SUPPLEMENT

A.6-5

ERROR DETECTION
AND CORRECTION

his supplement which appeared as a section in the first edition of Logic and
Computer Design Fundamentals illustrates error detection and correction using
Hamming codes. These codes serve as a basis for error detection and
correction in semiconductor memories, in particular, DRAM.The supplement is
provided here for optional coverage following Section 6-4 of the second edition.
0 1997, 2000 Prentic-Hall, Inc.

The small size of the transistors or capacitors, combined with cosmic ray effects,
causes occasional errors in stored information in large, dense RAM chips, particu-
larly those that are dynamic. These errors can be detected and corrected by
employing error-detecting and -correcting codes in RAMs. The most common
error detection scheme is the parity bit. (See Section 2-7.) A parity bit is generated
and stored along with the data word in memory. The parity of the word is checked
after reading the word from memory. The word is accepted if the parity of the bits
read out is correct. If the parity of the bits read is incorrect, an error is detected,
but it cannot be corrected.

An error-correcting code uses multiple parity check bits that are stored with
the data word in memory. Each check bit is a parity bit for a group of bits in the
data word. When the word is read back from memory, the parity of each group,
including the check bit, is evaluated. If the parity is correct for all groups, it signi-
fies that no detectable error has occurred. If one or more of the newly generated
parity values is incorrect, a unique pattern called a syndrome results that may be
able to identify which bit is in error. A single error occurs when a bit changes in
value from 1 to 0 or from 0 to 1 while stored or if it erroneously changes during a
write or read operation. If the specific bit in error is identified, then the error can
be corrected by complementing the erroneous bit.



The most common types of error-correcting codes used in RAM are based on the
codes devised by R. W. Hamming. In the Hamming code, k parity bits are added to
an n-bit data word, forming a new word of n + k bits. The bit positions are num-
bered in sequence from 1 to n + k. Those positions numbered with powers of two
are reserved for the parity bits. The remaining bits are the data bits. The code can
be used with words of any length.

Before giving the general characteristics of the Hamming code, we will illus-
trate its operation with a data word of eight bits. Consider, for example, the 8-bit
data word 11000100. We include four parity bits with this word and arrange the 12
bits as follows:

Bit position 1 2 3 4 5 6 7 8 9 10 11 12
P, P, 1 P, 1 0 0 Pg 0 1 0 O
The 4 parity bits P, through Pg are in positions 1, 2, 4, and 8, respectively. The 8

bits of the data word are in the remaining positions. Each parity bit is calculated as
follows:

P, = XOR of bits (3,5,7,9,11) = 101000000=0
P, = XOR of bits (3, 6, 7,10, 11) = 100000100=0
P, = XOR of bits (5, 6,7,12) = 1000000=1

Pg = XOR of bits (9, 10, 11,12) = 0010000=1

Recall that the exclusive-OR operation performs the odd function. It is equal to 1
for an odd number of 1's among the variables and to 0 for an even number of 1’s.
Thus, each parity bit is set so that the total number of 1’s in the checked positions,
including the parity bit, is always even.

The 8-bit data word is written into the memory together with the 4 parity bits
as a 12-bit composite word. Substituting the 4 parity bits in their proper positions,
we obtain the 12-bit composite word written into memory:

Bitpositon 1 2 3 4 5 6 7 8 9 10 11 12
o 0 1 1 1 0 O 1 O 1 0 0

When the 12 bits are read from memory, they are checked again for errors. The
parity of the word is checked over the same groups of bits, including their parity
bits. The four check bits are evaluated as follows:

C, = XOR of bits (1, 3,5, 7, 9, 11)
C, = XOR of bits (2, 3, 6, 7, 10, 11)
C, = XOR of bits (4, 5, 6, 7, 12)

Cg = XOR of bits (8, 9, 10, 11, 12)

2 SUPPLEMENT A.6-5 / ERROR DETECTION AND CORRECTION



A 0 check bit designates an even parity over the checked bits, and a 1 designates an
odd parity. Since the bits were written with even parity, the result, C = C3C,C,C; =
0000, indicates that no error has occurred. However, if C#0 , the 4-bit binary num-
ber formed by the check bits gives the position of the erroneous bit if only a single
bit is in error. For example, consider the following three cases:

Bitpositon 1 2 3 4 5 6 7 8 9 10 11 12
o 0 1 1 1 0 0 1 O 1 0 0 Noerror
1 0 1 1 1 0 O 1 O 1 0 0 Errorinbitl
o 0 1.1 0 O 0 1 O 1 0 0 Errorinbits

In the first case, there is no error in the 12-bit word. In the second case, there is an
error in bit position number 1 because it changed from 0 to 1. The third case shows
an error in bit position 5 with a change from 1 to 0. Evaluating the XOR of the cor-
responding bits, we determine the four check bits to be as follows:

Cg C4 Cz Cl

No error 0 0 0 0
Errorinbitl 0 0 0 1
Errorinbit5 0 1 0 1

Thus, for no error, we have C = 0000; with an error in bit 1, we obtain C = 0001;
and with an error in bit 5, we get C = 0101. Hence, when C is not equal to 0, the
decimal value of C gives the position of the bit in error. The error can then be cor-
rected by complementing the corresponding bit. Note that an error can occur in
the data or in one of the parity bits.

The Hamming code can be used for data words of any length. In general, for k
check bits and n data bits, the total number of bits, n + k, that can be in a coded
word is at most 2% — 1. In other words, the relationship n+k<2k—1 must hold.
This relationship gives n<2k—1-k as the number of bits for the data word. For
example, when k=3, the total number of bits in the coded word is

n+k<23-1=7 , giving n<7-3=4 . For k=4, we have n+k<15 , giving
n<11. Thus, the data word may be less than 11 bits, but must have at least five bits;
otherwise, only three check bits will be needed. The relationships fork = 3and k =
4 justify the use of four check bits for the eight data bits in the previous example.

The grouping of bits for parity generation and checking can be determined
from a list of the binary numbers from 0 through 2% —1. The least significant bit is a
1in the binary numbers 1, 3, 5, 7, and so on. The second significant bitis a 1 in the
binary numbers 2, 3, 6, 7, and so on. Comparing these numbers with the bit posi-
tions used in generating and checking parity bits in the Hamming code, we note the
relationship between the bit groupings in the code and the position of the 1-bits in
the binary count sequence. Each group of bits starts with a number that is a power



of 2—for example, 1, 2, 4, 8, 16, and so forth. These numbers are also the position
numbers for the parity bits.

The basic Hamming code can detect and correct an error in only a single bit.
Some multiple-bit errors are detected, but they may be corrected erroneously, as if
they were single-bit errors. By adding another parity bit to the coded word, the
Hamming code can be used to correct a single error and detect double errors. If
we include this additional parity bit, the previous 12-bit coded word becomes
001110010100P3, where P43 is evaluated from the exclusive-OR of the other 12
bits. This produces the 13-bit word 0011100101001 (even parity). When this word
is read from memory, the check bits and also the parity bit P are evaluated over
the entire 13 bits. If P = 0, the parity is correct (even parity), but if P = 1, the par-
ity over the 13 bits is incorrect (odd parity). The following four cases can occur:

IfC=0andP =0 No error occurred.
IfC#0andP =1 A single error occurred that can be corrected.

IfC20andP =0 A double error occurred that is detected but cannot
be corrected.

IfC=0andP =1 An error occurred in the P43 bit.

Note that this scheme will detect more than two erroneous bits in many cases, but
is not guaranteed to detect all such errors.

A modified Hamming code to generate and check parity bits for a single-
error-correction, double-error-detection scheme is most often used in real systems.
The modified code uses a different parity check bit scheme that balances the num-
ber of inputs to the logic for each check bit and thus the number of inputs to each
circuit that does the checking. The balancing minimizes the delay through the error
correction and detection circuits. These circuits can be used in a RAM subsystem to
add check bits during write operations and to correct single errors and detect dou-
ble errors during read operations. (See Problem A.6-5-6.)

1. HAMMING, R. W. “Error Detecting and Error Correcting Codes.” Bell System
Tech. Jour., 29 (1950): 147-160.

The plus (+) indicates a more advanced problem.

A.6-5-1. Given the 8-bit data word 10110101, generate the 13-bit composite word
for the Hamming code that corrects single errors and detects double
errors.

A.6-5-1. Given the 11-bit data word 00100111010, generate the corresponding 15-
bit Hamming code word.

4 SUPPLEMENT A.6-5 / ERROR DETECTION AND CORRECTION



A.6-5-1. A 12-bit Hamming code word containing 8 bits of data and 4 parity bits is
read from memory. What was the original 8-bit data word that was
written into memory if the 12-bit word read out is
(a) 000010101010  (b)111110010110 (c) 100111110100

A.6-5-1. How many parity check bits must be included with the data word to
achieve single error correction and double error detection when the data
word contains (a) 16 bits; (b) 32 bits; (c) 64 bits?

A.6-5-1. It is necessary to formulate the Hamming code for four data bits D3, Ds,
Ds. and D+, together with three parity bits P, P,, and P,.

(a) Evaluate the 7-bit composite code word for the data word 0101.

(b) Evaluate the three check bits C;, C,, and C,, assuming no error.

(c) Assume an error in bit Dg during storage into memory. Show how the
error in the bit is detected and corrected.

(d) Add a parity bit P to include double error detection in the code.
Assume that errors occurred in bits P, and Ds. Show how this double
error is detected.

A.6-5-1. +A modified single-error-correcting, double-error-detecting Hamming
code for four bits of data D3, Dg, Dg, and D, has the following parity bit
equations:

P, = D;0Ds0 Dy
P,=D,0D;0D,
P, =D,0Ds0D,
Py = D;0Ds0 D,

(a) Find the binary values of the four check bits for a single error in each
of the eight bit positions of the code.

(b) Assuming that either a single or double error has occurred, indicate
the type of error for each of the following words read from memory:

(c) (1) 10100011 (2) 11001110 (3) 00011101

(d) Give the correct data bit values for the single-error cases in (b).

Problems 5



