
TMS320C3x DSP Starter Kit
User’s Guide

Running Title—Attribute Reference

ii

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright  1996, Texas Instruments Incorporated

iii Read This First

Preface

Read This First

About This Manual

This book describes the DSP (digital signal processing) Starter Kit (DSK) and
how to use the DSK with these tools:

� The DSK assembler
� The DSK debugger

How to Use This Manual

The goal of this book is to help you learn how to use the DSK assembler and
debugger. This book is divided into four distinct parts:

� Part I: Hands-On Information is presented first so that you can start us-
ing your DSK the same day you receive it.

� Chapter 1 describes the features and provides an overview of the
TMS320C3x DSP Starter Kit.

� Chapter 2 contains installation instructions for your assembler and de-
bugger. It lists the hardware and software tools you’ll need to use the
DSK and tells you how to set up its environment.

� Chapter 3 lists the key features of the assembler and debugger and
tells you the steps you need to take to assemble and debug your pro-
gram.

� Part II: Functional Description contains a functional overview of the
DSK, which includes the TMS320C3x DSK functional diagram, a descrip-
tion of the DSK hardware components and software operation.

� Part III: Assembler Description contains detailed information about us-
ing the assembler.

� Chapter 5 explains how to create DSK assembler source files and in-
voke the assembler.

� Chapter 6 discusses the valid directives and gives you an alphabetical
reference to these directives.

Notational Conventions

iv

� Part IV: Debugger Description contains detailed information about using
the debugger. Chapter 7 explains how to invoke the DSK debugger, and
use its function keys, and debugger commands.

� Part V: Appendices contains a description of the communications kernel
source code, the DSK circuit board dimensions and schematic diagrams,
the data sheet of the TLC32040 that provides all specifications of the ana-
log interface circuit, and a glossary.

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing of a bit file generated by the accumulator:

0x00809800 directive .word 1,2,3
0x00809800 0x00000001 <word>
0x00809801 0x00000002 <word>
0x00809802 0x00000003 <word>

Here is an example of a system prompt and a command that you might
enter:

C:\ dsk3a testa

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Syntax
that is entered on a command line is centered in a bounded box. Syntax
that is used in a text file is left-justified in an unbounded box. Here is an
example of command-line syntax:

dsk3a filename

dsk3a is a command. The command invokes the assembler and has one
parameter, filename, which is required. When you invoke the assembler,
you supply the name of the file that the assembler uses as input.

 Notational Conventions/Information About Warnings

v Read This First

� In assembler syntax statements, column 1 is reserved for the first charac-
ter of a label or symbol. If the label or symbol is optional, it is usually not
shown. If it is a required parameter, it is shown starting against the left mar-
gin of the shaded box, as in the example below. No instruction, command,
directive, or parameter, other than a symbol or label, should begin in col-
umn 1.

symbol .set value

The symbol is required for the .set directive and must begin in column 1.
The value is also required.

� Square brackets ([and]) identify an optional parameter. If you use an op-
tional parameter, you specify the information within the brackets; you don’t
enter the brackets themselves. Here’s an example of a directive that has
an optional parameter:

.entry [value]

The .entry directive has one parameter, which is optional.

� Some directives can have a varying number of parameters. For example,
the .int directive can have up to 100 parameters. The syntax for this direc-
tive is:

.int value1 [, ... , valuen]

This syntax shows that .int must have at least one value parameter, but
you have the option of supplying additional value parameters, each sepa-
rated from the previous one by a comma.

Information About Warnings

This book contains warnings.

This is an example of a warning statement.

A warning statement describes a situation that could potentially
cause harm to you .

Note that .int does not
begin in column 1.

Related Documentation From Texas Instruments

vi

Related Documentation From Texas Instruments

The following books describe the TMS320C3x and related support tools. To
obtain a copy of any of these TI documents, call the Texas Instruments Litera-
ture Response Center at (800) 477–8924. When ordering, please identify the
book by its title and literature number.

TMS320C3x User’s Guide (literature number SPRU031) describes the ’C3x
32-bit floating-point microprocessor (developed for digital signal proces-
sing as well as general applications), its architecture, internal register
structure, instruction set, pipeline, specifications, and DMA and serial
port operation. Software and hardware applications are included.

TMS320C32 Addendum to the TMS320C3x User’s Guide (literature num-
ber SPRU132) describes the TMS320C32 floating-point microprocessor
(developed for digital signal processing as well as general applications).
Discusses its architecture, internal register structure, specifications, and
DMA and serial port operation. Hardware applications are also included.

TMS320 Floating-Point DSP Assembly Language Tools User’s Guide (lit-
erature number SPRU035) describes the assembly language tools (as-
sembler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the ’C3x and ’C4x generations of de-
vices.

TMS320 Floating-Point DSP Optimizing C Compiler User’s Guide (litera-
ture number SPRU034) describes the TMS320 floating-point C compiler.
This C compiler accepts ANSI standard C source code and produces
TMS320 assembly language source code for the ’C3x and ’C4x genera-
tions of devices.

TMS320C3x C Source Debugger User’s Guide (literature number
SPRU053) tells you how to invoke the ’C3x emulator, evaluation module,
and simulator versions of the C source debugger interface. This book
discusses various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints. It also includes a tutorial that introduces basic debugger
functionality.

TMS320C30 Evaluation Module Technical Reference (literature number
SPRU069) describes board-level operation of the TMS320C30 EVM.

TMS320 DSP Designer’s Notebook Volume 1 (literature number SPRT125)
collection of designer’s notebook pages.

TMS320C40 Data Sheet (literature number SLAS014) describes the analog
interface circuit device and gives its electrical specifications.

 If You Need Assistance

vii Read This First

If You Need Assistance . . .

If you want to . . . Contact Texas Instruments at . . .

Visit TI online World Wide Web: http://www.ti.com

Receive general information World Wide Web: http://www.ti.com/sc/docs/pic/home.htm
or assistance North America, South America: (214) 644–5580

Europe, Middle East, Africa
Dutch:

English:
French:
Italian:

German:

33–1–3070–1166
33–1–3070–1165
33–1–3070–1164
33–1–3070–1167
33–1–3070–1168

Japan (Japanese or English)
Domestic toll-free:

International:
0120–81–0026
81–3–3457–0972 or
81–3–3457–0976

Korea (Korean or English): 82–2–551–2804

Taiwan (Chinese or English): 886–2–3771450

Ask questions about Digital
Signal Processor (DSP)
product operation or report
suspected problems

Fax:
Fax Europe:

Email:
World Wide Web:

BBS North America:
BBS Europe:

320 BBS Online:

(713) 274–2320
(713) 274–2324
+33–1–3070–1032
4389750@mcimail.com
http://www.ti.com/dsps
(713) 274–2323 8–N–1
+44–2–3422–3248
ftp.ti.com:/mirrors/tms320bbs
(192.94.94.53)

Ask questions about micro-
controller product operation
or report suspected prob-
lems

Fax:
Email:

World Wide Web:
BBS:

(713) 274–2370
(713) 274–4203
*H370@msg.ti.com
http://www.ti.com/sc/micro
(713) 274–3700 8–N–1

Request tool updates Software:
Software fax:

Hardware:

(214) 638–0333
(214) 638–7742
(713) 274–2285

Order Texas Instruments
documentation (see Note 1)

Literature Response Center: (800) 477–8924

Make suggestions about or Email: comments@books.sc.ti.com
report errors in documenta-
tion (see Note 2)

Mail: Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443
Houston, Texas 77251–1443

Notes: 1) The literature number for the book is required; see the lower-right corner on the back cover.

2) Please mention the full title of the book, the literature number from the lower-right corner of the back cover, and the
publication date from the spine or front cover.

Trademarks

viii

Trademarks

AT is a trademark of International Business Machines Corp.

IBM, PC, and PC-DOS are trademarks of International Business Machines
Corp.

MS-DOS is a registered trademark of Microsoft Corporation.

Windows is a trademark of Microsoft Corporation.

OS/2 is a trademark of International Business Machines Corp.

 Contents

ix

Contents

1 Introduction 1-1.
Describes the key features and provides an overview of the TMS320C3x DSP Starter Kit.

1.1 Key Features of the DSK 1-2.
1.2 DSK Overview 1-3.

2 Installing the DSK Assembler and Debugger 2-1.
Lists the hardware and software you’ll need to install the DSK assembler and debugger; pro-
vides installation instructions for PC systems running DOS.

2.1 What You Need 2-2.
Hardware checklist 2-2.
Software checklist 2-3.
DSK module connections 2-3.

2.2 Step 1: Connecting the DSK to Your PC 2-4.
2.3 Step 2: Installing the DSK Software 2-5.
2.4 Step 3: Modifying Your config.sys File 2-5.
2.5 Step 4: Modifying the PATH Statement 2-6.
2.6 Step 5: Verifying the Installation 2-7.

Installation errors 2-8.

3 Overview of a Code Development and Debugging System 3-1.
Provides an overview of the assembler and debugger, and describes the overall code develop-
ment process.

3.1 Description of the DSK Assembler 3-2.
Key features of the assembler 3-2.

3.2 Description of the DSK Debugger 3-2.
Key features of the debugger 3-3.

3.3 Developing Code for the DSK 3-4.
3.4 Getting Started 3-5.

4 Functional Overview 4-1.
Describes the DSK hardware and software functionality.

4.1 DSK Hardware Interface 4-2.
Host hardware interface 4-2.
Host communications 4-4.
TLC32040 AIC hardware interface 4-6.

Contents

x

DSK memory map 4-7.
4.2 DSK Communications Kernel 4-8.

Data packets 4-8.
Commands 4-9.
Debugging functions 4-10.
Interrupts 4-11.

4.3 TLC32040 AIC Initialization 4-14.
Resetting the AIC 4-14.
Initializing the ’C31 timer 4-14.
Initializing the ’C31 serial port 4-15.
Initializing the AIC 4-16.
Primary communications 4-17.
Secondary communications 4-18.

4.4 Host Software 4-23.
Host communications target routines 4-24.
Host communications driver routines 4-27.
Host communications object routines 4-29.

5 Using the DSK Assembler 5-1.
Tells you how to invoke and use the DSK assembler; describes valid source file formats.

5.1 Creating DSK Assembler Source Files 5-2.
Using valid labels 5-3.
Using the mnemonic field 5-4.
Using the operand field 5-5.
Commenting your source file 5-7.

5.2 Constants 5-8.
Binary integers 5-8.
Decimal integers 5-8.
Hexadecimal integers 5-8.
Floating-point constants 5-9.
Character constants 5-9.

5.3 Character Strings 5-10.
5.4 Symbols 5-11.

Labels 5-11.
Constants 5-11.
Predefined symbolic constants 5-11.

5.5 Expression Analyzer 5-12.
5.6 Assembling Your Program 5-15.
5.7 Placing Code Sections in Memory Locations 5-16.

6 Assembler Directives 6-1.
Tells you how to use assembler directives and describes the available DSK directive.

6.1 Using the DSK Assembler Directives 6-2.
6.2 Directives That Define Sections 6-5.

 Contents

xi Contents

6.3 Directives That Initialize Constants 6-8.
6.4 Directives That Reference Other Files 6-9.
6.5 Directives That Enable Conditional Assembly 6-10.
6.6 Directives That Align the Section Program Counter 6-11.
6.7 Directives That Define Symbols at Assembly Time 6-11.
6.8 Miscellaneous Directives 6-12.
6.9 Directives Reference 6-13.

7 Using the DSK Debugger 7-1.
Tells you how to invoke and use the debugger and describes the debugger environment. Dis-
cusses valid debugger commands.

7.1 Invoking the Debugger 7-2.
Displaying a list of available options (? or Help option) 7-2.
Selecting the parallel printer port (LPT = 3 or LPT# option) 7-3.
Select the parallel printer port at a particular address (PORT option) 7-3.
Automatically search for a printer port (TEST option) 7-3.

7.2 Understanding the Debugger Windows 7-4.
DISASSEMBLY window 7-4.
CPU REGISTER window 7-5.
MEMORY window 7-6.
COMMAND window 7-7.

7.3 Using the Help Menu 7-8.
7.4 Using Software Breakpoints 7-9.

Setting a software breakpoint 7-9.
Clearing a software breakpoint 7-9.
Finding the software breakpoints that are set 7-9.

7.5 Debugger Commands 7-10.
7.6 Quick Reference Guide 7-13.

A Communications Kernel Source Code A-1.
Contains the source code for the TMS320C3x DSK communications kernel.

B DSK Circuit Board Dimensions and Schematic Diagrams B-1.
Contains the circuit board dimensions and the schematic diagrams for the DSP Starter Kit.

B.1 Hardware Component Overview B-3.
B.2 Schematics B-4.

Host Interface Control Design Notes B-11.

C Glossary C-1.
Defines acronyms and key terms used in this book.

Running Title—Attribute Reference

xii

Figures

1–1 TMS320C3x DSK Block Diagram 1-3.
2–1 Connecting Your Parallel Printer Port Cable and Transformer Into Your DSK Board 2-4. . . .
2–2 DOS Command Setup for the DSK Environment (Sample autoexec.bat File) 2-6.
2–3 Basic Debugger Display 2-7.
3–1 Basic Debugger Display 3-3.
3–2 DSK Software Development Flow 3-4.
4–1 TMS320C3x DSK Functional Circuit Diagram 4-3.
4–2 Parallel Port Control Register (0x37A) 4-4.
4–3 Parallel Port Status Register (0x379) 4-4.
4–4 DSK Memory Map 4-7.
4–5 Data-Packet Structure 4-8.
4–6 Single-Step Flow Diagram 4-12.
4–7 Primary Communication Data Format 4-17.
4–8 Secondary Communication Data Format 4-18.
4–9 Control Register Bit Fields 4-19.
7–1 DISASSEMBLY Window 7-4.
7–2 CPU REGISTER Window 7-5.
7–3 MEMORY Window 7-6.
7–4 COMMAND Window 7-7.
7–5 Monitor Information Screen 7-8.
B–1 TMS320C3x DSP Starter Kit (DSK) Circuit Board Dimensions B-2.

 Running Title—Attribute Reference

xiii Contents

Tables

4–1 Single-Step Pipeline Flow 4-13.
4–2 Primary Communications Mode Selection 4-18.
5–1 Indirect Addressing 5-6.
5–2 ANSI C Math Library Functions Supported by the DSK Assembler 5-12.
5–3 Operators Used in Expressions 5-14.
5–4 Summary of Assembler Options 5-15.
6–1 Assembler Directives Summary 6-2.
7–1 Summary of Debugger Options 7-2.
7–2 Editing Command Keys 7-7.
7–3 Command-Line Editing 7-10.
7–4 Command-Line Buffer Manipulation 7-10.
7–5 Running Programs 7-10.
7–6 Displaying and Changing Data 7-11.
7–7 Managing Breakpoints 7-11.
7–8 Loading Programs 7-11.
7–9 Performing System Tasks 7-12.
7–10 Function Key Shortcuts for DISASSEMBLY Window Active 7-13.
7–11 Function Key Shortcuts for CPU Window Active 7-13.
7–12 Function Key Shortcuts for MEMORY Window Active 7-14.
7–13 Function Key Shortcuts for COMMAND Window Active 7-14.

Running Title—Attribute Reference

xiv

Examples

2–1 Port Selection Display 2-9.
3–1 File rand.asm 3-5.
4–1 Initialize the Serial Port Global Control Register 4-16.
4–2 Setting the TA and TB Registers 4-20.
6–1 Sections Directives 6-6.

1-1

Introduction

This chapter provides an overview of the TMS320C3x DSP Starter Kit (DSK).
The ’C3x DSK is a low-cost, simple, high-performance stand-alone application
development board that lets you experiment with and use TMS320C3x DSPs
for real-time signal processing. The DSK has a TMS320C31 on board to allow
full-speed verification of the TMS320C3x code. The DSK also gives you the
freedom to build new boards, create your own software on a host PC, down-
load the software to the DSK, and run the software on the DSK board. The sup-
plied debugger is windows-oriented, simplifying code development and de-
bugging capabilities.

Topic Page

1.1 Key Features of the DSK 1-2.

1.2 DSK Overview 1-3.

Chapter 1

Key Features of the DSK

 1-2

1.1 Key Features of the DSK

This section details the key features of the TMS320C3x DSP Starter Kit.

� Industry-standard TMS320C31 floating-point DSP

� 40-ns instruction cycle time, 50 MFLOPS, 25 MIPS

� Standard or enhanced parallel printer port interface which connects to a
host PC and allows the TMS320C31 to communicate with PC programs

� Analog data acquisition via the TLC32040 analog interface circuit (AIC):

� Variable rate analog-to-digital converter (ADC) and digital-to-analog
converter (DAC) with 14-bit dynamic range at 20 000 samples per se-
cond

� Output reconstruction filter and bypassable, switched-capacitor anti-
alias input filter

� Standard RCA plug connectors for analog input and output that provide
a direct connection to microphone and speaker

� XDS510 emulator connector

Note:

Jumper and header are not installed.

� Expansion connectors, which route all the TMS320C31 pins for use with
DSK daughterboards

 DSK Overview

1-3 Introduction

1.2 DSK Overview

Figure 1–1 depicts the block diagram of the TMS320C3x DSK hardware. The
basic components are the TMS320C31 DSP, the TLC32040 AIC, expansion
connectors, system clock, parallel printer port interface, and tri-color LED. The
parallel printer port connects the DSK to a host PC and allows the TMS320C31
to communicate with PC programs.

All of the signals for the ’C3x are routed to expansion connectors. The expan-
sion connectors include four 32-pin headers, an 11-pin jumper block, and a
12-pin XDS510 header.

The TLC32040 AIC interfaces to the TMS320C3x serial port. A jumper block
allows removal of this connection to route the serial port to a DSK daughter-
card that you supply. Two RCA connectors provide analog input and output on
the board.

Figure 1–1. TMS320C3x DSK Block Diagram

ÁÁ
ÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Á

Á
ÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Á
Á

Á
Á
Á

Á
ÁÁ
ÁÁ
Á

Á
Á
Á

Á
Á

Á
I/O

expansion
connector

Parallel
port

interface

Serial port

A23–A0

D31–D0

Control

TMS320C31–50

Emulation port

TLC32040
AIC

XDS510
MPSD port

Analog
in

Analog
out

See Appendix B, DSK Circuit Board Dimensions and Schematic Diagrams, for
an explanation of the basic DSK components.

 1-4

2-1

Installing the DSK
Assembler and Debugger

This chapter describes how to install the DSP Starter Kit (DSK) on a PC system
running under DOS .

Topic Page

2.1 What You Need 2-2.

2.2 Step 1: Connecting the DSK to Your PC 2-4.

2.3 Step 2: Installing the DSK Software 2-5.

2.4 Step 3: Modifying Your config.sys File 2-5.

2.5 Step 4: Modifying the PATH Statement 2-6.

2.6 Step 5: Verifying the Installation 2-7.

Chapter 2

What You Need

 2-2

2.1 What You Need

The following checklists detail items that are shipped with the DSK assembler
and debugger and any additional items you’ll need to use this tool. The DSK
module connections with a parallel printer port are also discussed in this sec-
tion.

Hardware checklist

Host An IBM PC/AT or 100%-compatible PC with a hard disk system
and a 1.2 megabyte floppy-disk drive and parallel printer port com-
munication link

Memory Minimum of 640K bytes

Display Monochrome or color (color recommended)

Power requirements A UL Class II power supply with a 2.1-mm power jack connector that
provides 7–12 Vdc or 6–9 Vac and at least 400–1500 mA, which is
common to most wall-mounted DC transformers. For isolated wall
mount supplies, the polarity of the 2.1 mm power jack does not mat-
ter. Laboratory-type power supplies with case grounds are not rec-
ommended since they can create ground loops and possibly create
a short circuit through the DSK full-wave rectifier.

Note:

� You may want to use the DSK’s on-board power supply and regulators
for external circuits. If so, do not overload the circuit. External loads will
cause the regulators to operate at a higher temperature. Loads >50 mA
are not recommended.

� If you make modifications or you are using an external laboratory power
supply, be sure you connect it to the DSK correctly; the DSK is not war-
ranted after you make modifications to it.

To minimize risk of electric shock and fire hazard, the power supply
adapter should be rated UL class 2. The adapter and personal
computer providing energy to this product should be certified by
one or more of the following: UL, CSA, VDE, TUV.

 What You Need

2-3 Installing the DSK Assembler and Debugger

Board DSK circuit board

Cable Pass-through parallel printer port cable

Optional hardware An EGA- or VGA-compatible graphics display card and monitor.

Miscellaneous
materials

Blank, formatted disks

Software checklist

Operating system MS-DOS or PC-DOS (version 5.0 or later), Windows� or
OS/2�

Files dsk3a.exe is an executable file for the DSK assembler. Executing
dsk3a.exe produces all the files needed to use the DSK.

dsk3d.exe is an executable file needed for running the DSK debug-
ger interface.

Miscellaneous files Other files are included in your DSK package, such as sample
source files and additional documentation. You can find a brief de-
scription of these files in the Readme file included on your disk. Be
sure to check the Readme file for the latest information on software
changes and DSK operation.

Note:

Other applications for the DSK can also be downloaded from the TMS320
BBS or Internet FTP site. See the If You Need Assistance subsection on
page vii, for the Internet address.

DSK module connections

You need a parallel printer port cable to connect your PC to your DSK board.
The DSK board is designed with a DB25 parallel printer port connection
mounted on the board.

Step 1: Connecting the DSK to Your PC

 2-4

2.2 Step 1: Connecting the DSK to Your PC

Follow these steps to connect your DSK board to your PC:

1) Turn off your PC’s power.

2) Connect your parallel printer port cable to the parallel communication port
(LPT) on your PC. This port can be identified by its size and pin type, which
should be the female matching equivalent to the DSK. (RS232 ports which
use DB25 connectors use the opposite pin configuration).

3) Plug the parallel printer port cable into the DSK DB25 connector.

4) Plug 7–12 Vdc or 6–9 Vac power supply into the DSK power supply con-
nector. See Figure 2–1 for details.

Figure 2–1. Connecting Your Parallel Printer Port Cable and Transformer Into Your DSK
Board

System clock
Power
supply
connector

RCA jack
analog out

RCA jack
analog in

Plug your printer cable into this socket (DB25 female)

PAL 22V10

TLC32040

LED

5) Plug the transformer into a wall socket.

6) Turn on your PC’s power.

7) The LED will illuminate either red or green.

Note:

Some manufacturers of plug-in cards may also use DB25 connectors that
appear to be of the same type. If this is the case, be sure to check the PC
configuration thoroughly before continuing.

 Step 2: Installing the DSK Software / Step 3: Modifying Your config.sys File

2-5 Installing the DSK Assembler and Debugger

2.3 Step 2: Installing the DSK Software

This section explains how to install the debugger software on a hard disk sys-
tem.

1) Make a backup copy of the product disk. (If necessary, refer to the DOS
manual that came with your computer).

2) On your hard disk or system disk, create a directory named dsktools. This
directory will contain the DSK assembler and debugger software. To
create this directory, enter:

md c:\dsktools

3) Insert your product disk into drive A. Copy the contents of the disk using
the following command:

copy a:*.*c:\dsktools*.*/v

2.4 Step 3: Modifying Your config.sys File

When using the debugger and assembler, you can open multiple files. To allow
enough environment room, it is recommended that the following line be added
to the config.sys file:

FILES=20

Once you edit your config.sys file and add the line, invoke the file by rebooting
the PC (press the reset switch, or turn off the PC’s power and turn it on again).

Step 4: Modifying the PATH Statement

 2-6

2.5 Step 4: Modifying the PATH Statement

To ensure that your debugger and assembler are invoked from any directory
in your PC, you must modify the PATH statement to identify the dsktools direc-
tory. Not only must you do this before you invoke the debugger for the first time,
you must do it any time you power up or reboot your PC.

You can accomplish this by entering individual DOS commands, but it’s sim-
pler to put the commands in your system’s autoexec.bat file. The general for-
mat for doing this is:

PATH=C:\dsktools; pathname2;pathname3

This allows you to invoke the debugger without specifying the name of the di-
rectory that contains the debugger executable file.

If you are modifying your autoexec.bat file and it already contains the PATH
statement, simply include ;C:\dsktools at the end of the statement as shown
in Figure 2–2.

Figure 2–2. DOS Command Setup for the DSK Environment (Sample autoexec.bat File)

DATE

TIME

ECHO OFF

PATH=c:\dos; c:\dsktools

CLS
PATH statement

If you modify the autoexec.bat file, be sure to invoke it before invoking the de-
bugger for the first time. To invoke this file, enter:

autoexec

 Step 5: Verifying the Installation

2-7 Installing the DSK Assembler and Debugger

2.6 Step 5: Verifying the Installation

To ensure that you have correctly installed your DSK board, assembler, and
debugger, enter the following command at the system prompt to start the DSK
debugger:

dsk3d

After entering the dsk3d command, you should see a display similar to the one
shown in Figure 2–3.

Figure 2–3. Basic Debugger Display

PC 00809c03 SP 008098de
R0 00000000 R1 00000000
R2 00000000 R3 00000000
R4 00000000 R5 00000000
R6 00000000 R7 00000000
AR0 00000000 AR1 00000000
AR2 00000000 AR3 00000000
AR4 00000000 AR5 00000000
AR6 00000000 AR7 00000000
IR0 00000000 IR1 00000000
ST 00000000 RC 00000000
RS 00000000 RE 00000000
DP 00000000 BK 00000000
IE 00000000 IF 00000000

C31 DSP STARTERS KITDISASSEMBLY

COMMAND MEMORY

809c03 50700080 startLDIU 00080h,DP
809c04 08349c2c LDI @09c2cH,SP
809c05 07608000 LDF 0.000000e+00,R0
809c06 c610c1c0 LDI *AR0,R0 || LDI *AR
809c07 c610c1c0 LDI *AR0,R0 || LDI *AR
809c08 08600100 LDI 256,R0
809c09 09a09c00 LSH @09c00H,R0
809c0a 61809c0e BRD jump
809c0b 07618000 LDF 0.000000e+00,R1
809c0c 07628000 LDF 0.000000e+00,R2
809c0d 07630000 LDF 1.000000e+00,R3
809c0e 07640000 jump LDF 1.000000e+00,R4
809c0f 087b0003 loop LDI 3,RC
809c10 64809c1a RPTB block
809c11 02640001 ADDI 1,R4

Texas Instruments 1994

load testa

809800 00000007 fffffffc 00809802 00809827
809804 0080982c 00809839 0080983c 0080983f
809808 00809843 00809842 00809868 0080989a
80980c 008098a9 10800000 0f350000 0f300000
809810 0f200000 0f320000 0f280000 0f290000
809814 1a770004 6a050006 628098a9 50700080

Note:

When the communications kernel is first loaded, the on-chip timers are initial-
ized causing the LED to cycle through several colors. The sequence is red–
yellow–green–yellow–red, etc.

Step 5: Verifying the Installation

 2-8

If you see a display similar the one shown in Figure 2–3, you have correctly
installed your DSK board, assembler, and debugger. If you see the display
shown in Example 2–1, then your software or cable may not be installed prop-
erly. Go through the installation instructions again and make sure that you
have followed each step correctly; then reenter the dsk3d command above.

Installation errors

If you still do not see the debugger display, one or more of the following condi-
tions may be the cause:

� You may have used an incorrect communication port (LPT1 versus LPT2).

� A printer driver or other software may be using the same communication
port that you are attempting to use with the DSK. If so, try another commu-
nication port for the DSK.

� Your printer port cable and connectors may not be connected snugly.

� Your power transformer may not be plugged in on both ends. If the DSK
is receiving power, then the LED will illuminate either red or green.

Some operating systems do not use conventional AT I/O port addresses when
mapping port names to addresses. For example, an EISA PC or IBM PS/2
might assign port 0x3BC as LPT1 instead of LPT3. If this is the case, you
should use LPT3 to start the DSK, since the DSK works from a physical ad-
dress instead of the port name LPTx. The last three lines of Example 2–1 show
the operating system’s lookup table (located at RAM address 0000 0040) that
maps physical addresses to port names. This may help you to determine which
ports are in use and which name is associated with each port for a particular
address. The information in the lookup table in Example 2–1 may not be accu-
rate since network and operating system software also uses this table for redi-
recting printer output.

 Step 5: Verifying the Installation

2-9 Installing the DSK Assembler and Debugger

Example 2–1.Port Selection Display

 TESTING TMS320C3x DSK RESET AT PORT 0x378 (LPT1)
 >>>> HPACK (ERROR pin) did not go high during reset
 SELECT: 1) LPT1 0x378 (alternate LPT2)
 2) LPT2 0x278 (alternate LPT3)
 3) LPT3 0x3BC (alternate LPT1)
 H) Additional online help

 CHECK: TARGET POWER (LED IS RED OR GREEN)
 PORT SELECTION
 I/O CONNECTIONS AND CABLES
 POWER CONSERVATION SOFTWARE (LAPTOPS!)
 AUTOEXEC.BAT, CONFIG.SYS AND BIOS
 DAUGHTER CARDS
 VERY OLD PRINTER PORTS WITHOUT PULLUPS (PRE 1986)
 IF THE LED IS CYCLING R–Y–G THE KERNEL HAS LOADED
–––
 The LPTx name or handle for a port address depends on the operating
system and installed drivers. The DSK uses standard port conventions so
you might need to use a different port name to get the correct port address.
For reference, the systems LPT cross reference table is given below

 SYSTEM TABLE LOCATED AT LPT1 @0x378
 RAM ADDRESS 0000:0400 LPT2 @0x278
 LPT3 @0x002

 2-10

3-1 Chapter Title—Attribute Reference

Overview of a Code
Development and Debugging System

The DSP Starter Kit (DSK) lets you experiment with, and use a DSP for real-
time signal processing. The DSK gives you the freedom to create your own
software to run on the board as is, or to build new boards and expand the sys-
tem in any number of ways.

The DSK assembler and debugger are software interfaces that help you to
develop, test, and refine DSK assembly language programs.

This chapter provides an overview of the assembler and debugger and de-
scribes the overall code development process.

Topic Page

3.1 Description of the DSK Assembler 3-2.

3.2 Description of the DSK Debugger 3-2.

3.3 Developing Code for the DSK 3-4.

3.4 Getting Started 3-5.

Chapter 3

Description of the DSK Assembler / Description of the DSK Debugger

 3-2

3.1 Description of the DSK Assembler

The DSK assembler is a simple and easy to use tool. Only the most significant
features of an assembler have been incorporated. However, if you want, you
can create and load COFF files by using the TMS320 floating-point DSP as-
sembly language tools that will also load and run on the DSK.

Key features of the assembler

� Quick. The DSK assembler differs from many other assemblers because
it does not go through a linker phase to create an output file. Instead, the
DSK uses special directives to assemble code at an absolute address dur-
ing the assembly phase. As a result, you can create small programs quick-
ly and easily.

� Easy-to-use. If you want to create larger programs, you can do this by
chaining files together with the .include directive.

3.2 Description of the DSK Debugger

The debugger is easy to learn and use. Its friendly, window-oriented interface
reduces learning time and eliminates the need to memorize complex com-
mands. The debugger can load and execute code with single-step, breakpoint,
and run-time halt capabilities.

The debugger can run and debug your code on an actual ’C3x DSP (as op-
posed to a simulator, which uses a PC to only simulate a DSP).

 Description of the DSK Debugger

3-3 Overview of a Code Development and Debugging System

Figure 3–1 identifies several debugger display features. When you invoke the
debugger by typing in dsk3d , you should see a display similar to this one (it
may not be exactly the same, but it should be close).

Figure 3–1. Basic Debugger Display

PC 00809c03 SP 008098de
R0 00000000 R1 00000000
R2 00000000 R3 00000000
R4 00000000 R5 00000000
R6 00000000 R7 00000000
AR0 00000000 AR1 00000000
AR2 00000000 AR3 00000000
AR4 00000000 AR5 00000000
AR6 00000000 AR7 00000000
IR0 00000000 IR1 00000000
ST 00000000 RC 00000000
RS 00000000 RE 00000000
DP 00000000 BK 00000000
IE 00000000 IF 00000000

DISASSEMBLY

MEMORY

Texas Instruments 1994

load testa
�

809800 00000007 fffffffc 00809802 00809827
809804 0080982c 00809839 0080983c 0080983f
809808 00809843 00809842 00809868 0080989a
80980c 008098a9 10800000 0f350000 0f300000
809810 0f200000 0f320000 0f280000 0f290000
809814 1a770004 6a050006 628098a9 50700080

F3 FLOAT F4 Srce F5 Run F6 DispBP F7 ClrAll F8 SStep F9 Grow F10 FStep

COMMAND

809c03 50700080 startLDIU 00080h,DP
809c04 08349c2c LDI @09c2cH,SP
809c05 07608000 LDF 0.000000e+00,R0
809c06 c610c1c0 LDI *AR0,R0 || LDI *AR
809c07 c610c1c0 LDI *AR0,R0 || LDI *AR
809c08 08600100 LDI 256,R0
809c09 09a09c00 LSH @09c00H,R0
809c0a 61809c0e BRD jump
809c0b 07618000 LDF 0.000000e+00,R1
809c0c 07628000 LDF 0.000000e+00,R2
809c0d 07630000 LDF 1.000000e+00,R3
809c0e 07640000 jump LDF 1.000000e+00,R4
809c0f 087b0003 loop LDI 3,RC
809c10 64809c1a RPTB block
809c11 02640001 ADDI 1,R4

F1 Help F2 REG40

REGISTER window

C31 DSP STARTERS KIT

DISASSEMBLY window

MEMORY windowCOMMAND windowCommand line

Key features of the debugger

� Easy-to-use, window-oriented interface. The DSK debugger separates
code, data, and commands into manageable portions.

� Powerful command set. Unlike many other debugging systems, this de-
bugger doesn’t force you to learn a large, intricate command set. The DSK
debugger supports a small, but powerful, command set.

� Flexible command entry. There are two main ways to enter commands.
You can enter commands at the command line or use the function keys;
choose the method that you like better.

Developing Code for the DSK

 3-4

3.3 Developing Code for the DSK

Figure 3–2 illustrates the DSK code development flow.

Figure 3–2. DSK Software Development Flow

debugger

DSK
target

system

assembler
source

assembler

executable
file

The following list describes the tools shown in Figure 3–2.

The assembler translates DSK assembly language source files into machine
language object files for the TMS320C3x family of processors. Only the most
essential assembler features are incorporated. This is not a COFF assembler,
although executable object files created by the TI TMS320 floating-point DSP
assembly language tools will also load and run on the DSK.

The main purpose of the development process is to produce a module that can
be executed in a DSK target system. You can use the debugger to refine and
correct your code.

assembler

debugger

 Getting Started

3-5 Overview of a Code Development and Debugging System

3.4 Getting Started

This section provides a quick walkthrough so that you can get started without
reading the entire user’s guide. These examples show the most common
methods for invoking the assembler and debugger.

1) Create a source file to use for the walkthrough; call it rand.asm. You do not
need to enter the information following a semicolon; such information is
comments to help you understand what the program is doing.

Example 3–1.File rand.asm

;–––;
; RAND.ASM ;
; This example shows nested loops with a call to a random number ;
; within the inner loop. ;
; ;
; NOTE: This file can be loaded either by using the debugger or a ;
; bootloader. This example does not use 0x809800 and 0x809801 since ;
; the bootloader uses these locations for stack space. ;
;–––;
 .start ”CODE”,0x809802 ; Start assembling CODE section here
 .sect ”CODE” ;
 .entry SAMPLE ; Debugger entry point
 ;––––––––––––––––––––––
SAMPLE ldp @stack ; Load a data page
 ldi @stack,SP ; Load a stack pointer
 ;––––––––––––––––––––––
 ldi 0,R0 ; Start with SEED = 0
 ldi 0,R1 ; Inner loop counter
 ldi 0,R2 ; Outer loop counter
 ;––––––––––––––––––––––
OUTER ldi 3,RC ; Start ’OUTER’ loop
 rptb INNER ; Repeat block ’INNER’ (RC+1) times
 call RAND ; Call function
 addi 1,R1 ; Count ’INNER’ loops
INNER addi 1,R2 ; Count ’OUTER’ loops
 b OUTER ; Do it again!
;––
; Fast 32 bit random number generator
;––
RANDX: ldi @SEED,R0 ; Calculate RAND(SEED)
RAND: mpyi @A,R0 ; Calculate RAND(R0)
 addi @C,R0 ;
 sti R0,@SEED ; Result is returned in R0
 rets ;
 ;––––––––––––––––––––––
A .word 0107465h ; Constants needed for RAND
C .word 0234567h ;
SEED .word 0 ;
;––––––––––––––––––––––––––––––
stack .word $+1 ; Begin stack here
 .end

Getting Started

 3-6

2) Enter the following command to assemble rand.asm:

dsk3a rand

This command invokes the TMS320C3x DSK assembler. If the input file
extension is .asm (for example, rand.asm), you don’t have to specify the
extension; the assembler uses .asm as the default. For more information
about invoking the assembler, refer to Section 5.6, Assembling Your Pro-
gram, on page 5-15.

When you enter this command, the assembler creates an executable file
called rand.dsk. This file is used for directly loading executable code into
the DSK.

The executable file includes a listing of all errors and warnings that may
have occurred during assembly of your program. This listing is helpful be-
cause it contains a list of all unresolved symbols and opcodes.

3) Now you are ready to debug your program. Enter the following command
to invoke the debugger:

dsk3d

4) This command brings up the TMS320C3x DSK debugger on your screen.
From here, you can load your rand.dsk sample program by using the
LOAD command. For more information on using the debugger, refer to
Chapter 7.

4-1

Functional Overview

The TMS320C3x DSK hardware and software work together to create a low-
cost development platform that lets you develop real-time signal processing
applications. In addition to performing full-speed verification of your
TMS320C3x code, the DSK has expansion headers that allow you to build new
daughterboards to expand your system.

This chapter details the functionality of the hardware and the software.

Topic Page

4.1 DSK Hardware Interface 4-2.

4.2 DSK Communications Kernel 4-8.

4.3 TLC32040 AIC Initialization 4-14.

4.4 Host Software 4-23.

Chapter 4

DSK Hardware Interface

 4-2

4.1 DSK Hardware Interface

The ’C3x DSK starts up by responding to a host reset command and bootload-
ing a communications kernel or a program that you supply. The communica-
tions kernel provides the necessary I/O for interfacing the DSK board and the
host system. Host communications occur through the parallel bus of the ’C31,
while analog I/O is handled by the TLC32040 analog interface circuit (AIC) and
sent to the ’C31’s serial port.

See Appendix A, Communications Kernel Source Code, for more information.

Host hardware interface

The host interface connects the ’C31 parallel bus to the host PC parallel printer
port. It consists of three devices:

� A programmable array logic (TICPAL22V10Z)
� Two high-speed octal bus transceivers with tri-state outputs (74ACT245)

The programmable array logic (PAL) determines when the ’C31 is accessing
the host interface by using the STROBE A23, A22, A21, and A20 signals to
decode the address of the ’C31.

The PAL provides one input (TRI) that disconnects the host interface by tri-
stating the PAL INT2 and READY signals. The PAL provides five address de-
code outputs: USER_IOR, USER_IOW, USER_IO, USER_RAM,
USER_BOOT; and three outputs: READY, INT2, and EN signals. When the
DEMO signal is pulled high, two of the address decode outputs, USER_IO and
USER_BOOT, drive the tri-color LED.

The bus transceivers buffer data between the PC parallel printer port and the
’C31 parallel bus. The host interface supports two types of transfers:

� The 8-bit bidirectional mode allows faster transfers on parallel printer ports
that support bidirectional transfers.

� Unidirectional printer ports support an 8-bit transfer from the host to the
’C31 while supporting 4-bit transfers from the ’C31 to the host.

Figure 4–1 shows a high-level circuit diagram of the ’C3x DSK.

 DSK Hardware Interface

4-3 Functional Overview

Figure 4–1. TMS320C3x DSK Functional Circuit Diagram

ÁÁ
Á

Á
Á
Á

ÁÁ
ÁÁ

ÁÁ
ÁÁÁÁ
ÁÁ

ÁÁ
ÁÁ

Á
Á

Á

Á
ÁÁ
ÁÁ

Á
Á
Á

Á
Á
Á
Á

ÁÁ
ÁÁ
ÁÁ
ÁÁ

ÁÁÁ
ÁÁÁ

ÁÁ
ÁÁ

13

2

USER_IOR
USER_IOW
USER_RAM

USER_IO

USER_BOOT
Á

15

19

VCC

VCC DEMO

LTICPAL22V10Z–25

D Q0 D Q1

HPIA TRI

NC

Address
decode

TRI

0

1

10
11

8

74HCT245

74HCT245

Á
Á
Á
Á

0

1

4

EN

EN

DIR

DIR

TLC32040

IN+
IN–

OUT–
OUT+

MCLK
RESET

DR
DX

FSX
FSR

SCLK

RESET

INT2

READY

H1

A20
A21
A23
A23
STROBE

TCLK1

R/W

D7–D0

TCLKO
XFO
DR
DX
FSX
FSR
CLKX
CLKR

INIT
(RESET)

PSTROBE
(HPSTB)

PD7–PD0

ERROR
(HPACK)

SELECT
PAPER

ACK
BUSY

A IN

A OUT

DSK Hardware Interface

 4-4

Host communications

The host communicates with the ’C31 through the parallel printer port. The PC
manipulates the parallel port’s signals by writing to and reading from the host’s
parallel port control and status registers. Figure 4–2 and Figure 4–3 show the
parallel port control and status register bit fields used by the DSK host soft-
ware. (The labels below the printer port signal names refer to signal names as
used by the DSK board as shown in Figure 4–1.)

Figure 4–2. Parallel Port Control Register (0x37A)ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

7

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

6

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

5

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

4

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

3

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

2

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0

Á
Á
ÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

DIR0 ÁÁÁÁÁ
ÁÁÁÁÁ

X ÁÁÁÁ
ÁÁÁÁ

DIR1 ÁÁÁÁ
ÁÁÁÁ

INT ÁÁÁÁÁ
ÁÁÁÁÁ

SLCTIN ÁÁÁÁ
ÁÁÁÁ

INIT ÁÁÁÁÁ
ÁÁÁÁÁ

AUTOFD ÁÁÁÁÁ
ÁÁÁÁÁ

PSTROBE Á
ÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

RESETÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

HPSTB Á
ÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

W ÁÁÁÁ
ÁÁÁÁ

R/WÁÁÁÁÁ
ÁÁÁÁÁ

W ÁÁÁÁ
ÁÁÁÁ

R/W ÁÁÁÁÁ
ÁÁÁÁÁ

W ÁÁÁÁÁ
ÁÁÁÁÁ

R/W Á
Á

Figure 4–3. Parallel Port Status Register (0x379)ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

7

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

6

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

5

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

4

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

3

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

2

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0

Á
Á
ÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

BUSYÁÁÁÁÁ
ÁÁÁÁÁ

ACK ÁÁÁÁ
ÁÁÁÁ

PAPERÁÁÁÁÁ
ÁÁÁÁÁ

SELECT ÁÁÁÁ
ÁÁÁÁ

ERRORÁÁÁÁÁ
ÁÁÁÁÁ

ACK ÁÁÁÁ
ÁÁÁÁ

X ÁÁÁÁÁ
ÁÁÁÁÁ

X Á
ÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁ

D3 ÁÁÁÁÁ
ÁÁÁÁÁ

D2 ÁÁÁÁ
ÁÁÁÁ

D1 ÁÁÁÁÁ
ÁÁÁÁÁ

D0 ÁÁÁÁ
ÁÁÁÁ

HPACKÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

Á
Á

The host initializes the ’C31 by pulsing the INIT signal (writes a 0 followed by
a 1 to the INIT bit field of the parallel port control register). This signal resets
the ’C31 and activates the bootload mode. The host then downloads your pro-
gram or the communications kernel to the ’C31. The parallel port is mapped
into the ’C31 memory to the address range 0xFFF000–0xFFFFFF, as shown
in Figure 4–4, page 4-7.

The host sends data to the ’C31 in the following way:

1) The host writes the byte to be transmitted to the I/O-mapped area of the
host’s parallel port data lines (I/O address 0x378 for LPT 1).

2) The host drives the HPSTB signal low and waits for an acknowledgement.
The HPSTB signal interrupts the ’C31 by pulsing the INT2 signal, indicat-
ing that the host is requesting the transfer of a packet. The INT2 signal is
needed only for the initial packet transfer request and is ignored during
subsequent packet requests.

3) The ’C31 starts a one-wait-state read access to location 0xFFF000. The
PAL decodes this address as the host interface active (HPACK) signal,
drives the host’s ERROR signal low, and drives the ’C31’s READY signal
high. This prevents the ’C31 from completing its read access. The host
uses the ERROR (HPACK) signal to acknowledge that the ’C31 is “locked”
and waiting to receive the data.

 DSK Hardware Interface

4-5 Functional Overview

4) The host drives the HPSTB signal high, indicating to the ’C31 that the data
is ready. The PAL detects the rising edge of HPSTB and drives the ’C31’s
READY signal low, unlocking (freeing) the locked-bus access, and con-
cluding the ’C31 read cycle.

5) This process is repeated until all four bytes are transferred (least signifi-
cant byte first). At each transfer, the ’C31 pieces the bytes together to form
a 32-bit word.

The host receives data in a similar manner:

1) The host waits for the HPACK signal, indicating that the ’C31 understands
the host request for a packet transfer.

2) The ’C31 starts a one-wait-state write access to location 0xFFF000. The
PAL decodes this address as the HPACK signal, drives the host’s ERROR
signal low, and drives the ’C31’s READY signal high. This prevents the
’C31 from completing its write access. The host uses the ERROR signal
to acknowledge that the ’C31 is already sending data.

3) When the host receives the HPIA signal, it drives PSTROBE low and the
host reads a byte or 4-bit nibble, depending on whether a bidirectional par-
allel printer is present in the host.

4) The host drives the HPSTB signal high, indicating to the ’C31 that the data
was read. The PAL detects the rising edge of HPSTB and drives the ’C31’s
READY signal low, concluding the ’C31 write cycle. This completes the
’C31 read cycle.

5) This process is repeated until all four bytes or eight nibbles are transferred
(least significant byte first). During each transfer, the host pieces the bytes
together to form a 32-bit word.

Note:

During the bootload process, the ’C31 does not read the third and fourth by-
tes of the first 32-bit word. The bootloader acts as if it is reading from an
EPROM and skips these bytes.

DSK Hardware Interface

 4-6

TLC32040 AIC hardware interface

The TLC32040 analog interface circuit (AIC) on the DSK provides:

� A single-channel, input/output, analog interface with 14-bit dynamic range
ADC and DAC

� Variable ADC and DAC sampling rate with 14-bit precision at 20 000 sam-
ples per second

� Output reconstruction filter

� Bypassable, switched-capacitor, antialiasing input filter

� Selectable auxiliary analog input channel

The DSK connects the TLC32040 AIC to the ’C31 serial port through a header
and 100 Ω isolation resistors. The header lets you disconnect the AIC and use
the ’C31’s serial port in the daughterboard. Two additional pins from the ’C31
control resetting and clocking signals to the AIC:

� The ’C31’s TIMER0 pin drives the master input clock to the AIC.
� The ’C31’s XF0 signal resets the AIC.

The AIC’s analog input and output are connected to RCA plugs. These signals
are line-level compatible (+/–3 V peak) and can be connected to audio line-lev-
el inputs and outputs.

The output can also be connected directly to a speaker, but it does not have
a significant output level as the output drive is limited by the AIC output driver
and a series isolation resistor. For best results, use an external amplifier or
high impedance speaker, such as a headphone.

Note:

If the AIC is used with parameters outside the tested range, the AIC perfor-
mance may be degraded from that specified in the data sheet. See the
TLC32040 Data Sheet (SLAS014) for more information.

 DSK Hardware Interface

4-7 Functional Overview

DSK memory map

Because host communications occur through the ’C31 parallel bus, the PAL
decodes the address of the ’C31 to determine when it is accessing the host
interface according to the memory map shown in Figure 4–4.

Figure 4–4. DSK Memory Map

ÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇ

0h

FFFh
1000h

400000h
7FFFFFh
800000h

807FFFh
808000h

8097FFh
809800h

8098FFh
809C00h

809FC0h
809FC1h

809FFFh
80A000h

0x0BFFFFFh
0x0C00000h

0x0DEFFFFh
0x0E00000h

0x0EFFFFFh
0x0FFF000h

0x0FFFFFFh

Reserved for boot loader
operations

Boot 1

External
USER_BOOT

Boot 2

Reserved
(32K)

Peripheral bus
memory-mapped registers

(6K internal)

RAM block 0
(1K word)

Interrupt and trap branches

External USER_RAM

RAM block 1
(1K word)

External USER_IO

External HPI
(non interlocking)

Boot 3 External HPI
(interlocking)

Kernel
809F00

The kernel, interrupt,
and trap tables
occupy the last 256
words of RAM 1.

On-chip
internal
RAM 0

and
RAM 1

(2K total)

DSK Communications Kernel

 4-8

4.2 DSK Communications Kernel

Upon reset, the host downloads a communications kernel to the ’C31 using the
bootloader. This communications kernel provides a set of low-level routines
that allow the host and the ’C31 to exchange information and perform debug-
ging functions.

Data packets

The host and the ’C31 communicate by exchanging packets of data.
Figure 4–5 shows the structure for data packets. The data-packet headers
(shaded section) typically consist of four fields: command, data-stream length,
target address, and target index. This header is followed by the data stream
as shown in Figure 4–5. The header fields are described as follows:

� Command directs the handling of the packets. See the Commands sec-
tion, page 4-9, for more information.

� Data-stream length indicates the length of data in the data stream.

� Target address points to the memory location where data is read from or
written to.

� Target index post-increments the value of the target address after a read
or write of a single data item.

Figure 4–5. Data-Packet Structure

Command

Data-stream length

Target address

Target index
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Data stream

 DSK Communications Kernel

4-9 Functional Overview

Commands

When the ’C31 receives an interrupt from the host (INT2), the ’C31 saves the
current state of the CPU and then receives a packet. Once the ’C31 receives
the packet, the communications kernel analyzes the command entry in the
header to direct the handling of the packet. The command entry provides the
low-level routines necessary to communicate with the host and debug the sys-
tem. The communications kernel supports these commands:

XWRIT Write a block of data from the host to the DSK. This command
takes data-stream-length items from the host and writes them
into the ’C31’s memory location pointed to by the target address.
The target address is incremented by the target index after each
write operation.

XREAD Read a block of data from the DSK to the host. This command
reads data-stream-length items from the ’C31’s memory location
pointed at by the target address and sends them to the host. The
target index increments the target address after each read opera-
tion.

XCTXT Get the ’C31 context save buffer address.

XRUNF Restore the context of the CPU and execute code until a break-
point is encountered or a halt command is issued. This command
is used for debugging.

XSTEP Restore the context of the CPU, execute a single instruction, and
then save the context of the CPU. This command is used for de-
bugging.

XHALT Save the context of the CPU and wait for a new command. This
command is used for debugging.

DSK Communications Kernel

 4-10

Debugging functions

Several debugging functions are implemented within the communications ker-
nel by building upon the low-level communications commands. The kernel’s
debugging functions can execute as a background task that is integrated into
the system. Debugging does not halt the system, but allows concurrent execu-
tion of other tasks. Debugging is fast and efficient and requires only a host in-
terface, although it does consume some amount of processor memory and
bandwidth.

In contrast, scan-based emulation, which is another popular debugging meth-
odology, is extremely helpful since it does not consume system memory and
it provides a snapshot in time of the processor(s) in the system. The DSK board
has an MPSD header that allows the use of the XDS510 scan-based emulator.
However, scan-based emulation is a non real-time emulation that requires the
complete system to halt. Due to the low data-transfer rates, it is often inade-
quate for application data transfers. Also, external interrupts are often
masked, and can effectively freeze communications and other interrupt-driven
tasks. Halting and restarting the processor causes many breaks in the CPU
pipeline, which defeats the purpose of real-time operation.

Debugging functions provided in the communications kernel operate as a
background task, and they never disable the CPU or force a pipeline flush. For
example, single-stepping an opcode in scan-based emulation executes the
opcode, flushes the pipeline, and freezes the timers and DMA. On the other
hand, real-time debugging follows standard interrupt service routine rules for
context switching.

Due to the real-time nature of the debugging session, debugging functions
save and restore the context of the CPU before and after executing the debug-
ging function. The kernel implements this context save similar to a typical inter-
rupt service routine that saves and restores all CPU registers (28 registers).
Peripheral control registers are not preserved, because the communications
kernel does not modify them. Note that the extended-precision CPU registers
require two memory locations to store the most significant 8 bits and the least
significant 32 bits. After saving the context, the CPU enters a spin mode, where
it waits for additional commands. During this time, the context area can be
downloaded, displayed, or modified, usually under the supervision of a host
debugger routine. An XRUNF or XSTEP command indicates to the CPU that
it needs to restore the context area to its correct running state and then contin-
ue execution. The host accesses the ’C31’s context-save area by looking up
the pointer to the context through the XCTXT command.

 DSK Communications Kernel

4-11 Functional Overview

Interrupts

The communications kernel implements breakpoints by replacing the code at
the desired location with a TRAPn opcode. When the CPU encounters a
TRAP, the context-save routine is invoked, the CPU enters spin mode, writes
an acknowledge to the host, and waits for a new command. While in spin
mode, the CPU can receive new interrupts.

The communications kernel implements CPU halt (XHALT) in a manner similar
to breakpoint halts, but the interrupt source originates from the host, not a
TRAP opcode. The main difference is that the registers used by the commu-
nications kernel are restored before invoking a full context save and falling into
spin mode.

The kernel implements XRUN by restoring the context followed by a standard
return from interrupt. The processor is then free to execute code.

The communications kernel implements the opcode XSTEP by using a re-
served interrupt in the ’C31: Serial Port 1 transmit interrupt (XINT1).
Figure 4–6, on page 4-12, shows the single-step routine flow diagram. The
communications kernel:

� Restores the context of the CPU
� Places the program counter into R5
� Clears INT2
� Sets the XINT1 interrupt
� Restores the status register
� Sets a delayed branch on R5

The delayed branch executes the next three instructions:

1) Sets the global interrupt enable
2) Restores R5
3) Restores the data page pointer

By coordinating the setting of the XINT1 interrupt and the branch-to-the-user
program, the kernel allows only a single instruction to execute before servicing
the pending interrupt. When the interrupt is recognized, the kernel saves the
CPU context, sends an acknowledge to the host, branches to the spin mode,
and waits for a new command.

DSK Communications Kernel

 4-12

Figure 4–6. Single-Step Flow Diagram

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Context restore

ldi
and
tstb
bnz
ldiu
BUD
or
ldi
ldiu

@_PC,R5
CINT2,IF
4,IF
$–3
@_ST,ST
R5
2000h,ST
@_R5,R5
@_DP,DP

;
;
;
;
;
;
;
;
;

return to PC from TOS return
Clear/Poll INT2 before SSTEP or RUNF
Set XINIT1 interrupt

restore Status

turn on INT’s

restore DP

XINT1 occurs

Context save

Send trap
acknowledge to host

Wait in spin loop

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Fetch one user
opcode

 DSK Communications Kernel

4-13 Functional Overview

Table 4–1.Single-Step Pipeline Flow

Cycle Description Fetch Decode Read Execute

1 BUD R5

2 or 2000h,ST BUD R5

3 ldi @_R5,
R5

or 2000h,ST BUD R5

4 ldp @_DP,DP ldi @_R5,R5 or 2000h,ST BUD R5

5 Set global interrupt enable USER1 ldp @_DP,DP ldi @_R5,R5 or 2000h,ST

6 Interrupt recognized USER2 USER1 ldp @_DP,DP ldi @_R5,R5

7 Jam interrupt in pipeline (dis-
card USER2 fetch)

– – – XINT1 USER1 ldp @_DP,DP

8 Execute USER1 instruction – – – – – – XINT1 USER1

9 Clear interrupt flag; clear
GIE; store return address on
stack; read vector table

– – – – – – – – – XINT1

10 Pipeline begins to fill with in-
terrupt service routine

XSTEP ISR – – – – – – – – –

11 Pipeline continues to fill with
ISR

ISR2 XSTEP ISR – – – – – –

12 Pipeline continues to fill with
ISR

ISR3 ISR2 XSTEP ISR – – –

13 Execute first instruction of
ISR

ISR4 ISR3 ISR2 XSTEP ISR

Table 4–1 describes the pipeline flow that sets the XINT1 interrupt and
branches to your code. This table shows that the activities in the pipeline are
coordinated so that the code is fetched at the same time global interrupts are
enabled. In this way, the interrupt is placed in the pipeline right after fetching
the second instruction. This instruction is discarded and the pipeline is filled
with the interrupt service routine (ISR).

Note:

Another way of interpreting CPU interrupts is to treat them as a special kind
of opcode that is inserted into the pipeline. Instructions that are in the pipeline
before the interrupt occurs must complete execution.

TLC32040 AIC Initialization

 4-14

4.3 TLC32040 AIC Initialization

To use the TLC32040 analog interface circuit (AIC), you must follow a se-
quence of steps to initialize and set up the ’C31’s timer and serial port, and to
reset and program the AIC. The following subsections describe this process.

Resetting the AIC

As shown in Figure 4–1, page 4-3, the ’C31’s XF0 signal is connected to the
RESET signal of the AIC. By toggling the RESET signal, the ’C31 can reset
the AIC. This is achieved by executing the following instructions:

rpts 40 ; Execute next instruction 40x
ldi 2h,IOF ; Pull AIC into reset
ldi 6h,IOF ; Pull AIC out of reset

Initializing the ’C31 timer

As shown in Figure 4–1, page 4-3, the ’C31’s timer (TCLKO) signal is con-
nected to the AIC’s master clock (MCLK) signal. The MCLK signal drives all
the key logic signals of the AIC, such as the shift clock, the switched-capacitor
filter clocks, and the A/D and D/A timing signals. The timer pulses the TCLK0
signal whenever the ’C31 timer counter register (memory mapped to
0x0080 8024h) counts up to the timer period register (memory mapped to
0x0080 8028h) value. Then, the timer counter registers reset to zero and re-
peat. (For a detailed description of the ’C31 timer, refer to the TMS320C3x
User’s Guide). Because of differences between the maximum frequency of the
’C31’s timer and the maximum and minimum frequencies of the AIC, the fol-
lowing constraints should be observed:

� Minimum Timer Period Register Value .The ’C31 50 MHz can generate
a maximum timer frequency of 12.5 MHz (CLKIN/4), which is above the
AIC’s tested master clock frequency maximum of 10 MHz. If you use fre-
quencies beyond those listed in the TLC32040 data sheet the resulting
performance may not be predictable. If the timer is run in pulse mode (con-
trol value is 0x2C1) the minimum period of 1 results in 12.5-MHz master
pulse rate and 2 results in 6.25 MHz. See the TLC32040 Data Sheet
(SLAS014) for more information.

 TLC32040 AIC Initialization

4-15 Functional Overview

� Maximum Timer Period Register Value . The AIC’s minimum master
clock frequency is 75 kHz. Taking into account the ’C31 maximum timer
frequency of 12.5 MHz and the AIC’s minimum master clock frequency,
the ’C31’s timer counter register maximum value should be 165
(12.5 MHz / 75 kHz = 166.7). The ’C31’s timer counts down to 0, therefore,
you need to subtract 1 from this number (166 – 1 = 165). Note that the
TLC32040 specification describes a minimum clock frequency since the
internal signals of the AIC are stored in capacitors that must be periodically
updated.

� Timer Initialization . The following ’C31 assembly code initializes the tim-
er in clock mode with a timer period of 1. The following code initializes timer
0 to generate a square wave (clock mode) on the TCLK0 pin at a frequency
of 6.25 MHz (timer period = 1):

TGCR0 .set 808020h ; Timer 0 global control register
TCNT0 .set 808024h ; Timer 0 counter register
TPR0 .set 808028h ; Timer 0 period register
TIMVAL .word 3c1h ; Timer global control register value

ldp @TGCR0 ; Set Data Page
ldi 0h,R4 ; Initialize R4 to zero
ldi 1h,R0 ; Initialize R0 to 1
sti R4,@TGCR0 ; Reset timer0
sti R0,@TPR0 ; Store timer0 period
sti R4,@TCNT0 ; Reset timer0 counter
ldi @TIMVAL,R7 ; Load timer control value
sti R7,@TGCR0 ; Start timer 0

A period of zero is not allowed in pulse mode. If the timer is run in clock mode,
the resulting output is a square wave with a frequency of half that of pulse
mode. A period of zero is allowed in this mode resulting in a 12.5-MHz clock.

Initializing the ’C31 serial port

This subsection explains how to initialize the following:

� ’C31 serial port
� ’C31 serial-port control register (memory-mapped to 0x0080 8040h)
� FSX/DX/CLKX control register (memory-mapped to 0x0080 8042h)
� FSR/DR/CLKR control register (memory-mapped to 0x0080 8043h)

For a detailed description of the ’C31 serial port, see the TMS320C3x User’s
Guide.

TLC32040 AIC Initialization

 4-16

The ’C31 assembly code in Example 4–1 initializes the serial port global con-
trol register (SGCR0) in the following manner:

� Issuing transmit and receive resets
� Enabling receive and transmit interrupts
� Setting 16-bit receive and transmit transfers
� Setting FSX and FSR, CLKX and CLKR active low
� Setting continuous mode
� Setting variable data rate transfers:

Example 4–1.Initialize the Serial Port Global Control Register

SGCR0 .set 808040h ; Serial port 0 global control register ;
SPCX0 .set 808042h ; Serial port 0 FSX/DX/CLKX control reg. ;
SPCR0 .set 808043h ; Serial port 0 FSR/DR/CLKR control reg. ;
SINIT0 .word 0e973300h ; Enable RINT & 16–bit transfers
SINIT1 .word 111h ; Configure as serial port pins

ldp @SGCR0 ; Set Data Page
ldi 0h,R4 ; Initialize R4 to zero
sti R4,@SGCR0
ldi @SINIT1,R7 ; Reset and
sti R7,@SPCX0 ; initialize serial port
sti R7,@SPCR0 ; initialize serial port
ldi @SINIT0,R7 ; Reset and
sti R7,@SGCR0 ; initialize serial port

Refer to the example code supplied with the DSK for help on setting up the AIC.

Initializing the AIC

Once the ’C31 supplies MCLK, initializes its serial port, and resets the AIC, you
can initialize the AIC to a specified sample rate. The AIC sampling rate is deter-
mined by the values of two registers called A and B in the AIC’s transmit and
receive sections. These values are loaded into the respective counter when-
ever the counter counts down to 0. Tx counter A and B determine the D/A con-
version timing, Rx counter A and B determine the A/D conversion timing. For
more information, refer to the TLC32040 AIC Data Sheet (Literature number
SLAS014). The formula for the conversion frequency is given in Equation 4–1.

Equation 4–1. Conversion Frequency

Conversion frequency
MCLK

A B
_ =

2 ��

 TLC32040 AIC Initialization

4-17 Functional Overview

To ensure that the switched-capacitor lowpass and bandpass filters meet their
transfer function characteristics, the frequency of the clock inputs of the
switched-capacitor filter must be 288 kHz; otherwise, the upper and lower cut-
off frequencies of the low-pass and band-pass are scaled accordingly.
Equation 4–2 shows the switched capacitor filter frequency,

Equation 4–2. Switched Capacitor Filter Frequency

SCF Clock frequency
MCLK

A
_ _ =

2�

For example, using this equation for an 8-kHz sampling rate with a MCLK of
6.25 MHz, results in a Tx counter A of 11 [A = MCLK/(2 � SCF)]. Using
Equation 4–2, Tx counter B results in 36 [B = MCLK/(2 � A � Conver-
sion_Frequency)].

To initialize the AIC’s Tx counter A and B registers, you must send a primary
communication followed by a secondary communication (explained in the Pri-
mary communications subsection below, and Secondary communications
subsection, on page 4-18.) Primary communications load values into the D/A
while secondary communications load A/D internal registers, such as the con-
trol register, Tx counters A and B, and Rx counters A and B.

Primary communications

Primary communications have a data value in the 14 MSBs (D15–D2) of data
and a mode selection in the two LSBs (D1–D0). This format is shown in
Figure 4–7.

Figure 4–7. Primary Communication Data Format
ÁÁÁ
ÁÁÁ

D15 ÁÁ
ÁÁ

D14ÁÁÁ
ÁÁÁ

D13ÁÁÁ
ÁÁÁ

D12ÁÁÁ
ÁÁÁ

D11ÁÁÁ
ÁÁÁ

D10 ÁÁ
ÁÁ

D9ÁÁÁ
ÁÁÁ

D8ÁÁÁ
ÁÁÁ

D7ÁÁÁ
ÁÁÁ

D6 ÁÁÁ
ÁÁÁ

D5 ÁÁ
ÁÁ

D4ÁÁÁ
ÁÁÁ

D3ÁÁÁ
ÁÁÁ

D2ÁÁÁ
ÁÁÁ

D1 ÁÁÁ
ÁÁÁ

D0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

D/A converter value
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

mode
selection

The AIC sends the data value to the D/A converter and enables one of the
modes shown in Table 4–2 depending on the two LSBs.

TLC32040 AIC Initialization

 4-18

Table 4–2.Primary Communications Mode Selection

LSBs Mode

00 Tx Counter A � TA, Rx Counter A � RA
Tx Counter B � TB, Rx Counter B � RB

01 Tx Counter A� TA + TA’, Rx Counter A � RA + RA’
Tx Counter B �TB, Rx Counter B � RB

10 Tx Counter A �TA - TA’, Rx Counter A � RA + RA’
Tx Counter B �TB, Rx Counter B � RB

11 Tx Counter A � TA, Rx Counter A � RA
Tx Counter B �TB, Rx Counter B � RB

The second and third modes use the TA’ and RA’ registers to advance or slow
down the sampling frequency by shortening or lengthening the sample period.
This is particularly useful in modem applications. It can also enhance the sig-
nal-to-noise performance, perform frequency-tracking functions, and gener-
ate nonstandard modem frequencies.

Secondary communications

Secondary communication follows a primary communication that has the two
LSBs set to 11. This secondary communication programs the AIC by loading
the A, A’, B, or control registers. Figure 4–8 shows the secondary communica-
tion data format. The TA, RA, TB, and RB values are unsigned. The TA’ and
RA’ values are in signed 2s-complement format. The control register enables
and disables auxiliary inputs, bandpass filters, and so forth.

Figure 4–8. Secondary Communication Data Format

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

X X TA register value (unsigned) X X RA register value (unsigned) 0 0

X
TA’ register value (signed 2s

complement) X
RA’ register value (signed 2s

complement) 0 1

X TB register value (unsigned) X RB register value (unsigned) 1 0

X X X X X X X X Control register 1 1

 TLC32040 AIC Initialization

4-19 Functional Overview

Figure 4–9 describes the control register bit fields.

Figure 4–9. Control Register Bit Fields

D7 D6 D5 D4 D3 D2

Input Gain Transmit/Receive AUX IN Pins
Loopback
Function

Bandpass
Filter

0 0 = 1X for � 6V analog input 0 = asynchronous 0 = disables 0 = disables 0 = deletes

0 1 = 2X for � 3V analog input 1 = enables 1 = enables 1 = enables 1 = inserts

1 0 = 4X for � 1.5V analog input

1 1 = 1X for � 6V analog input

The assembly code in Example 4–2 sets the TA and TB registers of the AIC.
This code transmits a 16-bit word to the AIC and then waits until the transmit
interrupt is generated by the serial port. Four commands are transmitted start-
ing with a 0, then the TB and RB values, followed by the TA and RA values,
and finally the control word. TA and RA values should be the last values trans-
mitted, since they change the AIC sample rate. By transmitting these values
last, the sample rate is not changed until the AIC receives the last program
word. In this way, very high sample rates can be achieved. Each command
transmits three 16-bit words: a primary communication, a secondary commu-
nication, and a 0-data word.

TLC32040 AIC Initialization

 4-20

Example 4–2.Setting the TA and TB Registers

;–––
; LOOPAIC.ASM is an example program which shows how to initialize and use
; the TLC32040. The analog output (DAC output) is either a ramp signal
; (RAMPEN=1) or a loopback of the analog input (RAMPEN=0).
;–––
 .start ”AICTEST”,0x809802 ; Start assembling here
 .sect ”AICTEST” ;
;––––––––––––––––––––––––––––––––––––
; Define constants used by program
;––––––––––––––––––––––––––––––––––––
RAMPEN .set 1 ; Set to 1 to generate ramp at AOUT
T0_ctrl .set 0x808020 ; TIM0 gl control
T0_count .set 0x808024 ; TIM0 count
T0_prd .set 0x808028 ; TIM0 prd
S0_gctrl .set 0x808040 ; SP 0 global control
S0_xctrl .set 0x808042 ; SP 0 FSX/DX/CLKX port ctl
S0_rctrl .set 0x808043 ; SP 0 FSR/DR/CLKR port ctl
S0_xdata .set 0x808048 ; SP 0 Data transmit
S0_rdata .set 0x80804C ; SP 0 Data receive
TA .set 12 ; AIC timing register values
TB .set 15 ;
RA .set 12 ;
RB .set 15 ;
GIE .set 0x2000 ; This bit in ST turns on interrupts
;––––––––––––––––––––––––––––––––––––
; Define some constant storage data
;––––––––––––––––––––––––––––––––––––
A_REG .word (TA<<9)+(RA<<2)+0 ; A registers
B_REG .word (TB<<9)+(RB<<2)+2 ; B registers
C_REG .word 10000011b ; control
S0_gctrl_val .word 0x0E970300 ; Serial port control register

; values
S0_xctrl_val .word 0x00000111 ;
S0_rctrl_val .word 0x00000111 ;
RAMP .word 0 ; RAMP count value
ADC_last .word 0 ; Last received ADC value

 TLC32040 AIC Initialization

4-21 Functional Overview

Example 4–2.Setting the TA and TB Registers (Continued)

;**
; Begin main code loop here
;**
main or GIE,ST ; Turn on INTS
 ldi 0x34,IE ; Enable XINT/RINT/INT2
 b main ; Do it again!
;–––––––––––––––––––––––––––––––
DAC2 push ST ; DAC Interrupt service routine
 push R3 ;
 .if RAMPEN ; If RAMPEN=1 assemble this code
 ldi @RAMP,R3 ;
 addi 256,R3 ; Add a value to RAMP
 sti R3,@RAMP ;
 .else ; Else assemble this
 ldi @ADC_last,R3 ;
 .endif ;
 andn 3,R3 ;
 sti R3,@S0_xdata ; Output the new DAC value
 pop R3 ;
 pop ST ;
 reti ;
;–––––––––––––––––––––––––––––––
ADC2 push ST ;
 push R3 ;
 ldi @S0_rdata,R3 ;
 sti R3,@ADC_last ;
 pop R3 ;
 pop ST ;
 reti ;
;***;
; The startup stub is used during initialization only ;
; and can be safely overwritten by the stack or data ;
;***;
 .entry ST_STUB ; Debugger starts here
ST_STUB ldp T0_ctrl ; Use kernel data page and stack
 ldi 0,R0 ; Halt TIM0 & TIM1
 sti R0,@T0_ctrl ;
 sti R0,@T0_count ; Set counts to 0
 ldi 1,R0 ; Set periods to 1
 sti R0,@T0_prd ;
 ldi 0x2C1,R0 ; Restart both timers in pulse mode
 sti R0,@T0_ctrl ;
 ;–––––––––––––––––––––
 ldi @S0_xctrl_val,R0;
 sti R0,@S0_xctrl ; transmit control
 ldi @S0_rctrl_val,R0;
 sti R0,@S0_rctrl ; receive control
 ldi 0,R0 ;
 sti R0,@S0_xdata ; DXR data value
 ldi @S0_gctrl_val,R0; Setup serial port
 sti R0,@S0_gctrl ; global control

TLC32040 AIC Initialization

 4-22

Example 4–2.Setting the TA and TB Registers (Continued)

;==;
; This section of code initializes the AIC ;
;==;
AIC_INIT LDI 0x10,IE ; Enable only XINT interrupt
 andn 0x34,IF ;
 ldi 0,R0 ;
 sti R0,@S0_xdata ;
 RPTS 0x040 ;
 LDI 2,IOF ; XF0=0 resets AIC
 rpts 0x40 ;
 LDI 6,IOF ; XF0=1 runs AIC
 ;–––––––––––––––––––––
 ldi @C_REG,R0 ; Setup control register
 call prog_AIC ;
 ldi 0xfffc ,R0 ; Program the AIC to be real slow
 call prog_AIC ;
 ldi 0xfffc|2,R0 ;
 call prog_AIC ;
 ldi @B_REG,R0 ; Bump up the Fs to final rate
 call prog_AIC ; (smallest divisor should be last)
 ldi @A_REG,R0 ;

call prog_AIC ;
b main

;–––––––––––––––––––––––––––––––
prog_AIC ldi @S0_xdata,R1 ; Use original DXR data during 2 ndy
 sti R1,@S0_xdata ;
 idle
 ldi @S0_xdata,R1 ; Use original DXR data during 2 ndy
 or 3,R1 ; Request 2 ndy XMIT
 sti R1,@S0_xdata ;
 idle ;
 sti R0,@S0_xdata ; Send register value
 idle ;
 andn 3,R1 ;
 sti R1,@S0_xdata ; Leave with original safe value in DXR
 ;–––––––––––––––––––––
 ldi @S0_rdata,R0 ; Fix the receiver underrun by reading
 rets main ; the DRR before going to the main loop
;**;
; Install the XINT/RINT ISR handler directly into ;
; the vector RAM location it will be used for ;
;**;
 .start ”SP0VECTS”,0x809FC5
 .sect ”SP0VECTS”
 B DAC2 ; XINT0
 B ADC2 ; RINT0

 Host Software

4-23 Functional Overview

4.4 Host Software

The DSK software includes several source-code files that manipulate the par-
allel printer port and perform the necessary functions to initialize and commu-
nicate with the ’C31. The commands in each of the source-code files are sum-
marized in the following subsections. The source files that are typically linked
include:

driver.cpp includes driver-level routines that control the host’s
parallel printer port interface.

target.cpp includes the low-level routines that manipulate the data
transmissions into packets that are recognized by the
’C31 communications kernel.

object.cpp uses the target- and driver-level routines to initialize
and download programs to the ’C31.

dsk_coff.cpp includes DSK and COFF file loader and utilities.

errormsg.cpp includes text strings associated with function returns.

symbols.cpp includes symbol table support routines.

helpmsg.cpp includes command-line help message.

The following subsections describe the routines contained in each of these
files.

DSK software also includes an assembler and a debugger. These are de-
scribed in Chapter 5, Using the DSK Assembler, and Chapter 7, Using the DSK
Debugger.

getmem, putmem Host Software

4-24

Host communications target routines

The communications kernel resident in the ’C31 assumes that data transfers
to and from the host are organized into packets as shown in Figure 4–5 on
page 4-8. The target.cpp file includes routines that manipulate data transmis-
sions between the host and the ’C31 into this packet structure. These routines
read and write blocks of data from the ’C31 memory, send commands to the
’C31, perform context save and restores, and provide debugging commands,
such as run, single-step, and halt.

Get Memorygetmem

Syntax MSGS getmem (ulong addr, ulong length, ulong *data)

Description The getmem routine reads a block of data from the ’C31 memory.

Arguments addr Address of the data to be read
length Size of memory block to read
data Pointer to host memory address in which to place data read from the

’C31

Return Value NO_ERR Block read completed successfully
RECV_ERR Failed reception
XMIT_ERR Failed transmission

Put Memoryputmem

Syntax MSGS putmem (ulong addr, ulong length, ulong *data)

Description The putmem routine writes a block of data into ’C31 memory.

Arguments addr Starting address to write the data to
length Size of memory block to write
data Pointer to host memory address to read data from. The data is then

placed into ’C31 memory.

Return Value NO_ERR Block write completed successfully
XMIT_ERR Failed transmission

 Host Software SSTEP_CPU, RUN_CPU, HALT_CPU

4-25 Functional Overview

Single-Step CommandSSTEP_CPU

Syntax MSGS SSTEP_CPU (void)

Description The SSTEP_CPU routine single-steps one instruction by restoring the context
of the CPU, executing one instruction, and then saving the CPU context. This
command places the CPU in command mode.

Arguments None

Return Value NO_ERR Command and data completed successfully
XMIT_ERR Failed transmission
RECV_ERR Failed reception

Run CommandRUN_CPU

Syntax MSGS RUN_CPU (void)

Description The RUN_CPU routine executes instructions starting at the program counter
obtained from the CPU context save area and ending at a breakpoint, if one
has been set.

Arguments None

Return Value NO_ERR Command and data completed successfully
XMIT_ERR Failed transmission

Halt CommandHALT_CPU

Syntax MSGS HALT_CPU (void)

Description The HALT_CPU routine halts the execution of instructions. This command
places the CPU in command mode and saves the CPU context.

Arguments None

Return Value NO_ERR Command completed successfully
RECV_ERR Failed reception

GET_DEBUG_CTXT Host Software

4-26

Return CPU Context Save AddressGET_
DEBUG_CTXT

Syntax MSGS GET_DEBUG_CTXT (void)

Description The GET_DEBUG_CTXT routine retrieves the ’C31 context save location
starting address. The context address value is placed in the global variable
DEBUG_CTXT.

Arguments External unsigned long DEBUG_CTXT.

Return Value NO_ERR Command completed successfully
RECV_ERR Failed reception
XMIT_ERR Failed transmission

 Host Software DSK_reset, input_rdy, recv_long_byte

4-27 Functional Overview

Host communications driver routines

To facilitate the data transfer from the host to the ’C31, the DSK software in-
cludes several driver-level routines in the file driver.cpp. This file includes rou-
tines that manipulate the hardware interface circuitry of the host to reset, send,
and receive data through unidirectional and bidirectional parallel printer ports.

ResetDSK_reset

Syntax MSGS DSK_reset (void)

Description The reset routine resets the DSK by toggling the INIT signal.

Arguments None

Return Value NO_ERR Reset sequence completed
RESET_ERR Reset has failed

Input Readyinput_rdy

Syntax char input_rdy (void)

Description The input_rdy routine indicates that the DSK is ready to receive.

Arguments None

Return Value 0 DSK ready to receive data
1 DSK not responding to host command

Receive Long Byterecv_long_byte

Syntax MSGS recv_long_byte (ulong * rcv_data)

Description The recv_long_byte routine receives a 32-bit value in four 8-bit data transfers
(to be used only in bidirectional parallel printer ports).

Arguments rcv_data Address of the value to receive

Return Value NO_ERR Successful reception
RECV_ERR Failed reception

recv_long, xmit_long, xmit_byte Host Software

4-28

Receive Longrecv_long

Syntax ���� ��
�����
 �����
 ��
���	�	�

Description The recv_long routine receives a 32-bit value in eight 4-bit data transfers (to
be used in bidirectional and unidirectional parallel printer ports).

Arguments rcv_data Address of the value to receive

Return Value NO_ERR Successful reception
RECV_ERR Failed reception

Transmit Longxmit_long

Syntax MSGS xmit_long (ulong snd_data)

Description The xmit_long routine transmits a 32-bit value in four 8-bit data transfers (to
be used in bidirectional and unidirectional parallel printer ports).

Arguments snd_data Value to transmit

Return Value NO_ERR Successful transmission
XMIT_ERR Failed transmission

Transmit Bytexmit_byte

Syntax MSGS xmit_byte (char snd_data)

Description The xmit_byte routine transmits an 8-bit value in a single data transfer (to be
used in bidirectional and unidirectional parallel printer ports)

Arguments snd_data Value to transmit

Return Value NO_ERR Successful transmission
XMIT_ERR Failed transmission

 Host Software LF

4-29 Functional Overview

Host communications object routines

Using the low-level driver routines, the DSK software provides several high-
level routines that allow the loading of programs or data from dsk3a files or
COFF (Common Object File Format), that move binary data from the host to
the DSK, and that initialize the DSK system. These routines assume an active
communications kernel resident on the ’C31 to send and receive packets of
data. See Appendix A of the TMS320 Floating-Point Assembly Language
Tools User’s Guide for a detailed description of the COFF format.

Load FileLF

Syntax Load_File (char *file, TASK task)

Description The Load_File function performs several tasks depending on the enumerated
TASK given to it. DSK and COFF file formats are distinguished by the exten-
sion of the file. The enumerated TASK list is defined in the file DSK_COFF.H.

An ASCII hexadecimal file format that contains the bootloader header informa-
tion and raw data is also supported. Since the header information defines
where and how long a section is, this file format can be used to either bootload
or load files. This file format is easily converted to ROM files with a user-de-
fined post processor.

TASK Task to perform
LOAD Loads a DSK or COFF file into the DSK target.
BOOT Boots a DSK or COFF file into the DSK target.
FILE2HEX Creates loadable/bootloadable ascii .HEX file.
BOOTHEX Bootloads FILE.HEX into the DSK.
LOADHEX Loads (using kernel) FILE.HEX into the DSK
DSK2COFF Convert DSK file to COFF file.
SLOAD Loads symbols from the file.

Arguments *file Pointer to the name of the file to load
task Task to perform

Return Value NO_ERR Successful transmission
OPEN_ERR Cannot open file
ACCESS_ERR File not found
INV_COFF_MGC COFF file not created for a TMS320C31
MAX_SECTN More than 64 sections
BAD_OPTN_HDR Incorrect optional COFF header
COM_ERR Communication failure

Init_Communication Host Software

4-30

Initialize CommunicationInit_
Communication

Syntax MSGS Init_Communication (int init_n_times)

Description The Init_Communication function first attempts to communicate with the
DSK assuming that a valid communications kernel already exists. If this fails,
the DSK is reset and the kernel is bootloaded up to init_n_times. This function
also queries an existing communications kernel to determine if the kernel is
configured for bytewide- or nibble-mode readback.

After initializing communications with the DSK, the Load_File function then
loads the desired application.

Arguments init_n_times Number of times to attempt bootloading the communications
kernel before failing. Typically, this value is set to a large value to allow you to
connect cables and power to the DSK.

Return Value NO_ERR The DSK communications link is valid.
INIT_ERR The communications link has failed.

5-1

Using the DSK Assembler

This chapter explains how to use the DSK assembler and describes valid DSK
source files.

Topic Page

5.1 Creating DSK Assembler Source Files 5-2.

5.2 Constants 5-8.

5.3 Character Strings 5-10.

5.4 Symbols 5-11.

5.5 Expression Analyzer 5-12.

5.6 Assembling Your Program 5-15.

5.7 Placing Code Sections Memory Locations 5-16.

Chapter 5

Creating DSK Assembler Source Files

 5-2

5.1 Creating DSK Assembler Source Files

To create a DSK assembler source file, you can use almost any ASCII program
editor. Be careful using word processors; these files contain various formatting
codes and special characters.

DSK assembly language source programs consist of source statements that
can contain assembler directives, assembly language instructions, and com-
ments. Source statement lines can be up to 80 characters per line.

The next several lines show examples of source statements:

C_REG .set ((10100b)<<2)+3 ; Control word

 .text
start ldi 2h, IOF ; Pull AIC into reset
 ldi 0h, T4 ; Clear R4
 ldp SGCR0
 sti R4, @SGCR0 ; Reset serial port
 ldi @SINIT1, R7 ; Load initialization value 1 into R7
 sti R7, @SPCX0 ; Initialize FSX/DX/CLKX control reg.
 sti R7, @SPCR0 ; Initialize FSR/DR/CLKR control reg.
 ldi @SINIT0, R7 ; Load initialization value 0 into R7
 sti R7, @SGCR0 ; Enable RINT and 16–bit transfers
 sti R4, @DTX0 ; Transmit 0

 sti R4, @TGCR0 ; Reset timer 0
 ldi TIMERPER, R7
 sti R7, @TPR0 ; Store timer 0 period

Your source statement can contain four ordered fields. The general syntax for
source statements is as follows:

[label] [:] mnemonic [operand list] [;comment]

Follow these guidelines:

� All statements must begin with a label, a blank, an asterisk, or a semicolon.

� Labels are optional; if you use them, they must begin in column 1.

� One or more blanks must separate each field. Note that tab characters are
equivalent to blanks.

� Comments are optional. Comments that begin in column 1 can begin with
an asterisk or a semicolon (* or ;), but comments that begin in any other
column must begin with a semicolon.

 Creating DSK Assembler Source Files

5-3 Using the DSK Assembler

Using valid labels

Labels are optional for all assembly language instructions and for most (but
not all) assembler directives. When you use them, a label must begin in col-
umn 1 of a source statement. A label can contain up to eight alphanumeric
characters (A–Z, a–z, 0–9, and _). Labels are case-sensitive, and the first
character cannot be a number. For example:

 .start ”.text”,0x809C00
 .entry start
CTRL .set 0
IN .set 1
OUT .set 2
 .text
WSHIFT .word –8

start ldp @stack ; Load data page
 ldi @stack,SP ; Initialize the stack
 ldf 0.0,R0
 ldi 0x100,R0
 lsh @WSHIFT,R0
 BRD jump
 ldf 0.0,R1
 ldf 0.0,R2
 ldf 1.0,R3
jump: ldf 1.0,R4
 b start
stack .word $ + 1
 .end

In the preceding example, the colon appended to the jump label is optional.
The DSK assembler does not require a label terminator.

When you use a label, its value is the current value of the section program
counter (the label points to the statement it’s associated with). If, for example,
you use the .int directive to initialize several words, a label would point to the
first word. In the following example, the label Begin has the value 0x00809800.

0x00809800 directive Begin .int 0Ah,3,7
0x00809800 0x0000000a <int>
0x00809801 0x00000003 <int>
0x00809802 0x00000007 <int>

When a label appears on a line by itself, it points to the instruction on the next
line:

0x0080981f nocode XMIT
0x0080981f 0x10760010 or 10h, IE
0x00809820 0x06000000 idle

When an opcode or directive references a label, the label is substituted with
the address of the label’s location in memory. The only exception to this is the
.set directive, which assigns a value to a label. If you don’t use a label, the first
character position must contain a blank, a semicolon, or an asterisk.

Creating DSK Assembler Source Files

 5-4

Using the mnemonic field

The mnemonic field follows the label field. The mnemonic field cannot start in
column 1, or it is interpreted as a label. The mnemonic field can contain one
of the following opcodes:

� Machine-instruction mnemonic (such as ADDI, MPYF)
� Assembler directive (such as .data, .set, .entry)

If you have a label in the first column, a space, colon, or tab must separate the
mnemonic field (opcode) from the label. For example:

;==
 .start ”AICTEST”,0x809900
 .sect ”AICTEST”
GIE .set 0x2000
;==
 .C3xMMRS.ASM
A_REG .word (TA<<9)+(RA<<2)+0 ; 0x809902
B_REG .word (TB<<9)+(RB<<2)+2 ; 0x809903
C_REG .word 10000011b ; 0x809904 +/– 1.5 V
;
S0_gctrl_val .word 0x0E970300
S0_xctrl_val .word 0x00000111 ;
S0_rctrl_val .word 0x00000111 ;
;
prog_AIC push R1
 push IE
 ldi 0x10,IE
 andn 0x30,IF
 ldi @S0_xdata,R1
 sti R1,@S0_xdata
 idle
 ldi @S0_xdata,R1
 or 3,R1
 sti R1,@S0_xdata
 idle
 sti R0,@S0_xdata
 idle
 andn 3,R1
 sti R1,@S0_xdata
 pop IE
 pop R1
 rets

Refer to the TMS320C3x User’s Guide for syntax specifications on individual
opcodes.

It is necessary to resolve all fields in an opcode. If an opcode field (such as the
section name in a .sect opcode) is omitted, the assembler generates the error
statement, “Invalid, Undefined, or Missing Operand”.

 Creating DSK Assembler Source Files

5-5 Using the DSK Assembler

Using the operand field

The operand field is a list of operands that follow the mnemonic field. An oper-
and can be a constant (see Section 5.2, page 5-8), a symbol (see Section 5.4,
page 5-11), or a combination of constants and symbols in an expression. You
must separate operands with commas.

The assembler lets you specify whether to use a constant, or use a symbol as
an immediate value, a direct address or an indirect address. The following
rules apply to the operands of instructions.

� No prefix — the operand is a well-defined immediate value . The as-
sembler expects a well-defined immediate value, such as a register sym-
bol or a constant. For floating-point operations, use an extended register
(R0–R7). For integer operations, use any register. For example:

Label: ADDI 0x0, R4

This instruction adds the integer value 0 to the extended-precision register
R4.

� @ prefix — the operand is direct address . If you use the @ sign as a
prefix, the assembler treats the operand as the contents of a 32-bit ad-
dress, specified by @addr. The 16 MSBs of the address are specified by
the DP register; the 16 LSBs are specified by the instruction word. For ex-
ample:

Label: LDP 0x0080
ADDI @0x9800, R0

The first line of this code sets the DP register to 0x0080. The second line
uses the concatenated value of DP and 0x9800 to form an address of
0x0080 9800. The value stored at 0x0080 9800 to is then added the value
stored in R0.

� * prefix — the operand is a register indirect address. If you use the *
sign as a prefix, the assembler treats the operand as an indirect address;
that is, it uses the operand as an address. For example:

Label: ADDI *AR3, R0

This instruction adds the integer stored in the location pointed to by AR3 to
the value stored in R0.

Table 5–1 lists the various forms that indirect operands may take. The dis-
placement can be specified as a value from 0–255 or as one of the index
registers (IR0 or IR1). It is not necessary to specify the displacement if it is
1, because the assembler assumes a default displacement of 1. For ex-
ample, *++ARn is equivalent to *++ARn(1).

Creating DSK Assembler Source Files

 5-6

Table 5–1. Indirect Addressing

Operand Description

*ARn Indirect with no displacement

*+ARn(disp) Indirect with predisplacement or preindex add

*–ARn(disp) Indirect with predisplacement or preindex subtract

*++ARn(disp) Indirect with predisplacement or preindex add and modifica-
tion

*––ARn(disp) Indirect with predisplacement or preindex subtract and
modification

*ARn++(disp)[%] † Indirect with postdisplacement or postindex add and modifi-
cation

*ARn––(disp)[%] † Indirect with postdisplacement or postindex subtract and
modification

*ARn++(IR0)B Indirect with postindex (IR0) and bit-reversed modification

† Optional circular modification (specified by %)

For more information on indirect addressing and bit-reversed addressing, re-
fer to the TMS320C3x User’s Guide.

 Creating DSK Assembler Source Files

5-7 Using the DSK Assembler

Commenting your source file

A comment can begin in any column and extends to the end of the source line.
A comment can contain any ASCII character, including blanks. Comments are
printed in the assembly source listing, but they do not affect the assembly.

You can comment your source file in one of two ways. The most common way
is to place a semicolon anywhere on the line you want to comment. All text
placed after the semicolon is ignored by the DSK assembler. For example:

* Memory map register locations
SGR0 .set 0x808040 ; Serial port 0 global control register
SPCX0 .set 0x808042 ; Serial port 0 FSX/DX/CLKX control register
SPCR0 .set 0x808043 ; Serial port 0 FSR/DR/CLKR control register
DTX0 .set 0x808048 ; Serial port 0 data transmit register
DRX0 .set 0x80804c ; Serial port 0 data receive register
TGCR0 .set 0x808020 ; Timer 0 global control register
TCNT0 .set 0x808024 ; Timer 0 counter register
TPR0 .set 0x808028 ; Timer 0 period register

The second way to comment your source file is to use an asterisk in column
1 of your code.

If the asterisk is not in column 1, the assembler assumes it is part of your code
and can generate an error.

A source statement that contains only a comment is valid.

Constants

 5-8

5.2 Constants

The assembler supports five types of constants:

� Binary integer constants
� Decimal integer constants
� Hexadecimal integer constants
� Floating-point constants
� Character constants

The assembler maintains each constant internally as a 32-bit quantity.
Constants are not sign extended. For example, the constant 0FFh is equal to
00FF (base 16) or 255 (base 10); it does not equal –1.

Binary integers

A binary integer constant is a string of 0s and 1s followed by the suffix B (or
b). Examples of valid binary constants include:

0101b Constant equal to 5

10101B Constant equal to 21

–0101b Constant equal to –5

Decimal integers

A decimal integer constant is a string of decimal digits, ranging from
–2 147 483 647 to 4 294 967 295. Examples of valid decimal constants in-
clude:

1000 Constant equal to 1 00010 or 3E816

–32768 Constant equal to –32 76810 or 800016

25 Constant equal to 2510 or 1916

Hexadecimal integers

A hexadecimal integer constant is a string of up to eight hexadecimal digits fol-
lowed by the suffix H (or h) or preceded by the prefix 0x. Hexadecimal digits
include the decimal values 0–9 and the letters A–F or a–f. A hexadecimal
constant must begin with a decimal value (0–9). Examples of valid hexadeci-
mal constants include:

78H Constant equal to 12010 or 007816

0x0f Constant equal to 1510 or 000F16

37ACh Constant equal to 14 25210 or 37AC16

 Constants

5-9 Using the DSK Assembler

Floating-point constants

A floating-point constant is a string of decimal digits, followed by an optional
decimal point, fractional portion, and exponent portion. Examples of floating-
point numbers include:

1.75e–10 represented internally as 2202 629A16

4 represented internally as 0200 000016

–3.5 represented internally as 01A0 000016

3.2e5 represented internally as 12E3 C00016

A floating-point constant can be preceded with a + or – sign.

Character constants

A character constant is a single character enclosed in single quotes. The char-
acters are represented as 8-bit ASCII characters. Examples of valid character
constants include:

‘ab’ represented internally as 0000 006116

‘C’ represented internally as 0000 004316

Note the difference between character constants and character strings. A
character constant represents a simple integer value and is enclosed in single
quotes; a string is a list of characters and is enclosed in double quotes.

Character Strings

 5-10

5.3 Character Strings

A character string is a string of characters enclosed in double quotes. The
maximum length of the string varies and is defined for each directive that re-
quires a character string. Examples of valid character strings include:

“sample program” defines a 14-character string, sample program

“temp.asm” defines an 8-character string, temp.asm

Character strings are used for the following:

� Filenames as in .copy “filename”
� Section names as in .sect “section name”
� Operand of a .string directive

 Symbols

5-11 Using the DSK Assembler

5.4 Symbols

Symbols are used as labels, constants, and substitution symbols. A symbol
name is a string of up to eight alphanumeric characters (A–Z, a–z, 0–9, $, –,
and +); symbols cannot contain embedded blanks. The first character in a
symbol cannot be a number or special character. The symbols you define are
case-sensitive; for example, the assembler recognizes ABC, Abc, and abc as
three unique symbols.

Labels

Symbols that are used as labels become symbolic addresses that are
associated with locations in the program. A label must be unique. Note that you
should not use register names as labels.

Constants

Symbols can be set to constant values. By using constants, you can equate
meaningful names with constant values. The .set directive enables you to set
constants to symbolic names. Symbolic constants cannot be redefined. The
following example shows how these directives can be used:

.text ; initialize PC
K .set 12 ; constant definition K=12
BIN .set 01010101b ; BIN = 055h
max_buf .set K*2 ; max_buf = K*2 = 24

LDI K, R0 ; loads 12
LDI –K, R0 ; loads –12
LDI K*2, R0 ; loads 24
LDI max_buf,R0 ; loads 24
LDI !BIN, R0 ; loads 0AAh

Predefined symbolic constants

The assembler has several predefined symbols, including the following:

� $, the dollar sign character, represents the current value of the section pro-
gram counter (SPC).

� Register symbols , including

AR0–AR7 IF PC RS

BK IOF R0–R7 SP

DP IR0 RC ST

IE IR1 RE

Expression Analyzer

 5-12

5.5 Expression Analyzer

The expression analyzer used in the DSK assembler includes ANSI C math
library functions that aid in the generation of tables and constants. These func-
tions eliminate the tedious work of calculating tables and constants before in-
cluding them in the assembly process. The functions are shown in Table 5–2.

Note:

If you use any of these functions, a post-assembly warning is generated to
remind you that these functions are not supported by the TMS320 floating-
point code generation COFF tools. If you want to use these functions with the
COFF toolset, then extract the resulting hexadecimal values from the DSK
listing file.

Table 5–2.ANSI C Math Library Functions Supported by the DSK Assembler
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Function
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

long abs(long); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Absolute value

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

long labs(long); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Absolute value

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double fabs(double);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Floating-point absolute
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double cos(double);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Cosine

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double acos(double); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Arc cosine

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double cosh(double); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Hyperbolic cosine
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double sin(double);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sine
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double asin(double);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Arc sine

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double sinh(double); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Hyperbolic sine

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double tan(double); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Tangent
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁdouble atan(double);

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁArc tangentÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double tanh(double);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Hyperbolic tangent

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

long ceil(long); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Ceiling operator

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double floor(double); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Floor operator
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double exp(double);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Natural exponent (e) raised to the power of a value

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

double log(double); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Natural logarithm (ln)

 Expression Analyzer

5-13 Using the DSK Assembler

Table 5–2.ANSI C Math Library Functions Supported by the DSK Assembler (Continued)

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Function ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Description
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

double log10(double); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Logarithm (based–10)
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

double pow10(double);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

10 raised to the power of a value

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

double sqrt(double); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Square root

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

double log2(double); ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Logarithm (based–2)

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

double pow(double,double);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

First value raised to the power of the second value
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

long br(long, long);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Align the first value to the next address located by
raising the second value to the power of 2

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

long circ(long,long);
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Align the first value to the next address located by
raising the second value to the power of 2

You can generate a table of values using certain assembler directives. To gen-
erate a table of values use the .loop /.endloop directives and the math library
functions listed in Table 5–2. For example, to create the twiddle table for an
FFT, use the following directives:

TWlength .set 16 ; Table size is 16
.brstart ”TwiddleTable”,2*TWlength ; Align to valid br–address

TWstart: ; create label OUTside loop
.loop TWlength ; 16 pairs of complex numbers
.float sin(($–TWStart)*2*pi/TWlength) ; sin(n*pi/N)
.float cos(($–TWStart)*2*pi/TWlength) ; cos(n*pi/N)
.endloop

Table 5–3 shows the operators recognized by the DSK assembler.

Expression Analyzer

 5-14

Table 5–3.Operators Used in Expressions

Operator Description Operator Description

+ Addition != Not equal

- Subtraction = Equal to

* Multiplication == Equal to

/ Division & Logical AND

% Modulo Division | Logical OR

> Greater than ^ Logical XOR

>= Greater than or equal to ~ Bitwise negation
(1s complement)

< Less than ! Logical NOT. If expression = 0
then 1 is returned, else 0 is re-
turned.

<= Less than or equal to << Shift left

<> Not equal >> Shift right

 Assembling Your Program

5-15 Using the DSK Assembler

5.6 Assembling Your Program

Before you attempt to debug your programs, you must first assemble them.
Here’s the command for invoking the assembler when preparing a program for
debugging:

dsk3a filename [options]

dsk3a is the command that invokes the assembler.

filename is the assembly language source file. Filenames are not case-
sensitive. If you do not specify an extension, the assembler as-
sumes the default extension .asm.

options affect the way the assembler processes input files.

You can specify options and filenames in any order on the command line.

Table 5–4 lists the assembler options; the following subsections describe the
options.

Table 5–4.Summary of Assembler Options

Option Description

Exxx Stops assembling after xxx error messages occur (5 is the default)

Q Suppresses the banner and all progress information (quiet)

Wxxx Stops assembling after xxx warning messages occur

Placing Code Sections in Memory Locations

 5-16

5.7 Placing Code Sections in Memory Locations

The assembly source contains several sections that must be placed in ‘C31
memory locations, because the DSK assembler includes several new direc-
tives that control the starting address of the sections. A linker is not needed.

In the following code example, an output section named Mysect is placed be-
ginning at address 000x80 9800. The entry (execution start) point is then de-
fined at the label START. Next, a simple code loop that increments R0 is placed
into the current section.

.start ”Mysect”,0x809800 ; Mysect begins at 0x809800
 .sect ”Mysect” ; Assemble code into Mysect

.entry START ; Execution START point
START LDI 0,R0 ; Initialize R0=0
LOOP ADDI 1,R0 ; Increment R0

B LOOP ; Do it again

To place two sections of code that leave a hole of unused memory, look at the
following code. The first section, Mysect, which starts at location 0x0080 9800,
is followed by a second section, jumpback, which starts at location
0x0080 9900.

.start ”Mysect”,0x809800 ; Mysect begins at 0x809800

.sect ”Mysect” ; Assemble code into Mysect

.entry START ; Execution START point
START LDI 0,R0 ; Initialize R0=0
LOOP ADDI 1,R0 ; Increment R0

B JUMP1
;––––––––––––––––––––––––––––––
.start ”jumpback”,0x809900 ; jumpback begins at 0x809900
.sect ”jumpback” ; Assemble code into jumpback

JUMP1 ADDI 1,R0 ; Increment R0
B JUMP2
;––––––––––––––––––––––––––––––
.sect ”Mysect” ; Add more code to Mysect

JUMP2 ADDI 1,R0 ; Increment R0
B LOOP ; Finish LOOP

 Placing Code Sections in Memory Locations

5-17 Using the DSK Assembler

To simulate a linker command file, such as the one used in the TMS320 code
generation tools, you can use a single file to control the starting address of all
sections and then use the .include directive to append all assembly source
files. For example, consider the following build file where three source files are
appended to each other using a common block statement for several .start di-
rectives.

;BUILD.ASM
;–––––––––

.start ”.text”,0x809800 ; Initialize start address for
; each section

.start ”.data”,0x809C00 ;

.start ”sect1”,0x809900 ;

.start ”sect2”,0x809A00 ;

.include ”FILE1.ASM” ; Include source files

.include ”FILE2.ASM” ;

.include ”FILE3.ASM” ;

 5-18

6-1

Assembler Directives

Assembler directives supply program data and control the assembly process.
They allow you to do the following:

� Assemble code and data into specified sections
� Reserve space in memory for uninitialized variables
� Initialize memory
� Assemble conditional blocks

Topic Page

6.1 Using the DSK Assembler Directives 6-2.

6.2 Directives That Define Sections 6-5.

6.3 Directives That Initialize Constants 6-8.

6.4 Directives That Reference Other Files 6-9.

6.5 Directives That Enable Conditional Assembly 6-10.

6.6 Directives That Align the Section Program Counter 6-11.

6.7 Directives That Define Symbols at Assembly Time 6-11.

6.8 Miscellaneous Directives 6-12.

6.9 Directives Reference 6-13.

Chapter 6

Using the DSK Assembler Directives

 6-2

6.1 Using the DSK Assembler Directives

Table 6–1 summarizes the assembler directives. Note that all source state-
ments that contain a directive may have a label and a comment. To improve
readability, they are not shown as part of the directive syntax.

Table 6–1.Assembler Directives Summary

(a) Directives that define sections

Mnemonic and Syntax Description Page

.data Assemble source code into data memory 6-18

.sect ” section name” Assemble source code into a named (initialized) sec-
tion

6-27

.text Assemble source code into program memory 6-32

(b) Directives that initialize constants (data and memory)

Mnemonic and Syntax Description Page

.byte value1 [,..., valuen] Initialize one or more 8-bit integers 6-16

.fill size in words Reserve size words in the current section; note that
a label points to the beginning of the reserved space

6-29

.float expression Initialize a 32-bit TMS320C3x floating-point constant 6-21

.float16 expression Initialize a 16-bit TMS320C3x floating-point constant 6-21

.float8 expression Initialize an 8-bit TMS320C3x floating-point constant 6-21

.ieee expression Initialize one or more 32-bit, IEEE single-precision,
floating-point constants

6-22

.int value1 [,..., valuen] Initialize one or more 16-bit integers 6-16

.long value1 [, ... , valuen] Initialize one or more 32-bit integers 6-16

.pfloat16 Initialize 16-bit TMS320C3x floating-point constants
into a single word

6-21

.pfloat8 Initialize 8-bit TMS320C3x floating-point constants
into a single word

6-21

.qxx value1 [,..., valuen] Initialize a 16-bit, signed 2s-complement integer,
whose decimal point is displaced xx places from the
LSB

6-25

.space size in words Reserve size words in the current section; note that
a label points to the beginning of the reserved space

6-29

 Using the DSK Assembler Directives

6-3 Assembler Directives

(b) Directives that initialize constants (data and memory) (Continued)

Mnemonic and Syntax Description Page

.string “string1” [,..., “stringn”] Initialize one or more text strings 6-31

.word value1 [, ... , valuen] Initialize one or more 32-bit integers 6-16

(c) Directives that reference other files

Mnemonic and Syntax Description Page

.copy [”]filename[”] Include source statements from another file 6-17

.include ”filename” Include source statements from another file 6-17

(d) Directives that enable conditional assembly

Mnemonic and Syntax Description Page

.else Optional conditional assembly 6-23

.endif End conditional assembly 6-23

.if well-defined expression Begin conditional assembly 6-23

.loop [well-defined expression] Begin repeatable assembly of a code block; the loop
count is determined by the well-defined expression.

6-24

.endloop End .loop code block 6-24

(e) Directives that modify the section program counter (SPC)

Mnemonic and Syntax Description Page

.align [size in bytes] Align the SPC on a boundary specified by size in bytes,
which must be a power of 2; default to byte boundary

6-14

.entry [address] Initialize the starting address of the SPC when loading
a file

6-20

Using the DSK Assembler Directives

 6-4

(f) Directives that define symbols at assembly time

Mnemonic and Syntax Description Page

.set value Equate a value with a local symbol 6-28

.sdef value Equate a value with a local symbol multiple times 6-26

(g) Miscellaneous Directives

Mnemonic and Syntax Description Page

.brstart “section name”, n Align the named section to the next 2n address bound-
ary.

6-15

.end Program end 6-19

.start “section name”, address Links the named section to start assembling at the
location address.

6-30

 Directives That Define Sections

6-5 Assembler Directives

6.2 Directives That Define Sections

These directives associate the various portions of an assembly language pro-
gram with the appropriate sections:

� The .data directive identifies portions of code to place in data memory.
Data memory usually contains initialized data.

� The .sect directive defines an initialized named section and associates
subsequent code or data with that section. A section defined with .sect can
contain code or data.

� The .text directive identifies portions of code in the .text section. The .text
section usually contains executable code.

Example 6–1 shows how you can use sections directives to associate code
and data with the proper sections. This is an output listing; column 1 shows,
the SPC value and column 2 shows the memory contents, if affected by the
previous line, or a comment. (Each section has a section program counter
(SPC). The .start directive for a section determines that section’s initial SPC
value. When you resume assembling into a section, its SPC resumes counting
as if there had been no intervening code.

After the code in Example 6–1 is assembled, the sections contain:

.text Bytes with the values 1, 2, 3, 4, 5, and 6

.data Bytes with the values 9, 10, 11, and 12

mysect Bytes with the values 21, 22, 23, 24

Note:

The .text and .data directives are short hand representations of .sect state-
ments for that section name.

.text is equivalent to .sect ”.text”

.data is equivalent to .sect ”.data”

Directives That Define Sections

 6-6

Example 6–1.Sections Directives

0x00809800 directive .start ”.text”,0x809800
0x00809800 directive .start ”.data”,0x809900
0x00809800 directive .start ”mysect”,0x809a00
0x00809800 nocode
0x00809800 nocode ; Start assembling into .text
0x00809800 nocode
0x00809800 directive .text
0x00809800 directive .byte 1,2
0x00909800 0x00000001 <byte>
0x00809801 0x00000002 <byte>
0x00809802 directive .byte 3,4
0x00809802 0x00000003 <byte>
0x00809803 0x00000004 <byte>
0x00809804 nocode
0x00809804 nocode ; Start assembling into .data
0x00809804 nocode
0x00809804 directive .data
0x00809900 directive .byte 9,10
0x00809900 0x00000009 <byte>
0x00809901 0x0000000a <byte>
0x00809902 directive .byte 11,12
0x00809902 0x0000000b <byte>
0x00809903 0x0000000c <byte>
0x00809904 nocode
0x00809904 nocode ; Resume assembling into .text
0x00809904 directive .text
0x00809804 directive .byte 5,6
0x00809804 0x00000005 <byte>
0x00809805 0x00000006 <byte>
0x00809806 nocode
0x00809806 nocode ; Start assembling into mysect
0x00809806 nocode
0x00809806 directive .sect ”mysect”
0x00809a00 nocode
0x00809a00 directive .byte 21,22
0x00809a01 0x00000015 <byte>
0x00809a01 0x00000016 <byte>
0x00809a02 directive .byte 23,24
0x00809a02 0x00000017 <byte>
0x00809a02 0x00000018 <byte>
0x00809a04 nocode
0x00809a04 nocode
0x00809a04 nocode

 Directives That Define Sections

6-7 Assembler Directives

Example 6–1.Sections Directives (Continued)

>>>>
>>>> PASS 2 Complete
>>>> Errors: 0 Warnings: 0
>>>>
>>>> ENTRY 0x00809800
>>>>
>>>> Symbol reference table Type Addressable
>>>> ref Default–Start 0x00809800 1 1
>>>> ref 0x00000001 1 2
>>>> ref .text 0x00809800 1 1
>>>> ref .data 0x00809900 1 1
>>>> ref mysect 0x00809a00 1 1
>>>> ref 0x00000001 1 2
>>>>
>>>> Output section start end length
>>>> sect Default_Start 0x00809800 0x00809800 0x00000000
>>>> sect .text 0x00809800 0x00809800 0x00000006
>>>> sect .data 0x00809900 0x00809904 0x00000004
>>>> sect mysect 0x00809a00 0x00809a04 0x00000004
>>>>
>>>>
>>>> END DSK

Directives That Initialize Constants

 6-8

6.3 Directives That Initialize Constants

Several directives assemble values for the current section.

� The .byte directive places one or more 8-bit values into consecutive words
in the current section. A byte in this case uses all 32 bits of the word placing
0s into the upper 24 bits.

� The .fill directive reserves a specified number of words in the current sec-
tion with a value. The assembler advances the SPC and skips the re-
served words. When you use a label with .fill, it points to the first word of
the reserved block.

� The .float directive converts an expression value into a 32-bit
TMS320C3x floating-point constant. This format has an 8-bit exponent
and a 24-bit mantissa.

� The .float16 directive converts an expression value into a 16-bit
TMS320C3x floating-point constant. This format has an 8-bit exponent
and an 8-bit mantissa. The format is identical to that used by the .sfloat
directive of the TMS320C32. The upper 16 bits are not used and are filled
with 0s.

� The .float8 directive converts an expression value into an 8-bit
TMS320C3x floating-point constant. This format has a 4-bit exponent and
a 4-bit mantissa. This format can be used for a quick logarithm approxima-
tion. The upper 24 bits are not used and are filled with 0s.

� The .ieee directive calculates the 32-bit IEEE floating-point representation
of a single precision floating-point value.

� The .int directive places one or more 16-bit values into consecutive words
in the current section. The upper 16 bits are not used and are filled with
0s.

� The .long directive places one or more 32-bit values into consecutive by-
tes in the current section.

� The .pfloat16 directive converts an expression value into a 16-bit floating-
point constant. The values are packed into consecutive fields of memory.

� The .pfloat8 directive converts an expression value into an 8-bit floating-
point constant. The values are packed into consecutive fields of memory.

� The .qxx directive places one or more 16-bit, signed 2s-complement val-
ues into consecutive words in the current section. Note that the decimal
point is displaced xx places from the LSB (least significant bits.)

 Directives That Initialize Constants / Directives That Reference Other Files

6-9 Assembler Directives

� The .space directive reserves a specified number of bits in the current
section. The assembler advances the SPC and skips the reserved words.
When you use a label with .space, it points to the first word of the reserved
block.

� The .string directive places 8-bit characters from one or more character
strings into the current section.

� The .word directive places one or more 32-bit values into consecutive by-
tes in the current section.

6.4 Directives That Reference Other Files

The .copy and .include directives tell the assembler to begin reading source
statements from another file. When the assembler finishes reading the source
statements in the copy/include file, it resumes reading source statements from
the current file.

Directives That Enable Conditional Assembly

 6-10

6.5 Directives That Enable Conditional Assembly

Conditional assembly directives enable you to instruct the assembler to as-
semble certain sections of code according to a true or false evaluation of an
expression. Two sets of directives allow you to assemble conditional blocks of
code:

� The .if /.else /.endif directives tell the assembler to assemble a block of
code according to a true or false evaluation of an expression. Note that you
cannot nest if statements.

.if well-defined expression marks the beginning of a conditional
block and assembles code if the .if well-
defined expression is true.

.else marks a block of code to be assembled
if the .if well-defined expression is
false.

.endif marks the end of a conditional block
and terminates the block.

� The .loop/.break/.endloop directives tell the assembler to repeatedly as-
semble a block of code according to the evaluation of an expression.

.loop well-defined expression marks the beginning a repeatable
block of code. The optional expression
evaluates to the loop count.

.endloop marks the end of a repeatable block.

 Directives That Align the Section Program Counter / Directives That Define Symbols at Assembly Time

6-11 Assembler Directives

6.6 Directives That Align the Section Program Counter

These directives affect the section program counter (SPC).

� The .align directive aligns the SPC at a 1-byte to 32K-byte boundary. This
ensures that the code following the directive begins on the byte value that
you specify. If the SPC is already aligned at the selected boundary, it is not
incremented.

� The .entry directive identifies the starting address of the section program
counter. By default, the current address is used, or, you can specify an op-
tional address.

6.7 Directives That Define Symbols at Assembly Time

Assembly-time symbol directives equate meaningful symbol names to
constant values or strings.

� The .set directive equates meaningful symbol names to constant values
or strings. The symbol is stored in the symbol table and cannot be rede-
fined; for example:

bval .set 0100h
.byte bval
b bval

� The .sdef directive equates meaningful symbol names to constant values
or strings; the symbol name can be redefined.

MIscellaneous Directives

 6-12

6.8 Miscellaneous Directives

These directives enable miscellaneous functions or features:

� The .brstart directive aligns the named section to the next 2n address
boundary following the current section.

� The .end directive terminates assembly. It should be the last source state-
ment of a program. This directive has the same effect as an end-of-file.

� The .start . directive links the named section to start assembling at the
location address. This effectively gives the DSK assembler the functional-
ity of a linker.

 Directives Reference

6-13 Assembler Directives

6.9 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are orga-
nized alphabetically, one directive per page; however, related directives (such
as .if/.else/.endif) are presented together on one page. Here is an alphabetical
table of contents for the directive reference:

Directive Page Directive Page

.align 6-14 .include 6-17

.brstart 6-15 .int 6-16

.byte 6-16 .long 6-16

.copy 6-17 .loop 6-24

.data 6-18 .pfloat16 6-21

.else 6-23 .pfloat8 6-21

.end 6-19 .qxx 6-25

.endif 6-23 .sdef 6-26

.endloop 6-24 .sect 6-27

.entry 6-20 .set 6-28

.fill 6-29 .space 6-29

.float 6-21 .start 6-30

.float8 6-21 .string 6-31

.float16 6-21 .text 6-32

.ieee 6-22 .word 6-16

.if 6-23

.align Align to a 32-Word Boundary

6-14

Syntax .align

Description The .align directive aligns the current section to a 32-word boundary, filling the
hole with NOPs. If the hole is greater than 2 words, .align places a branch to
the newly-aligned address. This directive is useful for placing critical code
blocks on the boundaries that best use the cache resources of the ’C3x archi-
tecture.

Example Here is an example of the .align directive.

;
; Slightly modified FIR filter example from C3x Users Guide
;––
 .start ”ISR”,0x809808 ; Create an output section which is
 .sect ”ISR” ; not on a 32-word boundary for demo
 .align ;
FIRLENG .set 64 ; Size of FIR filter
Critical ldp @FIRCOEF ;
 ldi @FIRCOEF,AR0 ; AR0=address of h(N–1)
 ldi @FIRDATA,AR1 ; AR1=address of x(n–(N–1))
 mpyf3 *AR0++(1),*AR1++(1)%,R1 ;
 ldf 0.0,R2 ;
 ldi FIRLENG–2,RC ; Be sure to unroll length by 2
 rptb FIR ; Begin block repeat
 mpyf3 *AR0++(1),*AR1++(1)%,R1 ;
FIR || addf3 R0,R1,R2 ;
 b $; Done, result is in R2
FIRCOEF .word 0x809900 ; Address for coefficient storage
FIRDATA .word 0x809A00 ; Address for input data storage

 Align to Address Boundary .brstart

6-15 Assembler Directives

Syntax .brstart “ section name” , n

Description The .brstart directive aligns the section name to the next 2n address boundary
immediately following the current section. This directive aligns data buffers in
order to use the ’C3x circular and bit-reversed addressing modes. Another
method for creating a section whose start is bit-reversed, is to use the br() func-
tion within the .start directive’s address field.

Example Here is an example of the .brstart directive.

.word $; The present address is

.brstart “Twiddle”, 128 ; Create a new section on a new 128 word boundary

.word $; The new address is

.byte, .int., .long, .word Initialize a 32-bit Integer

6-16

Syntax .byte value1 [,..., valuen]

.int value1 [,..., valuen]

.long value1 [, ... , valuen]

.word value1 [, ... , valuen]

Description These directives place one or more values into the current section.

� The .byte directive places 8-bit values into consecutive words in the cur-
rent section. The value must be an expression that evaluates to a number
within –128 and 127. The upper 24 bits are 0.

� The .int directive places 16-bit values into consecutive words in the cur-
rent section. The value must be an expression that evaluates to a number
within the range of –32768 and 32767. The upper 16 bits are always 0.

� The .long and .word directives place 32-bit values into consecutive words
in the current section. The value is an expression that the assembler eval-
uates and treats as a 32-bit signed number.

A value must be absolute. You can use as many values as fit on a single line
(80 characters). If you use a label, it points to the first word that is initialized.

Example 1 Here is an example of these directives.

.word ’A’, ’B’, ’C’, 1, 0x1234, 0320C31h

.int 111b, 1<<4

.long 0x87654321, 1<<31

.byte 0x20, ’A’, ’B’, ’C’

.hword 32765,l –32768, –2, 2

 Copy Source File .copy, .include

6-17 Assembler Directives

Syntax .copy “ filename”

.include “ filename”

Description The .copy and .include directives tell the assembler to read source state-
ments from a different file. The assembler:

1) Stops assembling statements in the current source file

2) Assembles the statements in the copied/included file

3) Resumes assembling statements in the main source file, starting with the
statement that follows the .copy or .include directive

The filename is a required parameter that names a source file. The filename
must be enclosed in double quotes and must follow operating system conven-
tions. You can specify a full pathname (for example, c:\dsktools\file1.asm). If
you do not specify a full pathname, the assembler searches for the file in the
current directory.

The .copy and .include directives can be nested within a file that is copied or
included. the assembler limits this type of nesting to eight levels; the host oper-
ating system may set additional restrictions.

Example This example shows how the .include directive is used to tell the assembler
to read and assemble source statements from other files, then to resume as-
sembling into the current file.

Source file: (source .asm)

; Filename: source.asm
.space 10h ; Filename: source.asm
.include “byte.asm” ; Filename: source.asm

; Filename: source.asm
.space 20h ; Filename: source.asm

First copy file: (byte.asm)

; Filename: byte.asm
.byte ’a’, 0ah, 32 ; Filename: byte.asm
.include “word.asm” ; Filename: byte.asm
.byte 11,12,13 ; Filename: byte.asm

; Filename: byte.asm

Second copy file: (word.asm)

; Filename: word.asm
.word oabcdh, 56 ; Filename: word.asm

; Filename: word.asm

.data Assemble Into .data Section

6-18

Syntax .data

Description The .data directive tells the assembler to begin assembling source code into
data memory. The .data section normally contains tables of data or preinitial-
ized variables.

Note that the assembler assumes that .text is the default section. Therefore,
at the beginning of an assembly, the assembler assembles code into the .text
section unless you specify a section control directive.

Example This example shows how to assemble code into the .data and .text sections.

.start “.data”, 0x809900

.entry BEGIN
BEGIN ldi 0, R0 ; Initialize R0 and R1

ldi 1, R1
.data

value .int 0, 1, 2, 3, 4, 5 ; Integer values

 End Assembly .end

6-19 Assembler Directives

Syntax .end

Description The .end directive is an optional directive that terminates assembly. It should
be the last source statement of a program. The assembler ignores any source
statements that follow an .end directive.

Example This example shows how the .end directive terminates assembly.

 ldi 1,R1 ; Assemble this code
 mpyi 5,R1 ;
 .end ; Stop assembler
 subi 2,R1 ; does not assemble

.entry Define Entry Point

6-20

Syntax .entry [value]

Description The .entry directive tells the assembler the address of the section program
counter when a file is loaded. If you do not use the value parameter, the current
program memory address, determined by the .text section, becomes the start-
ing address. If you have more than one .entry directive in your file, then the last
.entry directive encountered becomes the starting address of your code.

Example Here is an example of the .entry directive.

 .start ”code”,0x809800 ; Create a named section to assemble to
 .sect ”code” ; use the new section
 .entry BEGIN ; Start program at BEGIN
BEGIN: ldi 80h,AR0 ; Initialize ARx pointers to RAM0
 lsh 16,AR0 ;
 ldi AR0,AR1 ;
 ldi 0,R3 ; R3 is used as loop counter
LAB0 ldi *+AR0(0),R0 ; Both labels resolve to the same address
LAB1: || ldi *+AR1(1),R1 ; Colon ’:’ is recongized as a WS character
 ;–––––––––––––––––––––––––––––––––––;
 ; R0 contains the opcode at BEGIN ;
 ; R1 contains the opcode at BEGIN+1 ;
 ;–––––––––––––––––––––––––––––––––––;
count: addi 1,R3 ; Add 1 to count
 b count ; Wait in count loop forever

 Initialize TMS320C3x Floating-Point Value .float, .float16, .float8, .pfloat16, .pfloat8

6-21 Assembler Directives

Syntax .float value1 [,..., valuen]

.float16 value1 [,..., valuen]

.float8 value1 [,..., valuen]

.pfloat16 value1 [,..., valuen]

.pfloat8 value1 [,..., valuen]

Description These directive convert one or more values into TMS320C3x floating-point
constants.

� The .float directive converts a value into a 32-bit TMS320C3x floating-
point constant. This format has an 8-bit exponent and a 24-bit mantissa.

� The .float16 directive converts a value into a 16-bit TMS320C3x floating-
point constant. This format has an 8-bit exponent and an 8-bit mantissa.

� The .float8 directive converts a value into an 8-bit TMS320C3x floating-
point constant. This format has a 4-bit exponent and a 4-bit mantissa.
When properly scaled, this format can be used for quick logarithm approxi-
mations.

� The .pfloat16 directive converts a value into a 16-bit floating-point
constant. The values are packed into consecutive fields of memory.

� The .pfloat8 directive converts a value into an 8-bit floating-point
constant. The values are packed into consecutive fields of memory.

The value is a required parameter; it is an expression that is evaluated and
placed in the constant. The value must be absolute.

Note that the ’C31 expects floating-point numbers to have the 32-bit format.

Example Here is an example of these directives.

PI .set 3.1415926 ;.set remembers PI is float
 .float –10/3, –0.1, 0, 0.1, PI,2*PI ;Some easy to compare values
 .float8 –10/3, –0.1, 0, 0.1, PI,2*PI ;
 .pfloat8 –10/3, –0.1, 0, 0.1, PI,2*PI ;
 .float16 –10/3, –0.1, 0, 0.1, PI,2*PI ;
 .pfloat16 –10/3, –0.1, 0, 0.1, PI,2*PI ;
 .ieee –10/3, –0.1, 0, 0.1, PI,2*PI ;

.ieee Initialize IEEE Format Floating-Point Value

6-22

Syntax .ieee expression

Description The .ieee directive places the IEEE single-precision floating-point representa-
tion of a single floating-point constant into three bytes in the current section.

The expression is a required parameter; it is an expression that must evaluate
to a floating-point constant. Each constant is converted to a floating-point val-
ue in IEEE single-precision 32-bit format.

Example Here is an example of the .ieee directive.

.ieee –10/3, –0.1, 0, 0.1, PI, 2*PI ;Some values

 Assemble Conditional Block .if, .else, .endif

6-23 Assembler Directives

Syntax .if well-defined expression

.else

.endif

Description Three directives provide conditional assembly:

� The .if directive marks the beginning of a conditional block. The expres-
sion is a required parameter.

� If the expression evaluates to true (nonzero), the assembler as-
sembles the code that follows it (up to an .else, or an .endif).

� If the expression evaluates to false (0), the assembler assembles
code that follows an .else (if present), or an .endif.

� The .else directive identifies a block of code that the assembler assembles
when the .if expression is false (0). This directive is optional in the condi-
tional block; if an expression is false and there is no .else statement, the
assembler continues with the code that follows the .endif.

� The .endif directive terminates a conditional block.

Nested .if/.else/.endif directives are not valid.

Example Here is an example of conditional assembly:

TRUE .set 1
FALSE .set 0

.if TRUE ;
nop ; Assembles ’nop’ since TRUE
.else ;
B $; Never assembles
.endif ;

.loop/.break/.endloop Assemble Code Block Repeatedly

6-24

Syntax .loop well-defined expression

.endloop

Description Two directives enable you to repeatedly assemble a block of code:

� The .loop directive begins a repeatable block of code. The optional ex-
pression evaluates to the loop count (the number of loops to be per-
formed). If there is no expression, the loop count defaults to 246.

� The .endloop directive terminates a repeatable block of code; it executes
when the number of loops performed equals the loop count given by .loop.

Example This example shows the .loop directive.

;==
; Create an FFT Twiddle table
;==
 .start ”TABLES”,0x809A00
 .sect ”TABLES”
pi .set 3.1415926
N .set 4
 ;–––––––––––––––––––––––––;
TR ; REAL twiddles
 ;–––––––––––––––––––––––––;
 .loop N/2
 .float cos(($–TR)*pi/N);
 .endloop
 ;–––––––––––––––––––––––––;
TI ; IMAG twiddles ;
 ;–––––––––––––––––––––––––;
 .loop N/2
 .float –1*sin(($–TI)*pi/N)
 .endloop

 Initialize 2s-Complement Integers .qxx

6-25 Assembler Directives

Syntax .qxx value1 [,..., valuen]

Description The .qxx directive generates signed, 2s-complement fractional integers and
long integers whose decimal point is displaced xx places from the LSB.

Example Here’s an example of the .qxx directive. The value of xx can be either positive
or negative.

.q0 3.1415926 ; All upper 32 bits are integers

.q1 3.1415926 ; One fractional bit (left shift 1

.q2 3.1415926 ; Two fractional bits (left shift 2)

.q16 3.1415926 ; Upper 16 are whole integers,
; lower 16 are fractional

.sdef Define Assembly-Time Constant

6-26

Syntax symbol .sdef value

Description The .sdef directive functions in the same manner as the .set directive; howev-
er, .sdef can redefine the symbol name multiple times without generating an
error. All instances of .sdef symbols are stripped from the symbol table at the
end of pass 1 analysis. When used with the .if directive, .sdef can conditionally
assemble included blocks of code. This is useful for turning on and off included
library functions.

� The symbol must appear in the label field.

� The value must be a well-defined expression; that is, all symbols in the ex-
pression must be previously defined in the current source module.

Example This shows how symbols can be assigned with .sdef.

VarA .set 15 ;
VarB .sdef 0xAAAA ;

.word VarA, VarB ;
VarB .sdef 0x5555 ;

.word VarA, VarB ; Note the VarB value change

 Assemble Into Named Section .sect

6-27 Assembler Directives

Syntax .sect “section name”

Description The .sect directive begins assembling source code into the named section.
The .sect directive defines named sections that are used like default .text and
.data sections.

The section name identifies the section. The section name is significant to 80
characters and must be enclosed in double quotes.

Example Here’s an example of the .sect directive.

.start ”Mysect_1”,0x809800 ; Create two output sections

.start ”Mysect_2”,0x809880 ; at different addresses

.sect ”Mysect_1” ; Begin assembling into Mysect_1

.word $,1,1,1 ; $ gives present address

.sect ”Mysect_2” ; Begin assembling into Mysect_2

.word $,2,2,2 ;

.sect ”Mysect_1” ; Go back to assembling into Mysect_1

.word $,1,1,1 ;

.set Define Assembly-Time Constant

6-28

Syntax symbol .set value

Description The .set directive equates a constant value to a symbol. The symbol can then
be used in place of the value in assembly source. This allows you to equate
meaningful names with constants and other values.

� The symbol must appear in the label field.

� The value must be a well-defined expression; that is, all symbols in the ex-
pression must be previously defined in the current source module.

Example This example shows how to assign symbols with .set.

TA .set 1
TB .set 5
 ldi *AR0++(TA),R0
 ldi *AR0++(TB),R0

 Reserve Space .space, .fill

6-29 Assembler Directives

Syntax .space size in words

.fill size in words, value

Description Two directives reserve space in the current section.

� The .space directive reserves size number of words in the current section
and fills them with 0s. The SPC is incremented to point to the word follow-
ing the reserved space.

� The .fill directive reserves size number of words in the current section and
fills them with value. The value must be an absolute value. The SPC is in-
cremented to point to the word following the reserved space.

When you use a label with the .space or .fill directive, it points to the first word
reserved.

Example This example shows how the .space and .fill directives reserve memory.

 .space 12 ; Fill 12 locations with the value 0x0
 .fill 3,0x5555 ; Fill three words with 0x5555

 .start ”Mysect”,0x809800 ; Initialize start of Mysect
 .sect ”Mysect” ;

 .text
 .data

.start Link Section to Address

6-30

Syntax .start “section name”, address

Description The .start directive links the section name to start at location address. This di-
rective effectively gives the DSK assembler the same functionality as a linker
command file when used only to create runtime executable modules. For the
specified section to have a valid starting address, the .start statement for the
section must precede the .text, .data, or .sect directive that defines the section
name. Note that by using an include file with an imbedded .if/.sdef/.endif, the
.start directive can effectively be used in place of the linker.

Example Here is an example of the .start directive.

 .entry START
 .start ”MAIN”,0x809800 ; Create an output sections
 .sect ”MAIN” ; Begin assembling into MAIN
LOOP: addi 1,R0 ; Top of loop
 addi 1,R1
START: ldi 0,R0 ; Initialize R0,R1
 ldi 0,R1
 b LOOP ; Go to top of loop

 Initialize Text .string

6-31 Assembler Directives

Syntax .string “string1” [,..., “stringn”]

Description The .string directive places one or more 8-bit character strings into consecu-
tive bytes of the current section.

The character string must be enclosed in double quotes. Each character in a
string represents a separate value.

The .string directive places the 8-bit values into memory in a packed form in
the order they are encountered. If a word is not filled, the remaining bits are
filled with 0s.

Example This example shows several 8-bit values placed into consecutive bytes in
memory. The label Str_3 has the value 0h, which is the location of the first ini-
tialized byte.

Str_3: .string “ABCD”
.string 51h, 52h, 53h, 54h
.string “Hoston”
.string 36+12

.text Assemble Into .text Section

6-32

Syntax .text

Description The .text directive tells the assembler to begin assembling into the .text sec-
tion. The .text section usually contains executable code. The section program
counter (SPC) is set to 0, if nothing has been assembled into the .text section.
If code has already been assembled into the .text section, the SPC is restored
to its previous value in the section.

Note that the assembler assumes that .text is the default section. Therefore,
at the beginning of an assembly, the assembler assembles code into the .text
section unless you specify one of the other sections directives (.data, .entry,
or .sect).

Example This example shows the assembly of code into the .data and .text sections.

.start “.text”, 0x809800

.entry START
START ldi 0, R0 ; Initialize R0 and R1

ldi 1, R1
.text

value .int 0, 1, 2, 3, 4, 5 ; integer values

7-1

Using the DSK Debugger

This chapter tells you how to invoke the DSK debugger and use its function
keys and commands.

Topic Page

7.1 Invoking the Debugger 7-2.

7.2 Understanding the Debugger Windows 7-4.

7.3 Using the Help Menu 7-8.

7.4 Using Software Breakpoints 7-9.

7.5 Debugger Commands 7-10.

7.6 Quick Reference Guide 7-13.

Chapter 7

Invoking the Debugger

 7-2

7.1 Invoking the Debugger

Here’s the command for invoking the debugger:

dsk3d [options]

dsk3d is the command that invokes the debugger.

options supply the debugger with additional information.

Table 7–1 lists the debugger options; the following subsections describe some
of the more commonly used options.

Table 7–1.Summary of Debugger Options

Option Brief Description

? or HELP Displays a listing of the available options

AUTO Automatically detects if the parallel port supports 8- or 4-bit mode

BW = 4, Nibble Forces communication using the parallel port in standard 4-bit uni-
directional mode

BW = 8, Byte Forces communication using the parallel port in 8-bit bidirectional
mode

LPTx, LPT = x Selects a parallel printer port (LPT1 is default)

PORT = 0x378 Selects any port address

RESET Resets (cold boots) the DSK

TEST Searches automatically through LPT1, LPT2, and LPT3 for the
presence of a DSK

T = xx Adds extra xx I/O bus cycles to each transfer for long or noisy
cables

WIN = 1 Enables Windows Time Slice management

WIN = 0 Disables Windows Time Slice management and enables set or
clear interrupt (STI/CLI)

Displaying a list of available options (? or Help option)

You can display the contents of Table 7–1 on your screen by using the ? or Help
option. For example, enter:

dsk3d ?

 Invoking the Debugger

7-3 Using the DSK Debugger

Selecting the parallel printer port (LPT = 3 or LPT# option)

The LPT option selects a parallel printer port from the host to communicate
with the DSK.

Parallel Printer Port Functions

LPT1 or LPT = 1 Selects printer port hardware at I/O address 0x378.

LPT2 or LPT = 2 Selects printer port hardware at I/O address 0x278.

LPT3 or LPT = 3 Selects printer port hardware at I/O address 0x3BC.

Note:

Some EISA machines and IBM PS/2s use a different naming convention for
the LPTx.

AT Convention EISA and PS/2 I/O Address
LPT1 LPT2 ox378
LPT2 LPT3 0x278
LPT3 LPT1 0x3BC

Select the parallel printer port at a particular address (PORT option)

The port option selects the parallel printer port at the given address. For exam-
ple:

port = 0x378

selects the host’s parallel port mapped to the address 0x378.

Note:

Use this option with extreme care since any base address can be used.

Automatically search for a printer port (TEST option)

Use the test option to systematically search for a parallel port that has a DSK
connected. The search loops through LPT1, LPT2, and LPT3.

Note:

If you have a printer port or other peripheral connected to your PC, turn it off
before using the test option.

Understanding the Debugger Windows

 7-4

7.2 Understanding the Debugger Windows

DISASSEMBLY window

The DISASSEMBLY window shows the reverse assembly of memory con-
tents. As shown in Figure 7–1, this window displays several lines of code.
Each line shows the instruction address, instruction opcode, label, and instruc-
tion mnemonic. The highlighted line corresponds to the next instruction to be
executed.

Figure 7–1. DISASSEMBLY Window

809c03 50700080 start LDIU 00080h,DP
809c04 08349c2c LDI @09c2cH,SP
809c05 07608000 LDF 0.000000e+00,R0
809c06 c610c1c0 LDI *AR0,R0 || LDI *AR
809c07 c610c1c0 LDI *AR0,R0 || LDI *AR
809c08 08600100 LDI 256,R0
809c09 09a09c00 LSH @09c00H,R0
809c0a 61809c0e BRD jump
809c0b 07618000 LDF 0.000000e+00,R1
809c0c 07628000 LDF 0.000000e+00,R2
809c0d 07630000 LDF 1.000000e+00,R3
809c0e 07640000 jump LDF 1.000000e+00,R4
809c0f 087b0003 loop LDI 3,RC
809c10 64809c1a RPTB block
809c11 02640001 ADDI 1,R4

Instruction mnemonicInstruction opcodeInstruction address

DISASSEMBLY

Label

To select the DISASSEMBLY window, press ALT D . While in the DISASSEM-
BLY window, you can use the cursor to select a line and then use a function
key to set or clear a breakpoint. Refer to Table 7–13 for more information about
function keys.

 Understanding the Debugger Windows

7-5 Using the DSK Debugger

CPU REGISTER window

The CPU REGISTER window displays the content of all CPU registers as
shown in Figure 7–2. The register’s contents are normally displayed in hexa-
decimal format. You can press F3 to display the extended-precision registers
in floating-point decimal format. You can press F2 to display the extended-
precision registers in 40-bit hexadecimal format.

Figure 7–2. CPU REGISTER Window

PC 00809c03 SP 008098de
R0 00000000 R1 00000000
R2 00000000 R3 00000000
R4 00000000 R5 00000000
R6 00000000 R7 00000000
AR0 00000000 AR1 00000000
AR2 00000000 AR3 00000000
AR4 00000000 AR5 00000000
AR6 00000000 AR7 00000000
IR0 00000000 IR1 00000000
ST 00000000 RC 00000000
RS 00000000 RE 00000000
DP 00000000 BK 00000000
IE 00000000 IF 00000000

C31 DSP STARTERS KIT

Register names

Register contents

To modify the contents of a register, activate the CPU REGISTER window by
pressing ALT C . You can type over the highlighted data and press ENTER to
accept the changes when you are satisfied with them. Use the following keys
to select the data you want to edit:

→ ↑ ↓ ← PAGE UP PAGE DOWN TAB

Understanding the Debugger Windows

 7-6

MEMORY window

The MEMORY window shows the contents of a range of memory as shown in
Figure 7–3. The MEMORY window has two parts:

� Addresses . The first column of numbers identifies the addresses of the
first column of display data. No matter how many columns of data you dis-
play, only one address column is displayed. Each address in this column
identifies the address of the data immediately to its right.

� Data. The remaining columns display values at the listed addresses.

For example, the MEMORY window below has four columns of data, so each
new address is incremented by 4. Although the window shows four columns
of data, there is still only one column of addresses; address 0x0080 9800 con-
tains 0x0000 0007, address 0x0080 9801 contains 0xFFFF FFFC, address
0x0080 9804 (the first value in the second row) contains 0x0080 982C, ad-
dress 0x0080 9805 contains 0x0080 9839, etc.

Figure 7–3. MEMORY Window

809800 00000007 fffffffc 00809802 00809827
809804 0080982c 00809839 0080983c 0080983f
809808 00809843 00809842 00809868 0080989a
80980c 008098a9 10800000 0f350000 0f300000
809810 0f200000 0f320000 0f280000 0f290000
809814 1a770004 6a050006 628098a9 50700080

MEMORY

Address column Data columns

To modify the contents of the MEMORY window, press ALT M to activate the
window and then type over the data. To select a cell, you can use the following
keys:

→ ↑ ↓ ← PAGE UP PAGE DOWN TAB

 Understanding the Debugger Windows

7-7 Using the DSK Debugger

COMMAND window

The COMMAND window provides an area for entering commands, echoing
commands, and displaying command output errors and messages. The COM-
MAND window has two parts:

� Command line . This is the area where you enter commands. When you
want to enter a command, just type — no matter which window is active.

� Display area . This area echoes the commands that you enter, shows any
output from your commands, and displays debugger error messages.

Figure 7–4 shows the window command line and display area.

Figure 7–4. COMMAND Window

>
>load testa

�

COMMAND

Display area

Command line

You can use the ↑ and ↓ keys to select a previously entered command from
the buffer (a > is used to indicate the buffer). The editing command keys are
shown in Table 7–2.

Table 7–2.Editing Command Keys

To do this Use this command

Move through the command ← →

Toggle the insert and type over mode INS

Delete the character at the cursor DEL

Move to the beginning of the line HOME

Move to the end of the line END

Clear the command ESC

Select a command from the buffer ↑ ↓

Using the Help Menu

 7-8

7.3 Using the Help Menu

You can press the F1 or H key to bring up the Help Window Display shown
in Figure 7–5. Choose from the menu selections listed below to find additional
information.

Figure 7–5. Monitor Information Screen

KEYBOARD COMMANDS

F1 Help Screen
F2 40-bit hex display
F3 FLOAT display
F4 Source/DASM debug toggle
F5 Run
F6 Display breakpoints
F7 Clear all breakpoints
F8 Singlestep
F9 Toggle DASM window size
F10 Step over function

ALT+D Selects Disassembly Window
ALT+M Selects Memory Window

H–Xtra help S–save help to fileMove Up/Dn/Pup/Pdn

To move through the help window, you can use:

� PGUP to move ahead a page

� PGDN to move back a page

� HOME to return to the first page of the help menu

� END to go to the last page of the help menu

� S to save help text to a file

� ESC to exit the help menu and return to the debugger

� H to enter a second help level. The second help level is more hardware-
oriented and deals less with debugger-specific commands.

 Using Software Breakpoints

7-9 Using the DSK Debugger

7.4 Using Software Breakpoints

This section describes how to set and clear software breakpoints and how to
obtain a listing of all the breakpoints that are set.

While debugging, you may want to halt execution temporarily so that you can
examine the contents of selected variables, registers, and memory locations
before continuing with program execution. You can do this by setting software
breakpoints in the assembly language code. A software breakpoint halts any
program execution, whether you’re running or single-stepping through code.

Setting a software breakpoint

When you set a software breakpoint, the debugger highlights the breakpointed
line in a bolder or brighter font. The highlighted statement appears in the DIS-
ASSEMBLY window.

After execution is halted by a breakpoint, you can continue program execution
by reissuing any of the run or single-step commands.

You can set a software breakpoint by entering the SB command.

sb addr If you know the address where you’d like to set a software breakpoint, you can
use the SB command. This command is useful because it doesn’t require you
to search through code to find the desired line. When you enter the SB com-
mand, you enter an absolute address (addr). (Once you have entered the ad-
dress, you are asked to choose the line number you want the breakpoint set
on.) Note that you cannot set multiple breakpoints at the same statement.

Clearing a software breakpoint

cb addr If you’d like to clear a breakpoint, you can use the CB command. You can use
the CB command to clear a specific address by entering an absolute address
(addr) after the command. You can clear all breakpoints by entering the CB
command without an address.

Finding the software breakpoints that are set

db Sometimes, you may need to know where software breakpoints are set. The
DB command provides an easy way to get a complete listing of all the software
breakpoints that are currently set in your program.

Debugger Commands

 7-10

7.5 Debugger Commands

The following tables provide a summary of the debugger function keys and
commands.

Table 7–3.Command-Line Editing

To do this Use this command

Move the cursor to the beginning of the command line HOME

Move the cursor to the end of the command line END

Delete the character to the left of the cursor DEL

Delete the character to the right of the cursor SHIFT END

Move the cursor to the left →

Move the cursor to the right →

Table 7–4.Command-Line Buffer Manipulation

To do this Use this command

Recall the last command typed ↑PAGE UP or

Recall the first command in the command-line buffer PAGE DOWN or ↓

Reexecute the last command typed TAB

Table 7–5.Running Programs

To do this Use this command

Step through the instructions one at a time (single-
step)

SS

Execute n instructions XN n

Single-step through the instructions until you reach
address addr

XG addr

Execute the program until a breakpoint is encoun-
tered

RUN

Execute the program and ignore breakpoints (run-
free)

RUNF

 Debugger Commands

7-11 Using the DSK Debugger

Table 7–6.Displaying and Changing Data

To do this Use this command

Display the contents of memory starting at address
addr in the MEMORY window

MEM addr

Modify memory at address addr MM addr

Fill leng locations of memory starting at address addr
with value val. If val is expressed in a floating-point
format (with a decimal point), it will be converted into
a TMS320 floating-point format.

MM addr leng val

Display assembly language code starting at address
addr in the DISASSEMBLY window

DASM addr

Display extended-precision registers in 40-bit hexade-
cimal format in the register window

REG40

Display extended-precision registers in floating-point
decimal format in the register window

FLOAT

Modify reg register in the CPU REGISTER window
with the value from expression. For example
PC = 0x809800
R0 = 1.34

reg = expression

Table 7–7.Managing Breakpoints

To do this Use this command

Set a breakpoint at address addr SB addr

Clear a breakpoint at address addr CB addr

Clear all the breakpoints CB

Display a list of all the breakpoints that are set DB

Table 7–8.Loading Programs

To do this Use this command

Load an object file LOAD filename

Load symbols SLOAD filename

Load binary only BLOAD filename

Clear symbols SCLEAR

Debugger Commands

 7-12

Table 7–9.Performing System Tasks

To do this Use this command

Reset the DSK RESET

Quit or exit the debugger QUIT or EXIT

Enter the DOS shell and optionally execute the ex-
pression. Enter EXIT to return to debugger

DOS (expression to Run)

Enter the DOS shell and execute the editor to edit
filename. (If no filename is given, the name of the
presently loaded file is used).

EDIT filename

Enter the DOS shell and execute the DSK assembler
to assemble file

dsk3a filename.asm

 Quick Reference Guide

7-13 Using the DSK Debugger

7.6 Quick Reference Guide

The following tables provide a quick-reference guide of the function key defini-
tions.

Table 7–10.Function Key Shortcuts for DISASSEMBLY Window Active

Function Key Description

F1 Help screen

F2 Set breakpoint at cursor

F3 Clear breakpoint at cursor

F4 Run to cursor

F5 Run

F6 Display breakpoints

F7 Clears all breakpoints

F8 Single-steps your program

F9 Grow window

F10 Step over

SHIFT F9 Selects the DISASSEMBLY window

ESC or ENTER Escape

Table 7–11. Function Key Shortcuts for CPU Window Active

Function Key Description

F1 Help screen

ESC Exit CPU window

HOME Move to top

END Move to bottom

↑ or ↓ Move cell vertical

TAB Move cell horizontal

Quick Reference Guide

 7-14

Table 7–12.Function Key Shortcuts for MEMORY Window Active

Function Key Description

F1 Help screen

F9 Toggle window size

ESC Exit memory window

HOME Move to top

END Move to bottom

PAGE UP or PAGE DOWN Move by page up/down

↑ or ↓ Move cell vertical

TAB Move cell horizontal

Table 7–13.Function Key Shortcuts for COMMAND Window Active

Function Key Description

F1 Displays a list of commands

F2 Displays extended-precision registers in 40-bit hex-
adecimal format

F3 Displays extended-precision registers in floating-
point decimal format

F4 Toggles between displaying the source file and the
memory disassembly.

F5 Executes your program to the next breakpoint

F6 Displays all breakpoints

F7 Clears all breakpoints

F8 Single-steps your program

F9 Toggles the DISASSEMBLY window size

F10 Single-steps your program and steps past calls

ALT D Selects the DISASSEMBLY window

ALT M Selects the MEMORY window

ALT C Selects the CPU REGISTER window

ESC Exits the active window

A-1

Appendix A

Communications Kernel Source Code

This appendix contains the source code for the TMS320C3x DSK communica-
tions kernel.

Appendix A

Communications Kernel Source Code

A-2

;–––;
; TMS320C3x DSK COMMUNICATIONS AND DEBUG MONITOR KERNAL ;
; Texas Instruments Incorporated ;
; (C) 1995,1996 ;
;–––;
 .start ”vectors”,0x809FC1
 .start ”kernel” ,vectors–0xAB ; Use size report from DSK3A
 .start ”sstack” ,0x809F00 ; output to pack to end of RAM
 .entry START
;===;
; COMMUNICATION MONITOR START ;
; ;
; STACK SPACE ;
; ––––––––––– ;
; A section of unoccupied free memory of STACKSIZE size words just ;
; below the kernel is used on startup for initialization and stack ;
; space. If more (or less) stack space is required, a new stack ;
; pointer value can be initialized within the users applications code ;
; to any location, or by re–assembling this code with a new STACKSIZE ;
; ;
; When initialization is complete, the startup stub can be safely ;
; overwritten since it is no longer needed. In this case the startup ;
; stub is placed after the stack. Another ’safe’ location would be ;
; a section of memory which is used for I/O or uninitialized data. ;
; ;
; This section of code also initializes the timers which are used by ;
; the PAL to create the PWM signal which drives the LED. The rate ;
; at which the LED changes color is F0–F1 where F0 and F0 are the two ;
; timer output frequencies. (See the Users Guide ;
;===;
 .sect ”sstack”
stack: .word stack–1 ; start of kernel stack
MMRBASE .word 0x00808000 ;
PRD0 .word 0x0000A000 ;
PRD1 .word 0x0000A060 ;
TSTART .word 0x000003C3 ;
START ldp @START ; Set up stack and other params
 ldi @stack,SP ;
 ;=======================
 ldi @MMRBASE,AR0 ; Init timers for slow PWM modulation
 ldi 3,R0 ; HALT timers
 sti R0,*+AR0(0x20) ;
 sti R0,*+AR0(0x30) ;
 sti R0,*+AR0(0x24) ; Init count registers
 sti R0,*+AR0(0x34) ;
 ldi @PRD0,R0 ; Init periods
 sti R0,*+AR0(0x28) ;
 ldi @PRD1,R0 ;
 sti R0,*+AR0(0x38) ;
 ldi @TSTART,R0 ; Start timers
 sti R0,*+AR0(0x20) ;
 sti R0,*+AR0(0x30) ;
 b spin0 ;

 Communications Kernel Source Code

A-3 Communications Kernel Source Code

;==;
; DEBUGGER COMMANDS ;
; The debugger commands are assembled into the lowest available kernel ;
; memory. If an application were to overgow this section the debugger ;
; functions would be corrupted, but the application would continue to ;
; run so long as the debugger functions were not used. ;
;==;
; XSTEP/XRUNF ;
; ;
; These functions restore the CPU registers from the context save area ;
; before returning to the code pointed to by the program counter value. ;
; The only difference is that XSTEP purposely sets the interrupt flag ;
; used for single stepping before returning to the users code. ;
; ;
; SINGLE STEPPING ;
; The tail end of this function is written such that a pending ;
; interrupt will not be serviced until one opcode has been fetched from ;
; the return address and executed (there may be other dummy fetches). ;
; This ’pending’ interrupt then causes the processor to return back to ;
; the context save routine, effectively singlestepping the CPU. ;
; ;
;==;
S0_xdata .set 0x808048 ; SP 0 Data transmit
S0_rdata .set 0x80804C ; SP 0 Data receive
 .sect ”kernel”
 .word 0x00320C31 ; Prepend a few easily recognizable markers
 .word 0x00320C31 ;
XSTEP or 0x40,IF ; set XINT1 (safe INT for C31/C32 debug!)
XRUNF or 0xC4,IE ; set EXINT1 (safe INT for C31/C32 debug!)
 ;–––––––––––––––––––––––
 sti IE,@_freerun ; Freerun !=0 indicates DSK is not halted
 ;–––––––––––––––––––––––
 ldi @CPUCTXT,AR0 ; Use parallel opcodes for squeeze
 ldi AR0,AR1 ;
 addi 1,AR1 ;
 ldi 2,IR0 ;
 ;–––––––––––––––––––––––
 ldi @S0_rdata,R0 ; Clear under/overrun conditions before exit
 ldi 0,R0 ; 0 ensures low bits during SP recovery
 sti R0,@S0_xdata ; XSR resends – should all be zero
 ldf *AR0++(IR0),R0 ; load floats (exponents)
 || ldf *AR1++(IR0),R1 ;
 ldf *AR0++(IR0),R2 ;
 || ldf *AR1++(IR0),R3 ;
 ldf *AR0++(IR0),R4 ;
 || ldf *AR1++(IR0),R5 ;
 ldf *AR0++(IR0),R6 ;
 || ldf *AR1++(IR0),R7 ;
 ;– – – – – – – – – – – –
 ldi *AR0++(IR0),R0 ; load longs (mantissa)
 || ldi *AR1++(IR0),R1 ;
 ldi *AR0++(IR0),R2 ;
 || ldi *AR1++(IR0),R3 ;
 ldi *AR0++(IR0),R4 ;
 || ldi *AR1++(IR0),R5 ;

Communications Kernel Source Code

A-4

 ldi *AR0++(IR0),R6 ;
 || ldi *AR1++(IR0),R7 ;
 ;– – – – – – – – – – – –
 ldi @_AR0,AR0 ; load ARx
 ldi @_AR1,AR1 ;
 ldi @_AR2,AR2 ;
 ldi @_AR3,AR3 ;
 ldi @_AR4,AR4 ;
 ldi @_AR5,AR5 ;
 ldi @_AR6,AR6 ;
 ldi @_AR7,AR7 ;
 ldi @_IR0,IR0 ;
 ldi @_IR1,IR1 ;
; or @_IF,IF ; CPU interrupt flags
 ldi @_IOF,IOF ; IO flags
 ldi @_RS,RS ; Repeat start
 ldi @_RE,RE ; Repeat end
 ldi @_RC,RC ; Repeat counter
 ldi @_BK,BK ; Block size
 ldi @_SP,SP ; get user SP

 ;– – – – – – – – – – – –
 ldi @_PC,R5 ; return to PC from TOS return
 andn 0x4,IF ; Clear/Poll INT2 before SSTEP or RUNF
 tstb 4,IF ;
 bnz $–3 ;
 ldiu @_ST,ST ; restore Status
 or @_IE,IE
 BUD R5 ;
 or 2000h,ST ; turn on INT’s
 ldiu @_R5,R5 ;
 ldiu @_DP,DP ; restore DP
;==;
; XHALT ;
; When called this function restores the temporary use registers used ;
; for quick returns from the XWRITE/XREAD before falling into a full ;
; context save, followed by waiting for a new command. ;
;==;
XHALT pop AR1 ; restore original registers before save
 pop AR0 ;
 pop IR1 ;
 pop R0 ;
 pop DP ;
 pop ST ; User PC now at TOS

 Communications Kernel Source Code

A-5 Communications Kernel Source Code

;==;
; SSTEP ;
; This section of code is executed after the pending interrupt, which ;
; was set in XSTEP, has feteched the ISR vector and begun execution. ;
; This code performs a full CPU context save before going to the spin ;
; loop to await further commands. ;
;==;
SSTEP push DP ; temp storage of user DP
 ldp @_ST ; DP for kernal
 sti ST,@_ST ; store ST
 sti IR0,@_IR0 ; IR0 used as temp, later for indexed store
 pop IR0 ; save user DP
 sti IR0,@_DP ;
 pop IR0 ; save user PC
 sti IR0,@_PC ;
 sti SP,@_SP ; save user SP
 sti BK,@_BK ; Block size
 sti IE,@_IE ; Internal int enable
 sti IF,@_IF ; CPU interrupt flags
 sti IOF,@_IOF ; IO flags
 sti RS,@_RS ; Repeat start
 sti RE,@_RE ; Repeat end
 sti RC,@_RC ; Repeat counter
 ; sti IR0,@_IR0 ; Keep everything <– IR0 Saved previously
 sti IR1,@_IR1 ;
 ;– – – – – – – – – – – –
 sti AR0,@_AR0 ; Use parallel opcodes for squeeze
 sti AR1,@_AR1 ;
 ldi @CPUCTXT,AR0 ;
 ldi AR0,AR1 ;
 addi 1,AR1 ;
 ldi 2,IR0 ;
 ;– – – – – – – – – – – –
 stf R0,*AR0++(IR0) ; Store floats
 || stf R1,*AR1++(IR0) ;
 stf R2,*AR0++(IR0) ;
 || stf R3,*AR1++(IR0) ;
 stf R4,*AR0++(IR0) ;
 || stf R5,*AR1++(IR0) ;
 stf R6,*AR0++(IR0) ;
 || stf R7,*AR1++(IR0) ;
 ;– – – – – – – – – – – –
 sti R0,*AR0++(IR0) ; Store longs
 || sti R1,*AR1++(IR0) ;
 sti R2,*AR0++(IR0) ;
 || sti R3,*AR1++(IR0) ;
 sti R4,*AR0++(IR0) ;
 || sti R5,*AR1++(IR0) ;
 sti R6,*AR0++(IR0) ;
 || sti R7,*AR1++(IR0) ;

Communications Kernel Source Code

A-6

 ;– – – – – – – – – – – –
 sti AR2,@_AR2 ; AR0 & AR1 Already saved
 sti AR3,@_AR3 ;
 sti AR4,@_AR4 ;
 sti AR5,@_AR5 ;
 sti AR6,@_AR6 ;
 sti AR7,@_AR7 ;
;–––––––––––––––––––––––––––––––
 ldi 0, R0 ; Freerun = 0 indicates HALT (spin0)
 sti R0,@_FREERUN ;
TRAP_AK call W_HOST ; Send ACKNOWLEDGE (zero) to host
 ; b spin0 ; <– Branch is removed (spin0 is inline)
;––;
; The spin0 code loop is used by the kernel as a known program loop ;
; when a process is halted. While in the spin loop, commands can be ;
; processed. This code loop is primarily used while debugging or ;
; during startup as a known useable code loop. ;
;––;
spin0 or 4,IE ; Enable DSK31 HPI interrupt
 and 4,IE ; Shut down all interrupts except host
 b spin0 ;
;–––––––––––––––––––––––––––––––
S0xdata .word 0
GIE .set 0x2000

 Communications Kernel Source Code

A-7 Communications Kernel Source Code

;===;
; REGISTER CONTEXT STORAGE ;
; This block of memory holds the register values when a process is ;
; stopped. Essentially the registers displayed in the debugger are ;
; the contents of this memory block. ;
;===;
context ;
_F0 .word 0 ; R0
_F1 .word 0 ; R1
_F2 .word 0 ; R2
_F3 .word 0 ; R3
_F4 .word 0 ; R4
_F5 .word 0 ; R5
_F6 .word 0 ; R6
_F7 .word 0 ; R7
_R0 .word 0 ; F0
_R1 .word 0 ; F1
_R2 .word 0 ; F2
_R3 .word 0 ; F3
_R4 .word 0 ; F4
_R5 .word 0 ; F5
_R6 .word 0 ; F6
_R7 .word 0 ; F7
_AR0 .word 0 ; AR0
_AR1 .word 0 ; AR1
_AR2 .word 0 ; AR2
_AR3 .word 0 ; AR3
_AR4 .word 0 ; AR4
_AR5 .word 0 ; AR5
_AR6 .word 0 ; AR6
_AR7 .word 0 ; AR7
_DP .word 0 ; Data page
_IR0 .word 0 ; Index register 0
_IR1 .word 0 ; Index register 1
_BK .word 0 ; Block size
_SP .word stack–1 ; Stack pointer (initial DSK3D value)
_ST .word 0 ; Status
_IE .word 0 ; Internal int enable
_IF .word 0 ; CPU interrupt flags
_IOF .word 0 ; I/O flags
_RS .word 0 ; Repeat start
_RE .word 0 ; Repeat end
_RC .word 0 ; Repeat counter
_PC .word 0 ; program counter
_FREERUN .word 0 ; 1 = DSK is free running, 0 = DSK is HALT’ed
CPUCTXT .word context ;

Communications Kernel Source Code

A-8

;**;
; KERNEL COMMANDS ;
; ––––––––––––––– ;
; These commands are the primary functions required by the kernel ;
; to perform host based communications. They have been packed into ;
; the avalable memory in such a way as to minimize the kernels size. ;
; The non–debugger functions have also been placed after the debugger;
; commands making it easier to simply allow the application to ;
; ’overwrite’ the debugger commands. ;
;**;
;==;
; INTx is the starting point for all host generated commands. ;
; A host generated command is received when INT2 goes active (driven ;
; low) indicating HPSTB has gone low and that the host would like to ;
; transfer a piece of data or command. ;
;==;
INTx ; maxspeed
 push ST ; Push ISR variables
 push DP ;
 push R0 ; NOTE: A HALT command pops these
 push IR1 ; values followed by a full save
 push AR0 ;
 push AR1 ;
 ldp @JUMP ; Get address of command from JUMP table

 ldi @S0_xdata,R0 ; Put a zero in the DXR making startup
 sti R0,@S0xdata ; from a stalled port safe for the AIC
 ldi 0,R0 ; which cannot accept ’garbage’ which
 sti R0,@S0_xdata ; would reprogram it.

 tstb 4,IF ; Get here by driving INT2 low
 bz SR2 ; Make sure INT2 is active
 call R_HOST ; R0==command
 ldi R0,AR1 ;
 addi @JUMP,AR1 ;
 ldi *AR1,AR1 ;
 b AR1 ; execute command
;**
; COMN is used by both the XWRIT and XREAD functions to receive the
; block transfer length, address and address increment value.
;**
COMN call R_HOST ;
 ldi R0,AR1 ; data packet length
 call R_HOST ;
 ldi R0,AR0 ; source address
 call R_HOST ;
 ldi R0,IR1 ; source index
 subi 1,AR1 ;
 rets ;

 Communications Kernel Source Code

A-9 Communications Kernel Source Code

;==;
; The XCTXT command returns the address of the context save area to ;
; the host. Subsequently, the host can use this address to ’get’ ;
; and put the CPU registers to modify the exectution of the processor;
;––;
XCTXT ldi @CPUCTXT,R0 ; Transmit location of context to CPU
 call W_HOST ;
 ; b SR2 ;
;==;
; SR2 is the short ’common’ return sequence used by most commands. ;
; when executed, the return will send the CPU back to the users code ;
;==;
SR2 ldi 07F00h,AR0 ; Dummy non–HPI read releases READY
 ldi *AR0,AR0 ;
 pop AR1 ; restore ISR variables
 pop AR0 ;
 pop IR1 ;
 pop R0 ;
 pop DP ;
 ; andn 0x4,IF ;
 ; or 4,IE ;
 pop ST ;
 reti ; return to original code
;==;
; TMS320C31 SECONDARY VECTOR TABLE ;
; –––––––––––––––––––––––––––––––– ;
; When the TMS320C31 receives an interrupt it first fetches an ;
; address from the primary vector table (located in the bootloader ;
; ROM). This 32 bit value is then used as an address where the ;
; new execution begins. ;
; ;
; Since it is impossible to relocate the vector table, or modify ;
; the contents of the bootloader ROM, a ’secondary’ or ’branch’ ;
; vector table is used to direct execution to the correct routines. ;
; In this case the C31’s primary vector table has been filled with ;
; interrupt routine addresses which point to the upper memory of ;
; internal RAM beginning at 0x809FC0. Since these locations are ;
; were execution actually begins, and can be modified, a branch ;
; opcode can be used to direct execution to the desired location. ;
;==;
 .sect ”vectors”
INT0 b $; 0x809FC1 0x001
INT1 b $; 0x809FC2 0x002
INT2 b INTx ; 0x809FC3 0x004 <– HPI
INT3 b $; 0x809FC4 0x008
XINT0 b $; 0x809FC5 0x010
RINT0 b $; 0x809FC6 0x020
XINT1 b SSTEP ; 0x809FC7 0x040 <– SSTEP
RINT1 b SSTEP; TRAPFIX ; 0x809FC8 0x080 <– ETRAP 0x74000008
TINT0 b $; 0x809FC9 0x100
TINT1 b $; 0x809FCA 0x200
DINT b $; 0x809FCB 0x400

Communications Kernel Source Code

A-10

;==;
; HOST HPI communications routines packed into himem ;
; ;
; NOTE: These routines can be called from a high level langauge ;
; compiler using the C31s TRAP commands, by directly linking their ;
; resolved addresses or by using the jump table. ;
;==;
; W_HOST performs an interlocked Host Port write of the contents ;
; of R0 to the host using the HPSTB/HPACK protocol. When called the ;
; host PC should be waiting for this function to send data. ;
;==;
W_HOST push AR0 ; Used for HPI address
 push AR1 ; Used for loop counter
 push ST ; Keep flags
 push DP ; Might not be on same page
 ldp WSCOUNT ;
 ldi 0xF000,AR0 ; HPI address sign extends to 0xFFF000
 ldi @WSCOUNT,AR1 ;
WH sti R0,*AR0++(16) ; Store lsbs to HPI
 lsh @WSHIFT,R0 ; shift to next lsbs
 db AR1,WH ; loop until done
 pop DP ;
 b COMNHST ;
;==;
; R_HOST performs an interlocked Host Port read from the printer ;
; port interface and places the result into R0. ;
;==;
R_HOST push AR0 ; HPI Address
 push AR1 ; loop counter
 push ST ;
 push R1 ; temp register
 ldi 0xF000,AR0 ; HPI address sign extends to 0xFFF000
 ldi 3,AR1 ; bytes–1 to receive
RH lsh –8,R0 ; shift result right one byte
 ldi *AR0++,R1 ; Load byte
 lsh 24,R1 ; shift to upper byte
 or R1,R0 ; or w/result
 db AR1,RH ; loop until done
 pop R1 ; restore
 ;;;; b COMNHST ; <– Branch can be saved
COMNHST pop ST ; Next 4 opcodes common to W_HOST/R_HOST
 pop AR1 ;
 pop AR0 ;
 rets ;
;==;
; XWRIT is a host port command designed to transfer a block of ;
; data from the host to the C31’s memory. ;
;==;
XWRIT call COMN ;
XW1 call R_HOST ;
 sti R0,*AR0++(IR1) ;
 db AR1,XW1 ;
 b SR2 ;

 Communications Kernel Source Code

A-11 Communications Kernel Source Code

;==;
; XREAD is a host port command designed to transfer a block of ;
; data from C31 memory to the host. ;
;==;
XREAD call COMN ;
XR1 ldi *AR0++(IR1),R0 ;
 call W_HOST ;
 db AR1,XR1 ;
 b SR2 ;
;==;
; There are a few leftover traps that can be used by appliactions ;
; The number of TRAPs coincides with the amount of available unused ;
; memory before the JUMP table is encountered and was adjusted by ;
; hand by looking at the assembler listing ;
;==;
TRAP00 b $; Leftover TRAPs which can be
TRAP01 b $; used by applictions
;==;
; A JUMP table can also be used to access the DSK3 routines from ;
; other applications that require host communications. In this case ;
; the contents of the loaction specified can be used in a register ;
; call or branch. ;
;==;
; .start ”JMPTBL”,0x809FF4
; .sect ”JMPTBL”
JUMP .word JUMP ;0x809FF4 Jump table base address
 .word XWRIT ;1 ;0x809FF5 for DSK3 routines
 .word XREAD ;2 ;0x809FF6
 .word XCTXT ;3 ;0x809FF7
 .word XRUNF ;4 ;0x809FF8
 .word XSTEP ;5 ;0x809FF9
 .word XHALT ;6 ;0x809FFA
 .word W_HOST ;7 ;0x809FFB
 .word R_HOST ;8 ;0x809FFC
 .word spin0 ;10 ;0x809FFD Use for spare command
;==;
; The last two locations of internal memory hold the two parameters ;
; which define the printer ports bus return width. Depending on the ;
; values, either 8 bit bi–directional or 4 bit nibble returns can ;
; be implimented. These values control the loop count and shift ;
; value needed to place the correct bits on the proper return buffer ;
; inputs. ;
; ;
; DO NOT OVERWITE THESE VALUES unless you are performing buswidth ;
; verification or setup. For more details, see the communications ;
; initialization routines within the host side code. ;
;==;
WSCOUNT .word 7 ;0x809FFE These locations hold the W_HOST
WSHIFT .word –4 ;0x809FFF buswidth parameters (Nibble/Byte)

 .end

Communications Kernel Source Code

A-12

B-1

Appendix A

DSK Circuit Board Dimensions
and Schematic Diagrams

Figure B–1 shows the dimensions of the DSK circuit board, and the rest of the
appendix contains a brief description of the hardware in the TMS320C3x DSP
Starter Kit, the schematic diagrams and design notes for host interface control.

Appendix B

C
ircuit B

oard D
im

ensions

B
-2 Figure B–1.TMS320C3x DSP Starter Kit (DSK) Circuit Board Dimensions

TLC32040CFN

3.2000

2.1250

1.0750

0.0000

1.6560

–0.1500

3.3500
3.2000

2.5820

0.7300

0.0500
0.0000

3.5000

5.000

 Hardware Component Overview

B-3 DSK Circuit Board Dimensions and Schematic Diagrams

B.1 Hardware Component Overview

This section describes the basic functions of the DSK components:

� Expansion connectors — The four 32-pin headers allow you to develop
add-on cards that can directly interface to all of the ’C31 signals.

� Jumper block header — An 11-pin jumper block connects the ’C31 serial
port to the TLC32040 AIC. Removal of the jumpers disconnects the AIC
from the ’C31 serial port, so that a daughtercard can use the serial port
signals.

� Host interface logic — The host interface logic consists of a program-
mable array logic (PAL) 22V10Z and two high-speed octal bus transceiv-
ers with tri-state outputs (74ACT245). These devices interface the ’C31
with the host parallel printer port. This interface logic supports 8-bit bidirec-
tional or 4-bit unidirectional data modes of the PC host.

� Oscillator — The on-board 50Mhz oscillator drives the ’C31 clock input.
The ’C31 internal clock value is divided by 1 (same frequency).

� Parallel printer port connector — The DB25 25-pin connector connects
directly to the host parallel printer port.

� RCA jacks — The RCA jacks supply analog input or output and are routed
to the I/O pins of the AIC.

� Resettable fuses — The polyswitch resettable fuses interrupt the flow of
excessive current. The fuses reset after they cool down and the faulty
condition is corrected. The fuses require no manual resetting or replace-
ment.

� TLC32040 AIC — The analog interface circuit provides the ’C31 access
to the analog world. The AIC samples analog data and converts it into a
digital stream for ’C31 analysis. The ’C31 operates on this digital data and
returns the “transformed” digital data to the AIC for conversion into an ana-
log signal.

� TMS320C31 — The main processor is a 32-bit, floating-point digital signal
processor. You develop application code and load it to the on-chip memory
of the ’C31. This code can be executed, single-stepped, and viewed in the
debugger.

Hardware Component Overview

B-4

� Voltage Regulators - The DSK uses a 7–12 Vdc or 6–9 Vac wall mount
power supply. The 7–12 Vdc supply voltage is full-wave rectified and then
regulated up to 5 volts by the LM7805. It is also converted to –5 volts by
the capacitive switching circuit LT1054, and then regulated by the
LM7905. The 6–9 Vac supply is full-wave rectified and then regulated by
the LM7805 and LM7905 to +5V and –5V, respectively. The +5V and –5V
supplies are used to power all of the DSK on-board circuitry. The
TLC32040 AIC requires a negative poser supply of –5 volts.

� XDS Emulator Port — An 11-pin header that connects the XDS510 emu-
lator to the ’C31. The emulator allows you to upgrade to the full-featured
XDS debugger to debug your application code while using the DSK as the
XDS target board.

B.2 Schematics

The schematic diagrams included here show all of the internal and external
connections in the DSK circuitry.

Schematics

B-5DSK Circuit Board Dimensions and Schematic Diagrams

Schematics

B-6

Schematics

B-7DSK Circuit Board Dimensions and Schematic Diagrams

Schematics

B-8

Schematics

B-9DSK Circuit Board Dimensions and Schematic Diagrams

Schematics

B-10

 Host Interface Control Design Notes

B-11 DSK Circuit Board Dimensions and Schematic Diagrams

Host Interface Control Design Notes

TITLE HOST INTERFACE CONTROL
DWG. NAME TMS320C3X DSK
ASSY # D600335–0001
PAL # U7
COMPANY TEXAS INSTRUMENTS INCORPORATED
ENGR KEITH LARSON
DATE 3/7/96
;
; DESIGN NOTES:
;
; The power consumption of the TMS320C31 DSK was considerably lowered by
; the use of a CMOS TIBPAL22V10Z. When clocked at 25MHz (H1 rate) the
; TIBPAL22V10Z typicaly consumes 40mA (80mA max) as compared to 200mA for
; bipolar PAL devices. If lower consumption is needed the TMS320C31 can be
; programmed to use the LOPOWER or IDLE2 when full speed execution is not
; required. LOPOWER essentially runs the DSP at 1/16 of full speed and
; IDLE2 shuts the the clock completely off. This results in 1/16 and
; practically zero power for these modes respectively for both the PAL
; and the DSP. However due to the 25nS propogation delay through the
; TIBPAL22V10Z a wait state is required for host and peripheral decodes.
;
; Memory access times for the /SRAM decoded output are as follows
;
; TIBPAL22V10Z (CMOS) at 50MHz, H1 = 40ns:
;
; t–access = H1 * (1 + WS) – Tpal – (Td(H1L–A) – Tsu(D)R)
; t–access = H1 * (1 + WS) – 25ns – 19ns
;
; wait states ==> 0 1 2 3 4 ...
; t–access read ==> –4 36 76 116 156 ...
;
; IDLE2 wakeup is initiated by asserting the INT2 pin low. Since the
; clock is stopped during IDLE2, gating with synchronized signals cannot
; be used. A buffer is used with INT2 to avoid differences in the logic
; thresholds of the PAL22V10 and the C31 and to improve the rise and fall
; time of that signal.
;
; TRI–COLOR LED (POWER AND PWM)
; –––––––––––––––––––––––––––––
; If a logic high is applied to PWM (default state), the outputs /UBOOT
; and /USERX become an XOR and /XOR of T0 and T1. The XOR gate in this
; case is being used to detect the phase angle between T0 and T1. Therefor
; if T0 and T1 are configured as outputs, such as when the debugger is
; started, the color can be controled by adjusting the timers.
;
;
; USING THE PWM AS A DAC:
; –––––––––––––––––––––––
; If the output is filtered to a DC level by a low pass filter the
; DC level can be controlled by setting the two timers to identical
; freqencies seperated by a constant phase angle (delay). Since both the
; XOR and /XOR are provided a differential signal is also available.
;

Host Interface Control Design Notes

B-12

; If T0=T1 the output is a DC level proportional to the phase difference
;
; T0 ––––––______––––––______––––––______––––––______––––––______––––––____
; T1 ––––______––––––______––––––______––––––______––––––______––––––______
; XOR____––____––____––____––____––____––____––____––____––____––____––____
;
; USING THE PWM AS A TRIANGLE WAVE GENERATOR
; ––
; If T0 and T1 are set to different frequencies a PWM modulated triangle
; wave at a frequency of F0_t0 – F1_t1 is produced. Since the two XOR
; outputs are compliments a bridged output is created. This then allows the
; current in the LED to reverse resulting in an ; alternating color sequence
; of R–Y–G–Y–R–Y–G–Y...
;
; If T0!=T1 the output is a continuous triangle wave
;
; T0 ––––––______––––––______––––––______––––––______––––––______––––––____
; T1 –––––_____–––––_____–––––_____–––––_____–––––_____–––––_____–––––_____
; XOR_____–____––___–––__––––_––––––––––_––––__–––___––____–__________–____
;
; If an H bridge drive circuit is used with these signals an AC motor can
; be driven with an DSP controlled frequency. By using an external PAL to
; provide additional references signals and phase detectors a 3–phase PWM
; driver can be easily constructed. In this case the external PAL would
; contain a counter whose output is decoded to provide one of the reference
; frequencies in three phases seperated by 2*pi/3 radians. By then using
; one of the DSP timers for the other reference a variable frequency
; 3 phase output can be constructed.
;
; NOTE: The amplitude of the PWM triangle wave cannot be controlled from
; the timers alone. Either the DSP would have to continuously
; calculate the ouptuts as a DC reference or an external circuit
; would have to chop the output.
;––
;
; STRB Q0
; A23 | H1 VCC| Q1
; | | | | | |
; /––––+––+––+––+––+––+––+–––+
; | 4 3 2 1 28 27 26 |
; | |
; A22–|5 25|–UW
; A21–|6 24|–UX
; A20–|7 23|–SRAM
; |8 22|
; DEMO–|9 21|–RDY
; TCK1–|10 20|–INT2
; TCK0–|11 19|–UBOOT
; | |
; | 12 13 14 15 16 17 18 |
; +––––+––+––+––+––+––+––+–––+
; | | | | | |
; R/W |GND HPS |HPA
; TRI UR
;

 Host Interface Control Design Notes

B-13 DSK Circuit Board Dimensions and Schematic Diagrams

NC CLK STRB A23 A22 A21 A20 NC DEMO T1 T0 RW TRI GND
NC HPIS USERR HPIA UBOOT INT2 READY NC SRAM USERX USERW Q1 Q0 VCC
global
;– –
EQUATIONS ;
READY.TRST = TRI ;
INT2.TRST = TRI ;
INT2 = HPIS ;
HPIA = /(A23 * A22 * A21 * /STRB) + /TRI ; 245 enable and HPIA
Q0 := INT2 ; 1st tap
Q1 := Q0 ; 2nd tap for pulse gen
READY = /(Q0*/Q1) * (A23*A22*A21*A20*/STRB) ;
;
; A23 A22 A21 A20 /STRB
;
SRAM = /(A23*/A22 */STRB)
USERR = /(A23* A22*/A21 */STRB* RW)
USERW = /(A23* A22*/A21 */STRB* /RW)
USERX =(/DEMO* /(A23* A22*/A21 */STRB)) +(DEMO* ((T0*/T1)+(/T0*T1)))
UBOOT =(/DEMO* /(/A23*/A22*/A21*/A20*/STRB)) +(DEMO*/((T0*/T1)+(/T0*T1)))
;– –
; The decoded address ranges are as follows
; NOTE: By using A23 as an enable, it is possible to use external
; zero wait state RAM. Essentialy by ignoring decoded outputs
;– –
; USER_BOOT 000000 0FFFFF EPROM boot or uP mode operation
; 100000 7FFFFF No decode
; SRAM 0x800000 0xBFFFFF 1ws decoded external memory
; USER_R 0xC00000 0xDFFFFF > Read access
; USER_W 0xC00000 0xDFFFFF > Write access
; USER_X 0xC00000 0xDFFFFF > Read or Write access
; HPI(asynch) 0xE00000 0xEFFFFF DSP access to bus w/o host lock
; HPI(host locked) 0xF00000 0xFFFFFF Must pulse HPIS to advance DSP state
;
SIMULATION
TRACE_ON CLK HPIS STRB HPIA READY INT2 T0 T1 DEMO RW USERX UBOOT SRAM USERR USERW
;
; Simulate access outside decoded range
()

Note:

The simulation vectors are omitted for clarity and brevity.

B-14

C-1

Appendix A

Glossary

A

absolute address: An address that is permanently assigned to a memory
location.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions, direc-
tives, and macro directives. The assembler substitutes absolute opera-
tion codes for symbolic operation codes, and absolute or relocatable ad-
dresses for symbolic addresses.

assignment statement: A statement that assigns a value to a variable.

autoexec.bat: A batch file that contains DOS commands for initializing your
PC.

B

batch file: A file that contains DOS commands for the PC to execute.

block: A set of declarations and statements that are grouped together with
braces.

breakpoint: A point within your program where execution because of a pre-
vious request from you.

byte: A sequence of eight adjacent bits operated upon as a unit.

Appendix C

Glossary

C-2

C

code-display windows: Windows that show code, text files, or code-specif-
ic information.

command line: The portion of the COMMAND window where you can enter
commands.

command-line cursor: A block-shaped cursor that identifies the current
character position on the command line.

comment: A source statement (or portion of a source statement) that is
used to document or improve readability of a source file. Comments are
not assembled.

common object file format (COFF): An object file that promotes modular
programming by supporting the concept of sections.

constant: A numeric value that can be used as an operand.

cursor: An icon on the screen (such as a rectangle or a horizontal line) that
is used as a pointing device. The cursor is usually under keyboard con-
trol.

D

debugger: A windows-oriented software interface that helps you to debug
DSK programs running on a DSK board.

directive: Special-purpose commands that control the actions and func-
tions of a software tool like an assembler (as opposed to assembly lan-
guage instructions, which control the actions of a device).

disassembly: Assembly language code formed from the reverse-assembly
of the contents of memory.

DSP: Digital signal processing.

 Glossary

C-3 Glossary

E

EGA: Enhanced Graphics Adaptor. An industry standard for video cards.

entry point: The starting execution point in target memory.

expression: A constant, a symbol, or a series of constants and symbols
separated by arithmetic operators.

external symbol: A symbol that is used in the current program module but
defined in a different program module.

F

file header: A portion of a COFF object file that contains general informa-
tion about the object file (such as the number of section headers, the type
of system the object file can be downloaded to, the number of symbols
in the symbol table, and the symbol table’s starting address).

G

global: A kind of symbol that is either: 1) defined in the current module and
accessed in another or 2) accessed in the current module but defined in
another.

I

input section: A section from an object file that will be linked into an execut-
able module.

L

label: A symbol that begins in column 1 of a source statement and corre-
sponds to the address of that statement.

listing file: An output file created by the assembler that lists source state-
ments, their line numbers, and any unresolved symbols or opcodes.

LSB: Least significant bit.

LSByte: Least significant byte.

Glossary

C-4

M

member: An element or variable of a structure, union, or enumeration.

memory map: A map of target system memory space that is partitioned into
functional blocks.

mnemonic: An instruction name that the assembler translates into machine
code.

MSB: Most significant bit.

MSByte: Most significant byte.

N

named section: 1) An initialized section that is defined with a .sect directive,
or 2) an uninitialized section that is defined with a .usect directive.

O

object file: A file that has been assembled and contains machine-language
object code.

operand: The arguments or parameters of an assembly language instruc-
tion, assembler directive, or macro directive.

options: Command parameters that allow you to request additional or spe-
cific functions when you invoke a software tool.

P

PC: Personal computer or program counter, depending on the context and
how it’s used. In this book, installation instructions or in information relat-
ing to hardware and boards, PC means Personal Computer (as in IBM
PC). In general debugger and program-related information, PC means
Program Counter, which is the register that identifies the current state-
ment in your program.

parallel port: The parallel printer port interface is primarily used for connect-
ing printers to the computer system, although the parallel port can also
be used for other peripherals. In this case, the ’C3x DSK is connected
to the parallel printer port.

 Glossary

C-5 Glossary

R

raw data: Executable code or initialized data in an output section.

S

section: A relocatable block of code or data that ultimately occupies contig-
uous space in the memory map.

serial port: The serial port that the DSK uses for communicating with the
analog interface circuit (AIC). The port address is selected, based on
which communcation port the AIC is attached to.

single-step: A form of program execution that allows you to see the effects
of each statement. The program is executed statement by statement; the
debugger pauses after each statement to update the data-display win-
dows.

source file: A file that contains C code or assembly language code that will
be assembled to form a temporary object file.

symbol: A string of alphanumeric characters that represents an address or
a value.

V

VGA: Video Graphics Array. An industry standard for video cards.

W

window: A defined rectangular area of virtual space on the display.

word: A 32-bit addressable location in target memory.

C-6

 Index

Index-1

Index

? debugger option 7-2
; in assembly language source 5-7
’C31 serial port, initializing 4-15 to 4-16
$ symbol for SPC 5-11
@ operand prefix 5-5
* in assembly language source 5-7
* operand prefix 5-5

A
absolute address, definition C-1
adding a software breakpoint 7-9
AIC, hardware interface 4-6
AIC Initialization 4-14

AIC reset 4-14
’C31 timer initializing 4-14 to 4-15

example code 4-15
initializing AIC 4-16 to 4-17
primary communications 4-17 to 4-18
secondary communications 4-18 to 4-22

control register bit fields 4-19
data format 4-18

serial port initializing 4-15 to 4-16
.align directive 6-11, 6-14
assembler 3-4, 5-15

–l option 3-5
constants 5-8
definition C-1
description of 3-2
key features 3-2
options 5-15
source, listings 5-2
source statement format 5-2
symbols 5-11

assembler directives
aligning the section program counter 6-11
alphabetical reference 6-13 to 6-32
conditional assembly 6-10
defining assembly-time symbols 6-11
defining sections 6-5 to 6-7
enabling conditional assembly

.endloop 6-24

.loop 6-24
initializing constants 6-8 to 6-9
miscellaneous 6-12
referencing other files 6-9
summary table 6-2

assembling your program 5-15
assignment statement, definition C-1
autoexec.bat file, definition C-1

B
BA command 7-9
batch files, definition C-1
BD command 7-9
binary integers 5-8
BL command 7-9
block, definition C-1
block diagram of TMS320C3x DSK 1-3
board requirements 2-3
breakpoints. See software breakpoints
breakpoints (hardware), definition C-1
breakpoints (software), definition C-1
.brstart directive 6-12, 6-15
byte, definition C-1
.byte directive 6-8, 6-16

Index

Index-2

C
c or com debugger option 7-3

’C31 timer
initializing 4-14 to 4-15

example code 4-15
maximum timer period register value 4-15
minimum timer period register value 4-14

cable requirements 2-3

character, constants 5-9

circuit diagram 4-3

clearing software breakpoints 7-9

code-display windows, definition C-2

COFF, definition C-2

command line, definition C-2

comment, definition C-2

comments 5-7 to 5-18
in assembly language source code 5-7

communications kernel 4-8 to 4-13
commands 4-9
data packets 4-8

structure 4-8
debugging functions 4-10 to 4-13

flow diagram 4-12
pipeline flow 4-13

source code A-1

conditional assembly 6-10

conditional block, definition C-1

config.sys file 2-5

connecting the DSK 2-4

constant, definition C-2

constants 5-8, 5-11
assembly-time 5-8
binary integers 5-8
character 5-9
decimal integers 5-8
hexadecimal integers 5-8
symbols as 5-8

contacting Texas Instruments, vii

.copy directive 6-9, 6-17

cursors
command-line cursor, definition C-2
definition C-2

D
.data directive 6-5, 6-18
data packets 4-8

structure 4-8
debugger

definition C-2
description of 3-2 to 3-3
display, basic 3-3
key features 3-3
options 7-2

?, 7-2
c or com 7-3
h 7-2

debugging functions
communications kernel 4-10 to 4-13
single-step flow diagram 4-12
single-step pipeline flow 4-13

decimal integer constants 5-8
developing code 3-4
directives

assembler
binary integers 5-8
character constants 5-9
hexadecimal integers 5-8

definition C-2
disassembly, definition C-2
display directory, function key method 7-14
display requirements 2-2
driver.cpp 4-23
DSK assembler, using 5-1 to 5-18
DSK host software 4-23
DSK overview 1-3
dsk3a.exe command 2-3
dsk3d.exe command 2-3
dska command 3-5, 5-15
dskd command 3-5, 7-2
DSP, defined C-2

E
EGA, definition C-3
.else directive 6-10, 6-23
.end directive 6-12, 6-19
.endif directive 6-10, 6-23
.endloop directive 6-10, 6-24

 Index

Index-3

.entry directive 6-11, 6-20

entry point, definition C-3
execute program to breakpoint, function key meth-

od 7-14
external symbol, definition C-3

F
file header, definition C-3
.fill directive 6-8, 6-29
.float directive 6-8, 6-21

.float16 directive 6-8, 6-21

.float8 directive 6-8, 6-21
functional overview 4-1

G
GET DEBUG_CTXT 4-26

getmem 4-24
getting started 3-5
global symbol, definition C-3

H
h debugger option 7-2
HALT_CPU 4-25

hardware, checklist 2-2
hardware component overview B-3, B-11
hardware interface 4-2

AIC 4-6
host 4-2 to 4-3
host communications 4-4 to 4-5
memory map 4-7
TLC32040, 4-6

hardware overview 4-1
hardware requirements, optional 2-3

hexadecimal integers 5-8
host requirements 2-2
host software 4-23

I
.ieee directive 6-8, 6-22
.if directive 6-10, 6-23

.include directive 6-9, 6-17

Init_System 4-30

input section, definition C-3

input_rdy 4-27

installing the DSK software 2-1 to 2-10
instructions 2-5
possible errors 2-8

.int directive 6-8, 6-16

introduction 1-1

invoking, assembler 5-15

K
key features of the DSK 1-2

L
–l option 3-5

label, definition C-3

labels 5-3 to 5-18
case sensitivity 5-3
in assembly language source 5-2
syntax 5-2

LF_Cmd 4-29

listing file, definition C-3

listing software breakpoints 7-9

.long directive 6-8, 6-16

.loop directive 6-10, 6-24

LSB, defined C-3

LSByte, defined C-3

M
member, definition C-4

memory map 4-7
definition C-4

memory requirements 2-2

miscellaneous files 2-3

mnemonic, definition C-4

mnemonic field 5-4
syntax 5-2

MSB 5-3
definition C-4

MSb, definition C-4

Index

Index-4

N
named section, definition C-4

O
object file, definition C-4
object.cpp 4-23
opcodes, defining 5-4 to 5-18
operand, definition C-4
operands 5-5

label 5-11
prefixes 5-5

operating system 2-3
options

assembler 5-15
debugger 7-2
definition C-4

overview, DSK system 1-3

P
PATH statement 2-6
PC, definition C-4
.pfloat16 directive 6-21
.pfloat8 directive 6-8, 6-21
power requirements 2-2
predefined symbols 5-11
primary communications 4-17 to 4-18
print screen, function key method 7-14
program

assembling 5-15
entry point, definition C-3

putmem 4-24

Q
.qxx directive 6-8, 6-25

R
raw data, definition C-5
recv_long 4-28
recv_long_byte 4-27
required files 2-3

reset 4-27
RUN_CPU 4-25

S
.sdef directive 6-11, 6-26
secondary communications 4-18 to 4-22

control register bit fields 4-19
data format 4-18

.sect directive 6-5, 6-27
section, definition C-5
section program counter. See SPC
serial port

definition C-5
identifying 7-3

.set directive 6-11, 6-28
single-step, definition C-5
singlestep, function key method 7-13, 7-14
single-step flow diagram 4-12
single-step pipeline flow 4-13
software breakpoints 7-9

BA command 7-9
BD command 7-9
BL command 7-9
clearing 7-9
listing 7-9
setting 7-9

software checklist 2-3
source

listings 5-2
statement

format 5-2
comment field 5-7
label field 5-3
mnemonic field 5-4
operand field 5-5

number (source listing), 5-2
source file, definition C-5
source files 5-2 to 5-7

commenting 5-7 to 5-18
labeling 5-3 to 5-18
opcodes 5-4 to 5-18

.space directive 6-9, 6-29
SPC

assigning a label to 5-3
value, associated with labels 5-3

SSTEP_CPU 4-25
.start directive 6-12, 6-30

 Index

Index-5

.string directive 6-9, 6-31

symbol, definition C-5

symbolic constants 5-11

symbols 5-11
predefined 5-11

T
target.cpp 4-23

.text directive 6-5, 6-32

timer period register value
maximum 4-15
minimum 4-14

TLC32040, hardware interface 4-6

TLC32040 AIC initialization 4-14 to 4-22

V
VGA, definition C-5

W
windows, definition C-5
word, definition C-5
.word directive 6-9, 6-16

X
xmit_long 4-28

Index-6

