

 2001 by X Engineering Software Systems Corp., Apex, North Carolina 27502

All rights reserved. No part of this text may be reproduced, in any form or by any means, without
permission in writing from the publisher.

The author and publisher of this text have used their best efforts in preparing this text. These
efforts include the development, research, and testing of the theories and programs to determine
their effectiveness. The author and publisher make no warranty of any kind, expressed or
implied, with regard to these programs or the documentation contained in this text. The author
and publisher shall not be liable in any event for incidental or consequential damages in
connection with, or arising out of, the furnishing, performance, or use of these programs.

XESS, XS40, and XS95 are trademarks of X Engineering Software Systems Corp. XILINX,
Foundation, XC4000, and XC9500 are trademarks of XILINX Corporation. Other product and
company names mentioned are trademarks or trade names of their respective companies.

The software described in this text is furnished under a license agreement. The software may be
used or copied under terms of the license agreement.

5
Using RAM

In this chapter you will learn how to:

� Interface to an external RAM with a programmable device.

� Use the internal RAMs found in the XC4000 FPGAs.

� Create RAM modules using the Core Generator.

RAM

Eventually you will need to incorporate RAM into one of your designs. While you can build multi-bit
registers from the flip-flops in a CPLD or FPGA, it is more efficient to use an external RAM chip or a
specialized internal RAM-block when you need to store larger amounts of data.

In this chapter we will build a simple design that reads a set of data bytes from RAM, writes the 2’s-
complement of the byte values back into the RAM, sums the complemented data values and then
displays the sum on the seven-segment LED. We will do two different versions of this design:

1. The first version will store the data values in the external asynchronous, byte-wide RAM
found on the XS40 and XS95 Boards.

2. The second version will store the data values using the internal synchronous, distributed
RAM contained in the XC4000 FPGA on the XS40 Board.

Using an External Asynchronous RAM

The first version of the RAM summation circuit has the design hierarchy shown in Figure 12. The
root module of the design manages the interface to the external asynchronous RAM and sums the
data while the lower-level module displays a four-bit hexadecimal value on a seven-segment
display.

© 2001 by XESS Corp. 338

RAM data summer
(ramsum)

LED Decoder
(leddcd)RESET

OEData Address CE WE

RAM

Figure 12: Design hierarchy for a logic circuit that displays the summation of data in the
RAM.

Each of these modules is described by a VHDL file stored in the dsgn5_1 project directory that was
created as follows.

© 2001 by XESS Corp. 339

After the VHDL files for the modules were created and added to the project, the Project Navigator
window appears as follows. Now I will describe the contents of each VHDL file.

The LED Decoder Module

This LED decoder circuit is almost identical to the one in Chapter 3 except for the addition of a
blanking input signal that causes all the LED segments to turn off. This signal will be used to blank
the display to separate the digits when displaying a multi-digit hexadecimal number.

The VHDL code for the LED decoder is shown in Listing 4. This code is stored in the leddcd.vhd file
in the dsgn5_1 project directory.

Listing 4: VHDL code for the seven-segment LED decoder module.
1
2
3
4
5
6
7
8
9

10

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

package leddcd_pckg is

component leddcd
 port (
 blank: in STD_LOGIC; -- active-high blanking input
 d : in UNSIGNED (3 downto 0);

© 2001 by XESS Corp. 340

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

 s : out STD_LOGIC_VECTOR (6 downto 0)
);
end component;

end leddcd_pckg;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity leddcd is
 port (
 blank: in STD_LOGIC; -- active-high blanking input
 d : in UNSIGNED (3 downto 0);
 s : out STD_LOGIC_VECTOR (6 downto 0)
);
end leddcd;

architecture leddcd_arch of leddcd is
signal s_tmp: STD_LOGIC_VECTOR(6 downto 0);
begin
 with d select
 s_tmp <= "1110111" when "0000", -- 0
 "0010010" when "0001", -- 1
 "1011101" when "0010", -- 2
 "1011011" when "0011", -- 3
 "0111010" when "0100", -- 4
 "1101011" when "0101", -- 5
 "1101111" when "0110", -- 6
 "1010010" when "0111", -- 7
 "1111111" when "1000", -- 8
 "1111011" when "1001", -- 9
 "1111110" when "1010", -- A
 "0101111" when "1011", -- b
 "1100101" when "1100", -- C
 "0011111" when "1101", -- d
 "1101101" when "1110", -- E
 "1101100" when others; -- F

 -- zero the outputs if the blanking signal is high,
 -- otherwise output the LED digit bit pattern
 s <= "0000000" when blank='1' else s_tmp;
end leddcd_arch;54

The Root Module

The root module sequences through three main phases:

Phase 1: Starting from an upper address of RAM and proceeding to address zero, the
value stored at each RAM address is read and the two’s-complement is
computed and written back to the same address.

© 2001 by XESS Corp. 341

Phase 2: Restarting from the upper address and proceeding to address zero, each
value is read from RAM and added to a sum register.

Phase 3: The sum is displayed on the seven-segment LED by blanking the LED
segments for a long interval to signal the start of the sum, then the
hexadecimal digit for the upper four bits of the sum are displayed, then the
LEDs are blanked for a shorter interval and then the hexadecimal digit for the
lower four bits is displayed. Then this four-step display process repeats.

The VHDL code for the root module is in the ramsum.vhd (Listing 5). Some highlights from
the code are given below.

Line 4: The root module accesses the component declaration for the LED decoder by
using the leddcd_pckg package that is part of the WORK library. The WORK
library is an implicit library that has every project module as a member. We
could have explicitly created a library and added the leddcd.vhd file to it as we
did in Chapter 3, but using the WORK library is a bit simpler.

Lines 6–17: The interface to the design is declared here. The reset and clock inputs
drive the actions of the state machine that controls the operation of the circuit.
Data is passed to and from the RAM using the address and data buses along
with the chip-enable, write-enable and output-enable control signals. (Note
that the RAM data bus is declared as an inout since the same signals are
used to get data from the RAM as to send data to it.)

Lines 20–21: The four-bit RAM address register is declared on these lines as well as
the constant for the address of the upper end of the RAM data that will be
summed. For this example, the circuit will complement and sum eleven bytes
of data from address zero to ten, inclusive.

Lines 22–23: Two registers that are the same width as the RAM data bus are declared
here. One register holds the current value read from the RAM while the other
holds the sum of the RAM data values.

Lines 24–27: These lines declare a time delay register and the constants for the time
intervals involved with the display of the hexadecimal digits in the sum.

Lines 28–29: These lines declare a four-bit bus for sending the hexadecimal digit to the
LED decoder and a control signal to force the LED display to blank.

Lines 31–33: The nine states of the state machine are declared along with a register
that holds the current state.

Line 37: This is the start of the process that computes the next state for the state
machine given the current state, RAM address and delay timer value. The
values for the RAM address, data and control signals are also generated in
this process.

Lines 40–50: The default outputs for this process are defined here. The state, RAM
address, summation and RAM byte registers all retain their current values
unless explicitly changed within the process body. The delay register is
decremented. The LED display is blanked. The RAM is enabled, but any

© 2001 by XESS Corp. 342

read or write operations are disabled. The data bus is tristated to remove any
chance of contention between the FPGA or CPLD and the RAM.

Line 52: This is the start of the case statement that computes the outputs from this
process based on the current state stored in the st_r register.

Lines 53–55: The init state initializes the state machine for the start of the loop that
complements the contents of RAM. The address register is set to point to the
upper bound of the RAM data range and the state machine is moved to the
start of the two’s-complement loop (invertr).

Lines 56–59: The invertr state activates the outputs of the external RAM. The FPGA
or CPLD will tristate its own outputs to the RAM data bus so that there is no
contention (the default statement handles this). The value from RAM is
complemented and stored in the RAM byte register. Then the state machine
is moved to the state where the complemented data is written back to the
RAM (invertw).

Lines 60–63: The invertw state activates the write-enable of the external RAM during
the second half of the clock cycle (when the clock is low). The value in the
RAM byte register is sent out to the RAM on the data bus. Then the state
machine is moved to a NOP state to terminate the RAM write (invertnop).

Lines 64–74: The invertnop state keeps the RAM address stable while the write-
enable returns to its quiescent state (the default operation statements handle
this). The value in the RAM byte register remains on the output bus to the
RAM for the same reason. If the current RAM address is zero indicating the
complementation loop is finished, then the RAM address is reloaded with the
starting address of the (now complemented) RAM data. Then the state
machine is moved to the start of the summation loop (add). If not all the
RAM data has been complemented yet, then the RAM address is
decremented and the state machine returns to the start of the
complementation loop (invertr).

Lines 75–85: The add state activates the outputs of the external RAM. The value from
RAM is added to the summation register. If the current RAM address is zero
indicating the summation loop is finished, then the time delay register is
loaded with the initial blanking interval for the LED display. Then the state
machine is moved to the start of the display loop (display_blank). If all
the RAM data has not been summed, then the RAM address is decremented
and the state machine stays in the add state.

Lines 86–91: The display_blank state blanks the LED display and decrements the
delay timer (the default operation statements handle this). Once the delay
timer reaches zero, it is reloaded with the time interval for display of a digit
and the state machine is moved into the display_upper_digit state.

© 2001 by XESS Corp. 343

Lines 92–99: The display_upper_digit state unblanks the LED display and sends
the upper four bits of the sum to the LED decoder. The delay timer is also
decremented. Once the delay timer reaches zero, it is reloaded with the time
interval for blanking the display between digits and then the state machine is
moved into the display_interdigit state.

Lines 100–105: The display_interdigit state blanks the LED display and
decrements the delay timer (the default operation statements handle this).
Once the delay timer reaches zero, it is reloaded with the time interval for
display of a digit and the state machine is moved into the
display_lower_digit state.

Lines 106–113: The display_lower_digit state unblanks the LED display and
sends the lower four bits of the sum to the LED decoder. The delay timer is
also decremented. Once the delay timer reaches zero, it is reloaded with the
time interval for blanking the display before the sum is displayed and then the
state machine is moved into the display_blank state.

Lines 120–134: This process updates the state, address, data, sum and time delay
registers with their new values on the rising edge of the clock. The reset input
synchronously clears the sum register and transfers the state machine into its
starting state.

Line 136: The four-bit RAM address is padded with leading zeroes to form the complete
address passed to the external RAM.

Line 137: The LED decoder is passed the blanking signal and the four-bit hexadecimal
code for the digit to be displayed. The outputs of the LED decoder drive the
seven-segment LEDs.

Listing 5: VHDL code for the root module.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use WORK.leddcd_pckg.all;

entity ramsum is
 port (
 rst : in STD_LOGIC; -- reset
 clk : in STD_LOGIC; -- clock
 a : out UNSIGNED(16 downto 0); -- RAM address bus
 d : inout UNSIGNED(7 downto 0); -- RAM data bus
 ce_n : out STD_LOGIC; -- RAM chip-enable
 we_n : out STD_LOGIC; -- RAM write-enable
 oe_n : out STD_LOGIC; -- RAM output-enable
 s : out STD_LOGIC_VECTOR(6 downto 0) -- outputs to LED segments
);
end ramsum;

architecture ramsum_arch of ramsum is
signal addr_r, next_addr: UNSIGNED(3 downto 0); -- address register
constant maxaddr : UNSIGNED := TO_UNSIGNED(10,addr_r'length); -- upper address
signal b_r, next_b : UNSIGNED(d'length-1 downto 0); -- stores byte from RAM
signal sum_r, next_sum : UNSIGNED(d'length-1 downto 0); -- stores sum of RAM bytes
signal delay_r, next_delay : UNSIGNED(22 downto 0); -- delay counter
constant blank_dly : UNSIGNED := TO_UNSIGNED(5_000_000,delay_r'length);
constant interdigit_dly : UNSIGNED := TO_UNSIGNED(1_600_000,delay_r'length);
constant digit_dly : UNSIGNED := TO_UNSIGNED(2_500_000,delay_r'length);
signal digit : UNSIGNED(3 downto 0); -- LED hex digit to display
signal blank : STD_LOGIC; -- LED digit blanking signal
-- states for the state machine
type state is (init,invertr,invertw,invertnop,add,display_blank,

© 2001 by XESS Corp. 344

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

 display_upper_digit,display_interdigit,display_lower_digit);
signal st_r, next_st : state; -- state register
begin

-- this process computes the actions of the state machine in each state
process(clk,st_r,addr_r,sum_r,b_r,delay_r,d)
begin
 -- default outputs unless otherwise specified
 next_st <= st_r;-- next state is the same as the current state
 next_addr <= addr_r; -- don't change the RAM address
 next_sum <= sum_r; -- don't update the sum register
 next_b <= b_r; -- don't reload the RAM byte register
 next_delay <= delay_r-1; -- decrement the delay counter
 digit <= TO_UNSIGNED(0,digit'length); -- output a '0' LED digit
 blank <= '1'; -- blank the LED display
 ce_n <= '0'; -- enable the RAM
 we_n <= '1'; -- don't write to the RAM
 oe_n <= '1'; -- don't read from the RAM
 d <= (others=>'Z'); -- tristate the but to the RAM

 case st_r is -- case statement for the state machine
 when init => -- initialization state
 next_addr <= maxaddr; -- start inverting from the upper address
 next_st <= invertr; -- enter the RAM inversion loop
 when invertr => -- read the contents of the RAM location
 oe_n <= '0'; -- enable the RAM outputs
 next_b <= TO_UNSIGNED(0,next_b'length) - d; -- invert byte from RAM
 next_st <= invertw; -- go to RAM-write state
 when invertw => -- write inverted byte value into same RAM location
 we_n <= clk; -- write RAM in 2nd half of clock cycle
 d <= b_r; -- output inverted byte value to RAM
 next_st <= invertnop; -- go to RAM no-op state
 when invertnop => -- terminate RAM-write cleanly
 d <= b_r; -- maintain output of inverted byte value to RAM
 if addr_r = TO_UNSIGNED(0,addr_r'length) then
 -- reached the lower address of the RAM data
 next_addr <= maxaddr; -- reload register with upper address
 next_st <= add; -- enter the summation loop
 else
 -- haven't inverted all the RAM data yet
 next_addr <= addr_r - 1;-- address the next RAM location
 next_st <= invertr; -- return to beginning of the inversion loop
 end if;
 when add => -- sum the inverted data from RAM
 oe_n <= '0'; -- enable the RAM outputs
 next_sum <= sum_r + d; -- add the RAM data to the sum
 if addr_r = TO_UNSIGNED(0,addr_r'length) then
 -- reached the lower address of the RAM data
 next_delay <= blank_dly;-- load display interval counter
 next_st <= display_blank; -- now display the sum
 else
 -- haven't summed all the RAM data yet so stay in this state
 next_addr <= addr_r - 1;-- address the next RAM location
 end if;
 when display_blank => -- blank the display
 if delay_r = TO_UNSIGNED(0,delay_r'length) then
 -- initial display blanking is complete
 next_delay <= digit_dly; -- load digit display interval
 next_st <= display_upper_digit; -- now display the upper sum digit

© 2001 by XESS Corp. 345

91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

 end if;
 when display_upper_digit => -- display the upper digit of the sum
 blank <= '0'; -- activate the LED
 digit <= sum_r(7 downto 4); -- display the upper 4-bits of the sum
 if delay_r = TO_UNSIGNED(0,delay_r'length) then
 -- upper digit display is complete
 next_delay <= interdigit_dly; -- load inter-digit blanking interval
 next_st <= display_interdigit; -- blank the display between digits
 end if;
 when display_interdigit => -- blank the display between sum digits
 if delay_r = TO_UNSIGNED(0,delay_r'length) then
 -- inter-digit display blanking is complete
 next_delay <= digit_dly; -- load digit display interval
 next_st <= display_lower_digit; -- now display the lower sum digit
 end if;
 when display_lower_digit => -- display the lower digit of the sum
 blank <= '0'; -- activate the LED
 digit <= sum_r(3 downto 0); -- display the lower 4-bits of the sum
 if delay_r = TO_UNSIGNED(0,delay_r'length) then
 -- lower digit display is complete
 next_delay <= blank_dly; -- load blanking interval between loops
 next_st <= display_blank; -- loop and display the sum again
 end if;
 when others => -- error state
 next_st <= init;-- re-initialize the state machine on an erroneous state
 end case;
end process;

-- this process updates the registers on every rising clock edge
process(clk)
begin
 if clk'event and clk='1' then -- trigger on rising clock edge
 if rst='1' then -- synchronous reset
 st_r <= init;
 sum_r <= TO_UNSIGNED(0,sum_r'length);
 else -- update the registers
 st_r <= next_st;
 sum_r <= next_sum;
 addr_r <= next_addr;
 b_r <= next_b;
 delay_r <= next_delay;
 end if;
 end if;
end process;

a <= "0000000000000" & addr_r;
u1: leddcd port map(blank=>blank, d=>digit, s=>s);

end ramsum_arch;139

Figure 13 shows the waveforms for the phase when the RAM data is complemented.
RAM address N is output at the start of the invertr clock cycle and the RAM output-
enable is activated. The data stored at address N is output by the RAM to the FPGA or
CPLD where it is complemented and stored into the RAM byte register at the start of the
invertw cycle. The complemented value in the byte register is sent back to the RAM
and the RAM write-enable is pulsed low during the second half of the invertw cycle,
thus writing the complemented data back to address N. The RAM address and data are

© 2001 by XESS Corp. 346

held stable during the following invertnop cycle and then the entire operation is
repeated for RAM address N-1.

RAM data

RAM byte

state

read read

write write

RAM address

RAM OE

RAM WE

clock

invertr invertrinvertnop invertnopinvertw invertw

N N-1

RAM[N] RAM[N-1]

-RAM[N]-RAM[N+1] -RAM[N-1]

-RAM[N] -RAM[N-1]

Figure 13: Timing waveforms for the asynchronous RAM summation circuit.

The timing waveforms illustrate the fundamental principles involved when writing to an
asynchronous RAM:

1. The address to the RAM must be held stable during the entire time the write-
enable is active-low. Otherwise, data may be erroneously written to some other
address instead of, or in addition to, the desired address. That’s because write
operations to an asynchronous RAM occur as long as the write-enable is low, not
just on an edge transition.

2. The data to the RAM must be held stable at the rising edge of the write-enable
pulse. Otherwise, an incorrect data value may be written to the RAM address.

For our design, note that the RAM address is stable for an entire cycle both before and
after the write-enable pulse, and the RAM data is stable for an entire cycle before and
after the rising edge of the write-enable pulse. This allows a large setup time for the
address and data before the write-enable pulse, and provides a large hold time after the
pulse.

© 2001 by XESS Corp. 347

Synthesizing and Implementing the Design

Once the modules are checked for syntax and any errors are removed, we can run the
synthesis and implementation tools to create the configuration bitstream for the FPGA or
CPLD. Click on the Implementation icon to run the synthesizer and the implementation
tools sequentially.

© 2001 by XESS Corp. 348

We will target this design to the XS95 Board, so set the target device to be an
XC95108PC84 with a –20 speed grade. Then select the ramsum module as the top-
level module for the design.

Next, we need to set the options for the implementation tools.

© 2001 by XESS Corp. 349

Click on the Area button to make the CPLD fitting tool emphasize logic efficiency over
operational speed. This option setting is necessary because the design uses a large
time delay counter and several comparators that make it difficult to fit into an XC95108
CPLD. Click on the OK button to close the window.

Next, click on the SET button so we can specify the constraint file that lists the pin
assignments for the XS95 Board.

© 2001 by XESS Corp. 350

Select the Custom entry in the drop-down list of constraint files.

The Custom window should appear with the dsgn5_1.ucf file already in the Constraints File
field. If not, click on the Browse button, find this file in the top-level directory of the
dsgn5_1 project and select it. Then click on the OK button.

The dsgn5_1.ucf file should specify the assignments for the FPGA or CPLD pins that
connect to the clock, reset, seven-segment LED and RAM address, data and control
pins as shown in Figure 14. The pin assignments for the XS95 Board (which is our
target for this example) are shown in Listing 6. The equivalent pin assignments for the
XS40 Board are given in Listing 7.

© 2001 by XESS Corp. 351

S0

S1S2 S3

S4S5

S6

S0

S6

S1
S2
S3
S4
S5

Prog.
Osc.

D0
D1

D6
D5
D4
D3
D2

D7
Pa

ra
lle

l P
or

t C
on

ne
ct

or

RAM

da
ta

ad
dr

es
s

ch
ip

-e
na

bl
e

w
rit

e-
en

ab
le

ou
tp

ut
-e

na
bl

e

XC4005XL
FPGA

or
XC95108

CPLD

Figure 14: Connection of the external RAM, programmable oscillator, parallel port,
and LED digit to the pins of the FPGA or CPLD on the XS40 or XS95
Board.

Listing 6: Pin assignments for the XS95 Board.
pin assignemnts for the XS95 Board
net clk loc=p9; # clock from programmable osc.
net rst loc=p46; # reset from data pin D0 of parallel port
net d<0> loc=p44; # RAM data pin D0
net d<1> loc=p43; # RAM data pin D1
net d<2> loc=p41; # RAM data pin D2
net d<3> loc=p40; # RAM data pin D3
net d<4> loc=p39; # RAM data pin D4
net d<5> loc=p37; # RAM data pin D5
net d<6> loc=p36; # RAM data pin D6
net d<7> loc=p35; # RAM data pin D7
net a<0> loc=p75; # RAM address pin A0
net a<1> loc=p79; # RAM address pin A1
net a<2> loc=p82; # RAM address pin A2
net a<3> loc=p84; # RAM address pin A3
net a<4> loc=p1; # RAM address pin A4
net a<5> loc=p3; # RAM address pin A5
net a<6> loc=p83; # RAM address pin A6
net a<7> loc=p2; # RAM address pin A7
net a<8> loc=p58; # RAM address pin A8
net a<9> loc=p56; # RAM address pin A9
net a<10> loc=p54; # RAM address pin A10
net a<11> loc=p55; # RAM address pin A11
net a<12> loc=p53; # RAM address pin A12
net a<13> loc=p57; # RAM address pin A13
net a<14> loc=p61; # RAM address pin A14
net a<15> loc=p34; # RAM address pin A15
net a<16> loc=p74; # RAM address pin A16
net we_n loc=p63; # RAM write-enable
net oe_n loc=p62; # RAM output-enable

© 2001 by XESS Corp. 352

net ce_n loc=p65; # RAM chip-enable
net s<0> loc=p21; # LED segment S0
net s<1> loc=p23; # LED segment S1
net s<2> loc=p19; # LED segment S2
net s<3> loc=p17; # LED segment S3
net s<4> loc=p18; # LED segment S4
net s<5> loc=p14; # LED segment S5
net s<6> loc=p15; # LED segment S6

Listing 7: Pin assignments for the XS40 Board.
pin assignments for XS40 Board
net clk loc=p13; # clock from programmable osc.
net rst loc=p44; # reset from data pin D0 of parallel port
net d<0> loc=p41; # RAM data pin D0
net d<1> loc=p40; # RAM data pin D1
net d<2> loc=p39; # RAM data pin D2
net d<3> loc=p38; # RAM data pin D3
net d<4> loc=p35; # RAM data pin D4
net d<5> loc=p81; # RAM data pin D5
net d<6> loc=p80; # RAM data pin D6
net d<7> loc=p10; # RAM data pin D7
net a<0> loc=p3; # RAM address pin A0
net a<1> loc=p4; # RAM address pin A1
net a<2> loc=p5; # RAM address pin A2
net a<3> loc=p78; # RAM address pin A3
net a<4> loc=p79; # RAM address pin A4
net a<5> loc=p82; # RAM address pin A5
net a<6> loc=p83; # RAM address pin A6
net a<7> loc=p84; # RAM address pin A7
net a<8> loc=p59; # RAM address pin A8
net a<9> loc=p57; # RAM address pin A9
net a<10> loc=p51; # RAM address pin A10
net a<11> loc=p56; # RAM address pin A11
net a<12> loc=p50; # RAM address pin A12
net a<13> loc=p58; # RAM address pin A13
net a<14> loc=p60; # RAM address pin A14
net a<15> loc=p28; # RAM address pin A15
net a<16> loc=p16; # RAM address pin A16
net we_n loc=p62; # RAM write-enable
net oe_n loc=p61; # RAM output-enable
net ce_n loc=p65; # RAM chip-enable
net s<0> loc=p25; # LED segment S0
net s<1> loc=p26; # LED segment S1
net s<2> loc=p24; # LED segment S2
net s<3> loc=p20; # LED segment S3
net s<4> loc=p23; # LED segment S4
net s<5> loc=p18; # LED segment S5
net s<6> loc=p19; # LED segment S6

© 2001 by XESS Corp. 353

Once the target device, top-level module, implementation options and constraint file are
setup, click on the Run button to start the synthesis and implementation phases.

Both phases should complete with no problems.

© 2001 by XESS Corp. 354

Generating the Bitstream

Once the implementation phase is completed, we can go on to create the SVF file
containing the configuration bitstream for the XC95108 CPLD.

© 2001 by XESS Corp. 355

Select the OutputÎCreate SVF File… menu item from the JTAG Programmer window that
appears.

As always, specify an initial transition of the JTAG state machine through the Test-Logic-
Reset state.

Then tell the JTAG Programmer to save the configuration bitstream in the dsgn5_1.svf file
in the top-level directory of the dsgn5_1 project.

© 2001 by XESS Corp. 356

Now initiate the generation of the bitstream by selecting the OperationsÎProgram menu
item.

Just click on the OK button in the Options window to begin generating the bitstream.

© 2001 by XESS Corp. 357

The bitstream generation should complete without incident.

Downloading and Testing the Design

We need some test data to store into the RAM of the XS95 Board in order to test the
design. Go to the top-level directory of the dsgn5_1 project and use a text editor to
create a file called data.hex containing this single line of text:

- 0B 0000 FF FE FD FC FB FA F9 F8 F7 F6 F5

This is a set of eleven data bytes that will be loaded into RAM starting at address zero.
(This data is represented in the XESS format.) If you manually complement-and-sum
these data values you will get the following result (in two-digit hexadecimal):

(-FF)+(-FE)+(-FD)+(-FC)+(-FB)+(-FA)+(-F9)+(-F8)+(-F7)+(-F6)+(-F5) =
(1)+(2)+(3)+(4)+(5)+(6)+(7)+(8)+(9)+(A)+(B) =
42

Now that the SVF and test data file are ready, connect an XS95 Board to the PC parallel
port and start the GXSLOAD program. Go to the top-level directory for the dsgn5_1
project and select the dsgn5_1.svf and data.hex files. Then drag-and-drop them into the
gxsload window. The data file will be downloaded into the RAM and then the SVF file
will be programmed into the XC95108 CPLD on the XS95 Board.

© 2001 by XESS Corp. 358

The reset for the circuit is controlled by data pin D0 of the parallel port. If D0 is at logic 1
after the downloading completes, the circuit will be held in the reset state and the LED
will be blank. To release the reset, open the gxsport window and click on the D0 button
until it displays a zero.

Then click on the Strobe button so the logic 0 value is output on the D0 pin of the parallel
port.

Now you may observe the seven-segment LED repeatedly displaying the sequence
……4…2……4…2……. But you probably won’t. What went wrong?

© 2001 by XESS Corp. 359

The answer is that you are probably running the design with a 50 MHz clock (the default
for the XS95 Board). Can this design run that fast? Let’s check the timing for the
implemented design. Click on the icon for the report files in the Project Navigator
window.

Then double-click the Post Layout Timing Report in the Report Browser window.

The top portion of the timing report is shown in Listing 8 and this tells us what we want to
know: the maximum clock frequency for this design is 5.5 MHz. The slow clock is
brought about by the long carry propagation times through the complementors and
adders in the design. The situation is made worse because the implementation
algorithms have packed the logic to emphasize area efficiency and this can add extra
propagation delays to the circuit.

© 2001 by XESS Corp. 360

Listing 8: Timing report for the design.
 Performance Summary Report

Design: dsgn5_1
Device: XC95108-20-PC84
Program: Timing Report Generator: version C.22
Date: Sat Jan 05 14:08:28 2002

Performance Summary:

Clock net 'clk' path delays:

Clock Pad to Output Pad (tCO): 73.0ns (4 macrocell levels)
Clock Pad 'clk' to Output Pad 's<4>' (GCK)

Clock to Setup (tCYC): 161.5ns (8 macrocell levels)
Clock to Q, net 'sum_r<0>.Q' to TFF Setup(D) at 'sum_r<7>.D' (GCK)
Target FF drives output net 'sum_r<7>'

Setup to Clock at the Pad (tSU): 151.5ns (7 macrocell levels)
Data signal 'd<0>' to TFF D input Pin at 'sum_r<7>.D'
Clock pad 'clk' (GCK)

 Minimum Clock Period: 161.5ns
 Maximum Internal Clock Speed: 6.1Mhz
 (Limited by Cycle Time)

We need to reduce the clock frequency of the XS95 Board to less that 6.1 MHz in order
for our design to work reliably. To do this, start the GXSSETCLK program. Place 20 in the
Divisor field to reduce the 100 MHz master frequency to 5 MHz. Then click on the SET
button.

© 2001 by XESS Corp. 361

A set of instructions will appear that must be followed to adjust the clock frequency of the
XS95 Board. After doing these steps, click on the OK button to reprogram the clock.

Reprogramming the clock takes a minute or two after which the following set of
instructions is given to activate the new clock frequency.

After activating the 5 MHz clock frequency, we can download the dsgn5_1.SVF and the
data.hex files and release the reset on the circuit. Now we should see the
……4…2……4…2…… sequence displayed on the LED digit. If we set and clear the
reset again, then we should see the display change to ……B…E……B…E……. Why?
Because the first time the circuit was run it computed the two’s-complement of all the
data values and wrote them back into the RAM after which it computed the sum of the
data. So the second time the circuit was run it was using complemented data and the
resulting sum is the two’s-complement of the first result: -42 = BE in two-digit
hexadecimal. In addition, the sum will toggle between 42 and BE each time the circuit is
reset.

© 2001 by XESS Corp. 362

Using an Internal Synchronous RAM

The second version of the RAM summation circuit has the design hierarchy shown in
Figure 15. The root module of the design sums the data stored in an internal
synchronous RAM module while the LED decoder module displays the four-bit
hexadecimal digits on a seven-segment display. Only the XC4000 FPGAs have internal
RAM so this design can only be done using the XS40 Board. The XC95108 CPLD on
the XS95 Board is not suitable for designs, which require large amounts of internal data
storage.

RAM data summer
(ramsum)

LED Decoder
(leddcd)RESET

OEData Address CE WE

RAM

Figure 15: Design hierarchy for a logic circuit that displays the summation of data
in an internal synchronous RAM.

Each of these modules is stored in the dsgn5_2 directory that was created by starting
an HDL project follows.

© 2001 by XESS Corp. 363

The Internal RAM Module

The first module we will add is the internal synchronous RAM. This module is
constructed using the CORE Generator. To start this tool, select the ToolsÎDesign
EntryÎCore Generator… menu item.

© 2001 by XESS Corp. 364

The Xilinx CORE Generator window will appear. The left-hand pane of the window
displays the various families of circuits that the tool can generate. The individual circuits
within a highlighted family are shown in the right-hand pane.

© 2001 by XESS Corp. 365

Our first action is to setup the CORE Generator for the target FPGA and type of project
we are using in Foundation. Click on the ProjectÎProject Options… menu item to open the
Project Options window.

© 2001 by XESS Corp. 366

In the Project Options window, select VHDL in the Design Entry section since our project
will be done using VHDL. Also, click on the Synopsys button in the Vendor section since
this is the VHDL synthesis tool used by Foundation 2.1. Finally, select XC4000 as the
target FPGA in the Family section.

© 2001 by XESS Corp. 367

Once the options are set as described above, click on the OK button to close the window.

© 2001 by XESS Corp. 368

In the Core Generator window we can now see the Target Family is listed as XC4000.
Next, double-click on the Storage Elements & Memories entry in the left-hand pane.

© 2001 by XESS Corp. 369

Double-clicking the Storage Elements & Memories entry expands it and exposes three sub-
families of modules. Clicking on the RAMs & ROMs entry will display the members of this
family in the right-hand pane.

© 2001 by XESS Corp. 370

We need to both read and write the data values so a RAM should be used rather than a
ROM for this application. We will also try to keep this circuit as similar to the one in the
previous project so we will use a RAM with a single data port for both read and write
operations. For these reasons, the Registered SinglePort RAM is the closest match to what
we need so double-click that entry to begin the generation of such a RAM module.

© 2001 by XESS Corp. 371

The Registered SinglePort RAM window that appears has three tabs. The Core
Overview tab displays a general summary of the module while the Contact tab lists the
organization that was responsible for designing the module. But the Parameters tab is
where we actually personalize the module to fit our particular application.

The first thing to do is to type a name for the module into the Component Name field. We
chose the very original name RAM in this case.

© 2001 by XESS Corp. 372

Next, we set the number of locations in the RAM module. We want to sum as many as
sixteen values, so select 16 from the Depth pull-down menu.

Once the Depth field is set to sixteen, note that the Address Width field changes to four.
The Data Width Field is already set to eight so there is no need to change it.

The RAM has to be initialized with the values that will be summed. In the previous
example, this initialization was managed by having the GXSLOAD utility load the
external RAM with the contents of a HEX file. But in this example, the RAM is contained
within the FPGA so there is no way for GXSLOAD to access it and load its contents.
Instead, the initial values for the RAM must be inserted into the FPGA configuration
bitstream so the RAM contents are initialized at the same time the logic gates on the
FPGA are configured. The Core Generator looks for RAM initialization values in .coe
files. The contents of such a file for the RAM in this example is shown in Listing 9. The
Radix field is set to sixteen to indicate the data is represented in hexadecimal form.
The memdata field stores the initial values of each RAM location starting from address
zero and incrementing upwards until all sixteen locations are filled.

Listing 9: Initialization file for a Core Generator RAM.
Component_Name=ram;
Data_Width = 8;
Address_Width = 4;
Depth = 16;
Radix = 16;
memdata=FF,FE,FD,FC,FB,FA,F9,F8,F7,F6,F5,F4,F3,F2,F1,F0;

© 2001 by XESS Corp. 373

The RAM initialization values are stored in a file called ram.coe in the top-level directory of
the dsgn5_2 project. To load these values into the Core Generator, click on the Load Init
values… button as shown below.

Next, highlight the ram.coe file in the Select coe file… window and click on the Open
button. This loads the RAM initialization values into the Core Generator.

© 2001 by XESS Corp. 374

Once the initialization values are loaded, click on the Show Init Values… button to view
them.

The initial value for each RAM location will appear in the Coefficients window. (The
locations are labeled Coef# because RAMs inside FPGAs are often used to store tables
of coefficients for digital signal processing applications.) Click on the Close button to
remove the window.

© 2001 by XESS Corp. 375

Once the RAM width, depth and initial values are specified, click the Generate button to
have Core Generator assemble the necessary files that describe this RAM.

The success of the operation will be reported in the bottom pane of the Core Generator
window.

© 2001 by XESS Corp. 376

Once the RAM module is generated, we can add it to the project using the
DocumentÎAdd… menu command.

© 2001 by XESS Corp. 377

The Core Generator creates modules in the form of EDIF netlist files with the .edn
extension. Select Edif Sources in the Files of type field of the Add Document window and
then you will see the ram.edn file in the top-level directory of the project. Highlight ram.edn
and click on the Open button to add the RAM module to the project.

© 2001 by XESS Corp. 378

After adding the RAM module, the Project Navigator window appears as shown below.

© 2001 by XESS Corp. 379

The LED Decoder Module

This LED decoder circuit for this project is identical to the one used in the previous
project. Use the DocumentÎAdd… menu command and then move to the top-level
directory of dsgn5_1. Highlight the leddcd.vhd file and click on the Open button to add the
RAM module to the project.

© 2001 by XESS Corp. 380

After adding the LED decoder module, the Project Navigator window appears as shown
below.

The Root Module

The root module sequences through three main phases just as in the previous example:

Phase 1: Starting from an upper address of RAM and proceeding to address zero, the
value stored at each RAM address is read and the two’s-complement is
computed and written back to the same address.

Phase 2: Restarting from the upper address and proceeding to address zero, each
value is read from RAM and added to a sum register.

Phase 3: The sum is displayed on the seven-segment LED by blanking the LED
segments for a long interval to signal the start of the sum, then the
hexadecimal digit for the upper four bits of the sum are displayed, then the
LEDs are blanked for a shorter interval and then the hexadecimal digit for the
lower four bits is displayed. Then this four-step display process repeats.

© 2001 by XESS Corp. 381

The VHDL code for the root module (Listing 10) was derived from the root module of the
previous example is in the ramsum.vhd. The differences between the previous root
module and this one are described below.

Lines 6–12: The RAM address, data and control signals are no longer included in the
interface definition. That’s because the RAM is now internal to the FPGA so
we don’t need any I/O pins to interface to the external RAM chip.

Lines 15–24: These lines define the interface to the RAM module created by the Core
Generator. In addition to the ram.edn netlist file, the Core Generator also
creates a ram.vho file that shows the VHDL interface definition for the
component and how to instantiate it. We just copied the component
declaration from that file.

Lines 25–32: The internal buses for interfacing to the RAM module are declared on
these lines as well as the four-bit address register. The address, input data
and output data buses used in the state machine are declared with the type
UNSIGNED. This makes it easier to perform arithmetic operations on their
values using the numeric_std library. But the RAM module from the Core
Generator has input and output buses declared as type STD_LOGIC_VECTOR
so some intermediary buses are declared to make the type conversion.

Line 33: This line declares the constant for the address of the upper end of the RAM
data range that will be summed. As in the previous example, this circuit will
complement and sum eleven bytes of data from address zero to ten,
inclusive.

Lines 34: A register to hold the sum of the RAM values is declared here. The register
to hold the current value read from the RAM in the previous example is no
longer needed here because the synchronous RAM outputs will remain stable
except on the rising edge of the clock.

Lines 42–43: Only eight states are defined for this design. The invertnop state is no
longer needed when a synchronous RAM is used.

Lines 57–58: The default values for the active-high RAM read-enable (ce) and write-
enable (we) signals are defined here. The logic 1 on the ce input means a
rising clock edge will cause the RAM to register the value of the currently
addressed location onto its outputs. The logic 0 on the we input disables any
writes to the RAM.

Line 59: The input data bus to the RAM is set to zero unless it is specifically set to some
other value in the state machine. Unlike the example with the external RAM,
the input and output data buses of the internal RAM module are separate so
we do not need to tristate the bus when it is not in use.

Lines 62–64: The init state initializes the state machine for the start of the loop that
complements the contents of RAM. The address register is set to point to the
upper bound of the RAM data range and the state machine is moved to the
start of the two’s-complement loop (invertw).

© 2001 by XESS Corp. 382

Lines 65–68: The invertw state activates the write-enable of the RAM. At the time this
state is entered, the contents of the RAM address generated in the previous
cycle will be available on the RAM output data bus. This value is
complemented and written back on the din bus to the same address location.
The actual write will take place on the next rising-edge of the clock. Then the
state machine is moved to the invertr state to read the next RAM location.

Lines 69–78: The invertr state determines the next location to be read from RAM
depending upon the value of the current address register. If the current RAM
address has reached zero, then the address register is reloaded with the
starting address of the data range and control branches to the add state
where the summation of the data takes place. Otherwise, the current
address is decremented and control returns to the invertw state so the next
data location can be complemented. In either case, the contents at the new
address will be available on the outputs of the RAM at the start of the next
clock cycle.

Lines 79–88: The add state adds the value from RAM to the summation register. If the
current RAM address is zero indicating the summation loop is finished, then
the time delay register is loaded with the initial blanking interval for the LED
display. Then the state machine is moved to the start of the display loop
(display_blank). If all the RAM data has not been summed, then the
RAM address is decremented and the state machine stays in the add state.
The contents at the new address will be available on the outputs of the RAM
at the start of the next clock cycle.

Lines 139–149: The UNSIGNED address and data buses used in the state machine are
converted to the STD_LOGIC_VECTOR types and passed to the RAM
module created using the Core Generator. As with the component
declaration, example code for instantiating the RAM module can be found in
the ram.vho file

Listing 10: VHDL code for the root module.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use WORK.leddcd_pckg.all;

entity ramsum is
 port (
 rst : in STD_LOGIC; -- reset
 clk : in STD_LOGIC; -- clock
 s : out STD_LOGIC_VECTOR(6 downto 0) -- outputs to LED segments
);
end ramsum;

architecture ramsum_arch of ramsum is
component ram -- 16-byte synchronous RAM from CoreGen
 port (
 a : IN std_logic_VECTOR(3 downto 0); -- address bus
 d : IN std_logic_VECTOR(7 downto 0); -- data input bus
 we : IN std_logic; -- write-enable
 c : IN std_logic; -- clock
 ce : IN std_logic; -- read-enable
 q : OUT std_logic_VECTOR(7 downto 0) -- data output bus
);
end component;

© 2001 by XESS Corp. 383

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

-- RAM address, data, control signals
signal addr_r, next_addr : UNSIGNED(3 downto 0); -- RAM address reg
signal din : UNSIGNED(7 downto 0); -- RAM data input bus
signal dout : UNSIGNED(7 downto 0); -- RAM data output bus
signal ce : STD_LOGIC; -- RAM chip-enable
signal we : STD_LOGIC; -- RAM write-enable
signal aa : STD_LOGIC_VECTOR(addr_r'range); -- RAM address bus
signal dd,qq : STD_LOGIC_VECTOR(din'range); -- RAM data I/O buses
constantmaxaddr : UNSIGNED := TO_UNSIGNED(10,addr_r'length);
signal sum_r, next_sum : UNSIGNED(din'length-1 downto 0); -- RAM sum
signal delay_r, next_delay : UNSIGNED(22 downto 0); -- delay counter
constantblank_dly : UNSIGNED := TO_UNSIGNED(5_000_000,delay_r'length);
constant interdigit_dly:UNSIGNED:=TO_UNSIGNED(1_600_000,delay_r'length);
constantdigit_dly : UNSIGNED := TO_UNSIGNED(2_500_000,delay_r'length);
signal digit : UNSIGNED(3 downto 0); -- LED hex digit to display
signal blank : STD_LOGIC; -- LED digit blanking signal
-- states for the state machine
type state is (init,invertr,invertw,add,display_blank,
 display_upper_digit,display_interdigit,display_lower_digit);
signal st_r, next_st : state; -- state register
begin

-- this process computes the actions of the state machine in each state
process(clk,st_r,addr_r,sum_r,delay_r,din)
begin
 -- default outputs unless otherwise specified
 next_st <= st_r; -- remain in the current state
 next_addr <= addr_r; -- don't change the RAM address
 next_sum <= sum_r; -- don't update the sum register
 next_delay <= delay_r-1; -- decrement the delay counter
 digit <= TO_UNSIGNED(0,digit'length); -- output a '0' LED digit
 blank <= '1'; -- blank the LED display
 ce <= '1'; -- always read the RAM
 we <= '0'; -- don't write to the RAM
 din <= TO_UNSIGNED(0,din’length);

 case st_r is -- case statement for the state machine
 when init => -- initialization state
 next_addr <= maxaddr; -- start inverting from the upper address
 next_st <= invertw; -- enter the RAM inversion loop
 when invertw => -- write inverted byte value into same RAM location
 we <= '1'; -- write RAM at the end of this clock cycle
 din <= TO_UNSIGNED(0,din'length) - dout;-- output inverted byte
 next_st <= invertr; -- now read from next RAM location
 when invertr => -- read byte from RAM
 if addr_r = TO_UNSIGNED(0,addr_r'length) then
 -- reached the lower address of the RAM data
 next_addr <= maxaddr; -- reload register with upper address
 next_st <= add; -- enter the summation loop
 else
 -- haven't inverted all the RAM data yet
 next_addr <= addr_r - 1;
 next_st <= invertw; -- now write to it
 end if;
 when add => -- sum the inverted data from RAM
 next_sum <= sum_r + dout; -- add the RAM data to the sum
 if addr_r = TO_UNSIGNED(0,addr_r'length) then
 -- reached the lower address of the RAM data
 next_delay <= blank_dly;-- load display interval counter
 next_st <= display_blank; -- now display the sum
 else
 -- haven't summed all the RAM data yet so stay in this state
 next_addr <= addr_r - 1;-- address the next RAM location
 end if;
 when display_blank => -- blank the display

© 2001 by XESS Corp. 384

 if delay_r = TO_UNSIGNED(0,delay_r'length) then 90
91
92
93
94
95
96
97
98
99

100
101
102

 when display_interdigit => -- blank the display between sum digits 103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

 -- initial display blanking is complete
 next_delay <= digit_dly; -- load digit display interval
 next_st <= display_upper_digit; -- display the upper sum digit
 end if;
 when display_upper_digit => -- display the upper digit of the sum
 blank <= '0'; -- activate the LED
 digit <= sum_r(7 downto 4); -- display the upper 4-bits of the sum
 if delay_r = TO_UNSIGNED(0,delay_r'length) then
 -- upper digit display is complete
 next_delay <= interdigit_dly; -- load inter-digit blank interval
 next_st <= display_interdigit; -- blank display between digits
 end if;

 if delay_r = TO_UNSIGNED(0,delay_r'length) then
 -- inter-digit display blanking is complete
 next_delay <= digit_dly; -- load digit display interval
 next_st <= display_lower_digit; -- display the lower sum digit
 end if;
 when display_lower_digit => -- display the lower digit of the sum
 blank <= '0'; -- activate the LED
 digit <= sum_r(3 downto 0); -- display the lower 4-bits of the sum
 if delay_r = TO_UNSIGNED(0,delay_r'length) then
 -- lower digit display is complete
 next_delay <= blank_dly;-- load blank interval between loops
 next_st <= display_blank; -- loop and display the sum again
 end if;
 when others => -- error state
 next_st <= init;-- re-initialize the state machine
 end case;
end process;

-- this process updates the registers on every rising clock edge
process(clk)
begin
 if clk'event and clk='1' then -- trigger on rising clock edge
 if rst='1' then -- synchronous reset
 st_r <= init;
 sum_r <= TO_UNSIGNED(0,sum_r'length);
 else -- update the registers
 st_r <= next_st;
 sum_r <= next_sum;
 addr_r <= next_addr;
 delay_r <= next_delay;
 end if;
 end if;
end process;

-- connect clock, address, data and control to the RAM block
aa <= STD_LOGIC_VECTOR(next_addr);
dd <= STD_LOGIC_VECTOR(din);
qq <= STD_LOGIC_VECTOR(dout);
u2: ram port map (
 a => aa,
 d => dd,
 we => we,
 c => clk,
 ce => ce,
 q => qq
);

-- output digit on the LED display
u1: leddcd port map(blank=>blank, d=>digit, s=>s);

end ramsum_arch;154

© 2001 by XESS Corp. 385

Figure 16 shows the waveforms for the last few cycles of the RAM complementation
loop and the first few cycles of the summation loop. Data from RAM address 1 is
available at the start of the invertw clock cycle. The data is complemented and sent
back to the RAM where it is written at the end of the invertw cycle. During the
following invertr cycle, the RAM address is decremented to zero and this is output on
the RAM address bus. At the beginning of the next invertw cycle, the contents of
RAM address 0 become available on the RAM data outputs. The current RAM address
of zero is also stored in the address register in the FPGA. The complemented contents
of RAM address 0 are written back into the RAM and control returns to the invertr
state. Since the address register now contains zero, the RAM address is restored back
to the start of the data range and control proceeds to the add state. During the add
state the data from the address register location is added to the summation register
while the decremented address for the next RAM location is sent to the RAM. The data
at the decremented address is available during the next clock cycle and the summation
continues until the address register reaches zero.

RAM data in

RAM data out

state

write write

RAM address reg.

RAM address

RAM WE

clock

invertw invertrinvertw addinvertr add

1

1

N

N

0

0

N-1

N-1 N-2

-RAM[1] -RAM[0]

RAM[N] RAM[N-1]RAM[0]RAM[0]RAM[1]

Figure 16: Timing waveforms for the synchronous RAM summation circuit.

The timing waveforms illustrate the fundamental principles involved when writing to a
synchronous RAM:

1. The address, data and write-enable signal must be held stable for the setup time
before the actual write-operation occurs at the next rising clock edge. Changing
the address while the write-enable is active and the clock is either high or low will
not cause erroneous writes into other addresses because write operations only
occur on a rising clock edge.

2. There is no need to hold the address or data stable after the rising clock edge
during a write operation.

© 2001 by XESS Corp. 386

3. For a synchronous RAM with registered outputs, the RAM outputs will show the
data that was in the RAM location whose address was present at the previous
rising clock edge. These outputs will persist until the next rising clock edge.

For our design, note that the RAM address, data and write-enable are stable before a
rising clock edge and then change immediately after the edge. The output RAM data is
stable for the entire cycle after the rising clock edge even when the RAM address
changes. That means our design can complement the RAM data directly and then send
it back to the RAM rather than store it in a register and then operate on it.

Synthesizing and Implementing the Design

Once the modules are checked for syntax and any errors are removed, we can run the
synthesis and implementation tools to create the configuration bitstream for the FPGA or
CPLD. Click on the Implementation icon to run the synthesizer and the implementation
tools sequentially.

We will target this design to the XS40 Board, so set the target device to be an
XC4005XLPC84 with a –3 speed grade. Then select the ramsum module as the top-

© 2001 by XESS Corp. 387

level module for the design. Then click on the SET button so we can specify the
constraint file containing the pin assignments.

Select the Custom entry in the drop-down list of constraint files.

© 2001 by XESS Corp. 388

The Custom window should appear with the dsgn5_2.ucf file already in the Constraints File
field. If not, click on the Browse button, find this file in the top-level directory of the
dsgn5_2 project and select it. Then click on the OK button.

The dsgn5_2.ucf file should specify the assignments for the FPGA or CPLD pins that
connect to the clock, reset, seven-segment LED and RAM address, data and control
pins as shown in Figure 17. The pin assignments for the XS40 Board (which is our
target for this example) are shown in Listing 11.

S0

S1S2 S3

S4S5

S6

S0

S6

S1
S2
S3
S4
S5

25

19

26
24
20
23
18

13

XC4005XL
FPGA

Prog.
Osc.

D0
D1

D6
D5
D4
D3
D2

D7

44
45

32
49
48
47
46

34

Pa
ra

lle
l P

or
t C

on
ne

ct
or

Figure 17: Connection of the programmable oscillator, parallel port, and LED digit
to the pins of the FPGA or CPLD on the XS40 Board.

Listing 11: Pin assignments for the XS40 Board.
pin assignments for XS40 Board
net clk loc=p13; # clock from programmable osc.
net rst loc=p44; # reset from data pin D0 of parallel port
net s<0> loc=p25; # LED segment S0
net s<1> loc=p26; # LED segment S1
net s<2> loc=p24; # LED segment S2
net s<3> loc=p20; # LED segment S3
net s<4> loc=p23; # LED segment S4
net s<5> loc=p18; # LED segment S5
net s<6> loc=p19; # LED segment S6

© 2001 by XESS Corp. 389

Once the target device, top-level module, implementation options and constraint file are
setup, click on the Run button to start the synthesis and implementation phases.

Both phases should complete with no problems.

Downloading and Testing the Design

The bitstream file in this example contains both the FPGA configuration and the initial
data for the internal RAM, so there is no need to create a separate data file to initialize
the RAM as in the last example. The data in the internal RAM is identical to what was
used in the previous example, so the result of the complement-and-sum process should
be the same: 42 in two-digit hexadecimal.

© 2001 by XESS Corp. 390

Connect an XS40 Board to the PC parallel port and start the GXSLOAD program. Go to
the top-level directory for the dsgn5_2 project and select the dsgn5_2.bit file. Then drag-
and-drop it into the gxsload window. The bitstream file will be programmed into the
XC4005XL FPGA on the XS40 Board.

The reset for the circuit is controlled by data pin D0 of the parallel port. If D0 is at logic 1
after the downloading completes, the circuit will be held in the reset state and the LED
will be blank. To release the reset, open the gxsport window and click on the D0 button
until it displays a zero.

Then click on the Strobe button so the logic 0 value is output on the D0 pin of the parallel
port.

Now you will observe the seven-segment LED repeatedly displaying the sequence
……4…2……4…2……. However, it may be blinking too rapidly. Why?

© 2001 by XESS Corp. 391

The answer is that you are probably running the design with a 50 MHz clock (the default
for the XS40 Board). But the constants that determine the blanking and display intervals
for the LED digit were calculated based on a 5 MHz clock. Can this design even run at
50 MHz? Let’s check the timing for the implemented design. Click on the icon for the
report files in the Project Navigator window.

Then double-click the Post Layout Timing Report in the Report Browser window.

The top portion of the timing report is shown in Listing 12 and this tells us what we want
to know: the minimum clock period for this design is 40.096 ns which translates to a

© 2001 by XESS Corp. 392

maximum operating frequency of 24.94 MHz. The clock frequency is higher for this
design than in the last example because the XC4005XL FPGA has specialized carry
propagation circuitry that speeds the addition and complementation operations. It is not
surprising that this design runs at 50 MHz when the FPGA is at room temperature and
the power supply is optimal.

Listing 12: Timing report for the design.

Xilinx TRACE, Version C.22
Copyright (c) 1995-1999 Xilinx, Inc. All rights reserved.

Design file: dsgn5_2.ncd
Physical constraint file: dsgn5_2.pcf
Device,speed: xc4005xl,-3 (C 1.1.2.2 FINAL)
Report level: error report

WARNING:Timing:181 - No timing constraints found, doing default enumeration.

===
Timing constraint: Default period analysis
 3080 items analyzed, 0 timing errors detected.
 Minimum period is 40.096ns.

===
Timing constraint: Default net enumeration
 156 items analyzed, 0 timing errors detected.
 Maximum net delay is 13.074ns.

…
…
…

Timing summary:

Timing errors: 0 Score: 0

Constraints cover 3080 paths, 156 nets, and 525 connections (100.0% coverage)

Design statistics:
 Minimum period: 40.096ns (Maximum frequency: 24.940MHz)
 Maximum net delay: 13.074ns

Analysis completed Wed Jan 30 16:45:43 2002

© 2001 by XESS Corp. 393

We need to reduce the clock frequency of the XS40 Board to 5 MHz to slow the display
of the sum. To do this, start the GXSSETCLK program. Set the Board Type field to XS40-
005XL. Place 20 in the Divisor field to reduce the 100 MHz master frequency to 5 MHz.
Then click on the SET button.

A set of instructions will appear that must be followed to adjust the clock frequency of the
XS40 Board. After doing these steps, click on the OK button to reprogram the clock.

Reprogramming the clock takes less than a minute after which the following set of
instructions is given to activate the new clock frequency.

After activating the 5 MHz clock frequency, we can again download the dsgn5_2.BIT file
again and release the reset on the circuit. Now we should see the
……4…2……4…2…… sequence displayed on the LED digit at a more leisurely pace.
And just as with the previous example, if we set and clear the reset again we will see the
display change to ……B…E……B…E…….

© 2001 by XESS Corp. 394

	Using RAM
	In this chapter you will learn how to:
	RAM
	Using an External Asynchronous RAM
	The LED Decoder Module
	The Root Module
	Synthesizing and Implementing the Design
	Generating the Bitstream
	Downloading and Testing the Design

	Using an Internal Synchronous RAM
	The Internal RAM Module
	The LED Decoder Module
	The Root Module
	Synthesizing and Implementing the Design
	Downloading and Testing the Design

