
Applications Tuning for Streaming SIMD Extensions 1

Applications Tuning for Streaming SIMD Extensions

James Abel, Kumar Balasubramanian,
Mike Bargeron, Tom Craver, Mike Phlipot, Microprocessor Products Group, Intel Corp.

Index words: SIMD, streaming, MMX™ instructions, 3D, video, imaging

ABSTRACT
In early 1997, Intel formed an engineering lab whose
charter was to apply a new set of instructions to the
optimization of software applications. This lab worked
with commercial software companies to increase the
performance of their applications by using these new
instructions. Two years later, this new instruction set has
been made public as a principal new feature of the
Pentium® III processor, the Streaming SIMD Extensions.
Many of the commercial software companies’ applications
on which the lab consulted have been brought to market,
demonstrating significant performance improvements by
using the Streaming SIMD Extensions. This paper
describes many of the principles and concepts developed
as a result of that activity.

The Streaming SIMD Extensions expand the Single
Instruction/Multiple Data (SIMD) capabilities of the
Intel® Architecture. Previously, Intel® MMX™
instructions allowed SIMD integer operations. These new
instructions implement floating-point operations on a set
of eight new SIMD registers. Additionally, the Streaming
SIMD Extensions provide new integer instructions
operating on the MMX registers as well as cache control
instructions to optimize memory access. Applications
using 3D graphics, digital imaging, and motion video are
generally well suited for optimization with these new
instructions.

Data organization plays a pivotal role in the performance
of applications in the above areas. This paper explores
three data organizations (Array of Structure, Structure of
Array, and Hybrid data orders) and their impact on SIMD
processing performance. The impact of cache control
instructions, such as the prefetch instructions, is also
examined.

Examples of applying the Streaming SIMD Extensions to
3D transform and lighting, bilinear interpolation, video
block matching, and motion compensation are considered.

The principles applied in these examples can be extended
to many other algorithms and applications.

INTRODUCTION
It is desirable to have many products available at the initial
launch of a processor to help establish consumer interest.
The development of these products begins with
understanding the full potential of the new processor.
This process requires optimizing select algorithms to
achieve maximum performance. For the Pentium® III
processor, that activity started in 1997 with a focus on the
Streaming SIMD Extensions.

Although applicable to a wide variety of programs, the
extended instruction set is designed to be especially
effective in applications involving 3D graphics, digital
imaging, and digital motion video. The purpose of this
paper is to describe how those particular applications are
best optimized with the new SIMD instructions.

Rather than optimize an entire application, specific
algorithms or components were selected that would offer
the best speedup. Analysis tools such as the VTune™
Performance Enhancement Environment [1] identified the
most processor-intensive components of an application.
The identified components were further examined for
algorithms that execute similar operations on large data
sets with a minimal amount of branching.

Data flow in and out of the processor is an important
element in optimization so various data organization
strategies were tested, including the impact of prefetch.

All algorithms were coded with and without the Streaming
SIMD Extensions. The two versions of the algorithms
were run on the same Pentium III processor platform to
determine the relative performance difference.

Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 2

DATA AND THE STREAMING SIMD
EXTENSIONS
This section examines issues that must be taken into
account to achieve the best possible performance with the
Streaming SIMD Extensions. The order of data in memory
and the methods by which such data are moved to and
from the processor can have a significant impact.

SIMD and Memory Interactions
The floating-point instructions in Streaming SIMD
Extensions generally operate “vertically”; that is, they
operate between corresponding positions of the SIMD
registers, or the equivalent positions of data being loaded
directly from memory. Since the same operation must be
done to all four floating-point values in a register, typically
the best approach is to use each of the four positions of
an SIMD register to store the same variable of an
algorithm, but from different iterations. For example, if the
algorithm is A[j] = B[j] + C[j], one would want to put four
B’s in one register, four C’s in another register, and use a
single SIMD add operation to create four resulting A’s.

Each SIMD register can be thought of as a small array of
data. A set of these registers can be thought of as a
structure of arrays (SoA for short):

struct { float A[4], B[4], C[4]; } SoA;

This SoA approach is not always applicable. In the
equation B[j] = B[j-1] + C[j], the dependency between
iterations would require a different approach.

The Pentium® III processor typically loads data from
memory 32 bytes at a time, from 32-byte aligned addresses.
Each 32 bytes is stored to one “cache line” of the L1
and/or L2 caches. Frequent use of instructions that load
or store data that is split over two cache lines will cause a
significant performance penalty.

Most of the Streaming SIMD Extensions floating-point
instructions that access memory require a 16-byte aligned
address, thus avoiding the penalty. The movups,
movlps, and movhps instructions were included to
support unaligned accesses , at the risk of incurring the
penalty. The movlps and movhps instructions can
access 8-byte aligned addresses without penalty, since
they move only 8 bytes at a time (compared to movups
which move 16 bytes).

Using the Prefetch Instructions
Prefetch instructions can be useful for algorithms limited
by CPU processing speed, ensuring that data is always
ready as soon as they can be used. The prefetch
instructions load data ahead of use, thereby hiding load
latency so that the CPU can take full advantage of memory

bandwidth. The Pentium III processor loads data to cache
when a cache line is written to, so prefetches can also
reduce latency for storing data.

Prefetch instructions can be useful for memory bandwidth-
limited algorithms as well. For example, the
prefetchnta instruction fetches data only to the L1
cache, avoiding some overhead incurred when data is also
loaded to the L2 cache (as occurs with normal load and
store).

Loading data only to the L1 cache, if it is not going to be
needed again soon, also avoids unnecessarily evicting
data from the L2 cache. When data is unnecessarily
evicted, it can impose a double penalty. Modified cache
lines that are evicted must be written back to memory and
reloaded later when they are again needed.

The prefetcht2 instruction might be used to load the
L2 cache with a data set larger than can fit in the L1 cache.
Meanwhile a CPU speed-limited algorithm could be
executing and randomly accessing data. As it proceeds, it
would find more and more of its data in the L2 cache.

To get the most efficient use of prefetch, loops should be
unrolled (i.e., multiple passes of the algorithm should be in
each loop iteration) so that each iteration prefetches and
uses one cache line worth of each variable of the
algorithm.

Data Order and SIMD Algorithm Performance
The SoA order is the most natural order for SIMD
operations, so it would seem equally natural to use it as an
order for data in memory:

struct
{

float A[1000], B[1000], C[1000];

} SoA_data;

In some cases, this approach can work fine. But for a
larger number of structure members, SoA can have
memory access performance penalties. PC memory
systems can only keep a limited number of pages
(typically 4KB blocks) of memory “open” for fast access.
If the number of members exceeds that number, so that
each set of four values used in a SIMD computation must
come from a different area of memory, the memory
subsystem may spend inordinate amounts of time “re-
opening” pages.

An Array of Structures (AoS) data order is more
conventional in non-SIMD programming:

struct
{

float A, B, C;

Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 3

} AoS_data[1000];

Sequential processing through an AoS data set will find
needed data close together in memory, thus avoiding the
“open pages” limitation of SoA. However, the data are
clearly not well ordered for SIMD computations.

The solution to this is generally to load the AoS data into
SIMD registers and convert them to the SoA format via
data reordering (“shuffling”) instructions. This process
can be thought of as “transposing” the data order. See
Figure 1.

Figure 1: Transposing from AoS to SoA

While there is some performance cost due to this
transposition, this approach generally works reasonably
well, and may be the only viable solution if other factors
mandate an AoS data order in memory. Existing data may
be in AoS format; existing programs may have interface
specifications that require AoS data; or data may be
randomly accessed rather than sequentially accessed.

The Pentium III processor loads 32 bytes at a time from
memory to cache. If there are members in an AoS
structure that are not needed in the current computation,
they will nonetheless be pulled across the memory bus,
incurring unnecessary bus overhead, and limiting
performance.

Data caching can sometimes offset this overhead by
keeping data in cache until they are needed in a
subsequent processing step. But for large data sets, the
cache may not be large enough, and data may be evicted
before they can be used. In general, it is a good idea to
limit AoS structures to just members that will often be
used at the same time. (This applies to non-SIMD code as
well.)

It would be preferable, when AoS is not forced on us by
external factors, to find a data order that preserves the
AoS data adjacency, while supporting the SoA load order.
An example of this “hybrid” data order is

struct
{

float A[8], B[8], C[8];

} Hybrid_data[125];

As with SoA, this order allows the processor to load four
values at a time (e.g., with movaps) from any member
array. While structure members with the same index are
not immediately adjacent, they are still close enough that
they will usually be in the same memory page.

If a hybrid structure starts 32-byte aligned, the data will
remain 32-byte aligned (since there are eight entries in
each of the 4-byte float sub-arrays). This is convenient
for Streaming SIMD Extensions instructions that require
16-byte alignment, as well as for prefetching a full cache
line that contains just one particular member. For
sequential processing of large data sets, it reliably
provides good results.

Figure 2 illustrates the impact of SIMD and data order on
the performance of a dot product algorithm.

Hybrid SoA - SIMD

SoA - SIMD

AoS Transposed - SIMD

AoS - SIMD

AoS - C code

450MHz Pentium® III Processor Clocks
with a 100MHz Frontside Memory Bus

xyz xyzabc

Figure 2: Data order and performance

A dot product was done between vectors of two large sets
of 3-component (xyz) vectors. All were coded in C: The
Streaming SIMD Extensions versions were implemented
using “intrinsic functions” built into and optimized by an
Intel® compiler. All use prefetch instructions to optimize
the use of memory bandwidth. The “xyz” bars represent
tests with data structures having only three members in
the data structure, while the “xyzabc” bars represent tests
where three extra structure members, not involved in the
dot product, were included in the data set.

The Hybrid SoA approach gave the best overall
performance. AoS algorithms did poorly (and became
memory bound) when extra members were included in the
same structure. The SoA and Hybrid SoA algorithms were
nearly immune to extra structure members. The Streaming
SIMD Extensions provided some small benefit to the AoS
‘xyz’ algorithm if the dot products were done one at a time
(AoS – SIMD), and somewhat more if the data were

Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 4

transposed to SoA form before processing. The SoA
algorithm was fully memory limited; it was unable to
approach the best performance despite the natural SIMD
ordering of data.

Optimizing Memory Use for Block Processing
Block processing algorithms typically read sequentially
through a large array of data, modify the data, and write
out to another large array. For example, converting an
image from RGB format to YUV format entails sequentially
reading the RGB components, computing the equivalent
YUV components, and writing the latter out to a new array.
An even simpler example is a block copy.

Many such algorithms will be memory bound, so anything
that optimizes the flow of data is highly desirable. One
attribute of such algorithms is that typically they process
data once, and need not touch them again. In such a case,
there is little point in saving results in cache, where they
might displace other useful data.

The streaming store instructions (movntps, movntq)
can be used to write results to the destination memory
buffer without going through the caches. However, these
instructions work best if they can take full advantage of
write combining. Any access to memory or the L2 cache
can cause premature flushing of the write-combining
buffers, resulting in inefficient use of the memory bus.
While writing out results with the streaming store
instructions, data should only be read from the L1 cache,
to avoid this performance penalty.

To ensure this is the case for a block-processing
algorithm, a loop can be added that uses prefetchnta
to read a sub-block of data (typically about 4KB) into the
L1 cache. A normal processing loop would follow this ,
reading the L1 cached sub-block of data and writing
results out with streaming store instructions. An outer
loop, around both of the sub-block loops, would go
through all the sub-blocks that make up the data set. One
key issue arises when using this approach. The prefetch
instructions only work when the virtual memory page
addressed by the prefetch is mapped to a physical memory
page by the Translation Lookaside Buffer (TLB) in the
Pentium III processor. Typically the TLB is updated for a
page the first time that page is accessed. Since the TLB
has a finite number of entries (e.g., 64), page mappings
that have not been used recently may no longer be cached
in the TLB, which means the prefetch will not work.

To make sure the prefetches work, one merely needs to do
one read from each 4KB memory page of the source data,
shortly before starting the prefetch loop. Since initializing
the TLB will take a while, if the read is done right before
the prefetch loop, many of the prefetches might be quickly

executed with no effect. This can be adjusted for in a
variety of ways. For example, one can read once from an
address 4KB ahead of the address where the prefetch loop
begins, making sure not to read past the end of valid data.

The approach of breaking data into cache-fitting sub-
blocks can also be useful if one wishes to do multiple
passes over data that cannot all fit into cache. For
example, one might wish to do a sequence of processing
steps, each taking the previous step’s output as its input.

If one were to do each processing pass separately,
intermediate results would have to be written out to
memory and later reloaded from memory for the next step.
Instead, one can often do all passes over each of many
smaller, cache-fitting blocks, thereby minimizing memory
data bus traffic.

TUNING 3D APPLICATIONS
In a typical 3D geometry engine, one would expect to find
various functional components such as transformation,
lighting and shading, clipping, culling, and perspective
correction modules [2]. Deciding which component
should be optimized can be difficult. Using the criteria
discussed in the introduction, the transform and lighting
functions were determined to be good candidates for
optimization using the Streaming SIMD Extensions.

Transform and lighting functions are compute-intensive,
SIMD-friendly inner loops that perform the same operation
on large amounts of contiguous data. Use of the prefetch
instruction allows data in either loop to begin loading
several iterations prior to their use. The new
approximation instructions are beneficial in eliminating
long-latency square-root and division operations in the
lighting loop, or in the transform loop when perspective
correction is performed. Finally, clamping to a range of
values within the lighting loop can be replaced by the new
packed min/max instructions, eliminating two
unpredictable branches per iteration.

The details of each optimization method are discussed
below. In each case, data order and alignment are as
discussed in the previous section.

3D Transform
The 3D transform is performed by multiplying a 4x4
transformation matrix by a 4-element vector. The vector is
comprised of vertex elements X, Y, Z, and the constant 1,
while the transformation matrix itself is calculated
individually for each object in the scene. This operation
produces intermediate values X', Y', Z', and W'. In some
cases, the W' value is immediately used to normalize the
intermediate vector (perspective divide), generating final
values X", Y", and Z". Since the final result of the fourth

Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 5

element is always 1.0, the division of W' by itself can be
ignored.

3D Transform Optimizations
Because the same transformation matrix applies to all
vertices of a given mesh, and since there is a large amount
of data to be processed, the transform was found to be a
good candidate for SIMD programming. To experience the
largest benefit from the Streaming SIMD Extensions, the
full capacity of the SIMD registers was exploited. One
register was loaded with four X values, X0, X1, X2, and X3,
another with four Y values, and yet another with four Z
values.

The first set of matrix elements was then loaded into a
fourth register. To do this, two methods were possible.
Each matrix element could either be (1) stored as a single
floating-point value in memory, read into the lowest
position of the 4-wide register using movss, then
replicated four times using the shufps instuction; or (2)
the element could be stored as an array of four identical
floating-point values, aligned on a 32-byte boundary and
read in four at a time using the movaps instruction. The
latter proved to be optimal. Storing the entire matrix in this
manner did increase the immediate size of the structure
from 64 bytes to 256 bytes, but this was a small price to
pay for the performance gained.

Matrix elements m01, m02, and m03 were loaded from memory
in a similar fashion. With all of the data in registers in true
SIMD format, the transform became a simple series of
three multiply instructions followed by three addition
intructions for each set of results (see Figure 3). Knowing
that the same vertex data used to calculate the X' results
would be needed to compute the Y' results, instructions
were used in such a way as to overwrite the registers
containing matrix data. Once this set of computations was
completed, intermediate values X0', X1', X2', and X3' were
written to a 32-byte aligned output buffer.

Figure 3: The SIMD transform produces four results
while the conventional transform produces only one

The process was repeated for the first four Y values, this
time loading matrix elements m10, m11, m12, m13, and again
for Z' and W', with each of their respective matrix elements.
The final result of the first transform iteration was 16
intermediate values. If at this point of the pipeline, a
perspective divide is done, the rcpps instruction is of
tremendous benefit. (See the section entitled 3D Lighting
Optimizations for more details.) Figure 4 compares the
results of the Pentium III processor-specific code with the
optimizations discussed above and a standard ‘C’
implementation of the same algorithm.

100 200 300 400 500

vertex count

SoA 'C' Code

Streaming
SIMD
Extensions
'ASM'

Figure 4: Transform cycle time for optimized Pentium®
III processor assembly versus conventional 'C' code

3D Lighting
The point light is probably the most widely used light
source in 3D graphics applications. To apply a point light
to a given vertex, the vector from the vertex to the light
source is first calculated. The length of this vector is
computed and used to normalize the vertex-to-light vector.
From the normalized light vector, the diffuse component of
the current vertex is computed. Finally, the overall vertex
color is calculated and checked to ensure that it falls
within the range of [0.0, 1.0]. Values exceeding the range

Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 6

in either direction must be “clamped” to either the upper or
lower bound. Once vertex color values are computed and
clamped, they are stored to memory for use at render time.

3D Lighting Optimizations
The lighting distance calculation involves a standard
square-root of a sum-of-squares. Again the full capacity
of SIMD registers was used by loading four vertex values
into each register and calculating the distance of four
vertices from the same light source simultaneously. The
normalization of the light vector was then performed by
dividing the vector itself by the previously calculated
distance. Though seemingly simple, these steps require
two long-latency floating-point operations, the square-
root and the divide, each of which requires about 36 clock
cycles to complete. Beyond that, they are “unpipelined”
instructions, meaning that no other instruction may be
submitted to the execution port on which they are
executing until the given instruction retires.

To overcome this, the Streaming SIMD Extensions include
rsqrtps and rcpps, reciprocal approximation
instructions that allow developers to accomplish the same
workload as the long-latency instructions in a shorter time.
By performing hardware table look-ups, these instructions
have a reduced latency of two clock cycles and are fully
pipelined, so that other operations may be issued during
their execution. As a tradeoff, the instructions guarantee
at least 11 bits of mantissa precision, as opposed to the
full 23 bits offered by true single-precision instructions.
Though 11 bits is typically enough for most 3D
applications, some applications may require (or prefer)
more.

The Newton-Raphson method is a mathematical algorithm
designed to regain precision lost by this type of
approximation. A single-pass Newton-Raphson iteration
doubles the resultant accuracy to 22 bits; the 23rd bit can
be recuperated after a second pass. An approximation
followed by a single iteration is notably faster than its
long-latency equivalent and can be determined by

rcp'(a) = 2*rcp(a) – a*rcp(a)2

rsqt'(a) = (0.5)*rsqt(a)*(3-a*rsqt(a)2)

Four normalized direction vectors were generated by
multiplying the reciprocal square root of each distance
squared by the previously calculated light vector. These
values were then used to calculate the diffuse component
of the vertex color.

The diffuse calculation involves a dot product of two
vectors and could potentially produce a negative result.
Graphics applications typically overcome this by
performing a less-than-zero check and setting the value to
zero if ‘true.’ This type of unpredictable, conditional

branch performed once per iteration can be a performance
bottleneck. To eliminate the branch, a maxps instruction
was performed on the register of four diffuse results and a
4-wide register of 0.0 values. The max instruction zeroes
out the negative values, while permitting non-negatives to
pass through unchanged.

A similar optimization can be performed when calculating
the final vertex color. This time, the tendency is for the
value to exceed 1.0. The minps instruction clamps
values, above the threshold, to 1.0 without the use of
conditional branching. Large advantages of lighting
optimizations versus a standard ‘C’ language lighting
function are shown in Figure 5.

100 200 300 400 500

vertex count

SoA 'C' Code

Streaming
SIMD
Extensions
'ASM'

Figure 5: Lighting cycle time for optimized Pentium® III
processor assembly versus conventional 'C' code

DIGITAL IMAGING
Digital imaging applications are typically comprised of
algorithms wherein a small set of mathematical operations
needs to be performed on large volumes of pixel data.
Furthermore, each pixel consists of four components: Red,
Green, Blue, and Alpha values. Hence, MMXTM

technology significantly enhanced the performance of
digital imaging applications. As most state-of-the-art
imaging applications continue to embed richer video and
graphics capabilities, the applications continue to demand
much higher performance. The Pentium® III processor,
with its associated Streaming SIMD Extensions, helps
meet these new performance goals. The remainder of this
section discusses how some of these new features help
digital imaging algorithms enhance performance beyond
those already achieved through MMX technology.

INTEGER SIMD EXTENSIONS
When implementing an SIMD imaging algorithm, one
often encounters the need to rearrange data within an
MMXTM register. The integer SIMD extensions include a
shuffle instruction (pshufw) to enhance the performance
of such frequently used operations. For example, an

Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 7

efficient SIMD implementation of alpha saturation would
compare all of the R, G, and B components with the
corresponding alpha value in parallel. To be able to do so,
the alpha value itself needs to be replicated in a different
MMX register as shown in Figure 6.

G RA B

A AA A

PSHUFW MM0, MM0, 0xFF

MM0

MM0

Figure 6: Broadcast alpha value

While this requires three instructions in MMX
technology, the new instruction set would need just one.

Quite often, data-dependent branching has been an
impediment in the process of mapping certain imaging
algorithms to SIMD. For example, after computing an
intermediate set of RGBA values, another set of
computations might need to be executed if any of the R, G,
B, and A values were below a certain threshold value. In a
typical MMX implementation, the result of the condition
check would be multiple mask patterns within an MMX
register. However, extracting the required bits from these
mask patterns into a register that can be used for
addressing is usually very cumbersome. In certain cases,
this might even negate the performance gains from an
SIMD implementation of the algorithm. The new
instruction pmovmskb addresses precisely this need. It
extracts the required bits from the mask patterns in the
MMX register and places them in a register that can be
used for addressing.

Table look-up operations, such as the ones found in
histogram-related algorithms, have always been critical to
the performance of digital imaging. In such cases, each of
the computed R, G, and B values is used as an index into
its respective color look-up table. Such operations have
been difficult to implement in MMX technology due to the
fact that the computed RGBA values would be residing in
an MMX register, which could not be used directly for
addressing. Extracting each of them into the appropriate
registers for addressing, fetching the contents from the
table, and inserting them back into MMX registers was
cumbersome and detrimental to performance. The integer
SIMD extensions include a pair of instructions
(pinsrw/pextrw) that helps enhance the performance
of such algorithms.

In addition to the instructions mentioned above, the new
integer SIMD extensions include several others that help

enhance the performance of frequently used imaging
algorithms. For example, the SIMD unsigned multiply
instruction helps in the implementation of certain filter
operations that were cumbersome using MMX
technology. Likewise, the minimum/maximum instructions
are useful during alpha saturation for bound checks, and
the complete set of comparison operators facilitate all
condition checking.

SIMD FLOATING-POINT
Current imaging implementations primarily involve fixed-
point integer arithmetic. However, most state-of-the-art
imaging applications are increasingly richer in their
graphics capabilities and in their image quality. The
algorithms therein should benefit significantly from the
SIMD floating-point capability of the Streaming SIMD
Extensions. Even if the underlying algorithms are
implemented in floating-point, the enhanced floating-point
performance helps yield near real-time response to typical
user requests. Also, for intermediate results, the extra bits
of available precision in a floating-point representation
(relative to 16-bit fixed point) helps yield superior image
quality. Moreover, implementing the algorithms in
floating-point form reduces the need to deal with fixed-
point arithmetic. This greatly boosts productivity by
easing the task of code development, debugging, and
maintenance. In imaging algorithms, the fundamental data
object (RGBA pixel value) is of type integer. However, for
the above-mentioned reasons, such as the need for extra
precision and programming ease, several data
transformations are implemented in floating-point. SIMD
floating-point capability significantly enhances the
performance of these implementations. The following
bilinear interpolation example helps illustrate the usage of
some of these SIMD floating-point instructions and also
highlights some of the performance tradeoffs involved.

Bilinear Interpolation Example
The RGBA value of each pixel in the display image is
calculated by a bilinear interpolation using RGBA values
of four neighboring pixels in the source image (see Figure
7).

Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 8

P0 P1

P

s

t

s1 = 1.0 - s

t1 = 1.0 - t

P3 P2

P01

P23

Figure 7: Bilinear interpolation

The R component of pixel P is calculated as follows:
R01 = t1 * R0 + t * R1

R23 = t * R2 + t1 * R3

R = s1 * R01 + s * R23

From the above equations, it is evident that the bilinear
interpolation steps involve a series of three linear
interpolations. Each linear interpolation itself involves
two multiplications and one addition for each value of R,
G, B and A. Of course, when implemented in SIMD, all the
four RGBA components can be computed in parallel.
Initially, let us assume that we would like to perform these
computations in floating-point since the SIMD floating-
point capability might help us meet our performance goal.
If so, as a first step, we will need to convert the RGBA
pixel values from their typical byte representation to their
float format. The steps involved in this are given in Figure
8. This conversion needs to be done for each of the four
pixels in the source image. Note that both MMXTM

technology and SIMD floating-point instructions are used
in these steps, as are the MMX registers and the new
Pentium® III processor registers. Overlapping the
conversion steps for the four pixels better exploits
available hardware as both the floating-point SIMD and
the integer SIMD units will be operating in parallel.

MM0 XX XX XX XX A0 B0 G0 R0

MM0 G0 R0A0 B0

PUNPCKLBW

A0 B0MM1
G0 R0MM0

PUNPCKLWDPUNPCKHWD

A0 B0XX XX

XMM0 G0 R0XX XX

XMM0 G0 R0A0 B0

CVTPI2PS

MOVLHPS

Figure 8: Packed byte to float conversion

Subsequent to this type conversion, the actual multiply-
add step for each linear interpolation becomes relatively
trivial (see Figure 9). Now, since the RGBA value of the
result pixel is in float format, it needs to be converted back
to integer type. The steps involved here are similar to
those shown in Figure 8.

G0 R0A0 B0

t1 t1t1 t1

G0 * t1 R0 * t1A0 * t1 B0 * t1

G 1 R1A1 B1

t tt t

MULPS* * * * * * * *

G1 * t R1 * tA1 * t B1 * t

G01 R01A01 B01

ADDPS

Figure 9: Linear interpolation

Analyzing the implementation indicates that the algorithm
inherently required about nine basic instructions: two
MULS and one ADD for each of the three linear
interpolations. The decision to implement it using SIMD
floating-point added about 29 additional instructions (six
for each of the four source pixels from byte->float and five
for the result display pixel from
 float->byte). However, the application would often
perform several other floating-point operations such as
lighting or other effects on the bilinearly interpolated pixel.
In such cases, the byte<->float conversion time overhead
can be amortized across all these additional floating-point
operations. This helps yield enhanced performance using
SIMD floating-point.

CACHE CONTROL INSTRUCTIONS
Given the typically large data sets in imaging, efficient
cache utilization has a significant impact on performance.
The Streaming SIMD Extensions have a few cache control
instructions that help better utilize available hardware
resources and minimize cache pollution. The different
prefetch instructions help fetch data from memory to the

Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 9

different relevant levels in cache sufficiently in advance of
their actual usage. For example, in a tile-based imaging
architecture, while the execution units of the processor
could be busy processing a certain tile’s data, the memory
subsystem could be busy prefetching the next tile’s data.
Likewise, when the final display pixel values have been
computed, the streaming store instructions could be used
to store them directly in memory without first fetching
them into cache. This also helps minimize the potential for
valuable data already in cache and needed for other
computations from being evicted out of the cache.

To maximize the benefits from these cache control
instructions, careful attention should be paid to issues
such as identifying the data sets worth prefetching, the
cache levels to prefetch to, and when to issue the
prefetch.

VIDEO CODECS
Video codecs, such as MPEG and Digital Video (DV)
codes, can obtain a performance increase by using
streaming SIMD extensions. Table 1 gives examples of
these increases.

PSADBW PAVG Prefetch,
Streaming
Stores

Encode Motion
Estimation

Motion
Estimation,
Motion
Compensation

Color
Conversion,
Motion
Compensation

Decode Motion
Compensation

Color
Conversion,
Motion
Compensation

Table 1: Uses of Streaming SIMD Extensions for video
codecs

MOTION ESTIMATION
Block matching is essential in motion estimation. Equation
1 is used to calculate the Sum of Absolute Differences
(also referred to as the Sum of Absolute Distortions),
which is the output of the block-matching function.

∑
=

∑
=

−=
15

0

15

0
]][[]][[

i j
jipredBlockjirefBlockSAD

Figure 10 illustrates how motion estimation is
accomplished.

Current Frame Reference Frame

 15 15

SAD = ∑ ∑ |Vn(x+i,y+j)-Vm(x+dx+i,y+dy+j)|
 i=0 j=0

Vn Vm

Motion
Vector
dx,dy

Figure 10: Block matching

dx and dy are candidate motion vectors. Motion
estimation is accomplished by performing multiple block
matching operations, each with a different dx,dy. The
motion vector with the minimum SAD value is the best
motion vector.

Streaming SIMD Extensions provide a new instruction,
psadbw, that speeds up block matching. The operation
of this instruction is given in Figure 11.Absolute Differences

 A7 A6 A5 A4 A3 A2 A1 A0

 B7 B6 B5 B4 B3 B2 B1 B0

 - - - - - - - -

|A7-B7| |A6-B6| |A5-B5| |A4-B4| |A3-B3| |A2-B2| |A1-B1| |A0-B0|

+

 0 0 0 0 0 0 SAD

Figure 11: PSADBW

Block matching is implemented by using the PSAD
instruction as illustrated in Figure 12. The code to perform
this operation is given in Table 2. This code has been
observed to provide a performance increase of up to twice
that obtained when using MMXTM technology.

Note that the nature of memory access of block matching
will cause data cache line splits when the loads straddle
32-byte boundaries. This is due to the dx, dy changes of 1
(i.e., address variances are one byte at a time). The data
loads are eight bytes at a time.

Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 10

Reference FrameCurrent Frame

PSADBW PSADBW

+

SAD

Figure 12: Block matching with PSADBW

psad_top: // 16 x 16 block
matching
 // Do PSAD for a row, accumulate
results
 movq mm1, [esi]
 movq mm2, [esi+8]
 psadbw mm1, [edi]
 psadbw mm2, [edi+8]

 // Increment pointers to next row
 add esi, eax
 add edi, eax

 // Accumulate diff in 2 accumulators
 paddw mm0, mm1
 paddw mm7, mm2

 dec ecx // Do all 16 rows of
macroblock
 jg psad_top

 // Add partial results for final SAD
value
 paddw mm0, mm7

Table 2: Block matching

Hierarchical motion estimation is a popular technique
used to reduce computational complexity and to provide
potentially better motion vectors. Subsampling is
illustrated in Figure 13.

. . . .

. A B .

. C D .

. . . .

. . .

. Y .

. . .

W

H H/2

W/2

Original
Subsampled

Figure 13: Subsampling for hierarchical motion
estimation

Subsampling the original picture is sped up using the
pavg instruction. Figure 14 shows the operation of pavgb.

 A7 A6 A5 A4 A3 A2 A1 A0

 B7 B6 B5 B4 B3 B2 B1 B0

 + + + + + + + +

 1 1 1 1 1 1 1 1

 + + + + + + + +

 >> 1 >> 1 >> 1 >> 1 >> 1 >> 1 >> 1 >> 1

(A7+B7+1)/2 (A6+B6+1)/2 (A5+B5+1)/2 (A4+B4+1)/2 (A3+B3+1)/2 (A2+B2+1)/2 (A1+B1+1)/2 (A0+B0+1)/2

Figure 14: PAVGB

The pavgw instruction is also provided in streaming
SIMD extensions. It works like the pavgb instruction, but
performs the averaging on four 16-bit values.

It is important to note that the additions are performed
with an additional bit for accuracy (9 bits for pavgb, and
17 bits for pavgw). This avoids overflow errors. Once
the average is performed (after the divide-by-2), the width
of the result is the same as the input (8 or 16 bits).

While the pavg instructions operate on two values at a
time, it is possible to use three pavg instructions to
approximate 4-value averaging. The line below illustrates
this in pseudo-code:

Y = pavg(pavg(A,B),pavg(C,D)-1)

This value is close to (A + B + C + D + 2)/4 which is the
typical calculation used to perform subsampling.
However, for the approximation, 87.5% of values match
exactly, and 12.5% of the values are off by one least
significant bit (LSbit). The maximum error is one LSbit.
This error is often acceptable for performing motion
estimation.

Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 11

MOTION COMPENSATION
Motion compensation (MC) is used in both video
decoders and encoders. Decoders perform inverse motion
compensation (iMC), and encoders perform both MC and
iMC. The accuracy of these calculations is important,
especially for encoders, since their local decoder should
track the operation of a high-quality decoder. In MC, bi-
directional B-frames can require interpolation of two
values. The MPEG standard specifies this as

Y = (A + B + 1)/2

The pavg instructions provide exactly this calculation.

Streaming SIMD extensions also provide prefetch and
streaming store instructions. Since MC is often memory
bound, prefetch operations can speed up MC.
prefetchnta and prefetcht0 have both been
observed to provide a speedup. Which one offers the
best improvement is dependent on how the decoder is
implemented. For decoders that are writing the decoded
picture to a graphics card memory, movntq (move non-
temporal quad-word) can offer a benefit by not polluting
the caches with data that will never again be needed by
the decoder.

DISCRETE COSINE TRANSFORM
The Discrete Cosine Transform (DCT) and inverse
Discrete Cosine Transform (iDCT) are used in video
codecs. Decoders use the iDCT, and encoders use the
DCT and usually the iDCT (if they have a local decoder).
It is possible to gain a speedup from streaming SIMD
extensions; however, the speedup is application-
dependent. The SIMD floating-point instructions can be
used to calculate a very accurate DCT/iDCT. However, it
is possible to be IEEE 1180-1990 [3] compliant using SIMD
integer instructions, such as those found in MMXTM

technology. In general, for consumer electronics versions,
SIMD integer implementations are sufficiently accurate
and are the fastest. For professional or reference codecs,
SIMD floating-point may be the preferred choice. To ease
the burden on codec developers, both of these
implementations are available in Intel’s Image Processing
Library.

VARIABLE LENGTH ENCODE
Encoders must create a bit stream based on the values
after the Discrete Cosine Transform and quantization.
This is called the Variable Length Encode (VLE). Often,
especially in the case of B-frames, there are many zero
values that must be detected and “skipped over.” To aid
in the processing of these values, the pmovmskb

instruction can be used to evaluate eight values. Table 3
illustrates how pmovmskb can be used for this.

pxor mm7,mm7 // zero mm7
movq mm0,[esi] // get eight Q values
pcmpeqb mm0,mm7 // find zeros
pmovmskb eax,mm0 // 8 flags into eax

Table 3: Variable length encode

If eax holds 0xff, then all eight values are zero.

COLOR CONVERSION
Color conversion is used by both encoders and decoders.
Often encoders receive data in a format other than what
they can directly encode (wrong chromenance space,
interleaved vs. planar data, etc.). Decoders sometimes
have to write the decoded picture to a graphics card’s
memory in a color space other than the color space that
naturally is produced from the decode; this also requires a
color conversion.

For encoders, color conversion is typically a memory-
bound operation. It loads picture data from main memory
(i.e., DMA’ed in from a video capture card), performs some
(typically simple) calculation, and writes the data back out
to memory. prefetchnta can speed up color
conversion by bypassing the L2 cache on the load. The
non-temporal prefetch is often the best prefetch for color
conversion since the input will not be needed again by the
codec. The store can then be performed using a normal
store (e.g., movq) so the picture resides in L2 cache after
the color conversion.

CONCLUSION
The order in which data is stored in memory, and how it is
moved to and from the processor and its caches, can have
a significant impact on the performance of an application.
While the hybrid data order is technically the best overall
match for SIMD, if an application must use the
conventional array of structures order, it is generally best
to transpose the data into the structure of arrays order in
the SIMD registers for processing. The prefetch
instructions can often reduce memory latency or optimize
memory bandwidth. When processing large blocks of
data, splitting the data into subsets that fit the Pentium®
III processor caches can avoid unnecessary memory
overhead.

Managed use of memory and the 4-wide SIMD registers
provide big benefits in the 3D transform. The results of
the transform code tested showed an improvement of 3.0x
to 3.7x for Pentium III processor-optimized assembly code
over standard ‘C’ code. 3D Lighting also showed

Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 12

significant gains (~4x) through the use of approximation
and branch-elimination instructions.

The integer extensions ease implementation of typical
imaging algorithms in SIMD while also extending their
performance beyond those achieved through MMXTM

technology. Likewise, the floating point SIMD, when
used appropriately, enhances the accuracy and
performance of algorithms with floating-point
implementations. Moreover, it eases code development
and validation by reducing the need to deal with fixed
point arithmetic. Several of these techniques have been
successfully applied in the high-performance Image
Processing Library which is part of the Intel®
Performance Library Suite [4].

Streaming SIMD Extensions can be used to greatly speed
up functions commonly found in video codecs. These
functions include motion estimation, motion
compensation, variable length encode, and color
conversion. The new psadbw, pavgb, and pavgw
instructions, as well as prefetch and streaming stores, are
paticularly useful for video codecs. Speedups of 2x have
been observed for motion estimation, and speedups of
1.3x have been observed for entire encoder applications.

ACKNOWLEDGMENTS
The tuning concepts contained in this paper include
refinements based on the optimization work of Intel
engineers and organizations from groups such as the
Microprocessor Labs, the Folsom Design Center, and
Developer Relations and Engineering.

REFERENCES
[1] J. Wolf “Programming Methods for the Pentium® III
Processor’s Streaming SIMD Extensions using the
VTune™ Performance Enhancement Environment,” Intel
Technology Journal, Q2, 1999.

[2] A. Watt, 3D Computer Graphics 2nd Edition, Addison-
Wesley Publishers Ltd., Essex, England.

[3] IEEE Circuits and Systems Society, IEEE Standard
Specifications for the Implementations of 8x8 Inverse
Discrete Cosine Transform, IEEE Std. 1180-1990.

[4] http://developer.intel.com/vtune/

AUTHORS’ BIOGRAPHIES
James Abel focuses on software applications for future
Intel® processors. In his ten years at Intel, he has held
several software and hardware positions, including the

development of Intel's software Dolby∗ Digital decoder,
embedded microcontroller design, and Design
Automation. James obtained a B.S. degree in engineering
from Bradley University in Peoria, Illinois , in 1983 and an
M.S. degree in computer science from Arizona State
University in 1991. His e-mail is james.c.abel@intel.com. .

Kumar Balasubramanian works with software developers
to help their applications take advantage of Intel's new
processor capabilities. He managed the integration of the
Streaming SIMD Extensions into several business
applications. Kumar has been with Intel for seven years
and has held leadership roles in Intel's CAD engineering
organization and with Intel Architecture Labs to develop
some of the first applications using MMXTM technology.
He has an M.S. degree in computer engineering from
Dartmouth College. His e-mail is
kumar.balasubramanian@intel.com.

Mike Bargeron obtained a B.S. degree in electrical
engineering from Brigham Young University. He started
with Intel's Software Performance Lab in 1997. Since
coming to Intel, Mike has been involved in performance
tuning 2D and 3D graphics applications for the PC.
Specifically, he has worked with MPEG motion video as
well as several 3D game titles. His e-mail is
michael.l.bargeron@intel.com.

Tom Craver works with 3D graphics IHVs to help them
optimize their driver software on Intel's latest processors.
Previously he developed and validated driver and user
interface software for cable modems and for Intel's DVI
multimedia technology. Prior to joining Intel, Tom was a
member of the technical staff at the David Sarnoff
Research Center in Princeton, NJ, and before that, he was
with AT&T's Bell Laboratories. Tom holds B.S. degrees in
physics and computer science from the University of
Illinois. He also has a M.S. degree from Purdue
University. His e-mail is tom.r.craver@intel.com.

Mike Phlipot works with desktop software developers to
integrate Intel's newest processor capabilities into their
applications. Most recently he has been helping 3D game
developers take advantage of the Streaming SIMD
Extensions. In his ten years with Intel, he has held various
engineering and management positions in technologies
that include digital video compression and cable modems.
Mike has a B.S. degree in mechanical engineering from
General Motors Institute and a M.S. degree in computer
engineering from the University of Michigan. His e-mail is
mike.p.phlipot@intel.com.

∗All other brand names are the property of their respective
owners.

Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 13

