
Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

1995 update

1April 1995

1.0 THE I2C-BUS BENEFITS DESIGNERS AND
MANUFACTURERS
In consumer electronics, telecommunications and industrial
electronics, there are often many similarities between seemingly
unrelated designs. For example, nearly every system includes:

• Some intelligent control, usually a single-chip microcontroller

• General-purpose circuits like LCD drivers, remote I/O ports, RAM,
EEPROM, or data converters

• Application-oriented circuits such as digital tuning and signal
processing circuits for radio and video systems, or DTMF
generators for telephones with tone dialling.

To exploit these similarities to the benefit of both systems designers
and equipment manufacturers, as well as to maximize hardware
efficiency and circuit simplicity, Philips developed a simple
bidirectional 2-wire bus for efficient inter-IC control. This bus is
called the Inter IC or I2C-bus. At present, Philips’ IC range includes
more than 150 CMOS and bipolar I2C-bus compatible types for
performing functions in all three of the previously mentioned
categories. All I2C-bus compatible devices incorporate an on-chip
interface which allows them to communicate directly with each
other via the I2C-bus. This design concept solves the many
interfacing problems encountered when designing digital control
circuits.

Here are some of the features of the I2C-bus:

• Only two bus lines are required; a serial data line (SDA) and a
serial clock line (SCL)

• Each device connected to the bus is software addressable by a
unique address and simple master/ slave relationships exist at all
times; masters can operate as master-transmitters or as
master-receivers

• It’s a true multi-master bus including collision detection and
arbitration to prevent data corruption if two or more masters
simultaneously initiate data transfer

• Serial, 8-bit oriented, bidirectional data transfers can be made at
up to 100 kbit/s in the standard mode or up to 400 kbit/s in the
fast mode

• On-chip filtering rejects spikes on the bus data line to preserve
data integrity

• The number of ICs that can be connected to the same bus is
limited only by a maximum bus capacitance of 400 pF.

Figure 1 shows two examples of I2C-bus applications.

1.1 Designer benefits
I2C-bus compatible ICs allow a system design to rapidly progress
directly from a functional block diagram to a prototype. Moreover,
since they ‘clip’ directly onto the I2C-bus without any additional
external interfacing, they allow a prototype system to be modified or
upgraded simply by ‘clipping’ or ‘unclipping’ ICs to or from the bus.

Here are some of the features of I2C-bus compatible ICs which are
particularly attractive to designers:

• Functional blocks on the block diagram correspond with the actual
ICs; designs proceed rapidly from block diagram to final
schematic

• No need to design bus interfaces because the I2C-bus interface is
already integrated on-chip

• Integrated addressing and data-transfer protocol allow systems to
be completely software-defined

• The same IC types can often be used in many different
applications

• Design-time reduces as designers quickly become familiar with
the frequently used functional blocks represented by I2C-bus
compatible ICs

• ICs can be added to or removed from a system without affecting
any other circuits on the bus

• Fault diagnosis and debugging are simple; malfunctions can be
immediately traced

• Software development time can be reduced by assembling a
library of reusable software modules.

In addition to these advantages,the CMOS ICs in the I2C-bus
compatible range offer designers special features which are
particularly attractive for portable equipment and battery-backed
systems.

They all have:

• Extremely low current consumption

• High noise immunity

• Wide supply voltage range

• Wide operating temperature range.

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 2

MICRO-
CONTROLLER

PCB83C528

SDA SCL

MICRO-
CONTROLLER

PCB83C528

MICRO-
CONTROLLER

PCB83C528

MICRO-
CONTROLLER

PCB83C528

MICRO-
CONTROLLER

PCB83C528

NON-VOLATILE
MEMORY

PCF8582E

STEREO/DUAL
SOUND
DECODER

TDA9840

HI-FI
AUDIO
PROCESSOR

TDA9860

SINGLE-CHIP
TEXT

SAA52XX

PLL
SYNTHESIZER

TSA5512

M/S COLOUR
DECODER

TDA9160A

PICTURE
SIGNAL

IMPROVEMENT

TDA4670

VIDEO
PROCESSOR

TDA4685

ON-SCREEN
DISPLAY

PCA8510

MICRO-
CONTROLLER

PCB83C528

SDA SCL

DTMF
GENERATOR

PCD3311

MICRO-
CONTROLLER

PCB83C528

ADPCM

PCD5032

MICRO-
CONTROLLER

P80CLXXX

LINE
INTERFACE

PCA1070

BURST MODE
CONTROLLER

PCD5042

(a) (b)
SU00626

Figure 1. Two examples of I 2C-bus applications
(a) a high performance highly-integrated TV set; (b) DECT cordless phone base-station

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 3

1.2 Manufacturer benefits
I2C-bus compatible ICs don’t only assist designers, they also give a
wide range of benefits to equipment manufacturers because:

• The simple 2-wire serial I2C-bus minimizes interconnections so
ICs have fewer pins and there are not so many PCB tracks;
result — smaller and less expensive PCBs

• The completely integrated I2C-bus protocol eliminates the need
for address decoders and other ‘glue logic’

• The multi-master capability of the I2C-bus allows rapid testing and
alignment of end-user equipment via external connections to an
assembly-line computer

• The availability of I2C-bus compatible ICs in SO (small outline),
VSO (very small outline) as well as DIL packages reduces space
requirements even more.

These are just some of the benefits. In addition, I2C-bus compatible
ICs increase system design flexibility by allowing simple

construction of equipment variants and easy upgrading to keep
designs up-to-date. In this way, an entire family of equipment can be
developed around a basic model. Upgrades for new equipment, or
enhanced-feature models (i.e. extended memory, remote control,
etc.) can then be produced simply by clipping the appropriate ICs
onto the bus. If a larger ROM is needed, it’s simply a matter of
selecting a microcontroller with a larger ROM from our
comprehensive range. As new ICs supersede older ones, it’s easy
to add new features to equipment or to increase its performance by
simply unclipping the outdated IC from the bus and clipping on its
successor.

1.3 The ACCESS.bus
Another attractive feature of the I2C-bus for designers and
manufacturers is that its simple 2-wire nature and capability of
software addressing make it an ideal platform for the ACCESS.bus
(Figure 2). This is a lower-cost alternative for an RS-232C interface
for connecting peripherals to a host computer via a simple 4-pin
connector (see Section 19.0).

SU00311A

Figure 2. The ACCESS.bus — a low-cost alternative to an RS-232C interface

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 4

2.0 INTRODUCTION TO THE I2C-BUS
SPECIFICATION
For 8-bit digital control applications, such as those requiring
microcontrollers, certain design criteria can be established:

• A complete system usually consists of at least one microcontroller
and other peripheral devices such as memories and I/O
expanders

• The cost of connecting the various devices within the system must
be minimized

• A system that performs a control function doesn’t require
high-speed data transfer

• Overall efficiency depends on the devices chosen and the nature
of the interconnecting bus structure.

In order to produce a system to satisfy these criteria, a serial bus
structure is needed. Although serial buses don’t have the throughput
capability of parallel buses, they do require less wiring and fewer IC
connecting pins. However, a bus is not merely an interconnecting
wire, it embodies all the formats and procedures for communication
within the system.

Devices communicating with each other on a serial bus must have
some form of protocol which avoids all possibilities of confusion,

data loss and blockage of information. Fast devices must be able to
communicate with slow devices. The system must not be dependent
on the devices connected to it, otherwise modifications or
improvements would be impossible. A procedure has also to be
devised to decide which device will be in control of the bus and
when. And, if different devices with different clock speeds are
connected to the bus, the bus clock source must be defined. All
these criteria are involved in the specification of the I2C-bus.

3.0 THE I2C-BUS CONCEPT
The I2C-bus supports any IC fabrication process (NMOS, CMOS,
bipolar). Two wires, serial data (SDA) and serial clock (SCL), carry
information between the devices connected to the bus. Each device
is recognised by a unique address — whether it’s a microcontroller,
LCD driver, memory or keyboard interface — and can operate as
either a transmitter or receiver, depending on the function of the
device. Obviously an LCD driver is only a receiver, whereas a
memory can both receive and transmit data. In addition to
transmitters and receivers, devices can also be considered as
masters or slaves when performing data transfers (see Table 1). A
master is the device which initiates a data transfer on the bus and
generates the clock signals to permit that transfer. At that time, any
device addressed is considered a slave.

Table 1. Definition of I 2C-bus terminology

TERM DESCRIPTION

Transmitter The device which sends the data to the bus

Receiver The device which receives the data from the bus

Master The device which initiates a transfer, generates clock signals and terminates a transfer

Slave The device addressed by a master

Multi-master More than one master can attempt to control the bus at the same time without corrupting the message

Arbitration Procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do
so and the message is not corrupted

Synchronization Procedure to synchronize the clock signals of two or more devices

MICRO-
CONTROLLER
A

LCD
DRIVER

STATIC
RAM OR
EEPROM

GATE
ARRAY ADC

MICRO-
CONTROLLER
B

SDA

SCL

SU00385

Figure 3. Example of an I 2C-bus configuration using two microcontrollers

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 5

The I2C-bus is a multi-master bus. This means that more than one
device capable of controlling the bus can be connected to it. As
masters are usually micro-controllers, let’s consider the case of a
data transfer between two microcontrollers connected to the I2C-bus
(Figure 3). This highlights the master-slave and receiver-transmitter
relationships to be found on the I2C-bus. It should be noted that
these relationships are not permanent, but only depend on the
direction of data transfer at that time. The transfer of data would
proceed as follows:

1. Suppose microcontroller A wants to send information to
microcontroller B:
– microcontroller A (master), addresses microcontroller B (slave)

– microcontroller A (master-transmitter), sends data to
microcontroller B (slave-receiver)

– microcontroller A terminates the transfer.

2. If microcontroller A wants to receive information from
microcontroller B:
– microcontroller A (master) addresses microcontroller B (slave)

– microcontroller A (master-receiver) receives data from
microcontroller B (slave-transmitter)

– microcontroller A terminates the transfer.

Even in this case, the master (microcontroller A) generates the
timing and terminates the transfer.

The possibility of connecting more than one microcontroller to the
I2C-bus means that more than one master could try to initiate a data

transfer at the same time. To avoid the chaos that might ensue from
such an event — an arbitration procedure has been developed. This
procedure relies on the wired-AND connection of all I2C interfaces to
the I2C-bus.

If two or more masters try to put information onto the bus, the first to
produce a ‘one’ when the other produces a ‘zero’ will lose the
arbitration. The clock signals during arbitration are a synchronized
combination of the clocks generated by the masters using the
wired-AND connection to the SCL line (for more detailed information
concerning arbitration see Section 7.0).

Generation of clock signals on the I2C-bus is always the
responsibility of master devices; each master generates its own
clock signals when transferring data on the bus. Bus clock signals
from a master can only be altered when they are stretched by a
slow-slave device holding-down the clock line, or by another master
when arbitration occurs.

4.0 GENERAL CHARACTERISTICS
Both SDA and SCL are bidirectional lines, connected to a positive
supply voltage via a pull-up resistor (see Figure 4). When the bus is
free, both lines are HIGH. The output stages of devices connected
to the bus must have an open-drain or open-collector in order to
perform the wired-AND function. Data on the I2C-bus can be
transferred at a rate up to 100 kbit/s in the standard-mode, or up to
400 kbit/s in the fast-mode. The number of interfaces connected to
the bus is solely dependent on the bus capacitance limit of 400pF.

+VDD

RPRP

PULL-UP
RESISTORS

DATAN1
OUT

SCLKN1
OUT

SDA (SERIAL DATA LINE)

SCL (SERIAL CLOCK LINE

SCLK

DATA
IN

SCLK
IN

DATAN2
OUT

SCLKN2
OUT

SCLK

DATA
IN

SCLK
IN

SU00386
DEVICE 1 DEVICE 2

Figure 4. Connection of I 2C-bus devices to the I 2C-bus

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 6

SDA

SCL

DATA LINE
STABLE:

DATA VALID

CHANGE
OF DATA

ALLOWED

SU00361

Figure 5. Bit transfer on the I 2C-bus

SDA

SCL

S P

SDA

SCL

START
CONDITION

STOP
CONDITION

SU00362

Figure 6. START and STOP conditions

5.0 BIT TRANSFER
Due to the variety of different technology devices (CMOS, NMOS,
bipolar) which can be connected to the I2C-bus, the levels of the
logical ‘0’ (LOW) and ‘1’ (HIGH) are not fixed and depend on the
associated level of VDD (see Section 15.0 for Electrical
Specifications). One clock pulse is generated for each data bit
transferred.

5.1 Data validity
The data on the SDA line must be stable during the HIGH period of
the clock. The HIGH or LOW state of the data line can only change
when the clock signal on the SCL line is LOW (see Figure 5).

5.2 START and STOP conditions
Within the procedure of the I2C-bus, unique situations arise which
are defined as START and STOP conditions (see Figure 6).

A HIGH to LOW transition on the SDA line while SCL is HIGH is one
such unique case. This situation indicates a START condition.

A LOW to HIGH transition on the SDA line while SCL is HIGH
defines a STOP condition.

START and STOP conditions are always generated by the master.
The bus is considered to be busy after the START condition. The
bus is considered to be free again a certain time after the STOP
condition. This bus free situation is specified in Section 15.0.

Detection of START and STOP conditions by devices connected to
the bus is easy if they incorporate the necessary interfacing
hardware. However, microcontrollers with no such interface have to
sample the SDA line at least twice per clock period in order to sense
the transition.

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 7

6.0 TRANSFERRING DATA

6.1 Byte format
Every byte put on the SDA line must be 8-bits long. The number of
bytes that can be transmitted per transfer is unrestricted. Each byte
has to be followed by an acknowledge bit. Data is transferred with
the most significant bit (MSB) first (Figure 7). If a receiver can’t
receive another complete byte of data until it has performed some
other function, for example servicing an internal interrupt, it can hold
the clock line SCL LOW to force the transmitter into a wait state.
Data transfer then continues when the receiver is ready for another
byte of data and releases clock line SCL.

In some cases, it’s permitted to use a different format from the
I2C-bus format (for CBUS compatible devices for example). A
message which starts with such an address can be terminated by
generation of a STOP condition, even during the transmission of a
byte. In this case, no acknowledge is generated (see Section 9.1.3).

6.2 Acknowledge
Data transfer with acknowledge is obligatory. The
acknowledge-related clock pulse is generated by the master. The
transmitter releases the SDA line (HIGH) during the acknowledge
clock pulse.

The receiver must pull down the SDA line during the acknowledge
clock pulse so that it remains stable LOW during the HIGH period of
this clock pulse (Figure 8). Of course, set-up and hold times
(specified in Section 15.0) must also be taken into account.

Usually, a receiver which has been addressed is obliged to generate
an acknowledge after each byte has been received, except when
the message starts with a CBUS address (see Section 9.1.3).

When a slave-receiver doesn’t acknowledge the slave address (for
example, it’s unable to receive because it’s performing some
real-time function), the data line must be left HIGH by the slave. The
master can then generate a STOP condition to abort the transfer.

If a slave-receiver does acknowledge the slave address but, some
time later in the transfer cannot receive any more data bytes, the
master must again abort the transfer. This is indicated by the slave
generating the not acknowledge on the first byte to follow. The slave
leaves the data line HIGH and the master generates the STOP
condition.

If a master-receiver is involved in a transfer, it must signal the end of
data to the slave-transmitter by not generating an acknowledge on
the last byte that was clocked out of the slave. The slave-transmitter
must release the data line to allow the master to generate a STOP
or repeated START condition.

START
CONDITION

S

STOP
CONDITION

P

SDA

SCL

MSB

1 2 7 8 9 1 2 3 – 8 9

ACK ACK

BYTE COMPLETE,
INTERRUPT WITHIN RECEIVER

CLOCK LINE HELD LOW
WHILE INTERRUPTS ARE SERVICED

SU00363

ACKNOWLEDGEMENT
SIGNAL FROM RECEIVER

ACKNOWLEDGEMENT
SIGNAL FROM RECEIVER

Figure 7. Data transfer on the I 2C-bus

START
CONDITION

S 1 2 7 8 9

DATA OUTPUT BY
TRANSMITTER

DATA OUTPUT
BY RECEIVER

SCL FROM MASTER

CLOCK PULSE FOR ACKNOWLEDGMENT
SU00387

Figure 8. Acknowledge on the I 2C-bus

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 8

SU00388

CLK
1

CLK
2

SCL

WAIT
STATE

START COUNTING
HIGH PERIOD

COUNTER
RESET

Figure 9. Clock synchronization during the arbitration procedure

SU00389

Transmitter 1 Loses Arbitration
DATA 1 ≠ SDA

DATA
1

DATA
2

SDA

SCL

S

Figure 10. Arbitration procedure of two masters

7.0 ARBITRATION AND CLOCK GENERATION

7.1 Synchronization
All masters generate their own clock on the SCL line to transfer
messages on the I2C-bus. Data is only valid during the HIGH period
of the clock. A defined clock is therefore needed for the bit-by-bit
arbitration procedure to take place.

Clock synchronization is performed using the wired-AND connection
of I2C interfaces to the SCL line. This means that a HIGH to LOW
transition on the SCL line will cause the devices concerned to start
counting off their LOW period and, once a device clock has gone
LOW, it will hold the SCL line in that state until the clock HIGH state
is reached (Figure 9). However, the LOW to HIGH transition of this
clock may not change the state of the SCL line if another clock is
still within its LOW period. The SCL line will therefore be held LOW
by the device with the longest LOW period. Devices with shorter
LOW periods enter a HIGH wait-state during this time.

When all devices concerned have counted off their LOW period, the
clock line will be released and go HIGH. There will then be no
difference between the device clocks and the state of the SCL line,
and all the devices will start counting their HIGH periods. The first
device to complete its HIGH period will again pull the SCL line LOW.

In this way, a synchronized SCL clock is generated with its LOW
period determined by the device with the longest clock LOW period,
and its HIGH period determined by the one with the shortest clock
HIGH period.

7.2 Arbitration
A master may start a transfer only if the bus is free. Two or more
masters may generate a START condition within the minimum hold
time (tHD;STA) of the START condition which results in a defined
START condition to the bus.

Arbitration takes place on the SDA line, while the SCL line is at the
HIGH level, in such a way that the master which transmits a HIGH
level, while another master is transmitting a LOW level will switch off
its DATA output stage because the level on the bus doesn’t
correspond to its own level.

Arbitration can continue for many bits. Its first stage is comparison of
the address bits (addressing information is in Sections 9.0 and
13.0). If the masters are each trying to address the same device,
arbitration continues with comparison of the data. Because address
and data information on the I2C-bus is used for arbitration, no
information is lost during this process.

A master which loses the arbitration can generate clock pulses until
the end of the byte in which it loses the arbitration.

If a master also incorporates a slave function and it losesarbitration
during the addressing stage, it’s possible that the winning master is
trying to address it. The losing master must therefore switch over
immediately to its slave-receiver mode.

Figure 10 shows the arbitration procedure for two masters. Of
course, more may be involved (depending on how many masters
are connected to the bus). The moment there is a difference

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 9

between the internal data level of the master generating DATA 1 and
the actual level on the SDA line, its data output is switched off,
which means that a HIGH output level is then connected to the bus.
This will not affect the data transfer initiated by the winning master.

Since control of the I2C-bus is decided solely on the address and
data sent by competing masters, there is no central master, nor any
order of priority on the bus.

Special attention must be paid if, during a serial transfer, the
arbitration procedure is still in progress at the moment when a
repeated START condition or a STOP condition is transmitted to the
I2C-bus. If it’s possible for such a situation to occur, the masters
involved must send this repeated START condition or STOP
condition at the same position in the format frame. In other words,
arbitration isn’t allowed between:
– A repeated START condition and a data bit

– A STOP condition and a data bit

– A repeated START condition and a STOP condition.

7.3 Use of the clock synchronizing mechanism
as a handshake
In addition to being used during the arbitration procedure, the clock
synchronization mechanism can be used to enable receivers to
cope with fast data transfers, on either a byte level or a bit level.

On the byte level, a device may be able to receive bytes of data at a
fast rate, but needs more time to store a received byte or prepare
another byte to be transmitted. Slaves can then hold the SCL line
LOW after reception and acknowledgement of a byte to force the
master into a wait state until the slave is ready for the next byte
transfer in a type of handshake procedure.

On the bit level, a device such as a microcontroller without, or with
only a limited hardware I2C interface on-chip can slow down the bus
clock by extending each clock LOW period. The speed of any
master is thereby adapted to the internal operating rate of this
device.

8.0 FORMATS WITH 7-BIT ADDRESSES
Data transfers follow the format shown in Figure 11. After the
START condition (S), a slave address is sent. This address is 7 bits
long followed by an eighth bit which is a data direction bit (R/W) —
a ‘zero’ indicates a transmission (WRITE), a ‘one’ indicates a
request for data (READ). A data transfer is always terminated by a
STOP condition (P) generated by the master. However, if a master
still wishes to communicate on the bus, it can generate a repeated
START condition (Sr) and address another slave without first
generating a STOP condition. Various combinations of read/write
formats are then possible within such a transfer.

Possible data transfer formats are:
– Master-transmitter transmits to slave-receiver. The transfer

direction is not changed (Figure 12)

– Master reads slave immediately after first byte (Figure 13) .
At the moment of the first acknowledge, the master-transmitter
becomes a master-receiver and the slave-receiver becomes a
slave-transmitter. This acknowledge is still generated by the slave.
The STOP condition is generated by the master

– Combined format (Figure 14) . During a change of direction
within a transfer, the START condition and the slave address are
both repeated, but with the R/W bit reversed. If a master receiver
sends a repeated START condition, it has previously sent a not
acknowledge (A).

START
CONDITION

ADDRESS R/W ACK DATA DATAACK ACK

CONDITION
STOP

PS

SDA

SCL

1–7 8 9 1–7 8 9 1–7 8 9

SU00365

Figure 11. A complete data transfer

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 10

ÎÎÎ
ÎÎÎ
ÎÎÎ

ÎÎ
ÎÎ
ÎÎ

ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ

ÎÎ
ÎÎS DATA A/ASLAVE ADDRESS R/W A A

ÎÎÎ
ÎÎÎ
ÎÎÎ

DATA

ÎÎ
ÎÎ
ÎÎ

P

‘0’ (WRITE)
DATA TRANSFERRED

(n BYTES + ACKNOWLEDGE)

ÎÎ
ÎÎ

FROM MASTER TO SLAVE

FROM SLAVE TO MASTER

A = ACKNOWLEDGE (SDA LOW)
A = NOT ACKNOWLEDGE (SDA HIGH)
S = START CONDITION
P = STOP CONDITION

SU00627

Figure 12. A master-transmitter addresses a slave receiver with a 7-bit address.
The transfer direction is not changed

ÎÎ
ÎÎ

ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎ

S DATASLAVE ADDRESS R/W A
ÎÎ
ÎÎ

A DATA
ÎÎ
ÎÎ

P

(READ)
DATA TRANSFERRED

(n BYTES + ACKNOWLEDGE)

1 ÎÎ
ÎÎ

A

SU00628

Figure 13. A master reads a slave immediately after the first byte

ÎÎ
ÎÎ

ÎÎÎÎÎ
ÎÎÎÎÎ

ÎÎÎ
ÎÎÎ

S DATASLAVE ADDRESS R/W A ÎÎ
ÎÎ

P

READ OR WRITE

A/A ÎÎ
ÎÎ

SrÎÎÎÎÎ
ÎÎÎÎÎ

SLAVE ADDRESSÎÎ
ÎÎ

R/W

READ OR WRITE

DATAA A/A

(n BYTES
+ ACK.) *

Sr = REPEATED START CONDITION

(n BYTES
+ ACK.) *

DIRECTION OF TRANSFER
MAY CHANGE AT THIS POINT

* TRANSFER DIRECTION OF DATA AND ACKNOWLEDGE BITS DEPENDS ON R/W BITS.
SU00629

Figure 14. Combined format

NOTES:
1. Combined formats can be used, for example, to control a serial memory. During the first data byte, the internal memory location has to be

written. After the START condition and slave address is repeated, data can be transferred.
2. All decisions on auto-increment or decrement of previously accessed memory locations etc. are taken by the designer of the device.
3. Each byte is followed by an acknowledgement bit as indicated by the A or A blocks in the sequence.
4. I2C-bus compatible devices must reset their bus logic on receipt of a START or repeated START condition such that they all anticipate the

sending of a slave address.

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 11

9.0 7-BIT ADDRESSING
(SEE SECTION 13.0 FOR 10-BIT ADDRESSING)
The addressing procedure for the I2C-bus is such that the first byte
after the START condition usually determines which slave will be
selected by the master. The exception is the ‘general call’ address
which can address all devices. When this address is used, all
devices should, in theory, respond with an acknowledge. However,
devices can be made to ignore this address. The second byte of the
general call address then defines the action to be taken. This
procedure is explained in more detail in Section 9.1.1.

9.1 Definition of bits in the first byte
The first seven bits of the first byte make up the slave address
(Figure15). The eighth bit is the LSB (least significant bit). It
determines the direction of the message. A ‘zero’ in the least
significant position of the first byte means that the master will write
information to a selected slave. A ‘one’ in this position means that
the master will read information from the slave.

R/W

SLAVE ADDRESS

LSBMSB

SU00630

Figure 15. The first byte after the START procedure

When an address is sent, each device in a system compares the
first seven bits after the START condition with its address. If they
match, the device considers itself addressed by the master as a
slave-receiver or slave-transmitter, depending on the R/W bit.

A slave address can be made-up of a fixed and a programmable
part. Since it’s likely that there will be several identical devices in a
system, the programmable part of the slave address enables the
maximum possible number of such devices to be connected to the
I2C-bus. The number of programmable address bits of a device
depends on the number of pins available. For example, if a device
has 4 fixed and 3 programmable address bits, a total of 8 identical
devices can be connected to the same bus.

The I2C-bus committee coordinates allocation of I2C addresses.
Further information can be obtained from the Philips representatives
listed on the back cover. Two groups of eight addresses (0000XXX
and 1111XXX) are reserved for the purposes shown in Table 2. The
bit combination 11110XX of the slave address is reserved for 10-bit
addressing (see Section 13.0).

Table 2. Definition of bits in the first byte

SLAVE
ADDRESS

R/ bit DESCRIPTION

0000 000 0 General call address

0000 000 1 START byte

0000 001 X CBUS address

0000 010 X Address reserved for different bus format

0000 011 X Reserved for future purposes

0000 1XX X

1111 1XX X

1111 0XX X 10-bit slave addressing

NOTES:
1. No device is allowed to acknowledge at the reception of the

START byte.
2. The CBUS address has been reserved to enable the inter-mixing

of CBUS compatible and I2C-bus compatible devices in the
same system. I2C-bus compatible devices are not allowed to
respond on reception of this address.

3. The address reserved for a different bus format is included to
enable I2C and other protocols to be mixed. Only I2C-bus
compatible devices that can work with such formats and
protocols are allowed to respond to this address.

9.1.1 General call address
The general call address is for addressing every device connected
to the I2C-bus. However, if a device doesn’t need any of the data
supplied within the general call structure, it can ignore this address
by not issuing an acknowledgement. If a device does require data
from a general call address, it will acknowledge this address and
behave as a slave-receiver. The second and following bytes will be
acknowledged by every slave-receiver capable of handling this data.
A slave which cannot process one of these bytes must ignore it by
not acknowledging. The meaning of the general call address is
always specified in the second byte (Figure 16).

There are two cases to consider:
• When the least significant bit B is a ‘zero’

• When the least significant bit B is a ‘one’.

When bit B is a ‘zero’; the second byte has the following definition:
– 00000110 (H‘06’). Reset and write programmable part of slave

address by hardware. On receiving this 2-byte sequence, all
devices designed to respond to the general call address will reset
and take in the programmable part of their address. Precautions
have to be taken to ensure that a device is not pulling down the
SDA or SCL line after applying the supply voltage, since these low
levels would block the bus

– 00000100 (H‘04’). Write programmable part of slave address by
hardware. All devices which define the programmable part of their
address by hardware (and which respond to the general call
address) will latch this programmable part at the reception of this
two byte sequence. The device will not reset.

– 00000000 (H‘00’). This code is not allowed to be used as the
second byte.

Sequences of programming procedure are published in the
appropriate device data sheets.

The remaining codes have not been fixed and devices must ignore
them.

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 12

When bit B is a ‘one’; the 2-byte sequence is a ‘hardware general
call’. This means that the sequence is transmitted by a hardware
master device, such as a keyboard scanner, which cannot be
programmed to transmit a desired slave address. Since a hardware
master doesn’t know in advance to which device the message has
to be transferred, it can only generate this hardware general call and
its own address — identifying itself to the system (Figure 17).

The seven bits remaining in the second byte contain the address of
the hardware master. This address is recognised by an intelligent
device (e.g. a microcontroller) connected to the bus which will then

direct the information from the hardware master. If the hardware
master can also act as a slave, the slave address is identical to the
master address.

In some systems, an alternative could be that the hardware master
transmitter is set in the slave-receiver mode after the system reset.
In this way, a system configuring master can tell the hardware
master-transmitter (which is now in slave-receiver mode) to which
address data must be sent (Figure 18). After this programming
procedure, the hardware master remains in the master-transmitter
mode.

X

SECOND BYTE

A00000000 X X X X X X B A

LSB

FIRST BYTE
(GENERAL CALL ADDRESS

SU00631

Figure 16. General call address format

ÎÎÎ
ÎÎÎ

ÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎ

S DATA00000000 A
ÎÎÎ
ÎÎÎ

P
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ

MASTER ADDRESS
ÎÎ
ÎÎ

1 A
ÎÎ
ÎÎ

DATAA A

GENERAL
CALL ADDRESS

SECOND BYTE

(B)

(n BYTES + ACK.)

SU00632

Figure 17. Data transfer from a hardware master-transmitter

ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎ

S SLAVE ADDR. H/W MASTER A

ÎÎ
ÎÎ

ÎÎÎ
ÎÎÎ

DATA

(n BYTES + ACK.)

ÎÎÎ
ÎÎÎ

R/W ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ

DUMP ADDR. FOR H/W MASTERÎÎ
ÎÎ

X AÎÎ
ÎÎ

P

WRITE

(a)

ÎÎ
ÎÎ

SÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ

DUMP ADDR. FROM H/W MASTER AÎÎ
ÎÎ

R/W

WRITE

ÎÎÎ
ÎÎÎ

DATAA PA/A

(b)
SU00633

Figure 18. Data transfer by a hardware-transmitter capable of dumping data directly to slave devices
(a) Configuring master sends dump address to hardware master

(b) Hardware master dumps data to selected slave

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 13

9.1.2 START byte
Microcontrollers can be connected to the I2C-bus in two ways. A
microcontroller with an on-chip hardware I2C-bus interface can be
programmed to be only interrupted by requests from the bus. When
the device doesn’t have such an interface, it must constantly monitor
the bus via software. Obviously, the more times the microcontroller
monitors, or polls the bus, the less time it can spend carrying out its
intended function. There is therefore a speed difference between
fast hardware devices and a relatively slow microcontroller which
relies on software polling.

In this case, data transfer can be preceded by a start procedure
which is much longer than normal (Figure 19). The start procedure
consists of:
– A START condition (S)

– A START byte (00000001)

– An acknowledge clock pulse (ACK)

– A repeated START condition (Sr).

After the START condition S has been transmitted by a master
which requires bus access, the START byte (00000001) is
transmitted. Another microcontroller can therefore sample the SDA
line at a low sampling rate until one of the seven zeros in the START
byte is detected. After detection of this LOW level on the SDA line,
the microcontroller can switch to a higher sampling rate to find the
repeated START condition Sr which is then used for
synchronization.

A hardware receiver will reset on receipt of the repeated START
condition Sr and will therefore ignore the START byte.

An acknowledge-related clock pulse is generated after the START
byte. This is present only to conform with the byte handling format
used on the bus. No device is allowed to acknowledge the START
byte.

9.1.3 CBUS compatibility
CBUS receivers can be connected to the I2C-bus. However, a third
bus line called DLEN must then be connected and the acknowledge
bit omitted. Normally, I2C transmissions are sequences of 8-bit
bytes; CBUS compatible devices have different formats.

In a mixed bus structure, I2C-bus devices must not respond to the
CBUS message. For this reason, a special CBUS address
(0000001X) to which no I2C-bus compatible device will respond, has
been reserved. After transmission of the CBUS address, the DLEN
line can be made active and a CBUS-format transmission
(Figure 20) sent. After the STOP condition, all devices are again
ready to accept data.

Master-transmitters can send CBUS formats after sending the
CBUS address. The transmission is ended by a STOP condition,
recognised by all devices.

NOTE: If the CBUS configuration is known, and expansion with
CBUS compatible devices isn’t foreseen, the designer is allowed to
adapt the hold time to the specific requirements of the device(s)
used.

S 1 2 7 8 9

SDA

SCL Sr

DUMMY
ACKNOWLEDGE

(HIGH)

ACK

START BYTE 00000001

SU00634

Figure 19. START byte procedure

S P

SDA

SCL

DLEN

START
condition

CBUS
address

R/W
bit

ACK
related

clock pulse

n – data bits CBUS
address

SU00635

Figure 20. Data format of transmissions with CBUS transmitter/receiver

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 14

10.0 ELECTRICAL CHARACTERISTICS FOR
I2C-BUS DEVICES
The electrical specifications for the I/Os of I2C-bus devices and the
characteristics of the bus lines connected to them are given in
Tables 3 and 4 in Section 15.0.

I2C-bus devices with fixed input levels of 1.5 V and 3 V can each
have their own appropriate supply voltage. Pull-up resistors must be
connected to a 5V � 10% supply (Figure 21). I2C-bus devices with
input levels related to VDD must have one common supply line to
which the pull-up resistor is also connected (Figure 22).

When devices with fixed input levels are mixed with devices with
input levels related to VDD, the latter devices must be connected to
one common supply line of 5 V � 10% and must have pull-up
resistors connected to their SDA and SCL pins as shown in
Figure 23.

Input levels are defined in such a way that:
– The noise margin on the LOW level is 0.1 VDD

– The noise margin on the HIGH level is 0.2 VDD

– As shown in Figure 24, series resistors (RS) of, e.g., 300Ω can be
used for protection against high-voltage spikes on the SDA and
SCL lines (due to flash-over of a TV picture tube, for example).

RP RP

VDD1 = 5V ± 10% VDD2 VDD3 VDD4

BIPOLARCMOSBiCMOSNMOS

SDA

SCL

VDD2 – 4 ARE DEVICE DEPENDENT (e.g., 12V)

SU00636

Figure 21. Fixed input level devices connected to the I 2C-bus

RP RP

VDD = e.g., 3V

CMOSCMOSCMOSCMOS

SDA

SCL
SU00637

Figure 22. Devices with wide supply voltage range connected to the I 2C-bus

RP RP

VDD1 = 5V ± 10% VDD2 VDD3

BIPOLARNMOSCMOSCMOS

SDA

SCL

VDD2, 3 ARE DEVICE DEPENDENT (e.g., 12V)

SU00638

Figure 23. Devices with input levels related to V DD (supply V DD1) mixed with fixed input level devices (supply V DD2, 3) on the I 2C-bus

RS RS

VDD

I2C
DEVICE

SDA

SCL

RS RS

VDD

I2C
DEVICE

RP RP

SU00639

Figure 24. Series resistors (R S) for protection against high-voltage spikes

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 15

10.1 Maximum and minimum values
of resistors R p and Rs
For standard-mode I2C-bus devices, the values of resistors Rp and
Rs in Figure 24 depend on the following parameters:
– Supply voltage

– Bus capacitance

– Number of connected devices (input current + leakage current).

The supply voltage limits the minimum value of resistor Rp due to
the specified minimum sink current of 3 mA at VOLmax = 0.4 V for
the output stages. VDD as a function of Rp min is shown in
Figure 25. The desired noise margin of 0.1VDD for the LOW level,

limits the maximum value of Rs. Rs max as a function of Rp is shown
in Figure 26.

The bus capacitance is the total capacitance of wire, connections
and pins. This capacitance limits the maximum value of Rp due to
the specified rise time. Figure 27 shows Rp max as a function of bus
capacitance.

The maximum HIGH level input current of each input/output
connection has a specified maximum value of 10 �A. Due to the
desired noise margin of 0.2VDD for the HIGH level, this input current
limits the maximum value of Rp. This limit depends on VDD. The
total HIGH level input current is shown as a function of Rp max in
Figure 28.

0 4 8 12 16
VDD(V)

minimum
value RP

(kΩ)

6

5

4

3

2

1

0

max. RS

RS = 0

SU00651

Figure 25. Minimum value of R P as a function of supply
voltage with the value of R S as a parameter

10V

0 400 800 1200 1600
maximum value RS (Ω)

RP
(kΩ)

10

8

6

4

2

0

VDD = 2.5V 5V

15V

SU00652

Figure 26. Maximum value of R S as a function of the value of
RP with supply voltage as a parameter

0 100 200 300 400
bus capacitance (pF)

maximum
value RP

(kΩ)

20

16

12

8

4

0

RS = 0

max. RS
@ VDD = 5V

SU00653

Figure 27. Maximum value of R P as a function of bus
capacitance for a standard-mode I 2C-bus

2.5V

0 40 80 120 160
total high level input current (µA)

maximum
value RP

(kΩ)

20

16

12

8

4

0

VDD = 15V

200

10V

5V

SU00654

Figure 28. Total HIGH level input current as a function of the
maximum value of R P with supply voltage as a parameter

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 16

11.0 EXTENSIONS TO THE I2C-BUS
SPECIFICATION
The I2C-bus with a data transfer rate of up to 100 kbit/s and 7-bit
addressing has now been in existence for more than ten years with
an unchanged specification. The concept is accepted world-wide as
a de facto standard and hundreds of different types of I2C-bus
compatible ICs are available from Philips and other suppliers. The
I2C-bus specification is now extended with the following two
features:

• A fast-mode which allows a fourfold increase of the bit rate to 0 to
400 kbit/s

• 10-bit addressing which allows the use of up to 1024 additional
addresses.

There are two reasons for these extensions to the I2C-bus
specification:
– New applications will need to transfer a larger amount of serial

data and will therefore demand a higher bit rate than 100 kbit/s.
Improved IC manufacturing technology now allows a fourfold
speed increase without increasing the manufacturing cost of the
interface circuitry

– Most of the 112 addresses available with the 7-bit addressing
scheme have been issued more than once. To prevent problems
with the allocation of slave addresses for new devices, it is
desirable to have more address combinations. About a tenfold
increase of the number of available addresses is obtained with the
new 10-bit addressing.

All new devices with an I2C-bus interface are provided with the
fast-mode. Preferably, they should be able to receive and/or transmit
at 400 kbit/s. The minimum requirement is that they can
synchronize with a 400 kbit/s transfer; they can then prolong the
LOW period of the SCL signal to slow down the transfer. Fast-mode
devices must be downward-compatible which means that they must
still be able to communicate with 0 to 100 kbit/s devices in a 0 to
100 kbit/s I2C-bus system.

Obviously, devices with a 0 to 100 kbit/s I2C-bus interface cannot
be incorporated in a fast-mode I2C-bus system because, since they
cannot follow the higher transfer rate, unpredictable states of these
devices would occur.

Slave devices with a fast-mode I2C-bus interface can have a 7-bit or
a 10-bit slave address. However, a 7-bit address is preferred
because it is the cheapest solution in hardware and it results in the
shortest message length. Devices with 7-bit and 10-bit addresses
can be mixed in the same I2C-bus system regardless of whether it is
a 0 to 100 kbit/s standard-mode system or a 0 to 400 kbit/s
fast-mode system. Both existing and future masters can generate
either 7-bit or 10-bit addresses.

12.0 FAST-MODE
In the fast-mode of the I2C-bus, the protocol, format, logic levels and
maximum capacitive load for the SDA and SCL lines quoted in the

previous I2C-bus specification are unchanged. Changes to the
previous I2C-bus specification are:
– The maximum bit rate is increased to 400 kbit/s

– Timing of the serial data (SDA) and serial clock (SCL) signals has
been adapted. There is no need for compatibility with other bus
systems such as CBUS because they cannot operate at the
increased bit rate

– The inputs of fast-mode devices must incorporate spike
suppression and a Schmitt trigger at the SDA and SCL inputs

– The output buffers of fast-mode devices must incorporate slope
control of the falling edges of the SDA and SCL signals

– If the power supply to a fast-mode device is switched off, the SDA
and SCL I/O pins must be floating so that they don’t obstruct the
bus lines

– The external pull-up devices connected to the bus lines must be
adapted to accommodate the shorter maximum permissible rise
time for the fast-mode I2C-bus. For bus loads up to 200pF, the
pull-up device for each bus line can be a resistor; for bus loads
between 200pF and 400pF, the pull-up device can be a current
source (3mA max.) or a switched resistor circuit as shown in
Figure 37.

13.0 10-BIT ADDRESSING
The 10-bit addressing does not change the format in the I2C-bus
specification. Using 10 bits for addressing exploits the reserved
combination 1111XXX for the first seven bits of the first byte
following a START (S) or repeated START (Sr) condition as
explained in Section 9.1. The 10-bit addressing does not affect the
existing 7-bit addressing. Devices with 7-bit and 10-bit addresses
can be connected to the same I2C-bus, and both 7-bit and 10-bit
addressing can be used in a standard-mode system (up to
100 kbit/s) or a fast-mode system (up to 400 kbit/s).

Although there are eight possible combinations of the reserved
address bits 1111XXX, only the four combinations 11110XX are used
for 10-bit addressing. The remaining four combinations 11111XX are
reserved for future I2C-bus enhancements.

13.1 Definition of bits in the first two bytes
The 10-bit slave address is formed from the first two bytes following
a START condition (S) or a repeated START condition (Sr).

The first seven bits of the first byte are the combination 11110XX of
which the last two bits (XX) are the two most-significant bits (MSBs)
of the 10-bit address; the eighth bit of the first byte is the R/W bit
that determines the direction of the message. A ‘zero’ in the least
significant position of the first byte means that the master will write
information to a selected slave. A ‘one’ in this position means that
the master will read information from the slave.

If the R/W bit is ‘zero’, then the second byte contains the remaining
8 bits (XXXXXXXX) of the 10-bit address. If the R/W bit is ‘one’, then
the next byte contains data transmitted from a slave to a master.

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 17

13.2 Formats with 10-bit addresses
Various combinations of read/write formats are possible within a
transfer that includes 10-bit addressing. Possible data transfer
formats are:
– Master-transmitter transmits to slave-receiver with a 10-bit

slave address. The transfer direction is not changed
(Figure 29) . When a 10-bit address follows a START condition,
each slave compares the first seven bits of the first byte of the
slave address (11110XX) with its own address and tests if the
eighth bit (R/W direction bit) is 0. It is possible that more than one
device will find a match and generate an acknowledge (A1). All
slaves that found a match will compare the eight bits of the
second byte of the slave address (XXXXXXXX) with their own
addresses, but only one slave will find a match and generate an
acknowledge (A2). The matching slave will remain addressed by
the master until it receives a STOP condition (P) or a repeated
START condition (Sr) followed by a different slave address

– Master-receiver reads slave- transmitter with a 10-bit slave
address. The transfer direction is changed after the second
R/W bit (Figure 30) . Up to and including acknowledge bit A2, the
procedure is the same as that described for a master-transmitter
addressing a slave-receiver. After the repeated START condition
(Sr), a matching slave remembers that it was addressed before.
This slave then checks if the first seven bits of the first byte of the
slave address following Sr are the same as they were after the
START condition (S), and tests if the eighth (R/W) bit is 1. If there

is a match, the slave considers that it has been addressed as a
transmitter and generates acknowledge A3.

The slave-transmitter remains addressed until it receives a STOP
condition (P) or until it receives another repeated START condition
(Sr) followed by a different slave address. After a repeated START
condition (Sr), all the other slave devices will also compare the
first seven bits of the first byte of the slave address (11110XX)
with their own addresses and test the eighth (R/W) bit. However,
none of them will be addressed because R/W = 1 (for 10-bit
devices), or the 11110XX slave address (for 7-bit devices) does
not match)

– Combined format. A master transmits data to a slave and
then reads data from the same slave (Figure 31) . The same
master occupies the bus all the time. The transfer direction is
changed after the second R/W bit

– Combined format. A master transmits data to one slave and
then transmits data to another slave (Figure 32) . The same
master occupies the bus all the time

– Combined format. 10-bit and 7-bit addressing combined in
one serial transfer (Figure 33) . After each START condition (S),
or each repeated START condition (Sr), a 10-bit or 7-bit slave
address can be transmitted. Figure 33 shows how a
master-transmits data to a slave with a 7-bit address and then
transmits data to a second slave with a 10-bit address. The same
master occupies the bus all the time.

ÎÎÎÎÎ
ÎÎÎÎÎ

ÎÎÎ
ÎÎÎ

S SLAVE ADDRESS
1st 7 BITS

A1 ÎÎ
ÎÎ

ÎÎÎ
ÎÎÎ

DATA A ÎÎÎ
ÎÎÎ

DATA PA/A

1 1 1 1 0 X X 0

ÎÎÎ
ÎÎÎ

R/W

(WRITE)

ÎÎÎÎÎ
ÎÎÎÎÎ

SLAVE ADDRESS
2nd BYTE

A2

SU00640

Figure 29. A master-transmitter addresses a slave-receiver with a 10-bit address

ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎ
ÎÎ

S SLAVE ADDRESS
1st 7 BITS

A1 ÎÎ
ÎÎ

DATAÎÎ
ÎÎ

A P

1 1 1 1 0 X X 0

ÎÎÎ
ÎÎÎ

R/W

(WRITE)

ÎÎÎÎÎ
ÎÎÎÎÎ

SLAVE ADDRESS
2nd BYTE

A2ÎÎ
ÎÎ

SrÎÎÎÎÎÎ
ÎÎÎÎÎÎ

SLAVE ADDRESS
1st 7 BITS

1 1 1 1 0 X X 1

ÎÎ
ÎÎ

R/W

(READ)

A3 DATAÎÎ
ÎÎ

A

SU00641

Figure 30. A master-receiver addresses a lave-transmitter with a 10-bit address

ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎ
ÎÎS

SLAVE ADDRESS
1st 7 BITS

A

ÎÎ
ÎÎ

DATAÎÎ
ÎÎ

A P

1 1 1 1 0 X X 0ÎÎÎ
ÎÎÎR/W

(WRITE)

ÎÎÎÎÎ
ÎÎÎÎÎ

SLAVE ADDRESS
2nd BYTE

A

ÎÎ
ÎÎ

SrÎÎÎÎÎÎ
ÎÎÎÎÎÎ

SLAVE ADDRESS
1st 7 BITS

1 1 1 1 0 X X 1

ÎÎ
ÎÎ

R/W

(READ)

A DATAÎÎ
ÎÎ

A

ÎÎÎ
ÎÎÎDATA A

ÎÎÎ
ÎÎÎDATA A/A

SU00642

Figure 31. Combined format. A master addresses a lave with a 10-bit address,
then transmits data to this slave and reads data from this slave

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 18

ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎ
ÎÎ

S SLAVE ADDRESS
1st 7 BITS

A

ÎÎ
ÎÎ

ÎÎ
ÎÎDATA A P

1 1 1 1 0 X X 0

ÎÎÎ
ÎÎÎ

R/W

(WRITE)

ÎÎÎÎÎ
ÎÎÎÎÎ

SLAVE ADDRESS
2nd BYTE

A

ÎÎ
ÎÎSr

ÎÎÎÎÎ
ÎÎÎÎÎ

SLAVE ADDRESS
1st 7 BITS

1 1 1 1 0 X X 0ÎÎÎ
ÎÎÎR/W

(WRITE)

A

ÎÎÎ
ÎÎÎDATA

ÎÎÎ
ÎÎÎ

DATA A ÎÎÎ
ÎÎÎ

DATA A/A

ÎÎÎÎÎ
ÎÎÎÎÎ

SLAVE ADDRESS
2nd BYTE

A A/A

SU00643

Figure 32. Combined format. A master transmits data to two slaves, both with 10-bit addresses

ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ

ÎÎ
ÎÎ
ÎÎ

S 7-BIT
SLAVE ADDRESS

A

ÎÎ
ÎÎ

ÎÎ
ÎÎ

DATA A P

0ÎÎÎ
ÎÎÎ
ÎÎÎ

R/W

(WRITE)
ÎÎ
ÎÎ

Sr
ÎÎÎÎÎ
ÎÎÎÎÎ

1st 7 BITS OF 10-BIT
SLAVE ADDRESS

1 1 1 1 0 X X 0

ÎÎÎ
ÎÎÎ

R/W

(WRITE)

A
ÎÎÎ
ÎÎÎ

DATA

ÎÎ
ÎÎ
ÎÎ

DATA A

ÎÎ
ÎÎ
ÎÎ

DATA A/A

ÎÎÎÎÎ
ÎÎÎÎÎ

2nd BYTE OF 10-BIT
SLAVE ADDRESS

A A/A

SU00644

Figure 33. Combined format. A master transmits data to two slaves, one with a 7-bit address, and one with a 10-bit address

NOTES:
1. Combined formats can be used, for example, to control a serial memory. During the first data byte, the internal memory location has to be

written. After the START condition and slave address is repeated, data can be transferred.
2. All decisions on auto-increment or decrement of previously accessed memory locations etc. are taken by the designer of the device.
3. Each byte is followed by an acknowledgement bit as indicated by the A or A blocks in the sequence.
4. I2C-bus compatible devices must reset their bus logic on receipt of a START or repeated START condition such that they all anticipate the

sending of a slave address.

14.0 GENERAL CALL ADDRESS AND START
BYTE
The 10-bit addressing procedure for the I2C-bus is such that the first
two bytes after the START condition (S) usually determine which
slave will be selected by the master. The exception is the ‘general
call’ address 00000000 (H‘00’). Slave devices with 10-bit addressing
will react to a ‘general call’ in the same way as slave devices with
7-bit addressing (see Section 9.1.1).

Hardware masters can transmit their 10-bit address after a ‘general
call’. In this case, the ‘general call’ address byte is followed by two
successive bytes containing the 10-bit address of the
master-transmitter. The format is as shown in Figure 17 where the
first DATA byte contains the eight least-significant bits of the master
address.

The START byte 00000001 (H‘01’) can precede the 10-bit
addressing in the same way as for 7-bit addressing (see
Section 9.1.2).

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 19

15.0 ELECTRICAL SPECIFICATIONS AND TIMING
FOR I/O STAGES AND BUS LINES
The I/O levels, I/O current, spike suppression, output slope control
and pin capacitance for I2C-bus devices are given in Table 3. The
I2C-bus timing is given in Table 4. Figure 34 shows the timing
definitions for the I2C-bus.

The noise margin for HIGH and LOW levels on the bus lines for
fast-mode devices are the same as those specified in Section 10.0
for standard-mode I2C-bus devices.

The minimum HIGH and LOW periods of the SCL clock specified in
Table 4 determine the maximum bit transfer rates of 100 kbit/s for
standard-mode devices and 400 kbit/s for fast mode devices.
Standard-mode and fast-mode I2C-bus devices must be able to
follow transfers at their own maximum bit rates, either by being able
to transmit or receive at that speed or by applying the clock
synchronization procedure described in Section 7.0 which will force
the master into a wait state and stretch the LOW period of the SCL
signal. Of course, in the latter case the bit transfer rate is reduced.

Table 3. Characteristics of the SDA and SCL I/O stages for I 2C-bus devices

PARAMETER SYMBOL STANDARD-MODE
DEVICES

FAST-MODE
DEVICES

UNIT

Min. Max. Min. Max.

LOW level input voltage: VIL V
fixed input levels –0.5 1.5 –0.5 1.5
VDD-related input levels –0.5 0.3VDD –0.5 0.3VDD

HIGH level input voltage: VIH V
fixed input levels 3.0 *1) 3.0 *1)

VDD-related input levels 0.7VDD *1) 0.7VDD *1)

Hysteresis of Schmitt trigger inputs: Vhys V
fixed input levels n/a n/a 0.2 –
VDD-related input levels n/a n/a 0.05VDD –

Pulse width of spikes which must be suppressed
by the input filter

tSP n/a n/a 0 50 ns

LOW level output voltage
(open drain or open collector):

V

at 3 mA sink current VOL1 0 0.4 0 0.4
at 6 mA sink current VOL2 n/a n/a 0 0.6

Output fall time from VIHmin to VILmax with a bus
capacitance from 10 pF to 400 pF:

tof ns

with up to 3 mA sink current at VOL1 – 2503) 20 + 0.1Cb
2) 250

with up to 6 mA sink current at VOL2 n/a n/a 20 + 0.1Cb
2) 2503)

Input current each I/O pin with an input
voltage between 0.4 V and 0.9VDDmax

Ii –10 10 –104) 104) �A

Capacitance for each I/O pin Ci – 10 – 10 pF

n/a = not applicable
1. Maximum VIH = VDDmax + 0.5 V
2. Cb = capacitance of one bus line in pF.
3. The maximum tf for the SDA and SCL bus lines quoted in Table 4 (300 ns) is longer than the specified maximum tof for the output stages

(250 ns). This allows series protection resistors (Rs)to be connected between the SDA/SCL pins and the SDA/SCL bus lines as shown in
Figure 37 without exceeding the maximum specified tf.

4. I/O pins of fast-mode devices must not obstruct the SDA and SCL lines if VDD is switched off.

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 20

Table 4. Characteristics of the SDA and SCL bus lines for I 2C-bus devices

PARAMETER SYMBOL STANDARD-MODE
I2C-BUS

FAST-MODE
I2C-BUS

UNIT

Min. Max. Min. Max.

SCL clock frequency fSCL 0 100 0 400 kHz

Bus free time between a STOP and START
condition

tBUF 4.7 – 1.3 – �s

Hold time (repeated) START condition.
After this period, the first clock pulse is generated

tHD;STA 4.0 – 0.6 – �s

LOW period of the SCL clock tLOW 4.7 – 1.3 – �s

HIGH period of the SCL clock tHIGH 4.0 – 0.6 – �s

Set–up time for a repeated START condition tSU;STA 4.7 – 0.6 – �s

Data hold time: tHD;DAT
for CBUS compatible masters
(see NOTE, Section 9.1.3)

5.0 – – – �s

for I2C–bus devices 01) – 01) 0.92) �s

Data set–up time tSU;DAT 250 – 1003) – ns

Rise time of both SDA and SCL signals tr – 1000 20 + 0.1Cb
4) 300 ns

Fall time of both SDA and SCL signals tf – 300 20 + 0.1Cb
4) 300 ns

Set–up time for STOP condition tSU;STO 4.0 – 0.6 – �s

Capacitive load for each bus line Cb – 400 – 400 pF

All values referred to VIHmin and VILmax levels (see Table 3).
1. A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) in order to bridge

the undefined region of the falling edge of SCL.
2. The maximum tHD;DAT has only to be met if the device does not stretch the LOW period (tLOW) of the SCL signal.
3. A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tSU;DAT �250 ns must then be met. This

will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period
of the SCL signal, it must output the next data bit to the SDA line tr max + tSU;DAT = 1000 + 250 = 1250 ns (according to the standard-mode
I2C-bus specification) before the SCL line is released.

4. Cb = total capacitance of one bus line in pF.

tSPtBUF

tHD;STA

PP S

tLOW
tR

tHD;DAT

tF

tHIGH tSU;DAT

tSU;STA

Sr

tHD;STA

tSU;STO

SDA

SCL

SU00645

Figure 34. Definition of timing on the I 2C-bus

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 21

16.0 APPLICATION INFORMATION

16.1 Slope-controlled output stages of fast-mode
I2C-bus devices
The electrical specifications for the I/Os of I2C-bus devices and the
characteristics of the bus lines connected to them are given in
Tables 3 and 4 in Section 15.0.

Figures 35 and 36 show examples of output stages with slope
control in CMOS and bipolar technology. The slope of the falling
edge is defined by a Miller capacitor (C1) and a resistor (R1). The
typical values for C1 and R1 are indicated on the diagrams. The
wide tolerance for output fall time tof given in Table 3 means that the
design is not critical. The fall time is only slightly influenced by the
external bus load (Cb) and external pull-up resistor (Rp). However,
the rise time (tr) specified in Table 4 is mainly determined by the bus
load capacitance and the value of the pull-up resistor.

16.2 Switched pull-up circuit for fast-mode
I2C-bus devices
The supply voltage (VDD) and the maximum output LOW level
determine the minimum value of pull-up resistor Rp (see
Section 10.1). For example, with a supply voltage of
VDD = 5V ± 10% and VOLmax = 0.4V at 3mA,
Rp min (5.5 – 0.4)/0.003 = 1.7 k�. As shown in Figure 38, this value
of Rp limits the maximum bus capacitance to about 200pF to meet
the maximum tr requirement of 300 ns. If the bus has a higher
capacitance than this, a switched pull-up circuit as shown in
Figure 37 can be used.

The switched pull-up circuit in Figure 37 is for a supply voltage of
VDD = 5V ± 10% and a maximum capacitive load of 400pF. Since it
is controlled by the bus levels, it needs no additional switching
control signals. During the rising/falling edges, the bilateral switch in
the HCT4066 switches pull-up resistor Rp2 on/off at bus levels
between 0.8 V and 2.0 V. Combined resistors Rp1 and Rp2 can
pull-up the bus line within the maximum specified rise time (tr) of
300 ns. The maximum sink current for the driving I2C-bus device
will not exceed 6 mA at VOL2 = 0.6 V, or 3 mA at VOL1 = 0.4 V.

Series resistors Rs are optional. They protect the I/O stages of the
I2C-bus devices from high-voltage spikes on the bus lines, and
minimize crosstalk and undershoot of the bus line signals. The
maximum value of Rs is determined by the maximum permitted
voltage drop across this resistor when the bus line is switched to the
LOW level in order to switch off Rp2.

P1

N1

R1
50kΩ

RP

I/O

VDD

VSS

C1

2pF N2

TO
INPUT

CIRCUIT

Cb

VDD

VSS

SDA OR SCL
BUS LINE

SU00646

Figure 35. Slope-controlled output stage in CMOS technology

T1

R1
20kΩ

RP

I/O

VP

GND

C1

5pF
T2

TO
INPUT

CIRCUIT

Cb

VDD

VSS

SDA OR SCL
BUS LINE

SU00647

Figure 36. Slope-controlled output stage in bipolar technology

P N

RP2

1/4 HCT4066

nE

nZ

1.3kΩ

RS≤100Ω

I/O

N

RS≤100Ω

I/O

N

Cb
400pF max.

RP11.7kΩ

VCC

GND

VDD
5V ± 10%

SDA OR SCL
BUS LINE

VSS

SU00648

Figure 37. Switched pull-up circuit

bus capacitance (pF)

maximum
value Rp

(kΩ)

7.5

6.0

4.5

3.0

1.5

0
0 100 200 300 400

RS = 0

max. RS
@ VDD = 5V

SU00649

Figure 38. Maximum value of R P as a function
 of bus capacitance for meeting the t R MAX requirement

 for a fast-mode I 2C-bus

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 22

16.3 Wiring pattern of the bus lines
In general, the wiring must be so chosen that crosstalk and
interference to/from the bus lines is minimized. The bus lines are
most susceptible to crosstalk and interference at the HIGH level
because of the relatively high impedance of the pull-up devices.

If the length of the bus lines on a PCB or ribbon cable exceeds
10cm and includes the VDD and VSS lines, the wiring pattern must
be:

SDA

VDD

VSS

SCL

If only the VSS line is included, the wiring pattern must be:

SDA

VSS

SCL

These wiring patterns also result in identical capacitive loads for the
SDA and SCL lines. The VSS and VDD lines can be omitted if a PCB
with a VSS and/or VDD layer is used.

If the bus lines are twisted-pairs, each bus line must be twisted with
a VSS return. Alternatively, the SCL line can be twisted with a VSS
return, and the SDA line twisted with a VDD return. In the latter case,
capacitors must be used to decouple the VDD line to the VSS line at
both ends of the twisted pairs.

If the bus lines are shielded (shield connected to VSS), interference
will be minimized. However, the shielded cable must have low
capacitive coupling between the SDA and SCL lines to minimize
crosstalk.

16.4 Maximum and minimum values of resistors
Rp and Rs for fast-mode I 2C-bus devices
The maximum and minimum values for resistors Rp and Rs
connected to a fast-mode I2C-bus can be determined from
Figure 25, 26 and 28 in Section 10.1. Because a fast-mode I2C-bus
has faster rise times (tr) the maximum value of Rp as a function of
bus capacitance is less than that shown in Figure 27. The
replacement graph for Figure 27 showing the maximum value of Rp
as a function of bus capacitance (Cb) for a fast mode I2C-bus is
given in Figure 38.

17.0 DEVELOPMENT TOOLS

17.1 Development tools for 8048 and 8051-based systems

PRODUCT DESCRIPTION

OM1016 I2C-bus demonstration board with microcontroller, LCD, LED, Par. I/O, SRAM, EEPROM, Clock, DTMF generator,
AD/DA conversion, infrared link.

OM1018 manual for OM1016

OM1020 LCD and driver demonstration board

OM4151 I2C-bus evaluation board (similar to OM1016 above but without infrared link).

OM5027 I2C-bus evaluation board for low-voltage, low-power ICs & software

17.2 Development tools for 68000-based systems

PRODUCT DESCRIPTION

OM4160 Microcore-1 demonstration/evaluation board:
SCC68070, 128K EPROM, 512K DRAM, I2C, RS-232C, VSC SCC66470, resident monitor

OM4160/3 Microcore-3 demonstration/evaluation board:
128K EPROM, 64K SRAM, I2C, RS-232C, 40 I/O (inc. 8051-compatible bus), resident monitor

OM4160/3QFP Microcore-3 demonstration/evaluation board for 9XC101 (QFP80 package)

17.3 17.3 Development tools for all systems

PRODUCT DESCRIPTION

OM1022 I2C-bus analyzer.
Hardware and software (runs on IBM or compatible PC) to experiment with and analyze the behaviour of the I2C-bus
(includes documentation)

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 23

18.0 SUPPORT LITERATURE

DATA HANDBOOKS

Semiconductors for radio and audio systems
IC01a 1995
IC01b 1995

Semiconductors for television and video systems
IC02a 1995
IC02b 1995
IC02c 1995

Semiconductors for telecom systems
IC03 1995

I2C Peripherals
IC12

8048-based 8-bit microcontrollers
IC14 1994

Wireless communications
IC17 1995

Semiconductors for in-car electronics
IC18

80C51-based 8-bit microcontrollers
IC20 1995

68000-based 16-bit microcontrollers
IC21

Desktop video
IC22 1995

Brochures/leaflets/lab. reports

I2C-bus compatible ICs and support overview

I2C-bus control programs for consumer applications

Microcontrollers, microprocessors and support overview

Application notes for 80C51-based 8-bit microcontrollers

OM5027 I2C-bus evaluation board for low-voltage, low-power ICs
& software

P90CL301 I2C driver routines

User manual of Microsoft Pascal I2C-bus driver (MICDRV4.OBJ)

User’s guide to I2C-bus control programs

Philips Semiconductors

The I2C-bus and how to use it
(including specifications)

April 1995 24

19.0 APPLICATION OF THE I 2C-BUS IN THE
ACCESS.bus SYSTEM
The ACCESS.bus (bus for connecting ACCESSory devices to a
host system) is an I2C-bus based open-standard serial interconnect
system jointly developed and defined by Philips and Digital
Equipment Corporation. It is a lower-cost alternative to an RS-232C
interface for connecting up to 14 inputs/outputs from peripheral
equipment to a desk-top computer or workstation over a distance of
up to eight metres. The peripheral equipment can be relatively low
speed items such as keyboards, hand-held image scanners, cursor
positioners, bar-code readers, digitizing tablets, card readers or
modems.

All that’s required to implement an ACCESS.bus is an 8051-family
microcontroller with an I2C-bus interface, and a 4-wire cable
carrying a serial data (SDA) line, a serial clock (SCL) line, a ground
wire and a 12V supply line (500mA max.) for powering the
peripherals.

Important features of the ACCESS.bus are that the bit rate is only
about 20% less than the maximum bit rate of the I2C-bus, and the
peripherals don’t need separate device drivers. Also, the protocol
allows the peripherals to be changed by ‘hot-plugging’ without
re-booting.

As shown in Figure 39, the ACCESS.bus protocol comprises three
levels: the I2C-bus protocol, the base protocol, and the application
protocol.

The base protocol is common to all ACCESS.bus devices and
defines the format of the ACCESS.bus message. Unlike the I2C-bus
protocol, it restricts masters to sending and slaves to receiving data.
One item of appended information is a checksum for reliability
control. The base protocol also specifies seven types of control and
status messages which are used in the system configuration which
assigns unique addresses to the peripherals without the need for
setting jumpers or switches on the devices.

The application protocol defines the message semantics that are
specific to the three categories of peripheral device (keyboards,
cursor locators, and text devices which generate character streams,
e.g., card readers) which are at present envisaged.

Philips offers computer peripheral equipment manufacturers
technical support, a wide range of I2C-bus devices and development
kits for the ACCESS.bus. Hardware, software and marketing
support is also offered by DEC.

KEYBOARD
PROTOCOL

LOCATOR
PROTOCOL

TEXT
PROTOCOL

REAL-TIME
CONTROL

PROTOCOL

BASE
PROTOCOL

I2C
PROTOCOL

SOFTWARE
PROTOCOLS

HARDWARE
PROTOCOLS

SU00650

Figure 39. ACCESS.bus protocol hierarchy

