

 2001 by X Engineering Software Systems Corp., Apex, North Carolina 27502

All rights reserved. No part of this text may be reproduced, in any form or by any means, without
permission in writing from the publisher.

The author and publisher of this text have used their best efforts in preparing this text. These
efforts include the development, research, and testing of the theories and programs to determine
their effectiveness. The author and publisher make no warranty of any kind, expressed or
implied, with regard to these programs or the documentation contained in this text. The author
and publisher shall not be liable in any event for incidental or consequential damages in
connection with, or arising out of, the furnishing, performance, or use of these programs.

XESS, XS40, and XS95 are trademarks of X Engineering Software Systems Corp. XILINX,
Foundation, XC4000, and XC9500 are trademarks of XILINX Corporation. Other product and
company names mentioned are trademarks or trade names of their respective companies.

The software described in this text is furnished under a license agreement. The software may be
used or copied under terms of the license agreement.

© 2001 by XESS Corp.
i

Table of Contents

Table of Contents... i

0 ... 3

Introduction... 3

1 ... 6

VHDL-Based Design... 6

In this chapter you will learn how to:.. 6

Overall Design Flow.. 6

Starting a Project .. 9

Creating the VHDL Source Code .. 14

Synthesizing a Netlist.. 30

Running a Simulation .. 36

Implementing the Design... 56

Downloading and Testing.. 72

Retargeting the Circuit at an XC9500 CPLD.. 75

2 ... 97

Schematic-Based Design.. 97

In this chapter you will learn how to:.. 97

Overall Design Flow.. 97

Building the Counter Circuit for the XS40 Board.. 99

Starting the Project.. 99

Starting the Schematic Editor .. 100

Adding Components to the Schematic .. 101

Connecting the Components ... 107

Adding and Connecting to a Bus ... 114

© 2001 by XESS Corp.
ii

Assigning Pins to the Inputs and Outputs .. 123

Creating, Checking, and Exporting the Netlist ... 135

Running Simulations with the Schematic Editor... 139

Implementing, Downloading, and Testing the Counter Circuit 154

Examining the Counter circuit with the FPGA Editor.. 159

Building the Counter Circuit for the XS95 Board.. 169

© 2001 by XESS Corp. 97

2222
Schematic-Based Design

In this chapter you will learn how to:

� Use the schematic editor in Foundation 2.1i to create a logic circuit.

� Use the schematic editor as a graphical front-end for the logic simulator.

� Extract the netlist from a schematic for further processing by the rest of the tools in
Foundation 2.1i.

� Examine the arrangement of circuit components over the array of resources in the
FPGA or CPLD using the FPGA Editor or CPLD ChipViewer tools.

Overall Design Flow

The schematic-based design flow (Figure 1) is almost identical to the VHDL-based
design flow of the last chapter. The main difference is that the logic circuit is entered
graphically using a schematic editor instead of as VHDL source code using a text editor.
The graphical editor extracts the netlist from the drawn circuit and exports it to the rest of
the Foundation 2.1i tools for simulation, implementation, and bitstream generation. The
latter steps are accomplished the same way as was done in the VHDL-based design
flow.

In the rest of this chapter we will follow the design flow of Figure 1 while designing a
simple counter circuit. The 24-bit counter will take 50 MHz clock signal from a
programmable oscillator on the XS40 or XS95 Board and the top and bottom segments
of the LED digit are driven by the upper two bits of the counter. The upper segment will
flash approximately three times each second (50,000,000 / 224 = 2.98) and the lower
segment will blink twice as fast.

© 2001 by XESS Corp. 98

XS40 or XS95
Board

Synthesize

Im
ple

men
t

Sim
ulate

Generate Bitstream

Download and Test

entity leddcd is
 port(
 d: in std_logic_vector(3 downto 0);
 s: out std_logic_vector(6 downto 0);
);
end;

architecture leddcd_arch of leddcd is
begin
 s <= "1110111" when d="0000" else
 "0010010" when d="0001" else
 "1101101";
end leddcd_arch;

Bitstream
101010010101100101
010110101010110101
010110100101101011
01010100101010101
010101010100110101
011011011010100101
011010010101100101
100101100101010100
101010110100110100
101100110001010101

Netlist

CPLD

macrocellfunction
block

routing
matrix

FPGA

CLBslice

routing
resources

in0
in1
out

Export

Schematic Editor

Figure 4: Steps in creating and testing an FPGA or CPLD-based design.

© 2001 by XESS Corp. 99

Building the Counter Circuit for the XS40 Board

Starting the Project

Once again we start the Foundation 2.1i software and click on the Create a New Project
radio-button to begin our schematic-based design.

In the New Project window that appears, I set the design name to dsgn2_1 and elected
to store the project design files in the C:\PRAG21I directory. Select a schematic-based
design flow by clicking the Schematic radio-button if it isn’t already selected. Then choose
the FPGA or CPLD family, device, and speed grade in the three fields at the bottom of
the window. I will target this design at an XS40-005XL Board, so I selected the
XC4005XLPC84 FPGA of the XC4000XL FPGA family with a -3 speed grade.

© 2001 by XESS Corp. 100

Starting the Schematic Editor

After clicking OK in the New Project window, the Project Manager window will appear
as shown below. Since we are targeting the XC4005XL FPGA, the xc4000x library is
automatically added to the file hierarchy of the project. To begin building the design,
click on the Schematic Editor icon in the Project Flow pane.

© 2001 by XESS Corp. 101

Adding Components to the Schematic

An empty Schematic Editor window will appear. The schematic is named
DSGN2_11.SCH by default, but you can change it later when you save it. We need
components to construct a circuit schematic, so click on the Symbols toolbox icon.

© 2001 by XESS Corp. 102

The SC Symbols window will appear containing a list of all the components that are
available to us for constructing a circuit with the XC4005XL FPGA. The information
about these components is stored in the xc4000x library that is part of the project. (Each
FPGA and CPLD device family has its own specialized library of components that take
advantage of the particular features found in each family.) As you scroll through the list,
a short description of each component appears at the bottom of the SC Symbols
window. Stopping on the CC16CE entry shows that it represents a 16-bit counter. This is
the largest counter we can find in the list, so leave this entry highlighted.

© 2001 by XESS Corp. 103

Once the mouse cursor leaves the SC Symbols window and re-enters the Schematic
Editor window, you will see that a symbol for the 16-bit counter is attached to the cursor.

© 2001 by XESS Corp. 104

You can place the counter in the schematic by clicking the left mouse button. The
symbol will be labeled with the component name and the input and output terminals will
be labeled with their names.

© 2001 by XESS Corp. 105

We need a 24-bit counter, so go back to the SC Symbols window and find the 8-bit
counter CC8CE and add it to the schematic as shown below. These two counters will be
cascaded to form the complete 24-bit counter.

© 2001 by XESS Corp. 106

The counters need to be connected to a clock signal that will make them increment their
values. The clock needs to enter the FPGA chip through an input pin and then get on
the clock network in the FPGA that connects all the flip-flops in the FPGA. To do this go
back to the SC Symbols window, find the IPAD component that represents an FPGA
input pin, and add it to the schematic. Then add a clock-buffer (BUFG) component that
transfers any signal on its input onto the FPGA clock network. Those are all the
components we need for the moment, so remove the SC Symbols window by double-
clicking in its upper-left corner.

© 2001 by XESS Corp. 107

Connecting the Components

We now start connecting these components together by clicking on the Draw wires icon.
After doing this, the mouse cursor will appear as a pencil.

© 2001 by XESS Corp. 108

Position the mouse cursor over the input pad terminal and click the mouse.

© 2001 by XESS Corp. 109

A wire now connects the IPAD to the mouse wherever the mouse moves to. To connect
the input pad to the clock buffer, position the mouse over the input terminal of the BUFG
symbol and click the mouse.

© 2001 by XESS Corp. 110

Now a line connects the IPAD and BUFG symbols, symbolizing a wire connecting the
input pin to the clock buffer. The mouse cursor is detached from the wire so it can be
used to initiate the creation of other wires.

© 2001 by XESS Corp. 111

The clock signal can be connected to the clock inputs of both counters by drawing wires
from the output of the BUFG symbol to the clock input terminals of both counters as
shown below.

© 2001 by XESS Corp. 112

In order to function as a 24-bit counter, the 8-bit counter should only increment when the
16-bit counter rolls over from 0xFFFF to 0x0000. (Thus the 8-bit counter increments
once for every 65,536 clock pulses.) The 16-bit counter has an output (CEO) that goes
to a logic 1 only when the counter value is 0xFFFF. Connecting CEO to the clock-
enable input (CE) of the 8-bit counter means the 8-bit counter will only react to a clock
pulse whenever the 16-bit counter contains the value 65535.

© 2001 by XESS Corp. 113

Unlike the 8-bit counter, the 16-bit counter should increment on every clock pulse so its
clock-enable input should be driven to a logic 1 at all times. To do this, re-open the SC
Symbols window and add a VCC symbol to the schematic. Then attach the VCC symbol
to the CE input of the 16-bit counter with a wire. Each counter also has a CLR input that
clears the counter to zero when the input is driven high. To keep the counters from
inadvertently being cleared during the operation of the circuit, add two GND symbols and
attach one to each CLR input.

© 2001 by XESS Corp. 114

Adding and Connecting to a Bus

Now the two counters are cascaded and their inputs are set appropriately, so we can
turn our attention to the counter outputs. We need to connect the upper two bits of the
8-bit counter output bus to LED segments on the XS40 Board. To gain access to these
two bits, we begin by clicking on the Draw buses icon.

© 2001 by XESS Corp. 115

Next, click on the output bus terminal of the 8-bit counter and draw a bus downward.

© 2001 by XESS Corp. 116

Click the right mouse button to bring up a pop-up window that will be used to terminate
the bus. Select the Add Bus Label… entry and release the right mouse button.

The Add Bus Terminal/Label window will appear. Type the name for the bus in the
Name field (we will use CNT for this example) and then click on OK.

© 2001 by XESS Corp. 117

The bus is now shown with the CNT label. The CNT bus is eight bits wide with indices for
the individual bus wires running from 7 down to 0.

© 2001 by XESS Corp. 118

Now add output pins (symbol OPAD in the SC Symbols window) and output buffers
(symbol OBUF). Then wire the output terminal of each output buffer to one of the output
pins.

© 2001 by XESS Corp. 119

Now we need to tap-off the upper two bits of the CNT bus and send them to the output
pins. Click on the Draw bus taps icon to initiate this step.

© 2001 by XESS Corp. 120

Now click on the bus you want to tap into (CNT, in this case). The particular wire in the
bus that is being tapped into is shown in the status line at the bottom of the Schematic
Editior window. You can use the up-arrow and down-arrow keys to change the index of
the tapped wire.

© 2001 by XESS Corp. 121

Once you have set the correct bus wire to tap, click the mouse cursor on the destination
terminal where the bus wire should connect. In the example shown below, the CNT7
bus wire is being connected to the lower output buffer.

© 2001 by XESS Corp. 122

Once you click the mouse on the destination terminal, the labeled bus wire is drawn
between the bus and the terminal.

© 2001 by XESS Corp. 123

The procedure can be repeated to connect the upper output buffer to bus wire CNT6.

Assigning Pins to the Inputs and Outputs

The circuit is now complete, but now we need to assign the inputs and outputs to the
correct pins of the FPGA on the XS40 Board as shown in Figure 5.

S0

S1S2 S3

S4S5

S6

S0

S6

25

19

13 XC4005XL
FPGA

Prog.
Osc.

Figure 5: Connection of the programmable oscillator and LED digit to the pins of
the FPGA on the XS40 Board.

© 2001 by XESS Corp. 124

We begin with assigning the clock input by right-clicking on the IPAD symbol. Select the
Symbol Properties… item in the pop-up menu that appears.

© 2001 by XESS Corp. 125

The Symbol Properties window shows the values for the various attributes of the input
pin. The input pad has already been automatically assigned an internal reference name
of $I4.

© 2001 by XESS Corp. 126

We can substitute a more descriptive reference name (CLK) for the internal name as
shown below. Click on the Apply button to activate the name change.

© 2001 by XESS Corp. 127

Next we need to assign the location of the physical pin on the FPGA package to this
IPAD symbol. In the Parameters section of the window, select LOC from the drop-down list
attached to the Name field.

© 2001 by XESS Corp. 128

Next set the pin location into the Description field. The clock signal from the oscillator on
the XS40 Board enters the FPGA through pin 13, so type P13 in the field. Then click the
Add button.

© 2001 by XESS Corp. 129

The assigned pin location will now appear at the bottom of the list of parameters for this
IPAD symbol. The two dots in the left-hand margin indicate that the parameter name and
value will appear in the schematic window attached to the IPAD symbol.

© 2001 by XESS Corp. 130

Double-clicking the parameter name-value pair removes one of the dots. This indicates
that only the parameter value will appear in the schematic window. (Double-clicking
again removes all the dots so neither the name or parameter value appears.)

© 2001 by XESS Corp. 131

Click on OK to remove the Symbol Properties window. The named IPAD symbol
appears in the Schematic Editor window along with its pin assignment.

© 2001 by XESS Corp. 132

We can repeat this process to set the name and pin assignment for the upper and lower
OPAD symbols to (S0, pin 25) and (S6, pin 19), respectively. These assignments
connect the CNT7 and CNT6 signals to the top and bottom segments of the LED digit on
the XS40 Board, respectively. The pin reference names and pin assignments are
awkwardly placed on the schematic, so we can reposition them by right-clicking on an
OPAD symbol and selecting either Move Symbol Reference or Move Symbol Parameters from the
pop-up list, respectively.

© 2001 by XESS Corp. 133

Once the pin names and assignments are positioned correctly, we need to change the
net names of the wires that connect to the input and output pins so they match the
names of the pins. This is not absolutely necessary, but it will help us later when we
must interpret the report files generated by the implementation tools. To rename the
clock net attached to the CLK input pin, just right-click on the wire and select Rename
Net… from the pop-up menu.

The Rename Net window that appears shows the automatically-generated name of the
clock input net ($NET00002_). As shown below, we enter the replacement net name
(CLK) and then click on OK.

© 2001 by XESS Corp. 134

Once the Rename Net window disappears, the new name for the clock input net
appears in the Schematic Editor window. The process can be repeated to rename the
nets attached to the S0 and S6 output pins as shown below.

© 2001 by XESS Corp. 135

Creating, Checking, and Exporting the Netlist

Now that we have the logic circuit constructed and all the nets and pins named and
assigned appropriately, we can begin the process of creating and exporting a netlist that
can be used by the implementation tools to compile the circuit for the XC4005XL FPGA.
Start this phase by selecting the OptionsÆCreate Netlist menu item.

The netlist for the logic circuit will be generated in a few seconds and a window will
appear informing us that the netlist was created but some possible trouble spots exist.

© 2001 by XESS Corp. 136

We can examine the list of warnings in the Command History pane of the Project
Manager window. Scrolling through the list shows that they all relate to outputs from the
counters that we don’t need to use for this particular design. So the warnings can be
ignored in this case.

© 2001 by XESS Corp. 137

Once the netlist is generated, we can select the OptionsÆIntegrity Test menu item to run a
sequence of checks on the logic circuit.

The integrity test will complete in a few seconds and once again we will be informed that
some potential problems were found. Checking the Command History pane shows the
same set of errors found during the netlist creation step, so we don’t have to be
concerned.

© 2001 by XESS Corp. 138

Now that the netlist for our logic circuit has been generated and checked, we can export
it in a format that can be used by the implementation tools. Select the OptionsÆExport
Netlist… menu item to do this.

The Export Netlist window appears which allows you to select the directory and
filename for the netlist. By default, the netlist file is placed in the top directory of the
project with the same base name as the schematic file (dsgn2_1). There are three
possible types for the exported netlist: Electronic Data Interchange Format (EDIF),
XILINX Netlist Format (XNF), and as VHDL source code. EDIF is the preferable format
in the majority of cases. Click on the Open button to create the EDIF netlist for our logic
circuit.

© 2001 by XESS Corp. 139

Running Simulations with the Schematic Editor

The netlist has been exported, so we can now implement the design and test it in the
FPGA on the XS40 Board. But we might want to simulate the circuit before doing that
just to make sure it works. The problem with runningna simulation is the counter
requires 224 = 16,777,216 clock cycles to go through all possible states. This would take
a long time, so it might be more efficient just to test the upper byte of the counter to
make sure that works as expected. In order to ease the interpretation of the simulation
results, we need to rename the 8-bit counter. Start the renaming step by double-clicking
the CC8CE counter symbol.

© 2001 by XESS Corp. 140

In the Symbol Properties window that appears, replace the automatically-generated
name in the Reference field with CNTR. Then click on OK.

© 2001 by XESS Corp. 141

The new name for the 8-bit counter now appears in the Schematic Editor window. Now
click on the Simulation toolbox toolbar button to begin setting-up the simulation.

© 2001 by XESS Corp. 142

In the SC Probes window that appears, click on the Probe tool button that allows us to
select various points to monitor in the circuit.

© 2001 by XESS Corp. 143

With the Probe tool active, click on the TC output of the 8-bit counter. A grey box will
appear to indicate we have attached a probe to this output.

© 2001 by XESS Corp. 144

Add more probes to the CEO and Q[7:0] outputs of the counter.

© 2001 by XESS Corp. 145

In addition to the probes, we need to apply a stimulus to the inputs of the counter so it
will do something. Click on the Stimulator tool button to initiate the adding of stimulators.

© 2001 by XESS Corp. 146

Now click on the clock and clock-enable inputs of the counter to add stimulators to these
inputs. The logic signals applied by the stimulators will override any logic levels from the
clock buffer and 16-bit counter outputs already attached to these inputs.

© 2001 by XESS Corp. 147

Once the counter’s inputs and outputs are set-up, click on the Simulator button to bring up
the Logic Simulator window.

© 2001 by XESS Corp. 148

The Logic Simulator window lists the various inputs and outputs to which we attached
the stimulators and probes. Note that each input and output is prefixed with the
reference name we assigned to the 8-bit counter. If we had not renamed the counter, it
would have been more difficult to associate the various inputs and outputs with the
probe points in the Schematic Editor window, especially in more complicated designs
where we might monitor more than a single component.

© 2001 by XESS Corp. 149

We still need to describe the stimulus that enters the circuit through each stimulator.
Select the SignalÆAdd Stimulators… menu item. Then highlight the CNTR.C input and click
on the B0 bit of the binary counter Bc in the Stimulator Selection window. This sends a
clock waveform to the clock input of the CNTR counter.

We will place a manual stimulator on the clock-enable input of the counter. Highlight the
CNTR.CE input and then click on the Q key in the Stimulator Selection window. Now the
logic level on the CNTR.CE input will toggle whenever we press the Q key on the
keyboard. Then click on Close to remove the Stimulator Selection window.

© 2001 by XESS Corp. 150

Press Q several times and watch the level on CNTR.CE toggle from logic 0 to 1 and back.
Leave the clock-enable set to 0 to disable the counter. Then lcick on the Simulation
Step toolbar button to run a few clock cycles through the counter.

This logic level indicator will move up
and down as the Q button is pressed.

Note that the counter value remains at 0x00 and does not increment as the clock pulses
because the clock-enable input is held low.

Counter value does
not change.

© 2001 by XESS Corp. 151

Now press the Q key to toggle the clock-enable input to a logic 1. Then run another
simulation step. Now we see the 8-bit counter increment its value on the rising edge of
every clock cycle.

Every 100 ns simulation step applies ten clock cycles to the counter. We could click on
the Simulation Step button 26 times in order to generate 260 clocks and observe the
counter rollover from 0xFF to 0x00. But it’s easier to change the duration of each
simulation step by selecting 1 µs from the pulldown list as shown below. Now we only
need to run three simulation steps to rollover the counter.

© 2001 by XESS Corp. 152

After three clicks on the Simulation Step button, we can use the slider at the bottom of the
Waveform Viewer window to bring the counter rollover event into view. Note that the
clock-enable output of the counter (CNTR.CEO) becomes active on the cycle before the
rollover. This output could enable another counter so that it increments once when the
rollover of this counter occurs. This is the behavior we want to get by connecting the
CEO of the 16-bit counter to the clock-enable of the 8-bit counter. By observing the
operation of the CEO in the 8-bit counter, we gain some measure of assurance that the
16-bit counter will operate similarly. So the 8-bit counter should only increment when the
16-bit counter rolls over.

Move the slider
until the rollover
event appears.

Counter rollover event

© 2001 by XESS Corp. 153

We can view the logic levels on the various inputs and outputs by clicking the mouse in
the Waveform Viewer window. This causes a cursor-line to appear and the value of
each signal is shown at the left-hand side of the window. You can also view the signal
levels attached to the probes in the Schematic Editor window.

Click the mouse to
set the cursor line Signal logic levels are

shown in this column

Signal logic levels at the
cursor line appear in the
probes and stimulators

Counter value at the
cursor line appears
in the probe

© 2001 by XESS Corp. 154

Implementing, Downloading, and Testing the Counter Circuit

Once we have validated that the circuit should work, we can return to the Project
Manager window. Since we successfully exported the netlist, there are green
checkmarks by the schematic filename in the Project Hierarchy pane and in the Design
Entry block of the Project Flow pane. Clicking on the Implementation block will initiate the
compilation of the netlist into a bitstream for the FPGA.

The Implement Design window will appear. There is no need to change any of the
options from their default values for this design, so click on the Run button.

© 2001 by XESS Corp. 155

The tools should run uneventfully through all five phases of implementation process.

The success of the implementation will be reported. Click on OK to return to the Project
Manager window.

© 2001 by XESS Corp. 156

Note the green checkmark in the Implementation block in the Project Flow pane,
signaling a sucessful compilation of a bitstream for the FPGA. We can click on the
implementation report browser button as shown below to peruse some of the statistics
about this circuit.

Click on the Pad Report icon in the Report Browser window so we can check whether our
circuit’s inputs and outputs were assigned to the correct pins.

© 2001 by XESS Corp. 157

In the pad report file, we can see that the inputs and outputs were assigned as we
directed.

Pinout by Pin Name:
+--+-----------+--------------+
| Pin Name | Direction | Pin Number |
+--+-----------+--------------+
CLK	INPUT	P13
S0	OUTPUT	P25
S6	OUTPUT	P19
+--+-----------+--------------+

Next we can check the timing statistics of the placed-and-routed circuit by clicking on the
Post Layout Timing Report.

Near the bottom of the timing report file we find a summary for the counter circuit:

Timing summary:

Timing errors: 0 Score: 0

Constraints cover 326 paths, 38 nets, and 54 connections (100.0% covera

Design statistics:
 Minimum period: 23.081ns (Maximum frequency: 43.326MHz)
 Maximum net delay: 8.110ns

Note that the maximum clock we can apply to this circuit is 43 MHz. Using a higher
frequency could lead to incorrect operation depending upon factors like temperature and
supply voltage variations.

© 2001 by XESS Corp. 158

We can drag-and-drop the bitstream file from the top-level directory of the project into
the GXSLOAD window.

The bitstream for the counter circuit will download into the FPGA on the XS40 Board and
start to operate. If the oscillator on the XS40 Board is programmed for 50 MHz (the
default frequency), then the upper segment of the LED digit will blink approximately
three times per second while the lower segment blinks six times per second.

Why does the circuit work at 50 MHz when the timing report listed the maximum
operating frequency as 43 MHz? Probably because your XS40 Board is sitting at room
temperature with a solid, lightly-loaded supply voltage. If the temperature was increased
to 70° C and the supply voltage drooped to 3.0V, then you might see the counter missing
a beat. The only way to guarantee the circuit works across all variations of temperature
and supply voltage is to decrease the input clock frequency and/or redesign the counter
circuit.

© 2001 by XESS Corp. 159

Examining the Counter circuit with the FPGA Editor

The counter circuit was implemented in the FPGA and it works as planned, but exactly
how are the pieces of the circuit arranged in the FPGA? We can find out by activating
the FPGA Editor as shown below.

The FPGA Editor operates on Native Circuit Description (NCD) files that list the locations
of circuit elements and nets within the array of CLBs and routing resources of the FPGA.
Your project may contain several NCD files, but you should usually select the one with
the same name as the project as follows.

© 2001 by XESS Corp. 160

The FPGA Editior window will appear with three subwindows in it. The Array window
shows the layout of the circuit components within the 14×14 array of CLBs in the
XC4005XL FPGA. The List window lists all the components in the circuit. And the
World window shows the area of the chip that is currently displayed in the Array window
(this is most useful for orienting yourself when you have zoomed-in on the circuit in the
Array window).

© 2001 by XESS Corp. 161

You can click on entries in the List window and the associated element in the Array
window will be highlighted. Below, I have clicked on the CLK input buffer in the List
window and red squares have appeared in the upper left-hand corner of both the Array
and World windows to indicate the location of this IOB in the FPGA. (The red square in
the Array window is very small, so you may have to zoom-in a bit to see it.)

CLK IOB

© 2001 by XESS Corp. 162

You can highlight a set of components in the List window by clicking on the first element
of the set and then shift-click on the last element. Doing this with the 16-bit counter
(whose internal reference name in the schematic is $I2) shows that the counter is
arranged as a column of 8 CLBs with each CLB containing 2 counter bits.

© 2001 by XESS Corp. 163

You can also select non-adjacent components by ctrl-clicking on different list entries.
The CLK input pad, clock buffer, and least-significant bit of the 16-bit counter are
selected below.

CLK IOB

clock buffer

LSB of 16-
bit counter

© 2001 by XESS Corp. 164

You can look at the details of what is implemented in each CLB by double-clicking the
CLB in the Array window.

© 2001 by XESS Corp. 165

The detailed routing within the CLB for the two least-significant bits of the 16-bit counter
is shown below. Each CLB contains many possible routes between components (shown
as purple lines), but only a few are activated for each particular function (shown as blue
lines). The clock for the counter bits enters at ➀ and connects to the clock inputs for the
counter flip-flops at ➁ and ➂. The output from the least-significant counter bit comes out
of the CLB at ➃ but also feeds back into the CLB again at ➄. The counter bit enters the
lookup table at ➅. The LUT just inverts the counter bit before sending it back into the
data input of the flip-flop at ➆. This makes the least-significant bit toggle back and forth
from 0 Æ 1 Æ 0 … on each successive rising clock edge.

 1

 3

 2

 4

 5
 6

 7

© 2001 by XESS Corp. 166

The second bit of the counter exits the CLB at ➀ and re-enters it at ➁. The LUT accepts
the counter bit along with the output of the carry-generation block at ➂. The LUT will
toggle the value of the second counter bit if the carry output at ➂ is high. Then the
updated counter bit enters the second counter flip-flop at ➃. The result is that the
second counter bit follows the pattern 0 Æ 0 Æ 1 Æ 1 Æ 0 Æ … on successive clock
rising clock edges.

The carry-generation block is set to act as an incrementer since that is what a counter
does. The carry input to the carry generator at ➄ is forced to a logic 1 for the first
counter stage so that the counter will increment. The carry generator also takes the
values of the two counter bits at ➅ and ➆ to compute the carries for the second counter
bit at ➂ and the carry for the third counter bit at ➇. The carry at ➇ exits the CLB at ➈ so
it can be routed to the third counter bit in the next CLB.

 1

 3

 2 4

 5

 6

 7

 9

 8

© 2001 by XESS Corp. 167

For the rest of the counter bits, the carry output from the preceding CLB feeds into the
carry generator of the next CLB at ➀. The carry input also feeds directly into the LUT of
the lower counter bit within each CLB at ➁.

 1

 2

The carry output from the final bit of the 16-bit counter becomes the clock-enable for the
8-bit counter that follows. The carry output will only go to logic 1 when the 16-bit counter
value is 0xFFFF, and this is what’s needed to enable an increment of the 8-bit counter.
The carry output from the final bit in the 16-bit counter enters another CLB at ➀ and
passes through an LUT at ➁ and is output unchanged at ➂. This output becomes the
clock-enable for the 8-bit counter. This intermediate CLB is needed to make the
interchange because there is no direct route from the carry output of the 16-bit counter
to the clock-enable input of the 8-bit counter.

 1

 2
 3

© 2001 by XESS Corp. 168

The implementation of the counter bits for the 8-bit counter is very similar to that of the
16-bit counter. The only difference is the clock-enable that enters at ➀ and passes
through the multiplexer at ➁. Then the clock-enable enters the flip-flops at ➂ and ➃ so
the eight-bit counter only increments on the rising edge of the clock when the 16-bit
counter has a value of 0xFFFF.

 1 2

 3

 4

The outputs from the upper two bits of the 8-bit counter are output from the FPGA
through IOBs. The output from the most-significant bit of the 8-bit counter enters the
IOB at ➀ and passes through a multiplexer at ➁. The output of the multiplexer goes
through a buffer at ➂ that drives a pin of the FPGA package at ➃.

 1
 2

 3

 4

© 2001 by XESS Corp. 169

Building the Counter Circuit for the XS95 Board

The counter circuit can be built for an XS95 Board with an XC95108 CPLD by starting a
new schematic-based project as shown in the following screen. (You can’t just create a
new version as we did in the last chapter because a completely different library of
schematic symbols for the XC9500 CPLD needs to be linked to the project.)

Then re-create the schematic using the library of XC9500 schematic symbols. Note that
the pin assignments are different since this design is intended for the XS95-108 Board
(see Figure 6).

© 2001 by XESS Corp. 170

S0

S1S2 S3

S4S5

S6

S0

S6

21

15

9 XC95108
CPLD

Prog.
Osc.

Figure 6: Connection of the programmable oscillator and LED digit to the pins of
the CPLD on the XS95 Board.

After creating and exporting the netlist for the counter circuit, activate the implementation
tools to fit it into the XC95108 CPLD.

© 2001 by XESS Corp. 171

The implementation tools should proceed through all four stages without incident.

© 2001 by XESS Corp. 172

Once the schematic entry and implementation steps are complete, click on the
Programming box in the Project Flow pane. Then create an SVF bitstream file for the
counter circuit.

© 2001 by XESS Corp. 173

Finally, download the SVF file into the XC95108 CPLD on the XS95 Board. Once again,
if the oscillator on the XS95 Board is programmed for 50 MHz (the default frequency),
then the upper segment of the LED digit will blink approximately three times per second
while the lower segment blinks six times per second.

© 2001 by XESS Corp. 174

We can examine the arrangement of the circuit components over the macrocells of the
XC95108 CPLD by starting the CPLD ChipViewer tool as shown below.

© 2001 by XESS Corp. 175

The ChipViewer window appears with a right-hand subwindow that shows which
macrocells and pins are used. The left-hand subwindow displays the collapsed
hierarchy of the counter circuit. Click on the plus sign to expand the hierarchy.

© 2001 by XESS Corp. 176

Expanding the dsgn2_2 entity exposes the six functional blocks (FB1–FB6) of the
XC95108 CPLD. Four of the functional blocks are empty, but FB1 and FB3 contain
components of the counter circuit and can be expanded further. As shown below, the
clock signal enters through FB1 and the two outputs are generated by macrocells in
FB3.

To examine the functions of the macrocells, click in the right-hand window and then click
several times on the zoom-in button.

© 2001 by XESS Corp. 177

Poising the mouse cursor over on of the I/O pins or over a macrocell displays the
particular options that are active for that object. For example, macrocell MC3 in FB3 is
configured in a mid-level power-consumption mode and the flip-flop in the macrocell will
be preloaded with logic 0 upon when the CPLD powers up. We can observe more
details by double-clicking the macrocell.

© 2001 by XESS Corp. 178

A window appears that shows the details of macrocell MC3 in FB3 including the list of
inputs that affect the macrocell and the associated logic equation.

For the most part, that’s all you can do with ChipViewer. It doesn’t yet have all the
features you will find in FPGA Editor. If you like graphical displays and a point-and-click
interface, then ChipViewer may be the tool for you. I prefer to just look in the fitter report
file for the CPLD where all the same information (and more) is presented in a condensed
format.

	Pragmatic Logic Design With XILINX Foundation 2.1i
	Copyright
	Table of Contents
	Schematic-Based Design
	Objectives
	Overall Design Flow
	Building the Counter Circuit for the XS40 Board
	Starting the Project
	Starting the Schematic Editor
	Adding Components to the Schematic
	Connecting the Components
	Adding and Connecting to a Bus
	Assigning Pins to the Inputs and Outputs
	Creating, Checking, and Exporting the Netlist
	Running Simulations with the Schematic Editor
	Implementing, Downloading, and Testing the Counter Circuit
	Examining the Counter circuit with the FPGA Editor

	Building the Counter Circuit for the XS95 Board

