MICROPROCESSOR-

GUIDE TO MICROPROCESSOR HARDWARE

INSIDERS”

VOLUME 12, NUMBER 13
OCTOBER 5, 1998

“REPORT

Katmail Enhances MMX

Intel Gives Peek at New SIMD Floating-Point Architecture

by Keith Diefendorff

In an unusual reversal of roles, Intel for the first time
has been racing to catch up with AMD on x86 architectural
extensions. But catch up it has, or soon will. At its recent
developer forum (see MPR 10/5/98, p. 16), Intel opened
the Katmai kimono—however slightly—to show its float-
ing-point extension to the previously integer-only MMX
architecture. The extension, known only as Katmai new
instructions (KNI, alias MMX2), will ship on the epony-
mous processor in 1Q99, more than six months after AMD
shipped K6-2 with its similar but less powerful 3DNow
(see MPR 6/1/98, p. 18).

The KNI extension is more than just new instructions.
In a move best described as “about time,” Intel has added
new registers to the x86. The registers are the first new archi-
tectural state added since 1985, when the 386 extended the
architecture from 16 bits to 32. While most of the 70 KNI
instructions deal with floating-point SIMD (single instruc-
tion, multiple data) operations, KNI also adds a few new
integer MMX instructions and, for the first time, adds
explicit cache-prefetch instructions—a feature common to
RISC architectures. Intel sill has not, however, disclosed full
details of the KNI instruction set.

SIMD FP Boosts Multimedia Performance
SIMD-style processing is uniquely well suited to digital sig-
nal processing in multimedia applications, due to the high
degree of data-level parallelism inherent in the underlying
algorithms. Where data parallelism exists, vector architec-
tures are the obvious choice. SIMD is similar but breaks large
vectors into sequences of short, fixed-length vectors, making
SIMD easier than a full vector pipeline to add to a general-
purpose scalar processor.

Today, floating-point (FP) in multimedia processing is
mainly limited to 3D-graphics geometry calculations. Other
multimedia applications use fixed-point arithmetic almost
exclusively. In part, this is because a lot of multimedia data is
naturally fixed-point; for example, color pixels are four-

element vectors of 8-bit integer intensity values. But many
multimedia tasks—audio and speech processing, for exam-
ple—are actually better suited to floating-point. They are
restricted to fixed-point because of the performance limita-
tions of most floating-point hardware, or, rather, the high
cost of sufficiently fast floating-point hardware. KNI could
change this.

Intel is the fourth processor vendor to announce a
SIMD floating-point extension to its general-purpose pro-
cessor architecture. This trend began with MIPS V (see MPR
11/18/96, p. 24) and continued with AMD’s 3DNow, and
then with PowerPC'’s AltiVec (see MPR 5/11/98, p. 1). To-
gether, these four adopters could—finally—represent a large
enough commitment to floating-point to motivate software
vendors to adopt floating-point algorithms.

New Registers, New Instructions
As Figure 1 shows, KNI introduces eight new registers,
XMMg—-XMMy. Each 128-bit register holds a vector of four
IEEE single-precision floating-point elements. Unlike the
existing scalar FP register file, the new register file is directly
addressed, dispensing with the performance burden im-
posed by the stack-based address model of the former.
KNI’s instruction set includes all the standard arith-
metic operators (+, —, X, =, square root, absolute value, and

<+—80 bits——> - 128 bits
<+—64 bits——>

FPg or MMg XMMg

FP7 or MM7 XMM7

Scalar FP (x87) and
MMX Registers

New KNI Registers

Figure 1. For the first time since the 386, Intel has added to the
x86’s architectural state with eight new registers. The registers are
each 128 bits wide, holding four IEEE single-precision floating-
point values. Unlike the scalar FP registers, the new register file
uses a simple direct-addressing scheme.



KATMAI ENHANCES MMX

negate). As in 3DNow, KNI also provides reciprocal and
reciprocal-square-root estimates, which require Newton-
Raphson refinement to achieve IEEE accuracy.

As Figure 2 shows, KNI's SIMD-FP instructions take
two source-vector operands from the new register file, per-
form the specified operation on respective elements, and
return a result vector to the new register file. Most of the
instructions are also available in scalar form, which operates
on only the least significant element of the operand vectors.

Compare instructions are provided, but Intel has not yet
described these instructions. Presumably, like the MMX com-
pares (see MPR 3/5/96, p. 1), they generate a boolean result
vector that is used by subsequent instructions to control
movement of selected elements from one register into another.
In MMX, this movement is accomplished by sequences of
boolean operations. Although KNI provides no conditional
move, some undisclosed capability is provided for this func-
tion. Even though this feature eliminates many branches, KNI
compare instructions also set condition-codes for the cases in
which data-dependent branches cannot be avoided.

New load and store instructions move vectors between
the new registers and memory. Intel did not describe these
instructions completely but did say that data transfers are
always aligned on even 128-bit address boundaries in mem-
ory; misaligned data is extracted in the registers by separate
instructions. The new loads and stores use the same address-
ing modes as existing x86 memory-referencing instructions.

Special “swizzle” instructions provide a means for
rearranging elements within a vector—an important perfor-
mance feature in SIMD architectures. KNI apparently pro-
vides commonly used transformations like packing, unpack-
ing, transposition, and alignment, but it does not offer the
more flexible rearrangement capability provided by AltiVec’s
permute function.

KNI performs floating-point arithmetic in either a fully
IEEE-754—compliant mode or in a flush-to-zero (FTZ) mode.
In FTZ mode, underflows return zero rather than an IEEE
denormal result. In many applications—such as 3D—the
graceful underflow afforded by denormals is not required,
and the faster operation of FTZ mode is more valuable. In
contrast, 3DNow provides only FTZ operation, making it
unsuitable for applications that do require full IEEE arith-
metic. Intel did not say where KNI’s IEEE exception flags and

| \ X3 u \ X2 u \ Xl |
\ % [ I % [ I %
f (X3,Y3) f(Xp,Y,) f (X1,Yq) 1

Figure 2. KNI's SIMD-FP instructions take two source vectors
(gray), perform the same operation (f) on all four single-precision
elements, and return the result vector (purple). Scalar-form
instructions operate on only the least significant element (dark).

OMICRODESIGN RESOURCES \/ OCTOBER

rounding control bits are stored, but presumably there is a
new status and control register for this purpose.

Floating-point vectors in the new registers can be con-
verted to integers and stored in the MMX registers, and vice
versa for integer to floating-point. If KNI uses 32-bit preci-
sion for the integers, as we suspect, a pair of MMX registers
will be required to hold a full vector of four integers. Register
pairing requires two destination-register reservations, com-
plicating dependency analysis in the instruction issue logic,
which could potentially impact cycle time.

Although Intel did not disclose implementation details
of Katmai, it did say that its peak processing rate will be
2 GFLOPS at 500 MHz. To minimize hardware, Katmai can
execute only half of a vector multiply (two multiplies) and
half of a vector add (two adds) per cycle. Thus Katmai cannot
sustain back-to-back vector multiplies, a significant sacrifice
in throughput from that provided by the KNI architecture.
This compromise introduces an ugly scheduling constraint
and limits Katmai to the same multiply and add throughput
per cycle as K6-2 with 3DNow, although Katmai will achieve
higher clock rates.

KNI Beefs Up Integer MMX

Several new integer MMX instructions were added to address
shortcomings of the original MMX set relative to other ven-
dors’ media extensions. One is MMX’s lack of assist for
motion estimation, a critical requirement for MPEG encod-
ing. To support this function, KNI adds a sum-of-absolute-
differences (SAD) instruction that computes } |X;-Y;| for
each of the four 16-bit integers in two 64-bit MMX vectors.
SAD is important to the task of searching for similar mac-
roblocks in adjacent video frames for motion-vector coding.
KNTI’s SAD improves search performance by 60% over MMX.
Also provided is a complementary packed-average instruc-
tion, (X;+Y;+1)/2, for motion compensation in MPEG
decoding.

KNI also adds minimum and maximum instructions
that are useful in a number of signal-processing algorithms
but were added to KNI primarily to support Viterbi search in
speech-recognition algorithms.

KNI Increases Bandwidth
Many multimedia algorithms, such as video encoding, video
decoding, and 3D graphics, place heavy demands on mem-
ory bandwidth and require low latency to sustain maximum
processing throughput. To this end, Katmai provides several
new capabilities, including microarchitectural enhancements
to Pentium 1I’s existing write-combining feature. The new
improvements increase the sustainable bandwidth on a
100-MHz P6 bus by more than 20%. (Write-combining
gathers stores to consecutive addresses into cache-line-sized
chunks before bursting to the bus.)

Like RISC architectures dating back to at least the 88110
(see MPR 12/4/91, p. 1), KNI adds cache-prefetch instruc-
tions that give software a mechanism for bringing data into

5, 1998 <> MICROPROCESSOR REPORT



KATMAI ENHANCES MMX

the cache before the program actually needs it, thus allowing
software to overlap processing with long-latency memory
reads and to optimize cache and memory bus utilization.
These prefetch instructions differ from normal loads in that
they are just hints and never cause a program fault, making
them less costly to issue than loads; for instance, they do not
require a reorder-buffer entry.

The prefetch instructions can specify whether data will
be prefetched into just the L1 cache, all cache levels, or
all levels except L1. Data that will be used once would be
brought into the L1 only. Data likely to be reused would be
brought into all levels, unless it was not going to be used
immediately, in which case it would be brought into the
higher cache levels but not the L1.

KNI adds streaming-store instructions that store data
directly to memory, bypassing the caches. This feature avoids
throwing useful data out of the cache and polluting it with
useless entries. These instructions also allow memory coher-
ence to be managed explicitly by software, an advantage for
streaming large data sets because bus-snooping overhead is
eliminated. Intel says that proper use of KNI’s prefetch and
streaming stores can improve worst-case array-transfer rates
by more than 2.5x on a 100-MHz P6 bus.

KNI also offers an SFENCE instruction that flushes the
write-combining buffers. This instruction gives software spe-
cial capabilities, such as ensuring that pixel updates get to the
frame buffer and explicitly managing memory coherence.

Living in an x86 World

Although KNI is a reasonably clean architectural extension,
the constraints of the x86 architecture are evident. For
example, eight registers, while better than none, are too few
for many multimedia algorithms, especially with the regis-
ter juggling required to circumvent the destructive nature
of the x86’s two-operand instruction format. Intel would
likely have added more if not for the limitation of the 3-bit
register field in the modR/M byte of the x86 instruction
encoding. While register renaming relaxes the need for reg-
isters somewhat, it cannot substitute for a larger register
namespace in dealing with the multitude of coefficients,
transform matrices, and intermediate variables common in
DSP algorithms.

As Table 1 shows, a feature notably absent from KNI (as
well as from 3DNow) is multiply-add, the heart of vector dot
product and the single most common operation in digital
signal processing. Without multiply-add as a single instruc-
tion, Katmai will need nearly twice the instruction band-
width in many critical DSP loops. Furthermore, with sepa-
rate instructions, the add’s dependence on the multiply’s
result serializes it behind a long-latency operation. Dynamic
instruction reordering may fill some of the resulting pipeline
bubbles, but it is not as effective as multiply-add. Software
loop unrolling could help cover this latency, but KNI lacks
sufficient register namespace to support much unrolling.
Since a multiply-add unit is only slightly larger than a multi-

OMICRODESIGN RESOURCES

<% OCTOBER

MMX MMX MIPS V PowerPC
FP Features w/KNI w/3DNow | w/MDMX | w/AltiVec
Registers 8 fp 8 int/fp 32 int/fp 32 int/fp
Vector Width 128 bits 64 bits 64 bits 128 bits
FP Precision Single Single Single Single
FP Parallelism 4orl 2 2 4
FP Arithmetic | IEEE & FTZ FTZ IEEE IEEE & FTZ
Src Operands 2 2 3 3
FP Mul-Add No No Yes Yes (fused)
FP Min/Max Yes Yes No Yes
Cond Move No No Yes Yes
Estimates 1/x, 1/Nx | 1/x, 1/Vx No 1/x, 1/Vx, log,
Conversion FP = Int FP < Int | FP = Int | FP = Fixed
Data Reorg Lmtd Swizzle None None Permute 8Wd
Registers 8int 8 int/fp 32 int/fp 32 int/fp
Vector Width 64 bits 64 bits 64 bits 128 bits
Motion Est > |a-b| None Y (a-b)? Y (a-b)?
Motion Comp | Average None Average Average
Speech Min/Max None Min/Max Min/Max
Data Reorg Pack/Merge | Pack/Merge | Pack/Unpk | Permute 32By
Other Features
Prefetch Cache Line | Cache Line None 4 Streams
Prefetch Ctl L1 All None None Transient
Store Control | Cache Bypass None None Stream Store
Write Gather |Yes, SFENCE No No Yes, SYNC

Table 1. KNI adds significant new functions to MMX and is nearly
a complete superset of 3DNow. (Source: vendors)

plier, we assume Intel omitted the feature to conform with
the x86’s two-operand format.

The scalar-form KNI instructions are mandated by a
serious flaw in the x86/MMX architecture, which precluded
efficient mixing of scalar FP and MMX instructions. Scalar-
form instructions fix this problem—at least for single-
precision operations—since they can be freely mixed with
MMX instructions. The new scalar instructions also present
a direct register-addressing scheme that floating-point pro-
grammers will welcome over the stack-based address model
of the current scalar FP instructions. This feature comes,
however, at the cost of introducing partial-register writes
into the new KNI register file, an otherwise unnecessary
complication.

Registers Solve and Create Software Problems
KNI’s new registers add much-needed register namespace
and width, and they solve MMX’s problems with concurrent
floating-point and MMX operation, but they come at a large
software cost. The new registers must be saved and restored
across context-switch boundaries, necessitating modifica-
tions to the operating system’s first-level interrupt handlers
and stack layout. Microsoft is undoubtedly not thrilled about
this, but sources indicate that the company will accommo-
date the new state in Windows 98 and NT. All other x86 OS
vendors (e.g., various Unix vendors) must also make this
change if they wish to support KNI.

The new state raises other software obstacles as well.
Compilers must be modified for procedure calling and para-
meter passing. A protocol must be defined to allow KNI pro-

5, 1998 <» MICROPROCESSOR REPORT



KATMAI ENHANCES MMX

grams to call old libraries that were compiled without knowl-
edge of the new state. And applications and libraries, like
DirectX, must be updated to take advantage of KNI. Intel has
been working with software vendors for some time to pave
the way, but the new state will make KNI’s adoption more
painful than MMX’s or 3DNow’s.

KNI KO’s 3DNow
Perhaps Intel would have been further ahead if the original
MMX had included KNI’s features. Had MMX included new
registers, for example, the problem of interference with scalar
floating-point operations could have been avoided from the
start. In addition, integer MMX operations would have bene-
fited from the 128-bit parallelism, and the OS and compiler
issues would now be behind it. The ISA extension would also
have been cleaner if both integer and floating-point SIMD
operations used the same register file. Furthermore, Intel
would have preempted 3DNow, avoiding this loss of control
over the x86 architecture.

On the other hand, had MMX included KNI's additional
state, software vendors may have been more reluctant to adopt
MMX and SIMD processing in general. So even though the

OMICRODESIGN RESOURCES \/ OCTOBER 5,

final architecture may be less elegant, in retrospect Intel’s
strategy may have been the right one.

Many details of KNI will not be revealed until next year,
although Intel is expected to provide more information on
Katmai’s implementation of it at Microprocessor Forum next
week. But from an architectural perspective, KNI appears to
be about as clean an architectural extension as is possible
within the constraints of the existing x86 and MMX architec-
tures. Although KNI is not as comprehensive as PowerPC’s
AltiVec, as Table 1 shows, it clearly improves on MMX and is
far more powerful than AMD’s 3DNow, offering new registers
and twice the architectural parallelism.

KNI puts the future of 3DNow in serious jeopardy.
Although 3DNow has a software lead, the two extensions are
clearly redundant, and KNI is more powerful. With the enor-
mous investment Intel is pouring into software and develop-
ment tools, and with Katmai deployments going into full
swing next year, 3DNow will be hard pressed to hold the
attention of software developers . For AMD, Cyrix, and IDT,
the best course of action may be to read the handwriting on
the wall and modify their next-generation processors to sup-
port the KNI architecture.

1998 < MICROPROCESSOR REPORT



	Katmai Enhances MMX
	SIMD FP Boosts Multimedia Performance
	New Registers, New Instructions
	Figure 1. For the first time since the 386, Intel has...
	Figure 2. KNI’s SIMD-FP instructions take two...
	KNI Beefs Up Integer MMX
	KNI Increases Bandwidth
	Living in an x86 World
	Table 1. KNI adds significant new functions to MMX...
	Registers Solve and Create Software Problems
	KNI KO’s 3DNow


