

 2001 by X Engineering Software Systems Corp., Apex, North Carolina 27502

All rights reserved. No part of this text may be reproduced, in any form or by any means, without
permission in writing from the publisher.

The author and publisher of this text have used their best efforts in preparing this text. These
efforts include the development, research, and testing of the theories and programs to determine
their effectiveness. The author and publisher make no warranty of any kind, expressed or
implied, with regard to these programs or the documentation contained in this text. The author
and publisher shall not be liable in any event for incidental or consequential damages in
connection with, or arising out of, the furnishing, performance, or use of these programs.

XESS, XS40, and XS95 are trademarks of X Engineering Software Systems Corp. XILINX,
Foundation, XC4000, and XC9500 are trademarks of XILINX Corporation. Other product and
company names mentioned are trademarks or trade names of their respective companies.

The software described in this text is furnished under a license agreement. The software may be
used or copied under terms of the license agreement.

© 2001 by XESS Corp. 244

4444
State Machine Design

In this chapter you will learn how to:

� Create a finite state machine with the Foundation State Editor;

� Encapsulate the finite state machine in a macro;

� Update a macro when you retarget a project to another device family;

� Interface to a PS/2 keyboard.

Finite State Machines

A simple finite state machine (FSM) uses one or more flip-flops to store its internal state.
The pattern of ones and zeroes on the flip-flop outputs are the current state. In a
synchronous FSM, the current state is replaced with the next state on the rising edge of
a clock signal. The next state is computed by a combinational logic circuit that accepts
the current state and possibly some external signals as inputs. So a synchronous FSM
is composed basically of a set of flip-flops fed by a combinatorial circuit that accepts
feedback from the flip-flops on every clock cycle.

In this chapter we will build an FSM that acts like a combination lock. The requirements
for this digital combination lock are:

1. The user enters a combination as a sequence of n key presses on a keyboard.

2. The combination lock stores a particular combination as a sequence of n key
presses.

3. The combination lock will open if the user enters an n-key sequence that
matches the combination. Otherwise, the lock stays locked.

4. The user must enter an entire n-key sequence before the lock either accepts or
rejects the sequence.

5. Once the combination lock is unlocked, the user can relock it or enter a new
combinations as a sequence of key presses.

© 2001 by XESS Corp. 245

6. The lock will require the user to verify any new combination that is entered before
it replaces the previous combination.

A hierarchical view of the combination lock and its lower-level modules is shown in
Figure 7. The combination lock consists of:

Keyboard interface: This module accepts a serial data stream and clock signal from a
standard PS/2 PC keyboard and converts it into a parallel scancode with an
associated ready signal that indicates the presence of the scancode.

Lock&key mechanism: This module accepts scancodes from the keyboard interface
and determines whether or not the correct combination has been entered and
manages the entry of new combinations.

The combination lock accepts the keyboard serial data and clock as inputs along with a
main clock that synchronizes the operations of both modules. There is also a reset input
to initialize the entire FSM upon startup. The combination lock visually indicates its
current status on a seven-segment LED.

Combination
Lock

Lock & Key
Mechanism

Keyboard
Interface

RESET
Kybd Clock
Kybd Data

Figure 10: Design hierarchy for a combination lock.

© 2001 by XESS Corp. 246

Building the Combination Lock Project

Starting the Project

We will begin the design of the combination lock by creating a schematic-based project
for the XC4005XL FPGA as shown below. We will describe the lower-level keyboard
interface and the lock&key modules using the HDL Editor and State Editor, respectively,
and then tie these modules together with a top-level schematic.

© 2001 by XESS Corp. 247

Creating the Keyboard Interface Module

After the Project Manager window appears, we can start the HDL Editor and begin
designing the keyboard interface.

A PS/2 keyboard connects to an XS40 or XS95 Board through two signals:

psData: This signal carries the serial data stream as each key is pressed and released.
Each key is assigned an eight-bit scancode that is transmitted least-
significant bit to most-significant bit with a preceding start bit and a
terminating parity bit and stop bit.

psClk: The falling edge of this signal indicates when the psData signal is valid.

The keyboard interface will accept the serial data stream and will output the eight-bit
scancode in parallel along with an rdy pulse that indicates a valid scancode is available.
The rdy pulse will be generated when the psClk signal goes high and stays there. The
timing of the psData, psClk, and rdy signals is shown in Figure 11.

© 2001 by XESS Corp. 248

psData

rdy

D0 D1 D2 D3 D4 D5 D6 D7 P

psClk

Figure 11: PS/2 keyboard waveforms.

A single scancode is transmitted when a key is pressed. But two scancodes are
transmitted when the key is released: an initial scancode of 11110000 to indicate the key
release, and then the scancode for the key is sent again. The keyboard interface will be
designed such that the rdy signal pulses only after the key has been released.

The VHDL code for the keyboard interface is shown in Listing 2. The functions of the
code for the scancodeReg module are as follows:

 Lines 7–12: The module receives the psData and psClk inputs from the keyboard and
outputs the eight-bit scancode and the rdy signals that were described
above. A master clock is also provided which synchronizes the operations of
this module with the lock&key module. A reset signal initializes the module
when it first powers up.

Line 17: This line declares a 10-bit shift-register that holds the scancode value as it
arrives from the keyboard. The start bit, eight scancode bits, parity bit, and
stop bit will enter the most-significant bit of the sc_r register and shift towards
the least-significant bit. By the end of a scancode transmission the start bit
will have shifted completely out of the register and be lost while the scancode
will end up in the lower eight bits of sc_r. The stop and parity bits will be in
the uppermost two bits.

Lines 18–22: These lines define a counter that is used to determine when the psClk
signal is no longer pulsing. The timeout value (line 20) is determined by
dividing the main clock frequency (line 18) by the frequency of the psClk (line
19). If the main clock is 50 MHz and the keyboard clock is 10 KHz, then the
timeout value is 5000 which means it will take 5000 pulses of the main clock
to determine if the psClk signal is static. The subtype for a timeout counter is
defined on line 21 as a natural number that can take on any value from zero
up to the timeout value. Then the timeout counter register is declared on line
22. By defining the counter register in this way, we can change the frequency
of the main clock or the keyboard clock and the timeout counter will be
automatically resized by the synthesizer with exactly the number of bits
needed to store the timeout value.

Lines 30–40: This process parallelizes the serial keyboard data. If the reset input is
active, the scancode shift register is cleared to all zeroes. Otherwise, on
falling edges of the keyboard clock the value on the keyboard data signal is
placed into the most-significant bit of the shift register and the upper nine bits
of the register are shifted one bit position downward. By the end of a
scancode transmission the start bit will have shifted completely out of the

© 2001 by XESS Corp. 249

register and be lost while the scancode will end up in the lower eight bits of
sc_r. The stop and parity bits will be in the uppermost two bits.

Line 43: The eight lower bits of the sc_r register are output as the scancode output of
the module.

Lines 47–68: This process detects when the psClk signal has stopped pulsing and
indicates that a scancode is available. The timeout counter and scancode
ready flag are cleared when the module is reset. Then the counter is
incremented as long as the psClk is at logic 1 and the counter has not
reached its timeout value yet. The counter is reset to zero if psClk is ever
low because that indicates the keyboard clock is still pulsing so the scancode
cannot be complete. But if the counter ever reaches the value timeout-1,
then the scancode ready flag is pulsed high for a single clock cycle.

Lines 72–88: This process checks the scRdy_r flag and looks for the scancode that
matches the keyRelease scancode defined on line 26 (11110000). After
seeing the key release scancode, this process looks for the next following
scancode. Then it sets the flag that indicates the scancode is ready for
output.

Line 90: The ready flag from the previous process is output from the module.

Listing 2: VHDL code for the keyboard interface.
library IEEE; 1
use IEEE.std_logic_1164.all; 2
use IEEE.numeric_std.all; 3
 4
entity scancodeReg is 5
port(6
 clk: in std_logic; -- main clock 7
 rst: in std_logic; -- reset 8
 psClk: in std_logic; -- keyboard clock 9
 psData: in std_logic; -- keyboard data 10
 scancode: out std_logic_vector(7 downto 0); -- key scancode 11
 rdy: out std_logic -- scancode ready pulse 12
); 13
end entity; 14
 15
architecture arch of scancodeReg is 16
signal sc_r: std_logic_vector(9 downto 0); -- scancode shift register 17
constant clkFreq: natural := 50_000; -- main clock frequency (KHz) 18
constant psClkFreq: natural := 10; -- keyboard clock frequency (KHz) 19
constant timeout: natural := clkFreq / psClkFreq; -- psClk quiet timeout 20
subtype counter is natural range 0 to timeout; 21
signal cnt_r: counter; -- timeout counter 22
signal scRdy_r: std_logic; -- scan code is ready flag 23
signal rdy_r: std_logic; -- output scan code is ready flag 24
signal keyrel_r: std_logic; -- key has been released flag 25
constant keyRelease: std_logic_vector(7 downto 0) := "11110000"; 26
begin 27
 28
 -- this process places the keyboard scancode into the shift register 29

© 2001 by XESS Corp. 250

 process(psClk,rst) 30
 begin 31
 -- async. reset of scancode ready flag 32
 if rst = '1' then 33
 sc_r <= (others=>'0'); 34
 -- accept keyboard data on falling edge of keyboard clock 35
 elsif psClk'event and psClk='0' then 36
 -- key data arrives LSB first so right-shift it into MSB of register 37
 sc_r <= psData & sc_r(9 downto 1); 38
 end if; 39
 end process; 40
 41
 -- key scancode is in the lower 8-bits of the shift register 42
 scancode <= sc_r(scancode'range); -- output scancode 43
 44
 -- this process detects the end of the scancode by looking 45
 -- for the absence of keyboard clock pulses 46
 process(clk,rst) 47
 begin 48
 if rst = '1' then 49
 cnt_r <= 0; -- clear the timeout counter 50
 scRdy_r <= '0'; -- clear the scancode ready flag 51
 elsif clk'event and clk = '1' then 52
 scRdy_r <= '0'; -- by default, no key scancode is ready for output 53
 if psClk = '0' then 54
 -- reset the timeout register whenever the keyboard clock pulses low 55
 cnt_r <= 0; 56
 elsif cnt_r /= timeout then 57
 -- increment the timeout counter if the keyvoard clock is high 58
 -- and the counter hasn't reached the timeout value yet 59
 cnt_r <= cnt_r + 1; 60
 if cnt_r = timeout-1 then 61
 -- signal that a key scancode is ready when the counter is 62
 -- equal to one less than the timeout value 63
 scRdy_r <= '1'; -- rdy signal pulses for a single clock period 64
 end if; 65
 end if; 66
 end if; 67
 end process; 68
 69
 -- this process detects when the keyboard key is released and 70
 -- signals when the scancode for the released key is ready 71
 process(clk) 72
 begin 73
 if clk'event and clk = '1' then 74
 rdy_r <= '0'; -- by default, no key scancode is ready for output 75
 if scRdy_r = '1' then 76
 -- check the scancode register when a code is ready 77
 if sc_r(7 downto 0) = keyRelease then 78
 -- set flag if the keyRelease prefix is detected 79
 keyrel_r <= '1'; 80
 elsif keyrel_r = '1' then 81
 -- end up here on next scancode received after key release prefix 82

© 2001 by XESS Corp. 251

 rdy_r <= '1'; -- released key scancode is in the scancode register 83
 keyrel_r <= '0'; -- reset the key release flag 84
 end if; 85
 end if; 86
 end if; 87
 end process; 88
 89
 rdy <= rdy_r; -- signal that a key scancode is ready 90
 91
end architecture;92

Once the VHDL code from Listing 3 is entered in the HDL Editor window, save the code
in the scancodereg.vhd file.

© 2001 by XESS Corp. 252

Then encapsulate the keyboard interface into a macro using the ProjectÎCreate Macro
command.

© 2001 by XESS Corp. 253

The progress as the VHDL synthesizer processes the VHDL will be displayed in the
DPMCOMP window.

Finally, you should get an indication that the netlist for the keyboard interface macro was
successfully synthesized and placed in the library for this project.

At this point we can exit the HDL Editor window and return to the Project Manager
window.

© 2001 by XESS Corp. 254

Creating the Lock&Key Module

Now we can design the lock&key module using the FSM Editor.

We could begin our state machine design by answering several questions from the HDL
Design Wizard and getting an initial template that can be filled-in with the details. But in
this example we will start with a blank sheet.

© 2001 by XESS Corp. 255

The State Editor window that appears has several areas where we can construct the
state diagram for our FSM and define the I/O interface to it.

States,
transitions,
and actions
go here

Input, output, and signal
declarations go here

State machine
construction buttons

Editing area

© 2001 by XESS Corp. 256

To start, we will name the file that will contain the FSM. Single-click twice on the Untitled
text string at the top of the editing area and rename it as lock.

© 2001 by XESS Corp. 257

After renaming the editing area, select the FileÎSave command.

Then change the name of the state machine design file to lock.asf and click on the Save
button.

© 2001 by XESS Corp. 258

Now we can begin defining the interface to the state machine. We begin by clicking the
button that lets us enter input ports.

© 2001 by XESS Corp. 259

Now move the cursor into the top portion of the editing area. The outline of an input port
icon will be attached to the cursor.

© 2001 by XESS Corp. 260

Left-click the mouse in the upper portion of the editing area and an input port icon will
appear.

© 2001 by XESS Corp. 261

Right-click on the input port icon and select the Properties… entry in the pop-up menu that
appears.

This input will be used to bring the eight-bit scancode into the FSM. In the Port
Properties window, rename the port to sc and then click on the upper-left button of the
Range input until it is eight bits wide. Then click on the OK button.

© 2001 by XESS Corp. 262

Now the input port in the editing area appears with its new name and the upper and
lower indices for its bus width.

© 2001 by XESS Corp. 263

Repeat this process to add single-bit wide input ports for the scancode ready input (rdy),
the reset input (rst), and the main clock input (clk).

Right-click the clk input and bring up its Port Properties window. Click on the Clock
checkbox to indicate that this input is a potential clock source for the FSM. Then click on
the OK button.

© 2001 by XESS Corp. 264

Upon returning to the State Editor window, you will notice that the clk input port icon has
a clock waveform drawn within it to indicate its added capabilities.

© 2001 by XESS Corp. 265

Now we will add signals to the FSM. These signals will store values used internally by
the FSM. Click the Signal button and drag a signal icon into the upper portion of the
editing area.

© 2001 by XESS Corp. 266

Right-click on the signal icon and select the Properties… entry in the pop-up menu that
appears.

This signal will be used to store the first of the two keys in the combination for the lock.
Each key stores a scancode so it must be eight bits wide. In the Port Properties
window, rename the signal to key1 and then click on the upper-left button of the Range
input until it is eight bits wide. Then click on the OK button.

© 2001 by XESS Corp. 267

Now the signal in the editing area appears with its new name and the upper and lower
indices for its bus width.

© 2001 by XESS Corp. 268

Repeat this process to add the signals for storing the second key (key2). We also add
two more byte-wide signals that temporarily store the keys for the new combination as
they are entered by the user(newkey1 and newkey2). And there is a single-bit signal
(match) that records whether the input keys punched by the user match the keys in the
combination.

© 2001 by XESS Corp. 269

Now we will define the output ports for the FSM. Click the Output Port button and drag the
port icon into the editing area. Then right-click on it and select the Properties… command
from the pop-up menu.

The FSM will have a single, combinatorial output that drives the seven-segment LED.
Rename the output to led, set the indices to 6:0, and click on the Combinatorial radio
button. Then click on the OK button to close the window.

© 2001 by XESS Corp. 270

The definition of the FSM interface is complete now that the seven-bit wide led output
icon has been added. Now we can click on the State button and begin defining the states
for the FSM.

© 2001 by XESS Corp. 271

Drag the circular state icon into the lower area of the editing area and left-click with the
mouse to drop it.

© 2001 by XESS Corp. 272

The state icon will appear with a default label of S1. Right-click on the S1 icon and select
the Properties… menu item.

In this state, the FSM will compare the scancode entered by the user with the value
stored in key1. In the State Properties window that appears, rename the state to ckkey1.

© 2001 by XESS Corp. 273

The state icon in the editing area is now labeled with its new name.

Repeat this process to add seven more states to the FSM. The names of the states in
the FSM are:

ckkey1: Compare the scancode for the key pressed by the user against the scancode
value stored in the first key of the combination, key1.

ckkey2: Compare the scancode for the key pressed by the user against the scancode
value stored in the second key of the combination, key2.

unlocked: Open the lock if the user pressed the two keys whose scancodes match the
two keys in the combination.

inkey1: Accept a scancode and store it in newkey1.

inkey2: Accept a second scancode and store it in newkey2.

verify1: Accept a scancode and compare it to the scancode stored in newkey1.

verify2: Accept a second scancode and compare it to the scancode stored in newkey2.

apply: Replace the combination stored in key1 and key2 with the new combination in
newkey1 and newkey2.

© 2001 by XESS Corp. 274

© 2001 by XESS Corp. 275

Once the states are entered in the editing area, we can begin drawing the transitions
between the states by clicking on the Transition button.

© 2001 by XESS Corp. 276

When drawing a state transition, left-click on the state that will be exited, then left-click to
place intermediate points in the editing area, and finally left-click on the destination state
that will be entered. In the case shown below, the transition exits from state ckkey1 and
then returns to the same state.

© 2001 by XESS Corp. 277

After clicking on the destination state, the transition is drawn with visible control points
that you can click-and-drag to change the appearance of the transition edge.

© 2001 by XESS Corp. 278

Click in a blank portion of the editing area to end the editing of the transition. The final
transition will appear as a directed edge with an arrowhead indicating the direction of the
movement from state to state.

© 2001 by XESS Corp. 279

Now we have to specify the conditions under which the state transition will occur. Click
on the Condition button to begin this process.

© 2001 by XESS Corp. 280

Next, left-click the mouse on the transition edge. An editing box will appear where we
can enter the equation for the condition. In this case, the FSM remains in the ckkey1
state as long as the user doesn’t press a key on the keyboard. So this transition is taken
as long as no new scancode is available from the keyboard interface. The VHDL code
for this condition is rdy = ‘0’.

© 2001 by XESS Corp. 281

Once the VHDL code is entered, hit the return key or click the mouse outside the editing
box and the condition equation will appear next to the transition edge. You can click-
and-drag the condition equation to arrange its position.

© 2001 by XESS Corp. 282

Using the same process, we can add another transition from ckkey1 to ckkey2 that is taken
whenever a scancode is available (rdy = ‘1’).

© 2001 by XESS Corp. 283

When a scancode enters from the keyboard, the FSM has to check and see if it matches
the scancode stored in key1. To do this, we click on the Transition Action button so we can
add this checking action to the transition from ckkey1 to ckkey2.

© 2001 by XESS Corp. 284

Click on the transition and then enter the transition action in the editing box that appears.
In this case, the match flag is cleared if the entering scancode, sc, does not match the
scancode in key1. If the match flag is cleared, this indicates one or more of the keys
entered by the user did not match the keys in the combination so the lock should not be
opened.

© 2001 by XESS Corp. 285

After clicking the mouse outside the editing box, the transition action appears in a
rectangle next to the transition edge. The rectangle distinguishes the action from the
condition that activates the transition itself.

© 2001 by XESS Corp. 286

If the FSM resets the match flag to indicate the lock should not open, then we have to
initially set the match flag before the comparison to the combination begins. This action
occurs when the FSM is in the ckkey1 state. Click on the State Action button to add this
action.

© 2001 by XESS Corp. 287

Next, move the mouse so the dot on the end of the line attached to the cursor is within
the boundary of ckkey1. Then left-click the mouse.

© 2001 by XESS Corp. 288

Within the editing box that appears, enter the VHDL code to set the match flag. Also
assign the bit pattern “0100101” to the outputs that drive the LED. This will display an L
on the LED digit to indicate that the lock is locked. Click outside the editing box to
complete the addition of the state actions.

© 2001 by XESS Corp. 289

Now we can repeat the preceding steps to define the transitions and actions for the
remaining states. When the FSM is in the ckkey2 state, a 1 is displayed on the LED digit
to indicate that one key has already been entered by the user. A transition will be made
back to the ckkey1 state if the user hits a key whose scancode does not match key2 in the
combination or if the match flag is already zero (indicating a key mismatch during the
previous state). But the FSM transitions to the unlocked state if the current scancode
agrees with key2 and the match flag is still set.

Note that this FSM requires a single clock cycle duration for the scancode ready signal.
If the rdy output from the keyboard interface module stayed high for more than a single
clock cycle on each key press, this would cause a transition between multiple states of
the FSM.

© 2001 by XESS Corp. 290

In the unlocked state, the LED digit displays a U. If the user presses the backspace key
(with a scancode of 01100110), the FSM will move to the inkey1 state where they can enter
a new combination. Any other key press forces the FSM back to the ckkey1 state where
the lock is locked.

© 2001 by XESS Corp. 291

A lower-case r is displayed on the LED when the FSM is in the inkey1 state to indicate
that the combination is to be replaced by the next two key presses from the user. When
a scancode from the keyboard arrives, it is stored in newkey1 and the FSM moves into
state inkey2.

© 2001 by XESS Corp. 292

A 1 is displayed on the LED in state inkey2 to indicate that one key of the new
combination has been entered. When a second scancode from the keyboard arrives, it
is stored in newkey2 and the FSM moves into state verify1.

© 2001 by XESS Corp. 293

In the verify1 state, the LED displays 2 to show that both keys in the combination have
been entered. The user is now required to repeat the combination entered in the
previous two states. This prevents the user from erroneously entering a combination
that he can’t repeat and permanently locking the lock. If the user presses a key whose
scancode does not match the scancode in newkey1, then the FSM transitions back to the
ckkey1 state and the new combination is discarded. But if the key scancode matches the
value in newkey1, then the FSM transitions to state verify2.

© 2001 by XESS Corp. 294

In the verify2 state, the LED displays3 to show that both keys in the combination have
been entered and one has been verified. The FSM transitions back to the ckkey1 state
and the new combination is discarded if the user presses a key whose scancode does
not match the scancode in newkey2. But if the key scancode matches the value in
newkey2, then the FSM transitions to state apply.

In the apply state, a lower-case n is displayed on the LED to indicate that a new
combination has been accepted. The scancodes in newkey1 and newkey2 are transferred
to key1 and key2, respectively. Then any key press by the user will move the FSM back
to the ckkey1 state.

© 2001 by XESS Corp. 295

In addition to the normal operations of the FSM, we have to initialize its behavior upon
start-up. The Reset button is used to specify the initial state of the FSM and the
conditions upon which it is entered.

© 2001 by XESS Corp. 296

Drag the triangular reset icon into the editing area and then left-click to drop it. At this
point a line will connect the cursor to the reset icon. Move the cursor over the inkey1
state circle and click again. This denotes that the FSM will move into the inkey1 state
whenever a reset condition occurs. This makes sense because a reset should be a very
infrequent event and it should allow the user to gain control of the lock by entering a new
combination that overrides the old one.

© 2001 by XESS Corp. 297

The reset action can occur on a clock edge (synchronous) or whenever the reset
condition is satisfied (asynchronous). Right-click on the reset icon and select either
Asynchronous or Synchronous from the pop-up menu. I have picked Asynchronous in this
example, but either one will work.

© 2001 by XESS Corp. 298

To specify the reset condition, just click on the Condition button and then click on the edge
connecting the reset icon to the inkey1 state.

© 2001 by XESS Corp. 299

Then type the VHDL code into the editing box that directs the FSM into the inkey1 state
whenever the reset input is at a logic 1 level.

© 2001 by XESS Corp. 300

Now we can set some global options that affect the entire FSM. Right-click in an empty
section of the editing area and select Properties… from the pop-up menu.

The Machine Properties window for the FSM will appear. In the General tab, select the
clk signal from the drop-down list attached to the Clock field. This directs the FSM to
change states on the rising edge of the clk input.

Next, click on the Encoded radio button so we can specify how the states are stored in the
circuitry of the FPGA. Select One-Hot from the drop-down list. One-hot encoding uses a

© 2001 by XESS Corp. 301

flip-flop for each state with the flip-flop for the active state being set while all the others
are cleared. Eight flip-flops are needed by this FSM which is no problem since the
XC4005XL FPGA has 384 of them in the CLB array. For a CPLD, which typically has
fewer flip-flops, we might select binary encoding which uses three flip-flops to store the
binary code of the active state among the eight total states.

Next, click on the Defaults tab so we can stipulate the actions of the FSM when illegal
states occur. If an illegal state occurs we would like the lock to stay closed and not
spring open, so it should transition into the ckkey1 state. Click on the Trap state radio
button in the Illegal states section and then select the ckkey1 state from the drop-down list.

We have specified all the possible conditions that control transitions between states so
we can keep the Don’t care option in the Unsatisfied conditions section. Then click on OK to
close the Machine Properties window.

© 2001 by XESS Corp. 302

Upon returning to the State Editor window, note that the ckkey1 state is now drawn with
a cross-hatched pattern to indicate it is the designated trap state. Click on the Save
button to store the FSM description.

© 2001 by XESS Corp. 303

The complete FSM for the lock&key module is shown below.

© 2001 by XESS Corp. 304

Now that the FSM description is complete, we can generate a VHDL description of it.
(This is not necessary in order to use the FSM in our project, but is done for illustrative
purposes.) Select the SynthesisÎConfiguration… menu item.

In the HDL Configuration window that appears, click on the VHDL radio-button to select
it as the language used for an HDL description of the FSM. Then click on the OK button.

© 2001 by XESS Corp. 305

Next, activate the SynthesisÎHDL Code Generation command.

Indicate that you wish to see the VHDL code that is generated for the state machine we
built.

Within a few seconds, the code in Listing 3 will appear in an HDL Editor window. We
can correlate pieces of the VHDL code with objects we have placed in the editing area of
the State Editor window:

Lines 16–20: The input and output ports placed at the top of the FSM editing area are
declared in the entity section.

Lines 26–30: The signals placed at the top of the FSM editing area are declared in the
architecture section.

Lines 33–45: Here is the state encoding and the signal, Sreg0, that holds the state.

© 2001 by XESS Corp. 306

Line 55: The FSM changes states on the rising edge of the clk signal as we specified in
the Machine Properties window.

Lines 56–57: Upon a reset, the FSM moves into the inkey1 state.

Lines 60–122: The transitions from the current state to the next state and any actions
associated with these transitions are described here.

Lines 123–124: Here is the specification of ckkey1 as the trap state that is entered if the
FSM ever gets into an illegal state.

Lines 132–139: The seven-segment LED activation pattern associated with each state
is listed here.

The VHDL description of the FSM can be useful for two reasons:

1. The editing area of the State Editor window gets very cluttered for complicated
FSMs. You can use the State Editor to draw an initial, simplified version of your
FSM and then add the rest of your description directly to the VHDL file. You
cannot automatically back-annotate the additions to the VHDL file back into the
State Editor, so the VHDL file must be used as the master design file for the FSM
after you do this.

2. If you are unsure how to write FSM descriptions using VHDL, you can create
simple FSMs in the State Editor and export them as VHDL to view the basic
language constructs that are used.

Listing 3: Generated VHDL code for the lock & key module.
-- File: C:\PRAG21I\DSGN4_1\lock.vhd 1
-- created: 04/13/01 12:32:29 2
-- from: 'C:\PRAG21I\DSGN4_1\lock.asf' 3
-- by fsm2hdl - version: 2.0.1.53 4
-- 5
library IEEE; 6
use IEEE.std_logic_1164.all; 7
 8
use IEEE.std_logic_arith.all; 9
use IEEE.std_logic_unsigned.all; 10
 11
library SYNOPSYS; 12
use SYNOPSYS.attributes.all; 13
 14
entity lock is 15
 port (clk: in STD_LOGIC; 16
 rdy: in STD_LOGIC; 17
 rst: in STD_LOGIC; 18
 sc: in STD_LOGIC_VECTOR (7 downto 0); 19
 led: out STD_LOGIC_VECTOR (6 downto 0)); 20
end; 21
 22
architecture lock_arch of lock is 23
 24
--diagram signal declarations 25

© 2001 by XESS Corp. 307

signal key1: STD_LOGIC_VECTOR (7 downto 0); 26
signal key2: STD_LOGIC_VECTOR (7 downto 0); 27
signal match: STD_LOGIC; 28
signal newkey1: STD_LOGIC_VECTOR (7 downto 0); 29
signal newkey2: STD_LOGIC_VECTOR (7 downto 0); 30
 31
-- ONE HOT ENCODED state machine: Sreg0 32
type Sreg0_type is (apply, ckkey1, ckkey2, inkey1, inkey2, unlocked, ve33
attribute enum_encoding of Sreg0_type: type is 34
 "00000001 " & -- apply 35
 "00000010 " & -- ckkey1 36
 "00000100 " & -- ckkey2 37
 "00001000 " & -- inkey1 38
 "00010000 " & -- inkey2 39
 "00100000 " & -- unlocked 40
 "01000000 " & -- verify1 41
 "10000000"; -- verify2 42
 43
signal Sreg0: Sreg0_type; 44
 45
begin 46
--concurrent signal assignments 47
 48
 49
Sreg0_machine: process (clk) 50
 51
begin 52
 53
if clk'event and clk = '1' then 54
 if rst='1' then 55
 Sreg0 <= inkey1; 56
 else 57
 case Sreg0 is 58
 when apply => 59
 key1<=newkey1; 60
 key2<=newkey2; 61
 if rdy='1' then 62
 Sreg0 <= ckkey1; 63
 elsif rdy='0' then 64
 Sreg0 <= apply; 65
 end if; 66
 when ckkey1 => 67
 match<='1'; 68
 if rdy='1' then 69
 Sreg0 <= ckkey2; 70
 if sc/=key1 then match<='0'; 71
 end if; 72
 elsif rdy='0' then 73
 Sreg0 <= ckkey1; 74
 end if; 75
 when ckkey2 => 76
 if rdy='1' and sc=key2 then 77
 Sreg0 <= unlocked; 78

© 2001 by XESS Corp. 308

 elsif rdy='1' and sc/=key2 then 79
 Sreg0 <= ckkey1; 80
 elsif rdy='0' then 81
 Sreg0 <= ckkey2; 82
 end if; 83
 when inkey1 => 84
 if rdy='1' then 85
 Sreg0 <= inkey2; 86
 newkey1<=sc; 87
 elsif rdy='0' then 88
 Sreg0 <= inkey1; 89
 end if; 90
 when inkey2 => 91
 if rdy='1' then 92
 Sreg0 <= verify1; 93
 newkey2<=sc; 94
 elsif rdy='0' then 95
 Sreg0 <= inkey2; 96
 end if; 97
 when unlocked => 98
 if rdy='1' and sc/="01100110" then 99
 Sreg0 <= ckkey1; 100
 elsif rdy='1' and sc="01100110" then 101
 Sreg0 <= inkey1; 102
 elsif rdy='0' then 103
 Sreg0 <= unlocked; 104
 end if; 105
 when verify1 => 106
 if rdy='1' and sc=newkey1 then 107
 Sreg0 <= verify2; 108
 elsif rdy='1' and sc/=newkey1 then 109
 Sreg0 <= ckkey1; 110
 elsif rdy='0' then 111
 Sreg0 <= verify1; 112
 end if; 113
 when verify2 => 114
 if rdy='0' then 115
 Sreg0 <= verify2; 116
 elsif rdy='1' and sc/=newkey2 then 117
 Sreg0 <= ckkey1; 118
 elsif rdy='1' and sc=newkey2 then 119
 Sreg0 <= apply; 120
 end if; 121
 when others => -- trap state 122
 Sreg0 <= ckkey1; 123
 end case; 124
 end if; 125
end if; 126
end process; 127
 128
-- signal assignment statements for combinatorial outputs 129
led_assignment: 130
led <= "0001110" when (Sreg0 = apply) else 131

© 2001 by XESS Corp. 309

 "0100101" when (Sreg0 = ckkey1) else 132
 "0010010" when (Sreg0 = ckkey2) else 133
 "0100100" when (Sreg0 = inkey2) else 134
 "0110111" when (Sreg0 = unlocked) else 135
 "1011101" when (Sreg0 = verify1) else 136
 "1011011" when (Sreg0 = verify2) else 137
 "0001100"; 138
 139
end lock_arch;140

Now it is time to make the FSM available for use as a building block of the combination
lock. Select the ProjectÎCreate Macro… command to initiate this process.

© 2001 by XESS Corp. 310

The progress of the macro creation is displayed in the DPMCOMP window.

Upon successful completion of the macro generation process, click OK in the
confirmation window that appears.

© 2001 by XESS Corp. 311

Finally, close the State Editor window.

© 2001 by XESS Corp. 312

Creating the Top-Level Module

The top-level of the combination lock will be built by connecting the keyboard interface
and the lock&key modules together in a schematic. Click on the Schematic Editor button to
begin this phase.

Within the Schematic Editor window, bring up the list of library symbols and you will
see the keyboard interface macro (SCANCODEREG) and the lock& key macro (LOCK) at
the top of the list. Select each macro and drop it into the drawing area of the Schematic
Editor window.

© 2001 by XESS Corp. 313

Connect the macros to I/O buffers and pads as shown below. Note the following:

1. The main clock (CLK) will enter the XC4000 FPGA on a dedicated clock pin
(because that is the way it is connected on the XS40 Board) so the input pad
(IPAD) can connect directly to a general clock buffer (BUFG). Using the BUFG
ensures that the clock signal reaches all the flip-flops in the design with minimal
skew so they all change state at the same time.

2. The clock from the PS/2 keyboard (PSCLK) enters on a generic I/O pin so it must
go through an input buffer (IBUF) before going through a BUFG.

3. The keyboard serial data signal (PSDATA) and the reset signal (RST) are standard,
non-clock inputs so they just connect to IBUFs.

4. The seven LED outputs of the LOCK macro connect to a set of eight output
buffers (OBUF8). The eight buffers connect to a set of eight output pads (OPAD8).
The bus connecting the OBUF8 to the OPAD8 is named S[6:0] so it is only has a
width of seven. This disconnects the eighth buffer and output pad so only the
lower seven buffers and pads are used as actual outputs.

© 2001 by XESS Corp. 314

Once the macros are connected to each other and the I/O, select the OptionsÎCreate
Netlist menu item.

After the netlist is created, export the netlist to the other Foundation tools using the
OptionsÎExport Netlist… command.

© 2001 by XESS Corp. 315

Accept the default name shown for the file in the Export Netlist window and click on the
Open button.

Now that the top-level netlist has been generated and exported, close the Schematic
Editor window.

Entering the Pin Assignments for the XS40 Board

Open the dsgn4_1.ucf constraints file and enter the following pin assignments that map the
I/O signals of the combination lock to the appropriate pins of the XS40 Board.

Implementing the Design for the XC4005XL FPGA

Now run the implementation tools.

© 2001 by XESS Corp. 316

© 2001 by XESS Corp. 317

Go through the following sequence of windows to specify the dsgn4_1.ucf file as the
constraints file for this design.

© 2001 by XESS Corp. 318

Then click on the Run button to implement the netlist in the XC4005XL FPGA.

The implementation tools should run through all five phases without any problems.

© 2001 by XESS Corp. 319

Downloading the Bitstream to the XS40 Board

After the implementation tools finish, drag-and-drop the dsgn4_1.bit file into the GXSLOAD
window to download the bitstream into the XS40-005XL Board.

Testing the Combination Lock

After downloading the bitstream to the XS40 Board, attach a PS/2 keyboard to the six-
pin mini-DIN socket at the bottom of the board.

If the LED on the XS40 Board does not display a lower-case R upon startup, then you
may have to manually reset the combination lock. The reset input for the lock (pin 44 on
the FPGA) is connected to data bit D0 of the parallel port. Start the GXSPORT utility and
apply a logic 1 to the reset input.

Then apply a logic 0 to release the reset.

© 2001 by XESS Corp. 320

Now the combination lock should be ready to respond to key presses. A sequence of
key presses and the results are shown below:

Press
key…

LED
displays… New State… This means…

None

inkey1

The combination lock is ready to begin
replacing its current combination with a
new combination entered from the
keyboard.

a

inkey2 The scancode for ‘a’ has been stored in
newkey1.

b

verify1 The scancode for ‘b’ has been stored in
newkey2.

a

verify2 The first key of the new combination has
been verified.

b

apply

The second key has been verified and the
new combination in newkey1 and
newkey2 has been moved into key1 and
key2, respectively.

return

ckkey1 The lock is locked and is waiting for the
combination to be entered.

a

ckkey2 The first key of the combination has been
entered.

c

ckkey1
The key sequence did not match the
combination so the lock stays locked and
waits for the combination to be entered.

a

ckkey2 The first key of the combination has been
entered.

b

unlocked The key sequence matched the
combination so the lock opened.

backspace

inkey1

The backspace key indicates the user
wants to replace the current combination
with a new combination. Any other key
would have returned the state machine to
the ckkey1 state and locked the lock.

© 2001 by XESS Corp. 321

Retargeting the Project to the XS95 Board

Now we will retarget the combination lock to an XC95108 CPLD on an XS95 Board.

Copying the XS40-Based Combination Lock Project

Create a copy of the previous project using the FileÎCopy Project… command.

© 2001 by XESS Corp. 322

Name the new copy of the project dsgn4_1a.

Next, use the FileÎOpen Project… command to bring up the Open Project window.
Highlight dsgn4_1a in the list of projects and click on the Open button.

Selecting a New Target Device

Once the new project is opened, use the FileÎProject Type… command to change the
target device for the project. Select an XC95108 CPLD with a –20 speed grade as the
target device.

© 2001 by XESS Corp. 323

Click the Yes button when asked to verify the change in the target device.

Updating the Modules to Account for the New Target Device

Now double-click the dsgn4_11.sch entry in the Hierarchy pane of the Project Manager
window. We need to re-synthesize the macro netlists so they utilize the features of the
XC9500 CPLD instead of the XC4000 FPGA. To start this process, first select the
HierarchyÎHierarchy Push command in the Schematic Editor window.

© 2001 by XESS Corp. 324

Then double-click on the SCANCODEREG keyboard interface macro. This causes the
VHDL source code for the macro to appear in an HDL Editor window.

Updating the Keyboard Interface Module

In the HDL Editor window, activate the ProjectÎUpdate Macro command.

© 2001 by XESS Corp. 325

The netlist for the keyboard interface macro will be re-synthesized for the XC95108
CPLD.

Click the OK button on the acknowledgement of the successful macro update, then close
the HDL Editor window.

© 2001 by XESS Corp. 326

Updating the Lock&Key Module

Once you return to the Schematic Editor window, double-click on the lock&key macro
(LOCK) to bring up the state diagram in the State Editor window.

Once again, use the ProjectÎUpdate Macro command to re-synthesize the FSM for the
XC95108 CPLD.

© 2001 by XESS Corp. 327

After the lock&key FSM netlist is re-synthesized, close the State Editor window and
return to the Schematic Editor window.

Updating the Top-Level Module

Change the top-level circuit slightly by removing the BUFG from the PSCLK net since that
component cannot be connected to a general-purpose I/O in an XC9500 CPLD.

Now execute the OptionsÎCreate Netlist command…

And then activate the OptionsÎExport Netlist… command. Close the Schematic Editor
window after the top-level netlist is exported,.

© 2001 by XESS Corp. 328

Entering the Pin Assignments for the XS95 Board

Place the following pin assignments for the XS95-108 Board into the dsgn4_1a.ucf
constraints file.

© 2001 by XESS Corp. 329

Implementing the Design for the XC95108 CPLD

Then use the implementation tools to map the netlist for the combination lock to the
XC95108 CPLD.

© 2001 by XESS Corp. 330

Creating the SVF Bitstream for the XC95108 CPLD

Once the implementation tools complete their tasks, click on the Programming button in the
Flow pane of the Project Manager window. Select the OutputÎCreate SVF File… in the
JTAG Programmer window that appears.

Accept the default SVF option that transitions the XC9500 JTAG downloading circuitry
through Test-Logic-Reset before entering the Run-Test/Idle state.

© 2001 by XESS Corp. 331

In the Create a New SVF File window, move up the directory tree to the top-level of the
dsgn4_1a project and specify the filename for the XC95108 bitstream.

Generate the bitstream using the OperationsÎProgram command.

© 2001 by XESS Corp. 332

In the Options window, check the option that erases the Flash memory in the XC95108
CPLD before programming it with the new bitstream.

The SVF bitstream should be generated without incident.

© 2001 by XESS Corp. 333

Once the SVF file is generated, exit from the JTAG Programmer window.

Discard any changes you made to the programming setup for this project. This will not
affect the bitstream that you stored in the SVF file.

© 2001 by XESS Corp. 334

Downloading the Bitstream to the XS95 Board

After the programming tools finish, drag-and-drop the dsgn4_1a.svf file into the GXSLOAD
window to download the bitstream into the XS95-108 Board.

Testing the Combination Lock

After downloading the bitstream to the XS95 Board, attach a PS/2 keyboard to the six-
pin mini-DIN socket at the bottom of the board.

If the LED on the XS95 Board does not display a lower-case R, then you may have to
manually reset the combination lock. The reset input for the lock (pin 46 on the CPLD) is
connected to data bit D0 of the parallel port. Start the GXSPORT utility and apply a logic
1 to the reset input.

Then apply a logic 0 to release the reset.

© 2001 by XESS Corp. 335

Now the combination lock should be ready to respond to key presses. A sequence of
key presses and the results are shown below:

Press
key…

LED
displays… New State… This means…

None

inkey1

The combination lock is ready to begin
replacing its current combination with a
new combination entered from the
keyboard.

5

inkey2 The scancode for ‘a’ has been stored in
newkey1.

6

verify1 The scancode for ‘b’ has been stored in
newkey2.

5

verify2 The first key of the new combination has
been verified.

6

apply

The second key has been verified and the
new combination in newkey1 and
newkey2 has been moved into key1 and
key2, respectively.

return

ckkey1 The lock is locked and is waiting for the
combination to be entered.

4

ckkey2 The first key of the combination has been
entered.

6

ckkey1
The key sequence did not match the
combination so the lock stays locked and
waits for the combination to be entered.

5

ckkey2 The first key of the combination has been
entered.

6

unlocked The key sequence matched the
combination so the lock opened.

backspace

inkey1

The backspace key indicates the user
wants to replace the current combination
with a new combination. Any other key
would have returned the state machine to
the ckkey1 state and locked the lock.

	State Machine Design
	In this chapter you will learn how to:
	Finite State Machines
	Building the Combination Lock Project
	Starting the Project
	Creating the Keyboard Interface Module
	Creating the Lock&Key Module
	Creating the Top-Level Module
	Entering the Pin Assignments for the XS40 Board
	Implementing the Design for the XC4005XL FPGA
	Downloading the Bitstream to the XS40 Board
	Testing the Combination Lock

	Retargeting the Project to the XS95 Board
	Copying the XS40-Based Combination Lock Project
	Selecting a New Target Device
	Updating the Modules to Account for the New Target Device
	Updating the Keyboard Interface Module
	Updating the Lock&Key Module
	Updating the Top-Level Module

	Entering the Pin Assignments for the XS95 Board
	Implementing the Design for the XC95108 CPLD
	Creating the SVF Bitstream for the XC95108 CPLD
	Downloading the Bitstream to the XS95 Board
	Testing the Combination Lock

