

Current Mode PWM Controller

- Optimized for Off-line and DC to DC Converters
- Low Start Up Current (<0.5mA) •
- Trimmed Oscillator Discharge Current
- Automatic Feed Forward Compensation •
- Pulse-by-Pulse Current Limiting •
- **Enhanced Load Response Characteristics** .
- Under-Voltage Lockout With Hysteresis •
- **Double Pulse Suppression** •
- High Current Totem Pole Output •
- Internally Trimmed Bandgap Reference •
- 500kHz Operation .
- Low Ro Error Amp •

DESCRIPTION

The UC1842A/3A/4A/5A family of control ICs is a pin for pin compatible improved version of the UC3842/3/4/5 family. Providing the necessary features to control current mode switched mode power supplies, this family has the following improved features. Start up current is guaranteed to be less than 0.5mA. Oscillator discharge is trimmed to 8.3mA. During under voltage lockout, the output stage can sink at least 10mA at less than 1.2V for Vcc over 5V.

UC1842A/3A/4A/5A

UC2842A/3A/4A/5A

UC3842A/3A/4A/5A

The difference between members of this family are shown in the table below.

Part #	UVLO On	UVLO Off	Maximum Duty Cycle		
UC1842A	16.0V	16.0V 10.0V			
UC1843A	8.5V	7.9V	<100%		
UC1844A	16.0V	10.0V	<50%		
UC1845A	8.5V	7.9V	<50%		

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage (Low Impedance Source)
Supply Voltage (Icc mA) Self Limiting
Output Current±1A
Output Energy (Capacitive Load) 5µJ
Analog Inputs (Pins 2, 3) $\ldots \ldots \ldots \ldots \ldots \ldots $ -0.3V to +6.3V
Error Amp Output Sink Current 10mA
Power Dissipation at TA \leq 25°C (DIL-8)
Storage Temperature Range
Lead Temperature (Soldering, 10 Seconds) 300°C
Note 1. All voltages are with respect to Ground, Pin 5. Currents are positive into, negative out of the specified terminal. Consult

Packaging Section of Databook for thermal limitations and considerations of packages. Pin numbers refer to DIL package only.

CONNECTION DIAGRAMS DIL-8, SOIC-8 (TOP VIEW) J or N, D8 Package Comp 1 8 VREF 7 Vcc VFB 2 6 Output ISENSE 3 Rт/Ст 4 5 Gnd PLCC-20, LCC-20 PACKAGE PIN FUNCTION (TOP VIEW) FUNCTION PIN Q, L Packages N/C 1 2 Comp 3-4 N/C Vfb 5 N/C 6 3 2 1 20 19 7 ISENSE 18 N/C 8-9 4 10 RT/CT 5 17 11 N/C 6 16 Pwr Gnd 12 7 15 13 Gnd 8 14 14 N/C 9 10 11 12 13 Output 15 16 N/C 17 Vc Vcc 18 N/C 19 Vref 20

ELECTRICAL CHARACTERISTICS Unless otherwise stated, these specifications apply for -55°C \leq TA \leq 125°C for the UC184xA; -40°C \leq TA \leq 85°C for the UC284xA; 0 \leq TA \leq 70°C for the UC384xA; Vcc = 15V (Note 5); RT = 10k; CT = 3.3nF; TA = TJ; Pin numbers refer to DIL-8.

PARAMETER	TEST CONDITIONS	UC184xA\UC284xA			UC384xA			
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Reference Section		•			•			
Output Voltage	$T_J = 25^{\circ}C$, $I_O = 1mA$	4.95	5.00	5.05	4.90	5.00	5.10	V
Line Regulation	$12 \le VIN \le 25V$		6	20		6	20	mV
Load Regulation	$1 \le IO \le 20mA$		6	25		6	25	mV
Temp. Stability	(Note 2, Note 7)		0.2	0.4		0.2	0.4	mV/°C
Total Output Variation	Line, Load, Temp.	4.9		5.1	4.82		5.18	V
Output Noise Voltage	$10Hz \le f \le 10kHz$							
	TJ = 25°C (Note 2)		50			50		μV
Long Term Stability	TA = 125°C, 1000Hrs. (Note 2)		5	25		5	25	mV
Output Short Circuit		-30	-100	-180	-30	-100	-180	mA
Oscillator Section								
Initial Accuracy	TJ = 25°C (Note 6)	47	52	57	47	52	57	kHz
Voltage Stability	$12 \le Vcc \le 25V$		0.2	1		0.2	1	%
Temp. Stability	TMIN \leq TA \leq TMAX (Note 2)		5			5		%
Amplitude	VPIN 4 peak to peak (Note 2)		1.7			1.7		V
Discharge Current	TJ = 25°C, VPIN 4 = 2V (Note 8)	7.8	8.3	8.8	7.8	8.3	8.8	mA
	VPIN 4 = 2V (Note 8)	7.5		8.8	7.6		8.8	mA

ELECTRICAL CHARACTERISTICS (cont.) Unless otherwise stated, these specifications apply for $-55^{\circ}C \le TA \le 125^{\circ}C$ for the UC184xA; $-40^{\circ}C \le TA \le 85^{\circ}C$ for the UC284xA; $0 \le TA \le 70^{\circ}C$ for the UC384xA; Vcc = 15V (Note 5); RT = 10k; CT = 3.3nF; TA = TJ; Pin numbers refer to DIL-8.

PARAMETER	TEST CONDITIONS	UC184xA\UC284xA			UC384xA			UNITS
FANAMETER		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	ONTO
Error Amp Section								
Input Voltage	VPIN 1 = 2.5V	2.45	2.50	2.55	2.42	2.50	2.58	V
Input Bias Current			-0.3	-1		-0.3	-2	μΑ
Avol	$2 \le Vo \le 4V$	65	90		65	90		dB
Unity Gain Bandwidth	$T_J = 25^{\circ}C$ (Note 2)	0.7	1		0.7	1		MHz
PSRR	$12 \leq Vcc \leq 25V$	60	70		60	70		dB
Output Sink Current	VPIN 2 = 2.7V, VPIN 1 = 1.1V	2	6		2	6		mA
Output Source Current	VPIN 2 = 2.3V, VPIN 1 = 5V	-0.5	-0.8		-0.5	-0.8		mA
Vout High	VPIN 2 = $2.3V$, RL = $15k$ to ground	5	6		5	6		V
Vout Low	VPIN 2 = 2.7V, RL = 15k to Pin 8		0.7	1.1		0.7	1.1	V
Current Sense Section								
Gain	(Note 3, Note 4)	2.85	3	3.15	2.85	3	3.15	V/V
Maximum Input Signal	VPIN 1 = 5V (Note 3)	0.9	1	1.1	0.9	1	1.1	V
PSRR	$12 \leq Vcc \leq 25V$ (Note 3)		70			70		dB
Input Bias Current			-2	-10		-2	-10	μA
Delay to Output	VPIN 3 = 0 to 2V (Note 2)		150	300		150	300	ns
Output Section								
Output Low Level	ISINK = 20mA		0.1	0.4		0.1	0.4	V
	ISINK = 200mA		15	2.2		15	2.2	V
Output High Level	ISOURCE = 20mA	13	13.5		13	13.5		V
	ISOURCE = 200mA	12	13.5		12	13.5		V
Rise Time	TJ = 25°C, CL = 1nF (Note 2)		50	150		50	150	ns
Fall Time	TJ = 25°C, CL = 1nF (Note 2)		50	150		50	150	ns
UVLO Saturation	Vcc = 5V, Isinк = 10mA		0.7	1.2		0.7	1.2	V
Under-Voltage Lockout Section			1				1	
Start Threshold	x842A/4A	15	16	17	14.5	16	17.5	V
	x843A/5A	7.8	8.4	9.0	7.8	8.4	9.0	V
Min. Operation Voltage After	x842A/4A	9	10	11	8.5	10	11.5	V
TurnOn	x843A/5A	7.0	7.6	8.2	7.0	7.6	8.2	V
PWM Section			1				1	
Maximum Duty Cycle	x842A/3A	94	96	100	94	96	100	%
	x844A/5A	47	48	50	47	48	50	%
Minimum Duty Cycle				0			0	%
Total Standby Current			ı					
Start-Up Current			0.3	0.5		0.3	0.5	mA
Operating Supply Current	VPIN 2 = VPIN 3 = 0V		11	17		11	17	mA
Vcc Zener Voltage	Icc = 25mA	30	34	1	30	34		V

Note 2: These parameters, although guaranteed, are not 100% tested in production.

Note 3: Parameter measured at trip point of latch with $V_{PIN2} = 0$. Note 4: Coin defined as: $A = \frac{\Delta V_{PIN1}}{\Delta V_{PIN2}} = 0.8V_{PIN2}$

Note 4: Gain defined as:
$$A = \frac{1}{\Delta V \text{PIN 3}}$$
; $U \le V \text{PIN 3} \le 0.8 \text{V}$.

Note 5: Adjust Vcc above the start threshold before setting at 15V.

Note 6: Output frequency equals oscillator frequency for the UC1842A and UC1843A. Output frequency is one half oscillator frequency for the UC1844A and UC1845A.

Note 7: "Temperature stability, sometimes referred to as average temperature coefficient, is described by the equation:

Temp Stability = $\frac{V_{REF}(max) - V_{REF}(min)}{T_{REF}(max)}$.

```
T_J(max) - T_J(min)
```

VREF (max) and VREF (min) are the maximum & minimum reference voltage measured over the appropriate temperature range. Note that the extremes in voltage do not necessarily occur at the extremes in temperature."

Note 8: This parameter is measured with $RT = 10k\Omega$ to VREF. This contributes approximately 300µA of current to the measurement. The total current flowing into the RT/CT pin will be approximately 300µA higher than the measured value.

Error Amp Configuration

Under-Voltage Lockout

Current Sense Circuit

APPLICATIONS DATA (cont.)

Oscillator Section

Open-Loop Laboratory Test Fixture

APPLICATIONS DATA (cont.) Off-line Flyback Regulator

Slope Compensation

UNITRODE INTEGRATED CIRCUITS 7 CONTINENTAL BLVD. • MERRIMACK, NH 03054 TEL. (603) 424-2410 • FAX (603)424-3460

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated