Pragmatic Logic Design

With XILINX Foundation 2.1i

S?HTHEEIE

U 4 l
SIMULATION

B » » B B I

IHPLEHEHTFITII::H“ YERIFICATION

» B

PROGRAMMING

83!

David E. Vanden Bout
XESS Corp

© 2001 by X Engineering Software Systems Corp., Apex, North Carolina 27502

All rights reserved. No part of this text may be reproduced, in any form or by any means, without
permission in writing from the publisher.

The author and publisher of this text have used their best efforts in preparing this text. These
efforts include the development, research, and testing of the theories and programs to determine
their effectiveness. The author and publisher make no warranty of any kind, expressed or
implied, with regard to these programs or the documentation contained in this text. The author
and publisher shall not be liable in any event for incidental or consequential damages in
connection with, or arising out of, the furnishing, performance, or use of these programs.

XESS, XS40, and XS95 are trademarks of X Engineering Software Systems Corp. XILINX,
Foundation, XC4000, and XC9500 are trademarks of XILINX Corporation. Other product and
company names mentioned are trademarks or trade names of their respective companies.

The software described in this text is furnished under a license agreement. The software may be
used or copied under terms of the license agreement.

Using RAM

In this chapter you will learn how to:

» Interface to an external RAM with a programmable device.
» Use the internal RAMs found in the XC4000 FPGAs.

» Create RAM modules using the Core Generator.

RAM

Eventually you will need to incorporate RAM into one of your designs. While you can build multi-bit
registers from the flip-flops in a CPLD or FPGA, it is more efficient to use an external RAM chip or a
specialized internal RAM-block when you need to store larger amounts of data.

In this chapter we will build a simple design that reads a set of data bytes from RAM, writes the 2’s-
complement of the byte values back into the RAM, sums the complemented data values and then
displays the sum on the seven-segment LED. We will do two different versions of this design:

1. The first version will store the data values in the external asynchronous, byte-wide RAM
found on the XS40 and XS95 Boards.

2. The second version will store the data values using the internal synchronous, distributed
RAM contained in the XC4000 FPGA on the XS40 Board.

Using an External Asynchronous RAM

The first version of the RAM summation circuit has the design hierarchy shown in Figure 12. The
root module of the design manages the interface to the external asynchronous RAM and sums the
data while the lower-level module displays a four-bit hexadecimal value on a seven-segment
display.

RAM data summer
Jomum (ramsum)

\

LED Decoder
RESET (leddcd)

Figure 12: Design hierarchy for a logic circuit that displays the summation of data in the
RAM.

Each of these modules is described by a VHDL file stored in the dsgn5_1 project directory that was
created as follows.

Mew Project Ed |

I amne: Idsgn5_1| K.

Cancel

Directary: [C:A\PRAG21I
Browse. ..

Pk

Twpst — |F2i | Help

Flaows: i~ Schematic HODL

-_—

QUOWONOOOAPRRWN-

After the VHDL files for the modules were created and added to the project, the Project Navigator
window appears as follows. Now | will describe the contents of each VHDL file.

‘& dzgnb_1 - 95108-20PC84 - Project Manager
File Document Yiew Project Synthesziz Implementation Tool: Help
D] 8] ®ln| =% E#l 8]] B2 Ml
Filez \ Yersions \,. Flaay \.. Cortents \"-. Reparts \..
=- 23 dsgns_1 |
= e dod vhd dsgng_1 | -
& E rarmsurm.vhd
“ & dsgna_1
= » I » @
SYNTHESIS ¥ SIMULATION
A 4
)
o H » @@ 1
IMPLEMENTATION ¥ YERIFICATIOM
A 4
| -
Dpm :Done -
Pecm Update: ciprag21idsgns_1iramsumyhd (0, 0 |
Pcm o Syvnopsys server initialization -
Conzole ;" HOL Errors ..e" HOL \Warnings ,e" HOL Messages ,a"' || 1 I | _hl
Ready
The LED Decoder Module

This LED decoder circuit is almost identical to the one in Chapter 3 except for the addition of a
blanking input signal that causes all the LED segments to turn off. This signal will be used to blank
the display to separate the digits when displaying a multi-digit hexadecimal number.

The VHDL code for the LED decoder is shown in Listing 4. This code is stored in the leddcd.vhd file
in the dsgnb_1 project directory.

Listing 4: VHDL code for the seven-segment LED decoder module.

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.numeric std.all;

package leddcd pckg is

component leddcd
port (
blank: in STD LOGIC; -- active-high blanking input
d : in UNSIGNED (3 downto 0);

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

S

) ;

end component;

end leddcd pckg;

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.numeric_ std.all;

entity leddcd is

port (

blank: in STD LOGIC;
in UNSIGNED (3

d
S
)7
end leddcd;

out STD LOGIC VECTOR (6 downto 0)

-- active-high blanking input
downto 0);

out STD LOGIC VECTOR (6 downto 0)

architecture leddcd arch of leddcd is
signal s tmp: STD LOGIC VECTOR (6 downto 0);

begin

with d select

s _tmp <=

"1110111"
"0010010"
"1011101"
"1011011"
"0111010"
"1101011"
"1101111"
"1010010"
"l1111111"
"1111011"
"1111110"
"0l101111"
"1100101"
"001l1l111"
"1101101"
"1101100"

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

"ooo00", --
"ooo1i", --
"oo01i0", --
"oo11", --
"O]_OO", ——
110101", —
"0110", —
"o111", --
"1000", --
"1001", --
"1010", --
"1011", --
"1100", --
"ij1io01", --
"1110", --
others; --

H MO QO™ WwWwoow-JdJo U s WN kP o

-- zero the outputs if the blanking signal is high,
-- otherwise output the LED digit bit pattern

s <= "0000000O"
end leddcd

arch;

when blank='1l"' else s tmp;

The Root Module

The root module sequences through three main phases:

Phase 1: Starting from an upper address of RAM and proceeding to address zero, the
value stored at each RAM address is read and the two’s-complement is
computed and written back to the same address.

Phase 2: Restarting from the upper address and proceeding to address zero, each
value is read from RAM and added to a sum register.

Phase 3: The sum is displayed on the seven-segment LED by blanking the LED
segments for a long interval to signal the start of the sum, then the
hexadecimal digit for the upper four bits of the sum are displayed, then the
LEDs are blanked for a shorter interval and then the hexadecimal digit for the
lower four bits is displayed. Then this four-step display process repeats.

The VHDL code for the root module is in the ramsum.vhd (Listing 5). Some highlights from
the code are given below.

Line 4: The root module accesses the component declaration for the LED decoder by
using the leddcd pckg package that is part of the WORK library. The WORK
library is an implicit library that has every project module as a member. We
could have explicitly created a library and added the leddcd.vhd file to it as we
did in Chapter 3, but using the WORK library is a bit simpler.

Lines 6-17: The interface to the design is declared here. The reset and clock inputs
drive the actions of the state machine that controls the operation of the circuit.
Data is passed to and from the RAM using the address and data buses along
with the chip-enable, write-enable and output-enable control signals. (Note
that the RAM data bus is declared as an inout since the same signals are
used to get data from the RAM as to send data to it.)

Lines 20-21: The four-bit RAM address register is declared on these lines as well as
the constant for the address of the upper end of the RAM data that will be
summed. For this example, the circuit will complement and sum eleven bytes
of data from address zero to ten, inclusive.

Lines 22-23: Two registers that are the same width as the RAM data bus are declared
here. One register holds the current value read from the RAM while the other
holds the sum of the RAM data values.

Lines 24-27: These lines declare a time delay register and the constants for the time
intervals involved with the display of the hexadecimal digits in the sum.

Lines 28-29: These lines declare a four-bit bus for sending the hexadecimal digit to the
LED decoder and a control signal to force the LED display to blank.

Lines 31-33: The nine states of the state machine are declared along with a register
that holds the current state.

Line 37: This is the start of the process that computes the next state for the state
machine given the current state, RAM address and delay timer value. The
values for the RAM address, data and control signals are also generated in
this process.

Lines 40-50: The default outputs for this process are defined here. The state, RAM
address, summation and RAM byte registers all retain their current values
unless explicitly changed within the process body. The delay register is
decremented. The LED display is blanked. The RAM is enabled, but any

read or write operations are disabled. The data bus is tristated to remove any
chance of contention between the FPGA or CPLD and the RAM.

Line 52: This is the start of the case statement that computes the outputs from this
process based on the current state stored in the st _r register.

Lines 53-55: The init state initializes the state machine for the start of the loop that
complements the contents of RAM. The address register is set to point to the
upper bound of the RAM data range and the state machine is moved to the
start of the two’s-complement loop (invertr).

Lines 56-59: The invertr state activates the outputs of the external RAM. The FPGA
or CPLD will tristate its own outputs to the RAM data bus so that there is no
contention (the default statement handles this). The value from RAM is
complemented and stored in the RAM byte register. Then the state machine
is moved to the state where the complemented data is written back to the
RAM (invertw).

Lines 60—63: The invertw state activates the write-enable of the external RAM during
the second half of the clock cycle (when the clock is low). The value in the
RAM byte register is sent out to the RAM on the data bus. Then the state
machine is moved to a NOP state to terminate the RAM write (invertnop).

Lines 64-74: The invertnop state keeps the RAM address stable while the write-
enable returns to its quiescent state (the default operation statements handle
this). The value in the RAM byte register remains on the output bus to the
RAM for the same reason. If the current RAM address is zero indicating the
complementation loop is finished, then the RAM address is reloaded with the
starting address of the (now complemented) RAM data. Then the state
machine is moved to the start of the summation loop (add). If not all the
RAM data has been complemented yet, then the RAM address is
decremented and the state machine returns to the start of the
complementation loop (invertr).

Lines 75-85: The add state activates the outputs of the external RAM. The value from
RAM is added to the summation register. If the current RAM address is zero
indicating the summation loop is finished, then the time delay register is
loaded with the initial blanking interval for the LED display. Then the state
machine is moved to the start of the display loop (display blank). Ifall
the RAM data has not been summed, then the RAM address is decremented
and the state machine stays in the add state.

Lines 86-91: The display blank state blanks the LED display and decrements the
delay timer (the default operation statements handle this). Once the delay
timer reaches zero, it is reloaded with the time interval for display of a digit
and the state machine is moved into the display upper digit state.

Lines 92-99: The display upper digit state unblanks the LED display and sends
the upper four bits of the sum to the LED decoder. The delay timer is also
decremented. Once the delay timer reaches zero, it is reloaded with the time
interval for blanking the display between digits and then the state machine is
moved into the display interdigit state.

OCONOOPRWN =

Lines 100-105: The display interdigit state blanks the LED display and
decrements the delay timer (the default operation statements handle this).
Once the delay timer reaches zero, it is reloaded with the time interval for
display of a digit and the state machine is moved into the
display lower digit state.

Lines 106-113: The display lower digit state unblanks the LED display and
sends the lower four bits of the sum to the LED decoder. The delay timer is
also decremented. Once the delay timer reaches zero, it is reloaded with the
time interval for blanking the display before the sum is displayed and then the
state machine is moved into the display blank state.

Lines 120-134: This process updates the state, address, data, sum and time delay
registers with their new values on the rising edge of the clock. The reset input
synchronously clears the sum register and transfers the state machine into its
starting state.

Line 136: The four-bit RAM address is padded with leading zeroes to form the complete
address passed to the external RAM.

Line 137: The LED decoder is passed the blanking signal and the four-bit hexadecimal
code for the digit to be displayed. The outputs of the LED decoder drive the
seven-segment LEDs.

Listing 5: VHDL code for the root module.

library IEEE;

use IEEE.std logic 1164.all;
use IEEE.numeric std.all;
use WORK.leddcd pckg.all;

entity ramsum is

port (
rst : in STD LOGIC; -- reset
clk : in STD LOGIC; -- clock
a : out UNSIGNED (16 downto O0); -- RAM address bus
d : inout UNSIGNED (7 downto 0); -- RAM data bus
ce n : out STD LOGIC; -- RAM chip-enable
we n : out STD LOGIC; -- RAM write-enable
oe n : out STD LOGIC; -- RAM output-enable
s : out STD LOGIC VECTOR(6 downto 0) —- outputs to LED segments

)

end ramsum;

architecture ramsum arch of ramsum is

signal addr r, next addr: UNSIGNED(3 downto 0); -- address register

constant maxaddr : UNSIGNED := TO UNSIGNED(10,addr r'length); -- upper address
signal b r, next b : UNSIGNED(d'length-1 downto O0); -- stores byte from RAM
signal sum r, next sum : UNSIGNED (d'length-1 downto 0); -- stores sum of RAM bytes
signal delay r, next delay : UNSIGNED (22 downto 0); -- delay counter

constant blank dly : UNSIGNED := TO UNSIGNED(5 000 000,delay r'length);

constant interdigit dly : UNSIGNED := TO UNSIGNED (1 600 000,delay r'length);
constant digit dly : UNSIGNED := TO UNSIGNED (2 500 000,delay r'length);

signal digit : UNSIGNED (3 downto 0); -- LED hex digit to display

signal blank : STD _LOGIC; -- LED digit blanking signal

-- states for the state machine
type state is (init,invertr,invertw,invertnop,add,display blank,

display upper digit,display interdigit,display lower digit);
signal st r, next st : state; -- state register
begin

-- this process computes the actions of the state machine in each state
process(clk,st r,addr r,sum r,b r,delay r,d)

begin
-- default outputs unless otherwise specified
next st <= st r;-- next state is the same as the current state
next addr <= addr r; -- don't change the RAM address
next sum <= sum r; -- don't update the sum register
next b <= Db r; -— don't reload the RAM byte register
next delay <= delay r-1; -- decrement the delay counter
digit <= TO UNSIGNED(0,digit'length); -- output a '0' LED digit
blank <= '1"; -- blank the LED display
ce n <= "'0"'; -—- enable the RAM
we n <= '1l'; -— don't write to the RAM
oe n <= '1l'; -— don't read from the RAM
d <= (others=>'Z'); -- tristate the but to the RAM
case st r is -- case statement for the state machine
when init => -- initialization state
next addr <= maxaddr; -- start inverting from the upper address
next st <= invertr; -- enter the RAM inversion loop
when invertr => -- read the contents of the RAM location
ce n<="'0"; -- enable the RAM outputs
next b <= TO UNSIGNED(0,next b'length) - d; -- invert byte from RAM
next st <= invertw; -- go to RAM-write state
when invertw => -- write inverted byte value into same RAM location
we n <= clk; -- write RAM in 2nd half of clock cycle
d <= b r; -- output inverted byte value to RAM
next st <= invertnop; -- go to RAM no-op state
when invertnop => -- terminate RAM-write cleanly
d <= b r; -- maintain output of inverted byte value to RAM

if addr_r = TO_UNSIGNED(0,addr r'length) then
-- reached the lower address of the RAM data

next addr <= maxaddr; -- reload register with upper address
next st <= add; -- enter the summation loop
else
-- haven't inverted all the RAM data yet
next addr <= addr r - 1;-- address the next RAM location
next st <= invertr; -- return to beginning of the inversion loop
end if;
when add => -- sum the inverted data from RAM
oe n <= '0"; -- enable the RAM outputs
next sum <= sum r + d; -- add the RAM data to the sum

if addr r = TO UNSIGNED (0,addr r'length) then
-- reached the lower address of the RAM data

next delay <= blank dly;-- load display interval counter
next st <= display blank; -- now display the sum

else
-- haven't summed all the RAM data yet so stay in this state
next addr <= addr r - 1;-- address the next RAM location

end if;

when display blank =>-- blank the display
if delay r = TO UNSIGNED(0,delay r'length) then
-- initial display blanking is complete
next delay <= digit dly; -- load digit display interval
next st <= display upper digit; -- now display the upper sum digit

end if;

when display upper digit => -- display the upper digit of the sum
blank <= '0'; -- activate the LED
digit <= sum_r (7 downto 4); -- display the upper 4-bits of the sum

if delay r = TO UNSIGNED(0O,delay r'length) then
-- upper digit display is complete

next delay <= interdigit dly; -- load inter-digit blanking interval
next st <= display interdigit; -- blank the display between digits
end if;

when display interdigit => -- blank the display between sum digits
if delay r = TO UNSIGNED(0O,delay r'length) then
-- inter-digit display blanking is complete

next delay <= digit dly; -- load digit display interval
next st <= display lower digit; -- now display the lower sum digit
end if;
when display lower digit => -- display the lower digit of the sum
blank <= '0'; -- activate the LED
digit <= sum r (3 downto 0); -- display the lower 4-bits of the sum

if delay r = TO UNSIGNED(0O,delay r'length) then
-- lower digit display is complete

next delay <= blank dly; -- load blanking interval between loops
next st <= display blank; -- loop and display the sum again
end if;
when others => -- error state
next st <= init;-- re-initialize the state machine on an erroneous state
end case;

end process;

-- this process updates the registers on every rising clock edge
process (clk)

begin
if clk'event and clk='l' then-- trigger on rising clock edge
if rst='l' then -—- synchronous reset
st r <= 1init;
sum_r <= TO_UNSIGNED (0, sum r'length);
else -- update the registers
st r <= next_ st;
sum r <= next sum;
addr r <= next addr;
b r <= next b;
delay r <= next delay;
end if;
end if;

end process;

a <= "0000000000000"™ & addr_r;
ul: leddcd port map (blank=>blank, d=>digit, s=>s);

end ramsum arch;

Figure 13 shows the waveforms for the phase when the RAM data is complemented.
RAM address N is output at the start of the invertr clock cycle and the RAM output-
enable is activated. The data stored at address N is output by the RAM to the FPGA or
CPLD where it is complemented and stored into the RAM byte register at the start of the
invertw cycle. The complemented value in the byte register is sent back to the RAM
and the RAM write-enable is pulsed low during the second half of the invertw cycle,
thus writing the complemented data back to address N. The RAM address and data are

held stable during the following invertnop cycle and then the entire operation is
repeated for RAM address N-1.

clock

state

RAM address

RAM data

RAM byte

NP2 N T V2 N
invertr invertw invertnop invertr invertw invertnop
N N-1
read read
write write
RAMIN] -RAM[N] RAMIN-1] . -RAMIN-1]
-RAM[N+1] é)(-RAMIN] <\4/ “RAMIN-1]

Figure 13: Timing waveforms for the asynchronous RAM summation circuit.

The timing waveforms illustrate the fundamental principles involved when writing to an
asynchronous RAM:

1. The address to the RAM must be held stable during the entire time the write-
enable is active-low. Otherwise, data may be erroneously written to some other
address instead of, or in addition to, the desired address. That's because write
operations to an asynchronous RAM occur as long as the write-enable is low, not
just on an edge transition.

2. The data to the RAM must be held stable at the rising edge of the write-enable
pulse. Otherwise, an incorrect data value may be written to the RAM address.

For our design, note that the RAM address is stable for an entire cycle both before and
after the write-enable pulse, and the RAM data is stable for an entire cycle before and
after the rising edge of the write-enable pulse. This allows a large setup time for the
address and data before the write-enable pulse, and provides a large hold time after the

pulse.

Synthesizing and Implementing the Design

Once the modules are checked for syntax and any errors are removed, we can run the
synthesis and implementation tools to create the configuration bitstream for the FPGA or
CPLD. Click on the Implementation icon to run the synthesizer and the implementation

tools sequentially.

‘® dzgn5_1 - 95108-20PC84 - Project Manager
File Document Yiew Project Synthesiz Implementation Tools

Help

S [=] E3

] [7=3 0 52) e i s S v

Filez \.. Yersions \,. Flae \ Corterts \,. Reportz \
=1 dsgns_1 |
= e ddod vhd dsgna_1 1
& & rarnsurm.vhd
“ B dsgna_1 @
DESIGN ENTRY
A 4
L3 » B
SYNTHESIS SIMULATION
. 4
o H » B B
IMPLEMENTAT Implementation YERIFICRTION
A 4
| =
Dpm - Done -
Pem o Update: clprag21idsona_1iramsumyhd (0, 0 |
Fom o Synopsys server initialization -
Conzole ,e" HOL Errors ,e" HOL Yiarnings ,e" HOL Messages ..."’ || 4| | _hl

Ready

We will target this design to the XS95 Board, so set the target device to be an
XC95108PC84 with a —20 speed grade. Then select the ramsum module as the top-
level module for the design.

Synthezis/Implementation settings |
Top level ranmsum j | Bun I
Werzion name: Iu:h:lu:d s |

Synthesiz Settings: SET I LCanicel |

Help |

Target Device
Family; [+C3500 =l

Device: |951 0aPCad v| Speed |-2|:| - I

[Edit Synthesizdmplementation constraints

[“Yiew E stimated Performance after Dptimization

I |0t B mplementation beals

Phyzical Implementation settings

Revizion name: Irev'l Options |

Control Files: SET

Next, we need to set the options for the implementation tools.

Syntheszis/Implementation settings

Top lewvel: TarnUm

Yerzion name: [verl Ok,

Synthesis Settings: SET I LCarncel |

Help |
Target Device
Family: |C3500 =]
Device:|951napce4 =] 5peed:|-2|:| vI

[Edit SynthesisAmplementation constraints

[“iew E stimated Performance after Optimization

I¥ |0t B mplementation beals

Fhwszical Implementation zettings

Revizion name: Irev'l Options |
SET |

Control Files:

Click on the Area button to make the CPLD fitting tool emphasize logic efficiency over
operational speed. This option setting is necessary because the design uses a large
time delay counter and several comparators that make it difficult to fit into an XC95108
CPLD. Click on the OK button to close the window.

Options |

— Implementation Options

CPLD Optimization 5 tyle:

FL\} ______ red " Balanced " Speed " User Defined
Optimize D ensity [EditHptions.
Simulation Options
Simulation: |Foundation EDIF j Edit Options... |

] I Cancel | Help |

Next, click on the SET button so we can specify the constraint file that lists the pin
assignments for the XS95 Board.

Syntheszis/Implementation settings

Top level: Iramsum j Bun

Wersion name: I'-.fer'l] 4 |

Synthesis Settings: SET I LCarncel |
Help |

Target Device

Famiy: |*C9500 =]

Device: | 95103PC34 =] spesd [0 =]

[Edit SynthesisAmplementation constraints

[“iew E stimated Performance after Optimization

I¥ |0t B mplementation beals

Fhwszical Implementation zettings

Revizion name: Irev'l

Control Files: SET

Select the Custom entry in the drop-down list of constraint files.

Settings

Synthesiz Sethings | Implementation control files |

I1ze Caonstraints file from;
Copy Guide file from:

Copy Floorplan files from:

— Current B evizion Control File Settings:

K|

INDne

INDne

— Curment B evizion Control file usge:

[Enable Guided MAP and PAR

[Enable Floorplanning

k. I Cancel

Help |

The Custom window should appear with the dsgn5_1.ucf file already in the Constraints File
field. If not, click on the Browse button, find this file in the top-level directory of the
dsgn5_1 project and select it. Then click on the OK button.

Custom

=]|

Constraints File: Idsgnﬁ_'l ucf

LCancel |

Browse... I

Help |

=

The dsgn5_1.ucf file should specify the assignments for the FPGA or CPLD pins that
connect to the clock, reset, seven-segment LED and RAM address, data and control
pins as shown in Figure 14. The pin assignments for the XS95 Board (which is our
target for this example) are shown in Listing 6. The equivalent pin assignments for the

XS40 Board are given in Listing 7.

S6
XC4005XL "
FPGA 35' '34

or S-
a0 XC95108 82. 3 '81
CPLD -

Parallel Port Connector
O0000000000O0
chip-enable
write-enable
output-enable

é

0600000600000

Figure 14: Connection of the external RAM, programmable oscillator, parallel port,
and LED digit to the pins of the FPGA or CPLD on the XS40 or XS95
Board.

Listing 6: Pin assignments for the XS95 Board.

pin assignemnts for the XS95 Board

net clk loc=p9; # clock from programmable osc.
net rst loc=p46; # reset from data pin DO of parallel port
net d<0> loc=p44; RAM data pin DO

net d<1> loc=p43; RAM data pin D1

net d<2> loc=p4l; RAM data pin D2

net d<3> loc=p40; RAM data pin D3

net d<4> loc=p39; RAM data pin D4

net d<5> loc=p37; RAM data pin D5

net d<6> loc=p36; RAM data pin D6

net d<7> loc=p35; RAM data pin D7

net a<0> loc=p75; RAM address pin AO
net a<l> loc=p79; RAM address pin Al
net a<2> loc=p82; RAM address pin A2
net a<3> loc=p84; RAM address pin A3
net a<4> loc=pl; # RAM address pin A4
net a<5> loc=p3; RAM address pin A5
net a<6> loc=p83; RAM address pin A6
net a<7> loc=p2; RAM address pin A7
net a<8> loc=p58; RAM address pin A8
net a<9> loc=p56; # RAM address pin A9
net a<10> loc=pb54; RAM address pin AlOQ0
net a<ll> loc=p55; RAM address pin All
net a<l12> loc=p53; RAM address pin Al2
net a<13> loc=p57; RAM address pin Al3
net a<l14> loc=p6l; RAM address pin Al4
net a<15> loc=p34; RAM address pin AlS
net a<l1l6> loc=p74; RAM address pin Al6
net we n loc=p63; # RAM write-enable

net oce n loc=p62; # RAM output-enable

H= = S S S o S S o S S

#
#
#
id

+H= H= = H

net ce n loc=p65;
net s<0> loc=p2l;
net s<1> loc=p23;
net s<2> loc=pl9;
net s<3> loc=pl7;
net s<4> loc=pl8;
net s<5> loc=pl4;
net s<6> loc=plb5;

RAM chip-enable
LED segment SO
LED segment S1
LED segment S2
LED segment S3
LED segment S4
LED segment S5
LED segment S6

H = S S

Listing 7: Pin assignments for the XS40 Board.

pin assignments for XS40 Board

net clk loc=pl3; clock from programmable osc.
net rst loc=p44; reset from data pin DO of parallel port
net d<0> loc=p4l; RAM data pin DO

net d<1> loc=p40; RAM data pin D1

net d<2> loc=p39; RAM data pin D2

net d<3> loc=p38; RAM data pin D3

net d<4> loc=p35; RAM data pin D4

net d<5> loc=p81l; RAM data pin D5

net d<6> loc=p80; RAM data pin D6

net d<7> loc=pl0; RAM data pin D7

net a<0> loc=p3; RAM address pin AOQO
net a<l> loc=p4; RAM address pin Al
net a<2> loc=p5; RAM address pin A2
net a<3> loc=p78; RAM address pin A3
net a<4> loc=p79; RAM address pin A4
net a<5> loc=p82; RAM address pin A5
net a<6> loc=p83; RAM address pin A6
net a<7> loc=p84; RAM address pin A7
net a<8> loc=p59; RAM address pin A8
net a<9> loc=p57; # RAM address pin A9
net a<10> loc=p51; RAM address pin AlO
net a<ll> loc=pb56; RAM address pin All
net a<l2> loc=p50; RAM address pin Al2
net a<13> loc=p58; RAM address pin Al3
net a<l14> loc=p60; RAM address pin Al4
net a<15> loc=p28; RAM address pin AlS
net a<l6> loc=plo6; RAM address pin Al6
net we n loc=p62; # RAM write-enable

net oe n loc=p6l; RAM output-enable

net ce n loc=p65; RAM chip-enable

net s<0> loc=p25; LED segment SO

net s<1> loc=p26; LED segment S1

net s<2> loc=p24; LED segment S2

net s<3> loc=p20; LED segment S3

net s<4> loc=p23; LED segment S4

net s<5> loc=pl8; LED segment S5

net s<6> loc=pl9; LED segment S6

H= = S S S S S S S S S S S S S S S S S

H = H

= =

Once the target device, top-level module, implementation options and constraint file are
setup, click on the Run button to start the synthesis and implementation phases.

Synthesis/Implementation settings

Top level: Iramsum j Bun
Werzion name; Iveﬂ]
Synthesis Settings: SET I Cancel |

Target Device

Family: |<C3500 =]
Device:lElE‘IElEF'l:Ed =] Speedzl.zn "I

[Edit Synthesis/Implementation constraints

W &iew E stimated Performance after Optimization

¥ | 5uta R mplementation toals
Phyzical Implementation settings

Revizion name: Irev'l Optionz |

Contral Files: SET

Both phases should complete with no problems.

Project Manager

Flows Engine werl ->rev] Completed Successfully.

Generating the Bitstream

Once the implementation phase is completed, we can go on to create the SVF file
containing the configuration bitstream for the XC95108 CPLD.

‘® dzgn5_1 - verl [95108-20PC84] - Project Manager

Eile Document Yiew Project

Synthesiz

Implementation Tool: Help

=] E3

D] 8] 8|n] ol Blé] B DR |

Filez \. Wersions \ Floe \ Cortents \ Reportz \
B3 dsgna_1 =
Ieddu::d_'-.-'r'nj verl revl (RCH95108-20-FCE4) 1
& Bl ramsurm.vhd
3 dsgna_1
5 simptrims @ ili—
B xc8500 DESIGN ENTRY o
A 4
e B » WP
SYNTHESIS "4 SIMULATION
v
B H B K
IMPLEMENTATION YERIFICATION
A 4
PROGRAMMI
| Device Programming) x
Opm : Bxportver!-Optimized to ciprag2 1 idsans_1dpm_net .. -
Hie CFlow Engine werl-=revl Completed Successiully.
Conzole / HOL Errors HDL Warnings HDL Messages (4] | |

Ready

Select the Output=>»Create SVF File... menu item from the JTAG Programmer window that
appears.

dsgn®_1 - JTAG Programmer =] E3
File Edit Operations | Output Yiew Help

lewlnl %l% Cable Auto Connect :lggl ﬂll&l ?lkﬁ?l

Cable Setup...

[Fatle Heset
XCH5108

dsgna_1 . jed

| v

v [lse Eable

Create SYF File...

Append to SWF File...

TODO
4| | 1|
Creates an SWF file and directs subsequent operations b it MR

As always, specify an initial transition of the JTAG state machine through the Test-Logic-
Reset state.

SYF Options |

Initial tranzition to Bun-T ezt dle;

& Through Test-Logic-Feset

" Skipping Test-Logic-Feset

] 4 [I Cancel Help

Then tell the JTAG Programmer to save the configuration bitstream in the dsgn5_1.svf file
in the top-level directory of the dsgn5_1 project.

Ciote o ow SVF Fio B
Save jn: I 1 dsan5_1 j El

[dpm_net
[dzgnf_1
_1lib

L3 wproj
dzanb_1.zvf

File name: |dsgn5_1.svﬂ Save \ I

Sawe as bype: IS"\-"F Files(® svf) j Cancel

Now initiate the generation of the bitstream by selecting the Operations=»Program menu

item.

dsgn®_1 - JTAG Programmer

File Edit | Operations Dutput Wiew Help

] 7

|% izl 82| olE| S| 2

DI

TDO

1]

Erase

Functional Test

Bfark: Ehech:
Eeadbask. eden

Get Device 1D
[FEbNevice Eheakaun

Get Device SignaturesUzercode

=] B3

Chain Dperations. ..

dsgna_1 . jed

| v

ol

Frograms the selected devices in the JTAG chain

SWF Mode | | 2

Just click on the OK button in the Options window to begin generating the bitstream.

Options

Frogram Ophions |

W Erase Before Programming [~ 51 oer aiay

™ Werfy [~ 'wirite Pratect
[T Functional Test [T Bead Protect
™ | Earallel fedi I Load Fpas

™ | Evtermal Bin Yenfication i I

= | Uzereode [BiHEeR Ehars] I FFFFFFFF

Help

Ok, [_: I Cancel

The bitstream generation should complete without incident.

Operation Status |

Loading Boundam-Scan Dezcnption Language [BSDL] file ;I
'C: AFndtnwc 9500/ data/we85108 . bed'. . completed successzfully.

‘dzgnB_T[Devicel] Generating S%F wvectors tao check boundany-zcan chain

integrity... done.

‘dzgnB_T[Devicel | Generating S%F wectars to put device in [SF mode...done.
'degnb_1[Devicel]: Generating S%F wvectors to eraze device....done.

‘dzgnb_T1[Devicel] Processing JEDEL file... done.

‘dzgnB_T1[Devicel]: Generating S%F wectars to program device....done.
'degnb_T1[Devicel]: SYF wector generation for programming completed succezsfully.

-]

All operationz were completed succeszsfully.

Wiew LogFils |

Downloading and Testing the Design

We need some test data to store into the RAM of the XS95 Board in order to test the
design. Go to the top-level directory of the dsgnb_1 project and use a text editor to
create a file called data.hex containing this single line of text:

- 0B 0000 FF FE FD FC FB FA F9 F8 F7 F6 F5

This is a set of eleven data bytes that will be loaded into RAM starting at address zero.
(This data is represented in the XESS format.) If you manually complement-and-sum
these data values you will get the following result (in two-digit hexadecimal):

(=FF)+ (=FE) + (-FD) + (=FC) + (=FB) + (-FA) + (=F9) + (-F8) + (-F7) + (-F6) + (-F5) =
(1) +(2)+(3)+(4) +(5) +(6) +(7)+(8) +(9) +(A)+(B) =
42

Now that the SVF and test data file are ready, connect an XS95 Board to the PC parallel
port and start the GXSLOAD program. Go to the top-level directory for the dsgn5_1
project and select the dsgn5_1.svf and data.hex files. Then drag-and-drop them into the
gxsload window. The data file will be downloaded into the RAM and then the SVF file
will be programmed into the XC95108 CPLD on the XS95 Board.

X gxsload sl S| | & dsgn5 1 M=l B3
J Fil= Edit “iew Go Fawortez Help
Drop BIT, .5%F, HEX, and EXD E
files here to download to the = = =5 [l
%5 or X5V Board. | = - = -d| ¥ =903 X E
| Address |1 C:\Prag21 iudsgn5_1

1 dpr_net dzgnb_1.jed dsgna_1.edf
1 dsgn5_1 . data hex snf2edf log

Recent Files:

|1 wproj degnB_1.prj 558.log dzgnB_T.ucf
I_1lib express.ini ramsLn. bak, dzgnf_1.alb
dsgnS_1.xbt ledded.er
[tdegns_1.sv leddcd.log ERRLOG.LOG
degnB_1.=nf rarmEum. er DSGWE_1.TVE

F&ramsumlog PRINETLIST.LOG

Eelaad EEFROM Piort I vI
izl r S LFT1 |2 object(s] zelected |g tdy Computer

The reset for the circuit is controlled by data pin DO of the parallel port. If DO is at logic 1
after the downloading completes, the circuit will be held in the reset state and the LED
will be blank. To release the reset, open the gxsport window and click on the D0 button
until it displays a zero.

2]] v]] e]
07 DE D& D4 D3 D2 D1 DEI
Stobe [[T Cournt Part m

Then click on the Strobe button so the logic 0 value is output on the DO pin of the parallel
port.

o) of o] | o E e]
DF D DR D4 D3I D2 D1 DO
Etrnqel ™ Count Purtm

Now you may observe the seven-segment LED repeatedly displaying the sequence
...... H...2.....4...2....... Butyou probably won't. What went wrong?

The answer is that you are probably running the design with a 50 MHz clock (the default
for the XS95 Board). Can this design run that fast? Let’s check the timing for the
implemented design. Click on the icon for the report files in the Project Navigator

window.

‘® dzgn5_1 - verl [95108-20PC84)] - Project Manager

=] E3
File Document Yiew Project Synthesiz Implementation Tool: Help
nle 8] ols] o] B8] Rl Rl M)
File= \\. Wersions "'\ Flone "\ Contents \\. Reportz \
B £1 dsgna_1 =
B B ledded vhd warl rew] ($C05108-20-PCE4Y 1
& Bk ramsurm.vhd
B dsgns_1
EJ simprims ol @ iD—
----- 2 %9500 DesisN ENTRY
A 4
N S
SYNTHESIS 4 SIMULATION
A 4
0 B n B K
IMPLEMENTATION YERIFICATION -
|
Pcm : Synopsys version: 3, 3, 0, 4517 -
Focm : Reading SynopsysSHiling project
Console / HOL Errors / HOL Warnings /- HDL Messages |ENIN |
Ready

Then double-click the Post Layout Timing Report in the Report Browser window.

' Beport Browser - dsgnb_1[verl->revl]

Tranzlation Fitting Repart Post Layout

R epaort

Timing Report

The top portion of the timing report is shown in Listing 8 and this tells us what we want to
know: the maximum clock frequency for this design is 5.5 MHz. The slow clock is
brought about by the long carry propagation times through the complementors and
adders in the design. The situation is made worse because the implementation
algorithms have packed the logic to emphasize area efficiency and this can add extra

propagation delays to the circuit.

Listing 8: Timing report for the design.
Performance Summary Report

Design: dsgn5 1

Device: XC95108-20-PC84

Program: Timing Report Generator: version C.22
Date: Sat Jan 05 14:08:28 2002

Performance Summary:
Clock net 'clk' path delays:

Clock Pad to Output Pad (tCO): 73.0ns (4 macrocell levels)
Clock Pad 'clk' to Output Pad 's<4>' (GCK)

Clock to Setup (tCYC): 161.5ns (8 macrocell levels)
Clock to Q, net 'sum r<0>.Q' to TFF Setup(D) at 'sum r<7>.D' (GCK)
Target FF drives output net 'sum r<7>'

Setup to Clock at the Pad (tSU): 151.5ns (7 macrocell levels)
Data signal 'd<0>' to TFF D input Pin at 'sum r<7>.D'
Clock pad 'clk' (GCK)

Minimum Clock Period: 161.5ns
Maximum Internal Clock Speed: 6.1Mhz
(Limited by Cycle Time)

We need to reduce the clock frequency of the XS95 Board to less that 6.1 MHz in order
for our design to work reliably. To do this, start the GXSSETCLK program. Place 20 in the
Divisor field to reduce the 100 MHz master frequency to 5 MHz. Then click on the SET
button.

X Set X5 Board Clock Frequency [H[E |
Board Type |><5:35-1 08 "I SET

Port ILF'T1 vI Exit |

Diivizor 20 [T External Clock

Set the #5 Board clock frequency by entering a
dirvizor for the 100 MHz master frequency

A set of instructions will appear that must be followed to adjust the clock frequency of the
XS95 Board. After doing these steps, click on the OK button to reprogram the clock.

GXSSETCLK]|

Before setting the <5395 Board frequency you must:

1] Remove the power and downloading cable fram pour 2595 Baoard
2] Place a shunt on the "zet" pozition of jurmper J&

3] Reconnect the downloading cable

4] Reconnect the power cable

8] Click on the OF button

Reprogramming the clock takes a minute or two after which the following set of
instructions is given to activate the new clock frequency.

GXSSETCLK =l

The frequency of your #5935 Board has been zetll

Mow do these steps to activate the ozcillator:

1] Remove the power and downloading cable fram pour 2535 Board
2] Move the shunt to the "ozc" position of jumper J&

3] Reconnect the power cable

4] Reconnect the downloading cable

8] Click on the QF, button

After activating the 5 MHz clock frequency, we can download the dsgn5_1.SVF and the
data.hex files and release the reset on the circuit. Now we should see the

...... H...2.....4...2...... sequence displayed on the LED digit. If we set and clear the
reset again, then we should see the display change to B...E..... B...E...... Why?
Because the first time the circuit was run it computed the two’s-complement of all the
data values and wrote them back into the RAM after which it computed the sum of the
data. So the second time the circuit was run it was using complemented data and the
resulting sum is the two’s-complement of the first result: -42 = BE in two-digit
hexadecimal. In addition, the sum will toggle between 42 and BE each time the circuit is
reset.

Using an Internal Synchronous RAM

The second version of the RAM summation circuit has the design hierarchy shown in
Figure 15. The root module of the design sums the data stored in an internal
synchronous RAM module while the LED decoder module displays the four-bit
hexadecimal digits on a seven-segment display. Only the XC4000 FPGAs have internal
RAM so this design can only be done using the XS40 Board. The XC95108 CPLD on
the XS95 Board is not suitable for designs, which require large amounts of internal data
storage.

RAM

Data Address CE E E

RAM data summer

Jumut (ramsum)

\

LED Decoder
RESET (leddcd)

Figure 15: Design hierarchy for a logic circuit that displays the summation of data
in an internal synchronous RAM.

Each of these modules is stored in the dsgn5_2 directory that was created by starting
an HDL project follows.

Mew Project

Mame: [DSGME_2 ok,

Cancel

Directany: [C:\PRAG21I
Browsze. ..

Pl

Type: — [F21i =l Help

Flow: " Schematic © HDL

The Internal RAM Module

The first module we will add is the internal synchronous RAM. This module is
constructed using the CORE Generator. To start this tool, select the Tools=»Design
Entry=>»Core Generator... menu item.

& dsgnb_2 - dezign not implemented - Project Manager

File Documnent Wiew Project Senthesiz Implementation | Tools Help

[I[ﬁl Ql ol & Schematic E ditor

State Editar SimulationSdenfication k
Files VEFS":""ELI_' HODL Editiar Imnplementation 2
= D dsgna_2 Swmbal E ditar Device Programming * -
s =gns_2 LIkilit 3 L
LogiBLO% module generator... S

¢
PR
| 4 -
SYNTHESIS ¢ SIMULATION
2y, ST)
2T by s | N (G il«
IMPLEMENTATION ¥ VERIFICATION
= i
=N
PROGRAMMING
-
Fcm : Document chprag2 1 idsong_2vam.edn added =
Fcm o Synopsys serder initialization |
Focm c Document ciprag2 1 idsogng_2vam.edn removed -
Conzole ,r" HOL Errars ,r" HOL tWarnings ,r" HOL Messages f || 1| | LI

|Run CoreGen

The Xilinx CORE Generator window will appear. The left-hand pane of the window

displays the various families of circuits that the tool can generate. The individual circuits
within a highlighted family are shown in the right-hand pane.

4~ %ilinx CORE Generator 2.1

File Project Core Wiebh Help
= A

Project Path: [C:\Prag21idsgns_2 =]

Target Famihy: SPARTAM
View mode; Taxonomy

| Basic Elements Mame | Type | ‘arsion Fammily
1 Communication & Netwarking

|| Digital Signal Processing

| Math Functions

1 Microprocessars, Controllers & Peripherals

| ProtaType & Development Hardware Products
| Standard Bus Interfaces

| Storape Elements & Memaories

Contents of:

Ouir first action is to setup the CORE Generator for the target FPGA and type of project
we are using in Foundation. Click on the Project=»Project Options... menu item to open the

Project Options window.

4~ %ilinx CORE Generator 2.1

File Core Wb Help

D C Mew...
Open...

Proje. Update Cores pna_2 Target Family: SPARTAMN

Project Options...

View n

Contents of:

| Basic Elements

1 Communication & Netwarking

|| Digital Signal Processing

| Math Functions

1 Microprocessars, Controllers & Peripherals
| ProtaType & Development Hardware Products
| Standard Bus Interfaces

| Storape Elements & Memaories

Mame

|_Tupe_|

Yersion

F amily

In the Project Options window, select VHDL in the Design Entry section since our project
will be done using VHDL. Also, click on the Synopsys button in the Vendor section since
this is the VHDL synthesis tool used by Foundation 2.1. Finally, select XC4000 as the

target FPGA in the Family section.

Eﬁf’,ﬂ' Project Options

Spartan

© 2001 by XESS Corp. 367

Once the options are set as described above, click on the OK button to close the window.

Eﬁf’,ﬂ' Project Options

© 2001 by XESS Corp. 368

In the Core Generator window we can now see the Target Family is listed as XC4000.
Next, double-click on the Storage Elements & Memories entry in the left-hand pane.

- Kilinx CORE Generator 2.1

File Project Core WYwebh Help
EEER B

Project Path: ICZIF‘ragE'] dsgna_2 LI Target Family: XC4000
View mode: Taxonomy

| Basic Elements Mame | Type | Version F amily
1 Communication & Netwarking

1 Digital Signal Processing

1 Math Functions

| Micrapracessors, Contrallers & Peripherals
| ProtaType & Development Hardware Products
| Standard Bus Interfaces

;| Storage Elerments & Mermories

Contents of: /Storage Elements & Memories

Double-clicking the Storage Elements & Memories entry expands it and exposes three sub-

families of modules. Clicking on the RAMs & ROMs entry will display the members of this
family in the right-hand pane.

*#- Xilink CORE Generator 2.1

File Project ©Core Web Help
0 & % <

Project Path: |C:1Prag21 fidsgna_2 j Target Family: XC4000

View mode; Taxonomy

Contents of: /Storage Elements & Memories/RAMs & ROMs

| Basic Elements Mame | Type | ‘arsion | Fammily
| Communication & Networking Dual Port Block Memory RglcHFE 1D wirtex, Spartan2
__| Digital Signal Pracessing Registered DualPort RAM WglCERE ¥C4000,5partan
:: m?th Functions contallere & Periahra Registered ROM glCEFE1 0 XC4000,Spartan

icroprocessars, Controllers & Peripherals) : v

- Registered SinglePart RAM WEE D HC4000,Spartan

__| ProtoType & Development Hardware Products g g glC -~

| Standard Bus Interfaces Single Fart Block Memary wﬁ;?\ﬁ o

Yirtex, Spartan2
_4 Storage Elernents & Mernoties

We need to both read and write the data values so a RAM should be used rather than a
ROM for this application. We will also try to keep this circuit as similar to the one in the
previous project so we will use a RAM with a single data port for both read and write
operations. For these reasons, the Registered SinglePort RAM is the closest match to what
we need so double-click that entry to begin the generation of such a RAM module.

- Kilinx CORE Generator 2.1

File Project Core WYwebh Help

DS v EBH+

Project Path: [CPrag21idsgns_2 |7

Target Family: XC 4000

View mode: Taxonomy

_4 Storage Elements & Memories
[+] Delay Elemernts

L IFIFOS
s & ROMs

[Contents of: jStorage Elements & Memories/RAMS & ROMs
%l Basic Elements I Mame | Type | Version | F amily
Tl Communication & Metworking Dual Part Block Memary WglCEFEE LD Virtex, Spartan2
L1 Digital Signal Pracessing Registered DualPor RAM CEEE 1 0 ¥:4000,Spartan
1 Math Functions _ Registered ROM g CFE1 0
L1 Microprocessars, Cantrollers & Peripherals e qistered SinglePart RAM B
] ProtoType & Developrment Hardware Products Single Part Block Memory glCE 1 1
__| Btandard Bus Interfaces

Registered SingleFort RAM

The Registered SinglePort RAM window that appears has three tabs. The Core
Overview tab displays a general summary of the module while the Contact tab lists the
organization that was responsible for designing the module. But the Parameters tab is
where we actually personalize the module to fit our particular application.

E%Hegislered SinglePort BAM

Farameters |ﬂ Core Ovewiewl Ef Cnntactl

Registered SinglePort RAM

Component Mame: I

Depth: 32 - Address Width: a
Cata width: |8 vl

Luadlniwalues...l =how b EnES: S

.coe file: |n0 initvalues read - default is all 0s

Generate. Cancel | Diata Sheet... I WCQRE

The first thing to do is to type a name for the module into the Component Name field. We
chose the very original name RAM in this case.

E%Hegisleled SinglePort RAM

Kl Farameters |ﬁ Core Ovewiewl Ef Cnntactl

Registered SinglePort RAM

Component Mame: |RAM|

Depth: a2 hd Address Width: a
Data Wyidth: IS 'I

Luadlniwalues...l =how b EnES: S

.coe file: |n0 initvalues read - default is all 0s

Generate I Cancel Data Sheet... nglCQRI:

Next, we set the number of locations in the RAM module. We want to sum as many as
sixteen values, so select 16 from the Depth pull-down menu.

E’%Hegistered SinglePort BRAM E

Bl Parameters |ﬁ Core Ovewiewl Ef Cnntactl

Registered SinglePort RAM

Companent Mame: IRAM
Depth: 32 - Address Wiidth: a

Drata wyidth:

Load InitVagg Bty nitsalies. . |

—a5 -
: no init d- defaultis all 0=
.coe file: I 117

208 AL p—
Generate I Cancel | Data Sheet... I 224 ngiCQ;Rﬁ
240

256

Once the Depth field is set to sixteen, note that the Address Width field changes to four.
The Data Width Field is already set to eight so there is no need to change it.

The RAM has to be initialized with the values that will be summed. In the previous
example, this initialization was managed by having the GXSLOAD utility load the
external RAM with the contents of a HEX file. But in this example, the RAM is contained
within the FPGA so there is no way for GXSLOAD to access it and load its contents.
Instead, the initial values for the RAM must be inserted into the FPGA configuration
bitstream so the RAM contents are initialized at the same time the logic gates on the
FPGA are configured. The Core Generator looks for RAM initialization values in .coe
files. The contents of such a file for the RAM in this example is shown in Listing 9. The
Radix field is set to sixteen to indicate the data is represented in hexadecimal form.
The memdata field stores the initial values of each RAM location starting from address
zero and incrementing upwards until all sixteen locations are filled.

Listing 9: Initialization file for a Core Generator RAM.

Component Name=ram;

Data Width = 8;

Address Width = 4;

Depth = 16;

Radix = 16;

memdata=FF, FE, FD, FC, FB,FA,F9,F8,F7,F6,F5,F4,F3,F2,F1,F0;

The RAM initialization values are stored in a file called ram.coe in the top-level directory of
the dsgnb_2 project. To load these values into the Core Generator, click on the Load Init
values... button as shown below.

E%Hegisleled SinglePort RAM

Farameters |ﬁ Core Ovewiewl Ef Cnntactl

Registered SinglePort RAM

Component Mame: |RAM

Depth: |1E 'I Address Width: 4
Data Wyidth: IS 'I

LDadInltValuesJ Shaynityalies, .
L
.coe file: |n0 initvalues read - default is all 0s

Generate I Cancel | Data Sheet... I nglCQRI:

Next, highlight the ram.coe file in the Select coe file... window and click on the Open
button. This loads the RAM initialization values into the Core Generator.

Lok in; |E dzgnB_2 j ﬁl

] dpr_net
1 dzanb_2
i

| Wpraj

ram. Coe:

File narme: Iram_cl:le Open

Files of tpe: I,-’:-.II Files [*7] j Cancel |

&

Once the initialization values are loaded, click on the Show Init Values... button to view
them.

E’%Hegistered SinglePort BRAM E

Bl Parameters |ﬁ Core Ovewiewl Ef Cnntactl

Registered SinglePort RAM

Component Name: Iram

Depth: |1E vl Address Wiidth: 4
Ciata Width: |8 vI

Load InitValues... | Showlnlt\falues,\l
by

.coe file: |C:1F‘rag21ildsgns_mram.cue

Generate I Cancel | Data Sheet... I ngif,_d;fy:

The initial value for each RAM location will appear in the Coefficients window. (The
locations are labeled Coef# because RAMs inside FPGAs are often used to store tables
of coefficients for digital signal processing applications.) Click on the Close button to
remove the window.

Enf’,j" Coefficients E3

all coefficient values are shown as HEX

Coer#d =ff Coeffl=fe Coefl=fd Coefi=fc

Coeff4=fbh Coefs=fa Coeff6=f1 Coef#7=12

Coem#d=f] Coefd9=16 Coefl0=15% Coef¥11="4
Coef#12=f3 Coef13=12 Coeffld4=f1 Coefl15=10

Once the RAM width, depth and initial values are specified, click the Generate button to
have Core Generator assemble the necessary files that describe this RAM.

E’%Hegistered SinglePort BRAM

ﬂ Farameters

Core Ovewiewl Cnntactl

Registered SinglePort RAM

Component Name: Iram

Depth: |1E vl Address Wiidth: 4
Ciata Width: |8 vI

Load Init alues... | {8haw Init Values.. |

.coe file: |C:1F‘rag21ildsgns_mram.cue

Cancel | Diata Sheet... I C%fkﬁ
logiC*,
Generate

The success of the operation will be reported in the bottom pane of the Core Generator
window.

- Kilinx CORE Generator 2.1

File Project Core WYwebh Help

DS v EBH+

Project Path: [CPrag21idsgns_2 |7

Target Family: XC4000
View mode: Taxonomy

[Contents of: jStorage Elements & Memories/RAMS & ROMs
%l Basic Elements I Mame | Type | Version | F amily
L1 Communication & Networking Dual Port Block Memory Bl EE 1 virtex, Spartan2
L1 Digital Signal Pracessing Registered DualPor RAM WglCEFE 1.0 ¥:4000,Spartan
[£5 Math Functions _ Registered ROM gl EEE D XC4000,Spartan
] Microprocessors, Contrallers & Peripherals 3§ SinglePort RAN
] ProtoType & Developrent Hardware Products T — e .
) Standard Bus Interfaces Single Port Black Mermory JglCFE 1 0 vintex, Spartan?
_4 Storage Elements & Memories
|« | 2
Successfully generated ram (Registered_SinglePort_RAM 1.0)

Once the RAM module is generated, we can add it to the project using the
Document=»Add... menu command.

dzgn5_2 - design not implemented - Project Manager

File | Document Miew Project Synthesiz Implementation Tools Help

e Eile e

EMN0YE =
Fit Open Enter | Conterts ', Reports

B . Crl+ -

dzgns_2

Expand One Level +
Expand Branch *

Expand Al Chrl+* o @ j;@-

Collapze Branch °
=Tk DESIGM ENTRY g

Eind Object... > 4
= » By 13 ﬂ
SYMTHESIS 0 SIMULRTION
a4
o H |» @ 10
IMPLEMENTATION 7 YERIFICRTION
v
S)
PROGRAMMING -
Hiling CORE Generator is starding. =
Cony CAPRAGZTRDSGME_AARAM xsf |
Conv lmport netlist completed in 0.1 [s]. -
Console ,.-" HODL Errars ',.-" HOL Warninos ',.-" HOL Messanes ',-" || 1| | LI

|Add existing document to project

The Core Generator creates modules in the form of EDIF netlist files with the .edn
extension. Select Edif Sources in the Files of type field of the Add Document window and
then you will see the ram.edn file in the top-level directory of the project. Highlight ram.edn

and click on the Open button to add the RAM module to the project.

Add Document [7] |

Loak in: | 3 dsgn5_2 =l ﬁl

B dzanb_2
_1lib
[Hproj

. rari. edr

Help

File name: Iram.edn Open I
Filez af tupe: IEu:Iif Sources [*EDFEDM:*EDO] j Cancel |

After adding the RAM module, the Project Navigator window appears as shown below.

dsgnb_2 - dezign not implemented - Project Manager

Dles| 6] Olw| - [5] @] 1] BI3| s

rarm.edn

Fom o Synopsys serverinitialization

Conszole

© 2001 by XESS Corp. 379

The LED Decoder Module

This LED decoder circuit for this project is identical to the one used in the previous
project. Use the Document=>»Add... menu command and then move to the top-level
directory of dsgn5_1. Highlight the leddcd.vhd file and click on the Open button to add the
RAM module to the project.

A Document o EE
Loak in: | 3 dsanf_1 =l ﬁl

e dprn_niet
e dzanb_1
_1lib

[Hproj

Fil= narme: |Ieu:|u:|u:-:|.vhu:| Open

Files of type: [HDL [+.VHD *VER*VE"V) =] Cancel

il

Help

After adding the LED decoder module, the Project Navigator window appears as shown
below.

dzgn5_2 - design not implemented - Project Manager
File Document Yiew Project Senthesiz Implementation Tools Help
D= 8] Oln| o] @] [B2)
Filez "'\ Wersion: 1|k Floue \ Cortents \ Reports \
=1 dsgns_2 =
B T rarmn.edn dsgna_2 |
B dsana_2 @
DESIGN ENTRY i
A 4
. :P p ﬂ
SYNTHESIS v SIMULRTION
A 4
)
o HE @ W
IMPLEMENTATION ¥ YERIFICRTION
A 4
2
PROGREMMING -
Dpm : Dane =
Femo o Document ciprag2itdsgng_2edded.vhd added |
Fem o Synopsys server initialization -
Console ,.-" HODL Errars ',.-" HOL Warninos ',.-" HOL Messanes ',-" || 1| | LI
Ready
The Root Module

The root module sequences through three main phases just as in the previous example:

Phase 1: Starting from an upper address of RAM and proceeding to address zero, the
value stored at each RAM address is read and the two’s-complement is
computed and written back to the same address.

Phase 2: Restarting from the upper address and proceeding to address zero, each
value is read from RAM and added to a sum register.

Phase 3: The sum is displayed on the seven-segment LED by blanking the LED
segments for a long interval to signal the start of the sum, then the
hexadecimal digit for the upper four bits of the sum are displayed, then the
LEDs are blanked for a shorter interval and then the hexadecimal digit for the
lower four bits is displayed. Then this four-step display process repeats.

The VHDL code for the root module (Listing 10) was derived from the root module of the
previous example is in the ramsum.vhd. The differences between the previous root
module and this one are described below.

Lines 6—12: The RAM address, data and control signals are no longer included in the
interface definition. That's because the RAM is now internal to the FPGA so
we don’'t need any /O pins to interface to the external RAM chip.

Lines 15—-24: These lines define the interface to the RAM module created by the Core
Generator. In addition to the ram.edn netlist file, the Core Generator also
creates a ram.vho file that shows the VHDL interface definition for the
component and how to instantiate it. We just copied the component
declaration from that file.

Lines 25-32: The internal buses for interfacing to the RAM module are declared on
these lines as well as the four-bit address register. The address, input data
and output data buses used in the state machine are declared with the type
UNSIGNED. This makes it easier to perform arithmetic operations on their
values using the numeric std library. But the RAM module from the Core
Generator has input and output buses declared as type STD_LOGIC VECTOR
so some intermediary buses are declared to make the type conversion.

Line 33: This line declares the constant for the address of the upper end of the RAM
data range that will be summed. As in the previous example, this circuit will
complement and sum eleven bytes of data from address zero to ten,
inclusive.

Lines 34: A register to hold the sum of the RAM values is declared here. The register
to hold the current value read from the RAM in the previous example is no
longer needed here because the synchronous RAM outputs will remain stable
except on the rising edge of the clock.

Lines 42—-43: Only eight states are defined for this design. The invertnop state is no
longer needed when a synchronous RAM is used.

Lines 57-58: The default values for the active-high RAM read-enable (ce) and write-
enable (we) signals are defined here. The logic 1 on the ce input means a
rising clock edge will cause the RAM to register the value of the currently
addressed location onto its outputs. The logic 0 on the we input disables any
writes to the RAM.

Line 59: The input data bus to the RAM is set to zero unless it is specifically set to some
other value in the state machine. Unlike the example with the external RAM,
the input and output data buses of the internal RAM module are separate so
we do not need to tristate the bus when it is not in use.

Lines 62—64: The init state initializes the state machine for the start of the loop that
complements the contents of RAM. The address register is set to point to the
upper bound of the RAM data range and the state machine is moved to the
start of the two’s-complement loop (invertw).

OOONOUNPRWN_2OOONOARWN -

NNDNDN A A
WN—-O

N
~

Lines 65—-68: The invertw state activates the write-enable of the RAM. At the time this
state is entered, the contents of the RAM address generated in the previous
cycle will be available on the RAM output data bus. This value is
complemented and written back on the din bus to the same address location.
The actual write will take place on the next rising-edge of the clock. Then the
state machine is moved to the invertr state to read the next RAM location.

Lines 69-78: The invertr state determines the next location to be read from RAM
depending upon the value of the current address register. If the current RAM
address has reached zero, then the address register is reloaded with the
starting address of the data range and control branches to the add state
where the summation of the data takes place. Otherwise, the current
address is decremented and control returns to the invertw state so the next
data location can be complemented. In either case, the contents at the new
address will be available on the outputs of the RAM at the start of the next
clock cycle.

Lines 79-88: The add state adds the value from RAM to the summation register. If the
current RAM address is zero indicating the summation loop is finished, then
the time delay register is loaded with the initial blanking interval for the LED
display. Then the state machine is moved to the start of the display loop
(display blank). Ifall the RAM data has not been summed, then the
RAM address is decremented and the state machine stays in the add state.
The contents at the new address will be available on the outputs of the RAM
at the start of the next clock cycle.

Lines 139-149: The UNSIGNED address and data buses used in the state machine are
converted to the STD_LOGIC_VECTOR types and passed to the RAM
module created using the Core Generator. As with the component
declaration, example code for instantiating the RAM module can be found in
the ram.vho file

Listing 10: VHDL code for the root module.

library IEEE;

use IEEE.std logic 1164.all;
use IEEE.numeric std.all;
use WORK.leddcd pckg.all;

entity ramsum is

port (
rst : in STD LOGIC; -—- reset
clk : in STD LOGIC; -- clock
s : out STD LOGIC VECTOR(6 downto 0) —- outputs to LED segments

) .

;
end ramsum;

architecture ramsum arch of ramsum is

component ram-- 1l6-byte synchronous RAM from CoreGen
port (

a : IN std logic VECTOR(3 downto 0); -- address bus
d : IN std logic VECTOR(7 downto 0); —-- data input bus
we : IN std logic; -- write-enable
c : IN std logic; -- clock
ce : IN std logic; -- read-enable
q : OUT std logic VECTOR(7 downto 0) -- data output bus

)

end component;

-- RAM address, data, control signals

signal addr r, next addr : UNSIGNED(3 downto 0); -- RAM address reg
signal din : UNSIGNED(7 downto 0); -- RAM data input bus
signal dout : UNSIGNED (7 downto 0); -- RAM data output bus
signal ce : STD_LOGIC; -- RAM chip-enable

signal we : STD LOGIC; -- RAM write-enable

signal aa : STD _LOGIC VECTOR (addr r'range); -- RAM address bus
signal dd, gqg : STD LOGIC __VECTOR (din'range) ; -- RAM data I/O buses
constantmaxaddr : UNSIGNED := TO UNSIGNED (10, addr r'length);

signal sum_r, next sum : UNSIGNED (din'length-1 downto 0); -- RAM sum
signal delay r, next delay : UNSIGNED (22 downto 0); -- delay counter
constantblank dly : UNSIGNED := TO UNSIGNED(5 000 000,delay r'length);
constant interdigit dly:UNSIGNED:=TO UNSIGNED(1 600 000,delay r'length);
constantdigit dly : UNSIGNED := TO UNSIGNED(2 500 000,delay r'length);
signal digit : UNSIGNED (3 downto 0); -- LED hex digit to display
signal blank : STD LOGIC; -- LED digit blanking signal

-- states for the state machine
type state is (init,invertr,invertw,add,display blank,
display upper digit,display interdigit,display lower digit);
signal st _r, next st: state; -- state register
begin

-- this process computes the actions of the state machine in each state

process (clk,st r,addr r,sum r,delay r,din)

begin
-- default outputs unless otherwise specified
next st <= st r; -- remain in the current state
next addr <= addr_r; -- don't change the RAM address
next sum <= sum r; -- don't update the sum register
next delay <= delay r-1; -- decrement the delay counter

digit <= TO UNSIGNED(0,digit'length); -- output a '0' LED digit

blank <= '1l"'; -- blank the LED display

ce <= '1"; -- always read the RAM

we <= "'0"'; -- don't write to the RAM
din <= TO_UNSIGNED(0,din’length);

case st r is -- case statement for the state machine
when init => -- initialization state
next addr <= maxaddr; -- start inverting from the upper address
next st <= invertw; -- enter the RAM inversion loop
when invertw => -- write inverted byte value into same RAM location
we <= "'1"'; -- write RAM at the end of this clock cycle
din <= TO UNSIGNED(0,din'length) - dout;-- output inverted byte
next st <= invertr; -- now read from next RAM location
when invertr => -- read byte from RAM
if addr_r = TO_UNSIGNED(0,addr r'length) then
-- reached the lower address of the RAM data
next addr <= maxaddr; -- reload register with upper address
next st <= add; -- enter the summation loop
else
-- haven't inverted all the RAM data yet
next addr <= addr r - 1;
next st <= invertw; -- now write to it
end 1f;
when add => -- sum the inverted data from RAM
next sum <= sum r + dout; -- add the RAM data to the sum
if addr_r = TO_UNSIGNED(0,addr r'length) then
-- reached the lower address of the RAM data
next delay <= blank dly;-- load display interval counter
next st <= display blank; -- now display the sum
else
-- haven't summed all the RAM data yet so stay in this state
next addr <= addr r - 1;-- address the next RAM location
end 1f;
when display blank =>-- blank the display

A aAaaAaaAaaaaaaaa
)\ JSE UL (L (L L L L WL\ W Y g)
QUOONOUNRARWN-OO

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

if delay r = TO UNSIGNED(0O,delay r'length) then
-- initial display blanking is complete

next delay <= digit dly; -- load digit display interval
next st <= display upper digit; -- display the upper sum digit
end if;
when display upper digit => -- display the upper digit of the sum
blank <= '0"'; -—- activate the LED
digit <= sum_r (7 downto 4); -- display the upper 4-bits of the sum

if delay r = TO UNSIGNED(0,delay r'length) then
-- upper digit display is complete

next delay <= interdigit dly; -- load inter-digit blank interval
next st <= display interdigit; -- blank display between digits
end if;

when display interdigit => -- blank the display between sum digits
if delay r = TO UNSIGNED(0,delay r'length) then
-- inter-digit display blanking is complete

next delay <= digit dly; -- load digit display interval
next st <= display lower digit; -- display the lower sum digit
end if;
when display lower digit => -- display the lower digit of the sum
blank <= '0'; -- activate the LED
digit <= sum_r (3 downto 0); -- display the lower 4-bits of the sum

if delay r = TO UNSIGNED(0,delay r'length) then
-- lower digit display is complete

next delay <= blank dly;-- load blank interval between loops
next st <= display blank; -- loop and display the sum again
end 1f;
when others => -- error state
next st <= init;-- re-initialize the state machine
end case;

end process;

-- this process updates the registers on every rising clock edge
process (clk)

begin
if clk'event and clk='l' then-- trigger on rising clock edge
if rst='l' then -—- synchronous reset
st r <= init;
sum r <= TO UNSIGNED (0, sum r'length);
else -- update the registers
st r <= next_ st;
sum_r <= next sum;
addr r <= next addr;
delay r <= next delay;
end 1if;
end if;

end process;

-- connect clock, address, data and control to the RAM block
aa <= STD LOGIC VECTOR (next addr);

dd <= STD LOGIC VECTOR(din);

qq <= STD_LOGIC_VECTOR(dOut);

u2: ram port map (

a => aa,
d => dd,
we => we,
c => clk,
ce => ce,

q => 99
)

-- output digit on the LED display
ul: leddcd port map (blank=>blank, d=>digit, s=>s);

end ramsum_arch;

Figure 16 shows the waveforms for the last few cycles of the RAM complementation
loop and the first few cycles of the summation loop. Data from RAM address 1 is
available at the start of the invertw clock cycle. The data is complemented and sent
back to the RAM where it is written at the end of the invertw cycle. During the
following invertr cycle, the RAM address is decremented to zero and this is output on
the RAM address bus. At the beginning of the next invertw cycle, the contents of
RAM address 0 become available on the RAM data outputs. The current RAM address
of zero is also stored in the address register in the FPGA. The complemented contents
of RAM address 0 are written back into the RAM and control returns to the invertr
state. Since the address register now contains zero, the RAM address is restored back
to the start of the data range and control proceeds to the add state. During the add
state the data from the address register location is added to the summation register
while the decremented address for the next RAM location is sent to the RAM. The data
at the decremented address is available during the next clock cycle and the summation
continues until the address register reaches zero.

clock N
state invertw invertr invertw invertr add add
RAM address reg. 1 0 N N-1
RAM address 1 0 N N-1 N-2
RAM data out RAM[1] RAM[O0] RAMIN] RAMIN-1]
RAM data in -RAM[1] -RAMIO]
RAM WE write write

Figure 16: Timing waveforms for the synchronous RAM summation circuit.

The timing waveforms illustrate the fundamental principles involved when writing to a
synchronous RAM:

1. The address, data and write-enable signal must be held stable for the setup time
before the actual write-operation occurs at the next rising clock edge. Changing
the address while the write-enable is active and the clock is either high or low will
not cause erroneous writes into other addresses because write operations only
occur on a rising clock edge.

2. There is no need to hold the address or data stable after the rising clock edge
during a write operation.

3. For a synchronous RAM with registered outputs, the RAM outputs will show the
data that was in the RAM location whose address was present at the previous
rising clock edge. These outputs will persist until the next rising clock edge.

For our design, note that the RAM address, data and write-enable are stable before a
rising clock edge and then change immediately after the edge. The output RAM data is
stable for the entire cycle after the rising clock edge even when the RAM address
changes. That means our design can complement the RAM data directly and then send
it back to the RAM rather than store it in a register and then operate on it.

Synthesizing and Implementing the Design

Once the modules are checked for syntax and any errors are removed, we can run the
synthesis and implementation tools to create the configuration bitstream for the FPGA or
CPLD. Click on the Implementation icon to run the synthesizer and the implementation
tools sequentially.

‘# dzgn5_2 - design not implemented - Project Manager
File Document Yiew Progct Senthesiz Implementation Tool: Help

)= SN R Y B RE N i sl
Filez \'\ Yersions & 4|k Flomn: \ Cortents \.. Reports \
B3 dsgna_2 =

E T ram.edn dsgns_2 | -

& Bl ledded vhd

+ =N amsum.vhd

“ B dsgns_2

 » B
¥ SIMULRTION
o B I @ 2
IMPLEMENTAT YERIFICATION
T || mplementation
R
PROGRAMMING -
Opm : Dane =
Fecm o Document ciprag2 1 ndsgns_Aramsum.yvhd added |
Pecm o Synopsys serverinitialization -
Conzole HOL Errors . HOL Warnings | HOL Messages (4] | |

Ready

We will target this design to the XS40 Board, so set the target device to be an
XC4005XLPC84 with a —3 speed grade. Then select the ramsum module as the top-

level module for the design. Then click on the SET button so we can specify the
constraint file containing the pin assignments.

Synthesis/Implementation settings

Top level: Iramsum j Bun I
Werzion name; Iveﬂ] |
Synthesis Settings: SET I Cancel |

Target Device

Famiy: |<C4000<L =l
Device: [40054LPCa4 =] Speed: [HEME]

[Edit Synthesis/Implementation constraints

[“iew E stimated Performance after O ptimization

I |0t B mplementation boals

Phyzical Implementation settings

Revizion name: Irev'l Optionz |

Contral Files: SET

Select the Custom entry in the drop-down list of constraint files.

Settings |

Synthesiz Settingz | Implementation control files |

— Curment Fevizion Control File Settings:

I1ze Caonstraints file from: I Mone j

Copy Guide file from:

Copy Floorplan files from: INDne j

— Current R evizion Control file use:
[Enable Guided M&F and PAR

[Enable Floorplanning

] I Cancel Help |

The Custom window should appear with the dsgn5_2.ucf file already in the Constraints File
field. If not, click on the Browse button, find this file in the top-level directory of the
dsgn5_2 project and select it. Then click on the OK button.

Custom |

Constraints File: |Egamens] Browse... |

k. LCancel | Help I

The dsgn5_2.ucf file should specify the assignments for the FPGA or CPLD pins that
connect to the clock, reset, seven-segment LED and RAM address, data and control
pins as shown in Figure 17. The pin assignments for the XS40 Board (which is our
target for this example) are shown in Listing 11.

S6
)
85' '84
XC4005XL J—
9 FRGA 32'53'31
3 Bd SO
e /D2 46,
S |Y o3 47,
O |Q ;D4
v |U 51D5 49,
§ |9 5ps 32,
5 8007 34,
T |00
S5 9
o O
<

Figure 17: Connection of the programmable oscillator, parallel port, and LED digit
to the pins of the FPGA or CPLD on the XS40 Board.

Listing 11: Pin assignments for the XS40 Board.

pin assignments for XS40 Board

net clk loc=pl3; # clock from programmable osc.

net rst loc=p44; # reset from data pin DO of parallel port
net s<0> loc=p25; # LED segment SO

net s<1> loc=p26; # LED segment Sl

net s<2> loc=p24; # LED segment S2

net s<3> loc=p20; # LED segment S3

net s<4> loc=p23; # LED segment S4

net s<5> loc=pl8; # LED segment S5

net s<6> loc=pl9%; # LED segment S6

Once the target device, top-level module, implementation options and constraint file are
setup, click on the Run button to start the synthesis and implementation phases.

|
Top level: Iramsum j Bun
Werzion name; Iveﬂ] |
Synthesis Settings: SET I Cancel |

Target Device

Famiy: [<C4000<L =]

Device: |4005<LPC34 v Speed: |3 v

[Edit Synthesis/Implementation constraints

[“iew E stimated Performance after O ptimization

I |0t B mplementation boals

Phyzical Implementation settings

Revizion name: Irev'l Optionz |

Contral Files:

Both phases should complete with no problems.

Project Manager

Flows Engine werl ->rev] Completed Successfully.

Downloading and Testing the Design

The bitstream file in this example contains both the FPGA configuration and the initial
data for the internal RAM, so there is no need to create a separate data file to initialize
the RAM as in the last example. The data in the internal RAM is identical to what was
used in the previous example, so the result of the complement-and-sum process should
be the same: 42 in two-digit hexadecimal.

Connect an XS40 Board to the PC parallel port and start the GXSLOAD program. Go to
the top-level directory for the dsgn5_2 project and select the dsgn5_2.bit file. Then drag-
and-drop it into the gxsload window. The bitstream file will be programmed into the
XC4005XL FPGA on the XS40 Board.

X gxsload MEEY| | & dsgns 2 M= B3
J File Edit “iew Go Favortez Help
Drop .BIT, .5¥F. HEX, and .Ex0

filer here bo download ta the J R @| % |) | }(»

&5 or ¥5Y Board.
| Address [21 CAPrag21idsans_2 =l

1 dpr_net colegen. prj Id_7.=nf
1 degris_2 dsgnB_2 alb ledded.er
b [T dsgns_2 bit ledded log
] Hproj degnS_21l

dzgnd 2 prj logiblow. ini
. core.ini dsgnG_2 ucf NEWCONE. Cm
coregen.fin dzgnb_2 unf Tam, Coe
coreqgen.log express.ini

| | | o
Eieload [~ EEPROM Part ||_|:i'|'1 vl
|§'| by Comp

|'I object(z] selected

Fecent Files:

The reset for the circuit is controlled by data pin DO of the parallel port. If DO is at logic 1
after the downloading completes, the circuit will be held in the reset state and the LED
will be blank. To release the reset, open the gxsport window and click on the D0 button
until it displays a zero.

2]] v]] e]
07 DE D& D4 D3 D2 D1 DEI
ﬁtrnbel [T Count Purtm

Then click on the Strobe button so the logic 0 value is output on the DO pin of the parallel
port.

o) of o] | o E e]
DF D DR D4 D3I D2 D1 DO
Strabe | [Count Purtm

Now you will observe the seven-segment LED repeatedly displaying the sequence
...... M...2.....4...2....... However, it may be blinking too rapidly. Why?

The answer is that you are probably running the design with a 50 MHz clock (the default
for the XS40 Board). But the constants that determine the blanking and display intervals
for the LED digit were calculated based on a 5 MHz clock. Can this design even run at

50 MHz? Let’s check the timing for the implemented design. Click on the icon for the
report files in the Project Navigator window.

* dzgn5_2 - verl [4005<LPC84-3] - Project Manager

File Document Yiew Project Senthesiz Implementation Tools Help

nEE R EEEE T

| Byl
Filez "'\ Versions 4| P Floune \ Contents "'\ Reportz \
B3 dsgna_2

--T-Tfram.edn verl rew! (C4005%-3-PCE4)

@ & leddcd vhd
@ G ramsum vhd
& dsgns_2
B simprims
B we4000x

v B » B

SYNTHESIS] SIMULRTION

A4

%#E‘} | 3 ﬁ@J

IMPLEMENTATION g YERIFICRATION

4

R

PROGRAMMING

Fem - Qpening Synopsys project =
Fecm o Synopsys version: 3, 3,0, 4517 |
Fem Reading Synopsysixiling project

Console ,.-" HODL Errars ',.-" HOL Warninos ',.-" HOL Messanes ',-" || 1 | | LI

|Opens the Xilink Report Brovwser

Then double-click the Post Layout Timing Report in the Report Browser window.

+ Report Browser - dsgnb_2[verl->revl] E

Tranzlation Map Report Place & Route Pad Report Asvnchronous
R epaort Repart Delay Repart

FPost Layout Bitgen Report
Tiring Repart

The top portion of the timing report is shown in Listing 12 and this tells us what we want
to know: the minimum clock period for this design is 40.096 ns which translates to a

maximum operating frequency of 24.94 MHz. The clock frequency is higher for this
design than in the last example because the XC4005XL FPGA has specialized carry
propagation circuitry that speeds the addition and complementation operations. It is not
surprising that this design runs at 50 MHz when the FPGA is at room temperature and
the power supply is optimal.

Listing 12: Timing report for the design.

Xilinx TRACE, Version C.22
Copyright (c) 1995-1999 Xilinx, Inc. All rights reserved.

Design file: dsgn5 2.ncd

Physical constraint file: dsgn5 2.pcf

Device, speed: xc4005x1,-3 (C 1.1.2.2 FINAL)
Report level: error report

Timing constraint: Default period analysis
3080 items analyzed, 0 timing errors detected.
Minimum period is 40.096ns.

Timing constraint: Default net enumeration
156 items analyzed, 0 timing errors detected.
Maximum net delay is 13.074ns.

Timing summary:

Timing errors: 0 Score: 0
Constraints cover 3080 paths, 156 nets, and 525 connections (100.0% coverage)
Design statistics:

Minimum period: 40.096ns (Maximum frequency: 24.940MHz)

Maximum net delay: 13.074ns

Analysis completed Wed Jan 30 16:45:43 2002

We need to reduce the clock frequency of the XS40 Board to 5 MHz to slow the display
of the sum. To do this, start the GXSSETCLK program. Set the Board Type field to XS40-
005XL. Place 20 in the Divisor field to reduce the 100 MHz master frequency to 5 MHz.
Then click on the SET button.

X Set XS Board Clock Frequency [H[E E3 |

Board Type [540.005<L = SET

Port ILF'T1 "I Exit
Diivizor 20 [T Extemnal Clock,

Set the #5 Board clock frequency by entering a
divizor for the 100 MHz master frequency

A set of instructions will appear that must be followed to adjust the clock frequency of the
XS40 Board. After doing these steps, click on the OK button to reprogram the clock.

GXSSETCLK E|

Before zetting the %540 Board frequency you musk:

1] Remove the power and downloading cable from wour =540 Board
2] Place a shunt on the “'zet" poszition of jumper J12

3] Reconnect the downloading cable

4] Reconnect the power cable

8] Click an the OF Buttan
; Cancel |

Reprogramming the clock takes less than a minute after which the following set of
instructions is given to activate the new clock frequency.

GXSSETCLK =l

The frequency of your %540 Board haz been setll

MHaow do these steps to activate the ozcillator:

1] Remove the power and downloading cable from wour =540 Board
2] Move the shunt to the "ozc" position of jumper J12

3] Reconnect the power cable

4] Reconnect the downloading cable

8] Click an the OF Buttan

After activating the 5 MHz clock frequency, we can again download the dsgn5_2.BIT file
again and release the reset on the circuit. Now we should see the

...... M...2.....M...2...... sequence displayed on the LED digit at a more leisurely pace.
And just as with the previous example, if we set and clear the reset again we will see the

display change to B..E.... B..E.......

	Using RAM
	In this chapter you will learn how to:
	RAM
	Using an External Asynchronous RAM
	The LED Decoder Module
	The Root Module
	Synthesizing and Implementing the Design
	Generating the Bitstream
	Downloading and Testing the Design

	Using an Internal Synchronous RAM
	The Internal RAM Module
	The LED Decoder Module
	The Root Module
	Synthesizing and Implementing the Design
	Downloading and Testing the Design

