
Interfacing the Enhanced Parallel Port http://www.senet.com.au/~cpeacock

Interfacing the Enhanced Parallel Port Page 1

Interfacing the Enhanced Parallel Port Version 1.0

Disclaimer : While every effort has been made to make sure the information in this document is correct, the author can not be liable
for any damages whatsoever for loss relating to this document. Use this information at your own risk.

Table of Contents

EPP - Enhanced Parallel Port Page 1

EPP Hardware Properties Page 1

The EPP Handshake Page 2

EPP Data Write Cycle Page 3

EPP Address Write Cycle Page 3

EPP Data Read Cycle Page 4

EPP Address Read Cycle Page 4

The EPP’s Software Registers Page 4

EPP Programming Considerations Page 6

EPP - Enhanced Parallel Port

The Enhanced Parallel Port (EPP) was designed in a joint venture between Intel, Xircom & Zenith
Data Systems. EPP Ports were first specified in the EPP 1.7 standard, and then later included in the IEEE
1284 Standard released in 1994. EPP has two standards, EPP 1.7 and EPP 1.9. There are differences
between the two standards which may affect the operation of devices. This is further discussed latter. EPP
has a typical transfer rate in the order of 500KB/S to 2MB/S. This is achieved by allowing the hardware
contained in the port to generate handshaking, strobing etc, rather that have the software do it, which was
the case with Centronics.

For the hobbyist, EPP is more commonly used than ECP. EPP differs from ECP by the fact that the
EPP Port generates and controls all the transfers to and from the peripheral. ECP on the other hand
requires the peripheral to negotiate a reverse channel and control the handshaking. This is harder to
achieve with common glue logic, thus really requires a dedicated controller or ECP Peripheral Chip.

EPP Hardware Properties

When using EPP mode, a different set of tasks and labels are assigned to each line. These are listed
below in Table 4. It's very common to see both the SPP and EPP names interchanged in Parallel Port Data
Sheets and Literature. This can make it very hard to focus on what is exactly happening. Therefore all the
documentation here will use the EPP names.

Interfacing the Enhanced Parallel Port http://www.senet.com.au/~cpeacock

Interfacing the Enhanced Parallel Port Page 2

Pin SPP Signal EPP
Signal

In/Out Function

1 Strobe Write Out A low on this line indicates a Write,
High indicates a Read

2-9 Data 0-7 Data 0-7 In-Out Data Bus. Bi-directional

10 Ack Interrupt In Interrupt Line. Interrupt occurs on
Positive (Rising) Edge.

11 Busy Wait In Used for handshaking. A EPP cycle can
be started when low, and finished when
high.

12 Paper Out /
End

Spare In Spare - Not Used in EPP Handshake

13 Select Spare In Spare - Not Used in EPP Handshake

14 Auto
Linefeed

Data
Strobe

Out When Low, indicates Data transfer

15 Error /
Fault

Spare In Spare - Note used in EPP Handshake

16 Initialize Reset Out Reset - Active Low

17 Select
Printer

Address
Strobe

Out When low, indicates Address transfer

18-25 Ground Ground GND Ground

Table 1. Pin Assignments For Enhanced Parallel Port Connector.

Paper Out, Select and Error are not defined in the EPP handshake. These lines can be utilised in any
way by the user. The status of these lines can be determined at anytime by viewing the SPP Status
Register. Unfortunately there are no spare output's. This can become a hassle regularly.

The EPP Handshake

In order to perform a valid exchange of data using EPP we must follow the EPP handshake. As the
hardware does all the work, this handshake only requires to be used for your hardware and not for
software as the case with SPP. To initiate an EPP cycle your software needs to perform only one I/O
operation to the relevant EPP Register. Details on this, latter.

Interfacing the Enhanced Parallel Port http://www.senet.com.au/~cpeacock

Interfacing the Enhanced Parallel Port Page 3

EPP Data Write Cycle

Figure 1. Enhanced Parallel Port Data Write Cycle.

1. Program writes to EPP Data Register.
(Base + 4)

2. nWrite is placed low. (Low indicates write
operation)

3. Data is placed on Data Lines 0-7.

4. nData Strobe is asserted if Wait is Low
(O.K. to start cycle)

5. Host waits for Acknowledgment by
nWait going high (O.K. to end cycle)

6. nData Strobe is de-asserted.

7. EPP Data Write Cycle Ends.

EPP Address Write Cycle

Figure 2. Enhanced Parallel Port Address Write Cycle.

1. Program writes address to EPP's
Address Register (Base + 3)

2. Write is placed low. (Low indicates write
operation)

3. Address is placed on Data Lines 0-7.

4. nAddress Strobe is asserted if Wait is Low
(O.K. to start cycle)

5. Host waits for Acknowledgment by wait
going high (O.K. to end cycle)

6. nAddress Strobe is De-asserted.

7. EPP Address Write Cycle Ends.

Interfacing the Enhanced Parallel Port http://www.senet.com.au/~cpeacock

Interfacing the Enhanced Parallel Port Page 4

EPP Data Read Cycle

Figure 3. Enhanced Parallel Port Data Read Cycle.

1. Program reads EPP Data Register.
(Base + 4)

2. nData Strobe is asserted if Wait is Low
(O.K. to start cycle)

3. Host waits for Acknowledgment by
nWait going high

4. Data is read from Parallel Port Pins.

5. nData Strobe is de-asserted.

6. EPP Data Read Cycle Ends.

EPP Address Read Cycle

Figure 4. Enhanced Parallel Port Address Read Cycle.

1. Program reads EPP Address Register.
(Base + 3)

2. nAddr Strobe is asserted if Wait is Low
(O.K. to start cycle)

3. Host waits for Acknowledgment by
nWait going high

4. Data is read from Parallel Port Pins.

5. nAddr Strobe is de-asserted.

6. EPP Address Read Cycle Ends.

Note If implementing EPP 1.7 Handshake (Pre IEEE 1284) the Data and Address Strobes can
be asserted to start a cycle regardless of the wait state. EPP 1.9 will only start a cycle once
wait is low. Both EPP 1.7 and EPP 1.9 require the wait to be high to finish a cycle.

The EPP's Software Registers.

The EPP Port also has a new set of registers. However 3 of them have been inherited from the
Standard Parallel Port. On the next page is a table showing the new and existing registers.

Interfacing the Enhanced Parallel Port http://www.senet.com.au/~cpeacock

Interfacing the Enhanced Parallel Port Page 5

Address Port Name Read/Write

Base + 0 Data Port (SPP) Write

Base + 1 Status Port (SPP) Read

Base + 2 Control Port (SPP) Write

Base + 3 Address Port (EPP) Read/Write

Base + 4 Data Port (EPP) Read/Write

Base + 5 Undefined (16/32bit Transfers) -

Base + 6 Undefined (32bit Transfers) -

Base + 7 Undefined (32bit Transfers) -

Table 2 EPP Registers

As you can see, the first 3 addresses are exactly the same than the Standard Parallel Port Register and
behave in exactly the same way. Therefore if you used a Enhanced Parallel Port, you can output data to
Base + 0 in exactly the same fashion than you would if it was a Standard Parallel Port (SPP). If you were
to connect a printer, and use compatibility mode then you would have to check to see if the port is busy
and then assert & de-assert the strobe using the Control and Status Port, then wait for the Ack.

If you wish to communicate with a EPP compatible device then all you have to do, is place any data
you wish to send in the EPP Data Register at Base + 4 and the card will generate all the necessary
handshaking required. Likewise if you wish to send an address to your device, then you use the EPP
Address Register at offset +3.

Both the EPP Address Register and the EPP Data Register are read / write, thus to read data from your
device, you can use the same registers. However the EPP Printer Card has to initiate a read Cycle as both
the nData Strobe and nAddress Strobe are outputs. Your device can signal a read request via the use of the
interrupt and have your ISR perform the Read Operation.

The Status Port has one little modification. Bit 0, which was reserved in the SPP register set, now
becomes the EPP Time-out Bit. This bit will be set when an EPP time-out occurs. This happens when the
nWait line is not deasserted within approximately 10uS (depending upon the port) of the IOW or IOR line
being asserted. The IOW and IOR are the I/O Read and Write lines present on the ISA Bus.

The EPP mode is very depended of the ISA bus timing. When a read cycle is performed, the port must
undertake the appropriate Read/Write handshake and return the data in that ISA cycle. Of course this
doesn't occur within one ISA cycle, thus the port uses the IOCHRDY (I/O Channel Ready) on the ISA bus
to introduce wait states, until the cycle completes. Now imagine if a EPP Read or Write is started with no
peripheral connected? The port never gets an acknowledgment (nWait), thus keeps sending requests for
wait states, and your computer locks up. Therefore the EPP implements a type of watchdog, which times
out after approximately 10uS.

Interfacing the Enhanced Parallel Port http://www.senet.com.au/~cpeacock

Interfacing the Enhanced Parallel Port Page 6

The three registers, Base + 5, Base + 6 and Base + 7 can be used for 16 and 32 bit read/write
operations if your port supports it. This can further reduce your I/O operations. The Parallel Port can only
transport 8 bits at a time, thus any 32 or 16 bit word written to the Parallel Port will be split into byte size
blocks and sent via the Parallel Port's 8 data lines.

EPP Programming Considerations.

EPP only has two main registers and a Time-out Status Flag, What could there possibly be to set up?

Before you can start any EPP cycles by reading and writing to the EPP Data and Address Ports, the
port must be configured correctly. In the idle state, an EPP port should have it's nAddress Strobe, nData
Strobe, nWrite and nReset lines inactive, high. Some ports require you to set this up before starting any
EPP Cycle. Therefore our first task is to manually initialise these lines using the SPP Registers. Writing
XXXX0100 to the control port will do this.

On some cards, if the Parallel Port is placed in reverse mode, a EPP Write cycle cannot be performed.
Therefore it is also wise to place the Parallel Port in forward mode before using EPP. Clearing Bit 5 of the
Control Register should result in an more enjoyable programming session, without tearing your hair out.

The EPP Time-out bit we have already discussed. When this bit is set, the EPP port may not function
correctly. A common scenario is always reading 0xFF from either the Address or Data Cycles. This bit
should be cleared for reliable operation, and constantly checked.

Craig Peacock’s Interfacing the PC

http://www.senet.com.au/~cpeacock

http://www.geocities.com/SiliconValley/Bay/8302/

Copyright December 1997 Craig Peacock.

Any errors, ideas, criticisms or problems, please contact the author at cpeacock@senet.com.au

