a option 27,107
alé 101,124,147,152,159,162,173,
180,185,189,196
a32 101,124,147,152,159,162,173,
180,185,189,196
a86 20,29,30
AAA 115

AAD

AAM

AAS

ABSOLUTE

ADC

ADD

addition

ADDPD

ADDPS

addressing, mixed-size

address—size prefixes

ADDSD

ADDSS

algebra

ALIGN

ALIGNB

alignment
in bin sections
in elf sections
in obj sections
in win32 sections
of elf common variables

ALINK

alink.sourceforge.net

alloc

alt.lang.asm

ambiguity

AND

ANDNPD

ANDNPS

ANDPD

ANDPS

a.out
BSD version
Linux version

aout

aoutb

%arg

arg

ARPL

as86

assembler directives

assembly passes

assembly—-time options

%assign

ASSUME

AT

115
115
115
65,72
115
116
36
117
117
100
31
117
117
34
60,69,71
60

Autoconf 21

autoexec.bat 21
auto—sync 107
-b 106
bin 23,24,69

multisection 70
binary 34
binary files 32
16-bit mode, versus 32-bit mode 64
bit shift 36
BITS 64,69
bitwise AND 36
bitwise OR 36
bitwise XOR 36
block IFs 56
boot loader 69
boot sector 103
Borland

Pascal 90

Win32 compilers 70
BOUND 119
braces

after%sign 49

around macro parameters 45
BSD 96
BSF 119
BSR 119
.bss 76,78,79
BSWAP 119
BT 120
BTC 120
BTR 120
BTS 120
bugs 104
bugtracker 104
BYTE 103
C calling convention 86,93
C symbol names 84
CALL 120
CALL FAR 37
case sensitivity 29,41,42,43,45,52,72
CBW 121
CDQ 121
changing sections 64
character constant 32,35
circular references 41
CLASS 71
CLC 121
CLD 121
%clear 58
CLFLUSH 121
CLI 121
CLTS 121

cl6.mac
c32.mac
CMC
CMOVcc
CMP
CMPccPD
CMPccPS
CMPccSD
CMPccSS
CMPEQPD
CMPEQPS
CMPEQSD
CMPEQSS
CMPLEPD
CMPLEPS
CMPLESD
CMPLESS
CMPLTPD
CMPLTPS
CMPLTSD
CMPLTSS
CMPNEQPD
CMPNEQPS
CMPNEQSD
CMPNEQSS
CMPNLEPD
CMPNLEPS
CMPNLESD
CMPNLESS
CMPNLTPD
CMPNLTPS
CMPNLTSD
CMPNLTSS
CMPORDPD
CMPORDPS
CMPORDSD
CMPORDSS
CMPSB
CMPSD
CMPSW

CMPUNORDPD
CMPUNORDPS
CMPUNORDSD
CMPUNORDSS

CMPXCHG

CMPXCHG486

CMPXCHGS8B
coff

colon

.COM
COMISD
COMISS
command-line

199

200

commas in macro parameters 47
COMMON 67,71
elf extensions to 78
obj extensions to 74
Common Object File Format 76
common variables 67
alignment inelf 78
element size 74
comp.lang.asm.x86 20,21
comp.os.linux.announce 21
comp.os.msdos.programmer 84
concatenating macro parameters 49
condition codes 111

condition codes as macro parameters 50

condition predicates 123,124,125
conditional assembly 50
conditional jump 148
conditional jumps 103
conditional-return macro 50
configure 21
constants 34
context stack 55,56
context-local labels 55
context-local single-line macros 56
control registers 111
counting macro parameters 48
CPU 67
CPUID 35,127
creating contexts 55
critical expression 32,33,38,44,66
CVTDQ2PD 127
CVTDQ2PS 127
CVTPD2DQ 127
CVTPD2PI 128
CVTPD2PS 128
CVTPI2PD 128
CVTPI2PS 128
CVTPS2DQ 128
CVTPS2PD 129
CVTPS2PI 129
CVTSD2SI 129
CVTSD2SS 129
CVTSI2SD 129
CVTSI2SS 130
CVTSS2SD 130
CVTSS2SI 130
CVTTPD2DQ 130
CVTTPD2PI 130
CVTTPS2DQ 131
CVTTPS2PI 131
CVTTSD2SI 131
CVTTSS2SI 131
CWD 121

CWDE 121

-D option 26
—d option 26
DAA 131
DAS 131
.data 76,78,79
_DATA 86
data 77,79
data structure 88,95
DB 32,35
dbg 80
DD 32,35
debug information 24
debug information format 24
debug registers 111
DEC 132
declaring structures 59
default macro parameters 47
default name 69
default-WRTmechanism 74
%define 26,41
defining sections 64
design goals 29
DevPac 32,39
disabling listing expansion 50
DIV 132
division 36
DIVPD 132
DIVPS 133
DIVSD 133
DIVSS 133
DJGPP 76,93
djlink 81
DLL symbols
exporting 73
importing 73
DOS 21,25
DOS archive 21
DOS source archive 21
DQ 32,35
.drectve 75
DT 32,35
DUP 30,33
DW 32,35
DWORD 32
—E option 25
—e option 26,108
effective addresses 31,33,38,113
element size, in common variables 74
ELF 23,76
shared libraries 76
16-bit code and 78
%elif 50,52

%elifctx
%elifdef
%elifid
%elifidn
%elifidni
%elifmacro
%elifnctx
%elifndef
%elifnid
%elifnidn
%elifnidni
%elifnmacro
%elifnnum
%elifnstr
%elifnum
%elifstr
%else
e—-mail
EMMS
endproc
%endrep
ENDSTRUC
ENTER
environment
EQU
%error
error messages
error reporting format
EVEN
.EXE
EXE_begin
EXE2BIN
exebin.mac
exec
Executable and Linkable Format
EXE_end
EXE_stack
%exitrep
EXPORT
export
exporting symbols
expressions
extension
EXTERN

obj extensions to
—F option
—f option
FABS
FADD
FADDP
far call
far common variables
far jump

far pointer
FARCODE
FBLD
FBSTP
FCHS
FCLEX
FCMOVcc
FCOM
FCOMI
FCOMIP
FCOMP
FCOMPP
FCOS
FDECSTP
FDIV
FDIVP
FDIVR
FDIVRP
FEMMS
FFREE
FIADD
FICOM
FICOMP
FIDIV
FIDIVR
FILD
__FILE__
FIMUL
FINCSTP
FINIT
FIST
FISTP
FISUB
FLAT
flat memory model
flat—form binary
FLD
FLDCW
FLDENV
FLDxx
floating—point
constants
registers
FMUL
FMULP
FNINIT
FNOP
follows=
format-specific directives
forward references
FPATAN
FPREM
FPREM1

30,31,32,35
35

111

140

140

139

140

201

202

FPTAN

frame pointer

FreeBSD

FreeLink

FRNDINT

FRSTOR

FSAVE

FSCALE

FSETPM

FSIN

FSINCOS

FSQRT

FST

FSTCW

FSTENV

FSTP

FSTSW

FSUB

FSUBP

FSUBR

FSUBRP

ftp.kernel.org

ftp.simtel.net

FTST

FUCOMXxx

function

functions
C calling convention
Pascal calling convention

FXAM

FXCH

FxDISI

FXENI

F2XM1

FXRSTOR

FXSAVE

FXTRACT

FYL2X

FYL2XP1

—g option

gas

gcc

general purpose register

GLOBAL
aoutb extensions to
elf extensions to
rdf extensions to

global offset table

_GLOBAL_OFFSET_TABLE_

gnu-—elf-extensions

..got

GOTrelocations

GOT

140
86,90,93
78,96
81
141
141
141
141
141
141
141
141
142
142
142
142
142
142
142
142
142
21

81
143
143
77,79

..gotoff
GOTOFFelocations
..gotpc
GOTPGQelocations
graphics

greedy macro parameters

GROUP
groups

hex

HLT

hybrid syntaxes
-l option

-i option
%iassign
ibiblio.org

IBTS

ICEBP
%idefine

IDIV

IEND

%if

%ifctx

%ifdef

%ifid

%ifidn

%ifidni

ifmacro

%ifnctx

%ifndef

%ifnid

%ifnidn
%ifnidni
%ifnmacro
%ifnnum
%ifnstr

%ifnum

%ifstr

%imacro
immediate operand
IMPORT
import library
importing symbols
IMUL

IN

INC

INCBIN

incbin
%include
include search path
including other files
inefficient code
infinite loop

informational section
INSB

INSD

INSTALL

installing

instances of structures
INSW

INT

INTO1

INT1

INT3

integer overflow

Intel number formats
INTO

INVD

INVLPG

IRET

IRETD

IRETW

ISTRUC

iterating over macro parameters
Jcc

Jcc NEAR

JCXZ

JECXZ

JMP

JMP DWORD
jumps, mixed-size

-l option
label prefix
LAHF
LAR
[d86
LDMXCSR
LDS
LEA
LEAVE
LES
LFENCE
LFS
LGDT
LGS
LIBRARY
licence
LIDT
%line
__LINE__
linker, free
Linux
a.out
as86
ELF

listing file
little—endian
LLDT

LMSW
LOADALL
LOADALL286
%local

local labels
LODSB

LODSD
LODSW

logical AND
logical OR
logical XOR
LOOP

LOOPE
LOOPNE
LOOPNZ
LOOPZ

LSL

LSS

LTR

—Moption
%macro

macro library
macro processor
macro-local labels
macro—params
macros
macro-—selfref
make

makefile dependencies
makefiles
Makefile.unx
man pages

map files
MASKMOVDQU
MASKMOVQ
MASM

MASM

MAXPD
MAXPS
MAXSD
MAXSS
memory models
memory operand
memory references
MFENCE
Microsoft OMF
Minix

MINPD

MINPS

MINSD

203

204

MINSS
misc subdirectory

mixed—-language program

mixed-size addressing
mixed-size instruction
MMX registers
ModR/M byte
MODULE

modulo operators
MOV

MOVAPD

MOVAPS

MOVD

MOVDQA
MOVDQ2Q
MOVDQU
MOVHLPS

MOVHPD

MOVHPS

MOVLHPS

MOVLPD

MOVLPS
MOVMSKPD
MOVMSKPS
MOVNTDQ

MOVNTI

MOVNTPD
MOVNTPS

MOVNTQ

MOVQ

MOVQ2DQ

MOVSB

MOVSD

MOVSS

MOVSW

MOVSX

MOVUPD

MOVUPS

MOVZX

MS-DOS

MS-DOS device drivers
MUL

MULPD

MULPS

MULSD

MULSS

multi-line macros
multipass optimization
multiple section names
multiplication
multipush macro
Multisection

nasm.1

NASM version

nasm version id
nasm version string
__ _NASMDEFSEG
nasm-devel
nasm.exe

nasm —f <format> -y
nasm —hf
__NASM_MAJOR__
__NASM_MINOR___
nasm.out

NASM_PATCHLEVEL_

__NASM_SUBMINOR___
__NASM_VER__
__NASM _VERSION_ID
nasmw.exe
nasmxXXxs.zip
nasm-X.XX.tar.gz
nasmXXX.zip
ndisasm.1
ndisasm
ndisasm.exe
ndisasmw.exe
near call

near common variables
near jump

NEG

NetBSD

new releases
noalloc

nobits

noexec

.nolist

NOP

NOT

‘nowait’

nowrite
number—overflow
numeric constants
—0 option

016

032

.OBJ

obj

object

octal

OF _DBG

OF DEFAULT
OFFSET

OMF

omitted parameters
—On option

one’s complement

OpenBSD 78,96

operands 31
operand-size prefixes 31
operating system 69

writing 100
operators 36
OR 161
ORG 69,83,84,103
ORPD 162
orphan-labels 28,31
ORPS 162
0Ss/2 70,72
other preprocessor directives 63
ouT 162
out of range, jumps 103
output file format 24
output formats 69
ouTSB 162
OuUTSD 162
ouTsSwW 162
overlapping segments 37
OVERLAY 72
overloading

multi-line macros 45

single-line macros 42
—P option 26
—p option 26,55
PACKSSDW 163
PACKSSWB 163
PACKUSWB 163
PADDB 163
PADDD 163
PADDQ 164
PADDSB 164
PADDSIW 164
PADDSW 164
PADDUSB 164
PADDUSW 164
PADDW 163
PAND 164
PANDN 164
paradox 38
PASCAL 92
Pascal calling convention 90
passes, assembly 38
PATH 21
PAUSE 165
PAVEB 165
PAVGB 165
PAVGUSB 165
PAVGW 165
PCMPxx 165
PDISTIB 166

period
Perl
perverse
PEXTRW
PFACC
PFADD
PFCMPEQ
PFCMPGE
PFCMPGT
PFCMPxx
PF2ID
PF2IW
PFMAX
PFMIN
PFMUL
PFNACC
PFPNACC
PFRCP
PFRCPIT1
PFRCPIT2
PFRSQIT1
PFRSQRT
PFSUB
PFSUBR
PharLap
PIC

PI2FD
PINSRW
.plt

PLT relocations

plt relocations
PMACHRIW
PMADDWD
PMAGW
PMAXSW
PMAXUB
PMINSW
PMINUB
PMOVMSKB
PMULHRIW
PMULHRWA
PMULHRWC
PMULHUW
PMULHW
PMULLW
PMULUDQ
PMVccZzB
%pop

POP

POPAX
POPFx

POR

position—-independent code

76,78,96

205

206

——postfix
precedence
pre—defining macros
preferred
PREFETCH
PREFETCHh
PREFETCHNTA
PREFETCHTO
PREFETCHT1
PREFETCHT2
——prefix
pre—including files
preprocess—only mode
preprocessor
preprocessor expressions
preprocessor loops
preprocessor variables
primitive directives
PRIVATE

proc

procedure linkage table
processor mode
progbits

program entry point
program origin
PSADBW
pseudo-instructions
PSHUFD
PSHUFHW
PSHUFLW
PSHUFW

PSLLx

PSRAX

PSRLx

PSUBSIW
PSUBSxx
PSUBUSX

PSUBXx

PSWAPD
PSWAPW

PUBLIC
PUNPCKxxx

pure binary

%push

PUSH

PUSHAX

PUSHFx

PXOR

quick start

QWORD

-r

RCL

RCPPS

RCPSS

RCR

rdf

RDMSR

rdoff subdirectory
RDPMC

RDSHR

RDTSC

redirecting errors
register push
relational operators
Relocatable Dynamic Obiject File
Format

relocations, PIC-specific
removing contexts
renaming contexts
Y%rep

repeating

%repl

reporting bugs
RESB

RESD

RESQ

REST

restricted memory references
RESW

RET

RETF

RETN

ROL

ROR

%rotate

rotating macro parameters
RPL

RSDC

RSLDT

RSM

RSQRTPS
RSQRTSS

RSTS

—s option

SAHF

SAL

SALC

SAR

SBB

SCASB

SCASD

SCASW

searching for include files
__SECT__

SECTION
elf extensions to
win32 extensions to
section alignment
in bin
in elf
in obj
in win32
section, bin extensions to
SEG
SEGMENT
elf extensions to
segment address
segment alignment
in bin
in obj
segment names, Borland Pascal
segment override
segment registers
segments
groups of
separator character
SETcc
SFENCE
SGDT
shared libraries
shared library
shift command
SHL
SHLD
SHR
SHRD
SHUFPD
SHUFPS
SIB byte
SIDT
signed division
signed modulo
single—line macros
size, of symbols
SLDT
SMI
SMINT
SMINTOLD
SMSW
Solaris x86
—-soname
sound
source code
source-listing file
SQRTPD
SQRTPS
SQRTSD

SQRTSS 189
square brackets 29,33
sse condition predicates 111
STACK 71
stack frame 133
%stacksize 62
standard macros 58
standardised section names 65,75,76,78,
79
..Start 73,81
start= 70
status flags 112
STC 189
STD 189
stderr 25
stdout 25
STI 189
STMXCSR 189
STOSB 189
STOSD 189
STOSW 189
STR 189
STRICT 37
string constant 32
string handling in macros 44
string length 44
%strlen 44
STRUC 59,66, 88,95
stub preprocessor 27
SUB 190
SUBPD 190
SUBPS 190
SUBSD 190
SUBSS 190
%substr 44
sub-strings 44
subtraction 36
suppressible warning 28
suppressing preprocessing 27
SVvDC 191
SVLDT 191
SVTS 191
switching between sections 64
..Sym 77
symbol sizes, specifying 77
symbol types, specifying 77
symbols
exporting from DLLs 73
importing from DLLs 73
synchronisation 107
.SYS 69,84
SYSCALL 191
SYSENTER 191

207

208

SYSEXIT 192
SYSRET 192
-t 27
TASM 20,27
tasm 29,70
tasm compatible preprocessor
directives 61
TBYTE 30
TEST 193
test subdirectory 81
test registers 111
testing
arbitrary numeric expressions 52
context stack 51
exact text identity 52
multi-line macro existence 51
single-line macro existence 51
token types 52
text 76,78,79
_TEXT 86
TIMES 32,33,38,103,104
TLINK 84
trailing colon 31
two—pass assembler 38
TWORD 30,32
type, of symbols 77
—-U option 26
—u option 26,106
UCOMISD 193
UCOMISS 193
ubDO 193
uD1 193
ubD2 193
UuMoVv 194
unary operators 36
%undef 26,43
undefining macros 26
underscore, in C symbols 84
uninitialised 32
uninitialised storage 30
Unix 21
SCO 76
source archive 21
System V 76
UnixWare 76
UNPCKHPD 194
UNPCKHPS 194
UNPCKLPD 194
UNPCKLPS 194
unrolled loops 33
unsigned division 36
unsigned modulo 36
UPPERCASE 29,72

USE16 64,72
USE32 64,72
user—defined errors 53
user-level assembler directives 58
user—level directives 64
-V option 28
VAL 81
valid characters 31
variable types 30
VERR 195
version 28
version number of NASM 58
VERW 195
vfollows= 70
Visual C++ 75
vstart= 70
—w option 28
WAIT 195
warnings 28
[warning +warning—name] 28
[warning —warning—name] 28
WBINVD 195
Win32 21,23,70,75,93
Windows 81
Windows 95 21
Windows NT 21
write 76
writing operating systems 100
WRMSR 195
WRSHR 195
WRT 37,71,76,78
WRT ..got 98
WRT ..gotoff 97
WRT ..gotpc 97
WRT ..plt 99
WRT ..sym 99
WWW page 20
www.cpan.org 21
www.delorie.com 81
www.pcorner.com 81
—X option 25
XADD 195
XBTS 196
XCHG 196
%xdefine 42
x2ftp.oulu.fi 81
%xidefine 42
XLATB 196
XOR 196
XORPD 197
XORPS 197
-y option 28

	Title
	Contents
	Introduction
	What Is NASM?
	Why Yet Another Assembler?
	Licence Conditions

	Contact Information
	Installation
	Installing NASM under MS-DOS or Windows
	Installing NASM under Unix

	Running NASM
	NASM Command-Line Syntax
	The -o Option: Specifying the Output File Name
	The -f Option: Specifying the Output File Format
	The -l Option: Generating a Listing File
	The -M Option: Generate Makefile Dependencies.
	The -F Option: Selecting a Debug Information Format
	The -g Option: Enabling Debug Information.
	The -X Option: Selecting an Error Reporting Format
	The -E Option: Send Errors to a File
	The -s Option: Send Errors to stdout
	The -i Option: Include File Search Directories
	The -p Option: Pre-Include a File
	The -d Option: Pre-Define a Macro
	The -u Option: Undefine a Macro
	The -e Option: Preprocess Only
	The -a Option: Don't Preprocess At All
	The -On Option: Specifying Multipass Optimization.
	The -t option: Enable TASM Compatibility Mode
	The -w Option: Enable or Disable Assembly Warnings
	The -v Option: Display Version Info
	The -y Option: Display Available Debug Info Formats
	The --prefix and --postfix Options.
	The NASMENV Environment Variable

	Quick Start for MASM Users
	NASM Is Case-Sensitive
	NASM Requires Square Brackets For Memory References
	NASM Doesn't Store Variable Types
	NASM Doesn't ASSUME
	NASM Doesn't Support Memory Models
	Floating-Point Differences
	Other Differences

	The NASM Language
	Layout of a NASM Source Line
	Pseudo-Instructions
	DB and friends: Declaring Initialised Data
	RESB and friends: Declaring Uninitialised Data
	INCBIN: Including External Binary Files
	EQU: Defining Constants
	TIMES: Repeating Instructions or Data

	Effective Addresses
	Constants
	Numeric Constants
	Character Constants
	String Constants
	Floating-Point Constants

	Expressions
	|: Bitwise OR Operator
	^: Bitwise XOR Operator
	&: Bitwise AND Operator
	<< and >>: Bit Shift Operators
	+ and -: Addition and Subtraction Operators
	*, /, //, % and %%: Multiplication and Division
	Unary Operators: +, -, ~ and SEG

	SEG and WRT
	STRICT: Inhibiting Optimization
	Critical Expressions
	Local Labels

	The NASM Preprocessor
	Single-Line Macros
	The Normal Way: %define
	Enhancing %define: %xdefine
	Concatenating Single Line Macro Tokens: %+
	Undefining macros: %undef
	Preprocessor Variables: %assign

	String Handling in Macros: %strlen and %substr
	String Length: %strlen
	Sub-strings: %substr

	Multi-Line Macros: %macro
	Overloading Multi-Line Macros
	Macro-Local Labels
	Greedy Macro Parameters
	Default Macro Parameters
	%0: Macro Parameter Counter
	%rotate: Rotating Macro Parameters
	Concatenating Macro Parameters
	Condition Codes as Macro Parameters
	Disabling Listing Expansion

	Conditional Assembly
	%ifdef: Testing Single-Line Macro Existence
	ifmacro: Testing Multi-Line Macro Existence
	%ifctx: Testing the Context Stack
	%if: Testing Arbitrary Numeric Expressions
	%ifidn and %ifidni: Testing Exact Text Identity
	%ifid, %ifnum, %ifstr: Testing Token Types
	%error: Reporting User-Defined Errors

	Preprocessor Loops: %rep
	Including Other Files
	The Context Stack
	%push and %pop: Creating and Removing Contexts
	Context-Local Labels
	Context-Local Single-Line Macros
	%repl: Renaming a Context
	Example Use of the Context Stack: Block IFs

	Standard Macros
	__NASM_MAJOR__, __NASM_MINOR__, __NASM_SUBMINOR__ and ___NASM_PATCHLEVEL__: NASM Version
	__NASM_VERSION_ID__: NASM Version ID
	__NASM_VER__: NASM Version string
	__FILE__ and __LINE__: File Name and Line Number
	STRUC and ENDSTRUC: Declaring Structure Data Types
	ISTRUC, AT and IEND: Declaring Instances of Structures
	ALIGN and ALIGNB: Data Alignment

	TASM Compatible Preprocessor Directives
	%arg Directive
	%stacksize Directive
	%local Directive

	Other Preprocessor Directives
	%line Directive
	%!<env>: Read an environment variable.

	Assembler Directives
	BITS: Specifying Target Processor Mode
	USE16 & USE32: Aliases for BITS

	SECTION or SEGMENT: Changing and Defining Sections
	The __SECT__ Macro

	ABSOLUTE: Defining Absolute Labels
	EXTERN: Importing Symbols from Other Modules
	GLOBAL: Exporting Symbols to Other Modules
	COMMON: Defining Common Data Areas
	CPU: Defining CPU Dependencies

	Output Formats
	bin: Flat-Form Binary Output
	ORG: Binary File Program Origin
	bin Extensions to the SECTION Directive
	Multisection support for the BIN format.
	Map files

	obj: Microsoft OMF Object Files
	obj Extensions to the SEGMENT Directive
	GROUP: Defining Groups of Segments
	UPPERCASE: Disabling Case Sensitivity in Output
	IMPORT: Importing DLL Symbols
	EXPORT: Exporting DLL Symbols
	..start: Defining the Program Entry Point
	obj Extensions to the EXTERN Directive
	obj Extensions to the COMMON Directive

	win32: Microsoft Win32 Object Files
	win32 Extensions to the SECTION Directive

	coff: Common Object File Format
	elf: Executable and Linkable Format Object Files
	elf Extensions to the SECTION Directive
	Position-Independent Code: elf Special Symbols and WRT
	elf Extensions to the GLOBAL Directive
	elf Extensions to the COMMON Directive
	16-bit code and ELF

	aout: Linux a.out Object Files
	aoutb: NetBSD/FreeBSD/OpenBSD a.out Object Files
	as86: Minix/Linux as86 Object Files
	rdf: Relocatable Dynamic Object File Format
	Requiring a Library: The LIBRARY Directive
	Specifying a Module Name: The MODULE Directive
	rdf Extensions to the GLOBAL directive

	dbg: Debugging Format

	Writing 16-bit Code (DOS, Windows 3/3.1)
	Producing .EXE Files
	Using the obj Format To Generate .EXE Files
	Using the bin Format To Generate .EXE Files

	Producing .COM Files
	Using the bin Format To Generate .COM Files
	Using the obj Format To Generate .COM Files

	Producing .SYS Files
	Interfacing to 16-bit C Programs
	External Symbol Names
	Memory Models
	Function Definitions and Function Calls
	Accessing Data Items
	c16.mac: Helper Macros for the 16-bit C Interface

	Interfacing to Borland Pascal Programs
	The Pascal Calling Convention
	Borland Pascal Segment Name Restrictions
	Using c16.mac With Pascal Programs

	Writing 32-bit Code (Unix, Win32, DJGPP)
	Interfacing to 32-bit C Programs
	External Symbol Names
	Function Definitions and Function Calls
	Accessing Data Items
	c32.mac: Helper Macros for the 32-bit C Interface

	Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries
	Obtaining the Address of the GOT
	Finding Your Local Data Items
	Finding External and Common Data Items
	Exporting Symbols to the Library User
	Calling Procedures Outside the Library
	Generating the Library File

	Mixing 16 and 32 Bit Code
	Mixed-Size Jumps
	Addressing Between Different-Size Segments
	Other Mixed-Size Instructions

	Troubleshooting
	Common Problems
	NASM Generates Inefficient Code
	My Jumps are Out of Range
	ORG Doesn't Work
	TIMES Doesn't Work

	Bugs

	Ndisasm
	Introduction
	Getting Started: Installation
	Running NDISASM
	COM Files: Specifying an Origin
	Code Following Data: Synchronisation
	Mixed Code and Data: Automatic (Intelligent) Synchronisation
	Other Options

	Bugs and Improvements

	x86 Instruction Reference
	Key to Operand Specifications
	Key to Opcode Descriptions
	Register Values
	Condition Codes
	SSE Condition Predicates
	Status Flags
	Effective Address Encoding: ModR/M and SIB

	Key to Instruction Flags
	x86 Instruction Set
	AAA, AAS, AAM, AAD: ASCII Adjustments
	ADC: Add with Carry
	ADD: Add Integers
	ADDPD: ADD Packed Double-Precision FP Values
	ADDPS: ADD Packed Single-Precision FP Values
	ADDSD: ADD Scalar Double-Precision FP Values
	ADDSS: ADD Scalar Single-Precision FP Values
	AND: Bitwise AND
	ANDNPD: Bitwise Logical AND NOT of Packed Double-Precision FP Values
	ANDNPS: Bitwise Logical AND NOT of Packed Single-Precision FP Values
	ANDPD: Bitwise Logical AND For Single FP
	ANDPS: Bitwise Logical AND For Single FP
	ARPL: Adjust RPL Field of Selector
	BOUND: Check Array Index against Bounds
	BSF, BSR: Bit Scan
	BSWAP: Byte Swap
	BT, BTC, BTR, BTS: Bit Test
	CALL: Call Subroutine
	CBW, CWD, CDQ, CWDE: Sign Extensions
	CLC, CLD, CLI, CLTS: Clear Flags
	CLFLUSH: Flush Cache Line
	CMC: Complement Carry Flag
	CMOVcc: Conditional Move
	CMP: Compare Integers
	CMPccPD: Packed Double-Precision FP Compare
	CMPccPS: Packed Single-Precision FP Compare
	CMPSB, CMPSW, CMPSD: Compare Strings
	CMPccSD: Scalar Double-Precision FP Compare
	CMPccSS: Scalar Single-Precision FP Compare
	CMPXCHG, CMPXCHG486: Compare and Exchange
	CMPXCHG8B: Compare and Exchange Eight Bytes
	COMISD: Scalar Ordered Double-Precision FP Compare and Set EFLAGS
	COMISS: Scalar Ordered Single-Precision FP Compare and Set EFLAGS
	CPUID: Get CPU Identification Code
	CVTDQ2PD: Packed Signed INT32 to Packed Double-Precision FP Conversion
	CVTDQ2PS: Packed Signed INT32 to Packed Single-Precision FP Conversion
	CVTPD2DQ: Packed Double-Precision FP to Packed Signed INT32 Conversion
	CVTPD2PI: Packed Double-Precision FP to Packed Signed INT32 Conversion
	CVTPD2PS: Packed Double-Precision FP to Packed Single-Precision FP Conversion
	CVTPI2PD: Packed Signed INT32 to Packed Double-Precision FP Conversion
	CVTPI2PS: Packed Signed INT32 to Packed Single-FP Conversion
	CVTPS2DQ: Packed Single-Precision FP to Packed Signed INT32 Conversion
	CVTPS2PD: Packed Single-Precision FP to Packed Double-Precision FP Conversion
	CVTPS2PI: Packed Single-Precision FP to Packed Signed INT32 Conversion
	CVTSD2SI: Scalar Double-Precision FP to Signed INT32 Conversion
	CVTSD2SS: Scalar Double-Precision FP to Scalar Single-Precision FP Conversion
	CVTSI2SD: Signed INT32 to Scalar Double-Precision FP Conversion
	CVTSI2SS: Signed INT32 to Scalar Single-Precision FP Conversion
	CVTSS2SD: Scalar Single-Precision FP to Scalar Double-Precision FP Conversion
	CVTSS2SI: Scalar Single-Precision FP to Signed INT32 Conversion
	CVTTPD2DQ: Packed Double-Precision FP to Packed Signed INT32 Conversion with Truncation
	CVTTPD2PI: Packed Double-Precision FP to Packed Signed INT32 Conversion with Truncation
	CVTTPS2DQ: Packed Single-Precision FP to Packed Signed INT32 Conversion with Truncation
	CVTTPS2PI: Packed Single-Precision FP to Packed Signed INT32 Conversion with Truncation
	CVTTSD2SI: Scalar Double-Precision FP to Signed INT32 Conversion with Truncation
	CVTTSS2SI: Scalar Single-Precision FP to Signed INT32 Conversion with Truncation
	DAA, DAS: Decimal Adjustments
	DEC: Decrement Integer
	DIV: Unsigned Integer Divide
	DIVPD: Packed Double-Precision FP Divide
	DIVPS: Packed Single-Precision FP Divide
	DIVSD: Scalar Double-Precision FP Divide
	DIVSS: Scalar Single-Precision FP Divide
	EMMS: Empty MMX State
	ENTER: Create Stack Frame
	F2XM1: Calculate 2**X-1
	FABS: Floating-Point Absolute Value
	FADD, FADDP: Floating-Point Addition
	FBLD, FBSTP: BCD Floating-Point Load and Store
	FCHS: Floating-Point Change Sign
	FCLEX, FNCLEX: Clear Floating-Point Exceptions
	FCMOVcc: Floating-Point Conditional Move
	FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP: Floating-Point Compare
	FCOS: Cosine
	FDECSTP: Decrement Floating-Point Stack Pointer
	FxDISI, FxENI: Disable and Enable Floating-Point Interrupts
	FDIV, FDIVP, FDIVR, FDIVRP: Floating-Point Division
	FEMMS: Faster Enter/Exit of the MMX or floating-point state
	FFREE: Flag Floating-Point Register as Unused
	FIADD: Floating-Point/Integer Addition
	FICOM, FICOMP: Floating-Point/Integer Compare
	FIDIV, FIDIVR: Floating-Point/Integer Division
	FILD, FIST, FISTP: Floating-Point/Integer Conversion
	FIMUL: Floating-Point/Integer Multiplication
	FINCSTP: Increment Floating-Point Stack Pointer
	FINIT, FNINIT: Initialise Floating-Point Unit
	FISUB: Floating-Point/Integer Subtraction
	FLD: Floating-Point Load
	FLDxx: Floating-Point Load Constants
	FLDCW: Load Floating-Point Control Word
	FLDENV: Load Floating-Point Environment
	FMUL, FMULP: Floating-Point Multiply
	FNOP: Floating-Point No Operation
	FPATAN, FPTAN: Arctangent and Tangent
	FPREM, FPREM1: Floating-Point Partial Remainder
	FRNDINT: Floating-Point Round to Integer
	FSAVE, FRSTOR: Save/Restore Floating-Point State
	FSCALE: Scale Floating-Point Value by Power of Two
	FSETPM: Set Protected Mode
	FSIN, FSINCOS: Sine and Cosine
	FSQRT: Floating-Point Square Root
	FST, FSTP: Floating-Point Store
	FSTCW: Store Floating-Point Control Word
	FSTENV: Store Floating-Point Environment
	FSTSW: Store Floating-Point Status Word
	FSUB, FSUBP, FSUBR, FSUBRP: Floating-Point Subtract
	FTST: Test ST0 Against Zero
	FUCOMxx: Floating-Point Unordered Compare
	FXAM: Examine Class of Value in ST0
	FXCH: Floating-Point Exchange
	FXRSTOR: Restore FP, MMX and SSE State
	FXSAVE: Store FP, MMX and SSE State
	FXTRACT: Extract Exponent and Significand
	FYL2X, FYL2XP1: Compute Y times Log2(X) or Log2(X+1)
	HLT: Halt Processor
	IBTS: Insert Bit String
	IDIV: Signed Integer Divide
	IMUL: Signed Integer Multiply
	IN: Input from I/O Port
	INC: Increment Integer
	INSB, INSW, INSD: Input String from I/O Port
	INT: Software Interrupt
	INT3, INT1, ICEBP, INT01: Breakpoints
	INTO: Interrupt if Overflow
	INVD: Invalidate Internal Caches
	INVLPG: Invalidate TLB Entry
	IRET, IRETW, IRETD: Return from Interrupt
	Jcc: Conditional Branch
	JCXZ, JECXZ: Jump if CX/ECX Zero
	JMP: Jump
	LAHF: Load AH from Flags
	LAR: Load Access Rights
	LDMXCSR: Load Streaming SIMD Extension Control/Status
	LDS, LES, LFS, LGS, LSS: Load Far Pointer
	LEA: Load Effective Address
	LEAVE: Destroy Stack Frame
	LFENCE: Load Fence
	LGDT, LIDT, LLDT: Load Descriptor Tables
	LMSW: Load/Store Machine Status Word
	LOADALL, LOADALL286: Load Processor State
	LODSB, LODSW, LODSD: Load from String
	LOOP, LOOPE, LOOPZ, LOOPNE, LOOPNZ: Loop with Counter
	LSL: Load Segment Limit
	LTR: Load Task Register
	MASKMOVDQU: Byte Mask Write
	MASKMOVQ: Byte Mask Write
	MAXPD: Return Packed Double-Precision FP Maximum
	MAXPS: Return Packed Single-Precision FP Maximum
	MAXSD: Return Scalar Double-Precision FP Maximum
	MAXSS: Return Scalar Single-Precision FP Maximum
	MFENCE: Memory Fence
	MINPD: Return Packed Double-Precision FP Minimum
	MINPS: Return Packed Single-Precision FP Minimum
	MINSD: Return Scalar Double-Precision FP Minimum
	MINSS: Return Scalar Single-Precision FP Minimum
	MOV: Move Data
	MOVAPD: Move Aligned Packed Double-Precision FP Values
	MOVAPS: Move Aligned Packed Single-Precision FP Values
	MOVD: Move Doubleword to/from MMX Register
	MOVDQ2Q: Move Quadword from XMM to MMX register.
	MOVDQA: Move Aligned Double Quadword
	MOVDQU: Move Unaligned Double Quadword
	MOVHLPS: Move Packed Single-Precision FP High to Low
	MOVHPD: Move High Packed Double-Precision FP
	MOVHPS: Move High Packed Single-Precision FP
	MOVLHPS: Move Packed Single-Precision FP Low to High
	MOVLPD: Move Low Packed Double-Precision FP
	MOVLPS: Move Low Packed Single-Precision FP
	MOVMSKPD: Extract Packed Double-Precision FP Sign Mask
	MOVMSKPS: Extract Packed Single-Precision FP Sign Mask
	MOVNTDQ: Move Double Quadword Non Temporal
	MOVNTI: Move Doubleword Non Temporal
	MOVNTPD: Move Aligned Four Packed Single-Precision FP Values Non Temporal
	MOVNTPS: Move Aligned Four Packed Single-Precision FP Values Non Temporal
	MOVNTQ: Move Quadword Non Temporal
	MOVQ: Move Quadword to/from MMX Register
	MOVQ2DQ: Move Quadword from MMX to XMM register.
	MOVSB, MOVSW, MOVSD: Move String
	MOVSD: Move Scalar Double-Precision FP Value
	MOVSS: Move Scalar Single-Precision FP Value
	MOVSX, MOVZX: Move Data with Sign or Zero Extend
	MOVUPD: Move Unaligned Packed Double-Precision FP Values
	MOVUPS: Move Unaligned Packed Single-Precision FP Values
	MUL: Unsigned Integer Multiply
	MULPD: Packed Single-FP Multiply
	MULPS: Packed Single-FP Multiply
	MULSD: Scalar Single-FP Multiply
	MULSS: Scalar Single-FP Multiply
	NEG, NOT: Two's and One's Complement
	NOP: No Operation
	OR: Bitwise OR
	ORPD: Bit-wise Logical OR of Double-Precision FP Data
	ORPS: Bit-wise Logical OR of Single-Precision FP Data
	OUT: Output Data to I/O Port
	OUTSB, OUTSW, OUTSD: Output String to I/O Port
	PACKSSDW, PACKSSWB, PACKUSWB: Pack Data
	PADDB, PADDW, PADDD: Add Packed Integers
	PADDQ: Add Packed Quadword Integers
	PADDSB, PADDSW: Add Packed Signed Integers With Saturation
	PADDSIW: MMX Packed Addition to Implicit Destination
	PADDUSB, PADDUSW: Add Packed Unsigned Integers With Saturation
	PAND, PANDN: MMX Bitwise AND and AND-NOT
	PAUSE: Spin Loop Hint
	PAVEB: MMX Packed Average
	PAVGB PAVGW: Average Packed Integers
	PAVGUSB: Average of unsigned packed 8-bit values
	PCMPxx: Compare Packed Integers.
	PDISTIB: MMX Packed Distance and Accumulate with Implied Register
	PEXTRW: Extract Word
	PF2ID: Packed Single-Precision FP to Integer Convert
	PF2IW: Packed Single-Precision FP to Integer Word Convert
	PFACC: Packed Single-Precision FP Accumulate
	PFADD: Packed Single-Precision FP Addition
	PFCMPxx: Packed Single-Precision FP Compare
	PFMAX: Packed Single-Precision FP Maximum
	PFMIN: Packed Single-Precision FP Minimum
	PFMUL: Packed Single-Precision FP Multiply
	PFNACC: Packed Single-Precision FP Negative Accumulate
	PFPNACC: Packed Single-Precision FP Mixed Accumulate
	PFRCP: Packed Single-Precision FP Reciprocal Approximation
	PFRCPIT1: Packed Single-Precision FP Reciprocal, First Iteration Step
	PFRCPIT2: Packed Single-Precision FP Reciprocal/ Reciprocal Square Root, Second Iteration Step
	PFRSQIT1: Packed Single-Precision FP Reciprocal Square Root, First Iteration Step
	PFRSQRT: Packed Single-Precision FP Reciprocal Square Root Approximation
	PFSUB: Packed Single-Precision FP Subtract
	PFSUBR: Packed Single-Precision FP Reverse Subtract
	PI2FD: Packed Doubleword Integer to Single-Precision FP Convert
	PF2IW: Packed Word Integer to Single-Precision FP Convert
	PINSRW: Insert Word
	PMACHRIW: Packed Multiply and Accumulate with Rounding
	PMADDWD: MMX Packed Multiply and Add
	PMAGW: MMX Packed Magnitude
	PMAXSW: Packed Signed Integer Word Maximum
	PMAXUB: Packed Unsigned Integer Byte Maximum
	PMINSW: Packed Signed Integer Word Minimum
	PMINUB: Packed Unsigned Integer Byte Minimum
	PMOVMSKB: Move Byte Mask To Integer
	PMULHRWC, PMULHRIW: Multiply Packed 16-bit Integers With Rounding, and Store High Word
	PMULHRWA: Multiply Packed 16-bit Integers With Rounding, and Store High Word
	PMULHUW: Multiply Packed 16-bit Integers, and Store High Word
	PMULHW, PMULLW: Multiply Packed 16-bit Integers, and Store
	PMULUDQ: Multiply Packed Unsigned 32-bit Integers, and Store.
	PMVccZB: MMX Packed Conditional Move
	POP: Pop Data from Stack
	POPAx: Pop All General-Purpose Registers
	POPFx: Pop Flags Register
	POR: MMX Bitwise OR
	PREFETCH: Prefetch Data Into Caches
	PREFETCHh: Prefetch Data Into Caches
	PSADBW: Packed Sum of Absolute Differences
	PSHUFD: Shuffle Packed Doublewords
	PSHUFHW: Shuffle Packed High Words
	PSHUFLW: Shuffle Packed Low Words
	PSHUFW: Shuffle Packed Words
	PSLLx: Packed Data Bit Shift Left Logical
	PSRAx: Packed Data Bit Shift Right Arithmetic
	PSRLx: Packed Data Bit Shift Right Logical
	PSUBx: Subtract Packed Integers
	PSUBSxx, PSUBUSx: Subtract Packed Integers With Saturation
	PSUBSIW: MMX Packed Subtract with Saturation to Implied Destination
	PSWAPD: Swap Packed Data
	PUNPCKxxx: Unpack and Interleave Data
	PUSH: Push Data on Stack
	PUSHAx: Push All General-Purpose Registers
	PUSHFx: Push Flags Register
	PXOR: MMX Bitwise XOR
	RCL, RCR: Bitwise Rotate through Carry Bit
	RCPPS: Packed Single-Precision FP Reciprocal
	RCPSS: Scalar Single-Precision FP Reciprocal
	RDMSR: Read Model-Specific Registers
	RDPMC: Read Performance-Monitoring Counters
	RDSHR: Read SMM Header Pointer Register
	RDTSC: Read Time-Stamp Counter
	RET, RETF, RETN: Return from Procedure Call
	ROL, ROR: Bitwise Rotate
	RSDC: Restore Segment Register and Descriptor
	RSLDT: Restore Segment Register and Descriptor
	RSM: Resume from System-Management Mode
	RSQRTPS: Packed Single-Precision FP Square Root Reciprocal
	RSQRTSS: Scalar Single-Precision FP Square Root Reciprocal
	RSTS: Restore TSR and Descriptor
	SAHF: Store AH to Flags
	SAL, SAR: Bitwise Arithmetic Shifts
	SALC: Set AL from Carry Flag
	SBB: Subtract with Borrow
	SCASB, SCASW, SCASD: Scan String
	SETcc: Set Register from Condition
	SFENCE: Store Fence
	SGDT, SIDT, SLDT: Store Descriptor Table Pointers
	SHL, SHR: Bitwise Logical Shifts
	SHLD, SHRD: Bitwise Double-Precision Shifts
	SHUFPD: Shuffle Packed Double-Precision FP Values
	SHUFPS: Shuffle Packed Single-Precision FP Values
	SMI: System Management Interrupt
	SMINT, SMINTOLD: Software SMM Entry (CYRIX)
	SMSW: Store Machine Status Word
	SQRTPD: Packed Double-Precision FP Square Root
	SQRTPS: Packed Single-Precision FP Square Root
	SQRTSD: Scalar Double-Precision FP Square Root
	SQRTSS: Scalar Single-Precision FP Square Root
	STC, STD, STI: Set Flags
	STMXCSR: Store Streaming SIMD Extension Control/Status
	STOSB, STOSW, STOSD: Store Byte to String
	STR: Store Task Register
	SUB: Subtract Integers
	SUBPD: Packed Double-Precision FP Subtract
	SUBPS: Packed Single-Precision FP Subtract
	SUBSD: Scalar Single-FP Subtract
	SUBSS: Scalar Single-FP Subtract
	SVDC: Save Segment Register and Descriptor
	SVLDT: Save LDTR and Descriptor
	SVTS: Save TSR and Descriptor
	SYSCALL: Call Operating System
	SYSENTER: Fast System Call
	SYSEXIT: Fast Return From System Call
	SYSRET: Return From Operating System
	TEST: Test Bits (notional bitwise AND)
	UCOMISD: Unordered Scalar Double-Precision FP compare and set EFLAGS
	UCOMISS: Unordered Scalar Single-Precision FP compare and set EFLAGS
	UD0, UD1, UD2: Undefined Instruction
	UMOV: User Move Data
	UNPCKHPD: Unpack and Interleave High Packed Double-Precision FP Values
	UNPCKHPS: Unpack and Interleave High Packed Single-Precision FP Values
	UNPCKLPD: Unpack and Interleave Low Packed Double-Precision FP Data
	UNPCKLPS: Unpack and Interleave Low Packed Single-Precision FP Data
	VERR, VERW: Verify Segment Readability/Writability
	WAIT: Wait for Floating-Point Processor
	WBINVD: Write Back and Invalidate Cache
	WRMSR: Write Model-Specific Registers
	WRSHR: Write SMM Header Pointer Register
	XADD: Exchange and Add
	XBTS: Extract Bit String
	XCHG: Exchange
	XLATB: Translate Byte in Lookup Table
	XOR: Bitwise Exclusive OR
	XORPD: Bitwise Logical XOR of Double-Precision FP Values
	XORPS: Bitwise Logical XOR of Single-Precision FP Values

	Index

