Pragmatic Logic Design

With XILINX Foundation 2.1i

S?HTHEEIE

» B '
SIMULATION

b » » B B I

IHPI.EHEHTI:ITII::IHR YERIFICATION

> B

PROGRAMMING

43

David E. Vanden Bout
XESS Corp

© 2001 by X Engineering Software Systems Corp., Apex, North Carolina 27502

All rights reserved. No part of this text may be reproduced, in any form or by any means, without
permission in writing from the publisher.

The author and publisher of this text have used their best efforts in preparing this text. These
efforts include the development, research, and testing of the theories and programs to determine
their effectiveness. The author and publisher make no warranty of any kind, expressed or
implied, with regard to these programs or the documentation contained in this text. The author
and publisher shall not be liable in any event for incidental or consequential damages in
connection with, or arising out of, the furnishing, performance, or use of these programs.

XESS, XS40, and XS95 are trademarks of X Engineering Software Systems Corp. XILINX,
Foundation, XC4000, and XC9500 are trademarks of XILINX Corporation. Other product and
company names mentioned are trademarks or trade names of their respective companies.

The software described in this text is furnished under a license agreement. The software may be
used or copied under terms of the license agreement.

Hierarchical Design

In this chapter you will learn how to:
= Create VHDL designs composed of a hierarchy of VHDL modules.

= Create hierarchical VHDL designs which also include schematics in the hierarchy.

Create hierarchical schematics that include VHDL modules.

Use LogiBlox to create modules for incorporation into hierarchical designs.

Most complex systems possess a hierarchical structure. Hierarchy arises in man-made
systems because people are good at decomposing problems into simpler problems
whose solutions can be combined into a complete solution. In an eight-bit adder, for
example, you might decompose the operation into a set of one-bit additions. Then you
could design a logic circuit that adds binary bits using AND, OR, and NOT gates.

Finally, you could combine the one-bit adder modules into a single eight-bit adder. But it
doesn’t have to stop there because you could use the eight-bit adder to build a 32-bit
adder as part of a microprocessor chip that resides on a circuit board in a computer
attached to a network...

Some of the advantages of building circuits from a hierarchy of modules are:

Design re-use: A module can be re-used across multiple designs so you do less work
overall.

Information hiding: Encapsulating a circuit into a module lets you ignore its internal
operational details while allowing you to concentrate on the interaction of the module’s
inputs and outputs with the rest of the system.

Replication: Building a large circuit by duplicating a small group of modules is much
easier than building a large circuit by stitching together a large number of primitive gates.

In this chapter we will see how the Foundation software supports hierarchical design
techniques. The example design | will use consists of a 28-bit binary counter w r
upper bits are displayed as a hexadecimal digit on a seven-segment LED (see I:@iﬁ
When driven by a 50 MHz clock, the displayed digit will change every 2%* / 50,000,000 =

0.34 seconds. Foundation lets you describe the root of the design using an HDL (either
VHDL or Verilog) or as a schematic, and you have this same flexibility with each module
in the lower levels of the hierarchy. So you can change your design style to match the
type of circuit you are building. We will build the design in three different ways:

1. The root and all lower level-modules are described using VHDL;

2. The root is described using VHDL, but the lower-level modules are designed
using both VHLD and schematics.

3. The root is designed as a schematic that contains VHDL and schematic-based
lower-level modules.

counter display
Jmm (cntrdisp)

/A

28-bit counter LED Decoder
RESET (cntr) (leddcd)

Figure 7: Design hierarchy for a counter display.

Hierarchical VHDL-Based Design

The first design (dsgn3_1) is started as an HDL-based project.

Hew Project
M ame: [dson3_1 | —
Directary: |E:"\F'FI.-’-'-.I3 2
Tope: |F2.'|i j m
il " Schematic @ HOL

WN -

Creating the VHDL Files for the Lower-Level Modules

We start by using the HDL Editor to design the lower-level modules for the 28-bit counter
and the seven-segment LED decoder.

‘» dzgn3d_1 - design not implemented - Project Manager

File Document Yiew Project Synthesziz Implementation Tools Help

Dl 6| olnjsiv na|n| @y

File=s * “ersions Flowy . Cortentz Reports
B3 dsgn3_ 1 =
= dsgn3_1 dsgn3_1 =

h SIGM ENTRY 7

HOL Editor
F EN w5y
SRS
S'rN'rHes:s ¥ SIMULATION
A 4
Al u 70
S » G B
IMPLEMENTATION ¥ YERIFICATION
— I
Fecm o Start Xiling Foundation F2.1i - Messages - Thu Mar 01 20:53:03 2001 =
Pecm - Dpening project: ciprag21idsan3_1 --—--—--—-- -
Fecm o Creating project; ciprag21itdsgna_1 |
Conzaole HDL Errors © HDL Warnings © HOL Meszages 14 ﬂ
Ready

The VHDL code for the LED decoder is shown in Im The code looks very similar
to what we saw in Chapter 1 with the following diff

Line 3: A new package from the IEEE library is used. The numeric std package

gives us access to some new VHDL types such as SIGNED and UNSIGNED
bit vectors and the arithmetic operations that act on them.

Lines 5-12: A new package (1eddcd pckg) is defined that contains a single
component declaration for the LED decoder. The component declaration tells

other VHDL modules about the types of inputs and outputs used to interface
to the LED decoder.

Line 12: The four-bit 4 input to the LED decoder has been declared as an UNSIGNED bit
vector rather than as a STD_LOGIC VECTOR. This will simplify the interface
with the 28-bit counter module which also outputs UNSIGNED values.

Listing 1: VHDL code for the seven-segment LED decoder module.

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.numeric_std.all;

OCONOOPRWN -~

package leddcd pckg is

component leddcd
port (

d: in UNSIGNED (3 downto 0);

s: out STD LOGIC_VECTOR

)
end component;

end leddcd pckg;
library IEEE;
use IEEE.std logic 1164.all;

use IEEE.numeric_std.all;

entity leddcd is
port (

d: in UNSIGNED (3 downto 0);

s: out STD LOGIC_VECTOR

) i
end leddcd;

architecture leddcd arch of
begin
with d select
S <= "1110111" when
"0010010" when
"1011101" when
"1011011" when
"0111010" when
"1101011" when
"1101111" when
"1010010" when
"1111111" when
"1111011" when
"1111110" when
"0101111" when
"1100101" when
"0011111" when
"1101101" when
"1101100" when
end leddcd arch;

leddcd 1is

"0000", -
"0001", -
"0010", -
"0011", -
"0100", -
"0101", -
"0110", -
"0111", -
lllOOOU’ -
"1001", -
"1010", -
"i1011", -
"1100", -
"1101", -
"1110", -
others; -

(6 downto 0)

(6 downto 0)

HEHQOOD P WOWIo U WN RO

In the HDL Editor window, select the File=»Save As menu item and save the LED decoder
VHDL into the leddcd.vhd file in the dsgn3_1 project directory.

Sarve As K |
Save jr: I ‘= dsan3_1 j El
_Tdsgnd_T:
_1lib
1 wproj

File name: |Ieddcd.vhd Save Rl

Save a tupe: I"-.-"HDL Files [* vhd;* whi:*.vwhio) j Cancel

The VHDL code for the counter is shown in Ijmme important parts of the code
are as follows:

Line 3: Once again we access the numeric_std package. We will need the arithmetic
addition operator to increment the counter value.

Lines 5-12: Another new package (cntr_ pckg) is defined that contains a single
component declaration for the counter.

Lines 25-34: The counter interface consists of an input to reset the counter to zero, a
clock input that increments the counter value on each rising edge, and an
UNSIGNED bit vector that outputs the current value of the counter. Note that
the number of counter output bits is determied by the generic parameter
LENGTH declared on lines 26-28. The cntr module is customized when it is
instantiated for a particular application by specifying the value of LENGTH.

Line 37: An internal UNSIGNED bit vector is declared to hold the value of the counter.

Lines 39—-49: The actual counting operation is specified in the COUNT process. The
process is triggered by changes in the c1k input (line 39) and the counter
changes value on the rising edge of c1k (line 42). If the rst input is high on
a rising clock edge, then the counter value is cleared to zero (lines 43—44).
(The TO_UNSIGNED function from the numeric std package converts an
integer into an UNSIGNED bit vector.) If the rst input is not high, then the
value in the counter register is incremented by one (lines 45—-46).

Line 51: The value in the counter register is placed on the outputs.

Listing 2: VHDL code for the counter module.

library IEEE;
use IEEE.std logic 1164.all;

use IEEE.numeric_std.all;
package cntr pckg is

component cntr

generic (
LENGTH: natural -- number of bits in counter
)
port (
rst: in STD_ LOGIC; -- synchronous reset
clk: in STD LOGIC; -- counter clock
cnt: out UNSIGNED (LENGTH-1 downto 0) -- counter output

) i

end component;
end cntr pckg;
library IEEE;
use IEEE.std logic 1164.all;

use IEEE.numeric std.all;

entity cntr is

generic (
LENGTH: natural -- number of bits in counter
)
port (
rst: in STD_ LOGIC; -- synchronous reset
clk: in STD_ LOGIC; -- counter clock
cnt: out UNSIGNED (LENGTH-1 downto 0) -- counter output
)
end cntr;

architecture cntr arch of cntr is
signal cnt r: UNSIGNED (LENGTH-1 downto 0); -- counter register
begin
COUNT: process (clk)
begin
-- change counter only on rising clock edges
if (clk'event and clk='1l') then

if rst='1' then -- synchronous reset to 0
cnt r <= TO _UNSIGNED (0, LENGTH) ;

else -- otherwise, increment counter
cnt_r <= cnt_r + 1;

end if;

end if;
end process COUNT;

cnt <= cnt_r; -- output register contents
end cntr arch;

In the HDL Editor window, select the File=»Save As menu item and save the counter
VHDL into the cntr.vhd file in the dsgn3_1 project directory.

Save Az E |
Savejn:l‘a dzgnd_1 j ﬂl
_Jdsan3 1;

" 1lib
= WProj
= ledded.vhd
File marme: Iu:ntr.\-'hl:l Save ! I
Save asz type: IUHDL Files [*.vhd:* whi*. vho] j Cancel |

Adding a New Library to the Project

Now we have the lower-level modules defined, but we still have to add them to the
project so they can be accessed by the root module. To do this, we will create a new

library and then add the modules to the library. Select the Synthesis=»New Library... menu
item to start this step.

‘» dzgn3d_1 - design not implemented - Project Manager

File Document Miew Project | Synthesis Implementation Tools Help
Dl[ﬁ,l E]l ﬂlnl .l. Add Source File[z]...

Filez \\ EE—— \\ i Analyze &l Sources
Eorze Analyss of &l Sources
Sunthesize...

T

[

Optiohz. ..

DESIGMN ENTRY 7

F L — \:"
by e p =g

SYNTHESIS ?,, SIMULATION

» b BY

YERIFICATION

Fecm : EXIT: Library Manager E

Fecm o Execute hde -p 2208 |

Fecm o Update: ChiPrag21 itmpldsan3_1iwentrvhd (0, 0) =
Consale I..-" HOL Errors I..-" HOL wvarnings I..-" HOL Messages I.-"' |!4| | _>|

Specify the library name as xslib in the New Library window and click on the OK button.

Mew Library |
Library Marme: oK |
I:-:inH LCancel |

Help |

Now you will see the xslib library has been added to the left-hand Hierarchy pane of the
Project Manager window. There isn’t anything in this new library yet, but we will fix that
by right-clicking on the xslib icon and selecting the Add Source Files to “xslib”... menu item.

‘» dzgn3d_1 - design not implemented - Project Manager

File Document Yiew Project Synthesziz Implementation Tools Help

] [=1 1 Y SO A R A N ST S

Files \ Wersions \ ‘ Flany \ Contents \ Reports \

B3 dsgn3_ 1 =
B m Aomn? A o
..... = dsgn? Edit
Analyze
Force Analyziz ﬁi—
Sunthesize... [RY ¥
Add Source Files to 'Rz k
Mew Library... o ".*:_}—
Wiew library Beport . I’ b
"fj SIMULRTION
Remove [rel r
Fecm : EXIT: Library Manager E
Fecm o Execute hde -p 2208 |
Fecm o Update: ChiPrag21 itmpldsan3_1iwentrvhd (0, 0) =
Consale I..-" HOL Errors I..-" HOL wvarnings I..-" HOL Messages I.-"' || 4 | _>|

|Add Source Files

Highlight the cntr.vhd and leddcd.vhd files in the Add Document window that appears and
then click on the Open button.

hadbocument e
Lok in: |ﬁ dzgnd_1 j ﬁl

File marme: |"Ieddcd.vhd" "t vhd" Open

Files of type: [HDL [*vHD:* VER* VE* V) -] Cancel |

Help

The modules for the LED decoder and counter will be added to the xslib library. You can
click on the + icon to the left of the xslib icon to view what modules are included in the
library.

‘» dzgn3d_1 - design not implemented - Project Manager

File Document Yiew Project Synthesziz Implementation Tools Help

Dl 6| olnjsiv na|n| @y

File=s * “ersions Flowy . Cortentz Reports
B3 dsgn3_ 1 =
B 5 xslib dsgn3_1 =
&l ledded vhd
E- &l cntr.vhd
= dsgn3_1 ol @ ili—
ESIGN ENTRY g
30 =,
. iy » iRy
SYNTHESIS ¥ SIMULRTION
A 4
U L STh-)
=0 B e i L};.«J
IMPLEMENTATION ¥ YERIFICATION
~ |’
Dpm Anahzing ciprag21idsgna_1wntrvhd E
Dpm : Done
Fecm : Synopsys server initialization =
Conzaole HDL Errors © HDL Warnings © HOL Meszages Ll_l ﬂ_

Ready

Creating the Root Module

Now we have to build the root module that combines the counter and LED decoder

modules to create the complete circuit. The VHDL code for the cntdisp module has the

following features:

Line 1: XSLIB is now included in the list of libraries used for this design.

Lines 4-5: Each lower-level module in the library declared its own package, so we have
to explicitly declare that we are going to use all the components in each
package.

Line 16: A constant for the number of bits in the counter is declared and set to 28.

Line 17: An internal 28-bit bit vector is declared. The upper four bits of this vector will
be used to transfer the upper counter bits to the LED decoder module.

Lines 19-20: The counter module is instantiated. The generic length parameter is set to
28 and the reset and clock inputs of the counter module are attached to the

reset and clock inputs to the root module. The counter outputs are attached
to the internal bit vector in the root module.

Line 21: The LED decoder module is instantiated. The upper four bits of the counter
value are passed into the LED decoder and the outputs of the decoder are
connected to the root-level outputs.

B cntdizp_vhd - HDL Editor - O] =|
File Edit Seach “iew Synthesiz Project Tool: Help
D|S[E| & &= o] o Blglilelal 2]

1 library IEEE,XSLIB;

2 use IEEE.std logic 1164.all;
3 use IEEE.numeric_std.all;

4 use XSLIB.cntr_pckg.all;

5 use XSLIB.leddcd pckg.all;
]

7

8

9

entity cntdisp is

port
rst: in STD _LOGIC; -- synchronous reset
18 clk: in STD_LOGIC; -- counter clock
11 5z out STD_LOGIC _UECTOR(G downto B8) —- outputs to LED segments
12 };
13 end cntdisp;
14

15 architecture cntdisp_arch of cntdisp is
16 constant length: natural = 28;
17 signal cnt: UNSIGHED{length-1 downto 8);

18 begin
12 uB: cntr generic map{LEHNGTH=>1length)
28 port map{rst=>rst, clk=>clk, cnt=>:cnt});

21 ul: leddcd port map{d=>cnt{length-1 downto length-4}), s=>s5};
22 end cntdisp_arch;

0 error[s] 0 warning([s] found

[+ |
Fieady | Ln1.Col20 [WHDL | | |

A =

The root module is stored in the cntdisp.vhd file and then that file is added to the project
hierarchy. With all the source files in place, we can check for any VHDL syntax errors by
selecting the Synthesis=»Force Analysis of All Sources menu item. In this case there are no
errors (as indicated by the green checkmarks by each source file name in the Project
Hierarchy pane.) If errors were found, you could double-click the marked files to open

them with the HDL Editor and make the necessary fixes.

‘» dzgn3d_1 - design not implemented - Project Manager

File Document Miew Project | Synthesis Implementation Tools Help

[|[ﬁ'| EI ﬂl Ml] |l Add Saource Filg(z)...

IMPLEMENTATION ¥

Filos \\ pm—r— \\ i Apalyze All Sources
B 1 dsgn3_1 Force Analysis of All Sources
B = | £
& EMcntdisp.vhd Synthesize...
El EJ xslib e Librany...
- @ Eledded vhd Oct
@ Sfcntrvhd ik
- 3 dsgn3_1 DESIGN ENTRY g
A 4
I ™ =
SYNTHESIS ?,, SIMULATION
v

o H e @

YERIFICATION

[

Fcm : Synopsys server initialization
Fsm 0 erraris) 0 warningis) found
Fecm o Execute: hde.exe -p 2208 -i fentdisp cipran21idsan3_1entdispvhd

Consale I..-" HOL Errors I..-" HOL wvarnings I..-" HOL Messages I.-"' || 4 |

[Force Analysis of All Sources

Synthesizing the Netlist

Once we know there are no syntax errors, we can run the synthesis tools to extract a

netlist for the circuit.

‘» dzgn3d_1 - design not implemented - Project Manager

File Document Yiew Project Synthesziz Implementation Tools

Help

] [=1 1 Y BN E e N ST

Fecm o Update: ciprag21idsgna_1wntrvhd (0, 03
Fecm : Synopsys server initialization

Files \ Wersions \ Flany \ Contents \ Reports \
B3 dsgn3_ 1 =
& Sy cntdispyvhd dsgn3_1 —
B = xslib
. - Elledded.vhd " @
B dsgna_1 DESIGN ENTRY o
SIMULRTION
70
» @
YERIFICATION
Dpm : Done E

Consale I..-" HOL Errors I..-" HOL wvarnings I..-" HOL Messages I.-"'

Ll]

|Ready

We are going to target this design to the XS40-005XL Board so set the target device as
shown below in the Synthesis/Implementation settings window. Then pull-down the
list of modules in the Top level field and highlight the cntdisp entry. This tells the
synthesizer tools that the entdisp module is the root of the design.

Synthezizf/Implementation zettings |

Top level: Iu:ntu:lis - Bun I
ks ok, |

Spnthesiz Settings: SET LCancel |

Help |

Wersion name;

Target Device
Famiy: [»<C4000<L -]

Device: [40054LPCa4 ~| Speed |Hl-3 -

[Edit Synthesis/Implementation constraints

[“iew E stimated Performance after O ptimization

[T &ute Fun Implementation bools

Phyzical Implementation settings

Revizion name: Irev'l [Hptiamns |

Contral Files: SET

After clicking on the Run button, the synthesis tools will process the VHDL in the three
source files to create a netlist.

Create Yersion

t apping combinational logic in design 'Averl-Optimized' ... |

Assigning the I/O Signals to the FPGA Pins

Before mapping the synthesized netlist to the FPGA, we need to specify the pin
assignments for the inputs and outputs of the circuit. The pins on the FPGA of the XS40
Board that are connected to the clock oscillator and the seven-segment LED are shown
in Eigure 8. [We will also control the reset input of the circuit using the DO pin of the
parallel port. That way we can reset the circuit using the PC attached to the XS40
Board.

S6
A,
ssf " fs4
XC4005XL J—-
9 FRGA 32‘33 '31
S5 ¢ 2
§ Ogm 46, S0
S O 5ID3 47
O |Q 5/D4 48,
v |0 5/D5 49
cg O 51D6 32
5 8007 34,
T 09
© OO
o O
<

Figure 8: Connection of the programmable oscillator, parallel port, and LED digit
to the pins of the FPGA on the XS40 Board.

The pin assignments corresponding to Ware stored in the dsgn3_1.ucf file.

= dsgn3_1.ucf - HDL Editor =] E3
File Edit Seach “ew Syntheziz Fropect Toolz Help
||| S| »[=]8] <]] o Balz|s|eld] 2]

1 pet rst loc=phy; [~
2 net clk loc=pi13;

3 net s<{8> loc=p25;
4 net s{1> loc=p26;
5 net s<{2> loc=p2h;
6 net s<3> loc=p24a;
¥ net s<4> loc=p23;
8 net s<5> loc=p18;
9 net s<6> loc=p19;

14 -
1i I L3

<] |
For Help, presz F1 | Lni.Coll [TEXT | | [|

A

Implementing the Design

Once the pin assignments are in place, we can start the implementation tools.

‘®dzgn3d_1 - verl [400%<LPC84-3] - Project Manager

File Document Yiew Project Synthesziz Implementation Tools Help

] (=1 e Y BN R e I ST [

Files \ Wersions \ Flany \ Contents \ Reports \
B3 dsgn3_ 1 =
& Sy cntdispyvhd war] —

B & xslib
. - Elledded.vhd

0 1B

2 dsgn3_1 DESIGN ENTRY o
- & simprims A 4
o B we4000%

» 3> B ?

SYNTHESIS !,, SIMULATION

v
3> » » @
v YERIFICATION

Fecm o Implementation werl Completed Successiully. E

Dpm : Expaortver!-Optimized to ciprag21idsgna_1wdpm_net ..

Fecm Reading Synopsysixiling project =
Consale I..-" HOL Errors I..-" HOL wvarnings I..-" HOL Messages I.-"' |!4| | _>|

|Ready

Press the SET button in the Synthesis/Implementation settings window so the location
of the pin assignments can be specified.

Synthesiz/Implementation zettings

Top level: In::ntu:lisp j Bun I
Wersion name; I'-.fer'l k. |
Sunthesiz Sethings: SET I LCancel |

Help |
Target Device
Family: IKEWDDXL j
Device: [4005LPcas o] Speed:[w3 o]

[T Edit Synthesis/mplementation canstraimts

I iew Estimated Performanee after D ptimization

¥ ‘&t Bun mplementation bools

Phwszical Implementation zettings

Revizion name: rev] Options |

Contral Files: SET

Select Custom from the Constraints file field of the Settings window.

Settings |

Implementation control files |

— Curment Revizion Contral File S ettings:

Ilze Canstraintz file from: MHaone j

Maone

Copy Guide file from:

Copy Floorplan files from: MHone j

— Current Revizion Contral file uze:;
[" Enable Guided MAP and PAFR

[Enable Floarplanning

k. I Cancel Help |

The name of the dsgn3_1.ucf file will already be listed in the Constraints File field of the
Custom window that appears, so just click on the OK button.

Custom |

Constraints File: IdsgnS_'I.uu:f Browsze... |

k. LCancel | Help I

After returning to the Synthesis/Implementation settings window, click on Run to
initiate the implementation process.

Synthesiz/Implementation zettings

Top level: In::ntu:lisp j Bun
Wersion name; I'-.fer'l k. |
Synthesis Settings: SET I LCarncel |

Help |
Target Device
Family: IKEWDDXL j
Device: [4005LPcas o] Speed:[w3 o]

[T Edit Synthesis/mplementation canstraimts

I iew Estimated Performanee after D ptimization

¥ ‘&t Bun mplementation bools

Phwszical Implementation zettings

Revizion name: Irev'l Options |

Contral Files:

All the steps in the implementation process should complete without errors.

ﬂdsgniij [werl->rev1] - Flow Engine

Elow Wiew Setup Utilities Help

=B BlR| @
XCA000XL Design Flow [revl] Status: OK
Translate Map Place&Route Timing [Sim] Configure
| Completed | Completed | Running | |
3 input LUT=;] =
Humber of bonded IOEs: 9 out of 65 13%
I0B Flop=:
I0OB Latches:
Humber of clock IOE pads: 1 out of 12 8%
Humber of BUFGLSs: 1 out of g 12%
Total equiwvalent gate count for design: 567
Additional JTAG gate count for ICOBs=: 432

Writing de=sign file "map. ncd”. . .

Happing completed.
See MAFP report file "map.mrp" for details.

par —w —0ol 2 —d 0 map.ncd dsgn3d 1 ncd dsgnid 1. .pct

e e e omd

For Help, press F1 [XC4005%L-3-PC84 |dsgn3_1.ucf |

Project Manager

Flow Engine werl -»rew] Completed Successiully.

The Project Manager window should look as follows after the implementation tools have

terminated successfully.

‘®dzgn3d_1 - verl [400%<LPC84-3] - Project Manager

File Document Yiew Project Synthesziz Implementation Tools Help

NEEEREEEE RN

Files \ Wersions \ Flany \ Contents \ Reports \

B3 dsgn3_ 1
--Iﬂrcntdisp.vhd varl revl (AC4005%L-3-PCE4)
B & xslib
@ &y leddcdvhd -
: 2lEntr vhd = @ ili—
= dsgn3_1 DESIGN ENTRY o
= simprims A
o B we4000%
= » %b p
SYNTHESIS !,,
A 4
o » 13
IMPLEMENTATION

=

SIMULRTION

&

YERIFICATION

[

. — -
Hig . Flowe Endine: werl-=revl (Timed Ok) E
Hig : Flowe Enaine: verl-=revd {Implemented Ok
Hig . Flowe Endine werl-=revl Completed Successiully, =
Consale I..-" HOL Errors I..-" HOL wvarnings I..-" HOL Messages I.-"' |!4| | _>|

|Ready

Downloading and Testing the Design

At this point, the final bitstream for downloading into the XS40-005XL Board is available.
Open the directory containing the dsgn3_1 project files and drag-and-drop the dsgn3_1.bit
file into the gxsload window. The bitstream will download into the XS40 Board attached
to the parallel port.

J File Edt View Go Favoites Help
¢ » BB 0XEE

Drap BIT. .5¥F, HEX, and .EXD | Address |] CAPrag21itdsgn3_1
files here to download to the

%5 or %5y Board, _ dagnd 1.2l
Recent Files:

wproj.ini
dzgnd 1.pn
dzgnd_T1.uck
dsand_1.%MF
EMpress.ini
leddcd.er
leddcd.log

Fielnad [~ EEPROM Fart ||_p'|'1 ...I

|1 object(s] selected | My Computer -

If pin DO of the parallel port is at logic 1 after the downloading completes, the counter will
be held in the reset state so only a static O is displayed. To release the reset, open the
gxsport window and click on the D0 button until it displays a 0.

X gxsport _ | x|
2 |] 2 o] o[e
oY DE Db D4 D3 D2 @M1 DEI

Stobe | [T Count F'-:urtILF'T'I 'I

Then click on the Strobe button so the logic 0 value is output on the DO pin of the parallel
port.

X gxsport M=l E3
|] o] o] @ e
oY DE D5 D4 D3 D2 D1 DO
Stobe [™ Count F'-:urtILF'T‘I vI

Now you should observe the seven-segment LED running through the sequence: O, 1,
2,3,4,5,6, 7, 8,9, A, b, C, d,E,F,...with each digit being displayed for
roughly 1/3 seconds.

OCONOOPRWN -~

10

Consolidating the Packages

It can be inconvenient to place each module in a package and then have to explicitly
include each package in the root module. Instead, you can create a single VHDL file
that contains the package declarations from each of the other modules, and then just
include this single module in the root. This was done for project dsgn3_1a as shown
below.

‘»dzgnd_1a - verl [4005<LPC84-3] - Project Manager

File Document Yiew Project Synthesziz Implementation Tools Help

NEEEREEEE RN

Files \ Wersions \ Flany \ Contents \ Reports \
B3 dsan3_1a =
2= ntdisp . vhd verl revl (RC40059xL-3-PCE4) .

B 5 xslib
& Sy cntrvhd

B S ledded.vhd == @ -

- Elrws_pekgvhd DESIGN ENTRY o
- B dsgn3_1a A 4
- B simprims >
- B %c4000% = » %b p ﬂ
SYNTHESIS] SIMULATION
A 4
B> » » B K
IMPLEMENTATION YERIFICATION
~ |’
Hig . Flowe Endine: werl-=revl (Timed Ok) E
Hig : Flowe Enaine: verl-=revd {Implemented Ok
Hig . Flowe Endine werl-=revl Completed Successiully, =
Consale I..-" HOL Errors I..-" HOL wvarnings I..-" HOL Messages I.-"' |!4| | _>|
|Ready

The package declarations were removed from cntr.vhd and leddcd.vhd and the component
declarations from each file were incorporated into a single package in the xs_pckg.vhd file

(fsting 2]

Listing 2: Consolidated package declaration for the counter and LED decoder
modules.

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.numeric_ std.all;

package xs pckg is

component leddcd
port (
d: in UNSIGNED (3 downto 0) ;
s: out STD LOGIC VECTOR (6 downto 0)
)

end component ;

OCONOOAPRWN -

component cntr

generic (
LENGTH: natural -- number of bits in counter
) i
port (
rst: in STD_LOGIC; -- synchronous reset
clk: in STD LOGIC; -- counter clock
cnt: out UNSIGNED (LENGTH-1 downto 0) -- counter output

) i

end component ;

end xs_pckg;
Then the single xs_pckg package is included on line 4 in the root module (L{sting 3)

Listing 3: VHDL source for the root module of dsgn3_1a.

library IEEE,XSLIB;

use IEEE.std logic 1164.all;
use IEEE.numeric_std.all;
use XSLIB.xs pckg.all;

entity cntdisp is

port (
rst: in STD_ LOGIC; -- synchronous reset
clk: in STD_ LOGIC; -- counter clock
s: out STD LOGIC VECTOR (6 downto 0) -- outputs to LED
segments

)
end cntdisp;

architecture cntdisp arch of cntdisp is

constant length: natural := 28;
signal cnt: UNSIGNED (length-1 downto 0) ;
begin

ul0: cntr generic map (LENGTH=>length)

port map(rst=>rst, clk=>clk, cnt=>cnt);
ul: leddcd port map(d=>cnt (length-1 downto length-4), s=>s);
end cntdisp arch;

Hierachical VHDL Design with Schematic-Based Modules

In the dsgn3_2 project, we will replace the cntr.vhd module with a counter desscribed by
schematics. Once again, the design is initiated as an HDL-based project.

Mew Project |

M arne: Idsgn3_2 k.

Cancel

Directory: [C:\PRAGZ1I
Browse...

Type: |F2.1i j Help

Flaows: " Schematic & HOL

Flk

Then we can add the xslib library and add the leddcd.vhd file to it as we did in the dsgn3_1
project.

‘» dzgn3d_2 - design not implemented - Project Manager

File Document Yiew Project Synthesziz Implementation Tools Help

Dl 6| ojnjs|s|msB|B[8] N

Files \ Wersions \ Flany \ Contents \ Reports \
B3 dsgn3_2 =

B & xslib dsgn3_2
. - Elledded.vhd

E] dsgn3_2 ._:_ @ ili_

DESIGM ENTRY g

IMPLEMENTATION ¥ YERIFICRTION
. 4 I.
Fecm o Execute cifndtmactivelexeisc exe E
Fcm o START. Schematic Editar |
Fecm EXIT: Schematic Editor =
Consale I..-" HOL Errors I..-" HOL wvarnings I..-" HOL Messages I.-"' || 4 | _>|

|Ready

Adding a Predefined Library to the Project

Next we need to draw the schematic for the counter. But we need a library of parts with
which to build the counter. Schematic part libraries are tied specific device families, so

we need to add the appropriate part library to our project. Once again we will target the
XS40-005XL Board with the XC4005XL FPGA. To add the library for this device, select
the File=>»Project Libraries... menu item.

‘» dzgn3d_2 - design not implemented - Project Manager

File Document Miew Project Swnthesiz Implementation Tool: Help

Mew Project... Ctrl+M U .l .'l LI | ll EI

Open Project... Ctrl+0
Copy Project... Flany \ Contents \ Reports \

Delete Project... Chl+D

[

dsgna_Z
Archive Project...

Bestore Project...

Project [nfo ._._ @ ili—

Praoject Libraries. .. k DESIGN ENTRY

Project Type... Chl+T A 4
Preferences 3 N ol .L_:—\J_
el b R | 4 b7

1 dsgn3_2 SYNTHESIS e SIMULATION

2 dzgnd 1

3 dzgn2_2 — 0

Exit =T b

YERIFICRTION
Fecm o Execute cifndtmactivelexeisc exe E
Fcm o START. Schematic Editar |
Fecm EXIT: Schematic Editor =
Consale I..-" HOL Errors I..-" HOL wvarnings I..-" HOL Messages I.-"' || 4 | _>|

|Project Libraries

Scroll down in the list of libraries in the Project Libraries window and highlight the
xc4000x entry.

Project Libranies |

Attached Libraries: Froject Libraries;

test =] Add s dzgnd_2
test? __l

<< Hemoye |

Irfa |

Lib Manager...l

Attach... | Cloze | Help

Then click the Add>> button to copy the xc4000x library of parts to the list of project
libraries.

Project Libraries |
attached Libraries: Broject Libraries:
Al add s \ dsgn3_2
Info |
wea500 Lib Manager...l
Attach... | Cloze | Help |

This is the only library we need for this project, so click on the Close Button.

Project Libraries |
attached Libraries: Broject Libraries:

R e L 2
g:ﬁg:n-' < Hemoye |
e |
:Eggggx ~| Lib Manager...l

Cloze ,\J Help
L

Notice that now the xc4000x library icon now appears in the Hierarchy pane of the
Project Manager window. We can now open the Schematic Editor window and begin
to design the counter module.

‘» dzgn3d_2 - design not implemented - Project Manager

File Document Yiew Project Synthesziz Implementation Tools Help

Dl 6| ojnjs|s|msB|B[8] N

Files \ Wersions \ Flany \ Contents \ Reports \

B3 dsgn3_2 =
B & xslib dsgn3_2 -
B G ledded vhd
= dsgn3_ 2

B xr4000x%

=D, !
: I P, B
e by B [3 e
SYNTHESIS ?,, SIMULATION

Fecm o Execute cifndtmactivelexeisc exe

Pcm START: Schernatic Editor |
Pcm EXIT: Schematic Editor -
Consale I..-" HOL Errors I..-" HOL wvarnings I..-" HOL Messages I.-"' || 4 | _>|

|Ready

Drawing the Lower-Level Counter Schematic

In the Schematic Editor window, we begin by adding a sixteen-bit counter (CB16RE), an
eight-bit counter (CB8RE), and a four-bit counter (CB4RE) to get a total length of 28 bits.
Then the clock-enables of the counters are connected as we did in the example in
Chapter 2. All we have left to do is add the inputs and outputs to the counter. We will
not use IPADs or OPADs for this since these correspond to pins on the actual FPGA
device. It is better to use hierarchical connectors or terminals for I/O into or out of a
lower-level module and then place all pin connections in the root module. That way we
can defer the decision as to which signals enter and exit the chip when we design the
top-level module.

To begin placing I/0O terminals, click on the Hierarchy Connector button.

» Schematic Editor - [Modified - Hon-Project - DSGHN3_21.5CH]

Eile Edit Mode QOptions Hierarchy Yiew Display Tool: Window Help _||5’|1|

o = N =]) S e = e =)

CB4RE

o
o
WEC _
CB1GRE CB2RE |
5] [e 1) f S o3
— | CE CEQ CE CEQ CE CEO [
—nE TC | 1 Tol kT LU
R " "
7 1 |

o o

" DsGME 21 |
| 0.0, 19 | Adds a terminal to net or bus | Select and Drag

The Hierarchy Connector window will appear. The first input we will add is for the
clock. Type the name of the input (CLK) into the Terminal Name field and click on the OK
button.

Hierarchy Connector |

Termninal Marne : I':LK

Teminal Type Im
Bepeat
|:>_ Affributes
’W Cancel | Help |

Then click in the drawing area of the Schematic Editor window and the input terminal
will appear.

I

® Schematic Editor - [Modified - Hon-Project - DSGN3_21.5CH]

Eile Edit Mode QOptions Hierarchy Yiew Dizplay Tool: Window Help =] x|

al=(atla] & =e| Qe o]l =2 b

CB4RE
|
Yoo e
CB1GRE CESRE w@|
5] Q7] |
/ —lce CED CE cEQ cE ceo [
CLKD—J _ ke el _ ke = _ e el
" iz iz
1 — 1 1

o o

" DSGM3 21 |
[09, 27 | Draw Wires

Repeat this procedure to add the reset input terminal (RST). Then wire these terminals
to the clock and reset inputs of the counters as shown below. This takes care of the
inputs to the 28-bit counter. Now we will use a bus to get the outputs from the counter.

® Schematic Editor - [Modified - Hon-Project - DSGN3_21.5CH]

Eile Edit Mode QOptions Hierarchy Yiew Dizplay Tool: Window Help =] x|

e =1] N e) S e e = e =)

s]

| 9 | [(WO |+

w buses CB4RE
=50
ai]
VEE CB16RE CBERE @
5] e = f - ml
c TC c TC c TC
CLKp—————° | ™| R - Lo
RSTL: |] |_—I |__—I

" DSGM3 21 |
| 0.0, 1.2 | To end a bus click the right mouse button and the End button Select and Drag

Start by drawing a bus at the far right of the schematic. When the last point of the bus is
drawn, right-click the mouse and select Add Bus Terminal... from the pop-up menu that
appears.

® Schematic Editor - [Modified - Hon-Project - DSGN3_21.5CH]

Eile Edit Mode QOptions Hierarchy Yiew Dizplay Tool: Window Help =] x|

e =1] N e) S e e = e =)

57
L1

=
II Add Bus Terminal...
Add Bus Label...
lE CBARE Add Buz End...
—ﬁL | Cantinue Buz Drawing
(> [— Cancel Bus Drawing
? CBI6RE CB2RE @
EE 5] p— O] L= I
- c Te | c el
" iz "
|_—I |_—I |__—I

R o

" DSGM3 21 |
| 73, 09 | I[Iraw Buses

Type the bus name (CNT) into the Name field of the Add Bus Terminal/Label window
that appears. Also set the upper and lower indices of the bus range to 27 and 0,
respectively, to set the bus width to 28 bits. Finally, specify that this is an output bus by
selecting Output from the Terminal Marker drop-down list. Then click on the OK button.

Add Bus Terminal/Label |

Bus Label [e.q. BUS[:2]): v Simple Bus
I ame; R ange:

=l . =
|oNT L] 275 [=

T erminal
b arker: Dutput J _.

Cancel | Help |

?iD irectional

The name of the bus and its upper and lower indices will appear in the schematic. Now
we need to tap the upper four bits of this bus and connect them to the four-bit counter.
Click on the Draw bus taps button to start this operation.

® Schematic Editor - [Modified - Hon-Project - DSGN3_21.5CH]

Eile Edit Mode QOptions Hierarchy Yiew Dizplay Tool: Window Help =] x|

e =1] N e) S e e = e =)

b]
LY
= el N T[27:0]
L
r CB4ARE
@w bus taps [l -
D' ai]
? CBI6RE CB2RE @
o [T) — [z — L
%I E B T
Te| oL c Tl
|_—_I_ |_—| |__—|

4 s

D5EN3_21 |
| 1.7, 1.5 | Click on the bus first and then on the pins Draw Bus Taps

Then click on the CNT bus to select the bus that will be tapped. Create the individual
taps by clicking on the Q3, Q2, Q1, and Q0 outputs (in that order) of the CB4RE counter.

The eight and sixteen-bit counters will be connected to the output terminals using buses,
so click on the Draw buses button.

» Schematic Editor - [Modified - Hon-Project - DSGHN3_21.5CH]
Eile Edit Mode QOptions Hierarchy Yiew Display Tool: Window Help _||5’|1|

(= =2 = =] O e e o Y) R e P e

i) CINT[27:0]

CB4RE

oo | CNT24
ar | CNT25
CB1GRE CESRE o | CHT26
5] 791 o o | CNT2T
| c e e el
] R | 0T
| [i}

4 o

" DsGME 21 |
| 08, 14 | To end a bus click the right mouse button and the End button |Draw Buses

Draw a bus from the output bus of the eight-bit counter to the CNT bus as shown below.

» Schematic Editor - [Modified - Hon-Project - DSGHN3_21.5CH]
Eile Edit Mode QOptions Hierarchy Yiew Display Tool: Window Help _||5’|1|

(= =2 = =] O e e o Y) R e P e

E]
{H
L
=+ CRT[27:0]
)
E CHARE
= w| CNT24
j=a voe ar | CNT25

P CB1SRE CESRE w | CMNTZ26
- I T T R P e P e

c el c el c el
] S |

4 o

" DsGME 21 |
| 72, 09 | |Draw Buses

Repeat this operation to draw a bus from the output of the sixteen-bit counter to the CNT
bus. Now the question arises: “Which of the 28 bus lines are the sixteen-bit and eight-bit
counter outputs connected to?” There are some implicit rules that govern this, but it is
clearer if we explicitly specify the bus connections. To do this, double-click on the bus
connected to the CB16RE counter.

® Schematic Editor - [Modified - Hon-Project - DSGN3_21.5CH]
Eile Edit Mode QOptions Hierarchy Yiew Dizplay Tool: Window Help =] x|

e =1] N e) S e e = e =)

¥ = CT[27:0]
CBIRE
| CNT24
ar | CMNT25
Ver CEIERE CESRE @ | ICINT26
[TR - el e |
I I —
| [[

KIS _'l_'I

" DSGM3 21 |
[56, 42 | | Select and Drag

The Edit Bus window will appear. Specify the upper and lower index of the bus as 15
and 0, respectively. Then click on the OK button. This will connect the sixteen outputs of
the CB16RE counter to the lower sixteen bits of the 28-bit CNT bus.

Edit Bus]|
Bus Label [e.q. BUS[:2]): v Simple Bus
I ame; R ange:
[CNT ([sd [04
T erminal
b arker: Hone J
[SN
(] h
{ [N | Busz End |
Cancel
r— r e <F-9— C |
Help |

The index range of the bus connected to the sixteen-bit counter will now appear in the

schematic.

® Schematic Editor - [Modified - Hon-Project - DSGN3_21.5CH]

Eile Edit Mode QOptions Hierarchy Yiew Dizplay Tool: Window Help

al=(alla] & =e| Qe o]l =2 b

¥ = CNT[27:0]
CNT[1%:0] CEBIRE
| CNT24
ar | CMNT25
vee CB1BRE CESRE | CNT26
—L asa) e al CMTET
e < e | e ol
I I —
| [[
ETR o
" DSGM3 21 |

[38, 42 |

Select and Drag

We can repeat this procedure to specify the bus connections for the eight-bit counter as
indicated below. Now all the bits in the output bus are connected to the counters.

® Schematic Editor - [Modified - Hon-Project - DSGN3_21.5CH]

Eile Edit Mode QOptions Hierarchy Yiew Dizplay Tool: Window Help =] x|

2l=aka] & |=e] NalE] vl 2 o

= CIT[27:0]
CHT[23:16]
CrT[15:0] CR4RE
| CNT24
ar | CNT2E
b CBIGRE CBERE w| CMNTZH
CLKD—__ C L TS c . T C . oL
RST] ' — —
o | [1

u o o

" DSGM3 21 |
[26, 43 | Select and Drag

At this point we should save the schematic.

» Schematic Editor - [Modified - Hon-Project - DSGHN3_21.5CH]

w Edit Mode DOptions Hierarchy Yiew Display Tools Window Help

E Mew Shest Clrl+M
Open... Chl+0
Open Macra...

Claze

) e R S

Save Chl+5

Save 4l !

Import YiewlLogic Schematic...
Generate Schematic from Metlist...

Brint... Chl+P
Printer Setup... Chel+T
Page Setup...

Table Setup... Chl+B

Exit Al

] RSN R VS i O BV IS |

CINT[15:0]

CBERE

CINT[23:16]

CB4RE

=B CINT[27.0]

=N o
RSTC

| CNT24
o |_CNT25
w| CNT26
o | CNT27

L

o

D5GN3 21 |

[26, 43 |

|Se|e|:l and Drag

Set the name of this module to CNTR and then click on the OK button.

Save Az
File name: Folders:
IENTH.SEH| c:hprag2ihdsgna_2
dzgn3_21.5CH = &= e =
[= PRAGZ1I
B DSGN3_ 2
£ dzgn3_2
1 lib
B £ #proj =l
Save file az ype: Dirives:
Schematic (*5CH] -] B o

Finally, we can exit the Schematic Editor window.

» Schematic Editor - [Non-Project - CHTR_SCH]

w Edit Mode DOptions Hierarchy Yiew Display Tools Window Help - | = |§|
2 Mew Shest Chi+M E 'ﬂl “lé‘:]l%é{l@{l]::lgl D‘;l
— Open... Cirl+0
h Open Macra... j
E Claze
Save Chl+5
; Save fs.
3O Savedl =B CINT[27.0]
:] Import YiewlLogic 5Schematic... CMT[23:16]
ISE Generate Schematic from Metlist... CrT[15:0] CB4RE
& Pint. Cll+P | ENTZ4
(- Printer Setup... Chel+T ai _M
E Page Setup... CBSRE oz _CNT?B
JT-ﬁ Table Setup... Chl+B - o) L] _CNT??
% C el c el
" "
RS e I —

4 s

CHTR |
[82, 31 | | Select and Drag

Adding the Lower-Level Counter Module to the Project

Once we are back in the Project Manager window, we can add the counter schematic
to the project by clicking on the dsgn3_2 icon in the Hierarchy pane and selecting Add HDL
Source Files... from the pop-up menu. (I know the counter is a schematic and not an HDL
file, but this works anyway.)

‘» dzgn3d_2 - design not implemented - Project Manager

File Document

Wiew Project

Synthegiz Implementation Toolz

Help

] =11 Y SO E R A N T R

El 5 uslit
@ &y

Files \ Wersions \

|| Flany \ Contents \ Reports \

pdate Fraject
Eorze [l pdate Froject

&dd HOL Source Files
Wiew Project Bepart

Synthesize...

Edit Congtraints

L

SYNTHE

51IS

&% 1B

[

Fecm o Execute: Imeexe -p 1104 -ifdsan3_2 ciprag21idsgn3_Alibtdsgna_2
Lm . Likrary Manaoger has terminated.
Fecm : EXIT: Library Manager

Consale I..-" HOL Errors I..-" HOL wvarnings I..-" HOL Messages I.-"'

Ll]

|Add Source Files

In the Add Document window, select Schematic (*.SCH) in the drop-down list attached to
the Files of type field. Then highlight the CNTR.SCH file and click on the Open button.

hadbocument e
Lok in: |ﬁ degnd_2 j ﬁl

E dzania_2
b

= sch

I WProj
CHTR.5CH
dsgn?_21.5CH

File narme; Open I

Files of type: | Schematic [+ 5CH) -] Cancel |

Help |

FSM "ASF]

Before adding the CNTR.SCH schematic to the project, Foundation will ask you to
specify the target device for the schematic. As we stated before, we are targeting the
XS40-005XL Board so set the device information as shown below.

Select Part |

F amily Part Speed

[xcooom =] [snoseLPCas -l
ok Cancel
_ Cored |

After clicking on OK in the Select Part window, the Foundation software will extract the
netlist from the schematic and add the cntr.sch schematic and cntr netlists library to the

project. Clicking the + signs to the left of these elements will expand them so we can
see their contents.

‘» dzgn3d_2 - design not implemented - Project Manager

File Document Yiew Project Synthesziz Implementation Tools Help

] [=1 1 Y SO E e W ST 9

Files * “ersions \ Flany \ Contents \ Reports \
= 23 ELTR =
R?‘ chtr.sch dsgn3_2 —
2 wslib
B & cntr netlists
- B dsgn3_2
o S w4000k
Zl» 3 [3 ?
SYNTHESIS ?,, SIMULATION
a4
o-a ¥y
2o » » B
IMPLEMENTATION ¥ YERIFICATION
Dpm : Done E
Fecm o Document CIPRAGZTNDESGMNI_AMCHTR.SCH added
Fecm : Synopsys server initialization =
Consale I..-" HOL Errors I..-" HOL wvarnings I..-" HOL Messages I.-"' |!4| | _>|

We note that the cntr.sch element lists the names of the four, eight, and sixteen-bit
counters as its subcomponents as we would expect. The cntr netlists element also lists
the Xilinx netlist files (XNF) for these counters as subcomponents as well as the XNF
files for the toggle and D flip-flops that make up the counters.

‘» dzgn3d_2 - design not implemented - Project Manager

File Document Yiew Project Synthesziz Implementation Tools Help

D]e| 8] @ln| o % g B B2
File=s * “ersions Flowy . Cortentz Reports
B3 dsgn3_2 =
B & cntr.sch dsgn3_2 =
It i1 - ch1Gre
iF §i2 - chére :
I §i3- chdre @ -
= xslib ¥
T CE16RESMF o
%7 CBERE.XNF = » B » ﬂ
WCEJ_RE}{NF SYNTHESIS ? SIMULARTION
7 FTRSEXNF . 4
¥ FDRE XMF
oy FD.XNF % » ¥ p ﬁ EQ \
= dsgn3_2 IMPLEMENTATION ¥ YERIFICATION
& xc4000x . 4
_ i -
Dpm : Done E

Fecm o Document CIPRAGZTNDESGMNI_AMCHTR.SCH added
Fecm : Synopsys server initialization =
Conzaole HDL Errors © HDL Warnings © HOL Meszages 14 ﬂ

cntr netlists - CHTR METLISTS

Modifications to the VHDL Code of the Root Module

The VHDL for the top-level root module is entered in the HDL Editor window as shown
below. The main differences between this root module and the one from dsgn3_1
project are:

Line 4: Only the 1eddcd pckg is included in this module because no VHDL package
was created for the counter schematic.

Lines 15-17: The component declaration for the 28-bit counter is directly incorporated
into the architecture section of the root module. This is the simplest way to
do it since the counter is only used in one place. For more complex designs,
you could package the component declaration in a file that could be included
anywhere the counter was needed.

= cntdisp.vhd - HDL Editor O] x|
File Edt Search “iew Synthesiz Project Tools Help

D|S(d] & & [=]2] el] o Bz]lleld] 2|

1 1library IEEE,RSLIB;

2 wuse [EEE.std _logic 1164.all;

3 wuse [EEE.numeric_std.all;

4 use XSLIB.leddcd_pckg.all;

5

6 entity cntdisp is

7 port

8 rst: in STD_LOGIC; -- synchronous reset
o clk: in STD_LOGIC; -- counter clock
18 s: out STD_LOGIC_VECTOR{6 downto B) -- outputs to LED segments
11 ¥;
12 end cntdisp;
13

14 architecture cntdisp_arch of cntdisp is

1% component

16 cntr port{rst: in std logic; clk: in std logic; cnt: out unsigned{27 downto B8));
17 |end component;

18 constant length: natural := 28;

19 signal cnt: UNSIGHED{length-1 downto @});

28 begin

21 uB: cntr port map{rst=>rst, clk=>clk, cnt=>cnt);

22 ui: leddcd port map{d=>cnt{length-1 downto length-%4}), s5=>5);

23 end cntdisp_arch;

EN | 2l
Ready [n17.Co1 WHOL [[[4

The root module is stored in the cntdisp.vhd file, and this file is added to the dsgn3_2
project.

Synthesizing the Netlist

Now the synthesis tool can be run on the project files to extract the netlist.

‘» dzgn3d_2 - design not implemented - Project Manager

File Document Yiew Project Synthesziz Implementation Tools Help

] [=1 1 Y SO E e W ST 9

Files \ Wersions \ Flany \ Contents \ Reports \
B3 dsgn3_2 =
--R?‘ chtr.sch dsgn3_2 —
-- EMcntdisp.vhd
H- 5 xslib
-- = entr netlists @ ili—
3 dsgn3_2 DEsiGM EnTRY 3
B e 4000%
l » B I
/ SIMULRTION
Synthesiz
Dpm : Done E
Pom Update: ciprag2 1idsgnd_2ischicntifd xnf (0, 03
Fecm : Synopsys server initialization =
Consale I..-" HOL Errors I..-" HOL wvarnings I..-" HOL Messages I.-"' || 4 | _>|

|Ready

As before, set the target device appropriately and select the cntdisp entry as the top-level
module for the synthesizer. Then click on the Run button and the synthesizer will do its

job.

Synthesiz/Implementation zettings

Tap level CB16RE

Bun

I

Versi ~ [CeERE
EEI0n name: EBEHE |:|

Sunthesiz Setting pk

-
="

-

]9 |

LCancel |

Help |

Target Device

Famiy: [>C40006<L -]

Device: |4005<LPC34

j Speed:l:-:l-l:lEl vI

[Edit SynthesisAmplementation constraints

[‘iew E stimated Performance after Optimization

™ suta Bun [mplementation tool
Phwszical Implementation zettings

Revizion name: Irev'l Wptions |

Contral Files:

=

S|

Assigning the I/0 Pins and Implementing the Design

After the netlist is synthesized, place the pin assignments for the XS40 Board into the
dsgn3_2.ucf file as shown below. Then specify this file as the constraints file when the

implementation tools are run.

i dsgn3_2.ucf - HDL Editor

Fil= Edit

Search “iew Synthesziz Proect Toolz Help

=10] x|

D|=|E| 8] - [=|8] o]]

o Hafe|sle|s] 2]

net
net
net
net
net
net
net
net
net

F
t@ﬂﬂ*ﬂﬂ*u‘l#ml\:—h

Fst loc=pi4;
clk loc=pi13;

s<@>
s{1>
s{2>
s<3>
s<i
s<5>
s<6>

loc=p25;
loc=p26;
loc=p24;
loc=p28;
loc=p23;
loc=p18;
loc=p19;

For Help, presz F1

Ln1,Cal 1

TEXT |

Downloading and Testing the Design

At this point, the final bitstream for downloading into the XS40-005XL Board is available.
Open the directory containing the dsgn3_2 project files and drag-and-drop the dsgn3_2.bit
file into the gxsload window. The bitstream will download into the XS40 Board attached
to the parallel port.

= dsqn3_2 _ (O] =]

J File Edit “iew Go Favoites Help
— [« -+ myYBEAL XEE

Dirop .BIT, SWF, HEX, and Ex0 J Address I[:I C:\Prag2lifdsgn3 2
files here to download to the =
#®5 or X5V Board.] dprm_net chtdizp.log dzgria_2»MF

Frecent Files: 1 dsgna 2 crtdisp.vhd DSGEM3 21 B5C
b CHTR.alb dsgn3_21.5CH
1 sch CHTR.SCH exp_netlog

| “pIoj chitrsnf express.ini
CETBRE_D.unf degn3_2.alb FD_0.xnf
CRARE_O.anf dsand_2.hit FO_0_0.xnf
CEERE_D.xrif dsgn3 2.l FO_0_T.ari
critdisp.bak dsan3_2.pri FO_0_10.xnf
chtdizper dzgn3_2 ucf FO_O_17 . unf

Eieload | [~ EEPROM Paort ||_p'|'1 -I EY — |M c 5
B My Computer

|1 object(s] zelected

If pin DO of the parallel port is at logic 1 after the downloading completes, the counter will
be held in the reset state so only a static O is displayed. To release the reset, open the
gxsport window and click on the D0 button until it displays a 0.

X gxsport M =]
1] o o] o) o] @] e]
OY DE DR D4 D3 D2 D1 DEI

Stobe [™ Count Port ILF'T‘I vI

Then click on the Strobe button so the logic 0 value is output on the DO pin of the parallel
port.

X gxsport M= B
L O R O O O 1T N
07 DE D5 D4 DT D2 D1 DO
Stobe | [T Count F'-:nrtILF'T‘I 'I

Now you should observe the seven-segment LED running through the sequence: O, 1,
2,3,4,5,6,7, 8,9, A b, C, d, E, F,...with each digit being displayed for
roughly 1/3 seconds.

Hierarchical Schematic-Based Design with VHDL Modules

In the dsgn3_3 project, we will replace the root VHDL module with a schematic. This
design will be tested with an XS95-108 Board, so start a schematic-based project
targeted at an XC95108 CPLD.

Mew Project

|
M arne: IdsgnS_ﬂ EIK[: |
Cancel |
Directory: [C:\PRAGZ1I
Type: [F21i -] Help |
Flaows: & Schematic © HDL
[<Ca500 | |s5108PCes R

Creating the Schematic-Based Counter Macro

Open a Schematic Editor window and create a 28-bit counter as we did in the previous
section and save it in the cntr.sch file.

» Schematic Editor - [Non-Project - CHTR_SCH]

Eile Edit Mode QOptions Hierarchy Yiew Display Toolz “Window Help _|E’|ﬂ

Bl=(wlk[a] ¢ oo NalEy] | el 2 o)

k3 -
@ B CNT[27:0]
CHT[15:0] CHT[23:16]
1 CBYRE
= =] CNT24
| - o |__CNT25
i h CEBIGRE CBERE =| CNT28
E [=gloae (= =) _CNTQ?
| _e= cEa E ==} |
E CLK D— R W= . ™ [+ . ™ ! . -
- R R R
—| RST[— F—
= | [
Kl | _I—I

CHTR |

[11, 37 | Select and Drag

Since we will want to include this 28-bit counter in the top-level schematic, we need to
create a macro symbol to represent the counter in the list of parts. This is done using
the Hierarchy=>» Create Macro Symbol from Current Sheet... command.

» Schematic Editor - [Non-Project - CHTR_SCH]

Eile Edit Mode Options | Hierarchy Yiew Display Tools Window Help - |E’ |5|
2= % E| Add Sheet to Project... M Z
ﬁl | nl E%ul | % | Add Current Sheet to Project J E |
IF Create Macra Symbal fram Metlist... |
El Create Macra Symbal fram Current Sheet. . I_ BC MT[27:0]
[23:18]
j:} Lzsign Hetist bo Selected Sumbal . CR4RE
i Hierarchy Push Chrl+H & —gmgg
_L WCC Hierarchy Fop [Ctrl+] TR
E [=gloae I = pi I) :CNT?T
| _e= f= =] E f==] oE cEal|
E CLk D _ L= . w| [. - I N wl
% RET | I———‘ |———I
Kl | _'I_I

CHTR |
[36, 04 | | Select and Drag

Type the name for the macro (CNTR) in the Symbol Name field of the Create Symbol
window and click on the OK button.

Create Symbol |
Symbal Hame: I:ZHTFI Beference: IH_
Comment; I
Sheet: |CAPRAGZIMNDSGN3_MCNTRSC -| Browse.. |
— Pire

Input: IELK,HST Edit... |
Output: [==CNT[27:0]==

Bid: | Cancel |

PR | Help |

A symbol for the counter will be added to the dsgn3_3 project library and you will be
asked if you want to edit it. Click the No button and return to the Project Manager
window.

Schematic Editor |

Sheet [CAPRAG2TINDSGEMNE_IWCHTR.SCH]
has been zaved into library as hierarchical symbal [CHTR]
Do pou want bo edit 7

Examining the Project Library

Now we can view what has been added to the project library by double-clicking the
dsgn3_3 library symbol.

‘»dzgn3d_3 - 95108-20PC84 - Project Manager _ O] x|

File Document “iew Project Implementation Tools Help

s EEI K R

Files \ Wersions \ Flany \ Contents \ Reports \ Synthesis \
B £ dsgn3_3
E""ﬁdsgrﬂ_m.ach dsun3_3 (95108P C34-20)
-~ B simpri :
B wee500 = @ - 3 ?
DESIGHN ENTRY ?,, SIMULATION
A4

2o 9 W

IMPLEMENTATION ¥

» B

YERIFICATION

B2

PROGRAMMING

Fecm o Execute: Im.exe -p 1704 -ifdsan3_3 ciprag21idsan3_Alibtdsgna_3 E

Lm . Likrary Manaoger has terminated.

Fecm : EXIT: Library Manager =
Consale I.-"' |[;| _>|

|Ready

=10 x|

% Library Manager
File Library Object Yiew Help

2| X [a8] & [B|x | |5 w2 o RS2

& Libraries o Dhiectsl

Logical Mame [1| Phypzical Namel Comrment I Ohbject Type I.ﬂ'-.ttril:uutes I Library I
EN CHTR MET+SCH+5"M Q0000000 DSGM3_3
Ready. |1 object(z] zelected

The Symbol Editor window shows the 28-bit counter with the reset and clock inputs
arranged along the left-hand side and the 28-bit counter output bus on the right-hand
side. This completes the process of adding the 28-bit counter macro to the project so
close the Symbol Editor window.

1 Symbol Editor - [CNTR [DSGN3_3]] M=

The Library Manager window will appear and show that the dsgn3_3 library contains the
single CNTR object. We can see the symbol for this component by double-clicking the
CNTR entry in the window.

File Edit “iew Svmbol ‘wWindow Help -|5’|5|
] (=1 = e e e =1 = N =) Pl il [[(@) Y N
Humber: Mame:
Symbol |I:NTF| I IIN d| ILINE j|
Library | D5GN3_3 - il
PCE Footprint I j|
Ref Prefis [H Sections IEI_
Dezcription
| RST
SPICE Model Info
| CLK CNT[27:0] p—mm
Pirs
CLE. I
RST IM
CHT[27:0] ouT =
i | _>l_I

For help, press F1

200% |63, 4.3

Adding a VHDL-Based Macro to the Project Library

Next we need to turn the VHDL code for the seven-segment LED decoder into a macro.
Enter the source code as shown below and then execute the Project=» Create Macro

command.
= leddcd. vhd - HDL Editor =] E3

File Edit Search “iew Senthesis | Project Tools Help

D|(@| 8| @]

Add To Project

—

use IEEE.std_logic_1 Updatebaco E!|

Bl |s|elal 7|

when
when
when
when
when
when
when
when

1 1library IEEE;

2

3

4 entity leddcd is

5 port

i}

7

8 b

92 end leddcd;

18

11 architecture leddcd arch of
12 begin
13 with d select
14 s <= "111e111”
15 “ga18819™
16 1811181
17 1811811
18 “g111818¢
19 11811
28 11111
21 "1818818"
<] |

leddcd

‘‘aaaa,
aae1,
aa1e,
ae11t,
“a188",
“a1e1t,
“a11e,
a1,

d: in STD_LOGIC_UECTOR {3 douwnto 8);
st out STD_LOGIC_UECTOR (6 downto @8)

is

-
—

Creates lbramy macro

Ln 1, Cal 1

WHDL |

il
7

The DPMCOMP window shows the progress as the synthesizer tool processes the
VHDL and deposits the netlist into the project library.

T DPMCOMP]|
Initialize DPM. ..
Checling license. . .

License checl OK.

Source: C:~PragZli~d=gni_3~leddcd . vhd.
Family: XCA500.
Device: 9E108PCE4-20.

Create project. ..
Create file. ..

Analyze =ource file. . .
Create chip. ..
Pptimize chip. ..

HDL Editor =l

& Symbol 'LEDDCD' successfully created.

After the synthesis completes, we can double-click the dsgn3_3 library icon and see that
the LED decoder has now been added to the library.

% Library Manager _ O] x|
File Library Object Wiew Help

m [x[es] X m(x|n 5] w|a]e|éBE 2] 8 Rl=]2]

$r Libraries T DbiECtS|

Lagical Mame [4| Phyzical Namel Conment I Ohbject Type I.-'l'-.ttrihutes I Library I
THCNTRS CHNTR MET+5CH+5%M Q0000000 DSGM3_3
LEDDCD LEDDCD i, MET+5%M Q0000000 DSGM3_3

FReady. — [Zobiectlsy) [[[

Double-clicking the LEDDCD entry in the list of library objects shows the symbol for the

LED decoder.

1 Symbol Editor - [LEDDCD [DSGN3_3]] M=

File Edit “iew Svmbol ‘wWindow Help

=8|

D|@[E| & [=|e] o« B[Ea][x &

zlF|O|E[o[~]A|

Syrbal |LEDD Ch

Humber: Mame:

SPICE Model Info

Library | D5GN3_3 -
PCE Footprint I j|
Ref Prefis (U Sections IEI_

Dezcription

.

Pirs

Vhdl code

— D[3:0] S[6:0]

5[6:0]
D0

auT
IM

For help, press F1

.

200% |14.0. -B.4

Placing the Lower-Level Macros in the Root Schematic

Now that the lower-level modules are designed, we can open a schematic for the top-
level module. Notice that the list of parts available for use in creating the root module
now contains the 28-bit counter and LED decoder macros.

LEDDCD
{-) XC9500
ACC
ACCE
ACCH

We can drag-and-drop the CNTR and LEDDCD macros into the drawing area of the
Schematic Editor window and connect them with a 28-bit bus. But which of the 28
outputs from the counter macro are connected to the four inputs of the LED decoder?
The rule is that the pins are connected starting at the left-most index and proceeding to
the right. So CNT27 connects to D3, CNT26 connects to D2, CNT25 connects to D1, and
CNT24 connects to DO0.

» Schematic Editor - [DSGHN3_31.5CH]

Eile Edit Mode QOptions Hierarchy Yiew Display Toolz “Window Help _|E’|ﬂ

B|=|Ek8] & [e] Qe oo ald]e] 2 ol

B =l
FIT | |
= H
E RST U1
E CNT[27:0 Vhdl code I_
=1 CLK CMNT[27:0] D[3:0] S[6:0)
o
B CNTR LEDDCD

u of

" DSGM3 31 |
[45, 37 | Select and Drag

Examining Lower-Level Macros in the Hierarchy

We can actually view what is inside these macros using the Hierachy Push/Pop button.

* Schematic Editor - [DSGN3_31.5CH]

File Edit Mode Options Hierarchy Wiew Display Tool: Window Help =18 x]
(= =2 50 e S R =

5 5

% -
Hierarchy Push/Pop

E ?

i RST U 1

= CNT[27:0 Vhdl code

— CLk CNT[27:0] D0 S[6:0]

o

A CNTR LEDDCD

R of
" DSGMA A1 |
| 23, 2.1 | Hierarchy Push/Pop into macro symbols |Se|e|:t and Drag

An H will be attached to the cursor indicating that it can be used to descend through the
project hierarchy. Double-clicking the LEDDCD symbol loads the VHDL code describing
this macro into an HDL Editor window. You can modify and update the macro symbol if
needed.

» Schematic Editor - [DSGHN3_31.5CH]

Eile Edit Mode QOptions Hierarchy Yiew Display Toolz “Window Help _|E’|ﬂ

B|=|Ek8] & [e] Qe oo ald]e] 2 ol

%l 5|
_
= H
E RST U1
E CNT[27:0 Vhdl code I_
=1 CLK CMNT[27:0] D[3:0] S[6:0)
o RH
B CNTR LEDDCD
u of

" DSGM3 31 |
[59,29 | | Hierarchy Push/Pop

= ledded_vhd - HDL Editor M=l E3

File Edit Search “iew Synthesiz Project Tool: Help

D|=|"| | & [=(8] o]«] A Zfelselal 2|
1 [library IEEE; [~
2 use IEEE.std_logic_1164.all;

3

4 entity leddcd is

5 port

i] d: in STD_LOGIC VECTOR (23 downto B);

7 s: out STD_LOGIC_VECTOR {6 downto 8}

8 s

9 end leddcd;
140
11 architecture leddcd _arch of leddcd is
12 begin
13 with d select
14 s <= "1116111" when "@888",
15 "86186818" when "8861", —
16 “1811161" when "8818",
17 “1811811" when "8811",
18 "@111818" when "@1@68",
19 “1161811" when "8161",
20 “1161111" when "8@118",

21 18186818 when 8111, =
4 I I [
For Help, press F1 | Lni,Call [WHDL | | | [i

Assigning the I/O Ports to the CPLD Pins and Exporting the Netlist

Since the design is being targeted to an XS95-108 Board, the inputs and outputs of the
top-level module have to be connected to the CPLD pins as shown in F

S6
N —
85' S4
XC95108 J—-
e CRED 32' =8 '31
- S0
Q|0 5lp2 48
S IS 51Db3_ 50,
Q|Y 5lDb4 51,
£ |O 5|D5 52,
£ IS 5lbs 81
5 SGW 80,,
g0
T |5 O
o O
A

Figure 9: Connection of the programmable oscillator, parallel port, and LED digit
to the pins of the CPLD on the XS95 Board.

The completed schematic with all I/0 pads and their pin assignments is shown below.
The netlist for the entire design is created using the Options=>»Create Netlist command.

» Schematic Editor - [DSGHN3_31.5CH]

Eile Edit Mode | Options Hierarchy Yiew Display Tooks Window Help _|E’|ﬂ

S ENIE] Create natis A Shift+F2 ké{lw{l]::l %l E

:

Create Methst from Currént Shest
h Integrity Test Chl+F2 j
Integrity Test for Current Sheet S EIS(E 0]
Inteqrity Test Options. .. SEIS0 21
1 Ezpoart Metlist. . EENE p23
= SBUSZ _OeUr 19
= Annotate. . Chil-+K SBUS3 17
_L Replace Symbal... SBRUS4 : C E1 g
— Rename Met.. _ SAUSS | 14
= SBUSE | 15
— Eepart] R
ﬁ; B
— H1
C- inc
| F=—fk— ..l
P CHTR LEDDCD
[« _'I—I

" DSGM3 31 |
[25,00 | Hierarchy Push/Pop

Then the netlist is exported into the dsgn3_3.alb file in EDIF 2.0 format using the
Options=>»Export Netlist... command. Then the Schematic Editor window can be closed.

EonNeit EH
Lok in: |ﬁ degnd_3 j ﬁl
|1 DPMCOMP.THMP
b
= WProj

dsgn3_3.ab

File marme: degn3_3.alb Open

Cancel |

Filez of type: [i=faieli]

Implementing the Design
Now the implementation tools are run to map the netlist to the XC95108 CPLD chip.

‘»dzgn3d_3 - 95108-20PC84 - Project Manager _ O] x|

File Document “iew Project Implementation Tools Help

s EEI K R

Files \ Wersions \ Flany \ Contents \ Reports \ Synthesis \
B3 dsgn3_3
B & dsgn3_321.sch dsun3_3 (95108P C34-20)

=R 5
@ 1T $i1 - chi6re
@ I §i2- chdre = @ - p ?

- E1F §i3-chdre DesiGN ENTRY | SIMULATION
‘o Elrut - ledded A 4
- B dsgn3_3
— oo i
- B simprims %' » |’ ?— &*‘

-~ 2 %8500 IMPLEMENTAT YERIFICATION

Implermentation

B2

PROGRAMMING

Carny o Total number of nets: 4649 E
Carny EDIF netlist expaorted to file - CHIPRAGZTINDSGR3I_Adsgna_3.edn
Fecm EXIT: Schematic Editor

Consale I.-"' || 4 |

CHTR - DSGEM3_31/H1

e

The appropriate CPLD part must be specified in the Device and Speed fields of the
Implement Design window that apears. There is no need to specify a constraint file
with the pin assignments since these have already been added to the top-level
schematic.

Implement Design |

Device |95108PCa4 -] Speed |2n 'I

Werzion name; IVE"I

Bevizsion name: I'EV-I

Control Files: Options... |
Fur ’\J k. | Cancel | Help |
b

After this is done, the programming tools are used to generate an SVF file that can be
downloaded into the XS95-108 Board.

Downloading and Testing the Design

Open the directory containing the dsgn3_3 project files and drag-and-drop the
dsgn3_3.svf file into the gxsload window. The bitstream will download into the XS95
Board attached to the parallel port.

Fi

l= Edt “iew Go Favontez Help

J
je-» @ UBB D XE E

| Address |1 C:\Prag21idson3 3

Drop BIT, S¥F, HEX, and EX0
fileg here to download to the

45 or %5V Board [CIDPMCOMP.TMP [dsgna_dsbt |2] ledded.vhd
Recent Files: it degnd _31.5CH o8] ledded.snf

1 wproj ERRLOG.LOG a leddcd. xsf

] CHTR.5CH exp_EDIF log logiblas ini

] degn3_3.alb leddcd. al METLIST.LOG
=] dsgn3 2EDN Wyledded 45K [Z] time_sim.edn
] degn3_3.jed ledded ENT 8] types. dir

#] dsan3_3.pri ledded. ER] VHDL.LST

@ dzgn3_3.zvf leddzd log

@ dsgnd_3.uck ledded. opt

Belnad | [~ EEFROM Fort ILF'T'I vl

|1 object]z] selected | My Computer -

If pin DO of the parallel port is at logic 1 after the downloading completes, the counter will
be held in the reset state so only a static O is displayed. To release the reset, open the
gxsport window and click on the D0 button until it displays a 0.

X gxsport M =]
1] o o] o) o] @] e]
OY DE DR D4 D3 D2 D1 DEI

Stobe [™ Count Port ILF'T‘I vI

Then click on the Strobe button so the logic 0 value is output on the DO pin of the parallel
port.

X gxsport M= B
L O R O O O 1T N
07 DE D5 D4 DT D2 D1 DO
Stobe | [T Count F'-:nrtILF'T‘I 'I

Now you should observe the seven-segment LED running through the sequence: O, 1,
2,3,4,5,6, 7, 8,9, A, b, C, d, E, F,...with each digit being displayed for
roughly 1/3 seconds.

Creating a Macro Using LogiBLOX

Xilinx Foundation contains the LogiBLOX tool that lets you create many types of
commonly-used logic functions. Rather than having to create an entire schematic to
design a 28-bit counter, LogiBLOX lets you do it with a few mouse clicks. We will modify
the dsgn3_3 project to use a counter created with LogiBLOX. To start, make a copy of
the dsgn3_3 project using the File=»Copy Project menu item.

-# dsgn3_3 - 95108-20PC84 - Project Manager _ O] x|
Eile Document Miew Project Implementation Tool: Help

Mew Project. .. Crl+M E @l @-l ﬁl EI

Open Project... Ctrl+0

wl Flow ° Contents °, Reports , Synthesis
Delete Project... " Chrl+D

— verl reyl (RC95108-20-PCa4)

Archive Project...
Bestore Project...

Project [nfo ._._ @ ili— |’ F

Project Libraries... Chl+L DESIGM ENTRY '; SIMULATION

Project Type... Chl+T A 4
Preferences k %_ oo
: » » B R

1 dzgn3_3 IMPLEMENTATION YERIFICATION

2dzgnd 3

Jdzgnd 1

4 dzgn3_1a » ‘

E it PROGRAMMING

Fecm Copying files... E

Fecm o Cannot copy Xiling project with different name.
Fecm o Project 'dsgn3_3'in directory cprag21i has heen copied into ciprag21idsan3_3a
Consale I.-"' |!4| |

e

|Copy project

In the Copy Project window, name the new project dsgn3_3a.

Copy Project

— Source

]|
Fraject: Iu::'xprag21 ivdegn3 3. pdf Browse. .. |
[Browse.. |
|

— Destination

Marme: IIjSQI"IS_BEI

Directany: I'EZ"\II'TEIEI21 [Browze. .

k. e Cancel | Help

Open the dsgn3_3a project and then open the root module schematic (which still has
the name dsgn3_31.sch). In the Schematic Editor window, issue the Tools=»LogiBLOX
Module Generator command to begin creating a new counter macro.

* Schematic Editor - [DSGN3_31.5CH]

Fil= Edit Mode Options Hisrarchy Wiew Display | Tools Window Help =18 x]
= o Syrabol Wizard
I EAE RS 2 NQ L
ﬁl | |E&"| | | | | \l |@| L Spmbol Editor Chri+E |
| 3 .
@ Simulatar SEUSE:0] |
| Simulation Tool Box .
D Update Simulation ggﬁg%
Simulate Current Macro =
= — - =BUSZ
LogiB L Module Generatar SBUS3
- Impiort LooiB L0 SBUS‘Q_
'E CORE Generatar, SBUS5_
A Project Libranies. . SBUSEE
Update Libraries
=
HA1 Scratchpad
% D46 - Scanner 11
FPAD RET fowve Seanmner
— @ur . i\.{lrdl eode
53 TBUF B Project Manager - .
CNTR LEDDCD
1| of
" DSGMA A1 |

[31,02 | | Select and Drag

The LogiBLOX Module Selector window will appear. A pull-down list attached to the
Module Type field shows the range of functions that LogiBLOX can generate. Highlight the
Counters entry since that is what we wish to build.

*H LogiBLOX Module Selector = |
— Selection
0k
Module Hame: Module Type: Buz \Width: |_I
I j Accurnulatars j |4 j Canicel |
Accumulators
— Detail Adderz/Subtracters Setup |
=l Clock Dividers
Add/Sub Comparators I1zer Prefz |
Carmy Input v —— Constants
Drata Reqisters ﬂl
Decoders
Inputs/0utputs

B Memories
Multiplexers
Load [Pads Wiz

Clack Enable w —— Shift Registers Carry Cutput
Clock Simple Gates
ne Tristate Buffers
T OvEmow
Aszync. Contral [~ ¥ Cany Output

Spnc. Contral [

L Yalue = I

Operation = I.-’-'-.du:la"SuI:utran:t

Shyle = IMa:-:imum Speed

Led Led Lo

Encaoding = ILlnsigned

Azune. Wal = I

Sy, hal = I

Now set the following fields in the window:

1. Enter CNTR2 in the Module Name field (since we already have a macro named
CNTR).

2. Set the Bus Width field to 28.

3. Remove the checkmark in the D_IN box because we do not need to load arbitrary

values into the counter.

4. Remove the checkmark in the Clock Enable box because we do not need to disable

the incrementing of the counter.

5. Place a checkmark in the Sync. Control box that will be used as a synchronous
reset.

6. Enter 0 into the Sync. Val field. This value is loaded into the counter whenever a
rising clock edge occurs and the Sync. Control input is a logic 1. (Thus, the Sync.

Control acts as a synchronous reset input.)

7. Set the Operation field to Up since the counter only needs to be count in one

direction.
* LogiBLOX Module Selector =] |
— Selection 0K
tadule Harme: Madule Type: B s Width:
IENTFIE j I Counters j IEE j Cancel
— Detailz SELs

DN [el 0_0OUT User Prefs

Help

ik

Azpnc. Contral [
Sync. Contral v —
Clock Enable [~

Clock — [Terminal Count

Operation = |L||:| j

Shyle = IMa:-:imum Speed j

Encaoding = IEinar_l,l j
Count Limit = I
Agync, Val = I

Sunc. Yal = ID

gy, Count = I

Synz, Caunt = I

After clicking OK in the LogiBLOX Module Selector window, the CNTR2 macro will
appear in the part list in the Schematic Editor window.

{-) DSGH3_3 -]
CHTR —

LEDDCD
{-) XC9500
ACC
ACCE -

The CNTR2 macro can be dropped into the schematic drawing area and attached as
shown below. Then the netlist for the schematic can be extracted, exported,
implemented, downloaded, and tested using the XS95-108 Board as was done with the
dsgn3_3 project.

& Schematic Editor - [Modified - DSGN3_31.5CH]

Eile Edit Mode QOptions Hierarchy Yiew Dizplay Tool: Window Help =] x|

a2 k2] s e N Q| o e 2 ol

|5 4
@l SEUS[E]
SBUSD
1
1 SEUST keur 223
= L SEUSZ CELF pia
5BUS3 [<oeu
-1 SEUSH |fTeur E}g
k= | CNT[27:0] SBUSS [rom pld
= SHUSER LEu p15
OB
11
L~ pd6 EYNC CTAL il code
% FAD] D{E-D 5 [pf—
i e LEDDCD
p -
COUNTER
o o
" DSGMA A1 |

[47, 42 | | Select and Drag

	Hierarchical Design
	Objectives
	Hierarchy
	Hierarchical VHDL-Based Design
	Creating the VHDL Files for the Lower-Level Modules
	Adding a New Library to the Project
	Creating the Root Module
	Synthesizing the Netlist
	Assigning the I/O Signals to the FPGA Pins
	Implementing the Design
	Downloading and Testing the Design
	Consolidating the Packages

	Hierachical VHDL Design with Schematic-Based Modules
	Adding a Predefined Library to the Project
	Drawing the Lower-Level Counter Schematic
	Adding the Lower-Level Counter Module to the Project
	Modifications to the VHDL Code of the Root Module
	Synthesizing the Netlist
	Assigning the I/O Pins and Implementing the Design
	Downloading and Testing the Design

	Hierarchical Schematic-Based Design with VHDL Modules
	Creating the Schematic-Based Counter Macro
	Examining the Project Library
	Adding a VHDL-Based Macro to the Project Library
	Placing the Lower-Level Macros in the Root Schematic
	Examining Lower-Level Macros in the Hierarchy
	Assigning the I/O Ports to the CPLD Pins and Exporting the Netlist
	Implementing the Design
	Downloading and Testing the Design
	Creating a Macro Using LogiBLOX

