Pragmatic Logic Design

With XILINX Foundation 2.1i

S?HTHEEIE

» B '
SIMULATION

b » » B B I

IHPI.EHEHTI:ITII::IHR YERIFICATION

> B

PROGRAMMING

43

David E. Vanden Bout
XESS Corp

© 2001 by X Engineering Software Systems Corp., Apex, North Carolina 27502

All rights reserved. No part of this text may be reproduced, in any form or by any means, without
permission in writing from the publisher.

The author and publisher of this text have used their best efforts in preparing this text. These
efforts include the development, research, and testing of the theories and programs to determine
their effectiveness. The author and publisher make no warranty of any kind, expressed or
implied, with regard to these programs or the documentation contained in this text. The author
and publisher shall not be liable in any event for incidental or consequential damages in
connection with, or arising out of, the furnishing, performance, or use of these programs.

XESS, XS40, and XS95 are trademarks of X Engineering Software Systems Corp. XILINX,
Foundation, XC4000, and XC9500 are trademarks of XILINX Corporation. Other product and
company names mentioned are trademarks or trade names of their respective companies.

The software described in this text is furnished under a license agreement. The software may be
used or copied under terms of the license agreement.

State Machine Design

In this chapter you will learn how to:

= Create a finite state machine with the Foundation State Editor;

» Encapsulate the finite state machine in a macro;

Update a macro when you retarget a project to another device family;

Interface to a PS/2 keyboard.

Finite State Machines

A simple finite state machine (FSM) uses one or more flip-flops to store its internal state.
The pattern of ones and zeroes on the flip-flop outputs are the current state. In a
synchronous FSM, the current state is replaced with the next state on the rising edge of
a clock signal. The next state is computed by a combinational logic circuit that accepts
the current state and possibly some external signals as inputs. So a synchronous FSM
is composed basically of a set of flip-flops fed by a combinatorial circuit that accepts
feedback from the flip-flops on every clock cycle.

In this chapter we will build an FSM that acts like a combination lock. The requirements
for this digital combination lock are:

1.

2.

The user enters a combination as a sequence of n key presses on a keyboard.

The combination lock stores a particular combination as a sequence of n key
presses.

The combination lock will open if the user enters an n-key sequence that
matches the combination. Otherwise, the lock stays locked.

The user must enter an entire n-key sequence before the lock either accepts or
rejects the sequence.

Once the combination lock is unlocked, the user can relock it or enter a new
combinations as a sequence of key presses.

6. The lock will require the user to verify any new combination that is entered before
it replaces the previous combination.

i ical view of the combination lock and its lower-level modules is shown in
The combination lock consists of:

Keyboard interface: This module accepts a serial data stream and clock signal from a
standard PS/2 PC keyboard and converts it into a parallel scancode with an
associated ready signal that indicates the presence of the scancode.

Lock&key mechanism: This module accepts scancodes from the keyboard interface
and determines whether or not the correct combination has been entered and
manages the entry of new combinations.

The combination lock accepts the keyboard serial data and clock as inputs along with a
main clock that synchronizes the operations of both modules. There is also a reset input
to initialize the entire FSM upon startup. The combination lock visually indicates its
current status on a seven-segment LED.

Combination
JUuun Lock
RESET / \
Kybd Clock
Keyboard Lock & Ke
Kybd Data Int)érface Mechanisr%

Figure 10: Design hierarchy for a combination lock.

Building the Combination Lock Project

Starting the Project

We will begin the design of the combination lock by creating a schematic-based project
for the XC4005XL FPGA as shown below. We will describe the lower-level keyboard
interface and the lock&key modules using the HDL Editor and State Editor, respectively,
and then tie these modules together with a top-level schematic.

Hew Project

M arne: |dsgn4_'| k.

Cancel

Directary: [C:\PRAG21I
Browse...

ek B

Twpe [Fz1i -l Help

Flaw: & Schematic © HDL
HC4000KL ~| |40054LPCa4 R ERE

Creating the Keyboard Interface Module

After the Project Manager window appears, we can start the HDL Editor and begin
designing the keyboard interface.

‘» dzgnd_1 - 40059<LPC84-3 - Project Manager

File Document “iew Project Implementation Tools Help

D] 8] o|n| o (% Ba B

File=s * “ersions L4 Flowy . Cortentz Reports . Synthesiz

B3 dsgnd_1 =
= dsgnd_1 dsgnd_1 (4005XLFC34-3) |
= simprims
= xc4000x Ay

G 1D » =
k RY ¥ SIMULRTION

e B

IMPLEMENTATION ¥

EYELE]

» b BY

YERIFICATION

Fecm o Creating project; ciprag21itdsgnd_1 E
Pom o Xiling server initialization

Fecm o Xiling wersion: 1,0, 0, 1

Fecm Reading Xiling project

Pecm - Dpening project: ciprag21indsand_1 --—--—--—--

Fecm o Design Type Schematic

Fecm Reading Xiling project =

Conzale J J
Ready

A PS/2 keyboard connects to an XS40 or XS95 Board through two signals:

psData: This signal carries the serial data stream as each key is pressed and released.
Each key is assigned an eight-bit scancode that is transmitted least-
significant bit to most-significant bit with a preceding start bit and a
terminating parity bit and stop bit.

psCIlk: The falling edge of this signal indicates when the psData signal is valid.

The keyboard interface will accept the serial data stream and will output the eight-bit
scancode in parallel along with an rdy pulse that indicates a valid scancode is available.

The rdy pulse will be generated when the psClk signal goes high and stays there. The
timing of the psData, psClk, and rdy signals is shown in

psData __AP0 XD1XXD2 X3 XD4 XD5 X6 XD7)X PY
rdy ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ "

Figure 11: PS/2 keyboard waveforms.

A single scancode is transmitted when a key is pressed. But two scancodes are
transmitted when the key is released: an initial scancode of 11110000 to indicate the key
release, and then the scancode for the key is sent again. The keyboard interface will be
designed such that the rdy signal pulses only after the key has been released.

The VHDL code for the keyboard interface is shown in LM The functions of the
code for the scancodeReg module are as follows:

Lines 7-12: The module receives the psData and psClk inputs from the keyboard and
outputs the eight-bit scancode and the rdy signals that were described
above. A master clock is also provided which synchronizes the operations of
this module with the lock&key module. A reset signal initializes the module
when it first powers up.

Line 17: This line declares a 10-bit shift-register that holds the scancode value as it
arrives from the keyboard. The start bit, eight scancode bits, parity bit, and
stop bit will enter the most-significant bit of the sc_r register and shift towards
the least-significant bit. By the end of a scancode transmission the start bit
will have shifted completely out of the register and be lost while the scancode
will end up in the lower eight bits of sc_r. The stop and parity bits will be in
the uppermost two bits.

Lines 18-22: These lines define a counter that is used to determine when the psClk
signal is no longer pulsing. The timeout value (line 20) is determined by
dividing the main clock frequency (line 18) by the frequency of the psClk (line
19). If the main clock is 50 MHz and the keyboard clock is 10 KHz, then the
timeout value is 5000 which means it will take 5000 pulses of the main clock
to determine if the psClk signal is static. The subtype for a timeout counter is
defined on line 21 as a natural number that can take on any value from zero
up to the timeout value. Then the timeout counter register is declared on line
22. By defining the counter register in this way, we can change the frequency
of the main clock or the keyboard clock and the timeout counter will be
automatically resized by the synthesizer with exactly the number of bits
needed to store the timeout value.

Lines 30—40: This process parallelizes the serial keyboard data. If the reset input is
active, the scancode shift register is cleared to all zeroes. Otherwise, on
falling edges of the keyboard clock the value on the keyboard data signal is
placed into the most-significant bit of the shift register and the upper nine bits
of the register are shifted one bit position downward. By the end of a
scancode transmission the start bit will have shifted completely out of the

OCONOOOTPA,WN =

register and be lost while the scancode will end up in the lower eight bits of
sc_r. The stop and parity bits will be in the uppermost two bits.

Line 43: The eight lower bits of the sc_r register are output as the scancode output of
the module.

Lines 47-68: This process detects when the psClk signal has stopped pulsing and
indicates that a scancode is available. The timeout counter and scancode
ready flag are cleared when the module is reset. Then the counter is
incremented as long as the psClk is at logic 1 and the counter has not
reached its timeout value yet. The counter is reset to zero if psClk is ever
low because that indicates the keyboard clock is still pulsing so the scancode
cannot be complete. But if the counter ever reaches the value timeout-1,
then the scancode ready flag is pulsed high for a single clock cycle.

Lines 72-88: This process checks the scRdy_r flag and looks for the scancode that
matches the keyRelease scancode defined on line 26 (11110000). After
seeing the key release scancode, this process looks for the next following
scancode. Then it sets the flag that indicates the scancode is ready for
output.

Line 90: The ready flag from the previous process is output from the module.

Listing 2: VHDL code for the keyboard interface.

library IEEE;
use IEEE.std logic_1164.all;
use IEEE.numeric_std.all;

entity scancodeReg 1is

port (
clk:
rst:
psClk:
psData:
scancode:
rdy:

)i

end entity;

in std logic; -- main clock

in std logic; -- reset

in std logic; -- keyboard clock

in std logic; -- keyboard data

out std logic vector (7 downto O0); -- key scancode

out std logic -- scancode ready pulse

architecture arch of scancodeReg is

signal sc_r: std logic_vector (9 downto 0); -- scancode shift register
constant clkFreq: natural := 50 000; -- main clock frequency (KHz)
constant psClkFreqg: natural := 10; -- keyboard clock frequency (KHz)
constant timeout: natural := clkFreq / psClkFreq; -- psClk quiet timeout
subtype counter is natural range 0 to timeout;

signal cnt_r: counter; -- timeout counter

signal scRdy r: std logic; -- scan code is ready flag

signal rdy r: std logic; -- output scan code is ready flag

signal keyrel r: std logic; -- key has been released flag

constant keyRelease: std logic vector (7 downto 0) := "11110000";

begin

-- this process places the keyboard scancode into the shift register

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

process (psClk, rst)

begin
-- async. reset of scancode ready flag
if rst = '1l' then
sc_r <= (others=>'0");

-- accept keyboard data on falling edge of keyboard clock
elsif psClk'event and psClk='0' then
-- key data arrives LSB first so right-shift it into MSB of register
sc r <= psData & sc_r(9 downto 1);
end if;
end process;

-- key scancode is in the lower 8-bits of the shift register
scancode <= sc_r(scancode'range); -- output scancode

-- this process detects the end of the scancode by looking
-- for the absence of keyboard clock pulses
process (clk, rst)

begin
if rst = '1' then
cnt r <= 0; -- clear the timeout counter
scRdy r <= '0'; -- clear the scancode ready flag
elsif clk'event and clk = 'l' then
scRdy r <= '0'; -- by default, no key scancode is ready for output

if psClk = '0' then
-- reset the timeout register whenever the keyboard clock pulses low
cnt r <= 0;
elsif cnt r /= timeout then
-- increment the timeout counter if the keyvoard clock is high
-- and the counter hasn't reached the timeout wvalue yet
cnt r <= ¢cnt_ r + 1;
if cnt r = timeout-1 then
-- signal that a key scancode is ready when the counter is
-- equal to one less than the timeout value
scRdy r <= 'l'; -- rdy signal pulses for a single clock period
end if;
end if;
end if;
end process;

-- this process detects when the keyboard key is released and
-- signals when the scancode for the released key is ready
process (clk)

begin
if clk'event and clk = 'l' then
rdy r <= '0'; -- by default, no key scancode is ready for output
if scRdy r = '1l' then
-- check the scancode register when a code is ready
if sc_r(7 downto 0) = keyRelease then

-- set flag if the keyRelease prefix is detected
keyrel r <= '1"';
elsif keyrel r = '1l' then
-- end up here on next scancode received after key release prefix

83
84
85
86
87
88
89
90
91
92

rdy r <= 'l'; -- released key scancode is in the scancode register
keyrel r <= '0'; -- reset the key release flag
end if;
end if;
end 1if;

end process;

rdy <= rdy r; -- signal that a key scancode is ready

end architecture;

Once the VHDL code from is entered in the HDL Editor window, save the code

in the scancodereg.vhd file.

Save Az |

Save i I 5 dsgnd 1

- & @ & [E

File name: Iscancudereg.vhd

Save I

Save 53 type: |VHDL Files [* vhd:*.vhi*.vha)

j Cancel |

Then encapsulate the keyboard interface into a macro using the Project=»Create Macro
command.

B scancodereg.vhd - HDL Editor M=l E3

File Edit Search “iew Sunthesis

Project Tools Help

Dlﬁlnl %I '}é'llél_' Aidd T Project

(T e B O BT U X,

e =
0 T w L Sy Y =R i I 0 B i |

15
12
=0

4] |

hibrary IEEE;

o 3zl |e]a] 2]

use IEEE.std logic Update Macro

use IEEE.numeric

std.all;

entity scancodeReqg is

portf
alk: in std logic; -- main <lock
rst: in std logic; -- reset
paClk: in std logic; -- keyhoard =lock
palata: in std logic; -- keyhboard data
gcancode: out std_lngic_vectnr(? downto 0); —-- key s
rdy: out std logie -- scancode ready pulse

)i
end entity;

architecture arch of scancodeReg is

signal sc std logic wvector(? downto 0); -- s
constant clkFredq: natural := 50 000; -- main <lock f
constant psClkFreq: natural = 10; -— kevboard <lo:-
constant timeout: natural := ¢lkFreq / paClkFreg; -- |.

k

Creates library macro

Ln1.Col1 WHODL | | INUIM | A

The progress as the VHDL synthesizer processes the VHDL will be displayed in the
DPMCOMP window.

" DPMCOMP]|
Initialize DFH. ..

Checlking licen=e. . .

License checlk QK.

Source: C:~PragZli~dsgnd_l“=scancodereg.vhd.
Familwy: HCA000HL .
Device: 4005XILPCE84=x1-3.

Create project. ..
Create file. ..

Analyvze =ource file. ..
Create chip. ..
Fptimize chip. ..

Finally, you should get an indication that the netlist for the keyboard interface macro was
successfully synthesized and placed in the library for this project.

HDL Editor =l

& Symbal 'SCANCODERER' succeszsfully created.

At this point we can exit the HDL Editor window and return to the Project Manager
window.

Creating the Lock&Key Module

Now we can design the lock&key module using the FSM Editor.

‘» dzgnd_1 - 40059<LPC84-3 - Project Manager

File Document “iew Project Implementation Tools Help

D] 6] Oln| o % Bl B

Files \ Wersionz 4| k Flany \ Contents \ Reports \ Synthesis \

B3 dsgnd_1 =
= dsgnd_1 dsgnd_1 (4005XLFC34-3) =
- B simprims
..... . . E_}-
SIMULRTION

IMPLEMENTATION ¥ YERIFICATION

Fecm o Update: CiPrag21idsand_1iscancodereg xnf {1027, 13 E
Fsm : Symbol 'SCARNCODEREG' successiully created
Fecm START: Library Manager

Lm - Likrary Manager has been succesfully initialized.

Fecm o Execute: Imoexe -p 2704 -i fe4000x cifndimactivelsyslibxe 4 000x

Lm . Likrary Manaoger has terminated. |

Fecm : EXIT: Library Manager =
Consale I.-"' |!4| | _>|

|Ready

We could begin our state machine design by answering several questions from the HDL
Design Wizard and getting an initial template that can be filled-in with the details. But in
this example we will start with a blank sheet.

State Editor |

— LCreate new document;

Ql " Use HDL Design ‘Wizard

— Open:
El ™ Exigting docurment
E‘l " CCAFNDTMY. . MCOMELOCK Mack. &
il O 'CivFrdin.. sUntided &5F

Cancel |

The State Editor window that appears has several areas where we can construct the
state diagram for our FSM and define the 1/O interface to it.

%= Untitled - State Editor M=] E3
File Edt Seach “iew FSM Draw Swenthesis Project Toolz Help

DSE| & 4=|e] <]« BlEL|n] 2ls|e]a] 2]

Sregl)

IT E
-1

i State machine Editing area

=?||| construction buttons \Z

Ll

Y Untitled
ﬁs

Y |Hdiagram ACTIONS 2 Input, output, and signal
A declarations go here
A

(#

=y

r=

°

States,
transitions,
and actions
go here

Kl J _'l;I

For Help, press F1 WHDL MUK 2

To start, we will name the file that will contain the FSM. Single-click twice on the Untitled
text string at the top of the editing area and rename it as lock.

"= Untitled - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

DISE| S| =2 wlo| BElL| D] 2 e]z] 2|

| v

|Untitled B
s

[idiagram ACTIONS]

Sregl

lolo|g|o|p|e|ale||s] L] V@ >l

Kl J _'l;I

For Help, press F1 WHDL MUK 2

After renaming the editing area, select the File=»Save command.

= Untitled - State Editor mi=] E3
File Edit Search Wiew FSM Draw Sprthesiz Project Tools Help

New e o] e|s el e] 2]

Open.. Chrl+0

Save Az !

Print... Chrl+P
Frint Preview
Frint Setup...
Fage Setup...

Send... lock

| v

1 CAFNDTHA MCOMBLOCKMock ASF
2 C:AFndinh. U ntitled A5F

Exit

Sregl

lolo|e]old

Kl | _*I;I

Saves the active document WHOL MM

Then change the name of the state machine design file to lock.asf and click on the Save
button.

Save Az |

Savejn:la dzgnd_1 j gl
1 DPMCOMP. TMP

" 1lib

] wproj

File name:; II::u:k_asﬂ Save
Save as type: [FSM files [*.asf -] Cancel |

Now we can begin defining the interface to the state machine. We begin by clicking the

button that lets us enter input ports.

"= lock.asf - State Editor
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

(=] B3

DISE| S| =] wlo| BElL| D] 2L a 2|

[idiagram ACTIONS]

| v

lock

Input Port QD

||ng:|p|o|ﬁ»|m-|%ls'lal%l.zlwll?l

Kl |

il

Adds/Edits input part ta the diagram

WHOLL [(NUM 2

Now move the cursor into the top portion of the editing area. The outline of an input port
icon will be attached to the cursor.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

DISE| S| =] wlo| BElL| D] 2L a 2|

l =
S

ﬁ

=

& |
ﬁ lock

S

A&l |vdiagram ACTIONS]

A

&l &L

5

=3

L

E Sregl

Kl J _'l;I

For Help, press F1 WHDL MUK 2

Left-click the mouse in the upper portion of the editing area and an input port icon will
appear.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

DISE| S| =] wlo| BElL| D] 2L a 2|

| v

lock

[idiagram ACTIONS]

Port1
[B-Fortt,

Sregl

lolo|g|o|p|e|ale||s] L] V@ >l

Kl J _'l;I

For Help, press F1 WHDL MUK 2

Right-click on the input port icon and select the Properties... entry in the pop-up menu that
appears.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

DISE| S| =] wlo| BElL| D] 2L a 2|

Srogy METEEEN

IT E
-1

]

=?

& _
ey lock

&

A&l |vdiagram ACTIONS]

A

g D_@ LCaolar....

] Frarned

E Eort...

r=

°

Kl J _'l;I

WHOLL [(NUM 2

This input will be used to bring the eight-bit scancode into the FSM. In the Port
Properties window, rename the port to sc and then click on the upper-left button of the
Range input until it is eight bits wide. Then click on the OK button.

PotPoperies W
ﬂﬂH General |

M ame: ISD| R ange: :I
* |nput [Clock [Integer

= Output " Fegistered me:l—

" Bidirectional © Combinatarial
To:

k. I Cancel Apply Mo |

Now the input port in the editing area appears with its new name and the upper and

lower indices for its bus width.

"= lock.asf - State Editor
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

(=] B3

DISE| S| =] wlo| BElL| D] 2L a 2|

| v

3
S
ﬁ
=
&
R lock
S
A&l |vdiagram ACTIONS]
A
&l [msclT0]
[+ N
I
L
E Sregl
4]

il

For Help, press F1

WHDL| | INUM

Repeat this process to add single-bit wide input ports for the scancode ready input (rdy),
the reset input (rst), and the main clock input (clk).

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

D|SE| S| &)@ «|-| BE|L|D] 8L a 2|

| v

lock

[idiagram ACTIONS]

[msc[7:0]
[OD-fdd [D-ret

Sregl

&

lolo|g|o|p|e|ale||s] L] V@ >l

Kl J _'l;I

For Help, press F1 WHDL MUK 2

Right-click the clk input and bring up its Port Properties window. Click on the Clock
checkbox to indicate that this input is a potential clock source for the FSM. Then click on
the OK button.

PotPoperies W
ﬂﬂH General |

M ame: Iu:lk Fange: ﬁ:lﬂ

* |nput v (Clocki [Integer

= Output " Fegistered me:l—

" Bidirectional © Combinatarial
To:

k. & I Cancel Apply Mo |

Upon returning to the State Editor window, you will notice that the clk input port icon has
a clock waveform drawn within it to indicate its added capabilities.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

DISE| S| =] wlo| BElL| D] 2L a 2|

| v

lock

[idiagram ACTIONS]

[sc[7:0] [clk
[—rdy [—rst

Sregl

N

lolo|g|o|p|e|ale||s] L] V@ >l

Kl J _'l;I

For Help, press F1 WHDL MUK 2

Now we will add signals to the FSM. These signals will store values used internally by
the FSM. Click the Signal button and drag a signal icon into the upper portion of the
editing area.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

D|E| 8| =2 || BlE]e|n])| e] ¢ 2]

IT =]
L]
*
=
& L
ﬁ lock
&
A&l |vdiagram ACTIONS]
A
&l [D=scl70] [am—clk
%]3 [—rdy [—rst
el
Signal |
% Sregl
f | o

Adds signals to diagram and machines WHOL MUK 2

Right-click on the signal icon and select the Properties... entry in the pop-up menu that

appears.

"= lock.asf - State Editor

File Edit Search “iew FS5M Draw Synthesis Project Toole Help

(=] B3

DISE| S| =] wlo| BElL| D] 2L a 2|

| v

%
g
o
=)
&
ey lock
AN
A&l |vdiagram ACTIONS]
A
— : 1% ignall
B [}-ao[m] @—c () Bignal —
) D— rd},.-' D— rst Framed
E Font...
[| Popenesy |
E Sregl
[« |

il

WHOL| [INUM

This signal will be used to store the first of the two keys in the combination for the lock.
Each key stores a scancode so it must be eight bits wide. In the Port Properties
window, rename the signal to key1 and then click on the upper-left button of the Range
input until it is eight bits wide. Then click on the OK button.

Signal Properties |

iILIEI General |
Marme: Ikey1 Range: :I

& |ogic
% Registered " Boolean
" Combinatarial i Integer Ff':""'“l
Tu:u:l
ok Caniel Apply Now |

Now the signal in the editing area appears with its new name and the upper and lower

indices for its bus width.

"= lock.asf - State Editor

File Edit Search “iew FS5M Draw Synthesis Project Tools

Help

(=] B3

DISE| S| =] wlo| BElL| D] 2L a 2|

| v

3
il
o
=)
&
ﬁ lock
Yt
A&l |vdiagram ACTIONS]
A
&l [m=sclrol [an—clk (O key1[7:0]
% [—rdy [—rst N
% Sregl
4]

il

For Help, press F1

WHOLL [(NUM 2

Repeat this process to add the signals for storing the second key (key2). We also add
two more byte-wide signals that temporarily store the keys for the new combination as
they are entered by the user(newkey1 and newkey2). And there is a single-bit signal
(match) that records whether the input keys punched by the user match the keys in the
combination.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

DISE| S| =] wlo| BElL| D] 2L a 2|

L+

lock

[idiagram ACTIONS|

[scl7:0] fam—clk (O key1[7:0] (Onewkey1[7:0]
[—rdy st (Okey2[7:0] (O newkey2[7:0] () match

=regl

lolo|g|o|p|e|ale||s] L] V@ >l

Kl J _'l;I

For Help, press F1 WHDL MUK 2

Now we will define the output ports for the FSM. Click the Output Port button and drag the
port icon into the editing area. Then right-click on it and select the Properties... command
from the pop-up menu.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

D|E| 8| =2 || BlE]e|n])| e] ¢ 2]

% B|
L]
ﬂ
=
& lock
|-
% rdiagram ACTIONS]
Al [Drsclr:0] mmp—ck O keyl[7:0] O newkey1[7:0]
&l [O-rdy st (Okey2(7:0] (O newkey2[7:0] () match
O
_%H§ =regl
ET Output Port |
- | .

Adds/Edits output port to the diagram WHOL MUK 2

The FSM will have a single, combinatorial output that drives the seven-segment LED.
Rename the output to led, set the indices to 6:0, and click on the Combinatorial radio
button. Then click on the OK button to close the window.

PorProperies K|
iILIEI General |

M arme: ||EI:| Fanage: :I
" Input ™| Clock [Integer

' Dutput © Regstered g

" Bidirectional % Combinatonat

] Cancel Apply Mow |

The definition of the FSM interface is complete now that the seven-bit wide led output
icon has been added. Now we can click on the State button and begin defining the states
for the FSM.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

D|E| 8| =2 || BlE]e|n])| e] ¢ 2]
N lock 4

L lydiagram ACTIONS|
State |

[D=sc[7:0] fmw—clk (O key1[7:0] O newkey1[7:0] <led[s:0]
[-rdy [D-rst (Okey2[7:0] (O newkey2[7:0] () match

3lo ~|

1
L%

=regl

Lo]v|@[o|E|r||2]2|%|

Kl J _'l;I

Addz states to machines WHOL MUK 2

Drag the circular state icon into the lower area of the editing area and left-click with the
mouse to drop it.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

DISE| S| =] wlo| BElL| D] 2L a 2|

ILI lock =l
=
id lidiagram ACTIONS|
?? [scl7:0] [—clk (O key[7:0] O newkey1[7:0] =Hled[6:0]
el [Drdy st O key2(7:0] O newkey2(7:0] () match
&
A& sregl
|2
Y
|®
|
I
I
4] | ;I;I

For Help, press F1 WHDL MUK 2

The state icon will appear with a default label of S1. Right-click on the
the Properties... menu item.

S1icon and select

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help
D|S|@| S| #|@m[0| w|| B[E[L|m| #|L|e|a] 2|
3 lock 4
S
o lidiagram ACTIONS|
=7
?j [D=sc[7:0] fmw—clk (O key1[7:0] O newkey1[7:0] <led[s:0]
el [Drdy st O key2(7:0] O newkey2(7:0] () match
Ay
i =regl
A
A
o Border Cal
| Border Calar...
| v Filled
had Fill Colar...
= Il e
Trap State
Default State
Mame Properties. ..
o | EEEEE -

WHDL| | INUM

In this state, the FSM will compare the scancode entered by the user with the value
stored in key1. In the State Properties window that appears, rename the state to ckkey1.

HE|

State Properties

A 2| General | Graphics | actions |

M amne: Code:
Ickke_l,ﬂ I
[Defaul
[T Tiap
Ft] [e

k. ’\J Cancel
L&

The state icon in the editing area is now labeled with its new name.

"= lock.asf - State Editor mi=] E3
File Edit Search “iew FSM Draw Synthesiz Project Tool: Help

D|S|E| S| %82 »|~| BlEL|n] 2L]e]|d] 2|

lock

V/diagram ACTIONS|

[=sc[7:0] [pm—clk (O key1[7:0] () newkey1[7:0] ={ Dled[6:0]
[-rdy [-rst (O key2[7:0] () newkey2[7:0] () match

Sreg0

lo]o]e|o|p]=]n|#|2|S] 4] v]a]

Kl | _*I;I

For Help, press F1 WHDL MM

Repeat this process to add seven more states to the FSM. The names of the states in
the FSM are:

ckkey1: Compare the scancode for the key pressed by the user against the scancode
value stored in the first key of the combination, key1.

ckkey2: Compare the scancode for the key pressed by the user against the scancode
value stored in the second key of the combination, key2.

unlocked: Open the lock if the user pressed the two keys whose scancodes match the
two keys in the combination.

inkey1: Accept a scancode and store it in newkey1.

inkey2: Accept a second scancode and store it in newkey2.

verify1: Accept a scancode and compare it to the scancode stored in newkey1.
verify2: Accept a second scancode and compare it to the scancode stored in newkey?2.

apply: Replace the combination stored in key1 and key2 with the new combination in
newkey1 and newkey?2.

lock.asf - State Editor

[Cmectid Eees O 00 O oo 1] B]

Sragl

© 2001 by XESS Corp. 274

Once the states are entered in the editing area, we can begin drawing the transitions
between the states by clicking on the Transition button.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

DISE| S| =] wlo| BElL| D] 2L a 2|
lock :J

irdiagram ACTIONS]

Cmscrr0l mm—ck O ket [0] O newkeyl[7:00 =0 ed[8:0]
Transition rv D_rST O key2(7:0] (O newkey2([7:0] (O match

Kl J _'l;I

Adds bansition bo machines WHOL MUK 2

Sregi

Lo]v|@[o[k|x @229l e 7]

When drawing a state transition, left-click on the state that will be exited, then left-click to
place intermediate points in the editing area, and finally left-click on the destination state
that will be entered. In the case shown below, the transition exits from state ckkey1 and
then returns to the same state.

"= lock.asf - State Editor mi=] E3
File Edit Search “iew FSM Draw Synthesiz Project Tool: Help

D|SE| S| 4|=]2] »|~| BlEle|n] 2l]e]|d] 2|

l lock 2
=)
F lirdiagram ACTIONS]
=2|| [Cmser:0l hmw—ck O keI [70] Cinewkey! [7:0] =l led[E:0]
E [Co—ray [C-rst O keyarn) O newkey2[7:0] () match
% Sregl
a o)]
A ;
% .
2
=y
s &
o
4 | of

For Help, press F1 WHDL MM

After clicking on the destination state, the transition is drawn with visible control points
that you can click-and-drag to change the appearance of the transition edge.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

D|SE| S| &)@ «|-| BE|L|D] 8L a 2|

lock

lirdiagram ACTIONS]

Orser0 mm—ck O keyl[7:0] O newkeyl[7:0] =3 lad[6:0]
Crdy [Drst Okevar:0] O newkey2[7:0] O match

Sregl

lolo|g|o|p|e|ale||s] L] V@ >l

i | o

For Help, press F1 WHDL MUK 2

Click in a blank portion of the editing area to end the editing of the transition. The final
transition will appear as a directed edge with an arrowhead indicating the direction of the

movement from state to state.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help
0|=(|| 8] & [2|e] »-] #8|,ln]| 8] [e]q] 2]
IT lock =
&
|| [rdiagram ACTIONS]
:_? D-sc[?:tl] E}—clk () kel [7:0] Onewkeﬂ[?:ﬂ] -Dled[ﬁ:lj]
E [C—ray Co-rst O kevai7n] O newkey2[7:0] () match
E Sregl
S
A _
A
A
® ks
=y
° o)
°
| | of

For Help, press F1

WHOLL [(NUM 2

Now we have to specify the conditions under which the state transition will occur. Click

on the Condition button to begin this process.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help
D|S[E] 8| &2 || BlE]|s|n #]L]e]q] 2]
IT lock =
&
|| [rdiagram ACTIONS]
o D-sc[?:tl] E}—clk () kel [7:0] Onewkeﬂ[?:ﬂ] -Dled[ﬁ:lj]
T Co-rst O kevai7n] O newkey2[7:0] () match
g Sregl
A _
A
A
()
=
° e
°
4 . | of

Addz/Edits condition af a branzition

WHOLL [(NUM 2

Next, left-click the mouse on the transition edge. An editing box will appear where we
can enter the equation for the condition. In this case, the FSM remains in the ckkey1
state as long as the user doesn’t press a key on the keyboard. So this transition is taken
as long as no new scancode is available from the keyboard interface. The VHDL code
for this condition is rdy = ‘0.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

DISE| S| =] wlo| BElL| D] 2L a 2|

lock

lirdiagram ACTIONS]

Crscr0) mm—ck O keyl[7:0] O newkeyl[7:0] =15 led[6:0]
[ordy [Drst Okeyar:0] O newkey2(7:0] O match

Sregl

lolo|g|o|p|e|ale||s] L] V@ >l

Kl J _'l;I

For Help, press F1 WHDL MUK 2

Once the VHDL code is entered, hit the return key or click the mouse outside the editing
box and the condition equation will appear next to the transition edge. You can click-
and-drag the condition equation to arrange its position.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

D|E| 8| =2 || BlE]e|n])| e] ¢ 2]

=l

IT lock
S
o lirdiagram ACTIONS]
—2|| [Orscrol B-ck O kel [70] (O newkeyl[7:0] =T led(6:0]
& [ordy [Drst Okeyar:0] O newkey2(7:0] O match
@
E Sregl
iy _
A
Ay
o =0
B y
o &
o

4] | ;I_I

For Help, press F1 WHDL MUK 2

Using the same process, we can add another transition from ckkey1 to ckkey2 that is taken
whenever a scancode is available (rdy = ‘1").

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

DISE| S| =] wlo| BElL| D] 2L a 2|

=l

IT lock
S
|| [lidiagram ACTIONS]
—2|| Erscrn Em-ck O kel [7:0] (Cnewkeyt[7:0] =THed(5:0]
@l Oy O-rst Okevziro Onewkey2(r0] O mateh
@
E Sregl
iy _
A
Y .
o =D =
C-
o
o

4] | _*l_I

For Help, press F1 WHDL MUK 2

When a scancode enters from the keyboard, the FSM has to check and see if it matches
the scancode stored in key1. To do this, we click on the Transition Action button so we can
add this checking action to the transition from ckkey1 to ckkey?2.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

D|E| 8| =2 || BlE]e|n])| e] ¢ 2]

lock

lirdiagram ACTIONS]

Cmscr0] mo—clk O keyl[1:0] O newkeyt [7:0] = ed(6:0]
ordy [D-rst Okev2r:0] O newkey2(7:0]) match

Sregl

ransition Action |

lololelolil ol 4] v 7]
l

Kl | _'l;I

Adds/E dits achion of a tranzition WHOL MUK 2

Click on the transition and then enter the transition action in the editing box that appears.
In this case, the match flag is cleared if the entering scancode, sc, does not match the
scancode in key1. If the match flag is cleared, this indicates one or more of the keys
entered by the user did not match the keys in the combination so the lock should not be
opened.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

DISE| S| =] wlo| BElL| D] 2L a 2|

=

IT lock
L]
o lrdiagram ACTIONS]
=] Cmscirn] ma—ck O keyl[1:0] (O newkeyl [7:0] =Ted(5:0]
& Comrdy [o-rst Okey2(7:0] O newkey2[7:0] (O match
O
E Sregl
A L
|2
% . if sti=key! then match=="0% end if|
o V=0 o=y N
C-
o
<

Kl J _*l_I

For Help, press F1 WHDL MUK 2

After clicking the mouse outside the editing box, the transition action appears in a
rectangle next to the transition edge. The rectangle distinguishes the action from the
condition that activates the transition itself.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

D|E| 8| =2 || BlE]e|n])| e] ¢ 2]

=l

IT lock
S
o lrdiagram ACTIONS]
=] Cmscirn] ma—ck O keyl[1:0] (O newkeyl [7:0] =Ted(5:0]
& Comrdy [o-rst Okey2(7:0] O newkey2[7:0] (O match
a
E Sregl
iy |
A
Ay : TR——
E raie=1 ||fscI=key1 then match=="0" end if;
=y
o %
o

<] | i

For Help, press F1 WHDL MUK 2

If the FSM resets the match flag to indicate the lock should not open, then we have to
initially set the match flag before the comparison to the combination begins. This action
occurs when the FSM is in the ckkey1 state. Click on the State Action button to add this

action.
"= lock.asf - State Editor mi=] E3
File Edit Search “iew FSM Draw Synthesiz Project Tool: Help
D|S|E| & 4[]8 vl BE|L|m| 2| |e|al 2]
]

lock

lidiagrarm ACTIONS]

Omscr0l mm—clk O ke [F:0] (O newkey! [7:0] =1 ed[F:0]
[Crdy [C-rst O key2[r:0] (O newkey2[7:0] () match

212 (%] 5| V@]

Sregd

2y |:

State Action |

|ifsu:f=key1 then match=="0" end if;

lo]o]e|o|e|=]

[+

il

Addz/Editz etate action of a state

WHDL| | INUM

Next, move the mouse so the dot on the end of the line attached to the cursor is within
the boundary of ckkey1. Then left-click the mouse.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

DISE| S| =] wlo| BElL| D] 2L a 2|

l lock a
&
r lrdiagram ACTIONS]
=) Omscl70] lmm—clk O keyl[1:0] O newkeyt [7:0] = ed[6:0]
E [—ray st O keya7:0] O newkey2[7:0] O match
Ig Sregl
A _
A
A
()
=
=y
°
4] | ;I_I

For Help, press F1 WHDL MUK 2

Within the editing box that appears, enter the VHDL code to set the match flag. Also
assign the bit pattern “0100101” to the outputs that drive the LED. This will display an L
on the LED digit to indicate that the lock is locked. Click outside the editing box to
complete the addition of the state actions.

"= lock.asf - State Editor mi=] E3
File Edit Search “iew FSM Draw Synthesiz Project Tool: Help

D|SE| S| 4|=]2] »|~| BlEle|n] 2l]e]|d] 2|

=

IT lock
-1
- lidiagrarm ACTIONS]
=] [Crscr0) mm—ck O keyl[7:0] Cinewkey! [7:0] = led[E0]
& O-rdy [O-rat O key2[7:0] O newkey2(7:0] O match
il Sregl
Y
ﬁ match=="", —
A lede="0100101" B
y:y . ———
E relp=10" , ||f5|:f=key1 then match=="0", end |f,|
C-
o
<

4] | _"I_I

For Help, press F1 WHDL MM

Now we can repeat the preceding steps to define the transitions and actions for the
remaining states. When the FSM is in the ckkey2 state, a 1 is displayed on the LED digit
to indicate that one key has already been entered by the user. A transition will be made
back to the ckkey1 state if the user hits a key whose scancode does not match key2 in the
combination or if the match flag is already zero (indicating a key mismatch during the
previous state). But the FSM transitions to the unlocked state if the current scancode
agrees with key2 and the match flag is still set.

Note that this FSM requires a single clock cycle duration for the scancode ready signal.
If the rdy output from the keyboard interface module stayed high for more than a single
clock cycle on each key press, this would cause a transition between multiple states of

the FSM.
"= lock.asf - State Editor _ O] x|
File Edit Search “iew FSM Draw Sunthesis Project Tools Help
D|= || G| +|5=|0] w|~| BlE]e|n] 2] e]d] 2]
lock =

3
S| [raiagram ACTIONS
fud Osclr0) mo—ck O keyl[70] (O newkeyt [7:0) T eds:0]
=
ZH| Tty [rst O key2rro] O newkey2(7:0] (O match
&
Gy Sregl
At
ﬁ match==""
A led=="0100101"
& . |ifscf=kev1 then match=="0" end if;|
el
(]
==
[=]
< fely="1" and facs=key? oF match="17)
— roly="{"' ancf sc=key? and match="{"

4] J _>I_I
For Help, press F1 WHOL v

In the unlocked state, the LED digit displays a U. If the user presses the backspace key
(with a scancode of 01100110), the FSM will move to the inkey1 state where they can enter
a new combination. Any other key press forces the FSM back to the ckkey1 state where
the lock is locked.

"= lock.asf - State Editor mi=] E3
File Edit Search “iew FSM Draw Synthesiz Project Tool: Help
DIS|E| 8] 4[]8 vl BlElon| 2| |e|d] 2|

-]

match==""
led=="0100101";

, |ifscI:keyr1 then match=="0", end if;|

led=="0010010"

rolly="1" gno sc=fey’

led=="0110111"

fofe="1" and so="0 00 10"
rcfe="1" and se="07 000"

lo]o]e|o|p]=]n|#|2|S] 4] v]a]

4] - | _»|‘I

For Help, press F1 WHDL MM

A lower-case r is displayed on the LED when the FSM is in the inkey1 state to indicate
that the combination is to be replaced by the next two key presses from the user. When
a scancode from the keyboard arrives, it is stored in newkey1 and the FSM moves into

state inkey2.

"= lock.asf - State Editor mi=] E3
File Edit Search “iew FSM Draw Synthesiz Project Tool: Help
D|S|E| & ||| || BELm| 2l e|al 2
.]

03
e
i roly="1" and ac'=heys
=9 rcie="1" ahd so=key?
E Fefe="0"
s led=="0110111
-
Ay
3 rate="1" and so/="040 1004 10"
I Yelle="1" ahef so="00f fO01 10"
A :
@l v
= s
[=
= N

L - | i

For Help, prezs F1

WHDL| | INUM

A 1 is displayed on the LED in state inkey2 to indicate that one key of the new

combination has been entered. When a second scancode from the keyboard arrives, it
is stored in newkey2 and the FSM moves into state verify1.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help
D|S(E| S| - [2[@ w|| BlE]r(m| 8L]e]d 2
Foly="1" ahd ac’=keys? =

IT rfe="1"and sc=ke?
=] rele=10"
s
=2 led=="0110111";
Py rely="1" ancf scr="0 007 10"
o rely="1" and sc="01 {001 10"
X
B2 Foly="10"
,rﬁ = led=="0001100"
>
| ==l newkeyl ==sc
A
el
C= Folle="0" led=="0100100"
D —
o

4] | _*l_I

For Help, press F1

WHOLL [(NUM 2

In the verify1 state, the LED displays 2 to show that both keys in the combination have
been entered. The user is now required to repeat the combination entered in the
previous two states. This prevents the user from erroneously entering a combination
that he can’t repeat and permanently locking the lock. If the user presses a key whose
scancode does not match the scancode in newkey1, then the FSM transitions back to the
ckkey1 state and the new combination is discarded. But if the key scancode matches the

value in newkey1, then the FSM transitions to state verify2.

*® lock.asf - State Editor _ O] x|
File Edit Search “iew FSM Draw Synthesiz Project Tool: Help
DIS|E| 8] || || BlElsn| | |e|d] 2|
!b'LI — LT T ;I

03
& newkeyl ==sc
i
-
&
& newkey2==5c
Ay
A
A
% ' and sosnewkew]
O rey="1" and scsnewkey Fele="1" and sc=hewikey
C-
[=
Lol

L I | i

For Help, prezs F1

WHDL| | INUM

In the verify2 state, the LED displays3 to show that both keys in the combination have
been entered and one has been verified. The FSM transitions back to the ckkey1 state
and the new combination is discarded if the user presses a key whose scancode does
not match the scancode in newkey2. But if the key scancode matches the value in

newkey2, then the FSM transitions to state apply.

In the apply state, a lower-case n is displayed on the LED to indicate that a new
combination has been accepted. The scancodes in newkey1 and newkey2 are transferred
to key1 and key2, respectively. Then any key press by the user will move the FSM back

to the ckkey1 state.

= lock._asf - State Editor | [O] x|
File Edit Search Yiew FSk Draw Senthesie Proect Tools Help
Dl @] 8| 4]0 || HElLn| #lsle|dl 2|
i u
P
s
7
=7 ."C:l}f:'C" led=="0100100"
&
o rely=""
& roly="10"
i led=="1011101"
A
Ay oy =
E Y= and se/snewkeyd refe="y " ancd sc=newley
= Foly=1"
had lgd=="1011011"
o
= roly="1" and soi=newiay? | ="' and sc=newiey 2
Foly="00" %
. led=="0001110"
- kel ==nemwkey!; —
rae="{" ka2 ==newkey2;
4] | -

For Help, press F1

VHDL[| [NUM /

In addition to the normal operations of the FSM, we have to initialize its behavior upon
start-up. The Reset button is used to specify the initial state of the FSM and the

conditions upon which it is entered.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help
D|S(E| S| &[22 || BlE]L[m] Lo 2
STEgT =
3
! match==""
i led=="0100101";
=2
= |ifscI=key1 then match=="0" end if;
&
C:Y
E led=="0010010";
i foly="1" ano sc=fer?
A riolle="1" gl so=kew?
Th | =10
s =
E-' Reset | led=="0110111"
E rafe="4"and sc/="01 1004 70"
e Fefle="4" ancd se="07 1004 10"
< o=
led=="0001100"
newkeyl ==z
4] | ;l_l

Adds resets to machines

WHOLL [(NUM 2

Drag the triangular reset icon into the editing area and then left-click to drop it. At this
point a line will connect the cursor to the reset icon. Move the cursor over the inkey1
state circle and click again. This denotes that the FSM will move into the inkey1 state
whenever a reset condition occurs. This makes sense because a reset should be a very
infrequent event and it should allow the user to gain control of the lock by entering a new
combination that overrides the old one.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help
0|28 8| &[22 «|-| Bl8|s|n] ©]L o] 2|
a trh=="
= match=="1",
! led=="0100101"
il : :
= . ||fscI=ke\y1 then match=="0", end |f;|
&
i
Yt
A
A fefle=10"
&
{:‘} —
E Fely="1" and so="04 10081 0"
E refe="1" gnd sc="07 {004 10"
<
newkeyl ==sc
4] ” | i

For Help, press F1

WHOLL [(NUM 2

The reset action can occur on a clock edge (synchronous) or whenever the reset

condition is satisfied (asynchronous). Right-click on the reset icon and select either

Asynchronous or Synchronous from the pop-up menu. | have picked Asynchronous in this
example, but either one will work.

"= lock.asf - State Editor mi=] E3

File Edit Search “iew FSM Draw Synthesiz Project Tool: Help

D|SE| S| 4|=]2] »|~| BlEle|n] 2l]e]|d] 2|

match==""
led=="0100101",

|ifscI=key1 then match=="0" end if;|

led=="0010010"

folle="1" and so=ieys
role="1" ghof sc=fey?

ry=10"

Fofe="" and sc="0 000"
Fofe="1" and se="07 00 10"

lo]o]e|o|p]=]n|#|2|S] 4] v]a]

v Sunchronous

led==

roly="1

Properties...

e —— |

4] |

WHDL| | INUM

To specify the reset condition, just click on the Condition button and then click on the edge

connecting the reset icon to the inkey1 state.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help
0|28 8| 3|2 «|-| HE|o|n]| ©]L[e]] 2|
3 e
match==""

! led=="0100101",

- , :

— ||fscf=key1 then match=="0" end if;

?ﬁnnditinn led=="0010010"

ﬁ foly="1" ano sc=fer?

& roly="1" ghdf so=key?

E =10

A

D —
E Foly="1" ahnef sc="01 1001 0"

— Fefe="1" gna so="00 1004 10"

[= o=

<
— led=="00011 00"

[+] | _*l_I

Addz/Edits condition af a branzition

WHOLL [(NUM 2

Then type the VHDL code into the editing box that directs the FSM into the inkey1 state
whenever the reset input is at a logic 1 level.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help
D|=(E| 8| &= »|«| @m[E|pn] 2] o] 2

lolo|g|o|p|e|ale||s] L] V@ >l

match==""
led=="0100101",

|ifscf=key1 then match=="0" end if;|

led=="0010010"

folle="1" and so=ieys
role="1" ghof se=fey?

ry=10"

led=="0110111"

Fofe="" g sc="0 000"
Fofe="1" and se="07 00 10"

For Help, press F1

WHOLL [(NUM 2

Now we can set some global options that affect the entire FSM. Right-click in an empty
section of the editing area and select Properties... from the pop-up menu.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

DISE| S| =] wlo| BElL| D] 2L a 2|

3 r
-1
7
=2
= lock
&
o || [iagram acTiONS]
Q|| Orscro bma-ck O keyl[7:0] (O newkeyl[7:0] ={THed[5:0] |
&l oy st O key2im:0] O newkey2[7:0] () match
G a
g Sregl
kel
C= Border Calor... match==""
(— i led=="0100101";
of
g 1= , |if5cI=keﬁ,r1 then match=="0" end if;|
B— Properties. ..
led=="0010010"
fefe="1" and so=key?
rofe="1" gnof sc=fey? hd
Kl | ,
WHDL MUK 2

The Machine Properties window for the FSM will appear. In the General tab, select the
clk signal from the drop-down list attached to the Clock field. This directs the FSM to
change states on the rising edge of the clk input.

Machine Properies IS
ﬂﬂH General | Reszet | Defaultz I

M ENTER
ISregEl
Clack————— ~ Encoding
I j % Sumbaolic
" Encoded:
= Faling IBinar_l,l j

k. I Cancel | .ﬁ.ppl_l,lNcuwl

Next, click on the Encoded radio button so we can specify how the states are stored in the
circuitry of the FPGA. Select One-Hot from the drop-down list. One-hot encoding uses a

flip-flop for each state with the flip-flop for the active state being set while all the others
are cleared. Eight flip-flops are needed by this FSM which is no problem since the
XC4005XL FPGA has 384 of them in the CLB array. For a CPLD, which typically has
fewer flip-flops, we might select binary encoding which uses three flip-flops to store the
binary code of the active state among the eight total states.

Machine Properies 3|
iILIEI General | Reset | Defaults I
M amne:
ISregEl
Clock————— Encoding
I.:lk j " Sumbolic
& Rising % Encoded:
™ Falling Binary -]
Johnzon B
{zer defined hi

] I Cancel Apply Mow

Next, click on the Defaults tab so we can stipulate the actions of the FSM when illegal
states occur. If an illegal state occurs we would like the lock to stay closed and not
spring open, so it should transition into the ckkey1 state. Click on the Trap state radio
button in the lllegal states section and then select the ckkey1 state from the drop-down list.

We have specified all the possible conditions that control transitions between states so
we can keep the Don't care option in the Unsatisfied conditions section. Then click on OK to
close the Machine Properties window.

Machine Properties K|
iILIEI General | R eszet | Defaultz |

Unzatigfied conditions

& Dot care

= Default state j
= Hold I

[legal states
|V = Doan't care

" Trap state apply
appl

v«

] I Cancel | .-’-\.ppl_l,lNu:uwl

Upon returning to the State Editor window, note that the ckkey1 state is now drawn with
a cross-hatched pattern to indicate it is the designated trap state. Click on the Save
button to store the FSM description.

"= lock.asf - State Editor _ O] %]
File Edit Search “iew FS5M Draw Synthesis Project Toole Help

D|S|R| S| &30 o« @E],|n] s]e]a 2

O

3 n
=l
s
=2
[lock
&
o || [iagram acTiONS]
Q|| Orscro bma-ck O keyl[7:0] (O newkeyl[7:0] ={THed[5:0] |
&l oy st O key2im:0] O newkey2[7:0] () match
s g
g Sregl
el
C- match==""
— led=="0100101";
L)
o | [if scizkeyt then match<="0" end if]
led=="0010010"
fefe="1" and so=key?
raly="1"'ahol sc=key? hd
[+] | '

Saves the active docurment WHOL MUK 2

The complete FSM for the lock&key module is shown below.

lock

fdiagram ACTION

[sl 7:0] @—clk () keyt[7:0] O newkey1[7:0] -Dledlﬁ:ﬂ]
D—rdy D—rsf Okeﬂ[?:ﬂ] Onewkey?[?:ﬂl Omalch

Sregl

match=="1";
led<="0100101"}

rdy='0""" g [if sci=key1 then match<="0"; end if]

rdy="0"
chkkey —=
PY led<="0010010"

rdy="1"and (sc/=key2 or match="0")

rdy="t¢
nlock
132 led<="0110111";
rdy="1"and sc/="01100110"
rdy="1"and sc="011007110"

raf="1"

rdy="0" inkey

18l led<="0001100]
rdy="1'

rdy="0 '}'ﬁl“w led=="0100100

=t
rdy="0"
= fed<="1011101"
rdy="1"and scl=newkey1 rdy="1" and sc=newkey1
rdy="0"
venl: sd==101101T"

ray="1" and scf=newkey2 rdy="1"and sc=newkey2

rdy="0"

apply led<="0001110",
! key1<=newkey1]
rdy="1" key2<=newkey?;

rdy="1" and sc=kayZ and match="1"

Now that the FSM description is complete, we can generate a VHDL description of it.
(This is not necessary in order to use the FSM in our project, but is done for illustrative
purposes.) Select the Synthesis=» Configuration... menu item.

= lock._asf - State Editor | [O] x|
File Edit Search Wiew FS5M Draw | Spnthesis Project Tool: Help
NEEIEREE EMHQJ 2]
HOL Code Generation l,EtrI+H =
Select Libraries...

Options...
Sunthesize

Wiew Feport

fdiagram ACTIONS

[O=scira) Ep—ck O keyl7:0] O newkeyl [7:0] =0 ed(6:0]
[C-rdy C—rst Cikey27:0] Onewkey2[7:0] () match (=

Sregl

match==""
led=="0100101",

lolo|e|o|e|= a2 25| 13| 7]

| [if sei=keyt then mateh=="0", end if]

led=="0010010"

rely="" and so=key?

roly="1" anod sc=fay?
Felly=10

K ' | o

Cuztomizes synthesiz ophions WHDL MUM 2

In the HDL Configuration window that appears, click on the VHDL radio-button to select
it as the language used for an HDL description of the FSM. Then click on the OK button.

HDL Configuration E |

Language Tools

il | FPGA Express -]
& WHDL

" Verilog

k. & I Cancel

Next, activate the Synthesis=»HDL Code Generation command.

"= lock.asf - State Editor _ O] x|
File Edit Search Wiew FSM Draw | Synthesis Project Tools Help
0O I @l nl %I éﬁ'; | | EI K LCoanfiguration... D_l gl EI

HOL Code Generation Ctrl+H

|+

Select Libraries. ..

DOptions...
Synthesize

View Report

fdiagram ACTIONS

[O=scrn] fma—ck O keyt [7:0] (Ornewkey! [7:0] = Hled[5:0]
C—rdy [C—rst Crkey27:0] (COnewkey2[7:0] () match -

Sregl0

match==""
led=="0100101",

, |if5t:f:kev1 then match=="0" end if;|

lo[o]9o|b|>]2l 2|%|] v]e 7]

ed=="0010010"

refy="" and se=key?
roly="1" anol ac=key?

o - | m

Generates HOL code from the diagram WHOL MUM 2

Indicate that you wish to see the VHDL code that is generated for the state machine we
built.

State Editor |

& Do you want ko view generated code?

Within a few seconds, the code in mei" appear in an HDL Editor window. We
can correlate pieces of the VHDL code with objects we have placed in the editing area of
the State Editor window:

Lines 16—20: The input and output ports placed at the top of the FSM editing area are
declared in the entity section.

Lines 26-30: The signals placed at the top of the FSM editing area are declared in the
architecture section.

Lines 33-45: Here is the state encoding and the signal, Sreg0, that holds the state.

O©CoONOOOPA,WN =

Line 55: The FSM changes states on the rising edge of the clk signal as we specified in
the Machine Properties window.

Lines 56-57: Upon a reset, the FSM moves into the inkey1 state.

Lines 60—122: The transitions from the current state to the next state and any actions
associated with these transitions are described here.

Lines 123—-124: Here is the specification of ckkey1 as the trap state that is entered if the
FSM ever gets into an illegal state.

Lines 132-139: The seven-segment LED activation pattern associated with each state
is listed here.

The VHDL description of the FSM can be useful for two reasons:

1. The editing area of the State Editor window gets very cluttered for complicated
FSMs. You can use the State Editor to draw an initial, simplified version of your
FSM and then add the rest of your description directly to the VHDL file. You
cannot automatically back-annotate the additions to the VHDL file back into the
State Editor, so the VHDL file must be used as the master design file for the FSM
after you do this.

2. If you are unsure how to write FSM descriptions using VHDL, you can create
simple FSMs in the State Editor and export them as VHDL to view the basic
language constructs that are used.

Listing 3: Generated VHDL code for the lock & key module.

-- File: C:\PRAG21I\DSGN4 1\lock.vhd
-- created: 04/13/01 12:32:29

-- from: 'C:\PRAG21I\DSGN4 1\lock.asf'
-- by fsm2hdl - wversion: 2.0.1.53
library IEEE;

use IEEE.std logic 1164.all;

use IEEE.std logic arith.all;
use IEEE.std logic unsigned.all;

library SYNOPSYS;
use SYNOPSYS.attributes.all;

entity lock is
port (clk: in STD LOGIC;
rdy: in STD LOGIC;
rst: in STD LOGIC;
sc: in STD LOGIC VECTOR (7 downto O0);
led: out STD LOGIC VECTOR (6 downto 0));
end;

architecture lock arch of lock is

--diagram signal declarations

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

signal keyl: STD LOGIC VECTOR (7 downto 0);
signal key2: STD LOGIC VECTOR (7 downto 0);
signal match: STD LOGIC;

signal newkeyl: STD LOGIC VECTOR (7 downto 0) ;
signal newkey2: STD LOGIC VECTOR (7 downto 0) ;

-- ONE HOT ENCODED state machine: Sreg0
type Sreg0 type is (apply, ckkeyl, ckkey2, inkeyl, inkey2,
attribute enum encoding of Sreg0 type: type is

"00000001 " & -- apply
"00000010 " & -- ckkeyl
"00000100 " & -- ckkey2
"00001000 " & -- inkeyl
"00010000 " & -- inkey2
"00100000 " & -- unlocked
"01000000 " & -- verifyl
"10000000"; -- verify2

signal Sreg0: Sreg0_ type;

begin
--concurrent signal assignments

Sreg0 machine: process (clk)
begin

if clk'event and clk = 'l' then
if rst='1l' then
Sreg0 <= inkeyl;
else
case Sreg0 is
when apply =>
keyl<=newkeyl;
key2<=newkey2;
if rdy='1' then
Sreg0 <= ckkeyl;
elsif rdy='0' then
Sreg0 <= apply;
end if;
when ckkeyl =>
match<='1";
if rdy='1l' then
Sreg0 <= ckkey2;
if sc/=keyl then match<='0";
end if;
elsif rdy='0' then
Sreg0 <= ckkeyl;
end if;
when ckkey2 =>
if rdy='1' and sc=key2 then
Sreg0 <= unlocked;

unlocked, ve

79 elsif rdy='1l' and sc/=key2 then

80 Sreg0 <= ckkeyl;

81 elsif rdy='0' then

82 Sreg0 <= ckkey2;

83 end if;

84 when inkeyl =>

85 if rdy='1' then

86 Sreg0 <= inkey2;

87 newkeyl<=sc;

88 elsif rdy='0' then

89 Sreg0 <= inkeyl;

90 end if;

91 when inkey2 =>

92 if rdy='1' then

93 Sreg0 <= verifyl;

94 newkey2<=sc;

95 elsif rdy='0' then

96 Sreg0 <= inkey2;

97 end if;

98 when unlocked =>

99 if rdy='1' and sc/="01100110" then
100 Sreg0 <= ckkeyl;

101 elsif rdy='1l' and sc="01100110" then
102 Sreg0 <= inkeyl;

103 elsif rdy='0' then

104 Sreg0 <= unlocked;

105 end if;

106 when verifyl =»>

107 if rdy='1' and sc=newkeyl then
108 Sreg0 <= verify2;

109 elsif rdy='1l' and sc/=newkeyl then
110 Sreg0 <= ckkeyl;

111 elsif rdy='0' then

112 Sreg0 <= verifyl;

113 end if;

114 when verify2 =>

115 if rdy='0' then

116 Sreg0 <= verify2;

117 elsif rdy='1l' and sc/=newkey2 then
118 Sreg0 <= ckkeyl;

119 elsif rdy='1l' and sc=newkey2 then
120 Sreg0 <= apply;

121 end if;

122 when others => -- trap state

123 Sreg0 <= ckkeyl;

124 end case;

125 end if;

126 end if;

127 end process;

128

129 -- signal assignment statements for combinatorial outputs
130 led assignment:

131 led <= "0001110" when (Sreg0 = apply) else

132
133
134
135
136
137
138
139
140

"0100101" when (Sreg0
"0010010" when (Sreg0
"0100100" when (Sreg0
"0110111" when (Sreg0
"1011101" when (Sreg0
"1011011" when (Sreg0
"0001100";

end lock arch;

= ckkeyl)
= ckkey2) else

= inkey2) else

= unlocked) else
= verifyl) else
= verify2) else

else

Now it is time to make the FSM availa
lock. Select the Project=>»Create Macro...

"= lock.asf - State Editor
File Edit Search “iew FSM Draw Synthesis

ble for use as a building block of the combination
command to initiate this process.

= 10] %]

Project Toolz Help

| v

D(S(E| @ 4[58 o]s| Bl e 2]
IT Update Macra !

=l

i

=2

= lock

&

@y || [idiagram acTioNS]|

S| Drscro B-ck O ket 0] O newkey! [7:0] =D led[s:0] _
A& Cordy st Okeyarn) O newkey2[7:0] (O match

A

g Sregl

el

s mateh=="",

D led=="0100101";

| =3

° | [if sei=keyt then match==10" end if]

Felle="1" and ao=keys
4] i Y rie="1"and sc=keyZ I _|;I

1 L3

Creates macra from the current diagram

WHDL| | INUM

The progress of the macro creation is displayed in the DPMCOMP window.
‘= DPMCOMP

Initialize DFM. ..

Checlking license. ..

License check Q.

Source: C:wPrag?li~d=gnd4_1~loclk vhd.
Familwy: ECA000XL.
Dewvice: 4005ETPCE4=x1-3 .

Create project. ..

Create file. ..

Analvze source file. ..

Freate chip. .. I

Upon successful completion of the macro generation process, click OK in the
confirmation window that appears.

State Editor |

& Symbol 'LOCE successfully created.

Finally, close the State Editor window.

"= lock.asf - State Editor

File Edit Search Wiew FSM Draw Sprthesiz Project Tools Help

Blr|n| #s|eld] 2]

Mew Chrl+t
Open.. Chrl+0
Save Chel+5
Save Az

= 10] %]

Print... Chrl+P
Frint Preview
Frint Setup...
Fage Setup...

Send...

1 lock. ast
2 CAFMDTMY, ACOMBLOCK ock &5F
3 C:AFndtnt.. AUntitled A5F

lock

newdey! [T:0] = Hled[0]
newkey2[T-0] () match

| v

kil

match==""
led=="0100101",

if sei=keyt then match=="0" end if;l

il

Synthesis Successful

A

[Cluitz the application; prompts to 2ave documents

Use SynthesisfView Report for detailed synthesis report
Symbol 'LOCK' successfully created

2
WHDL| | INUM

Creating the Top-Level Module

The top-level of the combination lock will be built by connecting the keyboard interface
and the lock&key modules together in a schematic. Click on the Schematic Editor button to

begin this phase.

‘» dzgnd_1 - 40059<LPC84-3 - Project Manager

File Document Wiew Project

Implementation Toolz Help

D] 6] Oln| o % Bl B

Files \ Wersionz 4| k

B3 dsgnd_1
= GEGE
@ simprims
B xc4000x

Flany \ Contents \ Reports \ Synthesis \

dsund_1 (4005<LPCE4-3)

= M
» e
DESIGM ENTR k - - —CTMULATION
Schematic Editor

A 4

IMPLEMENTATION ¥

YERIFICATION

[

Fecm o Update: CiPrag21idsand_1lockxnf (1027, 23
Fsm : Symbol 'LOCE' successfully created
Fecm START: Library Manager

Lm - Likrary Manager has been succesfully initialized.

Fecm o Execute: Im.exe -p 2704 -ifdsand_1 ciprag21idsgnd_1libtdsgnd_1

Lm . Likrary Manaoger has terminated. |

Fecm : EXIT: Library Manager =
Consale I.-"' |!4| | _>|

|Ready

Within the Schematic Editor window, bring up the list of library symbols and you will
see the keyboard interface macro (SCANCODEREG) and the lock& key macro (LOCK) at
the top of the list. Select each macro and drop it into the drawing area of the Schematic

Editor window.

{-) DSGH4_1
LOCK
SCANCODEREG

{-) XC4000X
ACCAR
ACCH
ACCH

Connect the macros to 1/0 buffers and pads as shown below. Note the following:

1. The main clock (CLK) will enter the XC4000 FPGA on a dedicated clock pin
(because that is the way it is connected on the XS40 Board) so the input pad
(IPAD) can connect directly to a general clock buffer (BUFG). Using the BUFG
ensures that the clock signal reaches all the flip-flops in the design with minimal
skew so they all change state at the same time.

2. The clock from the PS/2 keyboard (PSCLK) enters on a generic I/O pin so it must
go through an input buffer (IBUF) before going through a BUFG.

3. The keyboard serial data signal (PSDATA) and the reset signal (RST) are standard,
non-clock inputs so they just connect to IBUFs.

4. The seven LED outputs of the LOCK macro connect to a set of eight output
buffers (OBUF8). The eight buffers connect to a set of eight output pads (OPADS).
The bus connecting the OBUF8 to the OPAD8 is named S[6:0] so it is only has a
width of seven. This disconnects the eighth buffer and output pad so only the
lower seven buffers and pads are used as actual outputs.

Schematic Editor - [Modified - DSGN4_11.5CH]

Eile Edit Mode Options Hierarchy Wiew Display Tools Window Help == x]

el L= A = N ! N = s e R s s e

i .
CLK e
B [“Gurs _|
D 1)1
_State hachine REBFS DPT;JA?[?]EIB
=L [PSDF’\TP\D L2 hatcode N Lene =57
E BUF I—'_ PEDATA SCANCODE[T) j
= [= PSCLK . [, o .
= Feur Faurs -
L [ee RST - LOCK
@ +Teur ‘ SCANCODEREG
3 z of

" DSGN4 11 |
| 57,48 | Draw Wires

Once the macros are connected to each other and the 1/O, select the Options=»Create
Netlist menu item.

Schematic Editor - [Modified - DSGN4_11.5CH]

o Y] Ll 5

File Edit Mode | Dptions Hierarchy iew Display Tools “Window Help = |ﬁ'|1|
~ Crea Shift+F2 SIM
BIEEIEREL - N (| =38 o
— | Create Metlist from Ctrent Sheet =]
Integrity Test Chil+F2
- Integrity Test far Current Sheet
- Inteqrity Test Options. .. _
Export Metlist... 11
. OBUFE OPADE
Annotate. .. Chil+k. ,_.?,f‘“e Macr,l'.[‘_e I o]
— Replace Symbal... _J? Whdl code o oy b 8[60]\—‘
Fiename Met...
fsnaTa SCANCODETY)
| D Beport... pacie _I 74
TEOF BT -
[vo RET [, LOCHK
] {
IBUF SCANCODEREG
K|] ;l_l
" DSGN4 11 |
| 57,48 |

| Draw Wires

After the netlist is created, export the netlist to the other Foundation tools using the
Options=>»Export Netlist... command.

| |- | | PO B =

Schematic Editor - [DSGN4_11.5CH] _ O] x|
File Edit Mode | Dptions Hierarchy iew Display Tools “Window Help = |ﬁ'|1|
=] Create Metlist Shift+F2 $IM
EIEIEIEAE e ol Bl e
ﬁl—|7—|il— Create Metlist from Current Sheet | |]::lnl —I =]
Integrity Test Chil+F2
- Integrity Test for Current Sheet
- Inteqrity Test Options. .. _
111
. OBUFE OPADE
Annotate. .. Chrl+K, (State Machine I o]
— Replace Symbal... _J? Whdl code o oy b 8[60]\—‘
Fiename Met...
fsnaTa SCANCODETY)
| D Beport... pacie _I 74
TEOF BT -
= RST LOCK
e SCANCODEREG
il _ _>l_I
" DSGN4 11 |
| 37,19 |

Draw Wires

Accept the default name shown for the file in the Export Netlist window and click on the
Open button.

EponNeit K|
Loak ir: |ﬁ dzgnd_1 j gl
|1 DPMCOMP.THMP

b

E]mmi

dsand_1.akb

File narme; Open tI
Files of type: IEdifzﬂD[*_EDN] j Cancel |

Now that the top-level netlist has been generated and exported, close the Schematic
Editor window.
Entering the Pin Assignments for the XS40 Board

Open the dsgn4_1.ucf constraints file and enter the following pin assignments that map the
I/0O signals of the combination lock to the appropriate pins of the XS40 Board.

= dsgnd_1.ucf - HDL Editor (=] E3
File Edt Search “iew Synthesis FProject Tool: Help

|| & #[=]8] <]] o Balz|s|ela| 2]
1 mnet PACLE loc=p&l;

net PIDATA loc=pe?;
net CLE loo=pl3;
net RET loc=pd4d;
net 3<0> loc=pZ5;
net 3<l1> loc=pZa;
net 2<Z> loc=pZi;
net 2=<3x loo=pi0;
net #=<4d> loo=pZ3;
10 net 3<5> loc=pl8;
11 net 3<6> looc=plZ;

L L I o S) BT R

12
] | i
For Help, press F1 | Lni,Coll [TEXT | | (ML | i

Implementing the Design for the XC4005XL FPGA

Now run the implementation tools.

‘» dzgnd_1 - 40059<LPC84-3 - Project Manager

File Document “iew Project Implementation Tools Help

s EEI K R

Files \ Wersionz 4| k Flany \ Contents \ Reports \ Synthesis \
B3 dsgnd_1
B ddsond_11.5 dsund_1 (4005<LPCE4-3)
- 5 dsgnd_1
-~ B simprims
- 3 xe4000x @ - 3 ?
DeEsiGM EnTRY SIMULATION
o
\d
70
» P 130
) YERIFICATION
1] | .
Implermentation

[

Cony Export netlist 'CAPRAGZ21NWDSGMN4_1dsgnd_T.alb™o ED F 200
Carny o Macro 'LOCK' not exported. File 'CIPRAGZTRDSGRA_NLOCK xnf exists

Cary o Macro 'SCANCODEREG not exported. File 'CIPRAGZINDESGEMA_NSCANCODEREG xnf" exists

Cany . Total number of instances: 249
Carny . Total number of nets: 56

Carny EDIF netlist exported to file - CIPRAGZ1NDSGRA_1idsgnd_1.edn |
Pom EXIT: Schematic Editar =
Consale I.-"' |!4| | _>|

COPRAGZINDSGEMN4_1DEGM4_11.5CH - DSGMN4_11

Go through the following sequence of windows to specify the dsgn4_1.ucf file as the
constraints file for this design.

Implement Design |

Device | 4005LPCa4 -] Speed |3 vI

Wersion name: I""Ef.I

Bevizsion name: I'E“’-I

Cantrol Files: Set... | Options... |

k. | Cancel | Help |

Settings |

Implementation control files |

— Current Fevizion Control File 5 ettings:

|lze Canstraintz file from: INDne j

Copy Guide file from:

Copy Floorplan files from; INDHE j

— Current Revizion Control file use:
[Enable Guided MAP and PAF

[Enable Flaarplanring

k. I Cancel | Help |

Cusztom |

Browse... |

Conztraints File: |EEsla M=)

] LCancel | Help I

Then click on the Run button to implement the netlist in the XC4005XL FPGA.

Implement Design |

Davice | 40054LPCE -] Speed [3 -]

Werzion name; IVE"I

Bevizsion name: I'EV-I

Cantral Files:

Options... |
Fur ’}J k. | Cancel | Help |
b

The implementation tools should run through all five phases without any problems.

ﬂdsgmlj [werl->rev1] - Flow Engine

Elow Wiew Setup Utilities Help

By B @2

o
%=

XCA000XL Design Flow [revl] Status: OK
Translate Map Place&Route Timing [Sim] Configure

| Completed | Completed | Running | |

Optimizing =]

Swapped 7 comps.
Xilinzx Placer [1] 7530 REAL time: 3 secs

Finished Optimizing Placer. FEAL time: 3 =ecs
Writing design to file "d=gnd 1 ned®.

Total REAL time to Flacer completion: 3 =ecs
Total CPU time to Flacer completion: 3 secs

0 connectioni{=s) routed; 267 unrouted.
Starting router resocurce preassignment

Completed router resource preassignmnent. REAL time: 3 =secs
Starting iterative routing.

REouting active signals.
4] | »

e e e omd

For Help, press F1 [XC4005%L-3-PC84 |dsgnd_1_ucf |

Downloading the Bitstream to the XS40 Board

After the implementation tools finish, drag-and-drop the dsgn4_1.hit file into the GXSLOAD
window to download the bitstream into the XS40-005XL Board.

B[] | & dsgna_1 O[]
. File Edit Yiew [Go Favoites Help
Dirop BIT, .5WF, HEX, and .EXD Exit | i | = | | | |
files here to download ta the - - N [i I
%5 or %5V Board, Al e I | X
Fiecent Files: JﬂddlBSS I[:I C:\Prag2livdsand_1 j
|| DPMCOMP.TMP scancodereg.ER lock. vhd #]| dsgnd_1.alb
i scancodereg.log lock. whi @ dzgnd_1.pr
) ®proj scancodereg. opt lock. alr @ dsgnd_11.5CH
k*u dsgnd_1.bak scancodered. vhd %IUCK!—\SX % dsgnd_1.ECM
dzgnd_1.uck scancodereg. snf lock.ER [ﬂ exp_EDIF.log
degn4_11.B5C scancodered. wsf lock.log @ WHOLLST
logiblos. ini lock. bl lock. ot @ types. dir
scancodered. al %Iock.asf lock. wnf % tirme;_sirn. edn
%scancodeleg.ASX lock EMT lock. wsf a zgnd_1 bit
Belaad | I™ EEPROM It ILPT1 j' scancodereg.ENT Iock.oid %] 5595.1og @dsgml_'l.ll
4 | |
|1 object(z] selected | My Computer v

Testing the Combination Lock

After downloading the bitstream to the XS40 Board, attach a PS/2 keyboard to the six-
pin mini-DIN socket at the bottom of the board.

If the LED on the XS40 Board does not display a lower-case R upon startup, then you
may have to manually reset the combination lock. The reset input for the lock (pin 44 on
the FPGA) is connected to data bit DO of the parallel port. Start the GXSPORT utility and
apply a logic 1 to the reset input.

X gxsport MEE
SR R N W O O 5 S
DF DE D5 D4 D3 D2 D1 DO

™ Court Part [LFT1]

Then apply a logic 0 to release the reset.

X gxsport M=l E3
|] o] o] @ e
oY DE D5 D4 D3 D2 D1 DO
Stoberl, ™ Count Port ILF'T‘I vI

Now the combination lock should be ready to respond to key presses. A sequence of
key presses and the results are shown below:

LED

New State... This means...

displays...

The combination lock is ready to begin
replacing its current combination with a
new combination entered from the
keyboard.

None inkey1

The scancode for ‘a’ has been stored in

inkey2 newkey1.

The scancode for ‘b’ has been stored in

verify newkey?2.

The first key of the new combination has

verify2 been verified.

The second key has been verified and the
apply new combination in newkey1 and

newkey2 has been moved into key1 and
key2, respectively.

The lock is locked and is waiting for the

return combination to be entered.

ckkey1

The first key of the combination has been

ckkey2 entered.

The key sequence did not match the
ckkey1 combination so the lock stays locked and
waits for the combination to be entered.

The first key of the combination has been

ckkey2 entered.

The key sequence matched the

unlocked combination so the lock opened.

The backspace key indicates the user
wants to replace the current combination
inkey1 with a new combination. Any other key
would have returned the state machine to
the ckkey1 state and locked the lock.

backspace

Retargeting the Project to the XS95 Board

Now we will retarget the combination lock to an XC95108 CPLD on an XS95 Board.

Copying the XS40-Based Combination Lock Project

Create a copy of the previous project using the File=»Copy Project... command.

‘» dzgnd_1 - 40059<LPC84-3 - Project Manager

Eile Document Miew Project Implementation Tool: Help

Mew Project... Chrl+r
Open Project... Ctrl+0

Archive Project...
Bestore Project...

Project [nfo

b Bla| Bl

m Contents . Repotts . Synthesiz
Delete Project..” Chrl+D

verl reyl RC4005%L-3-PCa4)

1Dy B

Project Libraries... Chl+L DESIGN ENTRY SIMULATION
Project Type... Chl+T A 4
Preferences * % » E I’ ﬁ‘ @
1 dzgnd_1 IMPLEMENTATION YERIFICATION
2 comblock
3 abeltest el (Mew Ok)
0 ey el (Translated Ok
= eyl (Mapped Ok)
E it eyl (Routed Ok

Hig - Flowe Enaine: verT-=revl (Timed Ok)

Hig : Flowe Enaine: verl-=revd {Implemented Ok

Hig . Flowe Endine werl-=revl Completed Successiully,

Conzale Ll_l

Caopy project

Name the new copy of the project dsgn4_1a.

Copy Project |
— Source
Fraject: Iu::'xprag21 ivdzgnd 1 .pdf Browse. .. |
— Destination
P ame; |d39ﬂ4_1 E!
Directany: I'EZ"\II'TEIEI21 [Browse... I
k. I Cancel | Help |

Next, use the File=»Open Project... command to bring up the Open Project window.
Highlight dsgn4_1a in the list of projects and click on the Open button.

Open Project |
| degnd_1a | Open |
Fath: chprag2li
Frojects: Directories: ﬂl
Epppdegnz 1 2 LD [-
¥y dzgn2_2 [[dsanl_1]

E4a4 dzond 1 [[dsanz_1]

Ea4dzond Ta [[dsanz_ 2]

Eaydzgnd 2 [[dsan3 1]

¥24dzond 3 [[degn3_14]

£ dzon3d_3a [[dsan3_ 2] -

Epzydsand 1 R

.ﬁfZJ..'EI.?Q.r.'!.‘.L..].Q...L\ﬁ' = Sl He |

Selecting a New Target Device

Once the new project is opened, use the File=>»Project Type... command to change the
target device for the project. Select an XC95108 CPLD with a —20 speed grade as the
target device.

Change Project Type |

. Change
Current Type: Fz21i
LCloze

Available Types: IFE.'” -] Help |

Flan: f Schematic T HDL

%CI500 | |95108PCa4 = [

Click the Yes button when asked to verify the change in the target device.

Project Manager |

@ Do you really want to change?
v |

Updating the Modules to Account for the New Target Device

Now double-click the dsgn4_11.sch entry in the Hierarchy pane of the Project Manager
window. We need to re-synthesize the macro netlists so they utilize the features of the
XC9500 CPLD instead of the XC4000 FPGA. To start this process, first select the
Hierarchy=>»Hierarchy Push command in the Schematic Editor window.

Schematic Editor - [DSGN4_11.5CH]

] File Edt Mode Options | Hierarchy Miew Display Tools Window Help =S
jul L
2 Add Sheet to Project...
Gl S EAE NS - ! Bl DG
% Aidd Current Sheet ta Braject J J =]
I h Lreate Macro Symbol from Metlist...
iEl Create Macro Symbal from Current Sheet. ..]
D CU" Azzigh Hetlist to Selected Symbal..
= Hierarchy Push L
_L Hierarchy Fop k L]+ oBUFE OPADE
— nS}tate MacDLne [o
k= — PSDAT A, | 2 it oss - L 8[6:0]\—‘
= | L= ’ ’
— PSDATA SCANCODEF] —I RET
C= | PAD PSCLK [[SCLK SO
= IBUF l/-EUFG -
Al = RST LOCK
iaur ‘ SCANCODEREG
| _ ;l_l

DSGN4 11 |
| 39,15 |

Select and Drag

Then double-click on the SCANCODEREG keyboard interface macro. This causes the
VHDL source code for the macro to appear in an HDL Editor window.

» Schematic Editor - [DSGM4_11.5CH] 19 =] B
Eile Edit Mode DOption: Hierarchy Yiew Display Tool: Window Help _|ﬁ||1|
als|BE|8] & 5|e] NQ|E] < |l E=3 bl
& I

_

D = CLK >
= BUF & U1
_L State Machi OBUFS OFADE
= ':_<ae ac_il'.l‘.‘.e h‘a— OfF]

El — PSDATA, TETre— D> 09
é PSCLK %UF |—~— PSDATA SCANCODE[TA RST

AL [~ [~ SCLK SC[7A
2 | - IBUF LEure) QH :
Al B RST LOCK
b Tbur ‘ SCANCODEREG
Kl] ;l;l
" DSGN4 11 |
| 62, 34 | Hierarchy Push/Pop

Updating the Keyboard Interface Module

In the HDL Editor window, activate the Project=>»Update Macro command.
= scancodereg.vhd - HDL Editor _ O] =]

File Edit Search Yiew Sgnthesis | Project Tools Help

D<@l &) «fele] v 3 sjejsleiel 7]

1 hibrary IEEE; Create Macma -
2 use IEEE. std_lngicm
3 use IEEE.numeric std.all;
4
5 entity scancodeReg is
& port(
7 alk: in std logie; -- main clock
=] rat: in std logie; -- reset
E paClk: in std logiez; -- keyboard clock
10 psData: in std logiz; -- keyboard data
11 scancode: out std_logic_vector(? downto 0); -- key scancode
1z rdy: out std logie -- scancode ready pulse
13 1i
14 end entity;
15
16 architecture arch of scancodeReg is
17 =ignal sc_r: std logic wector(? downto 0); -- scancode shift register
18 constant <lkFreg: natural := 50 000; -- main <lock fregquency (EHz)
15 constant psCclkFregq: natural = 10; -- kevboard clock fregquency (EHz)
20 constant timeout: natural := <lkFreq / psClkFreq; -- psClk quiet timeout
21 subtype counter iz natural range 0 to timeout; -
[l | _>|_I
0 error(s] 0 warning[s] found
KN

i
|Updates libramy macro Lni.Call [wHDL [[[MOM[/il

The netlist for the keyboard interface macro will be re-synthesized for the XC95108
CPLD.

" DPMCOMP]|
Initialize DFH. ..

Checlking licen=e. . .

License checlk QK.

Source: C:~PragZli~dsgnd_la*=scancodereg.vhd.
Familwy: XCI500.
Device: QE108PCE4-20.

Create project. ..
Create file. ..

Analyvze =ource file. ..
Create chip. ..
Optimize chip. ..

Click the OK button on the acknowledgement of the successful macro update, then close
the HDL Editor window.

HDL Editor =l

& Symbal 'SCANCODEREG' successfully updated.

Updating the Lock&Key Module

Once you return to the Schematic Editor window, double-click on the lock&key macro
(LOCK) to bring up the state diagram in the State Editor window.

Schematic Editor - [Modified - DSGN4_11.5CH]

Eile Edit Mode Options Hierarchy Wiew Display Tools Window Help == x]

e =T N S A e e e e R R s T e

% |
|
1) CLK .
; | ” l/EIUFG U']
_L State Machi OBUFS OFADE
T=| ':_<ae ac_g;\.e m 7]
B —= PSDATAR, TETe— Py
ﬁ %UF I— PSDATA SCANCODET) RET
& == PSCLK p. - . 1 s N
= Wour Vaure H
Al o RST ' LOCK
Hieur SCANCODEREG
£l] il
" DSGN4 11 |
| 83, 34 | | Hierarchy Push/Pop
Once again, use the Project=»Update Macro command to re-synthesize the FSM for the
XC95108 CPLD.
= lock._asf - State Editor | [O] x|

File Edit Search Wiew FS5M Draw Synthesis | Project Tools Help

Dlﬁlnl @I '}Ellﬂl ﬂl“l &dd to Project = il

Create Macro

|_updaelizc |

|+

lock

Sidiagram ACTIOMNS

Crscrn [d-ck O keyl[7:0] O newkey![7:0] = ed[6:0]
[C—rdy Crst Orkeyz[70] O newkey2(7:0) (O mateh —

Sregd

match==""
led=="0100101",

[if sci=key! then match=="0'; end if]

lolo|e|o|e|=|al2|2|s] 13| 7]

led=="0010010"

foly="1"ano so=key?

roly="1" anod sc=fay?

H — | i

VHDL[| [NUM /

After the lock&key FSM netlist is re-synthesized, close the State Editor window and
return to the Schematic Editor window.

Updating the Top-Level Module

Change the top-level circuit slightly by removing the BUFG from the PSCLK net since that
component cannot be connected to a general-purpose 1/0 in an XC9500 CPLD.

» Schematic Editor - [DSGN4_11.5CH] o [=] E3
Eile Edit Mode DOption: Hierarchy Yiew Display Tool: Window Help _|ﬁ||1|

el N] S e e s o e = T

i 5|
= _
= CLK _
EI | l/EIUFG
11
_L State Machine ?.EEIFS DPTJ?.’[?JS
E = PEDATAM U_Q Vhdlcode ;r LEHE ST !
g %UF I— PSDATA SCANCODE[71]
= | =) PSCLK .. . _I .
= baur Q':;;" e
A [Rl L LOCK
Fieur SCANCODEREG
Y souin T =8

" DSGN4 11 |
| 36, 45 | Draw Wires

Now execute the Options=>»Create Netlist command...

Schematic Editor - [DSGN4_11.5CH] _ O] x|
File Edit Mode | Dptions Hierarchy iew Display Tools “Window Help = |ﬁ'|1|
EEEEREL Cooe et |l] e o

— | Creal list from Clirent Sheet =]
h Integrity Test Chil+F2
iE Integrity Test far Current Sheet
Integrity Test Options... |
D D Export Metlist...
Annotate. .. Chil+k. 11
—L Feplace Symbal... tate Machine EE:IFS OPADS
— R Met... CLK LEDjS o)

= — G R 2 whdicode » L 8[630]\—‘
= Bepart... o - -
= SOATA SCANCODETT]
= PSCLK [~ N 1 y
L&l b aur .

Ca [#s RST LOCK
“aur SCANCODEREG

PR o

" DSGN4 11 |
| 36, 45 | | Draw Wires

And then activate the Options=»Export Netlist... command. Close the Schematic Editor
window after the top-level netlist is exported,.

» Schematic Editor - [DSGM4_11.5CH] M [=1E3

Eile Edit Mode | Options Hierarchy Wiew Display Tool: Window Help _|ﬁ||1|

=] Create Metlist Shift+F2 $IM
EIEIEIEAE e il s)
ﬁl—|7—|il— Create Metlist from Current Sheet | |]::lnl —I
h Integrity Test Chil+F2 =]
iE Integrity Test for Current Sheet |
Integrity Test Options...
1) m
Annotate... Crl+ 11
Feplace Symbal... - OBUFE OPADS
i Rename Met... ol Macfige (™ o4
k= E - U2 whdleods N L S[6:0
= Bepart... o - -
= SOATA SCANCODETT] :
= PSCLK [~ 1 y
18 b aur .
Ca [#s RST LOCK
“eur SCANCODEREG
| L] _'l_I

" DSGN4 11 |
| 36, 45 | Draw Wires

Entering the Pin Assignments for the XS95 Board

Place the following pin assignments for the XS95-108 Board into the dsgn4_1a.ucf
constraints file.

= dzgnd_1a.ucf - HDL Editor _ (O] x|
Eile Edit Search “iew Synthesiz Projpect Toolz Help

D|=(@| 8| 28] o| | d Zafe|i|e|d] 2]
net P3CLE loc=pZa;
net P3DATA lococ=p70;
net CLE loc=p3;

net RET loo=pds&;
net #=<0> loc=pZl;
net #=<l1> loo=pZ3;
net F=<Z> looc=plZ;
net #<3> loc=pl7;
net 3<4> loc=pl3;
10 net 3=5> loc=pld;
11 net 3=e> loc=pls;

L J o S [Y BT I R e Y

Ready | Ln11,.Col18 [TEXT | | [HLUI | S

Implementing the Design for the XC95108 CPLD

Then use the implementation tools to map the netlist for the combination lock to the
XC95108 CPLD.

‘» dzgnd_1a - 95108-20PC84 - Project Manager _ O] x|
File Document “iew Project Implementation Tools Help

D] 6] oln| ale| Blg] Bl

Files \ Wersionz 4| k Flany \ Contents \ Reports \ Synthesis \
B3 dsgnd_1a =
|:1:5:gr|4_'1 1.5 verl rewl G4AC85108-20-PCE4) -
- B3 dsgnd_1a
-~ B simprims
B wee500 . @ - 3 W
DeEsiGM EnTRY SIMULATION
#
A 4
p F @
YERIFICATION
1] | ¢ -
Carny EDIF netlist exported ta file - CHPRAGZ1NDSGRHA_1Adsgnd_1a.edn E

Carny o Expaort netlist 'CAPRAGZTNDESGMNA_1Adsgnd_1a.alb'to EDIF 200

Cary o Macro 'LOCK not exported. File 'CAPRAGZTNDSGRA _1ALOCK xnf exists

Carny . Macro 'SCANCODEREG not exported. File 'CIPRAGZINDEGEMNA 1 ASCAMNCODEREG ¥nf exist:

Cony . Total number of instances: 29

Cony . Total number of nets: 56

Carny EDIF netlist exported to file - CIPRAGZ1NDSGRHA_1Adsgnd_1a.edn =
Consale I.-"' |!4| | _>|

COPRAGZINDSGMNA_1ADSGEMNA_11.5CH- DEGMN4_11

Creating the SVF Bitstream for the XC95108 CPLD

Once the implementation tools complete their tasks, click on the Programming button in the
Flow pane of the Project Manager window. Select the Output=»Create SVF File... in the
JTAG Programmer window that appears.

dzgnd_1a - JTAG Programmer H=]
File Edit Operations | Qutput Miew Help

Ol] & |E Cable Auta Connect MEE B 7 |n2
=21%]) e 2[5 glE 5] 2]
Cable Beset =
v lze Cable..
Create SYF File... h
Append to SVE File ™
TOI —
Ha5108
d=sgnd_1ajed
TOO
1| | i
Createz an SVYF file and directs subzequent operations to it [T 2

Accept the default SVF option that transitions the XC9500 JTAG downloading circuitry
through Test-Logic-Reset before entering the Run-Test/Idle state.

SVF Dptions |

I nitial tranzition to Bun-Testddle;

& Through Test-Logic-Feset

" Skipping Test-Logic-Reset

k. I Cancel Help

In the Create a New SVF File window, move up the directory tree to the top-level of the
dsgn4_1a project and specify the filename for the XC95108 bitstream.

Create a New 5YF File E |

Save_in:lr:l dsgnd_1a j gl
1 DPMCOMP. TMP

" 1lib

] wproj

File narme; Save [: I
Save as lype: | SVF Files(* svf) -] Cancel |

Generate the bitstream using the Operations=»Program command.

dzgnd 1a - JTAG Programmer _ O]
File Edit | Operations Output Wiew Help

R - R EEFE

Eraze
Functional Test
Blank Check
Beadback Jedes
Get Device [D
Ol - et Device Checkaum
et Device Signature/lzercode

|+

Chain Operations...

dsgnd_1ajed

TDO

=
1 | 5

Programs the selected devices in the JTAG chain SVF Mode | | -

In the Options window, check the option that erases the Flash memory in the XC95108
CPLD before programming it with the new bitstream.

Options |

Program Optionz |

W Erase Before Programming [~ </ oeer siay

[Werify [‘'white Pratect
[Functional Test [T Bead Frotect
[" | Parallel todi [T Load Fpoa

" | External Bin Yerlfication Fir i I

™ Usercode (8 Hex Chars] I FFFFFFFF

] [I Cancel Help

The SVF bitstream should be generated without incident.

Operation Status |

Loading Boundamy-Scan Description Language [BS0OL] file |
T Fndtind=c9500/datafwc 95108, bed'. .. .completed successfully,

‘dzgnd_Ta(Dewvicel]' Generating 5%F wectors to check boundary-scan chain
inteqrity. .. done.

'degnd_1a[Dewicel]: Generating S%F wectors to put device in ISP mode... done.
‘dzgnd_Ta[Dewvicel]': Generating 5%F wectors to erase device. .. done.
‘dzgnd_Ta[Devicel]: Processing JEDEC file...done.

'degnd_T1a[Devicel]: Generating S%F wectors to program device....done.
‘dzgnd_Ta[Dewicel]: 5WF vector generation for programming completed succeszsfully,

I

All operationz were completed succeszstully,

View Log File |

Once the SVF file is generated, exit from the JTAG Programmer window.

dzgnd_1a - JTAG Programmer H=]
File Edit Operations Output Miew Help

Do N R E ks

|+

|ritialize Chair [Ctrl+
ebug Chain... [+
Save Chl+5
Save bz

1 Ewbpekessuinfehuinte, cdf
2 Ehiline ERLES, . Suinfe, cdf
2 Ehwbpckexher?hadder. cdf

A Ehwbpckedher] Yedded, cdf

Mew Log File. ..

Breferences... |
| 1 | ' |—I
Quits the application SVF Mode | | .~

Discard any changes you made to the programming setup for this project. This will not
affect the bitstream that you stored in the SVF file.

JTAG Programmer |

& Save changes ta dzgnd_1a7
MNa I}l Cancel |

Downloading the Bitstream to the XS95 Board

After the programming tools finish, drag-and-drop the dsgn4_1a.svf file into the GXSLOAD
window to download the bitstream into the XS95-108 Board.

| Ele Edt View Go Favoites Help
Drop BIT. 5WF, HEX. and .ExO i J - @| % | =) | >< | 2

filez here to download to the Addresz C:hPrag2livdzand_1
%5 025V Board | e |4 CProgZtivhond T2

| IDPMCOMP.TMP [#] DSGNA_14.ALE %Iock.asf k. nf

b) dsond_Tabak % lock 45K lnck. xsf

|1 pra % dzgnd_1a.edn lock bak. logibla.ini
degrd_1.bak s8] dsgnd._1ajed lock ENT 595 Jog
dsand_1.bit =] DSGNA_1A PR lack.ER scancodsreg.al
% dzgnd_1.EDN] zgnd_1a.zvl lock log % scancodereg.As,
dsgnd_1.1l E dsgnd_1a.ucf lock. nid scancodersg EM
dzgnd_1.ucf @ dzgnd_1a.xht lock.opt scancoderag ER
dzgnd_11.BSC exp_EDIF log lock. whd scancodereq. log
dzgnd_11.5CH lock. alr lock. whi scancodereg, opt

Heload [EEFROM Fart ||_p'|'1 vl N |
|1 object|z] selected | My Computer

Recent Files:

Testing the Combination Lock

After downloading the bitstream to the XS95 Board, attach a PS/2 keyboard to the six-
pin mini-DIN socket at the bottom of the board.

If the LED on the XS95 Board does not display a lower-case R, then you may have to
manually reset the combination lock. The reset input for the lock (pin 46 on the CPLD) is
connected to data bit DO of the parallel port. Start the GXSPORT utility and apply a logic
1 to the reset input.

TR
DF DeE D& D4 D3 DZ D1 DO

™ Court Part [LFT1]

Then apply a logic 0 to release the reset.

g o)) o] o] o |E e
DF DeE D& D4 D3 DZ D1 DO
Stoberl, ™ Count F'-:urtILF'T‘I vI

Now the combination lock should be ready to respond to key presses. A sequence of
key presses and the results are shown below:

LED

New State... This means...

displays...

The combination lock is ready to begin
replacing its current combination with a
new combination entered from the
keyboard.

None inkey1

The scancode for ‘a’ has been stored in

inkey2 newkey1.

The scancode for ‘b’ has been stored in

verify newkey?2.

The first key of the new combination has

verify2 been verified.

The second key has been verified and the
new combination in newkey1 and
newkey2 has been moved into key1 and
key2, respectively.

apply

The lock is locked and is waiting for the

return combination to be entered.

ckkey1

The first key of the combination has been

ckkey2 entered.

The key sequence did not match the
ckkey1 combination so the lock stays locked and
waits for the combination to be entered.

The first key of the combination has been

ckkey2 entered.

The key sequence matched the

unlocked combination so the lock opened.

The backspace key indicates the user
wants to replace the current combination
inkey1 with a new combination. Any other key
would have returned the state machine to
the ckkey1 state and locked the lock.

backspace

	State Machine Design
	In this chapter you will learn how to:
	Finite State Machines
	Building the Combination Lock Project
	Starting the Project
	Creating the Keyboard Interface Module
	Creating the Lock&Key Module
	Creating the Top-Level Module
	Entering the Pin Assignments for the XS40 Board
	Implementing the Design for the XC4005XL FPGA
	Downloading the Bitstream to the XS40 Board
	Testing the Combination Lock

	Retargeting the Project to the XS95 Board
	Copying the XS40-Based Combination Lock Project
	Selecting a New Target Device
	Updating the Modules to Account for the New Target Device
	Updating the Keyboard Interface Module
	Updating the Lock&Key Module
	Updating the Top-Level Module

	Entering the Pin Assignments for the XS95 Board
	Implementing the Design for the XC95108 CPLD
	Creating the SVF Bitstream for the XC95108 CPLD
	Downloading the Bitstream to the XS95 Board
	Testing the Combination Lock

