
BAD : A BASIC LANGUAGE COMPILER FOR THE TMS 320 C31 DSK

F. Auger

GE44-IUT de Saint Nazaire,

CRTT, Bd de l'Université, BP 406, F-44602 Saint Nazaire cedex, France

auger@ge44.univ-nantes.fr

ABSTRACT

This paper presents a new programming language for the TMS

320 C31, which provides a better access to the processor hardware

than the C language, and an algebraic syntax of runtime expres-

sions, unlike TI's assembly language. Several examples show the

readability of signal processing algorithms implemented with this

Basic-like language.

1. INTRODUCTION

The TMS 320C31 �oating-point DSP [11] is a versatile and pow-

erful 32-bit signal processor. As the forthcoming C33, this com-

ponent belongs to the third generation family of DSP's, which can

bring low-cost industrial solutions for signal processing [7, 12],

process control [2, 13] and instrumentation applications.
Of course, a necessary condition to meet this goal is the avail-

ability of accessible development systems, for an easy code gener-
ation. For the time being, only the assembly [14] and the C [15]
programming languages are proposed by Texas Instruments. Both
languages have well known advantages and drawbacks. Coding
directly with the assembly language yields shorter and faster code,
but requires a detailed knowledge of both the architecture and the
instruction set of the DSP. Because of the non-orthogonality of the
instruction set (all addressing modes are not allowed for all instruc-
tions), this may require several trial and error loops. Designing
relevant applications in a reasonable amount of time is therefore
possible for experienced users only, and is out of reach for many
applications engineers and many undergraduate students. Choos-
ing the C language is safer, requires less code rewriting when the
algorithms are modi�ed, and provides an easier readability of the
code, at the expense of a larger and slower binary code. However,
one may ask if the C language is a good choice when instructions
such as [5]

volatile int *PBASE=(volatile int *) 0x808000 ;

are required just to make the PBASE variable point to the address

808000h. More generally, the particular features that distinguish

DSP's from conventional microprocessors do not seem to be easily

used through the standard ANSI C [9]. Using interrupts in C is also

possible, but certainly not simple [4].

This paper reports the design of a new compiler, which al-

lows signal processing applications to be written more easily. This

freely available compiler [3] should allow the use in realistic pro-

jects of the TMS320C31 starter kit (DSK), in a digital signal pro-

cessing laboratory [5], even at an undergraduate level. Some of its

elements and ideas are borrowed from the Parallax Basic [8] and

from the MATLAB programming language [16]. In section 2, we

show that this compiler provides many possibilities of high level

general purpose programming languages, and generates ef�cient

assembly language source code. Section 3 shows how it can suit

to the implementation of signal processing applications.

2. THE BAD FUNCTIONALITIES

The aim of this section is to show the simplicity of the proposed

language, and its appropriateness to signal processing algorithms.

The translation mechanisms of the compiler are also shown through

several examples.

Every BAD source �le must start by a program header which

begins by the keyword dspbasic, followed by the target identi-

�er c31dsk. For the time being, this is the only target identi�er

allowed, but future extensions of the compiler could be possible

for other C31 boards and/or other DSP's. Comments (starting by

a quote) are highly advisable in this program header.
After this prologue, constants and variables declarations may

be found. As the internal registers of the C31, the BAD compiler
provides only two scalar data types : 32 bits signed integers (int),
and 32 bits �oating-point real numbers (float). As in PBASIC
[8], all variables must be declared before they are used, and are
global (variables known only locally within subroutines do not ex-
ist). Constants and variables are simply de�ned by the keywords
const and var respectively. Each variable is initialized to zero,
unless the data type is followed by an optional initial value, as in
the following source code example:

Const length 10 ' constant length equals 10

Var y float 5 ' one float

Var �y1 float 17 ' another float

Var j int ' an integer

The object code in assembly language produced by the compiler
for these Basic instructions is:

length .set 10 ; const length 10

y .float 5 ; var y float 5

y1 .float 17 ; var �y1 float 17

j .word 0 ; var j int

_y .word y ; address of y

_j .word j ; address of j

The compiler is not case sensitive, and all upper case characters

used in the source code are converted into lower case ones. It

should be underlined that each Basic instruction is recalled in com-

ments, so as to provide more intelligibility (these comments will

be sometimes removed below, so as to respect the format of the

proceedings). The assembly language variables _y and _j hold

the addresses of the variables y and j, allowing their access by

indirect addressing modes. These localization variables are not

generated when the Basic variables are preceded by a tilde, as for

y1.

Moreover, so as to use as much as possible the eight main

registers of the DSP, the variables x0, x1, x2, x3 and i0,

i1, i2, i3 are prede�ned real and integer variables. These

variables are alias names of the internal registers R4, R5, R6

and R7, which can be used to store either real or integer values.

binary operators allowed for both real and integer variables

+ arithmetic addition

- arithmetic subtraction

* arithmetic multiplication

binary operators allowed for integer variables only

& logical and

| logical nand

� logical or

logical xor

Table 1: allowed binary operators.

The �rst four registers are used by the compiler as scratchpad reg-

isters. Using these variables is highly advisable for a shorter code

length, since all variables de�ned by the user are placed in mem-

ory. But of course x0 and i0 can not be used at the same time,

since they both refer to the same R4 register.
De�ning arrays is also possible, either by writing the appro-

priate number of initial values, or by writing the size of the array
between brackets, as in the following example:

var Primes int 2,3,5,7,11

var SignalSegment float(75)

The �rst possibility may be preferred for small arrays, whereas the
second one is suitable for large ones. The object code in assembly
language produced by the compiler for these Basic instructions is:

primes .word 2,3,5,7,11

signalsegment

.loop 75

.float 0

.endloop

_primes .word primes

_signalsegment .word signalsegment

The �rst index value of an array is always 0. The 0th cell of an

array can be referred by using just the array's name, without an

index value. Arrays should be manipulated with care, because the

compiler does not test the access to out-of-range locations, so as to

give the programmer more freedom (and hence more misleading

opportunities).

Both variables and constants can be used in runtime math or

logical expressions, which can be of three kinds only :

var1 op= value,

var1 op= var2

var1 op= var2 binop var3

where var1, var2 and var3 are three variable names, binop
is a binary operator, and op= is an assignment operator. The al-
lowed binary operators and assignment operators for real and in-
teger variables are listed in tables 1 and 2. The following basic
instructions are examples of legal statements, in which the semi-
colons are statement separators, pulling two instructions written
on the same line apart.

y=length ; y*=1.5 ; x0=6

j+=1; y(j)+=x0+y; x0!=y(1)

and the object code produced by the compiler for these instructions
is:

ldi @_y, AR1 ; y=length

ldf length, R0

stf R0, *AR1

ldi @_y, AR1 ; y*=1.5

assignment operators allowed for both real and integer variables

ass. op. example

= x0=2 x0 = 2

+= x0+=2.5 x0 = x0 + 2:5

-= x0-=2.1 x0 = x0� 2:1

= x0=5.0 x0 = x0 � 5

!= x0!=y x0 = abs(y)

assignment operators allowed for integer variables only

ass. op. example

&= i &= 2 i = i and 2

|= i |= 2 i = i and 2

�= i �= 2 i = i or 2

#= i #= 5 i = i xor 2

Table 2: allowed assignment operators.

ldf 1.5, R0

mpyf3 R0,*AR1, R0

stf R0, *AR1

ldf 6, R4 ; x0=6

ldi @_j, AR1 ; j+=1

ldi 1, R0

addi3 R0, *AR1, R0

sti R0, *AR1

ldf R4, R0 ; y(j)+=x0+y

ldi @_y, AR1

ldf *AR1, R1

addf3 R1, R0, R0

ldi @_j, AR2

ldi *AR2, IR0

addf3 R0, *+AR1(IR0), R0

stf R0, *+AR1(IR0)

ldi @_y, AR1 ; x0!=y(1)

ldi 1, IR0

ldf *+AR1(IR0), R0

absf R0, R0

ldf R0, R4

The conciseness of the translation of x0=6 is evidenced when

compared to the one for y=length. The compiler has optimized

the translation of y(j)+=x0+y, detecting that both y(j) and y

belong to the same array.

This reduced number of runtime expression structures may

seem very restrictive, but this limitation can be justi�ed by sev-

eral arguments :

� The use of immediate values is limited to the �rst statement

only, because the C31's architecture allows immediate ad-

dressing only with 16 bits integer and �oating point num-

bers. Such instructions must therefore be used with care,

and variables used as much as possible.

� Integer or �oat divisions are not allowed, because the C31

DSP does not have these operations in its instructions set.

They are implemented however by special subroutines.

� The limitation of runtime expressions to simple binary op-

erators forces the user to expand more complicated expres-

sions into simple ones, which are nearer to the DSP instruc-

tion set. From an educational point of view, this can show

more clearly what a DSP can do. This expansion can also

give a better view on the complexity of an algorithm.

� Since there is only one binary operator per instruction, a

precedence rule does not need to be de�ned, which reduces

the potential for misinterpretation.

� As is, the legal statements allowed by the compiler are very

close to the algebraic syntax of the instructions of the as-

sembly language for the DSP's designed by Analog De-

vices, such as the AD21020 [1].

� Since the instructions of the source program are simple, the

object code produced by the compiler can be easily under-

stood, allowing a peephole optimization.

It should be also underlined that both the value and the address

of user de�ned variables can be modi�ed by runtime expressions,
thanks to the @ operator, as in the example below :

@ScannedValue=@RealArray

ScannedValue += 5.6 ; @ScannedValue+=1

The object code produced by the compiler for these instruc-

tions can be found in [3]. This possibility should allow dynamic

memory allocation mechanisms, and as much �exibility as avail-

able with pointers in the C language.

Flow control statements are possible thanks to labels, which

must start by a colon. The existence of labels allows :

� unconditional jumps, with the goto instruction. As an ex-
ample, the following Basic instructions,

:LoopStart

x0 += x1*x2 ; goto LoopStart

will be translated into the following object code:

loopstart ; :loopstart

ldf R5, R0 ; x0 += x1*x2

ldf R6, R1

mpyf3 R1, R0, R0

addf3 R0, R4, R0

ldf R0, R4

br loopstart ; goto loopstart

� conditional statements, which, as in PBASIC [8], are im-

plemented by the following syntax:

if condition thengoto label

For example, the instruction

if x0>y thengoto LoopStart

will be translated into

ldf R4, R0

ldi @_y, AR1

ldf *AR1, R1

cmpf R1, R0

bgt loopstart

� subroutine calls, with the gosub instruction. A subroutine
must start by a label de�nition, and ends by a return.
So as to take advantage of a possibility of the C31 instruc-
tion set, subroutines may be conditionally aborted thanks
to the returnif condition structure. Arguments and
returned data are gathered in an array, whose name must

start by the subroutine name, followed by srda (for sub-
routine data exchange). It is advised to put the arguments
�rst, followed by the outputs. Inside itself, a subroutine ac-
cesses to its srda by the prede�ned real and integer arrays
fsrda and isrda, as in the following example,

Var MySubroutineSrda float 0, 0

...

gosub MySubroutine

...

:MySubroutine

fsrda(1)=fsrda(0)+x0;

return

which will be translated into:

mysubroutinesrda .float 0, 0

_mysubroutinesrda .word mysubroutinesrda

...

push ar0 ; gosub mysubroutine

ldi @_mysubroutinesrda, ar0

call mysubroutine

pop ar0

...

mysubroutine ; :mysubroutine

; fsrda(1)=fsrda(0)+x0

ldf *AR0, R0

ldf R4, R1

addf3 R1, R0, R0

ldi 1, IR0

stf R0, *+AR0(IR0)

rets ; return

� simple access to interrupts, thanks to prede�ned labels, whose
names are taken from the manufacturer's literature (see [11],
p 7-26). Interrupts start by a prede�ned label, and end by
a reti instruction. Conditional ends of interrupt are also
allowed by the retiif condition structure. As an ex-
ample, the following instructions

:xint0

x0+=2.5 ; reti

will be translated into

; this program uses the xint0 interruption

.start "xint0sect", 0x809FC5

.sect "xint0sect"

br xint0

.text

xint0 ; :xint0

ldf 2.5, R0 ; x0+=2.5

addf3 R0, R4, R4

reti ; reti

Moreover, data-driven �ow control is also possible by the goto
var1 and gosub var2 statements. In the �rst case, var1must
be an integer holding the address of a label. In the second state-
ment, var2 must be an array of two integers. The �rst one holds
the address of the subroutine, and the second one the address of
the �srda�. The labels held in var1 and var2must be de�ned by
two successive colons, as in the example below:

Var mySub2Srda float 0, 0

Var RightLabel int 0

Var RightSub int 0, 0

...

::GoodPlace

RightLabel = @GoodPlace

RightSub(0) = @MySub2 ; RightSub(1) = @MySub2Srda

gosub RightSub

...

goto RightLabel

...

::MySub2

fsrda(1)=fsrda(0)*x0 ; return

The object code produced by the compiler for these instruc-

tions can be found in [3]. Such possibilities, which do not exist in

the C language, can ef�ciently replace multiple choice conditional

statements such as the switch structure in MATLAB 5 [16].

Finally, assembly language instructions may be included, pre-

ceded by the asm keyword. This can make the access to the hard-

ware features of the DSP easier. Some parts of code where the

DSP spends most of its time may also be advantageously written

in assembly language.

3. DESIGNING SIGNAL PROCESSING APPLICATIONS

WITH BAD

For a fast and easy design of signal processing applications, an en-

gineer needs not only an easy-to-use programming language, but

also a library of the most usual transcendant functions (sin, cos,

log, exp . . .) and of the most frequently used signal processing

tools (FIR and IIR �lters, FFT, DCT, . . .). Most of the transcen-

dant functions are currently available, whereas only some of the

signal processing building blocks are already implemented. But

we hope that more and more will be available thanks to coopera-

tive work. Designing a signal processing application will therefore

only require to code the speci�c features, integrating safe general

purpose functions written by experts.
As an example of the use of the proposed language for the

implementation of signal processing algorithms, the main core of
a tracking Kalman �lter [10] is presented below. The complete
program, together with more explanations and the corresponding
object code, can be found in [3], from where other examples can
also be retrieved.

dspbasic c31dsk

' tracking kalman filter, F. Auger, nov 1999

' elements of the covariance matrices

var p11pred float ; var p11est float 10

var p12pred float ; var p12est float 0

var p22pred float ; var p22est float 10

' Kalman gains

var k1 float ; var k2 float

var quarterqr float ' 0.25* q/r,

var error float ' error=y-H*x

var FinvSrda float 0,0 ' srda of finv

var FinvMask int 0xFF7FFFFF ' mask used by finv

var SETSP int 0E970300h ' serial line config

var AICSETSRDA int 1,5,0x1f,0x99 ' srda of aicset

var twaitsrda int 0 ' useless srda

var AICIOSRDA int 0,0 ' DAC ADC

:InitInterrupt

' scf=625 kHz, Fs=20161 Hz, full scale

gosub aicset ' init of the AIC in interrupt mode

:MainLoop

' prediction step :

' x1[k+1|k]=x1[k|k]+x2[k|k] and x2[k+1|k]=x2[k|k]

' x1[k|k] and x1[k+1|k] are stored in x1

x1+=x2 ' x2[k|k] is stored in x2 and not modified

' computing the covariance matrix of the

' predicted state ; x0 is used as scratchpad

' p11[k+1|k]=p11[k|k]+2*p12[k|k]+p22[k|k]+0.25*q

p11pred=p11est+p22est; p11pred+=p12est+p12est

x0=quarterqr ; p11pred+=x0

' p12[k+1|k]=p12[k|k]+p22[k|k]+0.5*q

x0*=2; p12pred=p12est+p22est; p12pred+=x0

x0*=2; p22pred=p22est+x0 ' p22[k+1|k]=p22[k|k]+q

' K[k+1]=P[k+1|k]*H'/(H*P[k+1|k]*H'+r)

' first compute x0=1/(p11pred+r)

FinvSrda(0)=1; FinvSrda(0)+=p11pred; gosub Finv

x0=FinvSrda(1); k1=p11pred*x0; k2=p12pred*x0

aiciosrda(0)=x1 ' predicted position as output

idle ' wait for an interrupt

error=aiciosrda(1)-x0; ' correction step

' xi[k+1|k+1]=xi[k+1|k]+ki[k+1]*e[k+1], i=1,2

x1+=k1*error ; x2+=k2*error

' covariance matrix of the estimated state

x3=p12pred; x3*=x3*x0; p22est=p22pred-x3

p12est=p12pred*x0 ; p11est=p11pred*x0

goto MainLoop

:xint0 ' interrupt from the AIC

' call aicio, and return from interrupt

gosub aicio ; reti

4. CONCLUSION

The proposed Basic language compiler should avoid many stu-

dents to be scared by the implementation of signal processing algo-

rithms on DSP's [17]. When compared to the assembly language,

it should also make generation, testing and maintenance of large

programs cheaper and less tedious.

5. REFERENCES

[1] Analog Devices Inc, �AD21020/10 User's Manual,� 1995.
[2] I. Ahmed ed., �Digital control applications with the

TMS320 family,� Texas Instruments Inc., 1995.
[3] http://crttsn.univ-nantes.fr/

~

auger/bad
[4] Leor Brenman, �Setting up TMS320 DSP interrupts in C,�

Literature Number SPRA 036, 1995.
[5] R. Chassaing, �Digital signal processing laboratory exper-

iments using C and the TMS320 C31 DSK,�Wiley, 1998.
[6] B.W. Kernighan, D.M. Ritchie, �The C programming lan-

guage, second edition,� Prentice Hall, 1988.
[7] P. Papamichalis ed., �Digital signal processing applica-

tions with the TMS320 family: theory, algorithms and im-

plementations (Vol 3),� Texas Instruments Inc., 1990.
[8] Parallax Inc., �Basic Stamp programming manual V 1.9,�

available from http://www.parallaxinc.com.
[9] A. Schwarte, H. Hanselmann, �The programming language

DSPL,� PCIM, june 25-28, 1990. Also published in [2], pp

171�182.
[10] J. Tan, N. Kyriakopoulos, �Implementation of a tracking

Kalman �lter on a digital signal processor,� IEEE Trans.

on Ind. Electronics, Vol 35, No 1, feb 1988. Also published

in [2], pp 399�407.
[11] Texas Instruments Inc., �The TMS320C3x User's guide,�

Literature Number SPRU 031E, july 1997.
[12] Texas Instruments Inc., �The TMS320 C3x general purpose

applications user's guide,� Literature Number SPRU 194,

jan 1998.
[13] Texas Instruments Inc., �The TMS320 C31x embedded con-

trol technical brief,� Literature Number SPRU 083, feb

1998.
[14] Texas Instruments Inc., �The TMS320 �oating-point DSP

assembly language tools user's guide,� Literature Number

SPRU 035C, feb 1998.
[15] Texas Instruments Inc., �The TMS320 �oating-point DSP

optimizing C compiler user's guide,� Literature Number

SPRU 034G, march 1997.
[16] The MathWorks Inc., �MATLAB functions reference guide

(version 5),� jan 1998.
[17] C.H.G. Wright, T.B. Welch, W.J. Gomes III, �Teaching

DSP concepts using Matlab and the TMS320C31 DSK�

Proc. IEEE ICASSP, 1999.

