
© M I C R O D E S I G N R E S O U R C E S D E C E M B E R 3 0 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

V O L . 1 0 , N O . 1 7

by Peter Christy

It’s very weird. 1997 may well be the year of first silicon
for what is likely to be the most significant new microproces-
sor family the world has seen in a long time: Merced, the first
implementation of the Intel/HP architecture collaboration
called IA-64. Yet we hear almost nothing about IA-64 or
Merced. From the computer-user side you might guess there
would be more curiosity about what these new processors
might do to the performance curve. From the software and
system side, you might expect a lot more discussion about
how disruptive the evolution from the x86 family will be.

It is easy to understand why things are so quiet—Intel
is suppressing discussion as a condition of learning about IA-
64 and Merced. Intel is neither stupid nor mean-spirited. It
just sees more liability than benefit from such discussions at
this time. We’re sympathetic to Intel’s concerns, but we feel a
broad IA-64 discussion is appropriate among the commu-
nity that will feel the impact.

The development of IA-64 signals a fundamental shift;
it’s the first of several next-generation architectures designed
to compensate for the complexity of today’s CPUs with
tighter links between a smarter, more advanced compiler and
a simpler, faster microarchitecture.

The Potential Value of a New Architecture
A new architecture can redefine the performance roadmap,
and the name of this game is performance. Today’s highly
superscalar microprocessors use an ever-decreasing percent-
age of their transistors to do useful work. Of the millions of
transistors in a modern CPU, remarkably few directly con-
tribute to adding numbers or moving data under the direc-
tion of the programs being executed. Far too many are spent
rearranging instructions and keeping track of their original
order. An architecture that reversed this trend and invested
more in real application performance would be a significant.
change. There are enough transistors available to implement
many more functional units than CPUs have today, if only
we could put them to productive use.

An increasing percentage of the logic on a microproces-
sor (the CPU less the cache) is dedicated to management
functions such as control of out-of-order and speculative exe-
cution. Such logic is difficult to design and largely implemen-
tation specific, increasing the complexity and time-to-market
of the processors. This logic also tends to span a lot of die area,
creating speed-limiting paths. A new architecture could
greatly reduce the investment in these overhead functions.

The dominant consumer of transistors in microproces-
sors is cache memory. Cache is a good and easy way to use sil-
icon, but at best, a cache lets the CPU work at speed; it does
not by itself do useful work. Architectural enhancements can
make cache fundamentally more effective.

Looking at Intel’s problems specifically, a new architec-
ture could fix the most glaring problems in IA-32 (x86),
including its 32-bit address limitations and the awkward
floating-point stack architecture.

Although we’re not yet privy to any of the specific
details of IA-64, we believe that the new architecture attacks
all of these problems. In short, we think an innovative archi-
tecture can do more useful work per clock cycle and run at
faster clock rates, thereby getting onto a new and better per-
formance curve. Any processor that redefines performance
expectations (Digital’s Alpha, for example) will have a signif-
icant impact. Such a processor from the dominant market
leader will have a profound impact.

Is IA-64 RISC, VLIW, or Something Else?
We tend to think of IA-64 as a modern-day RISC machine in
some sense. The earliest view of RISC, from John Cocke in
IBM’s 801 design, was based on the idea of trading compile-
time optimization against CPU complexity. Instructions in
the 801 were simple and chosen for their ability to be imple-
mented in high-speed logic. A large register set replaced
complex addressing modes. Delayed branch instructions
reflected the nature of branch processing and let a compiler
optimize for it. The term RISC was coined, after the nature of
the instructions. For lack of a better term, I’ll use RISC here,
but much more in the sense of Cocke’s original concept: rely
on the compiler.

The transition to next-generation architectures such as
IA-64 can be understood as another transfer of complexity
from the hardware to the compiler. The early commercial
RISC processors (the 801 was never brought to market) took
advantage of simplified instructions to pipeline instruction
execution and thus increase performance. (Contrary to pop-
ular belief, RISC chips did not have faster clock rates than
contemporaneous CISC chips; they just introduced pipelin-
ing sooner.) Pipelined execution more than made up for the
decrease in “power” of the simplified instructions. Today’s
RISC—and CISC—microprocessors have become complex
again, so it’s time for another dose of the same medicine:
more compile-time optimization and simpler hardware.

We expect IA-64 to include more compile-time instruc-
tion sequencing. For this reason, some will call it a VLIW

IA-64 and Merced—What and Why
Everyone Talks About Merced, But No One’s Doing Anything About It

■ T H E P R E S I D E N T ’ S V I E W

© M I C R O D E S I G N R E S O U R C E S D E C E M B E R 3 0 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

2 I A - 6 4 A N D M E R C E D — W H A T A N D W H Y V O L . 1 0 , N O . 1 7

(very long instruction word) machine. Today’s superscalar
microprocessors have extensive logic to detect parallelism in
the instruction stream and initiate concurrent operations
when possible. We expect IA-64 to pass much of this burden
back to the compiler. To a much greater extent than today,
the CPU will just execute the instruction stream it is given as
fast as it can, knowing the instruction interactions are safe
because the compiler made it so.

The IA-64 architecture is also likely to include predi-
cated execution and a larger register set. Today’s micro-
processors work hard to unearth data dependencies (i.e.,
whether the contents of a register are stable or still subject to
unfinished calculations). With more registers, a compiler can
use different register subsets to support execution on multi-
ple branch paths, alleviating the need to analyze dependen-
cies because there is less need to reuse the registers.

To get the performance benefit of multi-issue designs
without the complexity of dynamic control logic, the com-
piler needs the ability to create parallel branch-path logic.
That means some enhancements to the notion of condition
codes and the use of earlier test conditions to control execu-
tion (predicated execution) are needed. With a smart enough
compiler, the result is the same as today’s out-of-order or
speculative execution, except that the mechanism is moved
from the CPU to the compiler. The CPU logic gets simpler,
and a source of slow paths is removed. The processor runs
faster and does more work.

Changing Roles for Cache and Compiler
Better prefetch, store, and branch hinting are also likely. Ide-
ally, the compiler and processor will cooperate to anticipate
the use of data, so the cache can be managed most effectively,
and to anticipate the flow of the program, minimizing pro-
cessor stalls due to unexpected branches.

At the time the program is compiled, the compiler can
develop a comprehensive model of the program logic and
flow (this is used today for comprehensive optimization).
The compiler can determine quite a bit from the logic of the
program, and even more if the language supports advisories
(e.g., pragmas) from the programmer regarding the pro-
gram’s expected behavior.

With today’s instruction sets, the compiler has only
limited ability to make use of this information in a way that
speeds execution. Much of the analysis is thrown away and
unavailable to the CPU. If the compiler can generate hinting
instructions, compiler/processor efficiency can be improved.
Based on the program flow analysis, the compiler can anno-
tate a load or store with a measure of urgency (“we will need
this data soon” or “if you have load bandwidth available, get
this data”). Similarly, the compiler can generate a compile-
time view of branch prediction and pass this data to the CPU
to preload the branch-prediction tables.

There are more than enough transistors to provide
many more function units on a microprocessor than what
we see today. Their utilization can be scheduled at compile

time if there is enough parallelism in a program to take
advantage of the hardware.

In summary, today’s instruction sets make it difficult
for the compiler to advise the CPU on what is likely to hap-
pen, so processor designers add lots of clever but bulky logic
to determine program behavior on the fly. IA-64 has much
room to improve this compiler/processor cooperation.

Many IA-64 Ideas Are Not New
Many of the ideas in IA-64 have been used already, but never
in a mainstream microprocessor, and certainly not in a prod-
uct from a market leader.

We expect IA-64 to take full advantage of all that has
been learned about computer architecture, but many of the
key concepts aren’t really new. Similar architectures were
developed in the 1980s. Cydrome and Multiflow, among oth-
ers, sold VLIW minicomputers (see MPR 2/14/94, p. 18). The
clock speed of these minicomputers was limited by the low-
integration component technology and by the large physical
size of the computer.

VLIW machines promised more work per clock cycle,
and thus greater execution power, than more conventional
designs of the same era. These machines worked, but soon
minicomputers as a whole started to fade away, in part
because they couldn’t keep up with VLSI CPU performance
progress, and because small firms couldn’t afford to produce
VLSI versions of their unique architectures.

These early VLIW machines also suffered because they
pushed the requirements of compiler technology; compiling
code for them could be painfully slow. It will take at least as
much work to compile a program efficiently for IA-64 as it
did for a Cydrome or Multiflow computer, but the compiler
will be running on a CPU at least 100 times faster, so we
don’t expect compile time to be a particular hurdle.

Parallelism Provides High Value
Microprocessor performance increases with clock speed and
with the amount of work done per cycle. We’ve already dis-
cussed how IA-64 helps increase clock speed and makes
caches more effective. We also believe IA-64 will bend the
price/performance curve by permitting more internal paral-
lel execution.

Microprocessors already benefit from parallelism.
Many CPUs dynamically schedule multiple function units
based on observed data dependencies in the instruction
stream. This multiple-issue mechanism clearly yields incre-
mental performance up to a point, but it’s not obvious that
going beyond today’s four-way issue is worth the effort.

We believe IA-64 will enable explicit parallelism well
beyond simultaneous four-way execution, although not with
existing binaries. The parallelism will be achieved by compil-
ers that more fully extract parallelism from the source code,
the addition of explicit parallel notations in programming
languages, new compilers for those languages, and explicitly
parallelized programs.

© M I C R O D E S I G N R E S O U R C E S D E C E M B E R 3 0 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

3 I A - 6 4 A N D M E R C E D — W H A T A N D W H Y V O L . 1 0 , N O . 1 7

Today’s programming languages reflect the nature of
conventional computers. An intrinsically parallel problem
(e.g., matrix operations or the processing of a multimedia
data stream) is represented as a cascade of iterated loops,
with simple, scalar computations at the center of the loops.
Smart compilers for machines with parallel hardware (e.g.,
supercomputers) work hard to abstract these loops back into
the parallel operations they represent to generate efficient
code for parallel or vector hardware.

But as supercomputer vendors learned, it’s a lot easier
to generate good parallel code by starting with programs in
which the parallelism is clearly expressed, rather than
obscured by the programmer in iterative loops that force the
compiler to rediscover it. The same wisdom will apply to IA-
64: the programs that benefit most from parallel capabilities
will be the ones written to make the parallelism clear. This
will often require some thought and effort—effort that will
be rewarded with exceptional performance.

Intel and HP will provide excellent support for existing
binary code through some combination of direct hardware
support and software preprocessing. We don’t expect these
binaries to take much advantage of additional IA-64 paral-
lelism. Source code that is recompiled to run natively on IA-
64 should do considerably better, but we expect some explicit
parallelization of algorithms will be needed to take full
advantage of IA-64’s parallel capabilities.

The MMX additions to IA-32 (x86) are similar. MMX
is a parallel-instruction enhancement limited to operations
suitable for media processing. I believe the impact of MMX
will be larger than many expect. Few programs have obvious
MMX needs, but the potential for parallelism in media algo-
rithms is greater than one might expect. MMX can accelerate
printer drivers and rendering engines as well as MPEG
decoding. IA-64’s parallelism will support a wider set of data
types and be more broadly usable than MMX, appearing in
data-access and searching applications. We don’t expect such
parallel processing to accelerate most programs, but we do
expect it to accelerate many of those that need it the most.

Running Existing Binaries on IA-64
IA-64 will execute x86 and PA-RISC binaries faithfully. HP is
expert at moving binary code forward transparently, given its
experience moving from two CISC architectures to PA-RISC.
Intel and Microsoft have learned a lot about compatibility
with existing x86 binaries as their CPU and OS designs
evolve. Apple’s emulation of 68K code on the PowerPC and
Digital’s clever FX!32 emulation clearly demonstrate the
value and practicality of supporting existing binaries.

The question of performance on existing code is an
interesting one. When Apple introduced its PowerPC Macs
with 68K emulation, PowerPCs were so much faster than
68Ks that emulated programs ran as quickly as on a fast 68K.
That was more than fast enough for Apple’s customers. The
same will apply to Merced: almost all binaries will run as fast
on Merced as they did on the x86 processor for which they

were written. Although x86 code will present a tougher chal-
lenge, improvements in emulation technology will boost
Merced’s performance on old applications.

Merced will have the additional benefit of being a
mainstream processor. Digital had to develop FX!32 from
scratch because there isn’t a great incentive for people to
recompile Windows applications to run natively on Alpha.
As IA-64 becomes broadly deployed by Intel, the incentive to
produce a native version will be much higher.

HP will be concerned with supporting PA-RISC bina-
ries and with making x86/Windows code run. HP has a long
and distinguished history in assuring binary compatibility as
generations move forward, so it knows how to take care of
existing customers. The ability of IA-64 to provide good x86
execution is just icing on the cake for HP.

IA-64 Has Limitations
Despite the innovations and improvements in IA-64, it won’t
sweep away all competitors instantly. Intel has an institution-
alized way of introducing new processors at the price and
performance top and then letting them trickle down over
time. We expect the introduction of IA-64 to be no different.
Merced will be big and expensive, but will get smaller and
cheaper over time. It will take time for the software industry
to understand how to take full advantage of the new capabil-
ities; it always does. And for most people, a low-cost x86 PC
will be more than enough by the time IA-64 is introduced.

These performance improvements will probably come
with some penalty in code density, as was the case for RISC
compared with CISC. Where code density is a key issue (e.g.,
ROM-based applications or very inexpensive computers) the
acceptance of IA-64 will be slow.

Finally, IA-64 programs will probably have to be reop-
timized for each different implementation of the architec-
ture, continuing on the processor-specific binary path the
industry has been on since the System/360 or VAX promoted
universal instruction codes throughout the family. The tech-
nical issues this raises can be handled transparently (for
instance, by using a distribution format that is optimized for
a specific processor at the time the software is loaded), but it
will require additional system technology to manage.

Learning from the Past, Designing for the Future
Merced and IA-64 are coming, and their impact will be pro-
found. There is little doubt that significant architecture
advances can and will occur. IA-64 processors will get more
work done on each clock cycle through increased on-chip
parallelism and will run at faster clock speeds because of
reduced complexity.

It seems the prevailing wisdom regarding microproces-
sor architecture is like a pendulum, swinging first one way
and then another. Once-simple designs have become ever
more complex. The advent of IA-64 heralds the beginning of
the swing back, shifting complexity to the compiler to create
a simpler and faster microprocessor. M

