
Interactive Design and Simulation System

version 0.09 for VisualWorks Smalltalk version 5i.4 and up

Short form manual

written by

dr.ir. A.C. (Ad) Verschueren

february 1999 - february 2003

Introduction
This is the so-called 'short form manual' for the 'Interactive Design and
Simulation System' (shortened to 'IDaSS' which is pronounced 'eye-dasss'), a
program which allows you to design and simulate complex digital circuits like
microprocessors.

IDaSS uses a mix of graphics and texts to describe a design. There are other
programs which allow that too. IDaSS uses special languages for the textual
descriptions. There are other programs which also use so-called 'proprietary'
languages, but those used by IDaSS are highly specialised and focused to
describe specific forms of behaviour - simple, yet powerful. The main
difference lies in the 'I' of 'IDaSS'. Design and simulation are integrated and
totally interactive, there is no fancy button to compile a system and start
simulating it. In IDaSS, simulation is continuous, you cannot even turn it off!

With IDaSS, you can use two methods for describing your design, one works
like a standard programming language (only with special variable types and
operators), the other works at the 'Register Transfer Level' (where you work
directly with registers, memories, combinatorial logic 'operators', buses and
finite state machines). Both of these methods can be used in combination, but
only Register Transfer Level designs can be converted into real hardware.
IDaSS can generate the necessary files in 'standard' languages like VHDL
and Verilog for you. You will need other programs to convert these files into
chip layouts or program files for programmable logic devices, though.

This is the 'short form manual', so is there a 'long form manual'? Well, no. To
describe everything available in IDaSS and tell you how to use it would give a
boring document at least four times as thick as this one. IDaSS invites you to
try it out and learn by doing (and hitting the [F1] button a lot to get help or just
more detailed information). If you make a mistake, don't despair. You are well
protected against losing your work with a single keystroke or mouse click.

This manual is intended to give you a basic understanding of how IDaSS
works and wet your appetite for starting your own designs and exploring the
capabilities of IDaSS further than described here. We do assume, however,
that you have a basic knowledge of digital circuit design (and know an FSM
when you see one). In fact, IDaSS was used successfully in a second
trimester, first year course at Eindhoven University to let students design their
own (working!) microprocessor, so it can not be that hard…

If you are in a hurry, just start reading this manual up to section 5.9 ('Building
a system part 3: buses and commands'), skipping those parts you already
know or just don't care about. Then jump to chapter 7 for a do-it-yourself
demo and come back later for more leads and overview information.

Have fun! Ad Verschueren, july 2002

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 1

Contents:

1. LEGAL STUFF ... 2
1.1 Bug reporting .. 2
1.2 Important places and files on the internet.................................. 2

2. IDaSS INSTALLATION .. 4
2.1 The stand-alone version... 4
2.2 The VisualWorks 'parcel' version.. 5
2.3 Known problems... 6
2.4 Files in the distribution library .. 6

3. GENERIC IDaSS FEATURES...................................... 10
3.1 Some more detailed features... 11

4. USER INTERFACE SPECIFICS................................... 13
4.1 Floating and position sensitive menu's.................................... 13
4.2 The IDaSS help window ... 13

5. USING IDaSS... 15
5.1 Starting IDaSS... 15
5.2 Stopping IDaSS... 15
5.3 Saving and restarting the working environment...................... 16
5.4 Main window components ... 17
5.5 Loading a system ... 18
5.6 Saving a system (part).. 18
5.7 Building a system part 1: blocks... 19
5.8 Building a system part 2: connectors....................................... 19
5.9 Building a system part 3: buses and commands..................... 20
5.10 Comments, comments and documents... 21
5.11 Saving screen space and working time.................................... 21
5.12 Debugging and trace file generation... 22
5.13 Timing simulation and optimisation ... 22
5.14 Converting an IDaSS design into real hardware...................... 25
5.15 ‘Properties’ .. 26

6. BLOCKS WHICH CAN BE USED IN A DESIGN.......... 27
6.1 Registers ... 27
6.2 Operators... 28
6.3 State controllers ... 30
6.4 Memories... 32
6.5 Three-state buffers ... 34
6.6 Constant generators... 35
6.7 Algorithmic Level ('AL') blocks.. 35
6.8 Sub-schematics .. 36
6.9 Multiple schematics.. 37
6.10 Control inputs (not a block, but important) 38

7. DO-IT-YOURSELF DEMO.. 40

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 2

1. LEGAL STUFF

The 'Interactive Design and Simulation System' is
 1988-2001 Eindhoven University of Technology
 2002 dr.ir. A.C. Verschueren

Written by dr.ir. A.C. Verschueren,
E-mail: idass@xs4all.nl

This software is distributed on an as-is basis, without any further implied or
express warranties. We do not accept any responsibilities regarding it's use in
any way.

...but we do our best! IDaSS is a research tool, which means that it is
regularly updated with new features, but also that these new bells and
whistles may have some childhood bugs (as like in every program, but we do
admit that we are not perfect...).

1.1 Bug reporting

If you suspect a bug, check if you are using the latest version by comparing
your errorlog.txt file with the one distributed from the download page in the
main IDaSS distribution files idass5i4.exe and source5i4.zip. If your version
is older, it might be that your bug has been found and fixed (the file contains a
description of bugfixes in chronological order). We welcome bug reports, send
them to the e-mail address indicated above. If you're using the 'stand alone'
version of IDaSS, a system crash will generate an error.log file - include this
one with your error report!

1.2 Important places and files on the
internet

The IDaSS 'homepage':

http://www.xs4all.nl/~averschu/idass

The IDaSS download page with links for downloading (sorry, no direct FTP
possible for now):

http://www.xs4all.nl/~averschu/idass/idassdownload.html

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 3

The installation program file which contains IDaSS itself as a stand-alone
version running under Windows 95/98/NT/ME and also in a Windows
emulator under Linux:

idass5i4.exe

The library file which contains the IDaSS 'parcel' (including source code) and
all the other files needed for installing IDaSS inside an existing VisualWorks
Smalltalk (version 5i.4 and up) environment:

source5i4.zip

A separate text file explaining how to get both versions up and running:

instal5i4.txt

The VisualWorks Smalltalk site, from which you can download (complete)
evaluation versions (and also buy commercial licences) of the VisualWorks
system. VisualWorks can run on a large number of computer platforms,
including Windows (95/98/NT/ME), Linux, Power Macintosh and a number of
UNIX boxes (HP-UX, Sun Solaris and others):

http://www.cincom.com

The Xilinx site, from which you can download the (freeware) Xilinx WebPACK
FPGA synthesis toolbox which is targeted by the spartan2e.aft Verilog
source code generator delivered with IDaSS:

http://www.xilinx.com

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 4

2. IDaSS INSTALLATION

IDaSS can be brought up-and-running in two different ways:

1) As a 'stand-alone' system, without access to the VisualWorks Smalltalk
environment in which it was built.

2) As an application 'parcel' to be installed in an existing VisualWorks
Smalltalk environment.

Both of these have their own advantages and disadvantages:

��The stand-alone version is a lot smaller (approximately 9 Megabytes) than
the VisualWorks environment with IDaSS installed as application (which
easily exceeds 20 Megabytes). The stand-alone version is also easier to
install.

��The stand-alone version only runs on a Windows (95/98/NT/ME/XP)
equip-ped PC, or in a Windows emulator under Linux. VisualWorks
Smalltalk can be obtained for a lot of other 'platforms' - IDaSS should run
on all of them when installed within this environment as an application
parcel.

First, some general warnings:

Warning for Windows-NT, Linux and UNIX users:

Filenames are case sensitive in your operating system! IDaSS looks for an
idass.ini file (all lowercase), so you will have to change the name of that file if
it is not all lowercase (it should be so after installation). Also, the files
mentioned in this configuration file must match the actual file(path)s
casewise.

Remark for all users:

We have seen that VisualWorks is not very consistent in what it calls its
'home directory'. If IDaSS can not find the idass.ini file, you will be asked to
find it using a Windows-95 style file opening dialog. This also allows you to
select a configuration file which is not all lowercase.

2.1 The stand-alone version

1) Download the idass5i4.exe file from the 'download' section of the
IDaSS homepage http://www.xs4all.nl/~averschu/idass.

2) Run this file to start the automatic installation procedure (which
unpacks all files, creates an icon, program group and uninstaller).

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 5

During this procedure, you can choose between a basic IDaSS
installation or one preconfigured to generate Verilog targeted towards
the Xilinx WebPACK tools for either Xilinx Spartan-II/200-PQ208 or
Spartan-IIE/300-PQ208 FPGA's. At the end of this process, it is
advisable to edit the idass.ini file to select (at least) the correct time
zone.

3) Click on the IDaSS icon created in step 2) to start the system. This
should immediately open a top level schematic editor window. Pull
down any menu from the menu bar and select 'install IDaSS from
idass.ini' to complete the installation and save the system with the
settings chosen in the idass.ini configuration file.

You can manually (re)initialise IDaSS by chosing 'miscellaneous',
'system management', 'initialise IDaSS' from the menu bar of this
schematic editor window.

2.2 The VisualWorks 'parcel' version

1) Obtain a version of the Visualworks Smalltalk 5i.4 environment from
http://www.cincom.com which can run on your machine.

2) Get VisualWorks Smalltalk up and running, preferrably using all their
default settings. Do not forget to set the Visualworks home/installation
directory (launcher window - the one with the buttons - 'File' menu,
'set VW home').

3) Download the source5i4.zip file from the 'download' section of the
IDaSS homepage http://www.xs4all.nl/~averschu/idass/ and unzip it
to your main VisualWorks Smalltalk directory (which creates a few new
directories, make sure the 'use path names' option is set).

Then follow instructions in the text file install5i4.txt contained in the
source5i4.zip library (as usual, the idass.ini file should be modified, if
necessary after copying it from spartan2.ini or spartan2e.ini!). If all
went OK, a new button should appear in the launcher window:

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 6

Click this button to open a top level IDaSS schematic editor window.
Pull down any menu from the menu bar and select 'install IDaSS from
idass.ini' to complete the installation and save the system with the
settings chosen in the idass.ini configuration file.

You can manually (re)initialise IDaSS by chosing 'miscellaneous',
'system management', 'initialise IDaSS' from the menu bar of this
schematic editor window.

2.3 Known problems

• Some machines have problems with the menu's. Clicking the right
mouse button does not give the menu for the sub-window or schematic
object pointed at, but the window menu instead. Pressing the [CTRL]
button while clicking solves this - installing another mouse driver may
also help (under Windows-95, that is). If that doesn't help, you can
swap both menu's with a setting in the 'miscellaneous' / 'environment
settings' menu from the menu bar of any IDaSS schematic editor
window.

• The help file idass.hlp is not complete, most of the descriptions of
window parts and lower level menu's are not containing very
meaningful information yet.

• If you change the setting of the IDaSS text window font size, fixed-size
windows depending on this size do not change their size automatically.
You have to close and re-open them. Some platforms have problems
with font size changes and offer only a single size.

• Opening the help window with a menu popped up (which provides help
on this menu) closes the menu immediately, while it would be more
logical to keep the menu on the screen - most windowing systems
regard a menu as something extremely transient which should be
removed from the screen when a window opens.

2.4 Files in the distribution library

To be placed in the main IDaSS installation directory (or 'home' directory of
VisualWorks Smalltalk, if you are installing IDaSS as an application parcel):

idass.ini configuration file telling IDaSS where to find other files
during installation (renamed to idassbasic.ini if one of the
other .ini files replaces this one during stand-alone
installation)

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 7

spartan2.ini ditto, but now with settings to install a Verilog code gene-
rator targeted towards the Xilinx WebPACK tools for
generating Xilinx Spartan-II/200-PQ208 FPGA
configuration files. Replace idass.ini with this file before
running IDaSS for the first time if you want to have this by
default (can be done automatically during stand-alone
installation)

spartan2e.ini as spartan2.ini, but now for generating Xilinx Spartan-
IIE/300-PQ208 FPGA configuration files. Replace idass.ini
with this file before running IDaSS for the first time if you
want to have this by default (can be done automatically
during stand-alone installation)

idass.im initial image file containing a 'stripped' VisualWorks system
with IDaSS installed (only used for stand-alone version)

errorlog.txt text file containing release notes: capabilities added and
bugs removed with each release

instal5i4.txt text file explaining the installation processes

licence.txt text file holding the licence information: READ THIS ONE!

uninst000.exe program to uninstall IDaSS (only for stand-alone version)

uninst000.dat data file for uninstallation (only for stand-alone version)

To be placed in a bin sub-directory of main IDaSS installation directory:

visual.exe VisualWorks 'non-commercial' execution engine (only for
stand-alone version)

herald.bmp graphic image used both for the splash screen as well as
empty IDaSS schematic editor windows (may overwrite file
with same name in VisualWorks base system)

IDaSS.ico icon image file for stand-alone version

linkmaster.dll, vwft16.dll and vwft32.dll
module libraries used by visual.exe, licenced (and
included) only for running the IDaSS stand-alone version

To be placed in a support sub-directory of the main IDaSS installation
directory:

idass.hlp hypertext linked help file for IDaSS (not Windows help
compatible)

shortman.pdf 'short form' manual - this text

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 8

idass.tec default technology file with time delay calculations (based
on a 2 nanoseconds basic NAND gate delay) and memory
size and memory port restrictions

compass1.aft 'Alien File Template' for generating Compass VHDL
equivalents of an IDaSS design - including RAM/ROM
macrocells and ASIC pad ring

spartan2e.aft 'Alien File Template' for generating Verilog equivalents of
an IDaSS design targeted towards Xilinx WebPACK tools
to generate Xilinx Spartan-II(E) FPGA implementations

spartan2e.pdf manual explaining how to use the spartan2e.aft Xilinx
WebPACK Verilog generator

example.lfd simple simulation trace file format description

vhdlenv.lfd simulation trace file format description which generates
VHDL test environments (well, almost)

verilog.lfd simulation trace file format description which generates a
file compatible with the Verilog $readmemb command

To be placed in a designs sub-directory of the main IDaSS installation
directory (this part may change!):

up8048n.des an almost complete implementation of the Intel 8048
processor core, minus I/O instructions and I/O hardware. It
is a good example of a complete and not too simple
Register Level system

al8048.des also an 8048 but this time including I/O, built around a
single Algorithmic Level block

rom8048.hex Intel HEX file containing a small test program to be loaded
in the 8048 example designs

ram8048.hex Intel HEX file with initial RAM contents for the 8048
designs

communic.des an example which shows the use of sub-schematics, re-
use of schematics, use of parameters and the concept of
communicating finite state machines

alexmple.des is intended to show all the constructs available in the
Algorithmic Level block language. The comment for the
complete design (named 'AL_test') contains instructions on
how to view these constructs in full execution.

pipeline.des contains a fairly complete and synthesizable pipelined
processor with a 5 stage pipeline (see resulting ASIC on
http://www.xs4all.nl/~averschu/idass/pipechip.html)

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 9

pipeline.hex contains a small test program to be loaded in the ROM of
the pipeline.des design

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 10

3. GENERIC IDaSS FEATURES

This is a slightly modified version of the information on the IDaSS homepage.

In short:

"IDaSS is an Interactive Design and Simulation System for digital
circuits, targeted towards VLSI and ULSI designs of complex
data processing hardware."

Its main features are the following:

Graphics to describe system structure.

IDaSS describes a design as a hierarchy of schematics. A schematic
contains elements like registers, RAM's, ROM's, combinatorial (ALU-
like) 'operators' and associated Finite State Machine controllers.

Data transfer is described by drawing lines representing data buses.
Complete schematics may be re-used in a system.

Textual languages to describe behaviour.

IDaSS uses specially tailored languages to describe the behaviour of
system elements which can have complex behaviour, like
combinatorial operators, FSM controllers and local control signal
decoders. These languages have a lot of common constructs and are
kept as simple as possible (for instance, there are no reserved words).

Completely integrated design and simulation.

IDaSS simulates while designing. Placing an element on a schematic
immediately simulates it's behaviour. Saving a textual description
immediately compiles this into behaviour and simulates it. There is no
need to restart simulation if a design error is found, just fix the error,
bring the system into a usable state and continue simulation.

IDaSS can be compared to an electronic breadboard without its usual
shortcomings:

• Never shortage of parts, the parts you use are always of the
correct size and functionality.

• Complex parts and wide datapaths form no problem at all.
• Power-on insertion and removal without destroying anything.
• Errors lead to a simulation halt, not a blown up device.
• System operation can be observed through an unlimited supply

of test probes.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 11

• System state can be modified easily using interactive editing
facilities.

Integrated higher abstraction level design.

A so-called 'Algorithmic Level' block allows you to design (and
simulate) complete datapaths and associated controllers with a
description resembling a structured programming language like Pascal
or C.

Such a block contains a set of local variables (operating like registers
or memories) and a set of procedures operating on those variables.
These blocks are placed in the normal Register Transfer Level IDaSS
design environment and can communicate and synchronise with this
environment.

Friendly to both novices and experienced designers.

IDaSS is completely menu driven and it's textual languages are easy to
learn. Yet, the system is powerful enough to handle very complex
designs and allows libraries of reusable components and sub-systems
to be built. A comprehensive help system with over 1200 hypertext
linked pages is delivered with the system (just press [F1] to open the
help window).

On-the-fly syntax and semantics checking.

IDaSS does not allow any operation which can be regarded a syntax
error (like connecting buses of different widths). IDaSS will warn the
user if he/she tries to do something which may result in system failure
(like asking a system element to perform a function which has not been
defined yet).

Direct path to hardware.

IDaSS design files can be converted into a format suitable as input for
silicon compilers. Synthesizable VHDL and Verilog output is available
with the 'alien file generation' functionality which uses a rulebase
('template') file for total flexibility.

3.1 Some more detailed features

• The maximum width (number of bits transferred or stored in parallel) of
datapath elements is not fixed, it can be changed from the
'miscellaneous', 'environment settings' menu on the menu bar of
any schematic editor window.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 12

NOTE: although the width can be set well above 64 bits, viewers
(virtual test probes) and memory editors will only handle widths up to
64 bits (for now).

• You can perform time-consuming operations (like a long simulation
run, generating documentation or VHDL/Verilog generation) in the
background. Limitations are that this can be done for one operation per
simulation session (a system edited) and that only one file in/out or
documentation generation operation can be going on at the same time.
Window operations (except closing) are allowed while running an
operation in the background.

• Text cut, copy and paste runs through the platform copy/paste buffer
(the 'clipboard' under MS-Windows). This allows you to exchange text
(fragments) with other programs.

Schematics (either as a whole or just the part shown in the window)
can also be placed as graphics in this buffer. Direct printing of
schematics (or text) is not possible, though.

• For total cross-platform compatibility, IDaSS can read any kind of text
file (DOS, UNIX or Mac). By default, it will generate the kind of text file
fitting to the platform it is running on. This can be overruled with an
entry in the 'environment settings' sub-menu of the 'Miscellaneous'
menu on the schematic window menu bar.

• Automatic, periodic saving of a design is possible to prevent loss in
case of a system crash (see 'Miscellaneous', 'auto save settings').

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 13

4. USER INTERFACE SPECIFICS

The VisualWorks Smalltalk environment in which IDaSS is implemented
automatically adjusts its user interface to match that of the host operating
system under which it is running (and you can even overrule the automatic
switching, if you want). Window handling and text editing operations are
totally standard and should need no further explanation. Still, there are
several things worth mentioning here.

4.1 Floating and position sensitive
menu's

Although all IDaSS windows have a menu bar to provide access to the most
often used menu's, it was sometimes necessary to provide a higher level of
selection between different menu's.

In schematics, each schematic element (block, connector, bus segment or
viewer) has its own menu. You access this menu as a floating menu of your
operating system (point the mouse at the element and click a specific button -
the right button under Windows-95, for instance).

If clicking this way gives the window menu, try holding down the
[CTRL] key while clicking. You can permanently swap the window
menu and the intended floating menu with an entry in the
'Miscellaneous', 'environment settings' menu from the menu bar of
any schematics editor window.

Sometimes, the exact postion of the mouse when the menu is called up is
important, for instance when making a side connection to a bus segment.

In text lists of objects which also show the object states, selecting an entry in
this list will immediately call up the menu for this entry.

4.2 The IDaSS help window

Pressing [F1] with a menu or prompter visible will open a help window
containing information on this menu or prompter. If no menu or prompter is
visible, pressing [F1] will open a help window containing information for the
screen element the mouse was pointing at that time.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 14

Pages contain links to other pages denoted by pieces of underlined text. You
can go to a linked page by clicking the select button (in most cases the left
one) while pointing at the link.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 15

5. USING IDaSS

This chapter provides an introduction on how to start and stop IDaSS, load
and save designs, create new (or modify existing) designs and a lot of other
interesting features.

5.1 Starting IDaSS

On the stand-alone version, clicking the 'IDaSS' icon (set up during
installation) will open a top-level schematic window in which you can start
editing and simulating your design.

After installing the IDaSS parcel in an existing VisualWorks Smalltalk
environment, the Smalltalk 'launcher' window should have a button labeled
'IDaSS' which performs the same function:

With IDaSS running, you can always open a new (empty) top-level schematic
editor with from the menu bar menu 'File/system' entry 'new session'.

5.2 Stopping IDaSS

Closing a top-level schematic editor window will stop an edit/simulation
session and also close all other IDaSS windows related to this session.
IDaSS will ask if you are sure you want to close this window because you will
loose your work if you did not save the design.

On the stand-alone version of IDaSS, closing the last top-level schematic
editor window also exits the complete IDaSS environment automatically.

In case IDaSS is installed within an existing VisualWorks Smalltalk
environment, quitting this environment is done with 'File', 'Exit VisualWorks'
from the menu bar of the Launcher window.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 16

5.3 Saving and restarting the working
environment

The VisualWorks Smalltalk 'image' contains the complete working
environment, including IDaSS and any IDaSS design sessions you are
performing. When saving this image in a file, it will record system mode
setting changes you have made, windows you have opened and even the
exact simulation state of the systems you're working on.

If you change system settings (for instance the maximum datapath
element width), you must save the 'image' to record these changes for
the next time you start the system!

For the stand-alone version, you can save the image from with 'File/system',
'save image' from any top level schematic editor window menu bar.

If you installed IDaSS as 'parcel' in a complete VisualWorks environment, you
can also save the image file with 'File', 'Save as' from the launcher window or
when you exit VisualWorks Smalltalk with 'File', 'Exit VisualWorks', 'Save
then exit' from the same window.

After this you should give the base name for the image file (with as default the
name of the image file which is being used, do NOT give the .im extension).
Using different names allows you to have several image files (for instance
each containing work on a different project).

Image files are rather large, well over 5 megabyte - although
convenient, they are NOT meant as a medium to store IDaSS designs!

If you want to restart VisualWorks with a specific image file, you should
indicate this image file (full path name!) as parameter on the command line
which starts the VisualWorks executable (for the Windows versions, this is file
visualnc.exe or visual.exe in the bin subdirectory of the main VisualWorks
Smalltalk installation directory).

If you are using a 'quick start' method for VisualWorks (for instance with a
desktop icon under Windows), do not forget to add the intended image file to
the command line stored there. Under Windows, use the 'properties'
selection from the right mouse button menu of the icon - and do not forget to
set the working directory to the VisualWorks home directory too, with full path
name (this forms part of the stand-alone version's installation process).

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 17

5.4 Main window components

This window contains a menu bar and three main sub-windows:

• The top one is the actual schematic workspace in which the system
structure is defined graphically with blocks, connectors placed within
blocks and data buses drawn between connectors. Blocks and buses
can be given 'viewers' (a kind of virtual test probes) to provide
continuous information regarding the system state.

• The bottom left one showing 'messages will come here' is a small
(read-only) text window used to display information of all sorts. A
number of previous messages is kept in this window, which can be
scrolled back into view. The graphic button on the left margin enlarges
the sub-window to the full window size in order to view more messages
in the list (click once more to reduce the sub-window again).

• The bottom right part is the focal point in the timing of the simulation
(which is always going on, even while editing the system!). The text on
the button shows what will happen if you click your mouse there:

CLOCK STEP simulates a single clock cycle
EVENT STEP advances time to the next scheduled event
TIME STEP advances time by a specific amount
ABORT stops a long (simulation) operation

The single line text window above the button shows either the clock
cycle number (with one fractional digit as shown in the picture, a '-'
sign indicates 'just before the start of the clock cycle shown') or the

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 18

actual simulation time. Changing settings and modes controlling this,
as well as resetting the simulated system is done from the
'Time/simulation' menu on the menu bar.

5.5 Loading a system

You can load an existing IDaSS design by selecting 'load system' from the
'File/system' menu on the menu bar (but only if you have an empty top
schematic). You are first asked whether you want to get the file from the
IDaSS designs clipboard (called 'temp') or from a normal file. The latter will
open a Windows-95 style file search window which targets an IDaSS design
(.des) file. The file you select will be loaded and immediately starts simulation
at simulation time 0.

5.6 Saving a system (part)

Saving the complete system is done by selecting the 'save system' entry
from the 'File/system' menu on the menu bar. Likewise, all important blocks
in a design have a 'file out' entry in their menu. In both cases, you are
presented with the choice to store the system or element onto a normal
design file, the IDaSS designs clipboard or using an installed 'alien file
format'. The latter allows you to save an IDaSS design as a synthesizable
VHDL or Verilog (or other language) file. Installing alien file generation is done
from the 'Miscellaneous' menu on the menu bar.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 19

5.7 Building a system part 1: blocks

System building starts by placing blocks on a schematic. This can be done
from the 'Schematic' menu on the menu bar, entry 'add block'. The menu
which pops up allows you to add a standard block, or one loaded from a file
or the designs clipboard. The selected element must be placed on the
schematic by moving the mouse to position the upper-left corner, then holding
down the left mouse button to position the bottom-right corner after which the
left mouse button can be released. After this, some extra information must be
provided (name for new blocks, width in bits for registers, etc.). Note that you
may use any name for a block you like, as long as there are no two blocks in
a single schematic with the same name.

Names in IDaSS start with a letter, which may be followed by any
combination of letters, digits and underscores - IDaSS is case
unsensitive and names can be as long as you like (provided they fit in
the block symbol), with all characters checked in name comparisons.

After a block has been placed, you can start extending and modifying its
behaviour - always from the menu you get by popping up the floating menu
for the block. Standard operations like moving the block on the schematic
(with 'frame'), removing the block and adding 'viewers' to monitor the state of
the block are directly available on this menu, while most blocks have an 'edit'
entry for more in-depth changes. Some editing operations require the use of a
separate edit window, like defining the states of a state machine controller.

5.8 Building a system part 2:
connectors

Only in a few rare cases, connectors are created when the block is initialised
(a three-state buffer makes no sense without input and output connectors). In
all other cases, you have to add the connectors yourself (mostly from the
'edit' menu mentioned above). If the system asks for an optional name, you
can leave the name blank. If the system asks for a mandatory name, you
have to enter a name - as with blocks, any name will do, as long as the
connectors on a block are named differently.

Each connector has its own menu, which allows operations like starting a bus
from a connector or disconnecting the connector again. IDaSS uses five types
of connectors:

Inputs which simply make a value on a connected bus available within the
block.

Continuous outputs which place a value generated by the block on a
connected bus.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 20

Three state outputs are also outputs, but it is possible here to 'disable' the
output so that another one can drive the bus. After initialisation, a
three-state output is disabled by default and needs an 'enable'
command to drive the bus.

By sending 'enable' and 'disable' commands to blocks, all three
state outputs which respond to those commands will change their
state. Individual connectors can be targeted by appending '\\' and the
connector name after the block name.

Control inputs whose main task is to translate values on the connected bus
into commands for the block it is placed in, using a textual syntax
which resembles a 'Programmable Logic Array' specification.

These are described in section 6.10 in some more detail.

Bidirectional 'feedthrough' connectors are only allowed for subschematic
blocks - they form a direct connection between a bus connected at the
schematic symbol block and a bus connected to a special connector
block on the underlying schematic (with the same name as the
connector at the symbol).

5.9 Building a system part 3: buses and
commands

Data transfer between blocks on a schematic is done with actually drawn data
buses. A new bus must be started from an existing (as yet unconnected)
connector with 'add bus' from its menu. Once you made this menu selection,
you can draw the bus by moving your mouse away from the connector. You
can make a turn by clicking the left button on the mouse at the turning point
and moving the mouse again. If you want to continue in the same direction,
click the button again without moving the mouse. Another click at the same
location will end the bus without making a connection.

Connecting the bus to a connector is done by drawing the dynamic bus line
through that connector and clicking the left mouse button. This is only
possible if this connector was not connected yet and has the same number of
bits as the bus you are drawing. Adding a new connection to a bus is done
from the bus itself (not by connecting two buses together!). Just open the
floating menu of the bus at the spot where you want to make the connection
and select 'connect', after this you can start drawing the new connection.

Note that IDaSS does not regard a value on a bus or in a storage location as
a collection of bits which can all be 0, 1, 'unknown' etcetera individually. For
IDaSS, a value is either known (from 0 up to the maximum value allowed for
that number of bits) or a special value indicating something else - 'UNK' for
UNKnown, 'TS' for Three-State or 'OVL' for OVerLoad (more than one driver
on a bus).

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 21

To reduce clutter on a schematic, commands coming from a state machine
controller or Algorithmic Level block and test values used by these elements
are not transferred with graphic buses. Commands in IDaSS are abstract
names, given to named blocks or connectors. Tests are performed by naming
the tested object in a test expression inside a state description or Algorithmic
Level routine.

Example design files communic.des and up8048n.des contain several state
machine controllers which show how this is actually used while al8048.des
contains an Algorithmic Level block using these capabilities.

5.10 Comments, comments and
documents...

It is a good practice to provide lots of comments when designing a complex
system. Within a textual specification, you can always place comments
between double quotes. For blocks, connectors, buses and complete
schematics, you can add comments using a special 'comment window',
which you can open from the 'File/system' menu on the menu bar of a top
level schematic editor. You can specifically ask for 'comment' in a lot of
menu's attached to design objects, but you can also simply click the left
button of the mouse on a schematic element to get an explanation in the
message window and comment in the comment window. Text you type in the
comment window will be saved automatically when you request comment for
another object.

IDaSS can generate textual documentation automatically. This documentation
will provide information present in the design database, and will also include
any comment attached to design elements. As the amount of documentation
can be very large, it is possible to fine-tune what should be included and left
out using the 'document settings' sub-menu of the 'Miscellaneous' menu in
the menu bar. Documentation can be generated for complete systems (again,
from the 'Miscellaneous' menu), sub-systems or individual blocks - just look
out for 'document' menu entries.

5.11 Saving screen space and working
time

Normally, editing textual specifications is done in separate windows attached
to the objects these specifications belong to. Opening and closing these
windows takes time, keeping them open all at once creates a mess on the
screen. You can open a 'universal compiler' window from the 'File/system'
menu of a top level schematic editor which can be used for all textual

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 22

specifications in the system (the elements which can use it enable a
'compile...' entry in their menu structure).

The universal compiler window also allows a 'test compile' of the whole
design or a sub-system of it. IDaSS text compilers generate warnings (instead
of breaking off compilation) when they detect a construct which is syntactically
correct but which uses/addresses system elements which are not built yet. A
test compile can then be used to check if these kinds of errors still exist in the
system you assumed to be complete.

5.12 Debugging and trace file generation

Complex systems can be a nightmare to debug. It becomes almost
impossible to keep an overview of the operation during a simulation because
the values you want to check are scattered all over the system structure.

Using 'probe sets' should help here - they allow a central window to show
values from all over the system, using a textual specification. The syntax
resembles a test expression in a state machine controller, extended with
special tests even a state machine controller can not perform. Each separate
probe in a probe set can also combine several test points using the normal
IDaSS expression operators. Multiple probe sets can be defined and
individually activated or made 'dormant'. Probe sets as well as individual
probes can be given meaningful discriptive names and attached comments.

With the probe set targeted at the system, it is possible to define messages,
warnings and breakpoints to be generated when specific values are detected.
It is also possible to record the values to a simulation trace file during a
simulation run. The format of these trace files is not fixed, so it is possible to
generate a trace file which suits a specific post-processing program or which
just highlights specific events in the system. One of the trace file formats
delivered with IDaSS comes close to generating complete VHDL test
environments for the traced system, another one generates a format suitable
for loading in a Verilog simulator with the $loadmemb command.

For more information on probe sets, select 'IDaSS features' from the
'subjects' page in the help window (this page also contains information on
other subjects discussed here).

5.13 Timing simulation and optimisation

IDaSS performs full timing simulation with a simulation timestep of 10 femto-
seconds (light travels 3 micrometers in that time, so it should provide ample
time resolution…). The maximum delay which can be specified in the timing
simulation is one full day, but the actual simulation time has no limit (so you
can simulate forever).

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 23

This timing simulation is well hidden. You will not notice it when you are using
only the CLOCK STEP button, until you get 'setup time violation' errors which
indicate that your design is becoming too slow (you are placing too many
asynchronous logic between clocked elements). If this happens, you can
perform major cheating in two ways:

• Simply turn full timing simulation (and setup time checking) off by
selecting the 'fast BBB simulation' mode in the 'Time/simulation',
'settings' menu.

• Make the clock period longer by changing the 'current clock interval'
in the same 'settings' menu (better also change the 'reset clock
interval' to the same value to prevent the same errors after resetting
the simulated system).

Another way to cheat is by changing the timing values calculated for the
designed system. The calculations are stored in the technology file which is
attached to the system (automatically when IDaSS was installed or manually
from the 'Miscellaneous' menu).

The default technology file idass.tec uses an abstract timing model in which
an inverting logic gate has a delay of 2 nano-seconds and a non-inverting
logic gate has a delay of 3 nano-seconds. All other delays are derived from
these values where possible (or using calculated guesses if no gate-level
structure was known). With a default clock cycle of 100 nano-seconds, this
translates to a maximum of 50 logic gates in the 'critical path' of a design -
which is a rather low number (comparable to the critical path lengths reported
for DEC alpha processors!).

You can use rule-of-thumb multiplication factors to get from IDaSS
indicated timing to the real technology timing. For instance, 1 micron
CMOS ASIC processes generally achieve a timing 5 (five) times
better - if you can get your system to run within the default 100
nanoseconds clock of the abstract technology, you should not be
surprised to reach 50 MHz clock speed with a 1 micrometer process.

The timing simulation uses separate delays for different parts of a design, and
sums these delays during actual simulation - all of these delays have
separate sections in the technology file:

• Input value and command setup times to the clock for synchronous
elements (these are all checked during simulation, violations by default
abort a simulation run).

• Clock to value and command stable delay times for synchronous
elements.

• Clock cycle time and reset-to-first-clock delays for the complete
system. The reset-to-first-clock is separate and generally much longer
than the clock cycle to give the system time to stabilise after reset.
IDaSS forces a lot of UNKnown values into the system after reset to

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 24

check whether it will actually reach a stable state, most of these
UNKnowns should have resolved by the time the first clock is given.

• Fixed asynchronous transfer delay times, for instance address-to-
output on an asynchronous memory read port, test value-to-command
delays on a state machine or command-to-enable delays on a three
state output. A special case is the delay assumed to be present in the
multiplexer which selects the outputs of different functions in the ALU-
like 'operator' block.

• Basic combinatorial operator delay times which are combined into
source-to-result delays for complete expressions (using critical path
analysis) to save simulation time.

All of these delays can be changed manually (from the 'Time/simulation',
'settings' or element-local 'edit', 'delays' menus), which is a way to get out of
the 'setup time violation' errors. Only use this, though, if you are certain that
the actual implementation will be faster than indicated by IDaSS - this is very
well possible because IDaSS assumes worst-case timing with no
optimisations at all done in the implementation path.

The best way to solve timing problems is to change your design in an effort to
decrease the critical path length. Because of the worst-case timing model,
any improvement in IDaSS timing should never worsen the timing in the
actual implementation. Aside from major structural changes (inserting extra
registers, moving combinatorial logic around or combining combinatorial
logic), sometimes simply re-writing combinatorial logic expressions can also
help (for instance to reduce the number of bits actually added, as wide adders
are slower than small adders).

The default technology file 'knows' that a compare (not) equal to a
constant can be built with highly optimised logic (for instance a single
NAND gate for a 'fourBitValue ~= 1111b') and has a lot of other
tricks like these built-in. Beware that major re-writes of expressions
may make them unreadable, so add a lot of comments to explain what
you are doing.

Although IDaSS does not provide true critical path analysis, it maintains a list
of setup time margins during simulation (can be placed in the message sub-
window with the top entry of the 'Time/simulation', 'settings' menu). Each list
entry indicates the exact setup time checked, the minimal margin
encountered on this setup time during the simulation so far and the clock
cycle in which this happened (actually, the clock cycle before the indicated
number). By replaying that clock cycle using the EVENT STEP button
(enabled from the 'settings' menu), you can follow asynchronous signals as
they travel through the system and figure out where you can improve your
design.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 25

5.14 Converting an IDaSS design into
real hardware

Although IDaSS is a relatively abstract hardware design 'language', it was
designed in such a way that hardware synthesis should be possible. There is,
however, no (commercial) synthesis tool which can use an IDaSS design file
as its input description. They all use (more or less) standard hardware
description languages, sometimes even proprietary languages only
understood by a single tool.

To bridge the gap, IDaSS is fitted with an 'alien file generation' system which
directly produces a textual description from the design database maintained
by IDaSS during a design/simulation session. The actual language/dia-
lect/text layout to be generated is defined in a 'template' file, which combines
a rulebase and simple expert system capable of a lot of conversion and
optimisation operations. Before it is possible to save a system (or sub-system)
in an alien file format, the rulebase must be attached to IDaSS. This can be
done during installation (remove a comment doublequote from the idass.ini
file) or using an entry in the 'Miscellaneous' menu from the menu bar.

The compass1.aft template delivered with IDaSS is targeted towards the
Compass synthesis system, which uses VHDL as input language. This
template file not only generates the VHDL file needed, but also several other
files needed to generate macrocell layouts for RAM's and ROM's. You need
to set some switches in the template file menu before this is enabled, though
(which can be found from 'Miscellaneous', 'alien file template...' menu
entries).

The spartan2e.aft template delivered with the system is targeted towards the
(freeware!) Xilinx WebPACK system (see www.xilinx.com) and generates a
Verilog source code file with accompanying 'User Configuration File' for
synthesizing IDaSS designs into Xilinx Spartan-II and Spartan-IIE FPGA's.
See spartan2e.pdf in the IDaSS support directory (after installation).

Some hints and tips:

• Alien file generation will stop with an error if an Algorithmic Level block
is present in the system (part) to convert.

• Alien file generation also aborts when the converted system part still
contains textual specifications which generate a warning during
compilation.

• All memories (and their ports) must be given a technology restriction as
defined in the technology file. Note that the 'dual port RAM' cannot be
converted by the template files given above. See the description of
memories in chapter 6 for more information.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 26

• Although three-state outputs can be used and will be synthesized
correctly, try to avoid them inside the system and use multiplexers
instead. Three-state buffers are slow and large, their use should be
limited to interconnect modular systems on a chip and for off-chip bus
connections.

5.15 ‘Properties’

‘Properties’ allow additional information to be attached to IDaSS design
elements. They are stored in the design database and design files, will also
be shown in automatically generated documentation. At the moment, they do
not influence the actual simulated design behaviour in any way – they can,
however, be accessed by the ‘alien file generation’ rulebases described in the
previous section. These can use this extra information, for instance, to control
ASIC pin assignments, output pin power drive levels or engraving of copyright
information on the chip surface. If a template file uses properties, this will be
clearly indicated in the documentation coming with that file.

Multiple properties may be attached to a single design element, distinguished
by a primary key name and an optional secondary key which can be another
name or a numeric value. The actual property value is either a numeric value
(in the range 0..(264 - 1), can also be given as UNKnown) or a sequence of
characters (also known as a ‘string’).

To enter a ‘string’ value, type a single quote followed by the characters
you actually want to store. The starting quote is not stored – do not put
a singe quote at the end unless you really want one there.

To check, enter, edit and remove properties, just click on the ‘properties…’
entry in the main menu of the design element whose property set you want to
access. This will pop up a recurring menu which shows the currently attached
properties (with their values) and allows new properties to be defined. Clicking
on an existing property allows removal, renaming and changing the value of
that property. Properties which have a secondary key are indicated as such
and pop up a new recurring menu to access the set of secondary keys and
attached values.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 27

6. BLOCKS WHICH CAN BE
USED IN A DESIGN

The number of 'Basic Building Blocks' available to design a system is fairly
limited. They can be called from the 'add block' menu entry of the
'Schematic' menu in the menu bar, with all types of memories in a separate
sub-menu. We only give a very short introduction here. For more information,
open a help window, click 'subjects' and then 'IDaSS entities' for a list of links
to complete descriptions of all the blocks (and other design elements).

Data path elements like registers, memories, connectors and buses all have a
variable 'width' (number of bits they store or transfer in parallel). By default,
this width may vary between 1 and 64 bits, but the upper limit can be changed
from the 'Miscellaneous', 'environment settings' menu. Calculations done
within a block can always handle up to twice the number of bits of the
maximum data path element width (so, by default up to 128 bits).

NOTE: at the moment, viewers and memory editor windows will not
show values wider than 64 bits!

6.1 Registers

These have a designer-selectable width, and are equipped with a semapore
bit which indicates they have been written. An asynchronous system reset
value can be defined (by default, this is UNKnown, so the register is not
initialised). One input and/or one (three-state) output connector can be placed
in the register for loading new values respectively outputting its current value.

Each clock, a register performs a default operation unless instructed
otherwise by sending it a command. After initialisation, this default operation
is 'hold' which simply indicates the register will hold its value. Other functions
a register can perform on given commands are:

'load' a value from the input connector on the next clock (also sets the
semaphore bit to 1/'W'ritten then).

'inc' increment the current value on the next clock.

'dec' decrement the current value on the next clock.

'ldinc'
load incremented value from the input connector (and set semaphore)
on the next clock.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 28

'lddec'
load decremented value from the input connector (and set semaphore)
on the next clock.

'write: <value>'
load the given value into the register and set the semaphore on the
next clock.

'setto: <value>'
load the given value into the register on the next clock but do NOT set
the semaphore.

'reset'
load the register with a specific value (default 0) on the next clock,
overruling all commands above - does not influence the semaphore.

'ressem'
resets the semaphore bit to 0/'R'eset on the next clock, is overruled by
a command which sets the semaphore.

State machine controllers and Algorithmic Level blocks can test the current
value of the register by simply using its name in a test expression. The
semaphore bit is tested by using the register name followed by a question
mark. Using two question marks in a row sends a 'ressem' command to the
register when the test is performed (a kind of 'test-and-reset').

6.2 Operators

These blocks contain most of the combinatorial operations in a datapath,
ranging from a simple bus splitter or -combiner to a floating point operation
(and beyond). They can be given any number of input and (three-state) output
connectors, with a designer-selectable number of bits on each of these.

The functionality resembles that of a normal Arithmetic Logic Unit in a
processor - an operator can perform several functions (like an ALU can
perform addition, subtraction, shift left...), but only one at a time. Functions
are defined by a set of expressions entered (and then 'save'd) in a separate
text edit window.

Each function has a designer-defined name, which is also the command to be
given by state machine controllers and Algorithmic Level blocks to let the
operator perform that function. A default function can be defined to be
executed when no command is received. For simplicity, the first function
entered in an operator becomes this default function.

The expressions which define a function operate with the names of input
connectors as variables and assign to the names of output connectors, using
the standard Smalltalk syntax and a set of over 60 (hardware implementable)

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 29

operators. These include standard arithmetic and logic operations, but also bit
field extraction and concatenation, comparison, priority, multiplex, merge,
constant generation etcetera. For a complete list (and an explanation of the
Smalltalk expression rules) select 'IDaSS operators' from the 'subjects' list in
the help window.

Expressions in an operator function can also assign to a 'temporary' variable
(a name preceeded by an underscore). Following this assignment, this
temporary variable can be used as source value in other expressions. An
example of this is the following:

 "Add two 8 bit inputs 'a' and 'b' with a
 single bit carry in 'ci', producing an 8
 bit output 'y' and single bit carry out
 'co' (comments are placed between double
 quotes, as is done here):"

 _sum :=
 a add: b cin: c.

 "The 'add:cin:' operator performs an 'add-
 with-carry' operation, resulting in a
 value one bit wider than the values which
 were added. This extra bit is the carry
 out. The period signals the end of an
 expression."

 y :=
 _sum from: 0 to: 7.

 "The 'from:to:' operator extracts a bit
 field from a value. All operators have
 a well-defined number of bits they will
 generate - there is no possibility to
 create a value with a run-time variable
 number of bits in it."

 co :=
 _sum at: 8

 "The 'at:' operator extracts a single
 bit from a value. The last expression
 does not need a period at its end."

Note: the exact language syntax of all the languages used by IDaSS is placed
in the help file and can be accessed from the 'subjects' list entry 'IDaSS
languages'.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 30

6.3 State controllers

These blocks form the main centralised control elements in a register level
design (decentralised control is implemented with 'control input' connectors,
which will be discussed later). Each state machine controller can test and
control all other blocks on the schematic it is placed in itself, as well as all
sub-schematics of this schematic (using 'path' names like
'subschema\blockname').

There is no limit to the amount of state machine controllers in an IDaSS
design, they are even allowed to jointly control data path elements as long as
they do not send contradicting commands at the same time (for instance one
controller telling a register to 'load' while another tells that same register to
'inc'rement).

The functionality of a state machine controller is entered in a textual form (in a
separate text edit/compile window), with a separate text for each of the states
of the controller. Although IDaSS numbers the states and the default state
transition is to go to the next numbered state (with the first state following the
last one), names must be used to label the states when a non-default state
transition must be specified. An unlabeled state must start with a colon (':'),
while a labeled state starts with the state name immediately followed by a
colon.

Commands are given to blocks by placing an abstract command name after
the (path) name of the block. Commands with numerical parameters (like
'write:' for a register) must be followed by a numerical constant, commands
with a name parameter (state machine controllers themselves know a 'goto:
<statename>' command) must be followed by an allowed name for that
command. Lists of commands are separated by semicolons.

State transitions are defined in a 'graphical' way and use state names where
needed. A state machine controller can be fitted with a subroutine stack which
allows call and return commands to be used. After initialisation, the 'stack
depth' is set to zero indicating 'no stack'. Within a state text, a state transition
is always the last command which will be executed. The following state
transition commands are available:

'-> targetStateName'
go to the indicated target state at the next clock.

'<<' hold the current state at the next clock.

'>>' go to the next numbered state at the next clock (first state if this is the
last one).

'=> targetStateName'
call the target state at the next clock, pushing the next numbered state
on the subroutine stack at the same time.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 31

'=> targetStateName , returnStateName'
call the target state at the next clock, pushing the indicated return state
on the subroutine stack at the same time.

'<=' return to the state at the top of the subroutine return stack at the next
clock and pop this state from the stack at the same time.

'<= targetStateName'
pop the subroutine stack at the next clock but throw away the state
which was at the top of the stack - use the given target state instead as
the next state.

Condition tests and chains of conditional commands (possibly ending with a
state transition) are placed in test blocks. These test blocks can be nested
and syntactically take the place of a single normal command sent to a block.
A test block is in principle a CASE-like construct, but has the peculiarity that
(unless a state transition is executed) all tests are performed in the order of
the state text. Several branches of the CASE can match the test value - all
these branches will then be executed.

A test block starts with a square opening bracket ('['), followed by a test
expression. This expression uses the same base syntax and operators as
expressions in an operator function. The operands are (path) names of tested
blocks and no assignment is done. A test expression is not allowed to
generate a constant value.

Special tests (like a register semaphore value) can be performed by placing
question marks after the block name. To test a bus value, target a connector
attached to that bus by following the block name with '\\' and the connector
name (placing a question mark after an output connector name will test the
value generated internally by that block). Like operator functions, it is possible
to use temporary value assignment expressions before the actual test
expression - these temporary value expressions are local to the test block
(must follow the square opening bracket).

Following the test expression, the test block contains one or more CASE
branches starting with a vertical bar ('|'), a specification of the values which
activate this branch and the list of commands to be executed in the branch.
The value specification may be empty, indicating that any non-zero value
activates the branch. Test values may be specified as normal constants ('12',
'%1001', '0A5h'), values with don't care bits ('01x0b', '4xh') and/or ranges of
values ('13..21'). Multiple test values may be given in a single branch,
separated by comma's. A branch is executed if the test expression result
matches at least one of its test values or -ranges.

A test block ends with a closing square bracket (']'), followed by a semicolon
if more commands follow after it.

A good example of a modestly complex state machine controller with nested
test blocks can be found in the up8048n.des file coming with the IDaSS

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 32

distribution. The communic.des file shows how state machines can co-
operate and control elements in sub-schematics.

Features worth mentioning here are that IDaSS state machine controllers
have a set of commands of their own (and therefore can control eachother,
see the help page of the state machine controllers). Also, they can use a set
of single bit 'signals' (one of the 'IDaSS entities' of the 'subjects' list) for
communication and synchronisation purposes. These are defined at the top
level of a design and can be used by all the controllers present within the
design.

6.4 Memories

IDaSS provides five fundamentally different types of memories and four types
of 'ports' which can be used within these memories for reading and/or writing.
When a technology definition file is attached to IDaSS, this file contains
restriction rules for implementable memories (maximum sizes, maximum
number of ports, port timing restrictions etc.). It is possible to select 'IDaSS
default' technology for a memory, which removes all implementation
restrictions (but also removes the capability to actually implement the memory
via the alien file generation facility).

The following port types are available:

'read-only' ports have an address input and a (three-state) data output.
Asynchronous as well as synchronous (and even pipelined) reading is
possible, the output can be latched. For synchronous reading, a 'read'
command must be sent to the memory (activates all read ports which
can handle it) or to the address input of the port (activates this port
only). Reading can also be done by default, in which case a 'noread'
command must be issued in the same ways to stop reading.

'write-only' ports have an address and a data input. They always write
synchronously, but the number of clocks (and pipeline overlap) for a
write cycle may vary. To control writing, 'write' or 'nowrite'
commands must be used just like the commands for a read-only port.

'read/write' ports have an address and a data input, as well as a (three-state)
data output. They combine the capabilities of a read-only and a write-
only port, adding automatic reading if no writing is done and restrictions
on the timing between read and write cycles.

'fixed' ports only have a (three-state) data output, which reads a fixed location
in the memory. The technology file may restrict the address to be read
to a single address or range of addresses.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 33

The actual memories modelled by IDaSS make use of these ports, but can
also add specialised inputs and/or outputs:

RAM's can be read and written, the unrestricted technology ones can be
given any combination of all the port types available. The default
technology file defines three implementable RAM memories:

'Single ported' with one read/write port which reads and writes
synchronously with automatic output enable, maximum 64
kilobits in several width/#words combinations.

'Dual ported' as single ported but now with two read/write ports (not
always present in actual technology libraries and currently not
supported by the standard VHDL/Verilog generator rulebases).

'Register file' with a maximum of 6 ports, of which 4 may be single
clock synchronous write-only ports while the remainder should
be asynchronous read-only ports, maximum size is 1 kilobit in
several width/#word combinations.

ROM's can only be read, the unrestricted IDaSS technology allows any
number and combination of read-only and fixed read ports. The
technology file defines two implementable ROM's:

'Synchronous' with a single cycle synchronous read-only port,
maximum size is 128 kilobits in several width/#words
combinations.

'Asynchronous' uses one asynchronous read-only port, also with a
maximum size of 128 kilobits.

FIFO's allow read-only and fixed read ports and provide a special write data
input. The 'read' command can be used to remove the word at the
'head' of the memory (address 0), which shifts all other words down by
one address. The 'write' command writes the value input at the data
input to the 'tail' of the memory. The word at the head and the number
of words currently in the FIFO can be tested by a state machine
controller or Algorithmic Level block. The technology file defines a
single (register file based) FIFO with a fixed read port for address 0
and a maximum size of 1 kilobits. Note that if you create a FIFO with a
synchronous read-only port, you can only send 'read' and 'noread'
commands to this port via its address input (the FIFO itself uses these
commands for other purposes). Reading and writing a FIFO can be
done by default which requires 'noread' and 'nowrite' to prevent
them.

LIFO's are like FIFO's but work as a stack instead of the queue behaviour of
FIFO's. Writing as well as reading are done from the head of the
memory (address 0). A LIFO can be given a large number of
commands to 'push', 'pop' and 'replace' data to/from/at the head of
the memory (see the help file). The technology file defines a single

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 34

(register file based) LIFO with up to two fixed read ports (addresses 0
and 1) and a maximum size of 1 kilobits.

CAM's (Content Addressable Memories) are a very special type of memory
which allows matching stored words against a bit pattern (with don't
care bits), after which all words in the CAM can be modified by setting
and/or resetting bits based upon the match results - and all this in a
single clock cycle. This type of memory allows read-only and fixed
ports to be added, although the technology file does not allow these to
be present for the implementable CAM (with a maximum size 1
kilobits). As a very complex memory, a CAM defines a large number of
special inputs and outputs and has a large number of commands and
options - see the help file for more information.

Memory contents can be viewed and modified
in special windows, in a variety of display
formats. Due to simulation time constraints,
these windows can only show a small part of a
memory and cannot perform normal scrolling
operations - scrolling is done with the cursor
keys (together with [page up] and
[page down] where available). Within the
window, the mouse can be used to move the
cursor.

The 'Edit' menu allows placing the cursor at a specific address, filling and
moving blocks of memory. Typing valid (hexadecimal) digits will change the
memory contents. To insert a new word in a FIFO or LIFO, type [i]. To
remove a word, type [r]. To give a word an UNKnown value (indicated with 'U'
in the window, type [u].

6.5 Three-state buffers

These very simple blocks must have a single data input and a single three-
state data output, which can be controlled with 'enable' (for a default
disabled output) and 'disable' (for a default enabled output) commands.
The width is (as usual) designer-selectable.

The same 'enable' and 'disable' commands can be sent to any block with
three-state outputs, and will then control all outputs with a matching default
state. By directly targetting the output (add '\\' and the connector name after
the block path name), each three state output can be controlled individually.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 35

6.6 Constant generators

These blocks must have a single (three-state) output and know only a single
'setto: <value>' command which places the given value onto the output
(with automatic enabling if the output is a three-state connector). A default
value can be specified to be output when no command is received. The
standard use of these blocks is to let a state machine controller or Algortihmic
Level block force a value onto a bus. Another use is to place a control input
(see section 6.10) in a constant generator, forming a very powerful
Programmable Logic Array (PLA) type module.

6.7 Algorithmic Level ('AL') blocks

These blocks combine data processing, data storage and control in one. They
contain local variables in the form of registers and memories, with
functionality defined by a set of routines written in a language supporting all
the standard 'structured' programming language constructs.

An AL block can test and control elements in its (register level) environment
just like a state machine controller - it can even write directly into external
RAM's and registers. An interrupt-like mechanism is available by allowing
external 'call:' commands which start one of the internal (so-called 'global')
subroutines - this command is also available on state machine controllers
which are fitted with a stack. Synchronising to the clock is done by 'wait
statements' which come in a number of forms ranging from very simple ('wait
here for the next clock') to extremely complex ('stop executing here - after two
clocks, start comparing the values of two external registers, repeat this test
each clock until they are equal or a maximum of five clocks have passed,
return the last test result when resuming'). The main drawback of AL blocks is
that they cannot be converted (yet) with the 'alien file generation' facility into
standard hardware description languages.

The edit window for AL blocks is very powerful. It has to be, as it is functioning
as a complete software development environment (with as special feature
that editing and execution of a program are done at the same time). The
window can switch between four main modes - multiple windows may be
opened on a single AL block to show different aspects at the same time:

1) local variable editor: allows definition, monitoring and modifying of local
register- and RAM-like variables. Normal memory editor windows are
used for basic RAM variable contents editing. Comment lines may be
inserted for better overview.

2) routine editor: allows editing and compiling of main, local and global
(sub-) routines.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 36

3) execution stack editor: allows inspection and modification of the
execution stack of the AL block, shows exactly how the program flow is
progressing (for instance loop count values).

4) program tracer: shows routine and statement within this routine which
is in execution. Single stepping is possible using three buttons at the
bottom-right part of the window (top-to-bottom: 'execute next
statement', 'execute until next wait statement' and 'perform clock')

Two example files are distributed with IDaSS to illustrate the use of AL blocks
(for more information, consult the help file):

alexmple.des explains and demonstrates all the constructs possible in an AL
block. Load it, then open a comment window from the 'File/system'
menu and ask for 'comment' from that same menu - then follow the
instructions given.

al8048.des gives an actual design where a single AL block is used to
implement a complete processor core.

6.8 Sub-schematics

These provide hierarchy and re-use within a complex design. A sub-
schematic can be placed as symbol in another schematic, with multiple
schematic symbols in a design using the same sub-schematic (with different
simulation states, of course). When creating a sub-schematic and re-use is
possible, IDaSS will automatically ask whether you want to re-use the symbol,
contents or symbol AND contents of an existing schematic (or simply start
with a new one).

Data communication through a schematic boundary is done with bidirectional
connectors at the symbol and within 'connector' blocks placed onto the sub-

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 37

schematic (these are interconnected by having the same name). Testing and
controlling elements of a sub-schematic is possible by using 'path'-names in a
state machine controller or Algorithmic Level block. Connector blocks may be
tested to obtain the value on the buses they are connecting.

IDaSS provides named parameters to give re-used design elements different
behaviour even though they have the same specification. Parameters are
attached to schematic contents and schematic symbols (with the latter
overruling the former if they have the same name). Most parameters are
numeric (although special purpose 'time' and 'string' parameters are also
available) and they can be used as 64 bit value inside any expression by
preceeding the parameter name with a double underscore. Numeric
parameters can also be used to choose default commands or define special
values which would normally be constants (for instance the value loaded in a
register after system reset). See the help file ('subjects', then 'IDaSS
features') for more information.

6.9 Multiple schematics

These behave as a set of numbered ('tagged') identical sub-schematics with
all data communication connections connected in parallel. Each tag is a 64 bit
value, the user can specify the set of tag values to be used (with each tag
value creating a complete sub-system!). Tag values within a single multiple
schematic must be different.

Testing and controlling elements on the sub-schematics of a multiple
schematic requires the specification of the tag number in the 'path'-name of
that element, for instance as in 'MULTIPLE[34]\ACCUREG'. This means that
test and control channels are not connected in parallel at a multiple schematic
symbol.

System elements within a multiple schematic can obtain the tag number of
their sub-schematic via a parameter called 'tag'. To obtain the local tag
number of higher level multiple schematics (nested multiple schematics are
allowed!), use 'tag1' for the next higher level, 'tag2' for the level above that,
etcetera. For example, suppose that a state machine controller placed on a
schematic inside a multiple schematic wants to test whether the 16 bits 'addr'
connector block matches the lower 16 bits of the tag value of this schematic:

 "Enable local OUT register's three-state
 output when the 'addr' connector block
 matches bits 0..15 of the local tag:"

 [(__tag from: 0 to: 15) = addr
 | OUT enable];

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 38

 "Note the double underscore to access the
 tag as a parameter. We must use 'from:to:'
 to select the correct bits from the tag
 because the '=' operator can only compare
 equal width values (and returns a single
 bit binary 1 if the comparison holds, which
 is enough to select the CASE branch)."

6.10 Control inputs (not a block, but
important)

As mentioned before, local control can be implemented with 'control inputs'
(see help page 'subjects', 'IDaSS entities', 'connectors') placed within the
block to be controlled. The textual specification of such a control input looks
like a simplified state machine controller test block:

 "Local control of a register (presumably the
 program counter of a processor). The control
 input is 8 bits wide:"

 (7, 3, 0..1)

 "Selects which bits of the input to test
 (this is optional, all bits are tested
 if not specified). In this case, bits
 7,3,1 and 0 form the test value (in that
 order):"

 "7310 <- bits tested"
 %1xxx reset; ressem.

 "If bit 7 is a %1, the remainder is a
 don't care and we reset the register
 value AND semaphore (a period separates
 the tests here - no path name is needed
 because the control is local anyway)."

 %01xx setto: (10 zeroes, 4..6, 2 ones).

 "If bit 7 is %0 and bit 3 is %1, we load
 the register with %0000000000xyz11,
 where 'xyz' are bits 6, 5 and 4 of the
 input value. A state machine controller
 can only use constant values or parameter
 names for numerical commands like these.
 A control input has even more capabilities
 than shown here, see syntax in the help
 file."

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 39

 %0000,
 %0011 load.

 "Test values are specified as in a test
 block of a state machine controller..."

 %0001 inc

 "The last command needs no period..."

Multiple control inputs may be present in a single block. These may control
the block as long as they give no contradicting commands. Combinations of
control inputs, state machine controllers and Algorithmic Level blocks may
also be used with the same restriction.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 40

7. DO-IT-YOURSELF DEMO

The best way of learning to use a tool is to start it up and try it out... But with a
tool like IDaSS, a 'guided tour' may even be better. After you've done this, you
can either look in the designs directory for more complex examples of
designs or simply start creating your own systems.

If you follow the steps below, you will create a simple design (we call it the
'running light demo') which contains a register, some combinatorial logic in an
operator and a state machine controller. Don't worry if you make a mistake -
IDaSS is very forgiving and will not let you destroy your work with a single
mouse click. If you get lost in a menu structure, just click outside the menu or
click 'cancel' in an entry field window to start over again.

We give the steps in a rather terse format here, assuming you have read the
sections called 'Building a system, part X:...' earlier in this text. Here we go:

1) Open an empty top level IDaSS schematic editor window as indicated
in section 5.1.

2) From the 'Schematic' menu, add a register block, name it 'REG', make
it 8 bits wide and place it in the schematic. Don't make it too small, but
also leave ample room for other blocks (use 'frame' from the register's
floating menu to change its size and position on the schematic, if
needed).

3) Attach a binary value viewer to the register from its floating menu.

4) Change the value of the register to 12 by using the 'edit'/'current
value' selections from the register menu.

5) Let's play a little: click the CLOCK STEP button several times and see
the clock cycle indicator change (the '-' in this window indicates the
simulation stopped just before the indicated clock) - the register holds
its value! Now edit the default command of the register to 'increment'
and perform some more clock steps...

6) Use the ‘edit’ menu of the register to add an input and a continuous
output connector. You may call them 'in' and 'out', but that is not
really necessary (name may be left blank). Click your mouse's select
button on the register and its connectors and see what happens in the
message sub-window.

7) Add a new operator block named 'SHIFTER' to the schematic, just like
you added the register. Place this new block either to the side or
top/bottom of the register block.

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 41

8) From the 'edit' menu of the operator, add an 8 bits wide input
connector named 'in'. Place this connector within the block symbol at
such a position that it will be easy to connect to the register's output.

9) In the same way, add an 8 bits wide continuous output named 'out' to
the operator, to be attached to the register's input.

10) Connect the input of the register with the output of the operator with a
bus. Start by selecting 'add bus' from the register's input connector
menu, choose a nice name for the new bus and draw the bus by
moving the mouse, clicking the mouse select button to make a turn,
ending the bus by placing the last segment of the bus through the
operator input and clicking the mouse button again.

If you cannot draw the bus in the direction you want, click the left
mouse button while pointing at the starting point of the movement. In
case you want to end a bus in 'mid air' (without connecting), click a
second time.

11) Add another bus between the two remaining connectors and attach a
binary value viewer to the bus at the register input (each bus has its
own floating menu!). This viewer shows 'UNK' for an unknown value
because we did not define the actual functionality of the 'SHIFTER'
operator yet - let's do that now:

12) From the operator's menu, select 'edit', followed by 'functions...'.
Select the '???' which pops up (to indicate we want to create a new
function) and use the name 'Left' in the entry field which opens. After
this, you can open the function editor window. To keep an eye on the
schematic, try not to overlap both windows.

13) In the text editor top-part of the operator function editor, type the
following expression:

out := in shl: 1

In a comment (between double quotes), you can indicate this assigns
the input value, shifted left over one bit, to the output.

14) Select 'save' from the 'Edit' menu on the menu bar of the function
editor window. This compiles the function and immediately installs it in
the system - the viewer at the bus should now indicate the shifted
value (try changing the register value!).

If the 'save' operation gives an error, check whether the names of the
connectors on the operator match those in the expression and whether
you did not make a typo, then try again...

15) In the register, edit the default command to 'load'. Play a little with the
register value and the CLOCK STEP button - you have created a shift
register!

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 42

16) In the function editor window, select 'manage functions' from the
'Edit' menu, followed by 'copy' and name the copied function 'Right'.
The label of the window should reflect the change. In the expression,
change 'shl:' into 'shr:'. Modify your comment to state that this is a
shift to the right over one bit and 'save' the function text.

17) Clicking on the operator symbol in the schematic reveals the operator
now has two functions - but it is still performing the shift left. Attach a
viewer to the operator to confirm this. Play with the register value and
'change function' from the operator's 'edit' menu until you are certain
both functions work as they should. Note that, when you click the
CLOCK STEP button, the operator function automatically falls back to
the default (which should still be 'Left').

18) Time to start controlling the machine... From the 'Schematic' menu,
add a 'state controller' block named 'CONTROL' to the schematic.
Attach a viewer to this block. The top line (with '@') shows the current
state number, the middle line (with '>') shows the next state number,
the bottom line indicates the machine is actually active (running) and
will show other information later on.

19) Open a state editor window for the state controller block with 'edit
states' from its 'edit' menu entry. The text editor in this window shows
the initial text of state number 1, which contains a single colon to
indicate the state has no label name yet.

We want to create a system in which a register value shifts to the left
until bit 7 (the leftmost one) becomes a binary 1, after which the
register should shift to the right until bit 0 becomes a binary 1, at which
point the shift direction reverses again. This requires two states in the
state controller, one which controls shifting to the left and one which
controls the shifting to the right.

20) Edit the state text for state #1, until you have the following (make sure
you named the register 'REG' and the operator 'SHIFTER', or you will
have to change the names in this text...):

goLeft: "State label..."

 [REG at: 7 "Test bit 7 of register"
 | 0 "IF it is a zero:"
 SHIFTER Left; " Shift to the left"
 << " and hold this state"
 | 1 "IF it is a one:"
 SHIFTER Right; " Shift to the right"
 -> goRight " and change state..."
]

If you 'save' this text from the 'Edit' menu, the message sub-window
will indicate '1 WARNING GIVEN'. If you scroll the message text one
line, you can see what went wrong - state 'goRight' has not been

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 43

defined yet! Still, the text compiles and is taken into execution (watch
the state controller block viewer, it now works with the name and
shows at the bottom left which kind of state transition is made). Playing
with the register value should show that the decision taken by the state
controller is indeed based upon bit 7 of the register. If the controller
viewer indicates '> ???' on the second line, this means that a
transition command is in execution which uses a not defined state -
this is allowed as long as you do not hit the CLOCK STEP button...

21) In the 'Edit' menu of the state editor window, select 'ins./del. states',
followed by 'insert after'. Notice in the window label that you have now
started editing state number 2. Change the text until it becomes a
mirror image of the first state (all 'left's changed into 'right's and vice
verse, testing bit 0 of the register instead of bit 7):

goRight: "State label..."

 [REG at: 0 "Test bit 0 of register"
 | 0 "IF it is a zero:"
 SHIFTER Right; " Shift to the right"
 << " and hold this state"
 | 1 "IF it is a one:"
 SHIFTER Left; " Shift to the left"
 -> goLeft " and change state..."
]

Saving this state text should produce no warnings or errors because
state 'goLeft' has already been defined. A '> ???' in the state
controller viewer should now disappear.

22) The system is almost complete. Change the value of the register to 1
and click the CLOCK STEP button several times. The value in the
register should shift left and right as intended. By selecting
'show current state' from the 'Edit' menu of the state editor window,
you have an extra indication of the progression of the states.

23) Let's see if the system can start up... Select 'reset all' from the
'Time/simulation' menu of the schematic window and confirm that you
actually want to to this.

Oops! If you followed the instructions so far, the register does not get a
defined value after system reset - this makes it impossible for the
controller to decide what should be the next state, with as side effect
the sending of unknown commands to the operator.

From the register's 'edit' menu, change the 'system reset value' to a
'specific value' and choose 1 as this value. The message sub-window
should confirm your choice. Now you can reset the system safely with
'reset all' as before. It looks like this does not help much...

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 44

If you look at the clock cycle indicator, it shows '0.0' - meaning the
system has just been released from the simulated reset signal at
simulated timepoint 0. The simulated logic inside the state controller
block did not have time yet to perform the actual test and set the
internal state transition or external commands!

Clicking CLOCK STEP once advances the simulated time to just
before the first actual clock step (indicated by '1-'), by which time the
system should have stabilised and all error indications should have
gone. Clicking some more indicates all is well and the system is fully
operational.

23) Select 'run until break' from the 'Time/simulation' menu. You will see
the clock cycle counter increment, but in a default installed system, the
windows will not be updated!

You can fix this by forcing window updates at fixed simulated time
intervals. First, stop the running simulation by clicking the red ABORT
button, then select 'settings...' from the 'Time/simulation' menu,
followed by 'screen update interval'. Set this interval to 100
nanoseconds by typing '100 ns' in the entry field (as the default clock
cycle time is 100 nanoseconds, this will update the screen each clock
cycle). During simulation, the screen should now be updated - but you
may not be able to see all the information flashing by. You can slow
simulation down by inserting a 'demo delay' with 'Miscellaneous'
menu entry 'environment settings...'.

By now, the window should look like shown below. Congratulations if you
ended up here!

IDaSS version 0.09 for VisualWorks Smalltalk version 5i.4 page 45

This concludes the 'guided tour'. You can save your design with
'save system' from the 'File/system' menu. Stopping an IDaSS design
session is done by simply closing the top level schematic window.

Have fun!

