
1

© M I C R O D E S I G N R E S O U R C E S J U L Y 1 2 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

by Keith Diefendorff

Having commandeered nearly all the performance-
enhancing techniques used by their mainframe and super-
computer predecessors, the microprocessors in today’s PCs
employ a dizzying assemblage of microarchitectural features
to achieve extraordinary levels of parallelism and speed.
Enabled by astronomical transistor budgets, modern PC
processors are superscalar, deeply pipelined, out of order, and
they even execute instructions speculatively. In this article, we
review the basic techniques used in these processors as well as
the tricks they employ to circumvent the two most challeng-
ing performance obstacles: memory latency and branches.

Two Paths to Performance
The task normally assigned to chip architects is to design the
highest-performance processor possible within a set of cost,
power, and size constraints established by market require-
ments. Within these constraints, application performance is
usually the best measure of success, although, sadly, the mar-
ket often mistakes clock frequency for performance.

Two main avenues are open to designers trying to
improve performance: making operations faster or executing
more of them in parallel. Operations can be made faster in
several ways. More advanced semiconductor processes make
transistors switch faster and signals propagate faster. Using
more transistors can reduce execution-unit latency (e.g., full
vs. partial multiplier arrays). Aggressive design methods can
minimize the levels of logic needed to implement a given
function (e.g., custom vs. standard-cell design) or to increase
circuit speed (e.g., dynamic vs. static circuits).

For parallelism, today’s PC processors rely on pipelining
and superscalar techniques to exploit instruction-level par-
allelism (ILP). Pipelined processors overlap instructions in
time on common execution resources. Superscalar processors
overlap instructions in space on separate resources. Both tech-
niques are used in combination.

Unfortunately, performance gains from parallelism
often fail to meet expectations. Although a four-stage pipe-
line, for example, overlaps the execution of four instructions,
as Figure 1 shows, it falls far short of a 4× performance boost.
The problem is pipeline stalls. Stalls arise from data hazards
(data dependencies), control hazards (changes in program
flow), and structural hazards (hardware resource conflicts),
all of which sap pipeline efficiency.

Lengthening the pipeline, or superpipelining, divides
instruction execution into more stages, each with a shorter
cycle time; it does not, in general, shorten the execution time
of instructions. In fact, it may increase execution time because
stages rarely divide evenly and the frequency is set by the
longest stage. In addition, longer pipelines experience a
higher percentage of stall cycles from hazards, thereby in-
creasing the average cycles per instruction (CPI). Super-
scalar techniques suffer from similar inefficiencies.

The throughput gains from a longer pipeline, however,
usually outweigh the CPI loss, so performance improves. But
lengthening the pipeline has limits. As stages shrink, clock
skew and latch overheads (setup and hold times) consume a
larger fraction of the cycle, leaving less usable time for logic.

The challenge is to make the pipeline short enough for
good efficiency but not so short that ILP and frequency are left
lying on the table, i.e., an underpipelined condition. Today’s
PC processors use pipelines of 5 to 12 stages. When making
this decision, designers must keep in mind that frequency is
often more important in the market than performance.

Prophetic Hardware for Long Pipelines
Branch prediction and speculative execution are tech-
niques used to reduce pipeline stalls on control hazards. In a
pipelined processor, conditional branches are often encoun-
tered before the data that will determine branch direction is
ready. Because instructions are fetched ahead of execution,
correctly predicting unresolved branches allows the instruc-
tion fetcher to keep the instruction queue filled with instruc-
tions that have a high probability of being used.

Some processors take the next step, actually executing
instructions speculatively past unresolved conditional
branches. This technique avoids the control-hazard stall
altogether when the branch goes in the predicted direction.
On mispredictions, however, the pipeline must be flushed,

PC Processor Microarchitecture
A Concise Review of the Techniques Used in Modern PC Processors

Fetch Issue Execute WriteInstr1
Instr2
Instr3
Instr4

Instr1
Instr2
Instr3
Instr4
Instr5
Instr6
Instr7
Instr8
Instr9

Figure 1. Pipelines overlap the execution of instructions in time.
Lengthening the pipeline increases the number of instructions exe-
cuted in a given time period. Longer pipelines, however, suffer
from a higher percentage of stalls (not shown).

2

© M I C R O D E S I G N R E S O U R C E S J U L Y 1 2 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

instruction fetch redirected, and the pipeline refilled. Statis-
tically, prediction and speculation dramatically reduce stalls.
How dramatically depends on prediction accuracy.

Branch predictors range in sophistication from simple
static predictors (compiler or heuristic driven), which
achieve 65–85% accuracy, to complex dynamic predictors
that can achieve 98% accuracy or more. Since one in five
instructions is typically a conditional branch, high accuracy is
essential, especially for machines with long pipelines and,
therefore, with large mispredict penalties. As a result, most
modern processors employ dynamic predictors.

The Past Predicts the Future
The simplest dynamic predictor is the branch history table
(BHT), a small cache indexed by the address of the branch
being predicted. Simple BHTs record one-bit histories of the
direction each branch took the last time it executed. More
sophisticated BHTs use two-bit histories, which add hystere-
sis to improve prediction accuracy on loop branches. Even
more sophisticated schemes use two-level predictors with
longer per-branch histories that index into pattern tables
containing two-bit predictors (see MPR 3/27/95, p. 17).

A simplified version of the two-level predictor uses a
single global-history register of recent branch directions to
index into the BHT. The GShare enhancement (see MPR
11/17/97, p. 22) adds per-branch sensitivity by hashing a few
bits of the branch address with the global-history register, as
Figure 2 shows. The agrees-mode enhancement encodes the
prediction as agreement or disagreement with a static pre-
diction, thereby avoiding excessive mispredictions when
multiple active branches map to the same BHT entry. In
architectures with no static-prediction opcode bits, such as
the x86, the static prediction must be based on branch
heuristics (e.g., backward: predict taken).

Some processors predict the target instruction stream as
well as the direction. Target predictions are made with a
branch target address cache (BTAC), which caches the
address to which control was transferred the last time the
branch was taken. BTACs are sometimes combined with the
BHT into a branch target buffer (BTB). Instead of a BTAC,
some processors use a branch target instruction cache
(BTIC), which caches the first few instructions down the tar-
get path so the pipeline can be primed without an inline fetch
cycle. Many processors also include a special-purpose return-
address stack to predict the return addresses of subroutines.

Rearranging Instructions Boosts Throughput
Pipeline stalls arising from data and structural hazards can
sometimes be avoided by judiciously rearranging instruction
execution. Stalls on data hazards, for example, can be avoided
by arranging instructions such that they do not depend on
the results of preceding instructions that may still be in exe-
cution. The extent to which this is possible, without violating
the program’s data-flow graph, establishes an upper limit on
the ILP the processor can exploit.

Although compilers can statically reschedule instruc-
tions, they are hampered by incomplete knowledge of run-
time information. Load-use penalties, for example, are
resistant to static rescheduling because their length is gener-
ally unpredictable at compile time. It is simply impossible to
find enough independent instructions to cover the worst-
case number of load-delay slots in every load.

Static rescheduling is also constrained by register name-
space and by ambiguous dependencies between memory
instructions. A large register namespace is required for good
register allocation, for freedom in rearranging instructions,
and for loop unrolling. Register limitations are especially
severe in x86 processors, which have only eight general-
purpose registers. In-order processors—which issue, execute,
complete, and retire instructions in strict program order—
must rely entirely on static rescheduling and can suffer a large
number of pipeline stalls.

Therefore, most current PC processors implement
dynamic instruction rescheduling to some degree. The sim-
plest out-of-order processors issue instructions in order but
allow them to execute and complete out of order. Processors
of this type use register scoreboarding to interlock the pipe-
line, stalling instruction issue when an instruction’s operands
aren’t ready. Such processors can achieve somewhat more
parallelism than in-order processors by permitting instruc-
tions to execute in parallel through execution units with dif-
ferent or variable latencies.

Even simple out-of-order processors require complex
hardware to reorder results before the corresponding in-
structions are retired (removed from the machine). Although
strict result ordering is not needed from a data-flow perspec-
tive, it is required to maintain precise exceptions (the appear-
ance of in-order execution following an interrupt) and to
recover from mispredicted speculative execution.

The most common reordering method is the reorder
buffer (ROB), which buffers results until they can be written
to the register file in program order. Accessing operands
from the reorder buffer, which is needed for reasonable per-
formance, requires an associative lookup to locate the most
recent version of the operand.

111010010

010110001

01
11
11
10
00
01
10
11
00
00
11

01
10

•
•
•

11

10

Global Branch History
Register

Bits From Address of
Branch Being Predicted

Branch
Results

Branch History Table

Index

Hash

Static Prediction

Agree/
Disagree

Predicted
Direction

Figure 2. The GShare algorithm with agrees-mode encoding is
used by several PC processors to dynamically predict branches.

3

© M I C R O D E S I G N R E S O U R C E S J U L Y 1 2 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

Other types of reordering hardware are also used. His-
tory buffers, for example, record source-operand history so
the processor can backtrack to a precise architectural state.
Future files maintain the current state and the architectural
state in separate register files, allowing the processor to be
checkpointed back to a precise state.

Complexity Rears Its Ugly Head
More-aggressive out-of-order processors can also avoid
stalling instruction dispatch on data hazards. This is accom-
plished by setting instructions aside in reservation stations,
where they can wait for operands while dispatch proceeds. As
operands become available, instructions are issued to execu-
tion units, possibly out of program order. (Note: although
some architects reverse the use of the terms dispatch and
issue, we find the convention used here is the most common.)
Distributed reservation stations are dedicated to individual
execution units, as Figure 3 shows, while centralized reserva-
tion stations serve multiple units.

Although out-of-order processing averts many stalls, it
suffers from new ones created by false dependencies—arti-
facts of using register names out of order. Stalls on these
dependencies—called write-after-read hazards (WAR or
antidependencies) and write-after-write hazards (WAW or
output dependencies)—can be avoided by register renaming,
a process whereby each new instruction is assigned a unique
destination register from a large pool of physical registers. The
mapping of physical registers to architectural registers is
maintained in the ROB, usually by some type of register alias
table (RAT), allowing register operands to be accessed by their
architectural name. Physical registers are released and re-
turned to the pool as instructions are retired.

In out-of-order processors, the capacity of the reserva-
tion stations, reorder buffer, and rename tables limits the
number of instructions that can be in flight. Processors that
keep many instructions in flight generally exploit more par-
allelism and have higher execution-unit utilization; thus they
achieve higher instruction throughput (instructions per
clock or IPC) for a given amount of hardware.

The instructions that can be considered for issue to exe-
cution units each cycle is called the window. The complexity

of the data-dependence analysis required to place instruc-
tions into execution is roughly proportional to the square of
the maximum number of instructions in the window. (The
window should not be confused with the superscalar dis-
patch width, which is the number of instructions that can be
decoded and dispatched to reservation stations each cycle, or
the issue width, which is the number of instructions that can
be issued to execution units each cycle.)

Memory: the Grand Challenge
Although dynamic instruction scheduling provides some
degree of latency tolerance, it is impractical to build reorder-
ing hardware deep enough to cover very many long-latency
operations. There are several operations that tend to have
long latency, such as multiply, divide, and most floating-point
operations, but memory accesses present the greatest chal-
lenge to the CPU designer.

The latency of an access to PC memory can be 20–30×
the CPU cycle time, even in the best case that the access hits
an open page (or bank) in DRAM. Accesses that require
opening a page, or closing one and opening another, can take
much longer. Access time can be even longer if the processor
must contend with another device for access to the memory;
queuing theory suggests that the average service time of a
memory request increases rapidly with memory utilization.

There are plenty of opportunities to experience memory
delays; roughly every third instruction in a program is a mem-
ory operation. Clearly, steps must be taken to reduce access
time, else even the fanciest instruction-level-parallel hardware
will go for naught. Even with heroic efforts, however, memory
access time remains the biggest performance obstacle.

With today’s SDRAMs (synchronous DRAMs), it isn’t
terribly difficult to build high-bandwidth memory systems.
Unfortunately, processor performance tends to be more sen-
sitive to memory latency than to memory bandwidth, and
low memory latency is far harder to achieve. The two pri-
mary weapons in the fight against memory latency are
caching and reordering.

Caches are small, fast buffers managed by hardware to
exploit locality of reference as a means of reducing memory
latency. Caches can exploit both temporal locality (the
propensity to access the same data repeatedly within a short
time period) and spatial locality (the propensity to access
memory addresses that are close together).

When the processor first accesses a memory location,
the surrounding block of memory is brought into a cache
line and tagged with the address of the block. Thereafter,
each time the processor accesses memory, the cache tags are
checked for a match. On a match (cache hit), data is sup-
plied to the processor from the corresponding cache line. If
no match is found (a cache miss), the data is brought in
from memory, supplied to the processor, and deposited into
the cache. To the extent that locality is present, there will be
more hits than misses, and the average memory access time
(Tavg) will be reduced.

n n-1 n-2

Register
File

Reorder
Buffer

Ex Unit
Ex Unit Ld/St

 Unit

Branch

Instruction
Cache

Fo
rw

ar
di

ng Issue

Dispatch

Instruction Queue

Result Buses

Operand Buses

Mem Unit & DTLB

Instr Fetch & ITLB

Data
Cache

M
ai

n
M

em
or

y

Figure 3. A generic two-issue out-of-order superscalar processor
with reorder buffer and distributed reservation stations (purple) to
dynamically reschedule instructions.

4

© M I C R O D E S I G N R E S O U R C E S J U L Y 1 2 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

Most PC processors utilize separate instruction caches
(I-caches) and data caches (D-caches). These caches are usu-
ally accessed and tagged with physical memory addresses.
Processors translate logical addresses (program addresses)
to physical addresses via lookup in a translation-lookaside
buffer (TLB). A TLB caches recent translations of virtual-
page numbers to physical-page numbers, as well as memory-
protection attributes such as write protect. Usually there is
an instruction TLB (I-TLB) and a data TLB (D-TLB); these
are sometimes backed by a larger unified TLB. TLB misses
typically invoke a microcode routine that searches for a
translation in the OS-maintained virtual-memory mapping
tables. If none is found, a page-fault interrupt transfers con-
trol to the OS to resolve the problem.

If You Want It Fast, Keep It Close
Caches suffer from three types of misses: compulsory misses,
which occur on the initial access to a memory location;
capacity misses, which occur when the cache can’t hold all
the data being accessed; and conflict misses, which occur
when multiple memory blocks map to the same cache line.
Ignoring the program’s memory-access patterns—which
can have a large effect on cache behavior—the physical char-
acteristics of the cache determine its miss ratio. Important
characteristics include size, associativity, line length, replace-
ment policy, write policy, and allocation policy.

Compulsory misses can be reduced by increasing the
line size to take more advantage of spatial locality. Increasing
the line size, however, reduces the number of blocks in the
cache, thereby increasing capacity misses and conflict misses.
Line lengths of 32 and 64 bytes provide a good balance for
small caches and are the most commonly used sizes.

Ideally, stalls from compulsory misses could be avoided
if the compiler could boost loads so memory access could get
started ahead of the time the program will actually need the
data. Unfortunately, a load cannot generally be boosted out of
its basic block, because the block may not be executed and
the load could fault. Furthermore, it is frequently impossible
for a compiler to disambiguate memory address, forcing it to
be overly conservative. As a result, loads cannot usually be
boosted far enough to cover much memory latency.

An increasingly popular solution to the problem of
compulsory misses is nonbinding prefetch instructions.
These instructions are simply hints to the hardware, suggest-
ing it should try to fetch a memory block into the cache.
Because prefetch instructions don’t modify machine state
(registers) and are nonfaulting, they can be placed arbitrarily
far ahead of a load, allowing time for a compulsory miss to
be serviced, so the load sees a cache hit.

It Was Here Just a Moment Ago
Capacity misses are mainly a function of cache size. Large
caches have lower miss ratios than small caches; as a general
rule of thumb, miss ratio improves proportionally to the
square root of a cache-size increase: e.g., a 4× larger cache has

roughly half the miss ratio. This rule suggests rapidly dimin-
ishing returns on cache size.

Moreover, access time increases with cache size, thanks
to physics. This fact sets up a tradeoff between a small, fast
cache and a larger, slower cache. To reduce thrashing, caches
should be larger than the working set of the program.
Because working sets are sometimes too large for caches small
enough to have one- or two-cycle access times, many proces-
sors use a cache hierarchy. Two-level caches, for example,
comprise a small, fast level-one cache (L1) backed by a larger,
slower level-two cache (L2), as Figure 4 shows.

Early two-level caches consisted of on-chip L1s, with
the external L2 connected to the system or frontside bus
(FSB). FSBs are not ideal cache interfaces, however. Designed
as shared multidrop buses for DRAM, I/O, and multiproces-
sor (MP) traffic, FSBs are usually slow. A 500-MHz processor
requires an average 2.5 CPU cycles to synchronize each
memory request to a slow 100-MHz bus, adding to L2 access
time. This slow speed also throttles the burst transfers used
to fill cache lines. To minimize these effects, processors burst
data critical word first, and forward it immediately to the
processor so the pipeline can be restarted posthaste.

Multilevel Caches Move on Chip
To speed L2 accesses, many processors have adopted dual-
bus architectures, placing the L2 on a dedicated backside
bus (BSB). Because a BSB connects exclusively to the cache,
it can be optimized for SRAM transfers and can operate at
the full CPU clock rate. Since SRAMs capable of operating at
full CPU speeds are expensive, however, most PC processors
operate the BSB at half the CPU clock rate. Still, the BSB
makes a much faster L2 interface than an FSB. Some proces-
sors have taken the additional step of moving the L2-cache
tags onto the processor die to speed hit/miss detection and to
allow higher set-associativity.

With the advent of 0.25-micron processes, PC processor
vendors began bringing the BSB and the L2 on chip. The alter-
native of increasing the size of the L1s is still favored by some
designers, but the two-level approach will become more pop-
ular as on-chip cache size grows. The trend toward on-chip
L2s will accelerate with 0.18-micron processes, and external
L2s may disappear completely by the 0.13-micron generation.

DRAM
Memory

(TaccDRAM)

L2
Cache

(TaccL2)

L1
 C

ac
he

 (

T a
cc

L1
)

Processor
Core

(Tavg)

Tavg = TaccL1 + (MissL1 × TaccL2) + (MissL1 × MissL2 × TaccDRAM)

MissL1
MissL2

Figure 4. Two-level cache hierarchies are designed to reduce the
average memory access time (Tavg) seen by the processor.

5

© M I C R O D E S I G N R E S O U R C E S J U L Y 1 2 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

Although on-chip L2s are typically smaller than exter-
nal L2s, they can also be faster. On chip, the BSB can be very
wide and operate at the full CPU clock rate. In addition, the
L2 can have higher set-associativity, multiple banks, multiple
ports, and other features that are impractical to build off
chip with commodity SRAMs. These attributes can increase
speed and hit ratios dramatically, offsetting the smaller size.
On most PC applications, a full-speed 256K on-chip L2 out-
performs a half-speed external 512K L2.

Associativity Avoids Conflicts
Conflict misses can be reduced by associativity. In a nonasso-
ciative or direct-mapped cache, each memory block maps to
one, and only one, cache line. But because multiple blocks
map to each cache line, accesses to different memory ad-
dresses can conflict. In a fully associative cache, on the other
hand, any memory block can be stored in any cache line,
eliminating conflicts. Fully associative caches, however, are
expensive and slow, so they are usually approximated by
n-way set-associative caches.

As a rule of thumb, a two-way set-associative cache
has a miss rate similar to a direct-mapped cache twice the
size. Miss-rate improvement, however, diminishes rapidly
with increasing associativity. For all practical purposes, an
eight-way set-associative cache is just as effective as a fully
associative cache. A least-recently used (LRU) replacement
algorithm is the one most often used to decide into which
way a new line should be allocated (even though LRU is
known to be suboptimal in many cases).

Cache performance is also affected by a cache’s write
policy. The simplest policy is write through, wherein every
store writes data to main memory, updating the cache only if
it hits. This policy, however, leads to slow writes and to exces-
sive write traffic to memory. As a result, most PC processors
use write-back caches (sometimes called copy-back or
store-in caches). Write-back caches write to the cache, not to
memory, on a hit. Thus, a cache line can collect multiple store
hits, writing to memory only once when the line is replaced.
Most write-back caches use a write-allocate policy, which
allocates a new line in the cache on a write miss.

Who Has What?
In systems with caches, there is the nasty problem of cache
coherency. If, for example, a processor has a memory block
its cache, and an I/O device writes to an address in that block,
then the data in the processor’s cache becomes stale. If the
processor has modified the cache line, the data written by the
I/O device will be overwritten and lost permanently when the
cache line is eventually written back to memory.

Avoiding these situations with software is difficult and
error prone. With multiple processors, the problem becomes
even more complicated, and software solutions become
intractable. Although not a problem for PCs today, multi-
processors will one day become attractive. Thus, to simplify
I/O software and enable multiprocessing in the future, PC
processors all enforce cache coherence via hardware.

The most popular scheme is the four-state coherence
protocol called MESI (modified, exclusive, shared, invalid).
In this scheme, MESI status bits are maintained with each
cache line. The first time a processor writes to a shared line in
its cache, it broadcasts a write-invalidate coherence transac-
tion to other devices. Any device with a copy of the line in its
cache invalidates its copy, which, if modified, requires writing
the line to memory before allowing the processor to take
ownership of it. As an optimization, some processors allow
lines to be allocated into a fifth, owned state (MOESI) to
improve the efficiency of accessing shared data in symmetric
multiprocessor (SMP) systems.

In this coherence scheme, every processor or device
with a cache snoops (watches) every memory transaction
issued by every device in the coherence domain. If a snooped
transaction hits on a line that is held exclusively, its status is
changed to shared. If a snooped transaction hits a modified
line, the offending transaction is held off until the dirty line
can be written to memory. Alternatively, the processor with
the hit can intervene to produce the modified data, allowing
other processors and memory to snarf it off the bus.

Memory Instructions Are Different
Loads and stores have two distinct phases: address genera-
tion and memory access. Through the address-generation
phase, processors treat loads and stores just like other in-
structions. To deal with the unique characteristics of mem-
ory, however, processors generally decouple the memory-
access phase by issuing memory requests along with their
resolved addresses to a queue or a buffer in the memory
unit, as Figure 5 shows.

One important function performed by the memory
unit is load/store reordering. Store instructions are often
issued before their store data is ready. If all memory transac-
tions were forced to access memory in program order, subse-
quent loads would be blocked, unnecessarily stalling the
pipeline. To alleviate the blockage, some memory units pro-
vide store reservation stations, where stores can wait on
data while subsequent loads access memory. To ensure cor-
rect program operation, the memory unit must perform

Address Generation
(Load/Store Unit)

Cache
Tags Nonblocking Data Cache

Write Port Read Port

Result Buses
Source Operand Buses

Load/Store
Request
Queue
(in Memory Unit)

To Memory

Lo
ad

 D
at

a

Load or Store Requests

Store Reservation Stations

DTLB

Store D
ata Store Data

Forwarding

Figure 5. Some processors allow loads to bypass stores that are
waiting on data. With a nonblocking cache, load hits can access
the cache while a previous miss is waiting on data from memory.

6

© M I C R O D E S I G N R E S O U R C E S J U L Y 1 2 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

dynamic memory-address disambiguation, disallowing
any load from passing a store to the same address.

As a further optimization, some processors support
store-data forwarding, which allows store data that has
arrived in the reservation stations to be forwarded directly to
a subsequent load, thereby eliminating the load’s cache access
altogether. This feature is especially important on x86 proces-
sors, which, because of the dearth of registers, frequently
store data to memory and read it back soon thereafter.

Another important memory-unit function is hit-under-
miss processing. Without this feature, a cache miss will
unnecessarily block subsequent independent loads, stalling
the pipeline. Implementation of this feature requires a non-
blocking or lock-up-free cache. Processors that allow multi-
ple outstanding misses can also support miss-under-miss
processing.

Although store instructions are less urgent than loads
from a data-flow perspective, they can still cause stalls. In
fact, stores are a large problem in out-of-order processors,
because writes cannot be committed to memory before it is
known that all previous instructions will retire without
exception. As a result, store misses can constipate the ROB,
creating a structural hazard when it fills.

The problem is exacerbated by architectures whose
memory consistency model requires sequential consis-
tency (all memory operations must be performed in pro-
gram order, as observed by another processor). Thus, most
processors implement some form of relaxed ordering. The
x86 architecture specifies processor consistency, which
relaxes load-store order but requires strict store ordering.
PowerPC improves store throughput further with its weak
consistency model, which also allows stores (to different
addresses) to be performed out of order.

Even weak ordering, however, doesn’t eliminate the
ROB hazard entirely. Thus, processors often add other fea-
tures to improve store throughput. Write buffers, for exam-
ple, capture writes that miss the cache, allowing the store to
be committed and released from the ROB before the write to
memory actually occurs. A write-combining write buffer
collects multiple writes to adjacent addresses so they can be
transferred to memory as a single transaction, improving
write bandwidth. This latter feature is important for byte
writes to noncachable memory, like graphics frame buffers.

To DRAM Via the System Bus
Misses in the cache hierarchy are resolved by accessing main
memory over the processor’s system bus. For filling cache lines,
an important bus characteristic is its peak bandwidth—the
maximum rate at which data can be transferred across the bus.
Today’s PC system buses carry 64 bits (8 bytes) of data clocked
at 100 MHz, yielding a peak bandwidth of 800 MBytes/s.
Transmission-line problems with shared multidrop buses,
however, preclude operation much above 133 MHz. Next-
generation buses, however, will use point-to-point signaling
with source-synchronous clocking, allowing bus clocks to

reach 400 MHz (a peak bandwidth of 3.2 GBytes/s on a 64-bit
bus) or more.

Because of the long initial access time of DRAMs, the
sustained bandwidth of a bus would be much less than its
peak bandwidth if not for address pipelining. Address pipe-
lining allows addresses to overlap data transfers so the mem-
ory controller can start the next access as soon as possible.
This feature is normally implemented on a demultiplexed
bus (one with separate address and data paths). All popular
PC buses support address pipelining, although some support
more outstanding transactions than others.

Some advanced buses also implement split transac-
tions, which avoid locking up the bus and stalling the proces-
sor on accesses to long-latency I/O devices. Even more
advanced buses implement out-of-order transactions. In
these buses, request and reply transactions are distinct;
requests are tagged, so out-of-order replies can be matched
with the right request. This feature is essential for maintain-
ing high throughput in multiprocessor systems with a variety
of memory modules and I/O devices.

The Instruction Set Still Matters
Theoretically, processors based on reduced instruction set
computer (RISC) architectures are easier to parallelize and
easier to clock at high frequencies than those based on com-
plex instruction set computer (CISC) architectures. Due to
the enormous resources behind x86 processors (CISCs) and
the astronomically high transistor budgets available to
designers, however, many of CISC’s disadvantages have been
overcome. But not all flaws or omissions in an instruction-
set architecture (ISA) are easy to overcome.

One important attribute is the number of registers;
more registers can reduce memory traffic and can support
more parallelism with less hardware complexity. Related to
this is the operand format. Two-operand destructive for-
mats (RD ⇐ RD op RS) are less register efficient than three-
operand nondestructive formats (RD ⇐ RS1 op RS2).

Also important is the instruction encoding. Although
complex, variable-length instructions are code-space effi-
cient—and thus I-cache and instruction-bandwidth effi-
cient—they are harder to decode than simple, fixed-length
instructions. High-frequency x86 processors use enormous
decoders and several pipeline stages just for instruction
decode. RISC processors don’t need these extra stages.

To minimize decode time in the pipeline, some proces-
sors employ a predecoded instruction cache. These proces-
sors partially decode the instruction stream on the way into
the I-cache, storing predecoded information, typically 1 to
3 bits per instruction byte, in the cache along with the asso-
ciated instructions. This technique is especially effective for
locating the beginning of variable-length x86 instructions.

Other examples of ISA features that can affect perfor-
mance include static branch prediction, nonbinding prefetch
instructions, flat-register addressing (as opposed to the
stack-based addressing of the x87 floating-point unit), and

7

© M I C R O D E S I G N R E S O U R C E S J U L Y 1 2 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

floating-point multiply-add. This FMADD feature chains a
multiply and an add together with the latency of a multiply,
improving the performance of inner products and other
important numerical algorithms. Fusing the multiply-add
with a single rounding enables even greater speed.

A relatively new feature in ISAs is single-instruction,
multiple-data processing (SIMD). Its popularity is being
driven by the increasing demand for digital-signal processing
(DSP) and multimedia processing in PC applications. DSP
and multimedia algorithms are rich in data-level parallel-
ism. To take advantage of this parallelism, SIMD instruc-
tions operate on packed fixed-length vector operands, as
Figure 6 shows, rather than on the single-element operands
of conventional scalar instructions. Although instruction-
level parallel techniques can also exploit data-level parallel-
ism, SIMD units exploit it to a higher degree and with less
complexity.

Most SIMD ISA extensions support special features for
DSP algorithms that are not found in traditional general-
purpose processor ISAs. Saturation arithmetic, for example,
clamps overflowed or underflowed elements at their maxi-
mum or minimum values—an important feature for proces-
sing packed short integers with limited dynamic range.

Process Technology: the Silver Bullet
Unfortunately, all of the techniques reviewed so far come at a
cost. Mostly they increase complexity, which has negative
effects on frequency, die size, and power. Complexity in-
creases nonlinearly with pipeline length and with issue
width, and it is exacerbated by the cascade of tricks required
to minimize stalls. Complexity adds logic gates, slowing cycle
time or adding pipeline stages. It adds transistors, lengthen-
ing signal paths and increasing die size and cost. It also
increases design time, which, since processor performance
progresses at about 60% per year, costs 4% in relative perfor-
mance every month—a nontrivial amount.

IC process is different. Everything improves: perfor-
mance, frequency, die size, and power. No known microarchi-
tectural technique comes close to the massive improvements
made by a single process generation.

One process generation—defined as a 30% linear
shrink of feature sizes—halves die size (or doubles the tran-
sistor budget for the same die size). A smaller die size dra-
matically lowers manufacturing cost because it both in-
creases the gross die per wafer and improves yield (see MPR
8/2/93, p. 12). Yield improves exponentially with decreasing
die size because statistically fewer die are lost to defects.

Defect density is usually somewhat higher at the intro-
duction of a new process, but it improves quickly with expe-
rience and volume.

One process generation also improves the intrinsic
speed (CV/I) of transistors by 30–50%. As if these gains
weren’t enough, each generation is typically accompanied by
about a 25% reduction in voltage, which, since power is a
quadratic function of voltage (P = CV2f), cuts power con-
sumption in half. The only critical parameter that doesn’t
naturally improve with process shrinks is interconnect delay
(RC delay). Manufacturers are combating this recalcitrant
term by lowering capacitance (C) with low dielectric-
constant (low-k) insulators, and by lowering resistance (R)
with thicker metal layers or by moving from aluminum to
copper metallization (see MPR 8/4/97, p. 14).

Currently, most PC microprocessors are built on a
0.22- to 0.25-micron process with ≈0.18-micron gate lengths
(Lgate), five layers of aluminum interconnect, and operating
voltages from 1.8 to 2.5 V. Logic densities are roughly 60,000
transistors/mm2, and SRAM cells are about 10 µm2. Next-
generation 0.18-micron processes—which will begin volume
production during 2H99 at most companies—will have an
Lgate of ≈0.14 microns, six layers of aluminum or copper
interconnect, operating voltages of 1.5 V or less, logic densi-
ties of 120,000 transistors/mm2, and SRAM cells smaller
than 5 µm2 (see MPR 9/14/98, p. 1; MPR 1/25/99, p. 22).

The package is also a factor in processor performance,
cost, and size (see MPR 9/13/93, p. 12). Chips are either wire
bonded, which is the cheaper method, or flip-chip mounted
with solder bumps, which is the electrically superior method,
onto a package substrate. Plastic substrates are the least ex-
pensive, but cannot handle as much power as ceramic sub-
strates. Pin-grid-array (PGA) packages are used where
socketability is required, but surface-mount ball-grid-arrays
(BGAs) are smaller (important for notebooks), cheaper, and
electrically superior. For all package types, package costs and
test costs are a function of the number of pins (or balls).

Organic BGA packages appear to be the way of the
future. They offer a low-k dielectric substrate and a copper
lead frame for superior electrical characteristics. They also
have low cost and low thermal resistance, since a heat sink
can be directly attached to the silicon die.

Disagreement Over Microarchitecture Abounds
Aside from a state-of-the-art semiconductor process, which
is the minimum ante to play in the PC processor business,
there is considerable disagreement over which is the best col-
lection of microarchitectural features for a PC processor.
Some designers, for example, prefer complex wide-issue out-
of-order microarchitectures; others believe that simple, fast,
in-order pipelines with large caches are better. This and
other differences of opinion are evident in current and
upcoming PC processors.—

In the next installment of this article, we look at how spe-
cific PC processors use the techniques reviewed in this article.

M

ƒ ƒ ƒ ƒ

RS1

RS2

RD

X3 X2 X1 X0

Y3 Y2 Y1 Y0

ƒ(X3,Y3) ƒ(X2,Y2) ƒ(X1,Y1) ƒ(X0,Y0)

Figure 6. SIMD instructions perform the same operation on all the
elements of short vectors stored in registers.

