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Intel, HP Make EPIC Disclosure

|A-64 Instruction Set Goes Beyond Traditional RISC, VLIW

by Linley Gwennap

Breaking out of the 1980s RISC
mind set, Intel and Hewlett-Packard
have designed a new instruction
set, IA-64, geared toward the highly parallel processors of the
next decade. 1A-64 goes beyond previous CISC, RISC, and
VLIW instruction sets with a new set of features that its cre-
ators call EPIC (explicitly parallel instruction computing).
This strategy should give Merced, the first 1A-64 chip, a leg
up on its old-fashioned competitors when it debuts in 1999.

EPIC is similar in concept to VLIW (see MPR 2/14/94,
p. 18) in that both allow the compiler to explicitly group
instructions for parallel execution. This technique eliminates
much of the dependency-checking and grouping logic that
consumes an increasingly large portion of advanced RISC
and x86 processors. EPIC’s flexible grouping mechanism
solves VLIW’s two fatal flaws: excessive code expansion and
lack of scalability.

The new instruction set attacks other problems with
current architectures. With four times as many addressable
registers as a typical RISC processor, 1A-64 eliminates the
need for register renaming and reduces time-consuming
cache accesses. When cache accesses are required, speculative
loads can hide cache latency even when branches are in the
way. Some of these branches can be eliminated entirely with
predicated execution, reducing opportunities for onerous
branch mispredictions.

Speaking at the recent Microprocessor Forum, archi-
tects Jerry Huck (HP) and John Crawford (Intel) disclosed
these key features of 1A-64 but did not provide a description
of the new instruction set. Nonetheless, what was revealed
clearly tags 1A-64 as a new type of instruction set compared
with today’s RISC and x86 chips. RISC processor vendors
can’t simply retrofit these features into their existing instruc-
tion sets, forcing them to create new instruction sets or, as
Intel has in the past, limp along with an inferior design.

Compiler Provides Explicit Directions

Modern compilers analyze a program to exploit opportuni-
ties for parallel instruction execution, carefully arranging the
instructions for optimum performance on today’s super-
scalar processors. Yet the serial programming model of RISC
and CISC instruction sets forces the processor to dynami-
cally re-evaluate the compiled code, instruction by instruc-
tion, and perform its own parallelization. Today’s instruction
sets provide no means for the compiler to communicate par-
allelism to the hardware, forcing the processor to duplicate
this work using complicated out-of-order circuitry.

Combining several instructions into a single group is a
technique that dates back to early VLIW designs, but 1A-64
provides two key advantages. The early VLIW processors
suffered from severe code expansion because, in many cases,
instructions cannot be grouped due to dependencies. This
problem prevents a VLIW machine from using all the in-
struction slots in a single long instruction word.

IA-64 instructions use a unique format that allows the
compiler to direct hardware execution without severely
bloating the software. As Figure 1 shows, a single 128-bit
“bundle” contains three 1A-64 instructions along with
“template” information about the bundle. The template

127 IA-64 Bundle 0

Instruction 2

InstrEgtion 1 Instruction O

Each instruction contains:
* Opcode
« Predicate register (6 bits)
= Source 1 (7 bits)
= Source 2 (7 bits)
= Destination register (7 bits)
* Opcode extension / branch target / misc

Template contains:
* Instruction grouping
information
 Prefetch hints?

Figure 1. Three IA-64 instructions are encoded into a “bundle”
along with a “template” that provides grouping information. The
companies did not provide the width of the instructions or the
template, or details about their contents.
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indicates whether the instructions in the bundle can be exe-
cuted in parallel or if one or more must be executed serially,
due to register dependencies. The template also indicates
whether the bundle can be executed in parallel with the fol-
lowing bundle. Bundles can be chained to create instruction
groups of any length.

Although the speakers declined to describe the size or
format of the template, this grouping information could be
encoded in as few as three bits. The first bit would indicate
whether the first instruction can be grouped with the pre-
vious bundle; the second bit would indicate whether the
second instruction can be grouped with the first instruc-
tion; and the third bit would apply to the third instruction
in the bundle. This hypothetical encoding method is simi-
lar to the one used by Texas Instruments’ VLIW DSP, the
'C6201 (see MPR 2/17/97, p. 14).

This technique reduces code expansion by allowing a
single ungrouped instruction to be combined with other
instructions in a bundle, rather than forcing the rest of the
bundle to be empty, as in a VLIW design. At the other ex-
treme, the compiler can create arbitrarily long groups of par-
allel instructions without changing the bundle size.

This latter ability addresses another problem with
the original VLIW processors: their instruction sets were
mapped directly to the hardware, assuming a specific combi-
nation of function units. To run on a different VLIW proces-
sor, the code would have to be recompiled, possibly to a dif-
ferent instruction width, breaking binary compatibility.

IA-64 processors will include instruction-issue logic
to take a potentially large group of parallel instructions and
map them onto the available hardware resources. For a
group of 12 parallel instructions, one processor might take
two cycles to issue them all, whereas a more advanced
implementation might issue them all in one cycle. The same
binary code would thus run on both processors without any
modification.

This issue logic makes an 1A-64 processor more com-
plex than a pure VLIW design, but the ability to build a fam-
ily of binary-compatible processors is well worth the extra
logic. This logic is much less complicated than the issue logic
in an out-of-order superscalar processor.

A RISC processor will have a code-density advantage,
however; since 1A-64 fits three instructions rather than four
into 128 bits, it requires 33% more bits to encode the same
number of instructions. The actual impact could be a bit less,
because 1A-64 programs should require fewer loads and
stores and fewer branches than a comparable RISC program.
At the Forum, Huck characterized the code expansion as
“modest.” Code expansion will require 1A-64 systems to have
more main memory, larger caches, and higher bandwidth
than a comparable RISC or x86 system.

Large Register Set Aids Compiler
The size of the register set is one of the key features that dis-
tinguishes an EPIC processor from a RISC or x86 design.

Due to the physical constraints of 1970s manufacturing tech-
nology, x86 processors have only eight general-purpose reg-
isters. More advanced IC processes in the 1980s allowed
RISC processors to include 32 general registers.

Today, more than a decade after the first commercial
RISC chips appeared, IC technology has advanced enough to
handle a larger register set. In addition, higher CPU clock
speeds and deeper pipelines have increased the load-use
penalty (the delay caused by accessing data in the primary
data cache) from one cycle to two in many leading-edge
designs. Thus, the advantage of keeping data in registers is
greater than ever.

Recognizing these trends, the 1A-64 architects included
128 general registers and 128 floating-point registers in their
design. The compiler can take advantage of this increase by
performing more aggressive optimizations. For example,
unrolling short loops several times often increases perfor-
mance, but each instantiation of the loop requires more reg-
isters to hold additional copies of the local variables. With
128 registers, the compiler can unroll loops more often while
still leaving global variables in registers.

Most high-performance processors today use register
renaming to increase the effective size of the register file. This
technique dynamically maps the logical registers onto a
larger physical register file. Some of these processors have as
many as 64 physical registers, but because the compiler can’t
access all of them directly, they are often used inefficiently.
Furthermore, these processors must include extensive cir-
cuitry to create and maintain the register map and to recover
in case of an exception or mispredicted branch. With its large
logical register file, an 1A-64 processor needs no complicated
renaming hardware.

Compared with x86, 1A-64’s large floating-point regis-
ter file provides an extra benefit: it eliminates the x86’s pain-
ful floating-point stack architecture. In x86 code, most FP
instructions can operate only on the top of the eight-entry
stack, forcing many pointless FXCH (exchange with top of
stack) operations. RISC processors don’t suffer from this dis-
advantage but typically provide only one-quarter of 1A-64s
128 FP registers.

The larger register files will consume extra die space,
but this area will not be significant in the advanced 0.18-
micron process that will be used for the initial 1A-64 proces-
sors. Context-switch times will also increase, due to the
greater amount of context that must be saved.

The major disadvantage is an increase in instruction
size. Seven bits are needed to address 128 registers, two more
than for a RISC register file. Assuming IA-64 instructions use
three operands, like RISC instructions, the larger register file
will add six bits to each instruction. Fitting these extra bits
into a 32-bit instruction simply isn't possible, one reason that
1A-64 allows roughly 40 bits per instruction.

Predication Eliminates Some Branches
IA-64 processors will include 64 predicate registers (PR),
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each just one bit. Most 1A-64 instructions include a predicate
field; the instruction is executed only if the selected predicate
register is “true.” Predicates are generated by CMP instruc-
tions that compare the value of two registers (using a variety
of conditions). A single cmp instruction stores the result of
the comparison in one PR and automatically stores the
inverse of the comparison in a second PR. The presenters did
not specify whether cmp can perform logical operations
(AND, OR) on PRs to create compound conditions.

This mechanism allows the processor to more effi-
ciently handle the common IF-THEN-ELSE construction
with small routines in each of the blocks. Figure 2(a) shows
an example program with two instructions in each of the
THEN and ELSE blocks. In an x86 or RISC processor, the
code contains two branches, at least one of which is difficult
to predict. Furthermore, there are few opportunities for par-
allel execution: at most, only the two instructions in each of
the blocks can be executed together.

Figure 2(b) shows how an 1A-64 processor will handle
this routine. Once the cMP generates the needed predicate
values, the instructions in both clauses are simply predicated
by the appropriate value. This technique completely elimi-
nates both branches, reducing code size and avoiding the
opportunity for a multicycle misprediction penalty.

Another key benefit is the increased opportunity for
parallel execution. Clearly, instructions 5 and 6 will not have
any dependencies on instructions 3 and 4, so they can be exe-
cuted in parallel. This doesn’t really save any time, since a
traditional machine would have executed either one set or
the other. By merging all the instructions into a single
basic block, however, instructions 7 and 8 (and subsequent
instructions) can now be easily grouped with preceding
instructions for parallel execution. Similarly, instructions
1 and 2 can be grouped with instructions 3-6, assuming the
compare doesn’t depend on their results.

Predicated, or conditional, execution is part of the
ARM instruction set (see MPR 12/18/91, p. 11), generally
considered to be a RISC architecture. ARM instructions can
be predicated only on the current condition codes, however,
preventing multiple conditions from being precomputed
and used simultaneously. Both Philips’ Trimedia (see MPR
12/5/94, p. 12) and the ’C6201 DSP store predicates in regis-
ters, but Trimedia uses the general registers, wasting an
entire register to store a single bit. Like 1A-64, the TI DSP has
separate predicate registers, but only five of them.

Several desktop RISC architectures—including Alpha,
SPARC v9, and MIPS IV—have conditional-move instruc-
tions. These instructions offer some of the benefits of predi-
cated execution, but only for move operations. The 1A-64
method is much more flexible, allowing any type of instruc-
tion to be conditionally executed.

Not all branches can be removed using predication.
HP’s Huck quoted a study from the University of Illinois
(see www.crhc.uiuc.edu/impact/papers/topic.html) showing
that, in an eight-issue machine, predication could eliminate
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Only limited information about 1A-64 is available at
this time. For more information, access Intel’s Web site at
www.intel.com/pressroom/kits/events/mpf1097.htm.

more than half of all branches in a typical program and
43% of all mispredictions. Merced is likely to be roughly an
eight-issue machine, and removing half of all mispredic-
tions could boost its performance by 5-10%.

Speculation Hides Memory Latency
Despite the large register file in |A-64, many instructions will
need to load data from memory. Many processors today
require only one cycle to access data in the primary cache,
but by the time Merced debuts, two-cycle data caches will be
common; in fact, both Pentium Il and HP’s PA-8x00 use
two-cycle caches today. If a load misses the primary cache, a
hit in the second-level cache takes several cycles to complete.
If the data is needed by a subsequent instruction, the entire
processor might grind to a halt until the cache access is com-
pleted. Stalling an eight-issue machine for even two cycles
wastes 16 issue slots, a problem that will grow worse as issue
widths continue to increase in future 1A-64 processors.
Out-of-order processors handle this situation by exe-
cuting nondependent instructions while the load is being
processed, dynamically reordering the instruction flow. This
mechanism requires extensive and complex circuitry that
consumes die space and is difficult to debug. It has the
advantage, however, that if branches are predicted correctly,
instructions that follow a conditional branch can be exe-
cuted during the latency of the load.

(a) RISC or CISC code (b) IA-64 with predication

instr 1 instr 1
instr 2 instr 2
IF cmp(a==b) pl, p2 —cmp(a==h)
jump_equ Ibl1 (1) instr 3
instr 3 (p1) instr 4
THEN instr 4 (p2) instr 5
jump Ibl2 (p2) instr 6
ELSE | Ibl1: instr 5 ?nstr 7
instr 6 instr 8
Ibl2: instr 7 .
instr 8

Figure 2. (a) In a RISC or CISC processor, branches control the
program flow between THEN and ELSE clauses. (b) Predication
eliminates the branches and allows the two clauses to be merged
into a single basic block.
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LD.S
instr 1 instr 1
instr 2 instr 2
jump_equ jump_equ
Barrier /
LoaD =~ cHks =~
use use
Home Block Home Block

Figure 3. A traditional load must be placed within the same basic
block as the “use” instruction, but a speculative load can be
moved further up, providing more instructions to fill the hardware
latency between the load and the use of its data.

The 1A-64 designers wanted to eliminate this com-
plex out-of-order logic, but stalling for load latencies
would demolish any performance advantage. The obvious
solution is for the compiler to insert nondependent
instructions between a load and the first instruction that
uses the data, enough to hide the latency. This code trans-
formation is difficult, however, when a conditional branch
is in the way, as Figure 3 shows. If the load is put before the
branch, it would get executed even if the branch goes the
other way. While this mistake could simply waste some of
the processor’s time, the situation becomes intolerable if
the load generates an exception that never would have
occurred if the load had been executed in the correct pro-
gram sequence.

The solution, as implemented in 1A-64, is a speculative,
or nonfaulting, load. A speculative load, indicated by the .S
suffix, will not trigger an exception; instead, if an exception
occurs, the target register will be marked invalid. This is a
fairly simple mechanism, requiring only that each register
have a valid bit. As Figure 3 shows, a CHK.S instruction is
later used to check whether the register contents are valid; if
not, an exception occurs. The CHK.S instruction is typically
placed before the first usage of the loaded data.

Using this mechanism, the load can be placed as early
as possible in the code, as long as the address can be com-
puted. If the data is never checked, no exception will be trig-
gered; if an exception occurs when the data is needed, the
exception will be recognized in the load’s original “home
block.” Speculative loads thus provide the compiler with
maximum flexibility to hide cache latency.

The need for the CHK.S instruction isn’t clear. Presum-
ably, the “use” instruction (the first instruction to use the
data) could check the valid bit of the register and signal an
exception. Intel’s Crawford claimed there was a good reason
for the separate CHK.S instruction and that it would be
revealed “at a later date.”

SPARC v9 (see MPR 2/15/93, p. 1) and PA-RISC 2.0
both allow data to be prefetched without signaling an excep-
tion if the address is invalid. Both RISC designs put the data
into the cache but not into a register, however, so a subse-

quent load instruction is needed before the data can be used,
costing at least one cycle. The 1A-64 approach is superior in
that it eliminates this delay.

Other New Features Likely

The initial disclosures of 1A-64 closely match our previous
expectations (see MPR 8/5/96, p. 14). Other features we
expect to see in 1A-64, but that were not disclosed at the
Forum, include branch-prediction hints, multiway branches,
and instruction-prefetch hints.

HP’s PA-8x00 processors (see MPR 11/14/94, p. 1) rely
on compiler-driven branch prediction. In this design, the
compiler sets a bit in each branch indicating whether it
should be predicted taken or not taken. This method can
improve prediction accuracy for many branches, particularly
on the first iteration. Other branches are better predicted
using dynamic methods, such as branch-history tables. \We
expect 1A-64 to include both compiler-driven and dynamic
prediction methods.

Multiway branches are useful in combination with
predication. As described, predication can be used to com-
bine two instruction streams after a conditional branch. If
one or both instruction streams contain another conditional
branch, a multiway branch would be an efficient way to
transfer control to the correct path. Because a three- or four-
way branch would require multiple target addresses, the
extra bits in the 1A-64 encoding might come in handy.

Speculative loads address the problem of data-cache
latency, but instruction caches have a similar problem.
Prefetching instructions into the cache before they are
needed will hide nasty cache-miss penalties. 1A-64 is likely to
include some mechanism to do this, either through explicit
instructions or a “hint” in the template field.

In other ways, 1A-64 is likely to resemble today’s RISC
instruction sets. As the name implies, it will be a full 64-bit
architecture, with 64-bit registers and a 64-bit addressing
model, much like Alpha and other RISC processors. The FP
registers are likely to be 80 bits wide, for compatibility with
x86 programs. We expect 1A-64 to use a load/store model,
eliminating the x86’s operations on data in memory.

The individual 1A-64 instructions will include the
standard array of arithmetic, logical, and floating-point
operations. The instruction set will also include MMX-like
features, packing several data words into a single register
and operating on them in parallel. Although the vendors
would not discuss the details of these instructions, they are
likely to offer both parallel integer and parallel FP opera-
tions.

IA-64 is a bi-endian architecture, providing data-set
compatibility with both the little-endian x86 and the big-
endian PA-RISC. Intel did not otherwise discuss compatibil-
ity with x86, but it has said Merced will execute all x86
instructions in hardware. We expect the chip to include an
x86-to-1A-64 translator and support intermixing of x86 and
IA-64 routines (see MPR 3/31/97, p. 16).
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Intel architect John Crawford ex-
plains the benefits of moving to
an EPIC architecture.

HP architect Jerry Huck describes
key features of the forthcoming
IA-64 instruction set.
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Intel Fellow Fred Pollack says his
company plans to follow Merced
with an even faster 1A-64 chip.

Intel Reveals Little of Merced

When Intel and HP first announced their partnership (see
MPR 6/20/94, p. 1), they committed only to delivering a pro-
cessor “before the end of the decade.” At the Forum, Intel’s
Fred Pollack confirmed that Merced is on target for shipments
in 1999, using a 0.18-micron process; we expect it to appear in
systems around the middle of that year.

With two years to go before the first processor ships,
Intel remains mum about any details of the Merced design,
despite widespread speculation (see MPR 3/10/97, p. 9). We
expect the first 1A-64 chip to combine the radical new proces-
sor core with extensive x86 compatibility logic and a large on-
chip cache. To support the high-performance core, the exter-
nal interface is likely to provide much higher L2 cache and
system bandwidth than Intel’s current chips.

Even with just the features disclosed at the Forum, any
1A-64 chip will have an inherent performance advantage over
processors using current RISC or x86 instruction sets. Craw-
ford demonstrated how predication and speculation alone
could nearly double performance on a simple program, the
Eight Queens loop. Real applications are unlikely to see such a
performance increase, but a 30-50% architectural advantage
is realistic.

Merced, however, probably won’t demonstrate the full
benefits of the instruction set, at least at first. For any new
instruction set, compilers take some time to mature; all the
simulation in the world can’t match the development that can
be done on dozens of real machines, and these won'’t be avail-
able until late next year. Thus, the initial benchmarks won’t
reflect the full performance of the processor.

Merced may also be hampered by the x86-compatibility
logic. Even if this logic doesn’t reduce clock speed or native-
mode performance, its mere existence consumes die area that
could have been used to enhance native performance.

Still, the advantages of 1A-64 should provide a potent
weapon. Pollack asserted that Merced will deliver “industry-
leading performance” when it first begins shipping.

That lead is likely to grow over time as the 1A-64 com-
pilers mature and Intel squeezes more clock speed out of the
Merced design. Pollack revealed that work has already started
on a follow-on to Merced that will offer up to twice the per-
formance of the initial chip in the same IC process. That
chip, due in 2001, is likely to combine an even more power-
ful EPIC core with a new system interface that boosts perfor-
mance to spectacular levels.

EPIC Offers Potential Performance Advantage
The EPIC design style offers clear advantages over today’s
RISC and x86 instruction sets, but it is not entirely new.
Crawford pointed out that many of the ideas come from pre-
vious RISC and VLIW machines as well as from recent acad-
emic research. The concept of a large register set is certainly
not new, but no currently popular instruction set can directly
address as many as 128 registers.
The definition of EPIC is likely to be argued for as long

as the definition of RISC was, but we’ll take a first shot:

* Parallel instruction encodings

* Flexible instruction grouping

* Large directly addressable register file (128 or more)

* Fully predicated instruction set
Current processors such as Trimedia and the 'C6201 could be
considered EPIC-like, and other vendors may create EPIC
instruction sets in the future to compete with 1A-64. Any new
instruction sets, however, would cost billions of dollars to
develop and would break compatibility with existing systems
and applications, making it difficult to compete with Intel.

Ultimately, the best EPIC processors should establish a

significant performance gap over RISC processors, much as
the top RISC processors consistently offer better perfor-
mance than CISC chips. Implementation issues will remain
important: a strong RISC processor might match the perfor-
mance of a weak EPIC design. But until other companies
move to EPIC, 1A-64 should help Intel change from a perfor-
mance laggard to a performance leader.
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