
������
���
���
����
��

��� ���������� �����
������ 	�	�

Getting
Started

Microprocessor Development Systems1995

Printed in U.S.A., March 1995
D415001-9741 revision A

TMS320C1x/C2x/C2xx/C5x
Code Generation Tools

Getting Started

Release 6.60

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales offices.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1995, Texas Instruments Incorporated

TRADEMARKS

IBM, PC, PC-DOS, and OS/2 are trademarks of International Business Machines Corp.

MS, MS-DOS, and MS-Windows are registered trademarks of Microsoft Corp.

SPARC is a trademark of SPARC International, Inc.

SunOS, SunView, SunWindows, and Sun Workstation are trademarks of Sun Microsystems,
Inc.

UNIX is a registered trademark of Unix System Laboratories, Inc.

 Contents

v

Contents

1 Getting Started With the TMS320C1x/C2x/C2xx/C5x Code Generation Tools 1-1.
1.1 Introduction 1-2.

Fixed-Point Devices Supported by the Assembly Language Tools 1-2.
Fixed-Point Devices Supported by the C Compiler 1-3.
Terminology 1-3.

1.2 Environment Variables 1-5.
The A_DIR Environment Variable 1-5.
The C_DIR Environment Variable 1-6.
The C_OPTION Environment Variable 1-7.
The DOS4GVM Environment Variable (MS-DOS Hosts Only) 1-8.
The DOS4G Environment Variable (MS-DOS Hosts Only) 1-9.
The TMP Environment Variable 1-10.
Setting Environment Variables in Your System Initialization File 1-10.

1.3 Using the Code Generation Tools on SPARC Hosts 1-11.
Installation 1-11.

1.4 Using the Code Generation Tools on OS/2 Hosts 1-12.
Installation 1-12.

1.5 Using the Code Generation Tools on MS-DOS Hosts 1-13.
PC Requirements 1-13.
Installation 1-13.
Performance Considerations 1-14.
The PMINFO.EXE Program 1-15.
The RMINFO.EXE Program 1-17.

1.6 Assembler and Linker Walkthrough 1-20.
1.7 C Compiler Walkthrough 1-26.

2 Release Notes 2-1.
2.1 Media Contents 2-2.

MS-DOS and OS/2 Systems 2-2.
SPARC Systems 2-5.

2.2 Additional Information 2-6.
’C5x Silicon Problem Workarounds 2-6.
Silicon Bug Flags in RTS Assembly Source 2-6.
Options Used to Build the Libraries 2-7.

Contents

vi

2.3 Release Enhancements 2-8.
General Enhancements 2-8.
Assembler Enhancements 2-8.
Linker Enhancements 2-9.
Assembly Language Tool Enhancements 2-9.
C Compiler Enhancements 2-10.

A DOS/4GW Error Messages A-1.
A.1 Troubleshooting in the Protected-Mode Environment A-2.
A.2 Kernel Error Messages A-3.
A.3 DOS/4G Error Messages A-7.

 Running Title—Attribute Reference

1-1 Chapter Title—Attribute Reference

Getting Started With the
Code Generation Tools

This package contains version 6.60 of the TMS320C1x/C2x/C2xx/C5x Code
Generation Tools. The assembly language tools support the TMS320C1x/
C2x/C2xx/C5x devices as defined in Section 1.1. The C compiler supports the
TMS320C2x/C2xx/C5x devices as defined in Section 1.1.

These code generation tools can be installed on the following systems:

� 80386 PC or later with MS-DOS or OS/2 v2.x and at least 4 Mbytes of
RAM (16 Mbytes of RAM recommended to minimize performance impact)

� SPARC workstation with SunOS versions 4.1.x and 5.x (Solaris 2.x)

This document covers installation, system-specific notes, and release notes.

Topic Page

1.1 Introduction 1-2.

1.2 Environment Variables 1-5.

1.3 Using the Code Generation Tools on SPARC Hosts 1-11.

1.4 Using the Code Generation Tools on OS/2 Hosts 1-12.

1.5 Using the Code Generation Tools on MS-DOS Hosts 1-13.

1.6 Assembler and Linker Walkthrough 1-20.

1.7 C Compiler Walkthrough 1-26.

Chapter 1

Introduction

 1-2

1.1 Introduction

The assembly language tools are composed of the following:

� Archiver
� Assembler
� Cross-reference lister
� Hex conversion utility
� Linker

The C compiler tools include:

� Compiler shell program
� Code generator
� Interlist utility
� Library-build utility
� Optimizer
� Parser
� Miscellaneous libraries

The TMS320C1x/C2x/C2xx/C5x code generation tools can be installed on a
SPARC workstation with SunOS versions 4.1x and 5.x (Solaris 2.x) or on a PC
running DOS or OS/2, 80386 or later. They are not compatible with the 80286.

The code generation tools, when installed on a PC, require at least 4 Mbytes
of memory, but you can expect some performance problems when using only
4 Mbytes (we recommend 16 Mbytes). If the tools run very slowly or hang, the
problem may be due to insufficient memory.

Each machine configuration is unique. You may wish to free as much memory
as possible before installing the tools, especially if you have less than
16 Mbytes.

Fixed-Point Devices Supported by the Assembly Language Tools

The assembly language tool set provides support for the upwardly compatible
TMS320C1x/C2x/C2xx/C5x DSP processors, which are listed below:

TMS320C1x (or ’C1x) refers to the following devices:

TMS320C10

TMS320C14 TMS320E14 TMS320P14

TMS320C15 TMS320E15 TMS320P15 TMS320LC15
TMS320C16

TMS320C17 TMS320E17 TMS320P17 TMS320LC17

TMS320C2x (or ’C2x) refers to the following devices:

TMS320C25 TMS320C26 TMS320E25

 Introduction

1-3 Getting Started With the Code Generation Tools

TMS320C2xx (or ’C2xx) refers to the following device:

TMS320C209

TMS320C5x (or ’C5x) refers to the following devices:

TMS320C50 TMS320C51 TMS320C52 TMS320C53
TMS320C56 TMS320C57

Fixed-Point Devices Supported by the C Compiler

The TMS320C2x/C2xx/C5x optimizing C compiler tool set provides support
for the upwardly compatible ’C2x, ’C2xx, and ’C5x DSP processors, which are
listed below:

TMS320C2x (or ’C2x) refers to the following devices:

TMS320C25 TMS320C26 TMS320E25

TMS320C2xx (or ’C2xx) refers to the following device:

TMS320C209

TMS320C5x (or ’C5x) refers to the following devices:

TMS320C50 TMS320C51 TMS320C52 TMS320C53
TMS320C56 TMS320C57

Terminology

DOS/16M: executable filename for a tool that is embedded in the
TMS320C1x/C2x/C2xx/C5x code generation tools. You may occasion-
ally see this term in an error message. If so, refer to the listing of
appropriate actions in Appendix A.

DOS/4G: the base version for DOS/4GW. You may occasionally see this
term in an error message. If so, refer to the listing of appropriate actions
in Appendix A.

DOS/4GW: a memory extender that is assembled along with the
TMS320C1x/C2x/C2xx/C5x tools before shipment. Error messages
from DOS/4GW are included in Appendix A of this manual to assist you
in debugging. The executable DOS/4GW file is not shipped separately
but is embedded within the other executables. When you look at the
DOS/4GW error messages, remember to call TMS320 technical support
if you need assistance. When an error message suggests rebuilding,
reload the tools instead.

environment variables : system symbols that you define and assign to a
string. They are usually included in various batch files; for example, in
AUTOEXEC.BAT. For more information, see Section 1.2.

Introduction

 1-4

protected-mode programs : 32-bit extended MS-DOS programs. These
programs require an extended memory manager and run only on
80386-, 80486-, and Pentium-based PCs. Protected-mode programs
can utilize all available RAM on the computer.

real mode : 16-bit native MS-DOS mode. This mode limits the available
memory to 640K bytes. Calls to DOS may involve switching from pro-
tected to real mode. The real-mode tools are no longer supported in this
release.

virtual memory : the ability of a program to use more memory than a com-
puter actually has available as RAM. This is accomplished by using a
swap file on disk to augment RAM. When RAM is not sufficient, part of
the program is swapped out to a disk file until it is needed again. The com-
bination of the swap file and available RAM is the virtual memory. The
TMS320C1x/C2x/C2xx/C5x tools use the DOS/4GW memory extender
to provide virtual memory management. This memory extender is not
provided as an executable file but is embedded in several object pro-
grams shipped by TI. Contact technical support for more information.

To obtain TMS320C1x/C2x/C2xx/C5x technical support, contact the DSP hot-
line:

DSP Hotline: (713) 274–2320

FAX: (713) 274–2324

Electronic Mail: 4389750@mcimail.com.

 Environment Variables

1-5 Getting Started With the Code Generation Tools

1.2 Environment Variables

When installing the tools on any appropriate machine, it is possible to define
environment variables that set certain code generation tool parameters you
will normally use. An environment variable is a system symbol that you define
and assign to a string. When you use environment variables, default values
are set, making each individual invocation of the tools simpler because these
parameters need not be considered. Many of these defaults, when set using
environment variables, may be overridden with an individual invocation of the
tool.

The A_DIR Environment Variable

The assembler uses the environment variable A_DIR to name alternate direc-
tories that contain copy/include files or macro libraries. The command for as-
signing the environment variable is as follows:

Host Enter

DOS or OS/2 set A_DIR=pathname;another pathname ...

UNIX setenv A_DIR ” pathname;another pathname ... ”

The pathnames are directories that contain copy/include files or macro librar-
ies. You can separate the pathnames with a semicolon or a blank. In assembly
source, you can use the .copy, .include, or .mlib directive without specifying
any path information. If the assembler doesn’t find the file in the directory that
contains the current source file or in directories named by –i, it searches the
paths named by the environment variable.

For example, assume that a file called source.asm contains these statements:

.copy ”copy1.asm”

.copy ”copy2.asm”

The files are stored in the directories shown below. The search path is set up
with the commands shown in the table:

Host Pathname Enter

DOS or OS/2 c:\320\files\copy1.asm
c:\dsys\copy2.asm

set A_DIR=c:\dsys
dspa –ic:\320\files source.asm

UNIX /320/files/copy1.asm
/dsys/copy2.asm

setenv A_DIR /dsys
dspa –i/320/files source.asm

The assembler first searches for copy1.asm and copy2.asm in the current
directory because source.asm is in the current directory. Then the assembler
searches in the directory named with the –i option and finds copy1.asm.
Finally, the assembler searches in the directory named with A_DIR and finds
copy2.asm.

Environment Variables

 1-6

Note that the environment variable remains set until you reboot the system or
reset the variable by entering one of these commands:

Host Enter

DOS or OS /2 set A_DIR=

UNIX unsetenv A_DIR

The C_DIR Environment Variable

The compiler uses the environment variable C_DIR to name alternate
directories that contain #include files and libraries. For example, to specify a
directory for #include files and libraries, set C_DIR with one of these
commands:

Host Enter

DOS or OS /2 set C_DIR=c:\dsp\files

UNIX setenv C_DIR ”/dsp/files”

Then you can include alt.h, found in the files directory, in this way:

#include ”alt.h” or
#include <alt.h>

and invoke the compiler without the –i option:

dspcl source.c

This results in the compiler using the path in the environment variable to find
the #include file.

The pathnames specified with C_DIR are directories that contain #include
files. You can separate pathnames with a semicolon or with a blank. In C
source, you can use the #include directive without specifying any path infor-
mation; instead, you can specify the path information with C_DIR.

The environment variable remains set until you reboot the system or reset the
variable by entering one of these commands:

Host Enter

DOS or OS /2 set C_DIR=

UNIX unsetenv C_DIR

 Environment Variables

1-7 Getting Started With the Code Generation Tools

The C_OPTION Environment Variable

You may find it useful to set the dspcl compiler, assembler, and linker shell de-
fault options using the C_OPTION environment variable; if you do so, these
default options and/or input filenames are used every time you run the shell.

Setting up default options with the C_OPTION environment variable is
especially useful when you want to run the shell consecutive times with the
same set of options and/or input files. After the shell reads the entire command
line and the input filenames, it reads the C_OPTION environment variable and
processes it.

Options specified with the environment variable are specified in the same way
and have the same meaning as they do on the command line. For example,
if you want to always run quietly, enable symbolic debugging, and link, set up
the C_OPTION environment variable as follows:

Host Enter

DOS or OS/2 set C_OPTION=–qg –z

UNIX setenv C_OPTION ”–qg –z”

Using the –z option enables linking. If you plan to link most of the time when
using the shell, you can specify the –z option with C_OPTION. Later, if you
need to invoke the shell without linking, you can use –c on the command line
to override the –z specified with C_OPTION. These examples assume
C_OPTION is set as shown previously:

dspcl *.c ; compiles and links
dspcl –c *.c ; only compiles
dspcl *.c –z c.cmd ; compiles/links with command file
dspcl –c *.c –z c.cmd ; only compiles (–c overrides –z)

Environment Variables

 1-8

The DOS4GVM Environment Variable (MS-DOS Hosts Only)

Virtual memory management (VMM) allows protected-mode programs to use
more RAM than your computer actually has. The DOS4GVM environment
variable is used to control VMM. The DOS4GVM environment variable is set
using the following format:

set DOS4GVM= [option[#value]] [option[#value]] ...

You must use # with options that take values; the DOS command shell will not
accept an equal sign in place of #.

Setting DOS4GVM equal to 1 will cause the default values to be used for all
options. For example:

set DOS4GVM=1

The DOS4GVM options, with their default values, are:

MINMEM The minimum amount of RAM managed by VMM. The de-
fault is 512K bytes.

MAXMEM The maximum amount of RAM managed by VMM. The
default is 4 Mbytes.

SWAPMEM The minimum or initial size of the swap file. If this option
is not used, the size defaults to VIRTUALSIZE , which
defaults to 16 Mbytes.

SWAPINC The size by which the swap file grows. The default size
is 64K bytes.

SWAPNAME The swap file name. The default name is
DOS4GVM.SWP. By default, the file is in the root direc-
tory of the current drive. Specify the complete pathname
if you want to keep the swap file somewhere else.

DELETESWAP Indicates whether the swap file is deleted when your
program exits. Program start-up is quicker if the file is not
deleted. Including DELETESWAP in the option string
deletes the swap file. Omitting it, which is the default
setting, does not delete the swap file.

VIRTUALSIZE The size of the virtual memory space. The default is
16 Mbytes.

 Environment Variables

1-9 Getting Started With the Code Generation Tools

You can initialize DOS4GVM in two ways:

1) Specify parameter values as arguments to the DOS4GVM environment
variable, as shown in the example below.

set DOS4GVM=deleteswap maxmem#8192 swapname#c:\swap.tmp

This fixes the location of the swap file to a known location, sets the swap
file size, and deletes the swap file when the application completes execu-
tion. With the default settings, a 16-Mbyte swap file is created on each
logical device on which you compile files (C:, D:, etc.), and the swap file is
not deleted when the compiler completes execution. For optimum perfor-
mance (and safety), locate the swap file on your local hard drive, not on a
network drive.

2) Create a configuration file with the file-type extension .VMC, and call it as
an argument to the DOS4GVM environment variable, as shown below.

set DOS4GVM=@NEW4G.VMC

A .VMC file contains VMM parameters and settings as shown in the exam-
ple below. Comments are permitted. Comments on lines by themselves
are preceded by an exclamation point (!). Comments that follow option set-
tings are preceded by white space. Do not insert blank lines; processing
stops at the first blank line.

!Sample .VMC file
!This file shows the default parameter values
minmem = 512 At least 512 bytes of RAM required
maxmem = 4096 Uses no more than 4MB of RAM
virtualsize = 16384 Swap file + allocated memory is 16Mbytes
swapname = c:\swap.tmp
delete swap

See Appendix A for information on problems and solutions when using
DOS/4GW.

The DOS4G Environment Variable (MS-DOS Hosts Only)

When you invoke a tool, you will see something like this:

DOS/4GW Professional Protected Mode Run–time Version 1.96
Copyright (c) Rational Systems, Inc. 1990–1994
DSP Fixed Point COFF Assembler Version 6.60
Copyright (c) 1987–1994 Texas Instruments Incorporated

This DOS/4GW banner will appear each time that tool starts, because
DOS/4GW is embedded in each tool. This banner can be suppressed by ad-
ding this line to the AUTOEXEC.BAT file:

SET DOS4G=quiet

Environment Variables

 1-10

The TMP Environment Variable

The shell program creates intermediate files as it processes your program. For
example, the parser phase of the shell creates a temporary file used as input
by the code generation phase. By default, the shell puts intermediate files in
the current directory. However, you can name a specific directory for
temporary files by using the TMP environment variable.

This feature allows the use of a RAM disk or other file systems. It also allows
source files to be compiled from a remote directory without writing any files into
the directory where the source resides. This is useful for protected directories.
To set the TMP environment variable, enter one of these commands:

Host Enter

DOS or OS/2 set TMP=c:\temp

UNIX setenv TMP ”/temp”

Setting Environment Variables in Your System Initialization File

You may want to set environment variables in your system initialization file. To
do so, the same commands that would be entered on the command line should
be entered as a line in the system initialization file. The name for the file for your
operating system is in the table below.

Host Filename

DOS AUTOEXEC.BAT

OS/2 CONFIG.SYS

UNIX .profile

 Using the Code Generation Tools on SPARC Hosts

1-11 Getting Started With the Code Generation Tools

1.3 Using the Code Generation Tools on SPARC Hosts

Version 6.60 of the TMS320C1x/C2x/C2xx/C5x code generation tools is com-
patible with SunOS versions 4.1.x and 5.x (Solaris 2.x) from Sun Microsys-
tems, Inc. This release is dynamically linked to take advantage of shared
libraries.

Note: SPARC Hosts

To use the code generation tools with Solaris 2.0, you must install the Binary
Compatibility Package (BCP).

Installation

The TMS320C1x/C2x/C2xx/C5x product tape is in TAR format. Follow these
instructions to install the code generation tools package:

1) Mount the tape on your tape drive.

2) Make sure the current directory is the directory that you’ll store the tools
in, or change to that directory.

3) Enter the TAR command for your system; for example:

tar x

If you are working on a system that has the tape drive as the default, this
command will copy the entire tape into the directory. Some systems do not
default to the tape drive. For example, if you are using a Sun workstation,
you would use the following command:

tar xvf /dev/rst8

This command extracts all files from device rst8 and copies them into your
directory. The v option displays the name of each file as it is extracted.

4) You may wish to set environment variables in your shell startup file (for
example, .cshrc, .login, or .profile) to make it easier to invoke the tools.
See Section 1.2, page 1-5, for more information.

Using the Code Generation Tools on OS/2 Hosts

 1-12

1.4 Using the Code Generation Tools on OS/2 Hosts

Version 6.60 of the TMS320C1x/C2x/C2xx/C5x code generation tools sup-
ports OS/2 v2.x releases. The code generation tools can be invoked from an
OS/2 command session (cmd.exe).

Installation

The code generation tools package is shipped on 1.44-Mbyte disks. An
OS2V2 directory contains the OS/2 executables on the product disks. To install
the tools on an OS/2 system, perform the following steps:

1) Make backups of the product disks.

2) Start an OS/2 command session.

3) Create a directory to contain the code generation tools. Enter the fol-
lowing:

md c:\320tools

4) Copy the OS2V2 directory from each diskette onto your hard disk. Put
each of the product disks in drive A and enter the following:

copy a:\os2v2*.* c:\320tools

5) You may wish to set environment variables in your config.sys file. Refer
to Section 1.2, page 1-5, for more information.

Note: About MS-DOS Tools

For OS/2 systems, do not copy the MS-DOS tools onto your hard disk. The
MS-DOS tools are contained in the dos32 directories of the product disks.
The copy command, as shown in step 3, will properly install only the OS/2
tools onto your hard disk.

The MS-DOS tools can be run with OS/2, but running them will require tuning
DOS settings in OS/2 v2.x to enable larger amounts of DPMI (DOS protected
memory interface) memory. The OS/2 default setting for DOS tools is 4
Mbytes, and some applications require a larger allocation of memory to com-
pile successfully. It is recommended that you use 16 Mbytes of RAM to mini-
mize performance impact.

The OS/2 tools do not require this tuning of memory; they automatically re-
ceive as much memory as they request, up to the limit of physical RAM plus
available disk space on the volume where the swap file resides
(SWAPPER.DAT).

 Using the Code Generation Tools on MS-DOS Hosts

1-13 Getting Started With the Code Generation Tools

1.5 Using the Code Generation Tools on MS-DOS Hosts

Version 6.60 of the TMS320C1x/C2x/C2xx/C5x code generation tools sup-
ports extended memory on MS-DOS. Extended memory lets you compile or
assemble large files that could not be built previously under MS-DOS.
Extended memory is enabled by the DOS/4GW memory extender from
Tenberry Software, Inc. (formerly Rational Systems, Inc.), which is embedded
in the TMS320C1x/C2x/C2xx/C5x code generation tools. You must use an
80386-, 80486-, or Pentium-based PC to take advantage of extended memory
under MS-DOS.

PC Requirements

Version 6.60 of the TMS320C1x/C2x/C2xx/C5x code generation tools
requires an 80386 or later PC.

Installation

The code generation tools package is shipped on 1.44-Mbyte disks. To install
the tools on an MS-DOS system, perform the following steps:

1) Make backups of the product disks.

2) Create a directory to contain the code generation tools. Enter the follow-
ing:

md c:\320tools

3) To install the code generation tools, copy the files from each diskette to the
hard disk. Put each product disk into drive A and enter the following:

copy a:\dos32*.* c:\320tools

Note: About OS/2 Tools

For MS-DOS systems, do not copy the OS/2 tools onto your hard disk. The
OS/2 tools are contained in the os2v2 directories of the product disks. The
copy command, as shown in step 3, will properly install only the MS-DOS
tools onto your hard disk.

4) Add the path of the code generation tools package to your DOS path. Edit
AUTOEXEC.BAT and find the line that includes PATH= . At the end of the
line, type:

C:\320TOOLS

Save the file, exit the editor, and reboot your PC.

For example, you may find a path statement that looks like this:

PATH=C:\DOS;C:\WINDOWS

Using the Code Generation Tools on MS-DOS Hosts

 1-14

After editing the line, this example path statement looks like this:

PATH=C:\DOS;C:\WINDOWS;C:\DSPTOOLS

5) You may wish to set environment variables in your AUTOEXEC.BAT file.
See Section 1.2, page 1-5 for more information.

Performance Considerations

Performance has been enhanced in version 6.60 of the TMS320C1x/C2x/
C2xx/C5x code generation tools. Still, you may notice a speed degradation
when you use the code generation tools. Much of this speed degradation is
due to the switch rate from protected to real mode necessitated by DOS calls.
Higher-speed processors and later-generation processors in the 80386,
80486, and Pentium series minimize the time needed for this switch.

Virtual memory management (VMM) may also degrade system performance.
It is recommended that VMM be enabled only for programs that cannot be built
with VMM disabled.

 Using the Code Generation Tools on MS-DOS Hosts

1-15 Getting Started With the Code Generation Tools

The PMINFO.EXE Program

Purpose: PMINFO.EXE measures the performance of protected/real-
mode switching and extended memory.

Syntax: PMINFO.EXE

Notes: The time-based measurements made by PMINFO may vary
slightly from run to run.

If this error message appears:

DOS/16M error: [17] system software does not follow VCPI
or DPMI specifications

check for a statement in your CONFIG.SYS containing
NOEMS. If such a statement exists, remove it and reboot your
computer.

If the computer is not equipped with extended memory, or if
none is available for DOS/4GW, the extended memory mea-
surements may be omitted.

Other DOS/4GW error messages are found in Appendix A.

Example: The following example shows the output of the PMINFO pro-
gram on an 80486 AT-compatible machine running at 33 MHz.

–================================= PMINFO =======================================–

 Protected Mode and Extended Memory Performance Measurement –– 5.00
 Copyright (c) Rational Systems, Inc. 1987 – 1993

DOS memory Extended memory CPU performance equivalent to 33.0 MHz 80486
–––––––––– –––––––––––––––
 640 17854 K bytes configured (according to BIOS).
 640 31744 K bytes physically present (SETUP).
 550 17585 K bytes available for DOS/16M programs.
21.6 (0.0) 19.1 (0.5) MB/sec word transfer rate (wait states).
35.4 (0.5) 34.4 (0.5) MB/sec 32–bit transfer rate (wait states).

Overall cpu and memory performance (non–floating point) for typical
DOS programs is 7.78 � 0.62 times an 8MHz IBM PC/AT.

Protected/Real switch rate = 18078/sec (55 �sec/switch, 33 up + 21 down),
DOS/16M switch mode 11 (VCPI).

Using the Code Generation Tools on MS-DOS Hosts

 1-16

PMINFO provides this information:

Measurement Purpose

CPU performance Shows the CPU processor equivalent and the speed of the CPU (in
MHz).

According to BIOS Shows the configured memory in DOS and extended memory as
provided by the BIOS (interrupts 12h and 15h, function 88h).

SETUP Shows the configuration obtained directly from the CMOS RAM as
set by the computer’s setup program. It is displayed only if the num-
bers are different from those in the BIOS line. They will be different
if the BIOS has reserved memory for itself or if another program has
allocated memory and is intercepting the BIOS configuration re-
quests to report less memory available than is physically configured.

DOS/16M programs If displayed, shows the low and high addresses available to
DOS/4GW in extended memory.

Transfer rates PMINFO tries to determine the memory architecture. Some archi-
tectures will perform well under some circumstances and poorly
under others; PMINFO will show both the best and worst cases. The
architectures detected are cache, interleaved, page-mode (or static
column), and direct.

Measurements are made by using 32-bit accesses and are reported
as the number of megabytes per second that can be transferred.
The number of wait states is reported in parentheses. The wait
states can be a fractional number, like 0.5, if there is a wait state on
writes but not on reads. Memory bandwidth (i.e., how fast the CPU
can access memory) accounts for 60% to 70% of the performance
for typical programs (those that are not heavily dependent on float-
ing-point math).

Overall CPU and memory
performance

Shows a performance metric developed by Rational Systems, Inc.,
indicating the expected throughput for the computer relative to a
standard 8-MHz IBM PC/AT (disk accesses and floating-point
operations are both excluded).

Protected/real switch rate Shows the speed with which the computer can switch between real
and protected modes, both as the maximum number of round-trip
switches that can occur per second and as the time for a single
round-trip switch, broken into the real-to-protected (up) and pro-
tected-to-real (down) components.

 Using the Code Generation Tools on MS-DOS Hosts

1-17 Getting Started With the Code Generation Tools

The RMINFO.EXE Program

Purpose: Supplies configuration information and the basis for real/pro-
tected-mode switching.

Syntax: RMINFO

Notes: RMINFO is a DOS/16M application, as is DOS/4GW. If neither
your application nor PMINFO will run, try running RMINFO.

RMINFO starts DOS/4GW, stops your machine just short of
switching from real mode to protected mode, and displays con-
figuration information about your computer. The information
shown by RMINFO can help you determine why DOS/4GW
applications won’t run on a particular machine.

Example: The following example shows the output of the RMINFO pro-
gram on an 80486 AT-compatible machine.

–============================== RMINFO =======================================–

DOS/16M Real Mode Information Program –– 5.00
Copyright (c) Rational Systems, Inc. 1987 – 1993

Machine and Environment:
 Processor: i486, coprocessor present
 Machine Type: 10 (AT–compatible)
 A20 now: enabled
 A20 switch rigor: disabled
 XMS host found
 VCPI host found,
 page table 0 at: 24000h

Switching Functions
 A20 switching: AT–style KBC
 To PM switch: VCPI
 To RM switch: VCPI
 Nominal switch mode: 11
 Switch control flags: 0000

Memory Interfaces: (VCPI remapping in effect)
 VCPI may provide: 17854 returnable
 contiguous DOS memory 492K

Using the Code Generation Tools on MS-DOS Hosts

 1-18

RMINFO provides this information (depending on your system configuration,

not all fields will appear for any one machine):

Measurement Purpose

Machine and Environment:

Processor Tells whether the processor is a 286, 386, 486, or P5 and if
a math coprocessor is present.

Machine Type Tells whether the machine is an AT-compatible or a non-AT-
compatible MS-DOS machine.

A20 now Gives the current state of address line 20.

A20 switch rigor Indicates whether DOS/16M rigorously controls enabling
and disabling of address line 20 when switching modes.

DPMI host found Indicates that your system has a DPMI host (it is not present
if the system does not have a DPMI host).

XMS host found Tells whether your system has any software using extended
memory under the XMS discipline.

VCPI host found Tells whether your system has any software using extended
memory under the VCPI discipline.

Page table n at Linear address of the page table that DOS/16M starts with.

Switching Functions:

A20 switching Tells whether DOS/16M uses PS/2-style or AT-style (using
the keyboard controller) switching.

To PM switch Shows the DOS/16M method for switching to protected
mode.

To RM switch Shows the DOS/16M method for switching to real mode.

Nominal switch mode Shows the switch mode used for backward compatibility.

Switch control flags Shows the switch control flags used for backward compati-
bility.

Memory Interfaces:

VCPI remapping in effect Indicates that memory from different sources can be
remapped contiguously.

 Using the Code Generation Tools on MS-DOS Hosts

1-19 Getting Started With the Code Generation Tools

DPMI may provide Shows the amount of memory that the DPMI host reports as
available to DOS/16M and whether DOS/16M can give back
the memory it gets from this source (it is not present if there
is no DPMI host).

VCPI may provide Shows the amount of memory that the VCPI host reports as
available to DOS/16M and whether DOS/16M can give back
the memory it gets from this source (it is not present if there
is no VCPI host).

XMS may provide Shows the amount of memory that the XMS manager reports
as available to DOS/16M and whether DOS/16M can give
back the memory it gets from this source (it is not present if
there is no XMS host).

Top-down may provide Shows the amount of memory that DOS/16M finds using
interrupt 15h and function 88h and indicates whether
DOS/16M can give back the memory it gets from this source
(it is not present if there is no top-down host).

Other 16M may provide Shows the amount of memory that DOS/16M finds from a
resident DOS/16M kernel and whether DOS/16M can give
back the memory it gets from this source (it is not present if
there is no other 16M host).

Contiguous DOS memory Shows the amount of DOS memory available to DOS/16M.

Assembler and Linker Walkthrough

 1-20

1.6 Assembler and Linker Walkthrough

Two tools you may use often are the assembler and the linker. This section pro-
vides a quick walkthrough so that you can get started without reading the entire
TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide. These
examples show the most common methods for invoking the assembler and
linker. There are also examples in the tools directory that can be run or printed
to give you an idea of the necessary syntax and steps.

Create two short source files for the walkthrough; call them filea.asm and
fileb.asm .

Example 1–1.filea.asm

 .file ”filea.asm”
 .global addvec
 .global __stack
 .global start

__stack .usect ”.stack”,0

 .data
vector: .word 10,20,30,40

 .text
start:
 LRLK AR1,__stack
 LALK vector
 LARP AR1
 SACL *+
 CALL addvec
 MAR *–

 Assembler and Linker Walkthrough

1-21 Getting Started With the Code Generation Tools

Example 1–2.fileb.asm

 .file ”fileb.asm”
 .global addvec

 .text

addvec:
 SAR AR0,*+
 SAR AR1,*
 LARK AR0,1
 LAR AR0,*0+,AR2

 LARK AR2,–2
 MAR *0+
 LAR AR3,*,AR3

 ZAC
 RPTK 3
 ADD *+

 LARP AR1
 SBRK 2
 LAR AR0,*
 RET

1) Enter the following command to assemble filea.asm:

dspa filea

The dspa command invokes the assembler. The input source file is
filea.asm. (If the input file extension is .asm, you don’t have to specify the
extension; the assembler uses .asm as the default.) This example creates
an object file called filea.obj. The assembler creates an object file if it does
not encounter any errors in assembly. You can specify a name for the ob-
ject file, but if you do not, the assembler uses the input filename with an
extension of .obj.

Note: The Assembler Creates ’C2x Code by Default

This version of the dspa command invokes the TMS320C1x/C2x/C2xx/C5x
assembler. By default, the assembler generates code for the TMS320C2x.
Use the –v assembler options to generate code for the ’C1x, ’C2xx, or ’C5x.

2) Now assemble fileb.asm; enter:

dspa fileb.asm –1

This time, the assembler creates an object file called fileb.obj. The –l
(lowercase L) option tells the assembler to create a listing file; the listing
file for this example is called fileb.lst. It is not necessary to create a listing
file, but it may give you information and assure you that the assembly has
resulted in the desired object code.

Assembler and Linker Walkthrough

 1-22

Example 1–3.fileb.lst, the Listing File Created by dspa fileb.asm –l

DSP Fixed Point COFF Assembler Version 6.60 Tue Feb 7 16:35:25 1994
Copyright (c) 1987–1994 Texas Instruments Incorporated

fileb.asm PAGE 1

 1 .file ”fileb.asm”
 2 .global addvec
 3
 4 0000 .text
 5
 6 0000 addvec:
 7 0000 70a0 SAR AR0,*+
 8 0001 7180 SAR AR1,*
 9 0002 c001 LARK AR0,1
 10 0003 30ea LAR AR0,*0+,AR2
 11
 12 0004 d200 LARK AR2,–2
 0005 fffe
 13 0006 55e0 MAR *0+
 14 0007 338b LAR AR3,*,AR3
 15
 16 0008 ca00 ZAC
 17 0009 cb03 RPTK 3
 18 000a 00a0 ADD *+
 19
 20 000b 5589 LARP AR1
 21 000c 7f02 SBRK 2
 22 000d 3080 LAR AR0,*
 23 000e ce26 RET

 No Errors, No Warnings

3) Link filea.obj and fileb.obj; enter:

dsplnk filea fileb –m lnkerb.map –o prog.out

The dsplnk command invokes the linker. The input object files are filea.obj
and fileb.obj. (If the input file extension is .obj, you don’t have to specify the
extension; the linker uses .obj as the default.) The linker combines filea.obj
and fileb.obj to create an executable object module called prog.out. The
–o option supplies the name of the output module. Example 1–4 shows
the map file resulting from this operation (the map file is produced only if
–m option used).

 Assembler and Linker Walkthrough

1-23 Getting Started With the Code Generation Tools

Example 1–4.Output Map File, lnkerb.map

DSP Fixed Point COFF Linker Version 6.60

Tue Feb 7 16:43:55 1994

OUTPUT FILE NAME: <prog.out>
ENTRY POINT SYMBOL: 0

MEMORY CONFIGURATION

 name origin length attributes fill
 –––––––– –––––––– ––––––––– –––––––––– ––––––––
PAGE 0: PROG 00001000 00000ef00 RWIX

PAGE 1: DATA 00000300 00000fd00 RW

SECTION ALLOCATION MAP

 output attributes/
section page origin length input sections
–––––––– –––– –––––––––– –––––––––– ––––––––––––––––
.text 0 00001000 00000018
 00001000 00000009 filea.obj (.text)
 00001009 0000000f fileb.obj (.text)

.data 0 00001018 00000004
 00001018 00000004 filea.obj (.data)
 0000101c 00000000 fileb.obj (.data)

.bss 1 00000000 00000000 UNINITIALIZED
 00000000 00000000 filea.obj (.bss)
 00000000 00000000 fileb.obj (.bss)

.stack 1 00000300 00000400 UNINITIALIZED
 00000300 00000000 filea.obj (.stack)

GLOBAL SYMBOLS

address name address name
–––––––– –––– –––––––– ––––
00000000 .bss 00000000 .bss
00001018 .data 00000000 end
00001000 .text 00000300 __stack
00000400 __STACK_SIZE 00000400 __STACK_SIZE
00000300 __stack 00001000 .text
00001009 addvec 00001000 start
0000101c edata 00001009 addvec
00000000 end 00001018 etext
00001018 etext 00001018 .data
00001000 start 0000101c edata

[10 symbols]

Assembler and Linker Walkthrough

 1-24

The two files, filea and fileb, can be linked together with or without a com-
mand file. However, using a command file allows you to configure your
memory using the MEMORY and SECTIONS directives. The linker
options and filenames can be contained in the linker command file, or they
can be entered on the command line, and the linker command file then
consists of part of the link information. If no linker command file is pro-
vided, the sections will be allocated at address 0x0 as in the previous map
file.

Example 1–5.Linker Command File, linkerb.cmd

–stack 100

MEMORY
{
 PAGE 0 : PROG : origin = 20h, length = 0FE0h
 PAGE 1 : DATA : origin = 1000h, length = 1000h
}

SECTIONS
{
 .text > PROG PAGE 0
 .data > DATA PAGE 1
 .stack > DATA PAGE 1
}

Typing in the following command line using the linker command file shown
above results in the map file shown on the following page.

dsplnk filea fileb linkerb.cmd –m linkerb.map –o prog.out

 Assembler and Linker Walkthrough

1-25 Getting Started With the Code Generation Tools

Example 1–6.Linker Map File (linkerb.map) Linked Using Linker Command File

DSP Fixed Point COFF Linker Version 6.60

Tue Feb 7 16:44:45 1994

OUTPUT FILE NAME: <prog.out>
ENTRY POINT SYMBOL: 0

MEMORY CONFIGURATION

 name origin length attributes fill
 –––––––– –––––––– ––––––––– –––––––––– ––––––––
PAGE 0: PROG 00000020 000000fe0 RWIX

PAGE 1: DATA 00001000 000001000 RWIX

SECTION ALLOCATION MAP

 output attributes/
section page origin length input sections
–––––––– –––– –––––––––– –––––––––– ––––––––––––––––
.text 0 00000020 00000018
 00000020 00000009 filea.obj (.text)
 00000029 0000000f fileb.obj (.text)

.data 1 00001000 00000004
 00001000 00000004 filea.obj (.data)
 00001004 00000000 fileb.obj (.data)

.stack 1 00001004 00000064 UNINITIALIZED
 00001004 00000000 filea.obj (.stack)

.bss 1 00000000 00000000 UNINITIALIZED
 00000000 00000000 filea.obj (.bss)
 00000000 00000000 fileb.obj (.bss)

GLOBAL SYMBOLS

address name address name
–––––––– –––– –––––––– ––––
00000000 .bss 00000000 .bss
00001000 .data 00000000 end
00000020 .text 00000020 .text
00000064 __STACK_SIZE 00000020 start
00001004 __stack 00000029 addvec
00000029 addvec 00000038 etext
00001004 edata 00000064 __STACK_SIZE
00000000 end 00001000 .data
00000038 etext 00001004 __stack
00000020 start 00001004 edata

[10 symbols]

C Compiler Walkthrough

 1-26

1.7 C Compiler Walkthrough

The TMS320C2x/C2xx/C5x C compiler consists of two passes: the first pass
parses the code, and the second pass produces a single assembly language
source file that must be assembled and linked. The simplest way to compile,
assemble, and link a C program is to use the shell program, which is included
with the compiler. This section provides a quick walkthrough so that you can
get started without reading the entire TMS320C2x/C2xx/C5x Optimizing C
Compiler User’s Guide.

1) Create a sample file called function.c that contains the following code:

/***/
/* function.c */
/* (Sample file for walkthrough) */
/***/
main ()
{
 int x = –3
 X = abs_func(X)
}
int abs_func(int i)
 int i;
 {
 int temp = i;
 if (temp < 0) temp *= –1;
 return (temp);
 }

2) To invoke the shell program to compile and assemble function.c; enter:

dspcl function

The shell program prints this information as it compiles the program:

[function]
TMS320C2x/2xx/5x ANSI C Compiler Version 6.60
Copyright (c) 1987–1995 Texas Instruments Incorporated
 ”function.c”: ==> main
TMS320C2x/2xx/5x ANSI C Codegen Version 6.60
Copyright (c) 1987–1995 Texas Instruments Incorporated
 ”function.c”: ==> main
DSP Fixed Point COFF Assembler Version 6.60
Copyright (c) 1987–1995 Texas Instruments Incorporated
 PASS 1
 PASS 2

No Errors, No Warnings

 C Compiler Walkthrough

1-27 Getting Started With the Code Generation Tools

The shell program runs the two compiler passes and the assembler as
follows:

dspac → C parser
dspcg → Code generator
dspa → Assembler

By default, the shell program deletes the assembly language file from the
compiler after it is assembled. If you wish to inspect the assembly lan-
guage output, use the –k option to retain the assembly language file:

dspcl function –k

3) Also by default, the shell program creates a COFF object file as output;
however, if you use the –z option, the output is an executable object mod-
ule. The following examples show the two ways of creating an executable
object module:

a) The example in step 2 creates an object file called function.obj. To
create an executable object module, link the object file with the
runtime-support library rts25.lib:

dsplnk –c function –o function.out –l rts25.lib

This example uses the –c linker option because the code came from
a C program. The –o option names the output module, function.out;
if you don’t use the –o option, the linker names the output module
a.out. The –l option tells the linker that the input file rts25.lib is an ob-
ject library.

b) In this example, use the –z option, which tells the shell program to run
the linker. The –z option is followed by linker options.

dspcl function –z –o function.out –l rts25.lib

This example runs the two compiler passes, the assembler, and the
linker as follows:

dspac → C parser
dspcg → Code generator
dspa → Assembler
dsplnk → Linker

4) The TMS320C2x/C2xx/C5x compiler package also includes an interlist
utility . This program interlists the C source statements as comments in
the assembly language compiler output, allowing you to inspect the
assembly language generated for each line of C. To run the interlist utility,
invoke the shell program with the –s option. For example:

dspcl function –s –z –o function.out –l rts25.lib

The output of the interlist utility is written to the assembly language file
created by the compiler. (The shell –s option implies –k; that is, when you
use the interlist utility, the assembly file is automatically retained.)

 1-28

 Running Title—Attribute Reference

2-1 Chapter Title—Attribute Reference

Release Notes

This chapter documents tools and features that are new or have been changed
since the last release.

Topic Page

2.1 Media Contents 2-2.

2.2 Additional Information 2-6.

2.3 Release Enhancements 2-8.

Chapter 2

Media Contents

 2-2

2.1 Media Contents

MS-DOS and OS/2 Systems

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools

Diskette #1 — Assembly Language Tools

Directory File Description

dos32\ Assembly Language Tools, 32-bit extended DOS version

dspa.exe TMS320C1x/C2x/C2xx/C5x assembler

dsplnk.exe TMS320C1x/C2x/C2xx/C5x COFF linker

dsphex.exe TMS320C1x/C2x/C2xx/C5x hex conversion utility

readme.1st online release bulletin

os2v2\ Assembly Language Tools, 32-bit OS/2 v2.x version

dspa.exe TMS320C1x/C2x/C2xx/C5x assembler

dsplnk.exe TMS320C1x/C2x/C2xx/C5x COFF linker

dsphex.exe TMS320C1x/C2x/C2xx/C5x hex conversion utility

readme.1st online release bulletin

Diskette #2 — Assembly Language Tools

Directory File Description

dos32\ Assembly Language Tools, 32-bit extended DOS version

dspabs.exe TMS320C1x/C2x/C2xx/C5x absolute lister

dspar.exe TMS320C1x/C2x/C2xx/C5x archiver

dspxref.exe TMS320C1x/C2x/C2xx/C5x cross-reference lister

pminfo.exe utility to measure protected/real-mode switching

rminfo.exe utility to display machine configuration

os2v2\ Assembly Language Tools, 32-bit OS/2 v2.x version

dspabs.exe TMS320C1x/C2x/C2xx/C5x absolute lister

dspar.exe TMS320C1x/C2x/C2xx/C5x archiver

dspxref.exe TMS320C1x/C2x/C2xx/C5x cross-reference lister

 Media Contents

2-3 Release Notes

TMS320C2x/C2xx/C5x Optimizing C Compiler

Diskette #1 — Optimizing C Compiler

Directory File Description

dos32\ Optimizing C Compiler, 32-bit extended DOS version

dspac.exe TMS320C2x/C2xx/C5x ANSI C parser

dspcg.exe TMS320C2x/C2xx/C5x code generator

pminfo.exe utility to measure protected/real-mode switching

rminfo.exe utility to display machine configuration

*.h #include header files for RTS:

assert.h ctype.h errno.h float.h

ioports.h limits.h math.h setjmp.h

stdarg.h stddef.h stdlib.h string.h

time.h

README.1ST online release bulletin

os2v2\ Optimizing C Compiler, 32-bit OS/2 v2.x version

dspac.exe TMS320C2x/C2xx/C5x ANSI C parser

dspcg.exe TMS320C2x/C2xx/C5x code generator

*.h #include header files for RTS:

assert.h ctype.h errno.h float.h

ioports.h limits.h math.h setjmp.h

stdarg.h stddef.h stdlib.h string.h

time.h

README.1ST online release bulletin

Media Contents

 2-4

Diskette #2 — Optimizing C Compiler

Directory File Description

dos32\ Optimizing C Compiler, 32-bit extended DOS version

dspcl.exe TMS320C2x/C2xx/C5x compiler shell program

dspopt.exe TMS320C2x/C2xx/C5x C optimizer

os2v2\ Optimizing C Compiler, 32-bit OS/2 v2.x version

dspcl.exe TMS320C2x/C2xx/C5x compiler shell program

dspopt.exe TMS320C2x/C2xx/C5x C optimizer

Diskette #3 — Optimizing C Compiler

Directory File Description

dos32\ Optimizing C Compiler, 32-bit extended DOS version

clist.exe TMS320C2x/C2xx/C5x C source interlist utility

dspmk.exe TMS320C2x/C2xx/C5x library-build utility

rts50.lib ANSI standard runtime-support ’C5x object library

os2v2\ Optimizing C Compiler, 32-bit OS/2 v2.x version

clist.exe TMS320C2x/C2xx/C5x C source interlist utility

dspmk.exe TMS320C2x/C2xx/C5x library-build utility

rts50.lib ANSI standard runtime-support ’C5x object library

Diskette #4 — Optimizing C Compiler

Directory File Description

dos32\ Optimizing C Compiler, 32-bit extended DOS version

rts.src ANSI standard runtime-support source library

rts25.lib ANSI standard runtime-support ’C2x object library

rts2xx.lib ANSI standard runtime-support ’C2xx object library

os2v2\ Optimizing C Compiler, 32-bit OS/2 v2.x version

rts.src ANSI standard runtime-support source library

rts25.lib ANSI standard runtime-support ’C2x object library

rts2xx.lib ANSI standard runtime-support ’C2xx object library

 Media Contents

2-5 Release Notes

SPARC Systems

TMS320C1x/C2x/C2xx/C5x Code Generation Tools

File Description

README.1ST online release bulletin

clist TMS320C2x/C2xx/C5x C source interlist utility

dspa TMS320C1x/C2x/C2xx/C5x assembler

dspabs TMS320C1x/C2x/C2xx/C5x absolute lister

dspac TMS320C2x/C2xx/C5x ANSI C parser

dspar TMS320C1x/C2x/C2xx/C5x archiver

dspcg TMS320C2x/C2xx/C5x code generator

dspcl TMS320C2x/C2xx/C5x compiler shell program

dsphex TMS320C1x/C2x/C2xx/C5x 8-bit hex conversion utility

dsplnk TMS320C1x/C2x/C2xx/C5x 8-bit COFF linker

dspmk TMS320C2x/C2xx/C5x library-build utility

dspopt TMS320C2x/C2xx/C5x C optimizer

dspxref TMS320C1x/C2x/C2xx/C5x cross-reference lister

lnk.cmd TMS320C2x/C2xx/C5x sample linker control file

rts25.lib TMS320C2x runtime-support library

rts2xx.lib TMS320C2xx runtime-support library

rts50.lib TMS320C5x runtime-support library

*.h #include header files for RTS:

assert.h ctype.h errno.h float.h

ioports.h limits.h math.h setjmp.h

stdarg.h stddef.h stdlib.h string.h

time.h

Additional Information

 2-6

2.2 Additional Information

’C5x Silicon Problem Workarounds

A compiler option (dspcl option –mx, dspcg option –x) allows you to avoid ’C5x
silicon bugs. Use of this switch is necessary when preparing a program for use
with ’C5x silicon device versions earlier than 2.0 if the program implements
interrupts or is compiled with optimization.

There is one problem that this option does not work around. When you run the
compiler with the OVLY and RAM status bits on, certain compiled code
sequences will not execute correctly if both the code and the data reside in the
1K byte of on-chip RAM on the ’C51 or the same 2K-byte block of the 9K bytes
of on-chip RAM on the ’C50. Use a linker command file to set the program and
data spaces so that this conflict does not occur. See the latest silicon errata
sheet for more information.

Silicon Bug Flags in RTS Assembly Source

In the source to the assembly-coded runtime-support functions used by the
compiler, there is an assembly-time variable that enables workarounds to ’C5x
silicon problems. The toolset is shipped with this switch turned on. If you are
using ’C5x silicon version 2.0 or later, you should turn this switch off. The
following steps turn off the silicon bug switch:

1) Unarchive all the source from the source RTS library:

dspar –x rts.src

2) Edit the following assembly files:

f_add.asm f_cmp.asm f_div.asm f_ftoi.asm

f_ftol.asm f_ftou.asm f_itof.asm f_ltof.asm

f_mul.asm f_sub.asm f_utof.asm idiv.asm

ldiv.asm saverest.asm setjmp.asm udiv.asm

Change the SBUGS variable to 0:

SBUGS .set 0

3) Reassemble these files:

dspcl –v50 f_add.asm f_cmp.asm ...

4) Rearchive these files into the object RTS library:

dspar –r rts50.lib *.obj

 Additional Information

2-7 Release Notes

Options Used to Build the Libraries

The libraries supplied with this release were built with the following command
lines:

dspmk –v50 –o –mx rts.src –l rts50.lib

dspmk –o rts.src –l rts25.lib

dspmk –o rts.src –l rts2xx.lib

The ’C5x RTS library was built with full optimization and the silicon bug switch
on. The ’C2x RTS and the ’C2xx RTS libraries were built with full optimization.

Release Enhancements

 2-8

2.3 Release Enhancements

General Enhancements

The following enhancements are included in this release:

� All known bugs have been removed.

� Extended memory support is provided on PC versions using an 80386 or
higher.

� SunOS 5.x (Solaris 2.x) platform is supported.

� The absolute lister utility has been added. See Chapter 9 of the
TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide for
details.

Assembler Enhancements

The following enhancements are included with the TMS320C1x/C2x/C2xx/
C5x DSP assembler. See the TMS320C1x/C2x/C2xx/C5x Assembly
Language Tools User’s Guide chapter reference given with each bullet for
details.

The following assembler directives have been added.

� The .bfloat assembler directive places the floating-point representation of
a single floating-point constant into a word in the current section. The
.bfloat directive guarantees the object will not span a page boundary. See
Chapter 4 for more information.

� The .blong assembler directive places one or more 32-bit values into
consecutive words in the current section. The least significant word is
stored first. The .blong directive guarantees the object will not span a page
boundary. See Chapter 4 for more information.

The following assembler options have been added.

� The –p assembler option when used with the –v2xx option enables the
porting of code to the TMS320C2xx. See Chapter 3 for more information.

� The –pp assembler option when used with the –v2xx assembler option
defines the symbols .TMS32025 and .TMS3202xx. This enables you to
use code written using the .TMS32025 and .TMS32050 symbols on the
TMS320C2xx. See Chapter 3 for more information.

� The –v2xx assembler option tells the assembler to produce code for
TMS3202xx devices. See Chapter 3 for more information.

 Release Enhancements

2-9 Release Notes

Linker Enhancements

� The –b linker option disables the linker’s default elimination of duplicate
entries of symbolic debugging information. See Chapter 8 for more
information.

� The –v0 linker option creates an old-style COFF file (version 0). This
option supports compatibility with older debuggers that do not support
version 1 COFF. See Chapter 8 for more information.

� The –w linker option enables a warning switch. If you use the –w option,
when the linker detects that a section that is not explicitly specified in the
SECTIONS directive has been created, a warning message is generated.
See Chapter 8 for more information.

� The linker GROUP statement now allows you to group output sections at
one run address but allocate the group members to separate load
addresses. Previously, a group was allocated as a single output section
and a separate load address for each member could not be defined. See
Chapter 8 for details.

Assembly Language Tool Enhancements

� The COFF symbol table index of relocation entries has been expanded to
four bytes. For compatibility with earlier COFF versions, there are now two
versions for relocation entries. Version 0 COFF file relocation information
entries use a 10-byte format. Version 1 COFF file relocation information
entries use a12-byte format. See Appendix A for tables detailing the differ-
ence in the versions.

� A cross-reference lister utility has been added. It uses object files to
produce a cross-reference listing showing symbols, their definitions, and
their references in the linked source files. See Chapter 10 for details.

Note: Cross-Reference Utility and C Source Debuggers

Existing TMS320C2x/C2xx/C5x C source debuggers are not compatible
with the new cross-reference utility. Files assembled with the –x option
cannot be loaded by these debuggers.

� The hex conversion utility has been updated. See Chapter 11 for more
information.

Release Enhancements

 2-10

C Compiler Enhancements

The TMS320C2x/C2xx/C5x optimizing C compiler enhancements are listed
below. See the TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide
chapter reference given with each bullet for details.

� The floating-point math functions that were located in the floating-point
library, flib.lib, have been placed in the runtime-support source library,
rts.src.

� A special convention has been added to the register keyword to allow the
allocation of global registers. When you use the allocation declaration at
file level, the register will be permanently reserved from any other use by
the optimizer and code generator for that file. See Chapter 4 for more
information.

The –rregister command line option for the dspcl shell and the corre-
sponding –gregister option for the optimizer and code generator (if you are
invoking the tools individually) allow you to prevent the compiler from
using the named register. See Chapter 2 for more information.

� The –ms shell option tells the compiler to optimize for code space over
speed. See Chapter 2 for details.

� The –v2xx shell option enables the use of TMS320C2xx instructions. See
Chapter 2 for more information.

� The –pr shell option creates a parser error message file. See Chapter 2
for more information.

� The generic optimizer has been improved, including improved bit-field
optimizations, and file-level optimizations have been added. See
Chapter 2 for more information.

� The rts.src function ti_sprintf has been added. Time functions (asctime,
etc.) now call ti_sprintf to format the time string. See Chapter 5 for more
information.

� The keyword ioport supports access to the I/O port space of the
TMS320C2x/C2xx/C5x devices. See Chapter 3 for more information.

A-1

Appendix A

DOS/4GW Error Messages

DOS/4GW is a memory manager that is embedded in the TMS320C1x/
C2x/C2xx/C5x code generation tools, so you may occasionally see DOS/4GW
error messages. The executable files are not shipped as such, nor is any docu-
mentation provided on this tool, except for the list of error messages.

This excerpt from the DOS/4GW User’s Manual (reproduced here with the
permission of Tenberry Software, Inc.) lists error messages with descriptions
of the circumstances in which the error is most likely to occur and suggestions
for remedying the problem.

Topic Page

A.1 Troubleshooting in the Protected-Mode Environment A-2.

A.2 Kernel Error Messages A-3.

A.3 DOS/4G Error Messages A-7.

Appendix A

Troubleshooting in the Protected-Mode Environment

A-2

A.1 Troubleshooting in the Protected-Mode Environment

Getting 32-bit programs to execute properly under MS-DOS can be frustrating.
Your computer’s configuration and memory management can cause problems
that may be difficult to find because many programs are interacting.

This list of error messages is reproduced here because they may appear when
executing any tools, since all the tools have been assembled along with the
DOS/4GW memory extender. When reading this material, keep these consid-
erations in mind:

� When an Action directs you to technical support, determine the configura-
tion of your system by using the pminfo (page 1-15) and rminfo
(page 1-17) programs before contacting technical support.

To obtain TMS320C1x/C2x/C2xx/C5x technical support, contact the DSP
hotline:

DSP Hotline: (713) 274–2320

FAX: (713) 274–2324

Electronic Mail: 4389750@mcimail.com.

� When you are directed to rebuild the product, simply reinstall the tools
from the supplied disks. Our products are shipped as object files and
cannot be rebuilt. Should reinstallation not remedy the situation, contact
technical support.

� When no action is suggested for an error message and the action is not
obvious, contact technical support.

� Some error messages are not included in this section because they are
rarely seen when using DOS/4GW with the TMS320C1x/C2x/C2xx/C5x
tools. Also, many of the messages that are documented here are seldom
seen when using DOS/4GW with the TMS320C1x/C2x/C2xx/C5x tools.
Nevertheless, you may find this text useful in debugging your programs.

Should you encounter any error message not listed here, or should problems
persist when running the 32-bit protected-mode version of the code generation
tools, contact technical support.

 Kernel Error Messages

A-3 DOS/4GW Error Messages

A.2 Kernel Error Messages

This section describes error messages from the DOS/16M kernel embedded
in the TMS320C1x/C2x/C2xx/C5x code generation tools. Kernel error mes-
sages can occur because of severe resource shortages, corruption of the
executable file, corruption of memory, operating system incompatibilities, or
internal errors. All of these messages are quite rare.

0: involuntary switch to real mode

Description The computer was in protected mode but switched to real
mode without going through DOS/16M. This error most often
occurs because of an unrecoverable stack segment
exception (stack overflow) but can also occur if the Global
Descriptor Table or Interrupt Descriptor Table is corrupted.

Action Increase the stack size, recompile your program with stack
overflow checking, or look into ways that the descriptor tables
may have been overwritten.

2: not a DOS/16M executable <filename>

Description DOS4G.EXE or a bound DOS/4G application has probably
been corrupted.

Action Rebuild or recopy the file.

6: not enough memory to load program

Description There is not enough memory to load DOS/4G.

Action Make more memory available and try again.

8: cannot open file <filename>

Description The DOS/16M loader cannot load DOS/4G, probably be-
cause DOS has run out of file units.

Action Set a larger FILES= entry in CONFIG.SYS, reboot, and try
again.

9: cannot allocate tstack

Description There is not enough memory to load DOS/4G.

Action Make more memory available and try again.

10: cannot allocate memory for GDT

Description There is not enough memory to load DOS/4G.

Action Make more memory available and try again.

Kernel Error Messages

A-4

11: no passup stack selectors – GDT too small

Description This error indicates an internal error in DOS/4G or an
incompatibility with other software.

Action Contact technical support.

12: no control program selectors – GDT too small

Description This error indicates an internal error in DOS/4G or an incom-
patibility with other software.

Action Contact technical support.

13: cannot allocate transfer buffer

Description There is not enough memory to load DOS/4G.

Action Make more memory available and try again.

14: premature EOF

Description DOS4G.EXE or a bound DOS/4G application has probably
been corrupted.

Action Rebuild or recopy the file.

15: protected mode available only with 386 or 486

Description DOS/4G requires an 80386 (or later) CPU. It cannot run on an
80286 or earlier CPU.

17: system software does not follow VCPI or DPMI specifications

Description Some memory-resident program has put your 386 or 486
CPU into Virtual 8086 mode. This is done to provide special
memory services to DOS programs, such as EMS simulation
(EMS interface without EMS hardware) or high memory. In
this mode, it is not possible to switch into protected mode
unless the resident software follows a standard that
DOS/16M supports (DPMI, VCPI, and XMS are the most
common).

Action Contact the vendor of your memory-management software.

22: cannot free memory

Description Memory was probably corrupted during execution of your
program.

Action Make more memory available and try again.

 Kernel Error Messages

A-5 DOS/4GW Error Messages

23: no memory for VCPI page table

Description There is not enough memory to load DOS/4G.

Action Make more memory available and try again.

24: VCPI page table address incorrect

Description This is an internal error.

Action Contact technical support.

25: cannot initialize VCPI

Description An incompatibility with other software was detected.
DOS/16M has detected that VCPI is present, but VCPI
returns an error when DOS/16M tries to initialize the interface.

Action Find the other software that uses VCPI and disable it (stop its
execution).

28: memory error, avail loop

Description Memory was probably corrupted during execution of your
program.

Action Rerun the program and/or restart your computer.

29: memory error, out of range

Description Memory was probably corrupted during execution of your
program.

Action Rerun the program and/or restart your computer.

32: DPMI host error (possibly insufficient memory)
33: DPMI host error (need 64K XMS)
34: DPMI host error (cannot lock stack)

Description Memory under DPMI is probably insufficient.

Action Under MS-Windows , make more physical memory avail-
able by eliminating or reducing any RAM drives or disk
caches. You can also edit DEFAULT.PIF so that at least 64KB
of XMS memory is available to non-Windows programs.
Under OS/2, increase the DPMI_MEMORY_LIMIT in the
DOS box settings.

Kernel Error Messages

A-6

35: General Protection Fault

Description An internal error in DOS/4G was probably detected. Faults
generated by your program should cause error 2001 instead.

Action Contact technical support.

38: Cannot use extended memory: HIMEM.SYS not version 2

Description An incompatibility with an old version of HIMEM.SYS was
detected.

Action Upgrade to a more recent copy of DOS or upgrade your DOS
memory extender.

40: not enough available extended memory (XMIN)

Description An incompatibility with your memory manager or its configu-
ration was probably detected.

Action Try configuring the memory manager to provide more ex-
tended memory, or change memory managers.

 DOS/4G Errors

A-7 DOS/4GW Error Messages

A.3 DOS/4G Error Messages

DOS/4G errors are more common than kernel errors when using DOS/4G or
DOS/4GW with the TMS320C1x/C2x/C2xx/C5x code generation tools. They
are usually related to an unknown pathname, corrupt files, or memory prob-
lems. Memory problems can include inadequate memory, poor configuration,
or corrupted memory.

1000 ”can’t hook interrupts”

Description A DPMI host has prevented DOS/4G from loading.

Action Contact technical support.

1001 ”error in interrupt chain”

Description A DOS/4G internal error was detected.

Action Contact technical support.

1003 ”can’t lock extender kernel in memory”

Description DOS/4G couldn’t lock the kernel in physical memory, prob-
ably because of a memory shortage.

Action Free some memory for the DOS/4G application.

1004 ”syntax is DOS4G <executable.xxx>”

Description Incorrect syntax was encountered in this command.

Action You must specify a program name.

1005 ”not enough memory for dispatcher data”

Description There is not enough memory for DOS/4G to manage user-
installed interrupt handlers properly.

Action Free some memory for the DOS/4G application.

1007 ”can’t find file <program> to load”

Description DOS/4G could not open the specified program. The file prob-
ably doesn’t exist. It is possible that DOS ran out of file han-
dles or that a network or similar utility has prohibited read ac-
cess to the program.

Action Make sure that the filename was spelled correctly.

DOS/4G Errors

A-8

1008 ”can’t load executable format for file <filename> [<error code>]”

Description DOS/4G did not recognize the specified file as a valid execut-
able file. DOS/4G can load linear executables (LE and LX)
and EXPs (BW).

Action Make sure the file is in the correct format (one of the accept-
able formats).

2523 ”page fault on non-present mapped page”

Description Your program references memory that has been mapped to a
nonexistent physical device using DPMI function 508h.

Action Make sure the device is present, or remove the reference.

2524 ”page fault on uncommitted page”

Description Your program references memory that was reserved with a
call to DPMI function 504h but that was never committed
(using a DPMI 507h or 508h call).

Action Commit the memory before you reference it.

3301 ”unhandled EMPTYFWD, GATE16, or unknown relocation”
3302 ”unhandled ALIAS16 reference to unaliased object”
3304 ”unhandled or unknown relocation”

Description If your program was built for another platform that supports
the LINEXE format, it may contain a construct that DOS/4G
does not currently support, such as a call gate. One of these
messages may also appear if your program has a problem
mixing 16- and 32-bit code. A linker error is another likely
cause.

Action Try to determine whether any of the above conditions exist. If
you cannot locate the problem, contact technical support.

