
Contents

11Chapter 1: Introduction .

111.1 What Is NASM? .

111.1.1 Why Yet Another Assembler? .

111.1.2 Licence Conditions .

111.2 Contact Information .

121.3 Installation .

121.3.1 Installing NASM under MS-DOS or Windows .

121.3.2 Installing NASM under Unix .

14Chapter 2: Running NASM .

142.1 NASM Command-Line Syntax .

142.1.1 The -o Option: Specifying the Output File Name

152.1.2 The -f Option: Specifying the Output File Format

152.1.3 The -l Option: Generating a Listing File .

152.1.4 The -E Option: Send Errors to a File .

152.1.5 The -s Option: Send Errors to stdout .

152.1.6 The -i Option: Include File Search Directories

162.1.7 The -p Option: Pre-Include a File .

162.1.8 The -d Option: Pre-Define a Macro .

162.1.9 The -u Option: Undefine a Macro .

162.1.10 The -e Option: Preprocess Only .

172.1.11 The -a Option: Don’t Preprocess At All .

172.1.12 The -w Option: Enable or Disable Assembly Warnings

172.1.13 The NASM Environment Variable .

172.2 Quick Start for MASM Users .

172.2.1 NASM Is Case-Sensitive .

182.2.2 NASM Requires Square Brackets For Memory References

182.2.3 NASM Doesn’t Store Variable Types .

182.2.4 NASM Doesn’t ASSUME .

192.2.5 NASM Doesn’t Support Memory Models .

192.2.6 Floating-Point Differences .

192.2.7 Other Differences .

20Chapter 3: The NASM Language .

203.1 Layout of a NASM Source Line .

213.2 Pseudo-Instructions .

213.2.1 DB and friends: Declaring Initialised Data .

213.2.2 RESB and friends: Declaring Uninitialised Data

213.2.3 INCBIN: Including External Binary Files .

223.2.4 EQU: Defining Constants .

223.2.5 TIMES: Repeating Instructions or Data .

223.3 Effective Addresses .

233.4 Constants .

233.4.1 Numeric Constants .

233.4.2 Character Constants .

243.4.3 String Constants .

243.4.4 Floating-Point Constants .

243.5 Expressions .

253.5.1 |: Bitwise OR Operator .

253.5.2 ^: Bitwise XOR Operator .

253.5.3 &: Bitwise AND Operator .

253.5.4 << and >>: Bit Shift Operators .

253.5.5 + and -: Addition and Subtraction Operators .

253.5.6 *, /, //, % and %%: Multiplication and Division

253.5.7 Unary Operators: +, -, ~ and SEG .

253.6 SEG and WRT .

263.7 Critical Expressions .

273.8 Local Labels .

29Chapter 4: The NASM Preprocessor .

294.1 Single-Line Macros .

294.1.1 The Normal Way: %define .

304.1.2 Undefining macros: %undef .

304.1.3 Preprocessor Variables: %assign .

304.2 Multi-Line Macros: %macro .

314.2.1 Overloading Multi-Line Macros .

324.2.2 Macro-Local Labels .

324.2.3 Greedy Macro Parameters .

334.2.4 Default Macro Parameters .

334.2.5 %0: Macro Parameter Counter .

334.2.6 %rotate: Rotating Macro Parameters .

344.2.7 Concatenating Macro Parameters .

354.2.8 Condition Codes as Macro Parameters .

354.2.9 Disabling Listing Expansion .

364.3 Conditional Assembly .

364.3.1 %ifdef: Testing Single-Line Macro Existence

364.3.2 %ifctx: Testing the Context Stack .

364.3.3 %if: Testing Arbitrary Numeric Expressions .

374.3.4 %ifidn and %ifidni: Testing Exact Text Identity

374.3.5 %ifid, %ifnum, %ifstr: Testing Token Types

384.3.6 %error: Reporting User-Defined Errors .

384.4 Preprocessor Loops: %rep .

394.5 Including Other Files .

394.6 The Context Stack .

394.6.1 %push and %pop: Creating and Removing Contexts

404.6.2 Context-Local Labels .

404.6.3 Context-Local Single-Line Macros .

404.6.4 %repl: Renaming a Context .

404.6.5 Example Use of the Context Stack: Block IFs .

424.7 Standard Macros .

424.7.1 __NASM_MAJOR__ and __NASM_MINOR__: NASM Version

424.7.2 __FILE__ and __LINE__: File Name and Line Number

424.7.3 STRUC and ENDSTRUC: Declaring Structure Data Types

434.7.4 ISTRUC, AT and IEND: Declaring Instances of Structures

434.7.5 ALIGN and ALIGNB: Data Alignment .

45Chapter 5: Assembler Directives .

455.1 BITS: Specifying Target Processor Mode .

455.2 SECTION or SEGMENT: Changing and Defining Sections

465.2.1 The __SECT__ Macro .

465.3 ABSOLUTE: Defining Absolute Labels .

475.4 EXTERN: Importing Symbols from Other Modules .

475.5 GLOBAL: Exporting Symbols to Other Modules .

485.6 COMMON: Defining Common Data Areas .

49Chapter 6: Output Formats .

496.1 bin: Flat-Form Binary Output .

496.1.1 ORG: Binary File Program Origin .

506.1.2 bin Extensions to the SECTION Directive .

506.2 obj: Microsoft OMF Object Files .

506.2.1 obj Extensions to the SEGMENT Directive .

516.2.2 GROUP: Defining Groups of Segments .

526.2.3 UPPERCASE: Disabling Case Sensitivity in Output

526.2.4 IMPORT: Importing DLL Symbols .

526.2.5 EXPORT: Exporting DLL Symbols .

536.2.6 ..start: Defining the Program Entry Point .

536.2.7 obj Extensions to the EXTERN Directive .

536.2.8 obj Extensions to the COMMON Directive .

546.3 win32: Microsoft Win32 Object Files .

546.3.1 win32 Extensions to the SECTION Directive .

556.4 coff: Common Object File Format .

556.5 elf: Linux ELFObject Files .

556.5.1 elf Extensions to the SECTION Directive .

556.5.2 Position-Independent Code: elf Special Symbols and WRT

566.5.3 elf Extensions to the GLOBAL Directive .

576.5.4 elf Extensions to the COMMON Directive .

576.6 aout: Linux a.out Object Files .

576.7 aoutb: NetBSD/FreeBSD/OpenBSD a.out Object Files

576.8 as86: Linux as86 Object Files .

576.9 rdf: Relocatable Dynamic Object File Format .

586.9.1 Requiring a Library: The LIBRARY Directive .

586.10 dbg: Debugging Format .

59Chapter 7: Writing 16-bit Code (DOS, Windows 3/3.1) .

597.1 Producing .EXE Files .

597.1.1 Using the obj Format To Generate .EXE Files

607.1.2 Using the bin Format To Generate .EXE Files

617.2 Producing .COM Files .

617.2.1 Using the bin Format To Generate .COM Files

617.2.2 Using the obj Format To Generate .COM Files

627.3 Producing .SYS Files .

627.4 Interfacing to 16-bit C Programs .

627.4.1 External Symbol Names .

637.4.2 Memory Models .

637.4.3 Function Definitions and Function Calls .

657.4.4 Accessing Data Items .

667.4.5 c16.mac: Helper Macros for the 16-bit C Interface

677.5 Interfacing to Borland Pascal Programs .

677.5.1 The Pascal Calling Convention .

687.5.2 Borland Pascal Segment Name Restrictions .

687.5.3 Using c16.mac With Pascal Programs .

70Chapter 8: Writing 32-bit Code (Unix, Win32, DJGPP) .

708.1 Interfacing to 32-bit C Programs .

708.1.1 External Symbol Names .

708.1.2 Function Definitions and Function Calls .

728.1.3 Accessing Data Items .

728.1.4 c32.mac: Helper Macros for the 32-bit C Interface

738.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries

738.2.1 Obtaining the Address of the GOT .

748.2.2 Finding Your Local Data Items .

748.2.3 Finding External and Common Data Items .

758.2.4 Exporting Symbols to the Library User .

758.2.5 Calling Procedures Outside the Library .

768.2.6 Generating the Library File .

77Chapter 9: Mixing 16 and 32 Bit Code .

779.1 Mixed-Size Jumps .

779.2 Addressing Between Different-Size Segments .

789.3 Other Mixed-Size Instructions .

80Chapter 10: Troubleshooting .

8010.1 Common Problems .

8010.1.1 NASM Generates Inefficient Code .

8010.1.2 My Jumps are Out of Range .

8010.1.3 ORG Doesn’t Work .

8110.1.4 TIMES Doesn’t Work .

8110.2 Bugs .

83Appendix A: Intel x86 Instruction Reference .

83A.1 Key to Operand Specifications .

83A.2 Key to Opcode Descriptions .

84A.2.1 Register Values .

85A.2.2 Condition Codes .

85A.2.3 Effective Address Encoding: ModR/M and SIB

86A.3 Key to Instruction Flags .

87A.4 AAA, AAS, AAM, AAD: ASCII Adjustments .

87A.5 ADC: Add with Carry .

88A.6 ADD: Add Integers .

88A.7 AND: Bitwise AND .

89A.8 ARPL: Adjust RPL Field of Selector .

89A.9 BOUND: Check Array Index against Bounds .

89A.10 BSF, BSR: Bit Scan .

89A.11 BSWAP: Byte Swap .

90A.12 BT, BTC, BTR, BTS: Bit Test .

90A.13 CALL: Call Subroutine .

91A.14 CBW, CWD, CDQ, CWDE: Sign Extensions .

91A.15 CLC, CLD, CLI, CLTS: Clear Flags .

91A.16 CMC: Complement Carry Flag .

91A.17 CMOVcc: Conditional Move .

91A.18 CMP: Compare Integers .

92A.19 CMPSB, CMPSW, CMPSD: Compare Strings .

92A.20 CMPXCHG, CMPXCHG486: Compare and Exchange

93A.21 CMPXCHG8B: Compare and Exchange Eight Bytes

93A.22 CPUID: Get CPU Identification Code .

93A.23 DAA, DAS: Decimal Adjustments .

94A.24 DEC: Decrement Integer .

94A.25 DIV: Unsigned Integer Divide .

94A.26 EMMS: Empty MMX State .

94A.27 ENTER: Create Stack Frame .

95A.28 F2XM1: Calculate 2**X-1 .

95A.29 FABS: Floating-Point Absolute Value .

95A.30 FADD, FADDP: Floating-Point Addition .

95A.31 FBLD, FBSTP: BCD Floating-Point Load and Store

95A.32 FCHS: Floating-Point Change Sign .

95A.33 FCLEX, {FNCLEX}: Clear Floating-Point Exceptions

96A.34 FCMOVcc: Floating-Point Conditional Move .

96A.35 FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP: Floating-Point Compare

97A.36 FCOS: Cosine .

97A.37 FDECSTP: Decrement Floating-Point Stack Pointer

97A.38 FxDISI, FxENI: Disable and Enable Floating-Point Interrupts

97A.39 FDIV, FDIVP, FDIVR, FDIVRP: Floating-Point Division

98A.40 FFREE: Flag Floating-Point Register as Unused .

98A.41 FIADD: Floating-Point/Integer Addition .

98A.42 FICOM, FICOMP: Floating-Point/Integer Compare

98A.43 FIDIV, FIDIVR: Floating-Point/Integer Division

99A.44 FILD, FIST, FISTP: Floating-Point/Integer Conversion

99A.45 FIMUL: Floating-Point/Integer Multiplication .

99A.46 FINCSTP: Increment Floating-Point Stack Pointer

99A.47 FINIT, FNINIT: Initialise Floating-Point Unit .

99A.48 FISUB: Floating-Point/Integer Subtraction .

99A.49 FLD: Floating-Point Load .

100A.50 FLDxx: Floating-Point Load Constants .

100A.51 FLDCW: Load Floating-Point Control Word .

100A.52 FLDENV: Load Floating-Point Environment .

100A.53 FMUL, FMULP: Floating-Point Multiply .

100A.54 FNOP: Floating-Point No Operation .

100A.55 FPATAN, FPTAN: Arctangent and Tangent .

101A.56 FPREM, FPREM1: Floating-Point Partial Remainder

101A.57 FRNDINT: Floating-Point Round to Integer .

101A.58 FSAVE, FRSTOR: Save/Restore Floating-Point State

101A.59 FSCALE: Scale Floating-Point Value by Power of Two

101A.60 FSETPM: Set Protected Mode .

102A.61 FSIN, FSINCOS: Sine and Cosine .

102A.62 FSQRT: Floating-Point Square Root .

102A.63 FST, FSTP: Floating-Point Store .

102A.64 FSTCW: Store Floating-Point Control Word .

102A.65 FSTENV: Store Floating-Point Environment .

102A.66 FSTSW: Store Floating-Point Status Word .

103A.67 FSUB, FSUBP, FSUBR, FSUBRP: Floating-Point Subtract

103A.68 FTST: Test ST0 Against Zero .

103A.69 FUCOMxx: Floating-Point Unordered Compare .

104A.70 FXAM: Examine Class of Value in ST0 .

104A.71 FXCH: Floating-Point Exchange .

104A.72 FXTRACT: Extract Exponent and Significand .

104A.73 FYL2X, FYL2XP1: Compute Y times Log2(X) or Log2(X+1)

104A.74 HLT: Halt Processor .

104A.75 IBTS: Insert Bit String .

105A.76 IDIV: Signed Integer Divide .

105A.77 IMUL: Signed Integer Multiply .

106A.78 IN: Input from I/O Port .

106A.79 INC: Increment Integer .

106A.80 INSB, INSW, INSD: Input String from I/O Port

106A.81 INT: Software Interrupt .

107A.82 INT3, INT1, ICEBP, INT01: Breakpoints .

107A.83 INTO: Interrupt if Overflow .

107A.84 INVD: Invalidate Internal Caches .

107A.85 INVLPG: Invalidate TLB Entry .

107A.86 IRET, IRETW, IRETD: Return from Interrupt .

108A.87 JCXZ, JECXZ: Jump if CX/ECX Zero .

108A.88 JMP: Jump .

108A.89 Jcc: Conditional Branch .

108A.90 LAHF: Load AH from Flags .

109A.91 LAR: Load Access Rights .

109A.92 LDS, LES, LFS, LGS, LSS: Load Far Pointer .

109A.93 LEA: Load Effective Address .

109A.94 LEAVE: Destroy Stack Frame .

109A.95 LGDT, LIDT, LLDT: Load Descriptor Tables .

110A.96 LMSW: Load/Store Machine Status Word .

110A.97 LOADALL, LOADALL286: Load Processor State

110A.98 LODSB, LODSW, LODSD: Load from String .

110A.99 LOOP, LOOPE, LOOPZ, LOOPNE, LOOPNZ: Loop with Counter

111A.100 LSL: Load Segment Limit .

111A.101 LTR: Load Task Register .

111A.102 MOV: Move Data .

112A.103 MOVD: Move Doubleword to/from MMX Register

112A.104 MOVQ: Move Quadword to/from MMX Register

112A.105 MOVSB, MOVSW, MOVSD: Move String .

113A.106 MOVSX, MOVZX: Move Data with Sign or Zero Extend

113A.107 MUL: Unsigned Integer Multiply .

113A.108 NEG, NOT: Two’s and One’s Complement .

113A.109 NOP: No Operation .

113A.110 OR: Bitwise OR .

114A.111 OUT: Output Data to I/O Port .

114A.112 OUTSB, OUTSW, OUTSD: Output String to I/O Port

115A.113 PACKSSDW, PACKSSWB, PACKUSWB: Pack Data

115A.114 PADDxx: MMX Packed Addition .

115A.115 PADDSIW: MMX Packed Addition to Implicit Destination

115A.116 PAND, PANDN: MMX Bitwise AND and AND-NOT

116A.117 PAVEB: MMX Packed Average .

116A.118 PCMPxx: MMX Packed Comparison .

116A.119 PDISTIB: MMX Packed Distance and Accumulate with Implied Register

116A.120 PMACHRIW: MMX Packed Multiply and Accumulate with Rounding

116A.121 PMADDWD: MMX Packed Multiply and Add .

117A.122 PMAGW: MMX Packed Magnitude .

117A.123 PMULHRW, PMULHRIW: MMX Packed Multiply High with Rounding

117A.124 PMULHW, PMULLW: MMX Packed Multiply .

117A.125 PMVccZB: MMX Packed Conditional Move .

117A.126 POP: Pop Data from Stack .

118A.127 POPAx: Pop All General-Purpose Registers .

118A.128 POPFx: Pop Flags Register .

118A.129 POR: MMX Bitwise OR .

119A.130 PSLLx, PSRLx, PSRAx: MMX Bit Shifts .

119A.131 PSUBxx: MMX Packed Subtraction .

120A.132 PSUBSIW: MMX Packed Subtract with Saturation to Implied Destination

120A.133 PUNPCKxxx: Unpack Data .

120A.134 PUSH: Push Data on Stack .

121A.135 PUSHAx: Push All General-Purpose Registers

121A.136 PUSHFx: Push Flags Register .

121A.137 PXOR: MMX Bitwise XOR .

122A.138 RCL, RCR: Bitwise Rotate through Carry Bit .

122A.139 RDMSR: Read Model-Specific Registers .

122A.140 RDPMC: Read Performance-Monitoring Counters

122A.141 RDTSC: Read Time-Stamp Counter .

122A.142 RET, RETF, RETN: Return from Procedure Call

123A.143 ROL, ROR: Bitwise Rotate .

123A.144 RSM: Resume from System-Management Mode

123A.145 SAHF: Store AH to Flags .

123A.146 SAL, SAR: Bitwise Arithmetic Shifts .

124A.147 SALC: Set AL from Carry Flag .

124A.148 SBB: Subtract with Borrow .

125A.149 SCASB, SCASW, SCASD: Scan String .

125A.150 SETcc: Set Register from Condition .

125A.151 SGDT, SIDT, SLDT: Store Descriptor Table Pointers

125A.152 SHL, SHR: Bitwise Logical Shifts .

126A.153 SHLD, SHRD: Bitwise Double-Precision Shifts

126A.154 SMI: System Management Interrupt .

127A.155 SMSW: Store Machine Status Word .

127A.156 STC, STD, STI: Set Flags .

127A.157 STOSB, STOSW, STOSD: Store Byte to String

127A.158 STR: Store Task Register .

127A.159 SUB: Subtract Integers .

128A.160 TEST: Test Bits (notional bitwise AND) .

128A.161 UMOV: User Move Data .

128A.162 VERR, VERW: Verify Segment Readability/Writability

128A.163 WAIT: Wait for Floating-Point Processor .

129A.164 WBINVD: Write Back and Invalidate Cache .

129A.165 WRMSR: Write Model-Specific Registers .

129A.166 XADD: Exchange and Add .

129A.167 XBTS: Extract Bit String .

129A.168 XCHG: Exchange .

130A.169 XLATB: Translate Byte in Lookup Table .

130A.170 XOR: Bitwise Exclusive OR .

131Index .

Chapter 1: Introduction

1.1 What Is NASM?
The Netwide Assembler, NASM, is an 80x86 assembler designed for portability and modularity. It
supports a range of object file formats, including Linux a.out and ELF, NetBSD/FreeBSD, COFF,
Microsoft 16-bit OBJ and Win32. It will also output plain binary files. Its syntax is designed to be simple
and easy to understand, similar to Intel’s but less complex. It supports Pentium, P6 and MMX opcodes,
and has macro capability.

1.1.1 Why Yet Another Assembler?
The Netwide Assembler grew out of an idea on comp.lang.asm.x86 (or possibly alt.lang.asm
– I forget which), which was essentially that there didn’t seem to be a good free x86-series assembler
around, and that maybe someone ought to write one.

• a86 is good, but not free, and in particular you don’t get any 32-bit capability until you pay. It’s DOS
only, too.

• gas is free, and ports over DOS and Unix, but it’s not very good, since it’s designed to be a back end
to gcc, which always feeds it correct code. So its error checking is minimal. Also, its syntax is
horrible, from the point of view of anyone trying to actually write anything in it. Plus you can’t write
16-bit code in it (properly).

• as86 is Linux-specific, and (my version at least) doesn’t seem to have much (or any) documentation.

• MASM isn’t very good, and it’s expensive, and it runs only under DOS.

• TASM is better, but still strives for MASM compatibility, which means millions of directives and tons
of red tape. And its syntax is essentially MASM’s, with the contradictions and quirks that entails
(although it sorts out some of those by means of Ideal mode). It’s expensive too. And it’s DOS-only.

So here, for your coding pleasure, is NASM. At present it’s still in prototype stage – we don’t promise
that it can outperform any of these assemblers. But please, please send us bug reports, fixes, helpful
information, and anything else you can get your hands on (and thanks to the many people who’ve done
this already! You all know who you are), and we’ll improve it out of all recognition. Again.

1.1.2 Licence Conditions
Please see the file Licence, supplied as part of any NASM distribution archive, for the licence
conditions under which you may use NASM.

1.2 Contact Information
The current version of NASM (since 0.98) are maintained by H. Peter Anvin, hpa@zytor.com. If you
want to report a bug, please read section 10.2 first.

NASM has a WWW page at http://www.cryogen.com/Nasm.

The original authors are e-mailable as jules@earthcorp.com and anakin@pobox.com.

New releases of NASM are uploaded to ftp.kernel.org, sunsite.unc.edu,
ftp.simtel.net and ftp.coast.net. Announcements are posted to comp.lang.asm.x86,

alt.lang.asm, comp.os.linux.announce and comp.archives.msdos.announce (the
last one is done automagically by uploading to ftp.simtel.net).

If you don’t have Usenet access, or would rather be informed by e-mail when new releases come out, you
can subscribe to the nasm-announce email list by sending an email containing the line
subscribe nasm-announce to majordomo@linux.kernel.org.

If you want information about NASM beta releases, please subscribe to the nasm-beta email list by
sending an email containing the line subscribe nasm-beta to
majordomo@linux.kernel.org.

1.3 Installation
1.3.1 Installing NASM under MS-DOS or Windows

Once you’ve obtained the DOS archive for NASM, nasmXXX.zip (where XXX denotes the version
number of NASM contained in the archive), unpack it into its own directory (for example c:\nasm).

The archive will contain four executable files: the NASM executable files nasm.exe and nasmw.exe,
and the NDISASM executable files ndisasm.exe and ndisasmw.exe. In each case, the file whose
name ends in w is a Win32 executable, designed to run under Windows 95 or Windows NT Intel, and the
other one is a 16-bit DOS executable.

The only file NASM needs to run is its own executable, so copy (at least) one of nasm.exe and
nasmw.exe to a directory on your PATH, or alternatively edit autoexec.bat to add the nasm
directory to your PATH. (If you’re only installing the Win32 version, you may wish to rename it to
nasm.exe.)

That’s it – NASM is installed. You don’t need the nasm directory to be present to run NASM (unless
you’ve added it to your PATH), so you can delete it if you need to save space; however, you may want to
keep the documentation or test programs.

If you’ve downloaded the DOS source archive, nasmXXXs.zip, the nasm directory will also contain
the full NASM source code, and a selection of Makefiles you can (hopefully) use to rebuild your copy of
NASM from scratch. The file Readme lists the various Makefiles and which compilers they work with.

Note that the source files insnsa.c, insnsd.c, insnsi.h and insnsn.c are automatically
generated from the master instruction table insns.dat by a Perl script; the file macros.c is
generated from standard.mac by another Perl script. Although the NASM 0.98 distribution includes
these generated files, you will need to rebuild them (and hence, will need a Perl interpreter) if you change
insns.dat, standard.mac or the documentation. It is possible future source distributions may not
include these files at all. Ports of Perl for a variety of platforms, including DOS and Windows, are
available from www.cpan.org.

1.3.2 Installing NASM under Unix
Once you’ve obtained the Unix source archive for NASM, nasm-X.XX.tar.gz (where X.XX denotes
the version number of NASM contained in the archive), unpack it into a directory such as
/usr/local/src. The archive, when unpacked, will create its own subdirectory nasm-X.XX.

NASM is an auto-configuring package: once you’ve unpacked it, cd to the directory it’s been unpacked
into and type ./configure. This shell script will find the best C compiler to use for building NASM
and set up Makefiles accordingly.

Once NASM has auto-configured, you can type make to build the nasm and ndisasm binaries, and
then make install to install them in /usr/local/bin and install the man pages nasm.1 and
ndisasm.1 in /usr/local/man/man1. Alternatively, you can give options such as --prefix to
the configure script (see the file INSTALL for more details), or install the programs yourself.

NASM also comes with a set of utilities for handling the RDOFF custom object-file format, which are in
the rdoff subdirectory of the NASM archive. You can build these with make rdf and install them
with make rdf_install, if you want them.

If NASM fails to auto-configure, you may still be able to make it compile by using the fall-back Unix
makefile Makefile.unx. Copy or rename that file to Makefile and try typing make. There is also a
Makefile.unx file in the rdoff subdirectory.

Chapter 2: Running NASM

2.1 NASM Command-Line Syntax
To assemble a file, you issue a command of the form

nasm -f <format> <filename> [-o <output>]

For example,

nasm -f elf myfile.asm

will assemble myfile.asm into an ELF object file myfile.o. And

nasm -f bin myfile.asm -o myfile.com

will assemble myfile.asm into a raw binary file myfile.com.

To produce a listing file, with the hex codes output from NASM displayed on the left of the original
sources, use the -l option to give a listing file name, for example:

nasm -f coff myfile.asm -l myfile.lst

To get further usage instructions from NASM, try typing

nasm -h

This will also list the available output file formats, and what they are.

If you use Linux but aren’t sure whether your system is a.out or ELF, type

file nasm

(in the directory in which you put the NASM binary when you installed it). If it says something like

nasm: ELF 32-bit LSB executable i386 (386 and up) Version 1

then your system is ELF, and you should use the option -f elf when you want NASM to produce
Linux object files. If it says

nasm: Linux/i386 demand-paged executable (QMAGIC)

or something similar, your system is a.out, and you should use -f aout instead (Linux a.out
systems are considered obsolete, and are rare these days.)

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won’t see any output at
all, unless it gives error messages.

2.1.1 The -o Option: Specifying the Output File Name
NASM will normally choose the name of your output file for you; precisely how it does this is dependent
on the object file format. For Microsoft object file formats (obj and win32), it will remove the .asm
extension (or whatever extension you like to use – NASM doesn’t care) from your source file name and
substitute .obj. For Unix object file formats (aout, coff, elf and as86) it will substitute .o. For
rdf, it will use .rdf, and for the bin format it will simply remove the extension, so that
myfile.asm produces the output file myfile.

If the output file already exists, NASM will overwrite it, unless it has the same name as the input file, in
which case it will give a warning and use nasm.out as the output file name instead.

For situations in which this behaviour is unacceptable, NASM provides the -o command-line option,
which allows you to specify your desired output file name. You invoke -o by following it with the name
you wish for the output file, either with or without an intervening space. For example:

nasm -f bin program.asm -o program.com
nasm -f bin driver.asm -odriver.sys

2.1.2 The -f Option: Specifying the Output File Format
If you do not supply the -f option to NASM, it will choose an output file format for you itself. In the
distribution versions of NASM, the default is always bin; if you’ve compiled your own copy of NASM,
you can redefine OF_DEFAULT at compile time and choose what you want the default to be.

Like -o, the intervening space between -f and the output file format is optional; so -f elf and -felf
are both valid.

A complete list of the available output file formats can be given by issuing the command nasm -h.

2.1.3 The -l Option: Generating a Listing File
If you supply the -l option to NASM, followed (with the usual optional space) by a file name, NASM
will generate a source-listing file for you, in which addresses and generated code are listed on the left,
and the actual source code, with expansions of multi-line macros (except those which specifically request
no expansion in source listings: see section 4.2.9) on the right. For example:

nasm -f elf myfile.asm -l myfile.lst

2.1.4 The -E Option: Send Errors to a File
Under MS-DOS it can be difficult (though there are ways) to redirect the standard-error output of a
program to a file. Since NASM usually produces its warning and error messages on stderr, this can
make it hard to capture the errors if (for example) you want to load them into an editor.

NASM therefore provides the -E option, taking a filename argument which causes errors to be sent to the
specified files rather than standard error. Therefore you can redirect the errors into a file by typing

nasm -E myfile.err -f obj myfile.asm

2.1.5 The -s Option: Send Errors to stdout
The -s option redirects error messages to stdout rather than stderr, so it can be redirected under
MS-DOS. To assemble the file myfile.asm and pipe its output to the more program, you can type:

nasm -s -f obj myfile.asm | more

See also the -E option, section 2.1.4.

2.1.6 The -i Option: Include File Search Directories
When NASM sees the %include directive in a source file (see section 4.5), it will search for the given
file not only in the current directory, but also in any directories specified on the command line by the use
of the -i option. Therefore you can include files from a macro library, for example, by typing

nasm -ic:\macrolib\ -f obj myfile.asm

(As usual, a space between -i and the path name is allowed, and optional).

NASM, in the interests of complete source-code portability, does not understand the file naming
conventions of the OS it is running on; the string you provide as an argument to the -i option will be
prepended exactly as written to the name of the include file. Therefore the trailing backslash in the above
example is necessary. Under Unix, a trailing forward slash is similarly necessary.

(You can use this to your advantage, if you’re really perverse, by noting that the option -ifoo will cause
%include "bar.i" to search for the file foobar.i...)

If you want to define a standard include search path, similar to /usr/include on Unix systems, you
should place one or more -i directives in the NASM environment variable (see section 2.1.13).

For Makefile compatibility with many C compilers, this option can also be specified as -I.

2.1.7 The -p Option: Pre-Include a File
NASM allows you to specify files to be pre-included into your source file, by the use of the -p option. So
running

nasm myfile.asm -p myinc.inc

is equivalent to running nasm myfile.asm and placing the directive %include "myinc.inc" at
the start of the file.

For consistency with the -I, -D and -U options, this option can also be specified as -P.

2.1.8 The -d Option: Pre-Define a Macro
Just as the -p option gives an alternative to placing %include directives at the start of a source file, the
-d option gives an alternative to placing a %define directive. You could code

nasm myfile.asm -dFOO=100

as an alternative to placing the directive

%define FOO 100

at the start of the file. You can miss off the macro value, as well: the option -dFOO is equivalent to
coding %define FOO. This form of the directive may be useful for selecting assembly-time options
which are then tested using %ifdef, for example -dDEBUG.

For Makefile compatibility with many C compilers, this option can also be specified as -D.

2.1.9 The -u Option: Undefine a Macro
The -u option undefines a macro that would otherwise have been pre-defined, either automatically or by
a -p or -d option specified earlier on the command lines.

For example, the following command line:

nasm myfile.asm -dFOO=100 -uFOO

would result in FOO not being a predefined macro in the program. This is useful to override options
specified at a different point in a Makefile.

For Makefile compatibility with many C compilers, this option can also be specified as -U.

2.1.10 The -e Option: Preprocess Only
NASM allows the preprocessor to be run on its own, up to a point. Using the -e option (which requires
no arguments) will cause NASM to preprocess its input file, expand all the macro references, remove all
the comments and preprocessor directives, and print the resulting file on standard output (or save it to a
file, if the -o option is also used).

This option cannot be applied to programs which require the preprocessor to evaluate expressions which
depend on the values of symbols: so code such as

%assign tablesize ($-tablestart)

will cause an error in preprocess-only mode.

2.1.11 The -a Option: Don’t Preprocess At All
If NASM is being used as the back end to a compiler, it might be desirable to suppress preprocessing
completely and assume the compiler has already done it, to save time and increase compilation speeds.
The -a option, requiring no argument, instructs NASM to replace its powerful preprocessor with a stub
preprocessor which does nothing.

2.1.12 The -w Option: Enable or Disable Assembly Warnings
NASM can observe many conditions during the course of assembly which are worth mentioning to the
user, but not a sufficiently severe error to justify NASM refusing to generate an output file. These
conditions are reported like errors, but come up with the word ‘warning’ before the message. Warnings
do not prevent NASM from generating an output file and returning a success status to the operating
system.

Some conditions are even less severe than that: they are only sometimes worth mentioning to the user.
Therefore NASM supports the -w command-line option, which enables or disables certain classes of
assembly warning. Such warning classes are described by a name, for example orphan-labels; you
can enable warnings of this class by the command-line option -w+orphan-labels and disable it by
-w-orphan-labels.

The suppressible warning classes are:

• macro-params covers warnings about multi-line macros being invoked with the wrong number of
parameters. This warning class is enabled by default; see section 4.2.1 for an example of why you
might want to disable it.

• orphan-labels covers warnings about source lines which contain no instruction but define a label
without a trailing colon. NASM does not warn about this somewhat obscure condition by default; see
section 3.1 for an example of why you might want it to.

• number-overflow covers warnings about numeric constants which don’t fit in 32 bits (for
example, it’s easy to type one too many Fs and produce 0x7ffffffff by mistake). This warning
class is enabled by default.

2.1.13 The NASM Environment Variable
If you define an environment variable called NASM, the program will interpret it as a list of extra
command-line options, which are processed before the real command line. You can use this to define
standard search directories for include files, by putting -i options in the NASM variable.

The value of the variable is split up at white space, so that the value -s -ic:\nasmlib will be treated
as two separate options. However, that means that the value -dNAME="my name" won’t do what you
might want, because it will be split at the space and the NASM command-line processing will get
confused by the two nonsensical words -dNAME="my and name".

To get round this, NASM provides a feature whereby, if you begin the NASM environment variable with
some character that isn’t a minus sign, then NASM will treat this character as the separator character for
options. So setting the NASM variable to the value !-s!-ic:\nasmlib is equivalent to setting it to
-s -ic:\nasmlib, but !-dNAME="my name" will work.

2.2 Quick Start for MASM Users
If you’re used to writing programs with MASM, or with TASM in MASM-compatible (non-Ideal) mode,
or with a86, this section attempts to outline the major differences between MASM’s syntax and
NASM’s. If you’re not already used to MASM, it’s probably worth skipping this section.

2.2.1 NASM Is Case-Sensitive
One simple difference is that NASM is case-sensitive. It makes a difference whether you call your label
foo, Foo or FOO. If you’re assembling to DOS or OS/2 .OBJ files, you can invoke the UPPERCASE

directive (documented in section 6.2) to ensure that all symbols exported to other code modules are
forced to be upper case; but even then, within a single module, NASM will distinguish between labels
differing only in case.

2.2.2 NASM Requires Square Brackets For Memory References
NASM was designed with simplicity of syntax in mind. One of the design goals of NASM is that it
should be possible, as far as is practical, for the user to look at a single line of NASM code and tell what
opcode is generated by it. You can’t do this in MASM: if you declare, for example,

foo equ 1
bar dw 2

then the two lines of code

 mov ax,foo
 mov ax,bar

generate completely different opcodes, despite having identical-looking syntaxes.

NASM avoids this undesirable situation by having a much simpler syntax for memory references. The
rule is simply that any access to the contents of a memory location requires square brackets around the
address, and any access to the address of a variable doesn’t. So an instruction of the form mov ax,foo
will always refer to a compile-time constant, whether it’s an EQU or the address of a variable; and to
access the contents of the variable bar, you must code mov ax,[bar].

This also means that NASM has no need for MASM’s OFFSET keyword, since the MASM code
mov ax,offset bar means exactly the same thing as NASM’s mov ax,bar. If you’re trying to
get large amounts of MASM code to assemble sensibly under NASM, you can always code
%idefine offset to make the preprocessor treat the OFFSET keyword as a no-op.

This issue is even more confusing in a86, where declaring a label with a trailing colon defines it to be a
‘label’ as opposed to a ‘variable’ and causes a86 to adopt NASM-style semantics; so in a86,
mov ax,var has different behaviour depending on whether var was declared as var: dw 0 (a
label) or var dw 0 (a word-size variable). NASM is very simple by comparison: everything is a label.

NASM, in the interests of simplicity, also does not support the hybrid syntaxes supported by MASM and
its clones, such as mov ax,table[bx], where a memory reference is denoted by one portion outside
square brackets and another portion inside. The correct syntax for the above is mov ax,[table+bx].
Likewise, mov ax,es:[di] is wrong and mov ax,[es:di] is right.

2.2.3 NASM Doesn’t Store Variable Types
NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM will
remember, on seeing var dw 0, that you declared var as a word-size variable, and will then be able to
fill in the ambiguity in the size of the instruction mov var,2, NASM will deliberately remember
nothing about the symbol var except where it begins, and so you must explicitly code
mov word [var],2.

For this reason, NASM doesn’t support the LODS, MOVS, STOS, SCAS, CMPS, INS, or OUTS
instructions, but only supports the forms such as LODSB, MOVSW, and SCASD, which explicitly specify
the size of the components of the strings being manipulated.

2.2.4 NASM Doesn’t ASSUME
As part of NASM’s drive for simplicity, it also does not support the ASSUME directive. NASM will not
keep track of what values you choose to put in your segment registers, and will never automatically
generate a segment override prefix.

2.2.5 NASM Doesn’t Support Memory Models
NASM also does not have any directives to support different 16-bit memory models. The programmer has
to keep track of which functions are supposed to be called with a far call and which with a near call, and
is responsible for putting the correct form of RET instruction (RETN or RETF; NASM accepts RET itself
as an alternate form for RETN); in addition, the programmer is responsible for coding CALL FAR
instructions where necessary when calling external functions, and must also keep track of which external
variable definitions are far and which are near.

2.2.6 Floating-Point Differences
NASM uses different names to refer to floating-point registers from MASM: where MASM would call
them ST(0), ST(1) and so on, and a86 would call them simply 0, 1 and so on, NASM chooses to call
them st0, st1 etc.

As of version 0.96, NASM now treats the instructions with ‘nowait’ forms in the same way as MASM-
compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was based on a
misunderstanding by the authors.

2.2.7 Other Differences
For historical reasons, NASM uses the keyword TWORD where MASM and compatible assemblers use
TBYTE.

NASM does not declare uninitialised storage in the same way as MASM: where a MASM programmer
might use stack db 64 dup (?), NASM requires stack resb 64, intended to be read as
‘reserve 64 bytes’. For a limited amount of compatibility, since NASM treats ? as a valid character in
symbol names, you can code ? equ 0 and then writing dw ? will at least do something vaguely
useful. DUP is still not a supported syntax, however.

In addition to all of this, macros and directives work completely differently to MASM. See chapter 4 and
chapter 5 for further details.

Chapter 3: The NASM Language

3.1 Layout of a NASM Source Line
Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor directive or
an assembler directive: see chapter 4 and chapter 5) some combination of the four fields

label: instruction operands ; comment

As usual, most of these fields are optional; the presence or absence of any combination of a label, an
instruction and a comment is allowed. Of course, the operand field is either required or forbidden by the
presence and nature of the instruction field.

NASM places no restrictions on white space within a line: labels may have white space before them, or
instructions may have no space before them, or anything. The colon after a label is also optional. (Note
that this means that if you intend to code lodsb alone on a line, and type lodab by accident, then
that’s still a valid source line which does nothing but define a label. Running NASM with the command-
line option -w+orphan-labels will cause it to warn you if you define a label alone on a line without
a trailing colon.)

Valid characters in labels are letters, numbers, _, $, #, @, ~, ., and ?. The only characters which may be
used as the first character of an identifier are letters, . (with special meaning: see section 3.8), _ and ?.
An identifier may also be prefixed with a $ to indicate that it is intended to be read as an identifier and
not a reserved word; thus, if some other module you are linking with defines a symbol called eax, you
can refer to $eax in NASM code to distinguish the symbol from the register.

The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU instructions,
MMX instructions and even undocumented instructions are all supported. The instruction may be
prefixed by LOCK, REP, REPE/REPZ or REPNE/REPNZ, in the usual way. Explicit address-size and
operand-size prefixes A16, A32, O16 and O32 are provided – one example of their use is given in
chapter 9. You can also use the name of a segment register as an instruction prefix: coding
es mov [bx],ax is equivalent to coding mov [es:bx],ax. We recommend the latter syntax,
since it is consistent with other syntactic features of the language, but for instructions such as LODSB,
which has no operands and yet can require a segment override, there is no clean syntactic way to proceed
apart from es lodsb.

An instruction is not required to use a prefix: prefixes such as CS, A32, LOCK or REPE can appear on a
line by themselves, and NASM will just generate the prefix bytes.

In addition to actual machine instructions, NASM also supports a number of pseudo-instructions,
described in section 3.2.

Instruction operands may take a number of forms: they can be registers, described simply by the register
name (e.g. ax, bp, ebx, cr0: NASM does not use the gas–style syntax in which register names must
be prefixed by a % sign), or they can be effective addresses (see section 3.3), constants (section 3.4) or
expressions (section 3.5).

For floating-point instructions, NASM accepts a wide range of syntaxes: you can use two-operand forms
like MASM supports, or you can use NASM’s native single-operand forms in most cases. Details of all
forms of each supported instruction are given in appendix A. For example, you can code:

 fadd st1 ; this sets st0 := st0 + st1
 fadd st0,st1 ; so does this

 fadd st1,st0 ; this sets st1 := st1 + st0
 fadd to st1 ; so does this

Almost any floating-point instruction that references memory must use one of the prefixes DWORD,
QWORD or TWORD to indicate what size of memory operand it refers to.

3.2 Pseudo-Instructions
Pseudo-instructions are things which, though not real x86 machine instructions, are used in the instruction
field anyway because that’s the most convenient place to put them. The current pseudo-instructions are
DB, DW, DD, DQ and DT, their uninitialised counterparts RESB, RESW, RESD, RESQ and REST, the
INCBIN command, the EQU command, and the TIMES prefix.

3.2.1 DB and friends: Declaring Initialised Data
DB, DW, DD, DQ and DT are used, much as in MASM, to declare initialised data in the output file. They
can be invoked in a wide range of ways:

 db 0x55 ; just the byte 0x55
 db 0x55,0x56,0x57 ; three bytes in succession
 db ’a’,0x55 ; character constants are OK
 db ’hello’,13,10,’$’ ; so are string constants
 dw 0x1234 ; 0x34 0x12
 dw ’a’ ; 0x41 0x00 (it’s just a number)
 dw ’ab’ ; 0x41 0x42 (character constant)
 dw ’abc’ ; 0x41 0x42 0x43 0x00 (string)
 dd 0x12345678 ; 0x78 0x56 0x34 0x12
 dd 1.234567e20 ; floating-point constant
 dq 1.234567e20 ; double-precision float
 dt 1.234567e20 ; extended-precision float

DQ and DT do not accept numeric constants or string constants as operands.

3.2.2 RESB and friends: Declaring Uninitialised Data
RESB, RESW, RESD, RESQ and REST are designed to be used in the BSS section of a module: they
declare uninitialised storage space. Each takes a single operand, which is the number of bytes, words,
doublewords or whatever to reserve. As stated in section 2.2.7, NASM does not support the
MASM/TASM syntax of reserving uninitialised space by writing DW ? or similar things: this is what it
does instead. The operand to a RESB–type pseudo-instruction is a critical expression: see section 3.7.

For example:

buffer: resb 64 ; reserve 64 bytes
wordvar: resw 1 ; reserve a word
realarray resq 10 ; array of ten reals

3.2.3 INCBIN: Including External Binary Files
INCBIN is borrowed from the old Amiga assembler DevPac: it includes a binary file verbatim into the
output file. This can be handy for (for example) including graphics and sound data directly into a game
executable file. It can be called in one of these three ways:

 incbin "file.dat" ; include the whole file
 incbin "file.dat",1024 ; skip the first 1024 bytes
 incbin "file.dat",1024,512 ; skip the first 1024, and
 ; actually include at most 512

3.2.4 EQU: Defining Constants
EQU defines a symbol to a given constant value: when EQU is used, the source line must contain a label.
The action of EQU is to define the given label name to the value of its (only) operand. This definition is
absolute, and cannot change later. So, for example,

message db ’hello, world’
msglen equ $-message

defines msglen to be the constant 12. msglen may not then be redefined later. This is not a
preprocessor definition either: the value of msglen is evaluated once, using the value of $ (see section
3.5 for an explanation of $) at the point of definition, rather than being evaluated wherever it is
referenced and using the value of $ at the point of reference. Note that the operand to an EQU is also a
critical expression (section 3.7).

3.2.5 TIMES: Repeating Instructions or Data
The TIMES prefix causes the instruction to be assembled multiple times. This is partly present as
NASM’s equivalent of the DUP syntax supported by MASM–compatible assemblers, in that you can
code

zerobuf: times 64 db 0

or similar things; but TIMES is more versatile than that. The argument to TIMES is not just a numeric
constant, but a numeric expression, so you can do things like

buffer: db ’hello, world’
 times 64-$+buffer db ’ ’

which will store exactly enough spaces to make the total length of buffer up to 64. Finally, TIMES can
be applied to ordinary instructions, so you can code trivial unrolled loops in it:

 times 100 movsb

Note that there is no effective difference between times 100 resb 1 and resb 100, except that
the latter will be assembled about 100 times faster due to the internal structure of the assembler.

The operand to TIMES, like that of EQU and those of RESB and friends, is a critical expression (section
3.7).

Note also that TIMES can’t be applied to macros: the reason for this is that TIMES is processed after the
macro phase, which allows the argument to TIMES to contain expressions such as 64-$+buffer as
above. To repeat more than one line of code, or a complex macro, use the preprocessor %rep directive.

3.3 Effective Addresses
An effective address is any operand to an instruction which references memory. Effective addresses, in
NASM, have a very simple syntax: they consist of an expression evaluating to the desired address,
enclosed in square brackets. For example:

wordvar dw 123
 mov ax,[wordvar]
 mov ax,[wordvar+1]
 mov ax,[es:wordvar+bx]

Anything not conforming to this simple system is not a valid memory reference in NASM, for example
es:wordvar[bx].

More complicated effective addresses, such as those involving more than one register, work in exactly the
same way:

 mov eax,[ebx*2+ecx+offset]
 mov ax,[bp+di+8]

NASM is capable of doing algebra on these effective addresses, so that things which don’t necessarily
look legal are perfectly all right:

 mov eax,[ebx*5] ; assembles as [ebx*4+ebx]
 mov eax,[label1*2-label2] ; ie [label1+(label1-label2)]

Some forms of effective address have more than one assembled form; in most such cases NASM will
generate the smallest form it can. For example, there are distinct assembled forms for the 32-bit effective
addresses [eax*2+0] and [eax+eax], and NASM will generally generate the latter on the grounds
that the former requires four bytes to store a zero offset.

NASM has a hinting mechanism which will cause [eax+ebx] and [ebx+eax] to generate different
opcodes; this is occasionally useful because [esi+ebp] and [ebp+esi] have different default
segment registers.

However, you can force NASM to generate an effective address in a particular form by the use of the
keywords BYTE, WORD, DWORD and NOSPLIT. If you need [eax+3] to be assembled using a double-
word offset field instead of the one byte NASM will normally generate, you can code [dword eax+3].
Similarly, you can force NASM to use a byte offset for a small value which it hasn’t seen on the first
pass (see section 3.7 for an example of such a code fragment) by using [byte eax+offset]. As
special cases, [byte eax] will code [eax+0] with a byte offset of zero, and [dword eax] will
code it with a double-word offset of zero. The normal form, [eax], will be coded with no offset field.

Similarly, NASM will split [eax*2] into [eax+eax] because that allows the offset field to be absent
and space to be saved; in fact, it will also split [eax*2+offset] into [eax+eax+offset]. You
can combat this behaviour by the use of the NOSPLIT keyword: [nosplit eax*2] will force
[eax*2+0] to be generated literally.

3.4 Constants
NASM understands four different types of constant: numeric, character, string and floating-point.

3.4.1 Numeric Constants
A numeric constant is simply a number. NASM allows you to specify numbers in a variety of number
bases, in a variety of ways: you can suffix H, Q and B for hex, octal and binary, or you can prefix 0x for
hex in the style of C, or you can prefix $ for hex in the style of Borland Pascal. Note, though, that the $
prefix does double duty as a prefix on identifiers (see section 3.1), so a hex number prefixed with a $
sign must have a digit after the $ rather than a letter.

Some examples:

 mov ax,100 ; decimal
 mov ax,0a2h ; hex
 mov ax,$0a2 ; hex again: the 0 is required
 mov ax,0xa2 ; hex yet again
 mov ax,777q ; octal
 mov ax,10010011b ; binary

3.4.2 Character Constants
A character constant consists of up to four characters enclosed in either single or double quotes. The type
of quote makes no difference to NASM, except of course that surrounding the constant with single
quotes allows double quotes to appear within it and vice versa.

A character constant with more than one character will be arranged with little-endian order in mind: if
you code

 mov eax,’abcd’

then the constant generated is not 0x61626364, but 0x64636261, so that if you were then to store the
value into memory, it would read abcd rather than dcba. This is also the sense of character constants
understood by the Pentium’s CPUID instruction (see section A.22).

3.4.3 String Constants
String constants are only acceptable to some pseudo-instructions, namely the DB family and INCBIN.

A string constant looks like a character constant, only longer. It is treated as a concatenation of
maximum-size character constants for the conditions. So the following are equivalent:

 db ’hello’ ; string constant
 db ’h’,’e’,’l’,’l’,’o’ ; equivalent character constants

And the following are also equivalent:

 dd ’ninechars’ ; doubleword string constant
 dd ’nine’,’char’,’s’ ; becomes three doublewords
 db ’ninechars’,0,0,0 ; and really looks like this

Note that when used as an operand to db, a constant like ’ab’ is treated as a string constant despite
being short enough to be a character constant, because otherwise db ’ab’ would have the same effect
as db ’a’, which would be silly. Similarly, three-character or four-character constants are treated as
strings when they are operands to dw.

3.4.4 Floating-Point Constants
Floating-point constants are acceptable only as arguments to DD, DQ and DT. They are expressed in the
traditional form: digits, then a period, then optionally more digits, then optionally an E followed by an
exponent. The period is mandatory, so that NASM can distinguish between dd 1, which declares an
integer constant, and dd 1.0 which declares a floating-point constant.

Some examples:

 dd 1.2 ; an easy one
 dq 1.e10 ; 10,000,000,000
 dq 1.e+10 ; synonymous with 1.e10
 dq 1.e-10 ; 0.000 000 000 1
 dt 3.141592653589793238462 ; pi

NASM cannot do compile-time arithmetic on floating-point constants. This is because NASM is designed
to be portable – although it always generates code to run on x86 processors, the assembler itself can run
on any system with an ANSI C compiler. Therefore, the assembler cannot guarantee the presence of a
floating-point unit capable of handling the Intel number formats, and so for NASM to be able to do
floating arithmetic it would have to include its own complete set of floating-point routines, which would
significantly increase the size of the assembler for very little benefit.

3.5 Expressions
Expressions in NASM are similar in syntax to those in C.

NASM does not guarantee the size of the integers used to evaluate expressions at compile time: since
NASM can compile and run on 64-bit systems quite happily, don’t assume that expressions are evaluated
in 32-bit registers and so try to make deliberate use of integer overflow. It might not always work. The
only thing NASM will guarantee is what’s guaranteed by ANSI C: you always have at least 32 bits to
work in.

NASM supports two special tokens in expressions, allowing calculations to involve the current assembly
position: the $ and $$ tokens. $ evaluates to the assembly position at the beginning of the line

containing the expression; so you can code an infinite loop using JMP $. $$ evaluates to the beginning
of the current section; so you can tell how far into the section you are by using ($-$$).

The arithmetic operators provided by NASM are listed here, in increasing order of precedence.

3.5.1 |: Bitwise OR Operator
The | operator gives a bitwise OR, exactly as performed by the OR machine instruction. Bitwise OR is
the lowest-priority arithmetic operator supported by NASM.

3.5.2 ^: Bitwise XOR Operator
^ provides the bitwise XOR operation.

3.5.3 &: Bitwise AND Operator
& provides the bitwise AND operation.

3.5.4 << and >>: Bit Shift Operators
<< gives a bit-shift to the left, just as it does in C. So 5<<3 evaluates to 5 times 8, or 40. >> gives a bit-
shift to the right; in NASM, such a shift is always unsigned, so that the bits shifted in from the left-hand
end are filled with zero rather than a sign-extension of the previous highest bit.

3.5.5 + and -: Addition and Subtraction Operators
The + and - operators do perfectly ordinary addition and subtraction.

3.5.6 *, /, //, % and %%: Multiplication and Division
* is the multiplication operator. / and // are both division operators: / is unsigned division and // is
signed division. Similarly, % and %% provide unsigned and signed modulo operators respectively.

NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo operator.

Since the % character is used extensively by the macro preprocessor, you should ensure that both the
signed and unsigned modulo operators are followed by white space wherever they appear.

3.5.7 Unary Operators: +, -, ~ and SEG
The highest-priority operators in NASM’s expression grammar are those which only apply to one
argument. - negates its operand, + does nothing (it’s provided for symmetry with -), ~ computes the
one’s complement of its operand, and SEG provides the segment address of its operand (explained in
more detail in section 3.6).

3.6 SEG and WRT
When writing large 16-bit programs, which must be split into multiple segments, it is often necessary to
be able to refer to the segment part of the address of a symbol. NASM supports the SEG operator to
perform this function.

The SEG operator returns the preferred segment base of a symbol, defined as the segment base relative to
which the offset of the symbol makes sense. So the code

 mov ax,seg symbol
 mov es,ax
 mov bx,symbol

will load ES:BX with a valid pointer to the symbol symbol.

Things can be more complex than this: since 16-bit segments and groups may overlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one. NASM
lets you do this, by the use of the WRT (With Reference To) keyword. So you can do things like

 mov ax,weird_seg ; weird_seg is a segment base
 mov es,ax
 mov bx,symbol wrt weird_seg

to load ES:BX with a different, but functionally equivalent, pointer to the symbol symbol.

NASM supports far (inter-segment) calls and jumps by means of the syntax call segment:offset,
where segment and offset both represent immediate values. So to call a far procedure, you could
code either of

 call (seg procedure):procedure
 call weird_seg:(procedure wrt weird_seg)

(The parentheses are included for clarity, to show the intended parsing of the above instructions. They are
not necessary in practice.)

NASM supports the syntax call far procedure as a synonym for the first of the above usages.
JMP works identically to CALL in these examples.

To declare a far pointer to a data item in a data segment, you must code

 dw symbol, seg symbol

NASM supports no convenient synonym for this, though you can always invent one using the macro
processor.

3.7 Critical Expressions
A limitation of NASM is that it is a two-pass assembler; unlike TASM and others, it will always do
exactly two assembly passes. Therefore it is unable to cope with source files that are complex enough to
require three or more passes.

The first pass is used to determine the size of all the assembled code and data, so that the second pass,
when generating all the code, knows all the symbol addresses the code refers to. So one thing NASM
can’t handle is code whose size depends on the value of a symbol declared after the code in question. For
example,

 times (label-$) db 0
label: db ’Where am I?’

The argument to TIMES in this case could equally legally evaluate to anything at all; NASM will reject
this example because it cannot tell the size of the TIMES line when it first sees it. It will just as firmly
reject the slightly paradoxical code

 times (label-$+1) db 0
label: db ’NOW where am I?’

in which any value for the TIMES argument is by definition wrong!

NASM rejects these examples by means of a concept called a critical expression, which is defined to be
an expression whose value is required to be computable in the first pass, and which must therefore
depend only on symbols defined before it. The argument to the TIMES prefix is a critical expression; for
the same reason, the arguments to the RESB family of pseudo-instructions are also critical expressions.

Critical expressions can crop up in other contexts as well: consider the following code.

 mov ax,symbol1
symbol1 equ symbol2
symbol2:

On the first pass, NASM cannot determine the value of symbol1, because symbol1 is defined to be
equal to symbol2 which NASM hasn’t seen yet. On the second pass, therefore, when it encounters the

line mov ax,symbol1, it is unable to generate the code for it because it still doesn’t know the value of
symbol1. On the next line, it would see the EQU again and be able to determine the value of symbol1,
but by then it would be too late.

NASM avoids this problem by defining the right-hand side of an EQU statement to be a critical
expression, so the definition of symbol1 would be rejected in the first pass.

There is a related issue involving forward references: consider this code fragment.

 mov eax,[ebx+offset]
offset equ 10

NASM, on pass one, must calculate the size of the instruction mov eax,[ebx+offset] without
knowing the value of offset. It has no way of knowing that offset is small enough to fit into a one-
byte offset field and that it could therefore get away with generating a shorter form of the
effective-address encoding; for all it knows, in pass one, offset could be a symbol in the code
segment, and it might need the full four-byte form. So it is forced to compute the size of the instruction to
accommodate a four-byte address part. In pass two, having made this decision, it is now forced to honour
it and keep the instruction large, so the code generated in this case is not as small as it could have been.
This problem can be solved by defining offset before using it, or by forcing byte size in the effective
address by coding [byte ebx+offset].

3.8 Local Labels
NASM gives special treatment to symbols beginning with a period. A label beginning with a single period
is treated as a local label, which means that it is associated with the previous non-local label. So, for
example:

label1 ; some code
.loop ; some more code
 jne .loop
 ret
label2 ; some code
.loop ; some more code
 jne .loop
 ret

In the above code fragment, each JNE instruction jumps to the line immediately before it, because the two
definitions of .loop are kept separate by virtue of each being associated with the previous non-local
label.

This form of local label handling is borrowed from the old Amiga assembler DevPac; however, NASM
goes one step further, in allowing access to local labels from other parts of the code. This is achieved by
means of defining a local label in terms of the previous non-local label: the first definition of .loop
above is really defining a symbol called label1.loop, and the second defines a symbol called
label2.loop. So, if you really needed to, you could write

label3 ; some more code
 ; and some more
 jmp label1.loop

Sometimes it is useful – in a macro, for instance – to be able to define a label which can be referenced
from anywhere but which doesn’t interfere with the normal local-label mechanism. Such a label can’t be
non-local because it would interfere with subsequent definitions of, and references to, local labels; and it
can’t be local because the macro that defined it wouldn’t know the label’s full name. NASM therefore
introduces a third type of label, which is probably only useful in macro definitions: if a label begins with
the special prefix ..@, then it does nothing to the local label mechanism. So you could code

label1: ; a non-local label
.local: ; this is really label1.local
..@foo: ; this is a special symbol
label2: ; another non-local label
.local: ; this is really label2.local
 jmp ..@foo ; this will jump three lines up

NASM has the capacity to define other special symbols beginning with a double period: for example,
..start is used to specify the entry point in the obj output format (see section 6.2.6).

Chapter 4: The NASM Preprocessor

NASM contains a powerful macro processor, which supports conditional assembly, multi-level file
inclusion, two forms of macro (single-line and multi-line), and a ‘context stack’ mechanism for extra
macro power. Preprocessor directives all begin with a % sign.

4.1 Single-Line Macros
4.1.1 The Normal Way: %define

Single-line macros are defined using the %define preprocessor directive. The definitions work in a
similar way to C; so you can do things like

%define ctrl 0x1F &
%define param(a,b) ((a)+(a)*(b))
 mov byte [param(2,ebx)], ctrl ’D’

which will expand to

 mov byte [(2)+(2)*(ebx)], 0x1F & ’D’

When the expansion of a single-line macro contains tokens which invoke another macro, the expansion is
performed at invocation time, not at definition time. Thus the code

%define a(x) 1+b(x)
%define b(x) 2*x
 mov ax,a(8)

will evaluate in the expected way to mov ax,1+2*8, even though the macro b wasn’t defined at the
time of definition of a.

Macros defined with %define are case sensitive: after %define foo bar, only foo will expand to
bar: Foo or FOO will not. By using %idefine instead of %define (the ‘i’ stands for ‘insensitive’)
you can define all the case variants of a macro at once, so that %idefine foo bar would cause foo,
Foo, FOO, fOO and so on all to expand to bar.

There is a mechanism which detects when a macro call has occurred as a result of a previous expansion of
the same macro, to guard against circular references and infinite loops. If this happens, the preprocessor
will only expand the first occurrence of the macro. Hence, if you code

%define a(x) 1+a(x)
 mov ax,a(3)

the macro a(3) will expand once, becoming 1+a(3), and will then expand no further. This behaviour
can be useful: see section 8.1 for an example of its use.

You can overload single-line macros: if you write

%define foo(x) 1+x
%define foo(x,y) 1+x*y

the preprocessor will be able to handle both types of macro call, by counting the parameters you pass; so
foo(3) will become 1+3 whereas foo(ebx,2) will become 1+ebx*2. However, if you define

%define foo bar

then no other definition of foo will be accepted: a macro with no parameters prohibits the definition of
the same name as a macro with parameters, and vice versa.

This doesn’t prevent single-line macros being redefined: you can perfectly well define a macro with

%define foo bar

and then re-define it later in the same source file with

%define foo baz

Then everywhere the macro foo is invoked, it will be expanded according to the most recent definition.
This is particularly useful when defining single-line macros with %assign (see section 4.1.3).

You can pre-define single-line macros using the ‘-d’ option on the NASM command line: see section
2.1.8.

4.1.2 Undefining macros: %undef
Single-line macros can be removed with the %undef command. For example, the following sequence:

%define foo bar
%undef foo
 11 11mov eax, foo

will expand to the instruction mov eax, foo, since after %undef the macro foo is no longer defined.

Macros that would otherwise be pre-defined can be undefined on the command-line using the ‘-u’ option
on the NASM command line: see section 2.1.9.

4.1.3 Preprocessor Variables: %assign
An alternative way to define single-line macros is by means of the %assign command (and its case
sensitivecase-insensitive counterpart %iassign, which differs from %assign in exactly the same way
that %idefine differs from %define).

%assign is used to define single-line macros which take no parameters and have a numeric value. This
value can be specified in the form of an expression, and it will be evaluated once, when the %assign
directive is processed.

Like %define, macros defined using %assign can be re-defined later, so you can do things like

%assign i i+1

to increment the numeric value of a macro.

%assign is useful for controlling the termination of %rep preprocessor loops: see section 4.4 for an
example of this. Another use for %assign is given in section 7.4 and section 8.1.

The expression passed to %assign is a critical expression (see section 3.7), and must also evaluate to a
pure number (rather than a relocatable reference such as a code or data address, or anything involving a
register).

4.2 Multi-Line Macros: %macro
Multi-line macros are much more like the type of macro seen in MASM and TASM: a multi-line macro
definition in NASM looks something like this.

%macro prologue 1
 push ebp
 mov ebp,esp

 sub esp,%1
%endmacro

This defines a C-like function prologue as a macro: so you would invoke the macro with a call such as

myfunc: prologue 12

which would expand to the three lines of code

myfunc: push ebp
 mov ebp,esp
 sub esp,12

The number 1 after the macro name in the %macro line defines the number of parameters the macro
prologue expects to receive. The use of %1 inside the macro definition refers to the first parameter to
the macro call. With a macro taking more than one parameter, subsequent parameters would be referred
to as %2, %3 and so on.

Multi-line macros, like single-line macros, are case-sensitive, unless you define them using the alternative
directive %imacro.

If you need to pass a comma as part of a parameter to a multi-line macro, you can do that by enclosing
the entire parameter in braces. So you could code things like

%macro silly 2
%2: db %1
%endmacro
 silly ’a’, letter_a ; letter_a: db ’a’
 silly ’ab’, string_ab ; string_ab: db ’ab’
 silly {13,10}, crlf ; crlf: db 13,10

4.2.1 Overloading Multi-Line Macros
As with single-line macros, multi-line macros can be overloaded by defining the same macro name
several times with different numbers of parameters. This time, no exception is made for macros with no
parameters at all. So you could define

%macro prologue 0
 push ebp
 mov ebp,esp
%endmacro

to define an alternative form of the function prologue which allocates no local stack space.

Sometimes, however, you might want to ‘overload’ a machine instruction; for example, you might want
to define

%macro push 2
 push %1
 push %2
%endmacro

so that you could code

 push ebx ; this line is not a macro call
 push eax,ecx ; but this one is

Ordinarily, NASM will give a warning for the first of the above two lines, since push is now defined to
be a macro, and is being invoked with a number of parameters for which no definition has been given.
The correct code will still be generated, but the assembler will give a warning. This warning can be
disabled by the use of the -w-macro-params command-line option (see section 2.1.12).

4.2.2 Macro-Local Labels
NASM allows you to define labels within a multi-line macro definition in such a way as to make them
local to the macro call: so calling the same macro multiple times will use a different label each time. You
do this by prefixing %% to the label name. So you can invent an instruction which executes a RET if the Z
flag is set by doing this:

%macro retz 0
 jnz %%skip
 ret
%%skip:
%endmacro

You can call this macro as many times as you want, and every time you call it NASM will make up a
different ‘real’ name to substitute for the label %%skip. The names NASM invents are of the form
..@2345.skip, where the number 2345 changes with every macro call. The ..@ prefix prevents
macro-local labels from interfering with the local label mechanism, as described in section 3.8. You
should avoid defining your own labels in this form (the ..@ prefix, then a number, then another period)
in case they interfere with macro-local labels.

4.2.3 Greedy Macro Parameters
Occasionally it is useful to define a macro which lumps its entire command line into one parameter
definition, possibly after extracting one or two smaller parameters from the front. An example might be a
macro to write a text string to a file in MS-DOS, where you might want to be able to write

 writefile [filehandle],"hello, world",13,10

NASM allows you to define the last parameter of a macro to be greedy, meaning that if you invoke the
macro with more parameters than it expects, all the spare parameters get lumped into the last defined one
along with the separating commas. So if you code:

%macro writefile 2+
 jmp %%endstr
%%str: db %2
%%endstr: mov dx,%%str
 mov cx,%%endstr-%%str
 mov bx,%1
 mov ah,0x40
 int 0x21
%endmacro

then the example call to writefile above will work as expected: the text before the first comma,
[filehandle], is used as the first macro parameter and expanded when %1 is referred to, and all the
subsequent text is lumped into %2 and placed after the db.

The greedy nature of the macro is indicated to NASM by the use of the + sign after the parameter count
on the %macro line.

If you define a greedy macro, you are effectively telling NASM how it should expand the macro given
any number of parameters from the actual number specified up to infinity; in this case, for example,
NASM now knows what to do when it sees a call to writefile with 2, 3, 4 or more parameters.
NASM will take this into account when overloading macros, and will not allow you to define another
form of writefile taking 4 parameters (for example).

Of course, the above macro could have been implemented as a non-greedy macro, in which case the call
to it would have had to look like

 writefile [filehandle], {"hello, world",13,10}

NASM provides both mechanisms for putting commas in macro parameters, and you choose which one
you prefer for each macro definition.

See section 5.2.1 for a better way to write the above macro.

4.2.4 Default Macro Parameters
NASM also allows you to define a multi-line macro with a range of allowable parameter counts. If you
do this, you can specify defaults for omitted parameters. So, for example:

%macro die 0-1 "Painful program death has occurred."
 writefile 2,%1
 mov ax,0x4c01
 int 0x21
%endmacro

This macro (which makes use of the writefile macro defined in section 4.2.3) can be called with an
explicit error message, which it will display on the error output stream before exiting, or it can be called
with no parameters, in which case it will use the default error message supplied in the macro definition.

In general, you supply a minimum and maximum number of parameters for a macro of this type; the
minimum number of parameters are then required in the macro call, and then you provide defaults for the
optional ones. So if a macro definition began with the line

%macro foobar 1-3 eax,[ebx+2]

then it could be called with between one and three parameters, and %1 would always be taken from the
macro call. %2, if not specified by the macro call, would default to eax, and %3 if not specified would
default to [ebx+2].

You may omit parameter defaults from the macro definition, in which case the parameter default is taken
to be blank. This can be useful for macros which can take a variable number of parameters, since the %0
token (see section 4.2.5) allows you to determine how many parameters were really passed to the macro
call.

This defaulting mechanism can be combined with the greedy-parameter mechanism; so the die macro
above could be made more powerful, and more useful, by changing the first line of the definition to

%macro die 0-1+ "Painful program death has occurred.",13,10

The maximum parameter count can be infinite, denoted by *. In this case, of course, it is impossible to
provide a full set of default parameters. Examples of this usage are shown in section 4.2.6.

4.2.5 %0: Macro Parameter Counter
For a macro which can take a variable number of parameters, the parameter reference %0 will return a
numeric constant giving the number of parameters passed to the macro. This can be used as an argument
to %rep (see section 4.4) in order to iterate through all the parameters of a macro. Examples are given in
section 4.2.6.

4.2.6 %rotate: Rotating Macro Parameters
Unix shell programmers will be familiar with the shift shell command, which allows the arguments
passed to a shell script (referenced as $1, $2 and so on) to be moved left by one place, so that the
argument previously referenced as $2 becomes available as $1, and the argument previously referenced
as $1 is no longer available at all.

NASM provides a similar mechanism, in the form of %rotate. As its name suggests, it differs from the
Unix shift in that no parameters are lost: parameters rotated off the left end of the argument list
reappear on the right, and vice versa.

%rotate is invoked with a single numeric argument (which may be an expression). The macro
parameters are rotated to the left by that many places. If the argument to %rotate is negative, the
macro parameters are rotated to the right.

So a pair of macros to save and restore a set of registers might work as follows:

%macro multipush 1-*
%rep %0
 push %1
%rotate 1
%endrep
%endmacro

This macro invokes the PUSH instruction on each of its arguments in turn, from left to right. It begins by
pushing its first argument, %1, then invokes %rotate to move all the arguments one place to the left, so
that the original second argument is now available as %1. Repeating this procedure as many times as
there were arguments (achieved by supplying %0 as the argument to %rep) causes each argument in turn
to be pushed.

Note also the use of * as the maximum parameter count, indicating that there is no upper limit on the
number of parameters you may supply to the multipush macro.

It would be convenient, when using this macro, to have a POP equivalent, which didn’t require the
arguments to be given in reverse order. Ideally, you would write the multipush macro call, then cut-
and-paste the line to where the pop needed to be done, and change the name of the called macro to
multipop, and the macro would take care of popping the registers in the opposite order from the one in
which they were pushed.

This can be done by the following definition:

%macro multipop 1-*
%rep %0
%rotate -1
 pop %1
%endrep
%endmacro

This macro begins by rotating its arguments one place to the right, so that the original last argument
appears as %1. This is then popped, and the arguments are rotated right again, so the second-to-last
argument becomes %1. Thus the arguments are iterated through in reverse order.

4.2.7 Concatenating Macro Parameters
NASM can concatenate macro parameters on to other text surrounding them. This allows you to declare a
family of symbols, for example, in a macro definition. If, for example, you wanted to generate a table of
key codes along with offsets into the table, you could code something like

%macro keytab_entry 2
keypos%1 equ $-keytab
 db %2
%endmacro
keytab:
 keytab_entry F1,128+1
 keytab_entry F2,128+2
 keytab_entry Return,13

which would expand to

keytab:
keyposF1 equ $-keytab

 db 128+1
keyposF2 equ $-keytab
 db 128+2
keyposReturn equ $-keytab
 db 13

You can just as easily concatenate text on to the other end of a macro parameter, by writing %1foo.

If you need to append a digit to a macro parameter, for example defining labels foo1 and foo2 when
passed the parameter foo, you can’t code %11 because that would be taken as the eleventh macro
parameter. Instead, you must code %{1}1, which will separate the first 1 (giving the number of the
macro parameter) from the second (literal text to be concatenated to the parameter).

This concatenation can also be applied to other preprocessor in-line objects, such as macro-local labels
(section 4.2.2) and context-local labels (section 4.6.2). In all cases, ambiguities in syntax can be resolved
by enclosing everything after the % sign and before the literal text in braces: so %{%foo}bar
concatenates the text bar to the end of the real name of the macro-local label %%foo. (This is
unnecessary, since the form NASM uses for the real names of macro-local labels means that the two
usages %{%foo}bar and %%foobar would both expand to the same thing anyway; nevertheless, the
capability is there.)

4.2.8 Condition Codes as Macro Parameters
NASM can give special treatment to a macro parameter which contains a condition code. For a start, you
can refer to the macro parameter %1 by means of the alternative syntax %+1, which informs NASM that
this macro parameter is supposed to contain a condition code, and will cause the preprocessor to report
an error message if the macro is called with a parameter which is not a valid condition code.

Far more usefully, though, you can refer to the macro parameter by means of %-1, which NASM will
expand as the inverse condition code. So the retz macro defined in section 4.2.2 can be replaced by a
general conditional-return macro like this:

%macro retc 1
 j%-1 %%skip
 ret
%%skip:
%endmacro

This macro can now be invoked using calls like retc ne, which will cause the conditional-jump
instruction in the macro expansion to come out as JE, or retc po which will make the jump a JPE.

The %+1 macro-parameter reference is quite happy to interpret the arguments CXZ and ECXZ as valid
condition codes; however, %-1 will report an error if passed either of these, because no inverse condition
code exists.

4.2.9 Disabling Listing Expansion
When NASM is generating a listing file from your program, it will generally expand multi-line macros by
means of writing the macro call and then listing each line of the expansion. This allows you to see which
instructions in the macro expansion are generating what code; however, for some macros this clutters the
listing up unnecessarily.

NASM therefore provides the .nolist qualifier, which you can include in a macro definition to inhibit
the expansion of the macro in the listing file. The .nolist qualifier comes directly after the number of
parameters, like this:

%macro foo 1.nolist

Or like this:

%macro bar 1-5+.nolist a,b,c,d,e,f,g,h

4.3 Conditional Assembly
Similarly to the C preprocessor, NASM allows sections of a source file to be assembled only if certain
conditions are met. The general syntax of this feature looks like this:

%if<condition>
; some code which only appears if <condition> is met
%elif<condition2>
; only appears if <condition> is not met but <condition2> is
%else
; this appears if neither <condition> nor <condition2> was met
%endif

The %else clause is optional, as is the %elif clause. You can have more than one %elif clause as
well.

4.3.1 %ifdef: Testing Single-Line Macro Existence
Beginning a conditional-assembly block with the line %ifdef MACRO will assemble the subsequent
code if, and only if, a single-line macro called MACRO is defined. If not, then the %elif and %else
blocks (if any) will be processed instead.

For example, when debugging a program, you might want to write code such as

 ; perform some function
%ifdef DEBUG
 writefile 2,"Function performed successfully",13,10
%endif
 ; go and do something else

Then you could use the command-line option -dDEBUG to create a version of the program which
produced debugging messages, and remove the option to generate the final release version of the
program.

You can test for a macro not being defined by using %ifndef instead of %ifdef. You can also test for
macro definitions in %elif blocks by using %elifdef and %elifndef.

4.3.2 %ifctx: Testing the Context Stack
The conditional-assembly construct %ifctx ctxname will cause the subsequent code to be assembled
if and only if the top context on the preprocessor’s context stack has the name ctxname. As with
%ifdef, the inverse and %elif forms %ifnctx, %elifctx and %elifnctx are also supported.

For more details of the context stack, see section 4.6. For a sample use of %ifctx, see section 4.6.5.

4.3.3 %if: Testing Arbitrary Numeric Expressions
The conditional-assembly construct %if expr will cause the subsequent code to be assembled if and
only if the value of the numeric expression expr is non-zero. An example of the use of this feature is in
deciding when to break out of a %rep preprocessor loop: see section 4.4 for a detailed example.

The expression given to %if, and its counterpart %elif, is a critical expression (see section 3.7).

%if extends the normal NASM expression syntax, by providing a set of relational operators which are
not normally available in expressions. The operators =, <, >, <=, >= and <> test equality, less-than,
greater-than, less-or-equal, greater-or-equal and not-equal respectively. The C-like forms == and != are
supported as alternative forms of = and <>. In addition, low-priority logical operators &&, ^^ and || are
provided, supplying logical AND, logical XOR and logical OR. These work like the C logical operators
(although C has no logical XOR), in that they always return either 0 or 1, and treat any non-zero input as
1 (so that ^^, for example, returns 1 if exactly one of its inputs is zero, and 0 otherwise). The relational
operators also return 1 for true and 0 for false.

4.3.4 %ifidn and %ifidni: Testing Exact Text Identity
The construct %ifidn text1,text2 will cause the subsequent code to be assembled if and only if
text1 and text2, after expanding single-line macros, are identical pieces of text. Differences in white
space are not counted.

%ifidni is similar to %ifidn, but is case-insensitive.

For example, the following macro pushes a register or number on the stack, and allows you to treat IP as
a real register:

%macro pushparam 1
%ifidni %1,ip
 call %%label
%%label:
%else
 push %1
%endif
%endmacro

Like most other %if constructs, %ifidn has a counterpart %elifidn, and negative forms %ifnidn
and %elifnidn. Similarly, %ifidni has counterparts %elifidni, %ifnidni and %elifnidni.

4.3.5 %ifid, %ifnum, %ifstr: Testing Token Types
Some macros will want to perform different tasks depending on whether they are passed a number, a
string, or an identifier. For example, a string output macro might want to be able to cope with being
passed either a string constant or a pointer to an existing string.

The conditional assembly construct %ifid, taking one parameter (which may be blank), assembles the
subsequent code if and only if the first token in the parameter exists and is an identifier. %ifnum works
similarly, but tests for the token being a numeric constant; %ifstr tests for it being a string.

For example, the writefile macro defined in section 4.2.3 can be extended to take advantage of
%ifstr in the following fashion:

%macro writefile 2-3+
%ifstr %2
 jmp %%endstr
%if %0 = 3
%%str: 11 db %2,%3
%else
%%str: 11 db %2
%endif
%%endstr: mov dx,%%str
 mov cx,%%endstr-%%str
%else
 11 mov dx,%2
 11 mov cx,%3
%endif
 mov bx,%1
 mov ah,0x40
 int 0x21
%endmacro

Then the writefile macro can cope with being called in either of the following two ways:

 writefile [file], strpointer, length
 writefile [file], "hello", 13, 10

In the first, strpointer is used as the address of an already-declared string, and length is used as its
length; in the second, a string is given to the macro, which therefore declares it itself and works out the
address and length for itself.

Note the use of %if inside the %ifstr: this is to detect whether the macro was passed two arguments
(so the string would be a single string constant, and db %2 would be adequate) or more (in which case,
all but the first two would be lumped together into %3, and db %2,%3 would be required).

 The usual %elifXXX, %ifnXXX and %elifnXXX versions exist for each of %ifid, %ifnum and
%ifstr.

4.3.6 %error: Reporting User-Defined Errors
The preprocessor directive %error will cause NASM to report an error if it occurs in assembled code.
So if other users are going to try to assemble your source files, you can ensure that they define the right
macros by means of code like this:

%ifdef SOME_MACRO
; do some setup
%elifdef SOME_OTHER_MACRO
; do some different setup
%else
%error Neither SOME_MACRO nor SOME_OTHER_MACRO was defined.
%endif

Then any user who fails to understand the way your code is supposed to be assembled will be quickly
warned of their mistake, rather than having to wait until the program crashes on being run and then not
knowing what went wrong.

4.4 Preprocessor Loops: %rep
NASM’s TIMES prefix, though useful, cannot be used to invoke a multi-line macro multiple times,
because it is processed by NASM after macros have already been expanded. Therefore NASM provides
another form of loop, this time at the preprocessor level: %rep.

The directives %rep and %endrep (%rep takes a numeric argument, which can be an expression;
%endrep takes no arguments) can be used to enclose a chunk of code, which is then replicated as many
times as specified by the preprocessor:

%assign i 0
%rep 64
 inc word [table+2*i]
%assign i i+1
%endrep

This will generate a sequence of 64 INC instructions, incrementing every word of memory from
[table] to [table+126].

For more complex termination conditions, or to break out of a repeat loop part way along, you can use the
%exitrep directive to terminate the loop, like this:

fibonacci:
%assign i 0
%assign j 1
%rep 100
%if j > 65535
%exitrep
%endif
 dw j
%assign k j+i

%assign i j
%assign j k
%endrep
fib_number equ ($-fibonacci)/2

This produces a list of all the Fibonacci numbers that will fit in 16 bits. Note that a maximum repeat count
must still be given to %rep. This is to prevent the possibility of NASM getting into an infinite loop in
the preprocessor, which (on multitasking or multi-user systems) would typically cause all the system
memory to be gradually used up and other applications to start crashing.

4.5 Including Other Files
Using, once again, a very similar syntax to the C preprocessor, NASM’s preprocessor lets you include
other source files into your code. This is done by the use of the %include directive:

%include "macros.mac"

will include the contents of the file macros.mac into the source file containing the %include
directive.

Include files are searched for in the current directory (the directory you’re in when you run NASM, as
opposed to the location of the NASM executable or the location of the source file), plus any directories
specified on the NASM command line using the -i option.

The standard C idiom for preventing a file being included more than once is just as applicable in NASM:
if the file macros.mac has the form

%ifndef MACROS_MAC
%define MACROS_MAC
; now define some macros
%endif

then including the file more than once will not cause errors, because the second time the file is included
nothing will happen because the macro MACROS_MAC will already be defined.

You can force a file to be included even if there is no %include directive that explicitly includes it, by
using the -p option on the NASM command line (see section 2.1.7).

4.6 The Context Stack
Having labels that are local to a macro definition is sometimes not quite powerful enough: sometimes you
want to be able to share labels between several macro calls. An example might be a REPEAT ... UNTIL
loop, in which the expansion of the REPEAT macro would need to be able to refer to a label which the
UNTIL macro had defined. However, for such a macro you would also want to be able to nest these
loops.

NASM provides this level of power by means of a context stack. The preprocessor maintains a stack of
contexts, each of which is characterised by a name. You add a new context to the stack using the %push
directive, and remove one using %pop. You can define labels that are local to a particular context on the
stack.

4.6.1 %push and %pop: Creating and Removing Contexts
The %push directive is used to create a new context and place it on the top of the context stack. %push
requires one argument, which is the name of the context. For example:

%push foobar

This pushes a new context called foobar on the stack. You can have several contexts on the stack with
the same name: they can still be distinguished.

The directive %pop, requiring no arguments, removes the top context from the context stack and destroys
it, along with any labels associated with it.

4.6.2 Context-Local Labels
Just as the usage %%foo defines a label which is local to the particular macro call in which it is used, the
usage %$foo is used to define a label which is local to the context on the top of the context stack. So the
REPEAT and UNTIL example given above could be implemented by means of:

%macro repeat 0
%push repeat
%$begin:
%endmacro

%macro until 1
 j%-1 %$begin
%pop
%endmacro

and invoked by means of, for example,

 mov cx,string
 repeat
 add cx,3
 scasb
 until e

which would scan every fourth byte of a string in search of the byte in AL.

If you need to define, or access, labels local to the context below the top one on the stack, you can use
%$$foo, or %$$$foo for the context below that, and so on.

4.6.3 Context-Local Single-Line Macros
NASM also allows you to define single-line macros which are local to a particular context, in just the
same way:

%define %$localmac 3

will define the single-line macro %$localmac to be local to the top context on the stack. Of course,
after a subsequent %push, it can then still be accessed by the name %$$localmac.

4.6.4 %repl: Renaming a Context
If you need to change the name of the top context on the stack (in order, for example, to have it respond
differently to %ifctx), you can execute a %pop followed by a %push; but this will have the side effect
of destroying all context-local labels and macros associated with the context that was just popped.

NASM provides the directive %repl, which replaces a context with a different name, without touching
the associated macros and labels. So you could replace the destructive code

%pop
%push newname

with the non-destructive version %repl newname.

4.6.5 Example Use of the Context Stack: Block IFs
This example makes use of almost all the context-stack features, including the conditional-assembly
construct %ifctx, to implement a block IF statement as a set of macros.

%macro if 1
 %push if

 j%-1 %$ifnot
%endmacro

%macro else 0
 %ifctx if
 %repl else
 jmp %$ifend
 %$ifnot:
 %else
 %error "expected ‘if’ before ‘else’"
 %endif
%endmacro

%macro endif 0
 %ifctx if
 %$ifnot:
 %pop
 %elifctx else
 %$ifend:
 %pop
 %else
 %error "expected ‘if’ or ‘else’ before ‘endif’"
 %endif
%endmacro

This code is more robust than the REPEAT and UNTIL macros given in section 4.6.2, because it uses
conditional assembly to check that the macros are issued in the right order (for example, not calling
endif before if) and issues a %error if they’re not.

In addition, the endif macro has to be able to cope with the two distinct cases of either directly
following an if, or following an else. It achieves this, again, by using conditional assembly to do
different things depending on whether the context on top of the stack is if or else.

The else macro has to preserve the context on the stack, in order to have the %$ifnot referred to by
the if macro be the same as the one defined by the endif macro, but has to change the context’s name
so that endif will know there was an intervening else. It does this by the use of %repl.

A sample usage of these macros might look like:

 cmp ax,bx
 if ae
 cmp bx,cx
 if ae
 mov ax,cx
 else
 mov ax,bx
 endif
 else
 cmp ax,cx
 if ae
 mov ax,cx
 endif
 endif

The block-IF macros handle nesting quite happily, by means of pushing another context, describing the
inner if, on top of the one describing the outer if; thus else and endif always refer to the last
unmatched if or else.

4.7 Standard Macros
NASM defines a set of standard macros, which are already defined when it starts to process any source
file. If you really need a program to be assembled with no pre-defined macros, you can use the %clear
directive to empty the preprocessor of everything.

Most user-level assembler directives (see chapter 5) are implemented as macros which invoke primitive
directives; these are described in chapter 5. The rest of the standard macro set is described here.

4.7.1 __NASM_MAJOR__ and __NASM_MINOR__: NASM Version
The single-line macros __NASM_MAJOR__ and __NASM_MINOR__ expand to the major and minor
parts of the version number of NASM being used. So, under NASM 0.96 for example,
__NASM_MAJOR__ would be defined to be 0 and __NASM_MINOR__ would be defined as 96.

4.7.2 __FILE__ and __LINE__: File Name and Line Number
Like the C preprocessor, NASM allows the user to find out the file name and line number containing the
current instruction. The macro __FILE__ expands to a string constant giving the name of the current
input file (which may change through the course of assembly if %include directives are used), and
__LINE__ expands to a numeric constant giving the current line number in the input file.

These macros could be used, for example, to communicate debugging information to a macro, since
invoking __LINE__ inside a macro definition (either single-line or multi-line) will return the line
number of the macro call, rather than definition. So to determine where in a piece of code a crash is
occurring, for example, one could write a routine stillhere, which is passed a line number in EAX
and outputs something like ‘line 155: still here’. You could then write a macro

%macro notdeadyet 0
 push eax
 mov eax,__LINE__
 call stillhere
 pop eax
%endmacro

and then pepper your code with calls to notdeadyet until you find the crash point.

4.7.3 STRUC and ENDSTRUC: Declaring Structure Data Types
The core of NASM contains no intrinsic means of defining data structures; instead, the preprocessor is
sufficiently powerful that data structures can be implemented as a set of macros. The macros STRUC and
ENDSTRUC are used to define a structure data type.

STRUC takes one parameter, which is the name of the data type. This name is defined as a symbol with
the value zero, and also has the suffix _size appended to it and is then defined as an EQU giving the
size of the structure. Once STRUC has been issued, you are defining the structure, and should define
fields using the RESB family of pseudo-instructions, and then invoke ENDSTRUC to finish the definition.

For example, to define a structure called mytype containing a longword, a word, a byte and a string of
bytes, you might code

 struc mytype
mt_long: resd 1
mt_word: resw 1
mt_byte: resb 1
mt_str: resb 32
 endstruc

The above code defines six symbols: mt_long as 0 (the offset from the beginning of a mytype
structure to the longword field), mt_word as 4, mt_byte as 6, mt_str as 7, mytype_size as 39,
and mytype itself as zero.

The reason why the structure type name is defined at zero is a side effect of allowing structures to work
with the local label mechanism: if your structure members tend to have the same names in more than one
structure, you can define the above structure like this:

 struc mytype
.long: resd 1
.word: resw 1
.byte: resb 1
.str: resb 32
 endstruc

This defines the offsets to the structure fields as mytype.long, mytype.word, mytype.byte and
mytype.str.

NASM, since it has no intrinsic structure support, does not support any form of period notation to refer to
the elements of a structure once you have one (except the above local-label notation), so code such as
mov ax,[mystruc.mt_word] is not valid. mt_word is a constant just like any other constant, so
the correct syntax is mov ax,[mystruc+mt_word] or mov ax,[mystruc+mytype.word].

4.7.4 ISTRUC, AT and IEND: Declaring Instances of Structures
Having defined a structure type, the next thing you typically want to do is to declare instances of that
structure in your data segment. NASM provides an easy way to do this in the ISTRUC mechanism. To
declare a structure of type mytype in a program, you code something like this:

mystruc: istruc mytype
 at mt_long, dd 123456
 at mt_word, dw 1024
 at mt_byte, db ’x’
 at mt_str, db ’hello, world’, 13, 10, 0
 iend

The function of the AT macro is to make use of the TIMES prefix to advance the assembly position to the
correct point for the specified structure field, and then to declare the specified data. Therefore the
structure fields must be declared in the same order as they were specified in the structure definition.

If the data to go in a structure field requires more than one source line to specify, the remaining source
lines can easily come after the AT line. For example:

 at mt_str, db 123,134,145,156,167,178,189
 db 190,100,0

Depending on personal taste, you can also omit the code part of the AT line completely, and start the
structure field on the next line:

 at mt_str
 db ’hello, world’
 db 13,10,0

4.7.5 ALIGN and ALIGNB: Data Alignment
The ALIGN and ALIGNB macros provides a convenient way to align code or data on a word, longword,
paragraph or other boundary. (Some assemblers call this directive EVEN.) The syntax of the ALIGN and
ALIGNB macros is

 align 4 ; align on 4-byte boundary
 align 16 ; align on 16-byte boundary

 align 8,db 0 ; pad with 0s rather than NOPs
 align 4,resb 1 ; align to 4 in the BSS
 alignb 4 ; equivalent to previous line

Both macros require their first argument to be a power of two; they both compute the number of
additional bytes required to bring the length of the current section up to a multiple of that power of two,
and then apply the TIMES prefix to their second argument to perform the alignment.

If the second argument is not specified, the default for ALIGN is NOP, and the default for ALIGNB is
RESB 1. So if the second argument is specified, the two macros are equivalent. Normally, you can just
use ALIGN in code and data sections and ALIGNB in BSS sections, and never need the second argument
except for special purposes.

ALIGN and ALIGNB, being simple macros, perform no error checking: they cannot warn you if their first
argument fails to be a power of two, or if their second argument generates more than one byte of code. In
each of these cases they will silently do the wrong thing.

ALIGNB (or ALIGN with a second argument of RESB 1) can be used within structure definitions:

 struc mytype2
mt_byte: resb 1
 alignb 2
mt_word: resw 1
 alignb 4
mt_long: resd 1
mt_str: resb 32
 endstruc

This will ensure that the structure members are sensibly aligned relative to the base of the structure.

A final caveat: ALIGN and ALIGNB work relative to the beginning of the section, not the beginning of
the address space in the final executable. Aligning to a 16-byte boundary when the section you’re in is
only guaranteed to be aligned to a 4-byte boundary, for example, is a waste of effort. Again, NASM does
not check that the section’s alignment characteristics are sensible for the use of ALIGN or ALIGNB.

Chapter 5: Assembler Directives

NASM, though it attempts to avoid the bureaucracy of assemblers like MASM and TASM, is
nevertheless forced to support a few directives. These are described in this chapter.

NASM’s directives come in two types: user-level directivesuser-level directives and primitive
directivesprimitive directives. Typically, each directive has a user-level form and a primitive form. In
almost all cases, we recommend that users use the user-level forms of the directives, which are
implemented as macros which call the primitive forms.

Primitive directives are enclosed in square brackets; user-level directives are not.

In addition to the universal directives described in this chapter, each object file format can optionally
supply extra directives in order to control particular features of that file format. These format-specific
directivesformat-specific directives are documented along with the formats that implement them, in
chapter 6.

5.1 BITS: Specifying Target Processor Mode
The BITS directive specifies whether NASM should generate code designed to run on a processor
operating in 16-bit mode, or code designed to run on a processor operating in 32-bit mode. The syntax is
BITS 16 or BITS 32.

In most cases, you should not need to use BITS explicitly. The aout, coff, elf and win32 object
formats, which are designed for use in 32-bit operating systems, all cause NASM to select 32-bit mode
by default. The obj object format allows you to specify each segment you define as either USE16 or
USE32, and NASM will set its operating mode accordingly, so the use of the BITS directive is once
again unnecessary.

The most likely reason for using the BITS directive is to write 32-bit code in a flat binary file; this is
because the bin output format defaults to 16-bit mode in anticipation of it being used most frequently to
write DOS .COM programs, DOS .SYS device drivers and boot loader software.

You do not need to specify BITS 32 merely in order to use 32-bit instructions in a 16-bit DOS program;
if you do, the assembler will generate incorrect code because it will be writing code targeted at a 32-bit
platform, to be run on a 16-bit one.

When NASM is in BITS 16 state, instructions which use 32-bit data are prefixed with an 0x66 byte, and
those referring to 32-bit addresses have an 0x67 prefix. In BITS 32 state, the reverse is true: 32-bit
instructions require no prefixes, whereas instructions using 16-bit data need an 0x66 and those working
in 16-bit addresses need an 0x67.

The BITS directive has an exactly equivalent primitive form, [BITS 16] and [BITS 32]. The user-
level form is a macro which has no function other than to call the primitive form.

5.2 SECTION or SEGMENT: Changing and Defining Sections
The SECTION directive (SEGMENT is an exactly equivalent synonym) changes which section of the
output file the code you write will be assembled into. In some object file formats, the number and names
of sections are fixed; in others, the user may make up as many as they wish. Hence SECTION may

sometimes give an error message, or may define a new section, if you try to switch to a section that does
not (yet) exist.

The Unix object formats, and the bin object format, all support the standardised section names .text,
.data and .bss for the code, data and uninitialised-data sections. The obj format, by contrast, does
not recognise these section names as being special, and indeed will strip off the leading period of any
section name that has one.

5.2.1 The __SECT__ Macro
The SECTION directive is unusual in that its user-level form functions differently from its primitive
form. The primitive form, [SECTION xyz], simply switches the current target section to the one
given. The user-level form, SECTION xyz, however, first defines the single-line macro __SECT__ to
be the primitive [SECTION] directive which it is about to issue, and then issues it. So the user-level
directive

 SECTION .text

expands to the two lines

%define __SECT__ [SECTION .text]
 [SECTION .text]

Users may find it useful to make use of this in their own macros. For example, the writefile macro
defined in section 4.2.3 can be usefully rewritten in the following more sophisticated form:

%macro writefile 2+
 [section .data]
%%str: db %2
%%endstr:
 __SECT__
 mov dx,%%str
 mov cx,%%endstr-%%str
 mov bx,%1
 mov ah,0x40
 int 0x21
%endmacro

This form of the macro, once passed a string to output, first switches temporarily to the data section of the
file, using the primitive form of the SECTION directive so as not to modify __SECT__. It then declares
its string in the data section, and then invokes __SECT__ to switch back to whichever section the user
was previously working in. It thus avoids the need, in the previous version of the macro, to include a JMP
instruction to jump over the data, and also does not fail if, in a complicated OBJ format module, the user
could potentially be assembling the code in any of several separate code sections.

5.3 ABSOLUTE: Defining Absolute Labels
The ABSOLUTE directive can be thought of as an alternative form of SECTION: it causes the subsequent
code to be directed at no physical section, but at the hypothetical section starting at the given absolute
address. The only instructions you can use in this mode are the RESB family.

ABSOLUTE is used as follows:

 absolute 0x1A
kbuf_chr resw 1
kbuf_free resw 1
kbuf resw 16

This example describes a section of the PC BIOS data area, at segment address 0x40: the above code
defines kbuf_chr to be 0x1A, kbuf_free to be 0x1C, and kbuf to be 0x1E.

The user-level form of ABSOLUTE, like that of SECTION, redefines the __SECT__ macro when it is
invoked.

STRUC and ENDSTRUC are defined as macros which use ABSOLUTE (and also __SECT__).

ABSOLUTE doesn’t have to take an absolute constant as an argument: it can take an expression (actually,
a critical expression: see section 3.7) and it can be a value in a segment. For example, a TSR can re-use
its setup code as run-time BSS like this:

 org 100h ; it’s a .COM program
 jmp setup ; setup code comes last
 ; the resident part of the TSR goes here
setup: ; now write the code that installs the TSR here
 absolute setup
runtimevar1 resw 1
runtimevar2 resd 20
tsr_end:

This defines some variables ‘on top of’ the setup code, so that after the setup has finished running, the
space it took up can be re-used as data storage for the running TSR. The symbol ‘tsr_end’ can be used to
calculate the total size of the part of the TSR that needs to be made resident.

5.4 EXTERN: Importing Symbols from Other Modules
EXTERN is similar to the MASM directive EXTRN and the C keyword extern: it is used to declare a
symbol which is not defined anywhere in the module being assembled, but is assumed to be defined in
some other module and needs to be referred to by this one. Not every object-file format can support
external variables: the bin format cannot.

The EXTERN directive takes as many arguments as you like. Each argument is the name of a symbol:

 extern _printf
 extern _sscanf,_fscanf

Some object-file formats provide extra features to the EXTERN directive. In all cases, the extra features
are used by suffixing a colon to the symbol name followed by object-format specific text. For example,
the obj format allows you to declare that the default segment base of an external should be the group
dgroup by means of the directive

 extern _variable:wrt dgroup

The primitive form of EXTERN differs from the user-level form only in that it can take only one argument
at a time: the support for multiple arguments is implemented at the preprocessor level.

You can declare the same variable as EXTERN more than once: NASM will quietly ignore the second and
later redeclarations. You can’t declare a variable as EXTERN as well as something else, though.

5.5 GLOBAL: Exporting Symbols to Other Modules
GLOBAL is the other end of EXTERN: if one module declares a symbol as EXTERN and refers to it, then
in order to prevent linker errors, some other module must actually define the symbol and declare it as
GLOBAL. Some assemblers use the name PUBLIC for this purpose.

The GLOBAL directive applying to a symbol must appear before the definition of the symbol.

GLOBAL uses the same syntax as EXTERN, except that it must refer to symbols which are defined in the
same module as the GLOBAL directive. For example:

 global _main
_main: ; some code

GLOBAL, like EXTERN, allows object formats to define private extensions by means of a colon. The elf
object format, for example, lets you specify whether global data items are functions or data:

 global hashlookup:function, hashtable:data

Like EXTERN, the primitive form of GLOBAL differs from the user-level form only in that it can take
only one argument at a time.

5.6 COMMON: Defining Common Data Areas
The COMMON directive is used to declare common variables. A common variable is much like a global
variable declared in the uninitialised data section, so that

 common intvar 4

is similar in function to

 global intvar
 section .bss
intvar resd 1

The difference is that if more than one module defines the same common variable, then at link time those
variables will be merged, and references to intvar in all modules will point at the same piece of
memory.

Like GLOBAL and EXTERN, COMMON supports object-format specific extensions. For example, the obj
format allows common variables to be NEAR or FAR, and the elf format allows you to specify the
alignment requirements of a common variable:

 common commvar 4:near ; works in OBJ
 common intarray 100:4 ; works in ELF: 4 byte aligned

Once again, like EXTERN and GLOBAL, the primitive form of COMMON differs from the user-level form
only in that it can take only one argument at a time.

Chapter 6: Output Formats

NASM is a portable assembler, designed to be able to compile on any ANSI C-supporting platform and
produce output to run on a variety of Intel x86 operating systems. For this reason, it has a large number
of available output formats, selected using the -f option on the NASM command line. Each of these
formats, along with its extensions to the base NASM syntax, is detailed in this chapter.

As stated in section 2.1.1, NASM chooses a default name for your output file based on the input file name
and the chosen output format. This will be generated by removing the extension (.asm, .s, or whatever
you like to use) from the input file name, and substituting an extension defined by the output format. The
extensions are given with each format below.

6.1 bin: Flat-Form Binary Output
The bin format does not produce object files: it generates nothing in the output file except the code you
wrote. Such ‘pure binary’ files are used by MS-DOS: .COM executables and .SYS device drivers are
pure binary files. Pure binary output is also useful for operating-system and boot loader development.

bin supports the three standardised section names .text, .data and .bss only. The file NASM
outputs will contain the contents of the .text section first, followed by the contents of the .data
section, aligned on a four-byte boundary. The .bss section is not stored in the output file at all, but is
assumed to appear directly after the end of the .data section, again aligned on a four-byte boundary.

If you specify no explicit SECTION directive, the code you write will be directed by default into the
.text section.

Using the bin format puts NASM by default into 16-bit mode (see section 5.1). In order to use bin to
write 32-bit code such as an OS kernel, you need to explicitly issue the BITS 32 directive.

bin has no default output file name extension: instead, it leaves your file name as it is once the original
extension has been removed. Thus, the default is for NASM to assemble binprog.asm into a binary
file called binprog.

6.1.1 ORG: Binary File Program Origin
The bin format provides an additional directive to the list given in chapter 5: ORG. The function of the
ORG directive is to specify the origin address which NASM will assume the program begins at when it is
loaded into memory.

For example, the following code will generate the longword 0x00000104:

 org 0x100
 dd label
label:

Unlike the ORG directive provided by MASM-compatible assemblers, which allows you to jump around
in the object file and overwrite code you have already generated, NASM’s ORG does exactly what the
directive says: origin. Its sole function is to specify one offset which is added to all internal address
references within the file; it does not permit any of the trickery that MASM’s version does. See section
10.1.3 for further comments.

6.1.2 bin Extensions to the SECTION Directive
The bin output format extends the SECTION (or SEGMENT) directive to allow you to specify the
alignment requirements of segments. This is done by appending the ALIGN qualifier to the end of the
section-definition line. For example,

 section .data align=16

switches to the section .data and also specifies that it must be aligned on a 16-byte boundary.

The parameter to ALIGN specifies how many low bits of the section start address must be forced to zero.
The alignment value given may be any power of two.

6.2 obj: Microsoft OMF Object Files
The obj file format (NASM calls it obj rather than omf for historical reasons) is the one produced by
MASM and TASM, which is typically fed to 16-bit DOS linkers to produce .EXE files. It is also the
format used by OS/2.

obj provides a default output file-name extension of .obj.

obj is not exclusively a 16-bit format, though: NASM has full support for the 32-bit extensions to the
format. In particular, 32-bit obj format files are used by Borland’s Win32 compilers, instead of using
Microsoft’s newer win32 object file format.

The obj format does not define any special segment names: you can call your segments anything you
like. Typical names for segments in obj format files are CODE, DATA and BSS.

If your source file contains code before specifying an explicit SEGMENT directive, then NASM will
invent its own segment called __NASMDEFSEG for you.

When you define a segment in an obj file, NASM defines the segment name as a symbol as well, so that
you can access the segment address of the segment. So, for example:

 segment data
dvar: dw 1234
 segment code
function: mov ax,data ; get segment address of data
 mov ds,ax ; and move it into DS
 inc word [dvar] ; now this reference will work
 ret

The obj format also enables the use of the SEG and WRT operators, so that you can write code which
does things like

 extern foo
 mov ax,seg foo ; get preferred segment of foo
 mov ds,ax
 mov ax,data ; a different segment
 mov es,ax
 mov ax,[ds:foo] ; this accesses ‘foo’
 mov [es:foo wrt data],bx ; so does this

6.2.1 obj Extensions to the SEGMENT Directive
The obj output format extends the SEGMENT (or SECTION) directive to allow you to specify various
properties of the segment you are defining. This is done by appending extra qualifiers to the end of the
segment-definition line. For example,

 segment code private align=16

defines the segment code, but also declares it to be a private segment, and requires that the portion of it
described in this code module must be aligned on a 16-byte boundary.

The available qualifiers are:

• PRIVATE, PUBLIC, COMMON and STACK specify the combination characteristics of the segment.
PRIVATE segments do not get combined with any others by the linker; PUBLIC and STACK
segments get concatenated together at link time; and COMMON segments all get overlaid on top of each
other rather than stuck end-to-end.

• ALIGN is used, as shown above, to specify how many low bits of the segment start address must be
forced to zero. The alignment value given may be any power of two from 1 to 4096; in reality, the
only values supported are 1, 2, 4, 16, 256 and 4096, so if 8 is specified it will be rounded up to 16, and
32, 64 and 128 will all be rounded up to 256, and so on. Note that alignment to 4096-byte boundaries
is a PharLap extension to the format and may not be supported by all linkers.

• CLASS can be used to specify the segment class; this feature indicates to the linker that segments of
the same class should be placed near each other in the output file. The class name can be any word,
e.g. CLASS=CODE.

• OVERLAY, like CLASS, is specified with an arbitrary word as an argument, and provides overlay
information to an overlay-capable linker.

• Segments can be declared as USE16 or USE32, which has the effect of recording the choice in the
object file and also ensuring that NASM’s default assembly mode when assembling in that segment is
16-bit or 32-bit respectively.

• When writing OS/2 object files, you should declare 32-bit segments as FLAT, which causes the default
segment base for anything in the segment to be the special group FLAT, and also defines the group if
it is not already defined.

• The obj file format also allows segments to be declared as having a pre-defined absolute segment
address, although no linkers are currently known to make sensible use of this feature; nevertheless,
NASM allows you to declare a segment such as SEGMENT SCREEN ABSOLUTE=0xB800 if you
need to. The ABSOLUTE and ALIGN keywords are mutually exclusive.

NASM’s default segment attributes are PUBLIC, ALIGN=1, no class, no overlay, and USE16.

6.2.2 GROUP: Defining Groups of Segments
The obj format also allows segments to be grouped, so that a single segment register can be used to refer
to all the segments in a group. NASM therefore supplies the GROUP directive, whereby you can code

 segment data
 ; some data
 segment bss
 ; some uninitialised data
 group dgroup data bss

which will define a group called dgroup to contain the segments data and bss. Like SEGMENT,
GROUP causes the group name to be defined as a symbol, so that you can refer to a variable var in the
data segment as var wrt data or as var wrt dgroup, depending on which segment value is
currently in your segment register.

If you just refer to var, however, and var is declared in a segment which is part of a group, then NASM
will default to giving you the offset of var from the beginning of the group, not the segment. Therefore
SEG var, also, will return the group base rather than the segment base.

NASM will allow a segment to be part of more than one group, but will generate a warning if you do this.
Variables declared in a segment which is part of more than one group will default to being relative to the
first group that was defined to contain the segment.

A group does not have to contain any segments; you can still make WRT references to a group which does
not contain the variable you are referring to. OS/2, for example, defines the special group FLAT with no
segments in it.

6.2.3 UPPERCASE: Disabling Case Sensitivity in Output
Although NASM itself is case sensitive, some OMF linkers are not; therefore it can be useful for NASM
to output single-case object files. The UPPERCASE format-specific directive causes all segment, group
and symbol names that are written to the object file to be forced to upper case just before being written.
Within a source file, NASM is still case-sensitive; but the object file can be written entirely in upper case
if desired.

UPPERCASE is used alone on a line; it requires no parameters.

6.2.4 IMPORT: Importing DLL Symbols
The IMPORT format-specific directive defines a symbol to be imported from a DLL, for use if you are
writing a DLL’s import library in NASM. You still need to declare the symbol as EXTERN as well as
using the IMPORT directive.

The IMPORT directive takes two required parameters, separated by white space, which are (respectively)
the name of the symbol you wish to import and the name of the library you wish to import it from. For
example:

 import WSAStartup wsock32.dll

A third optional parameter gives the name by which the symbol is known in the library you are importing
it from, in case this is not the same as the name you wish the symbol to be known by to your code once
you have imported it. For example:

 import asyncsel wsock32.dll WSAAsyncSelect

6.2.5 EXPORT: Exporting DLL Symbols
The EXPORT format-specific directive defines a global symbol to be exported as a DLL symbol, for use if
you are writing a DLL in NASM. You still need to declare the symbol as GLOBAL as well as using the
EXPORT directive.

EXPORT takes one required parameter, which is the name of the symbol you wish to export, as it was
defined in your source file. An optional second parameter (separated by white space from the first) gives
the external name of the symbol: the name by which you wish the symbol to be known to programs using
the DLL. If this name is the same as the internal name, you may leave the second parameter off.

Further parameters can be given to define attributes of the exported symbol. These parameters, like the
second, are separated by white space. If further parameters are given, the external name must also be
specified, even if it is the same as the internal name. The available attributes are:

• resident indicates that the exported name is to be kept resident by the system loader. This is an
optimisation for frequently used symbols imported by name.

• nodata indicates that the exported symbol is a function which does not make use of any initialised
data.

• parm=NNN, where NNN is an integer, sets the number of parameter words for the case in which the
symbol is a call gate between 32-bit and 16-bit segments.

• An attribute which is just a number indicates that the symbol should be exported with an identifying
number (ordinal), and gives the desired number.

For example:

 export myfunc
 export myfunc TheRealMoreFormalLookingFunctionName
 export myfunc myfunc 1234 ; export by ordinal
 export myfunc myfunc resident parm=23 nodata

6.2.6 ..start: Defining the Program Entry Point
OMF linkers require exactly one of the object files being linked to define the program entry point, where
execution will begin when the program is run. If the object file that defines the entry point is assembled
using NASM, you specify the entry point by declaring the special symbol ..start at the point where
you wish execution to begin.

6.2.7 obj Extensions to the EXTERN Directive
If you declare an external symbol with the directive

 extern foo

then references such as mov ax,foo will give you the offset of foo from its preferred segment base (as
specified in whichever module foo is actually defined in). So to access the contents of foo you will
usually need to do something like

 mov ax,seg foo ; get preferred segment base
 mov es,ax ; move it into ES
 mov ax,[es:foo] ; and use offset ‘foo’ from it

This is a little unwieldy, particularly if you know that an external is going to be accessible from a given
segment or group, say dgroup. So if DS already contained dgroup, you could simply code

 mov ax,[foo wrt dgroup]

However, having to type this every time you want to access foo can be a pain; so NASM allows you to
declare foo in the alternative form

 extern foo:wrt dgroup

This form causes NASM to pretend that the preferred segment base of foo is in fact dgroup; so the
expression seg foo will now return dgroup, and the expression foo is equivalent to
foo wrt dgroup.

This default-WRT mechanism can be used to make externals appear to be relative to any group or segment
in your program. It can also be applied to common variables: see section 6.2.8.

6.2.8 obj Extensions to the COMMON Directive
The obj format allows common variables to be either near or far; NASM allows you to specify which
your variables should be by the use of the syntax

 common nearvar 2:near ; ‘nearvar’ is a near common
 common farvar 10:far ; and ‘farvar’ is far

Far common variables may be greater in size than 64Kb, and so the OMF specification says that they are
declared as a number of elements of a given size. So a 10-byte far common variable could be declared as
ten one-byte elements, five two-byte elements, two five-byte elements or one ten-byte element.

Some OMF linkers require the element size, as well as the variable size, to match when resolving
common variables declared in more than one module. Therefore NASM must allow you to specify the
element size on your far common variables. This is done by the following syntax:

 common c_5by2 10:far 5 ; two five-byte elements
 common c_2by5 10:far 2 ; five two-byte elements

If no element size is specified, the default is 1. Also, the FAR keyword is not required when an element
size is specified, since only far commons may have element sizes at all. So the above declarations could
equivalently be

 common c_5by2 10:5 ; two five-byte elements
 common c_2by5 10:2 ; five two-byte elements

In addition to these extensions, the COMMON directive in obj also supports default-WRT specification like
EXTERN does (explained in section 6.2.7). So you can also declare things like

 common foo 10:wrt dgroup
 common bar 16:far 2:wrt data
 common baz 24:wrt data:6

6.3 win32: Microsoft Win32 Object Files
The win32 output format generates Microsoft Win32 object files, suitable for passing to Microsoft
linkers such as Visual C++. Note that Borland Win32 compilers do not use this format, but use obj
instead (see section 6.2).

win32 provides a default output file-name extension of .obj.

Note that although Microsoft say that Win32 object files follow the COFF (Common Object File Format)
standard, the object files produced by Microsoft Win32 compilers are not compatible with COFF linkers
such as DJGPP’s, and vice versa. This is due to a difference of opinion over the precise semantics of PC-
relative relocations. To produce COFF files suitable for DJGPP, use NASM’s coff output format;
conversely, the coff format does not produce object files that Win32 linkers can generate correct output
from.

6.3.1 win32 Extensions to the SECTION Directive
Like the obj format, win32 allows you to specify additional information on the SECTION directive
line, to control the type and properties of sections you declare. Section types and properties are generated
automatically by NASM for the standard section names .text, .data and .bss, but may still be
overridden by these qualifiers.

The available qualifiers are:

• code, or equivalently text, defines the section to be a code section. This marks the section as
readable and executable, but not writable, and also indicates to the linker that the type of the section is
code.

• data and bss define the section to be a data section, analogously to code. Data sections are marked
as readable and writable, but not executable. data declares an initialised data section, whereas bss
declares an uninitialised data section.

• info defines the section to be an informational section, which is not included in the executable file by
the linker, but may (for example) pass information to the linker. For example, declaring an info–type
section called .drectve causes the linker to interpret the contents of the section as command-line
options.

• align=, used with a trailing number as in obj, gives the alignment requirements of the section. The
maximum you may specify is 64: the Win32 object file format contains no means to request a greater
section alignment than this. If alignment is not explicitly specified, the defaults are 16-byte alignment
for code sections, and 4-byte alignment for data (and BSS) sections. Informational sections get a
default alignment of 1 byte (no alignment), though the value does not matter.

The defaults assumed by NASM if you do not specify the above qualifiers are:

 section .text code align=16
 section .data data align=4
 section .bss bss align=4

Any other section name is treated by default like .text.

6.4 coff: Common Object File Format
The coff output type produces COFF object files suitable for linking with the DJGPP linker.

coff provides a default output file-name extension of .o.

The coff format supports the same extensions to the SECTION directive as win32 does, except that the
align qualifier and the info section type are not supported.

6.5 elf: Linux ELFObject Files
The elf output format generates ELF32 (Executable and Linkable Format) object files, as used by
Linux. elf provides a default output file-name extension of .o.

6.5.1 elf Extensions to the SECTION Directive
Like the obj format, elf allows you to specify additional information on the SECTION directive line, to
control the type and properties of sections you declare. Section types and properties are generated
automatically by NASM for the standard section names .text, .data and .bss, but may still be
overridden by these qualifiers.

The available qualifiers are:

• alloc defines the section to be one which is loaded into memory when the program is run. noalloc
defines it to be one which is not, such as an informational or comment section.

• exec defines the section to be one which should have execute permission when the program is run.
noexec defines it as one which should not.

• write defines the section to be one which should be writable when the program is run. nowrite
defines it as one which should not.

• progbits defines the section to be one with explicit contents stored in the object file: an ordinary
code or data section, for example, nobits defines the section to be one with no explicit contents
given, such as a BSS section.

• align=, used with a trailing number as in obj, gives the alignment requirements of the section.

The defaults assumed by NASM if you do not specify the above qualifiers are:

 section .text progbits alloc exec nowrite align=16
 section .data progbits alloc noexec write align=4
 section .bss nobits alloc noexec write align=4
 section other progbits alloc noexec nowrite align=1

(Any section name other than .text, .data and .bss is treated by default like other in the above
code.)

6.5.2 Position-Independent Code: elf Special Symbols and WRT
The ELF specification contains enough features to allow position-independent code (PIC) to be written,
which makes ELF shared libraries very flexible. However, it also means NASM has to be able to
generate a variety of strange relocation types in ELF object files, if it is to be an assembler which can
write PIC.

Since ELF does not support segment-base references, the WRT operator is not used for its normal purpose;
therefore NASM’s elf output format makes use of WRT for a different purpose, namely the PIC-specific
relocation types.

elf defines five special symbols which you can use as the right-hand side of the WRT operator to obtain
PIC relocation types. They are ..gotpc, ..gotoff, ..got, ..plt and ..sym. Their functions are
summarised here:

• Referring to the symbol marking the global offset table base using wrt ..gotpc will end up giving
the distance from the beginning of the current section to the global offset table.
(_GLOBAL_OFFSET_TABLE_ is the standard symbol name used to refer to the GOT.) So you would
then need to add $$ to the result to get the real address of the GOT.

• Referring to a location in one of your own sections using wrt ..gotoff will give the distance from
the beginning of the GOT to the specified location, so that adding on the address of the GOT would
give the real address of the location you wanted.

• Referring to an external or global symbol using wrt ..got causes the linker to build an entry in the
GOT containing the address of the symbol, and the reference gives the distance from the beginning of
the GOT to the entry; so you can add on the address of the GOT, load from the resulting address, and
end up with the address of the symbol.

• Referring to a procedure name using wrt ..plt causes the linker to build a procedure linkage table
entry for the symbol, and the reference gives the address of the PLT entry. You can only use this in
contexts which would generate a PC-relative relocation normally (i.e. as the destination for CALL or
JMP), since ELF contains no relocation type to refer to PLT entries absolutely.

• Referring to a symbol name using wrt ..sym causes NASM to write an ordinary relocation, but
instead of making the relocation relative to the start of the section and then adding on the offset to the
symbol, it will write a relocation record aimed directly at the symbol in question. The distinction is a
necessary one due to a peculiarity of the dynamic linker.

A fuller explanation of how to use these relocation types to write shared libraries entirely in NASM is
given in section 8.2.

6.5.3 elf Extensions to the GLOBAL Directive
ELF object files can contain more information about a global symbol than just its address: they can
contain the size of the symbol and its type as well. These are not merely debugger conveniences, but are
actually necessary when the program being written is a shared library. NASM therefore supports some
extensions to the GLOBAL directive, allowing you to specify these features.

You can specify whether a global variable is a function or a data object by suffixing the name with a
colon and the word function or data. (object is a synonym for data.) For example:

 global hashlookup:function, hashtable:data

exports the global symbol hashlookup as a function and hashtable as a data object.

You can also specify the size of the data associated with the symbol, as a numeric expression (which may
involve labels, and even forward references) after the type specifier. Like this:

 global hashtable:data (hashtable.end - hashtable)
hashtable:
 db this,that,theother ; some data here
.end:

This makes NASM automatically calculate the length of the table and place that information into the ELF
symbol table.

Declaring the type and size of global symbols is necessary when writing shared library code. For more
information, see section 8.2.4.

6.5.4 elf Extensions to the COMMON Directive
ELF also allows you to specify alignment requirements on common variables. This is done by putting a
number (which must be a power of two) after the name and size of the common variable, separated (as
usual) by a colon. For example, an array of doublewords would benefit from 4-byte alignment:

 common dwordarray 128:4

This declares the total size of the array to be 128 bytes, and requires that it be aligned on a 4-byte
boundary.

6.6 aout: Linux a.out Object Files
The aout format generates a.out object files, in the form used by early Linux systems. (These differ
from other a.out object files in that the magic number in the first four bytes of the file is different.
Also, some implementations of a.out, for example NetBSD’s, support position-independent code,
which Linux’s implementation doesn’t.)

a.out provides a default output file-name extension of .o.

a.out is a very simple object format. It supports no special directives, no special symbols, no use of
SEG or WRT, and no extensions to any standard directives. It supports only the three standard section
names .text, .data and .bss.

6.7 aoutb: NetBSD/FreeBSD/OpenBSD a.out Object Files
The aoutb format generates a.out object files, in the form used by the various free BSD Unix clones,
NetBSD, FreeBSD and OpenBSD. For simple object files, this object format is exactly the same as aout
except for the magic number in the first four bytes of the file. However, the aoutb format supports
position-independent code in the same way as the elf format, so you can use it to write BSD shared
libraries.

aoutb provides a default output file-name extension of .o.

aoutb supports no special directives, no special symbols, and only the three standard section names
.text, .data and .bss. However, it also supports the same use of WRT as elf does, to provide
position-independent code relocation types. See section 6.5.2 for full documentation of this feature.

aoutb also supports the same extensions to the GLOBAL directive as elf does: see section 6.5.3 for
documentation of this.

6.8 as86: Linux as86 Object Files
The Linux 16-bit assembler as86 has its own non-standard object file format. Although its companion
linker ld86 produces something close to ordinary a.out binaries as output, the object file format used
to communicate between as86 and ld86 is not itself a.out.

NASM supports this format, just in case it is useful, as as86. as86 provides a default output file-name
extension of .o.

as86 is a very simple object format (from the NASM user’s point of view). It supports no special
directives, no special symbols, no use of SEG or WRT, and no extensions to any standard directives. It
supports only the three standard section names .text, .data and .bss.

6.9 rdf: Relocatable Dynamic Object File Format
The rdf output format produces RDOFF object files. RDOFF (Relocatable Dynamic Object File Format)
is a home-grown object-file format, designed alongside NASM itself and reflecting in its file format the
internal structure of the assembler.

RDOFF is not used by any well-known operating systems. Those writing their own systems, however,
may well wish to use RDOFF as their object format, on the grounds that it is designed primarily for
simplicity and contains very little file-header bureaucracy.

The Unix NASM archive, and the DOS archive which includes sources, both contain an rdoff
subdirectory holding a set of RDOFF utilities: an RDF linker, an RDF static-library manager, an RDF
file dump utility, and a program which will load and execute an RDF executable under Linux.

rdf supports only the standard section names .text, .data and .bss.

6.9.1 Requiring a Library: The LIBRARY Directive
RDOFF contains a mechanism for an object file to demand a given library to be linked to the module,
either at load time or run time. This is done by the LIBRARY directive, which takes one argument which
is the name of the module:

 library mylib.rdl

6.10 dbg: Debugging Format
The dbg output format is not built into NASM in the default configuration. If you are building your own
NASM executable from the sources, you can define OF_DBG in outform.h or on the compiler
command line, and obtain the dbg output format.

The dbg format does not output an object file as such; instead, it outputs a text file which contains a
complete list of all the transactions between the main body of NASM and the output-format back end
module. It is primarily intended to aid people who want to write their own output drivers, so that they can
get a clearer idea of the various requests the main program makes of the output driver, and in what order
they happen.

For simple files, one can easily use the dbg format like this:

nasm -f dbg filename.asm

which will generate a diagnostic file called filename.dbg. However, this will not work well on files
which were designed for a different object format, because each object format defines its own macros
(usually user-level forms of directives), and those macros will not be defined in the dbg format.
Therefore it can be useful to run NASM twice, in order to do the preprocessing with the native object
format selected:

nasm -e -f rdf -o rdfprog.i rdfprog.asm
nasm -a -f dbg rdfprog.i

This preprocesses rdfprog.asm into rdfprog.i, keeping the rdf object format selected in order to
make sure RDF special directives are converted into primitive form correctly. Then the preprocessed
source is fed through the dbg format to generate the final diagnostic output.

This workaround will still typically not work for programs intended for obj format, because the obj
SEGMENT and GROUP directives have side effects of defining the segment and group names as symbols;
dbg will not do this, so the program will not assemble. You will have to work around that by defining
the symbols yourself (using EXTERN, for example) if you really need to get a dbg trace of an
obj–specific source file.

dbg accepts any section name and any directives at all, and logs them all to its output file.

Chapter 7: Writing 16-bit Code (DOS, Windows 3/3.1)

This chapter attempts to cover some of the common issues encountered when writing 16-bit code to run
under MS-DOS or Windows 3.x. It covers how to link programs to produce .EXE or .COM files, how to
write .SYS device drivers, and how to interface assembly language code with 16-bit C compilers and
with Borland Pascal.

7.1 Producing .EXE Files
Any large program written under DOS needs to be built as a .EXE file: only .EXE files have the
necessary internal structure required to span more than one 64K segment. Windows programs, also, have
to be built as .EXE files, since Windows does not support the .COM format.

In general, you generate .EXE files by using the obj output format to produce one or more .OBJ files,
and then linking them together using a linker. However, NASM also supports the direct generation of
simple DOS .EXE files using the bin output format (by using DB and DW to construct the .EXE file
header), and a macro package is supplied to do this. Thanks to Yann Guidon for contributing the code for
this.

NASM may also support .EXE natively as another output format in future releases.

7.1.1 Using the obj Format To Generate .EXE Files
This section describes the usual method of generating .EXE files by linking .OBJ files together.

Most 16-bit programming language packages come with a suitable linker; if you have none of these, there
is a free linker called VAL, available in LZH archive format from x2ftp.oulu.fi. An LZH archiver
can be found at ftp.simtel.net. There is another ‘free’ linker (though this one doesn’t come with
sources) called FREELINK, available from www.pcorner.com. A third, djlink, written by DJ
Delorie, is available at www.delorie.com.

When linking several .OBJ files into a .EXE file, you should ensure that exactly one of them has a start
point defined (using the ..start special symbol defined by the obj format: see section 6.2.6). If no
module defines a start point, the linker will not know what value to give the entry-point field in the
output file header; if more than one defines a start point, the linker will not know which value to use.

An example of a NASM source file which can be assembled to a .OBJ file and linked on its own to a
.EXE is given here. It demonstrates the basic principles of defining a stack, initialising the segment
registers, and declaring a start point. This file is also provided in the test subdirectory of the NASM
archives, under the name objexe.asm.

 segment code

..start: mov ax,data
 mov ds,ax
 mov ax,stack
 mov ss,ax
 mov sp,stacktop

This initial piece of code sets up DS to point to the data segment, and initialises SS and SP to point to the
top of the provided stack. Notice that interrupts are implicitly disabled for one instruction after a move

into SS, precisely for this situation, so that there’s no chance of an interrupt occurring between the loads
of SS and SP and not having a stack to execute on.

Note also that the special symbol ..start is defined at the beginning of this code, which means that
will be the entry point into the resulting executable file.

 mov dx,hello
 mov ah,9
 int 0x21

The above is the main program: load DS:DX with a pointer to the greeting message (hello is implicitly
relative to the segment data, which was loaded into DS in the setup code, so the full pointer is valid),
and call the DOS print-string function.

 mov ax,0x4c00
 int 0x21

This terminates the program using another DOS system call.

 segment data
hello: db ’hello, world’, 13, 10, ’$’

The data segment contains the string we want to display.

 segment stack stack
 resb 64
stacktop:

The above code declares a stack segment containing 64 bytes of uninitialised stack space, and points
stacktop at the top of it. The directive segment stack stack defines a segment called stack,
and also of type STACK. The latter is not necessary to the correct running of the program, but linkers are
likely to issue warnings or errors if your program has no segment of type STACK.

The above file, when assembled into a .OBJ file, will link on its own to a valid .EXE file, which when
run will print ‘hello, world’ and then exit.

7.1.2 Using the bin Format To Generate .EXE Files
The .EXE file format is simple enough that it’s possible to build a .EXE file by writing a pure-binary
program and sticking a 32-byte header on the front. This header is simple enough that it can be generated
using DB and DW commands by NASM itself, so that you can use the bin output format to directly
generate .EXE files.

Included in the NASM archives, in the misc subdirectory, is a file exebin.mac of macros. It defines
three macros: EXE_begin, EXE_stack and EXE_end.

To produce a .EXE file using this method, you should start by using %include to load the
exebin.mac macro package into your source file. You should then issue the EXE_begin macro call
(which takes no arguments) to generate the file header data. Then write code as normal for the bin
format – you can use all three standard sections .text, .data and .bss. At the end of the file you
should call the EXE_end macro (again, no arguments), which defines some symbols to mark section
sizes, and these symbols are referred to in the header code generated by EXE_begin.

In this model, the code you end up writing starts at 0x100, just like a .COM file – in fact, if you strip off
the 32-byte header from the resulting .EXE file, you will have a valid .COM program. All the segment
bases are the same, so you are limited to a 64K program, again just like a .COM file. Note that an ORG
directive is issued by the EXE_begin macro, so you should not explicitly issue one of your own.

You can’t directly refer to your segment base value, unfortunately, since this would require a relocation in
the header, and things would get a lot more complicated. So you should get your segment base by
copying it out of CS instead.

On entry to your .EXE file, SS:SP are already set up to point to the top of a 2Kb stack. You can adjust
the default stack size of 2Kb by calling the EXE_stack macro. For example, to change the stack size of
your program to 64 bytes, you would call EXE_stack 64.

A sample program which generates a .EXE file in this way is given in the test subdirectory of the
NASM archive, as binexe.asm.

7.2 Producing .COM Files
While large DOS programs must be written as .EXE files, small ones are often better written as .COM
files. .COM files are pure binary, and therefore most easily produced using the bin output format.

7.2.1 Using the bin Format To Generate .COM Files
.COM files expect to be loaded at offset 100h into their segment (though the segment may change).
Execution then begins at 100h, i.e. right at the start of the program. So to write a .COM program, you
would create a source file looking like

 org 100h
 section .text
start: ; put your code here
 section .data
 ; put data items here
 section .bss
 ; put uninitialised data here

The bin format puts the .text section first in the file, so you can declare data or BSS items before
beginning to write code if you want to and the code will still end up at the front of the file where it
belongs.

The BSS (uninitialised data) section does not take up space in the .COM file itself: instead, addresses of
BSS items are resolved to point at space beyond the end of the file, on the grounds that this will be free
memory when the program is run. Therefore you should not rely on your BSS being initialised to all
zeros when you run.

To assemble the above program, you should use a command line like

nasm myprog.asm -fbin -o myprog.com

The bin format would produce a file called myprog if no explicit output file name were specified, so
you have to override it and give the desired file name.

7.2.2 Using the obj Format To Generate .COM Files
If you are writing a .COM program as more than one module, you may wish to assemble several .OBJ
files and link them together into a .COM program. You can do this, provided you have a linker capable of
outputting .COM files directly (TLINK does this), or alternatively a converter program such as EXE2BIN
to transform the .EXE file output from the linker into a .COM file.

If you do this, you need to take care of several things:

• The first object file containing code should start its code segment with a line like RESB 100h. This is
to ensure that the code begins at offset 100h relative to the beginning of the code segment, so that the
linker or converter program does not have to adjust address references within the file when generating
the .COM file. Other assemblers use an ORG directive for this purpose, but ORG in NASM is a format-
specific directive to the bin output format, and does not mean the same thing as it does in MASM-
compatible assemblers.

• You don’t need to define a stack segment.

• All your segments should be in the same group, so that every time your code or data references a
symbol offset, all offsets are relative to the same segment base. This is because, when a .COM file is
loaded, all the segment registers contain the same value.

7.3 Producing .SYS Files
MS-DOS device drivers – .SYS files – are pure binary files, similar to .COM files, except that they start
at origin zero rather than 100h. Therefore, if you are writing a device driver using the bin format, you
do not need the ORG directive, since the default origin for bin is zero. Similarly, if you are using obj,
you do not need the RESB 100h at the start of your code segment.

.SYS files start with a header structure, containing pointers to the various routines inside the driver which
do the work. This structure should be defined at the start of the code segment, even though it is not
actually code.

For more information on the format of .SYS files, and the data which has to go in the header structure, a
list of books is given in the Frequently Asked Questions list for the newsgroup
comp.os.msdos.programmer.

7.4 Interfacing to 16-bit C Programs
This section covers the basics of writing assembly routines that call, or are called from, C programs. To
do this, you would typically write an assembly module as a .OBJ file, and link it with your C modules to
produce a mixed-language program.

7.4.1 External Symbol Names
C compilers have the convention that the names of all global symbols (functions or data) they define are
formed by prefixing an underscore to the name as it appears in the C program. So, for example, the
function a C programmer thinks of as printf appears to an assembly language programmer as
_printf. This means that in your assembly programs, you can define symbols without a leading
underscore, and not have to worry about name clashes with C symbols.

If you find the underscores inconvenient, you can define macros to replace the GLOBAL and EXTERN
directives as follows:

%macro cglobal 1
 global _%1
%define %1 _%1
%endmacro

%macro cextern 1
 extern _%1
%define %1 _%1
%endmacro

(These forms of the macros only take one argument at a time; a %rep construct could solve this.)

If you then declare an external like this:

 cextern printf

then the macro will expand it as

 extern _printf
%define printf _printf

Thereafter, you can reference printf as if it was a symbol, and the preprocessor will put the leading
underscore on where necessary.

The cglobal macro works similarly. You must use cglobal before defining the symbol in question,
but you would have had to do that anyway if you used GLOBAL.

7.4.2 Memory Models
NASM contains no mechanism to support the various C memory models directly; you have to keep track
yourself of which one you are writing for. This means you have to keep track of the following things:

• In models using a single code segment (tiny, small and compact), functions are near. This means that
function pointers, when stored in data segments or pushed on the stack as function arguments, are 16
bits long and contain only an offset field (the CS register never changes its value, and always gives the
segment part of the full function address), and that functions are called using ordinary near CALL
instructions and return using RETN (which, in NASM, is synonymous with RET anyway). This means
both that you should write your own routines to return with RETN, and that you should call external C
routines with near CALL instructions.

• In models using more than one code segment (medium, large and huge), functions are far. This means
that function pointers are 32 bits long (consisting of a 16-bit offset followed by a 16-bit segment), and
that functions are called using CALL FAR (or CALL seg:offset) and return using RETF. Again,
you should therefore write your own routines to return with RETF and use CALL FAR to call external
routines.

• In models using a single data segment (tiny, small and medium), data pointers are 16 bits long,
containing only an offset field (the DS register doesn’t change its value, and always gives the segment
part of the full data item address).

• In models using more than one data segment (compact, large and huge), data pointers are 32 bits long,
consisting of a 16-bit offset followed by a 16-bit segment. You should still be careful not to modify
DS in your routines without restoring it afterwards, but ES is free for you to use to access the contents
of 32-bit data pointers you are passed.

• The huge memory model allows single data items to exceed 64K in size. In all other memory models,
you can access the whole of a data item just by doing arithmetic on the offset field of the pointer you
are given, whether a segment field is present or not; in huge model, you have to be more careful of
your pointer arithmetic.

• In most memory models, there is a default data segment, whose segment address is kept in DS
throughout the program. This data segment is typically the same segment as the stack, kept in SS, so
that functions’ local variables (which are stored on the stack) and global data items can both be
accessed easily without changing DS. Particularly large data items are typically stored in other
segments. However, some memory models (though not the standard ones, usually) allow the
assumption that SS and DS hold the same value to be removed. Be careful about functions’ local
variables in this latter case.

In models with a single code segment, the segment is called _TEXT, so your code segment must also go
by this name in order to be linked into the same place as the main code segment. In models with a single
data segment, or with a default data segment, it is called _DATA.

7.4.3 Function Definitions and Function Calls
The C calling convention in 16-bit programs is as follows. In the following description, the words caller
and callee are used to denote the function doing the calling and the function which gets called.

• The caller pushes the function’s parameters on the stack, one after another, in reverse order (right to
left, so that the first argument specified to the function is pushed last).

• The caller then executes a CALL instruction to pass control to the callee. This CALL is either near or
far depending on the memory model.

• The callee receives control, and typically (although this is not actually necessary, in functions which do
not need to access their parameters) starts by saving the value of SP in BP so as to be able to use BP as
a base pointer to find its parameters on the stack. However, the caller was probably doing this too, so

part of the calling convention states that BP must be preserved by any C function. Hence the callee, if
it is going to set up BP as a frame pointer, must push the previous value first.

• The callee may then access its parameters relative to BP. The word at [BP] holds the previous value
of BP as it was pushed; the next word, at [BP+2], holds the offset part of the return address, pushed
implicitly by CALL. In a small-model (near) function, the parameters start after that, at [BP+4]; in a
large-model (far) function, the segment part of the return address lives at [BP+4], and the parameters
begin at [BP+6]. The leftmost parameter of the function, since it was pushed last, is accessible at this
offset from BP; the others follow, at successively greater offsets. Thus, in a function such as printf
which takes a variable number of parameters, the pushing of the parameters in reverse order means
that the function knows where to find its first parameter, which tells it the number and type of the
remaining ones.

• The callee may also wish to decrease SP further, so as to allocate space on the stack for local variables,
which will then be accessible at negative offsets from BP.

• The callee, if it wishes to return a value to the caller, should leave the value in AL, AX or DX:AX
depending on the size of the value. Floating-point results are sometimes (depending on the compiler)
returned in ST0.

• Once the callee has finished processing, it restores SP from BP if it had allocated local stack space,
then pops the previous value of BP, and returns via RETN or RETF depending on memory model.

• When the caller regains control from the callee, the function parameters are still on the stack, so it
typically adds an immediate constant to SP to remove them (instead of executing a number of slow
POP instructions). Thus, if a function is accidentally called with the wrong number of parameters due
to a prototype mismatch, the stack will still be returned to a sensible state since the caller, which
knows how many parameters it pushed, does the removing.

It is instructive to compare this calling convention with that for Pascal programs (described in section
7.5.1). Pascal has a simpler convention, since no functions have variable numbers of parameters.
Therefore the callee knows how many parameters it should have been passed, and is able to deallocate
them from the stack itself by passing an immediate argument to the RET or RETF instruction, so the
caller does not have to do it. Also, the parameters are pushed in left-to-right order, not right-to-left,
which means that a compiler can give better guarantees about sequence points without performance
suffering.

Thus, you would define a function in C style in the following way. The following example is for small
model:

 global _myfunc
_myfunc: push bp
 mov bp,sp
 sub sp,0x40 ; 64 bytes of local stack space
 mov bx,[bp+4] ; first parameter to function
 ; some more code
 mov sp,bp ; undo "sub sp,0x40" above
 pop bp
 ret

For a large-model function, you would replace RET by RETF, and look for the first parameter at [BP+6]
instead of [BP+4]. Of course, if one of the parameters is a pointer, then the offsets of subsequent
parameters will change depending on the memory model as well: far pointers take up four bytes on the
stack when passed as a parameter, whereas near pointers take up two.

At the other end of the process, to call a C function from your assembly code, you would do something
like this:

 extern _printf
 ; and then, further down...
 push word [myint] ; one of my integer variables
 push word mystring ; pointer into my data segment
 call _printf
 add sp,byte 4 ; ‘byte’ saves space
 ; then those data items...
 segment _DATA
myint dw 1234
mystring db ’This number -> %d <- should be 1234’,10,0

This piece of code is the small-model assembly equivalent of the C code

 int myint = 1234;
 printf("This number -> %d <- should be 1234\n", myint);

In large model, the function-call code might look more like this. In this example, it is assumed that DS
already holds the segment base of the segment _DATA. If not, you would have to initialise it first.

 push word [myint]
 push word seg mystring ; Now push the segment, and...
 push word mystring ; ... offset of "mystring"
 call far _printf
 add sp,byte 6

The integer value still takes up one word on the stack, since large model does not affect the size of the
int data type. The first argument (pushed last) to printf, however, is a data pointer, and therefore has
to contain a segment and offset part. The segment should be stored second in memory, and therefore
must be pushed first. (Of course, PUSH DS would have been a shorter instruction than
PUSH WORD SEG mystring, if DS was set up as the above example assumed.) Then the actual call
becomes a far call, since functions expect far calls in large model; and SP has to be increased by 6 rather
than 4 afterwards to make up for the extra word of parameters.

7.4.4 Accessing Data Items
To get at the contents of C variables, or to declare variables which C can access, you need only declare
the names as GLOBAL or EXTERN. (Again, the names require leading underscores, as stated in section
7.4.1.) Thus, a C variable declared as int i can be accessed from assembler as

 extern _i
 mov ax,[_i]

And to declare your own integer variable which C programs can access as extern int j, you do this
(making sure you are assembling in the _DATA segment, if necessary):

 global _j
_j dw 0

To access a C array, you need to know the size of the components of the array. For example, int
variables are two bytes long, so if a C program declares an array as int a[10], you can access a[3]
by coding mov ax,[_a+6]. (The byte offset 6 is obtained by multiplying the desired array index, 3,
by the size of the array element, 2.) The sizes of the C base types in 16-bit compilers are: 1 for char, 2
for short and int, 4 for long and float, and 8 for double.

To access a C data structure, you need to know the offset from the base of the structure to the field you
are interested in. You can either do this by converting the C structure definition into a NASM structure
definition (using STRUC), or by calculating the one offset and using just that.

To do either of these, you should read your C compiler’s manual to find out how it organises data
structures. NASM gives no special alignment to structure members in its own STRUC macro, so you

have to specify alignment yourself if the C compiler generates it. Typically, you might find that a
structure like

struct {
 char c;
 int i;
} foo;

might be four bytes long rather than three, since the int field would be aligned to a two-byte boundary.
However, this sort of feature tends to be a configurable option in the C compiler, either using command-
line options or #pragma lines, so you have to find out how your own compiler does it.

7.4.5 c16.mac: Helper Macros for the 16-bit C Interface
Included in the NASM archives, in the misc directory, is a file c16.mac of macros. It defines three
macros: proc, arg and endproc. These are intended to be used for C-style procedure definitions, and
they automate a lot of the work involved in keeping track of the calling convention.

An example of an assembly function using the macro set is given here:

 proc _nearproc
%$i arg
%$j arg
 mov ax,[bp + %$i]
 mov bx,[bp + %$j]
 add ax,[bx]
 endproc

This defines _nearproc to be a procedure taking two arguments, the first (i) an integer and the second
(j) a pointer to an integer. It returns i + *j.

Note that the arg macro has an EQU as the first line of its expansion, and since the label before the macro
call gets prepended to the first line of the expanded macro, the EQU works, defining %$i to be an offset
from BP. A context-local variable is used, local to the context pushed by the proc macro and popped by
the endproc macro, so that the same argument name can be used in later procedures. Of course, you
don’t have to do that.

The macro set produces code for near functions (tiny, small and compact-model code) by default. You
can have it generate far functions (medium, large and huge-model code) by means of coding
%define FARCODE. This changes the kind of return instruction generated by endproc, and also
changes the starting point for the argument offsets. The macro set contains no intrinsic dependency on
whether data pointers are far or not.

arg can take an optional parameter, giving the size of the argument. If no size is given, 2 is assumed,
since it is likely that many function parameters will be of type int.

The large-model equivalent of the above function would look like this:

%define FARCODE
 proc _farproc
%$i arg
%$j arg 4
 mov ax,[bp + %$i]
 mov bx,[bp + %$j]
 mov es,[bp + %$j + 2]
 add ax,[bx]
 endproc

This makes use of the argument to the arg macro to define a parameter of size 4, because j is now a far
pointer. When we load from j, we must load a segment and an offset.

7.5 Interfacing to Borland Pascal Programs
Interfacing to Borland Pascal programs is similar in concept to interfacing to 16-bit C programs. The
differences are:

• The leading underscore required for interfacing to C programs is not required for Pascal.

• The memory model is always large: functions are far, data pointers are far, and no data item can be
more than 64K long. (Actually, some functions are near, but only those functions that are local to a
Pascal unit and never called from outside it. All assembly functions that Pascal calls, and all Pascal
functions that assembly routines are able to call, are far.) However, all static data declared in a Pascal
program goes into the default data segment, which is the one whose segment address will be in DS
when control is passed to your assembly code. The only things that do not live in the default data
segment are local variables (they live in the stack segment) and dynamically allocated variables. All
data pointers, however, are far.

• The function calling convention is different – described below.

• Some data types, such as strings, are stored differently.

• There are restrictions on the segment names you are allowed to use – Borland Pascal will ignore code
or data declared in a segment it doesn’t like the name of. The restrictions are described below.

7.5.1 The Pascal Calling Convention
The 16-bit Pascal calling convention is as follows. In the following description, the words caller and
callee are used to denote the function doing the calling and the function which gets called.

• The caller pushes the function’s parameters on the stack, one after another, in normal order (left to
right, so that the first argument specified to the function is pushed first).

• The caller then executes a far CALL instruction to pass control to the callee.

• The callee receives control, and typically (although this is not actually necessary, in functions which do
not need to access their parameters) starts by saving the value of SP in BP so as to be able to use BP as
a base pointer to find its parameters on the stack. However, the caller was probably doing this too, so
part of the calling convention states that BP must be preserved by any function. Hence the callee, if it
is going to set up BP as a frame pointer, must push the previous value first.

• The callee may then access its parameters relative to BP. The word at [BP] holds the previous value
of BP as it was pushed. The next word, at [BP+2], holds the offset part of the return address, and the
next one at [BP+4] the segment part. The parameters begin at [BP+6]. The rightmost parameter of
the function, since it was pushed last, is accessible at this offset from BP; the others follow, at
successively greater offsets.

• The callee may also wish to decrease SP further, so as to allocate space on the stack for local variables,
which will then be accessible at negative offsets from BP.

• The callee, if it wishes to return a value to the caller, should leave the value in AL, AX or DX:AX
depending on the size of the value. Floating-point results are returned in ST0. Results of type Real
(Borland’s own custom floating-point data type, not handled directly by the FPU) are returned in
DX:BX:AX. To return a result of type String, the caller pushes a pointer to a temporary string
before pushing the parameters, and the callee places the returned string value at that location. The
pointer is not a parameter, and should not be removed from the stack by the RETF instruction.

• Once the callee has finished processing, it restores SP from BP if it had allocated local stack space,
then pops the previous value of BP, and returns via RETF. It uses the form of RETF with an
immediate parameter, giving the number of bytes taken up by the parameters on the stack. This causes
the parameters to be removed from the stack as a side effect of the return instruction.

• When the caller regains control from the callee, the function parameters have already been removed
from the stack, so it needs to do nothing further.

Thus, you would define a function in Pascal style, taking two Integer–type parameters, in the
following way:

 global myfunc
myfunc: push bp
 mov bp,sp
 sub sp,0x40 ; 64 bytes of local stack space
 mov bx,[bp+8] ; first parameter to function
 mov bx,[bp+6] ; second parameter to function
 ; some more code
 mov sp,bp ; undo "sub sp,0x40" above
 pop bp
 retf 4 ; total size of params is 4

At the other end of the process, to call a Pascal function from your assembly code, you would do
something like this:

 extern SomeFunc
 ; and then, further down...
 push word seg mystring ; Now push the segment, and...
 push word mystring ; ... offset of "mystring"
 push word [myint] ; one of my variables
 call far SomeFunc

This is equivalent to the Pascal code

procedure SomeFunc(String: PChar; Int: Integer);
 SomeFunc(@mystring, myint);

7.5.2 Borland Pascal Segment Name Restrictions
Since Borland Pascal’s internal unit file format is completely different from OBJ, it only makes a very
sketchy job of actually reading and understanding the various information contained in a real OBJ file
when it links that in. Therefore an object file intended to be linked to a Pascal program must obey a
number of restrictions:

• Procedures and functions must be in a segment whose name is either CODE, CSEG, or something
ending in _TEXT.

• Initialised data must be in a segment whose name is either CONST or something ending in _DATA.

• Uninitialised data must be in a segment whose name is either DATA, DSEG, or something ending in
_BSS.

• Any other segments in the object file are completely ignored. GROUP directives and segment attributes
are also ignored.

7.5.3 Using c16.mac With Pascal Programs
The c16.mac macro package, described in section 7.4.5, can also be used to simplify writing functions
to be called from Pascal programs, if you code %define PASCAL. This definition ensures that
functions are far (it implies FARCODE), and also causes procedure return instructions to be generated
with an operand.

Defining PASCAL does not change the code which calculates the argument offsets; you must declare your
function’s arguments in reverse order. For example:

%define PASCAL
 proc _pascalproc
%$j arg 4
%$i arg
 mov ax,[bp + %$i]
 mov bx,[bp + %$j]
 mov es,[bp + %$j + 2]
 add ax,[bx]
 endproc

This defines the same routine, conceptually, as the example in section 7.4.5: it defines a function taking
two arguments, an integer and a pointer to an integer, which returns the sum of the integer and the
contents of the pointer. The only difference between this code and the large-model C version is that
PASCAL is defined instead of FARCODE, and that the arguments are declared in reverse order.

Chapter 8: Writing 32-bit Code (Unix, Win32, DJGPP)

This chapter attempts to cover some of the common issues involved when writing 32-bit code, to run
under Win32 or Unix, or to be linked with C code generated by a Unix-style C compiler such as DJGPP.
It covers how to write assembly code to interface with 32-bit C routines, and how to write position-
independent code for shared libraries.

Almost all 32-bit code, and in particular all code running under Win32, DJGPP or any of the PC Unix
variants, runs in flat memory model. This means that the segment registers and paging have already been
set up to give you the same 32-bit 4Gb address space no matter what segment you work relative to, and
that you should ignore all segment registers completely. When writing flat-model application code, you
never need to use a segment override or modify any segment register, and the code-section addresses you
pass to CALL and JMP live in the same address space as the data-section addresses you access your
variables by and the stack-section addresses you access local variables and procedure parameters by.
Every address is 32 bits long and contains only an offset part.

8.1 Interfacing to 32-bit C Programs
A lot of the discussion in section 7.4, about interfacing to 16-bit C programs, still applies when working
in 32 bits. The absence of memory models or segmentation worries simplifies things a lot.

8.1.1 External Symbol Names
Most 32-bit C compilers share the convention used by 16-bit compilers, that the names of all global
symbols (functions or data) they define are formed by prefixing an underscore to the name as it appears
in the C program. However, not all of them do: the ELF specification states that C symbols do not have a
leading underscore on their assembly-language names.

The older Linux a.out C compiler, all Win32 compilers, DJGPP, and NetBSD and FreeBSD, all use the
leading underscore; for these compilers, the macros cextern and cglobal, as given in section 7.4.1,
will still work. For ELF, though, the leading underscore should not be used.

8.1.2 Function Definitions and Function Calls
The C calling conventionThe C calling convention in 32-bit programs is as follows. In the following
description, the words caller and callee are used to denote the function doing the calling and the function
which gets called.

• The caller pushes the function’s parameters on the stack, one after another, in reverse order (right to
left, so that the first argument specified to the function is pushed last).

• The caller then executes a near CALL instruction to pass control to the callee.

• The callee receives control, and typically (although this is not actually necessary, in functions which do
not need to access their parameters) starts by saving the value of ESP in EBP so as to be able to use
EBP as a base pointer to find its parameters on the stack. However, the caller was probably doing this
too, so part of the calling convention states that EBP must be preserved by any C function. Hence the
callee, if it is going to set up EBP as a frame pointer, must push the previous value first.

• The callee may then access its parameters relative to EBP. The doubleword at [EBP] holds the
previous value of EBP as it was pushed; the next doubleword, at [EBP+4], holds the return address,

pushed implicitly by CALL. The parameters start after that, at [EBP+8]. The leftmost parameter of
the function, since it was pushed last, is accessible at this offset from EBP; the others follow, at
successively greater offsets. Thus, in a function such as printf which takes a variable number of
parameters, the pushing of the parameters in reverse order means that the function knows where to
find its first parameter, which tells it the number and type of the remaining ones.

• The callee may also wish to decrease ESP further, so as to allocate space on the stack for local
variables, which will then be accessible at negative offsets from EBP.

• The callee, if it wishes to return a value to the caller, should leave the value in AL, AX or EAX
depending on the size of the value. Floating-point results are typically returned in ST0.

• Once the callee has finished processing, it restores ESP from EBP if it had allocated local stack space,
then pops the previous value of EBP, and returns via RET (equivalently, RETN).

• When the caller regains control from the callee, the function parameters are still on the stack, so it
typically adds an immediate constant to ESP to remove them (instead of executing a number of slow
POP instructions). Thus, if a function is accidentally called with the wrong number of parameters due
to a prototype mismatch, the stack will still be returned to a sensible state since the caller, which
knows how many parameters it pushed, does the removing.

There is an alternative calling convention used by Win32 programs for Windows API calls, and also for
functions called by the Windows API such as window procedures: they follow what Microsoft calls the
__stdcall convention. This is slightly closer to the Pascal convention, in that the callee clears the
stack by passing a parameter to the RET instruction. However, the parameters are still pushed in right-to-
left order.

Thus, you would define a function in C style in the following way:

 global _myfunc
_myfunc: push ebp
 mov ebp,esp
 sub esp,0x40 ; 64 bytes of local stack space
 mov ebx,[ebp+8] ; first parameter to function
 ; some more code
 leave ; mov esp,ebp / pop ebp
 ret

At the other end of the process, to call a C function from your assembly code, you would do something
like this:

 extern _printf
 ; and then, further down...
 push dword [myint] ; one of my integer variables
 push dword mystring ; pointer into my data segment
 call _printf
 add esp,byte 8 ; ‘byte’ saves space
 ; then those data items...
 segment _DATA
myint dd 1234
mystring db ’This number -> %d <- should be 1234’,10,0

This piece of code is the assembly equivalent of the C code

 int myint = 1234;
 printf("This number -> %d <- should be 1234\n", myint);

8.1.3 Accessing Data Items
To get at the contents of C variables, or to declare variables which C can access, you need only declare
the names as GLOBAL or EXTERN. (Again, the names require leading underscores, as stated in section
8.1.1.) Thus, a C variable declared as int i can be accessed from assembler as

 extern _i
 mov eax,[_i]

And to declare your own integer variable which C programs can access as extern int j, you do this
(making sure you are assembling in the _DATA segment, if necessary):

 global _j
_j dd 0

To access a C array, you need to know the size of the components of the array. For example, int
variables are four bytes long, so if a C program declares an array as int a[10], you can access a[3]
by coding mov ax,[_a+12]. (The byte offset 12 is obtained by multiplying the desired array index, 3,
by the size of the array element, 4.) The sizes of the C base types in 32-bit compilers are: 1 for char, 2
for short, 4 for int, long and float, and 8 for double. Pointers, being 32-bit addresses, are also 4
bytes long.

To access a C data structure, you need to know the offset from the base of the structure to the field you
are interested in. You can either do this by converting the C structure definition into a NASM structure
definition (using STRUC), or by calculating the one offset and using just that.

To do either of these, you should read your C compiler’s manual to find out how it organises data
structures. NASM gives no special alignment to structure members in its own STRUC macro, so you
have to specify alignment yourself if the C compiler generates it. Typically, you might find that a
structure like

struct {
 char c;
 int i;
} foo;

might be eight bytes long rather than five, since the int field would be aligned to a four-byte boundary.
However, this sort of feature is sometimes a configurable option in the C compiler, either using
command-line options or #pragma lines, so you have to find out how your own compiler does it.

8.1.4 c32.mac: Helper Macros for the 32-bit C Interface
Included in the NASM archives, in the misc directory, is a file c32.mac of macros. It defines three
macros: proc, arg and endproc. These are intended to be used for C-style procedure definitions, and
they automate a lot of the work involved in keeping track of the calling convention.

An example of an assembly function using the macro set is given here:

 proc _proc32
%$i arg
%$j arg
 mov eax,[ebp + %$i]
 mov ebx,[ebp + %$j]
 add eax,[ebx]
 endproc

This defines _proc32 to be a procedure taking two arguments, the first (i) an integer and the second (j)
a pointer to an integer. It returns i + *j.

Note that the arg macro has an EQU as the first line of its expansion, and since the label before the macro
call gets prepended to the first line of the expanded macro, the EQU works, defining %$i to be an offset

from BP. A context-local variable is used, local to the context pushed by the proc macro and popped by
the endproc macro, so that the same argument name can be used in later procedures. Of course, you
don’t have to do that.

arg can take an optional parameter, giving the size of the argument. If no size is given, 4 is assumed,
since it is likely that many function parameters will be of type int or pointers.

8.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries
ELF replaced the older a.out object file format under Linux because it contains support for
position-independent code (PIC), which makes writing shared libraries much easier. NASM supports the
ELF position-independent code features, so you can write Linux ELF shared libraries in NASM.

NetBSD, and its close cousins FreeBSD and OpenBSD, take a different approach by hacking PIC support
into the a.out format. NASM supports this as the aoutb output format, so you can write BSD shared
libraries in NASM too.

The operating system loads a PIC shared library by memory-mapping the library file at an arbitrarily
chosen point in the address space of the running process. The contents of the library’s code section must
therefore not depend on where it is loaded in memory.

Therefore, you cannot get at your variables by writing code like this:

 mov eax,[myvar] ; WRONG

Instead, the linker provides an area of memory called the global offset table, or GOT; the GOT is situated
at a constant distance from your library’s code, so if you can find out where your library is loaded (which
is typically done using a CALL and POP combination), you can obtain the address of the GOT, and you
can then load the addresses of your variables out of linker-generated entries in the GOT.

The data section of a PIC shared library does not have these restrictions: since the data section is writable,
it has to be copied into memory anyway rather than just paged in from the library file, so as long as it’s
being copied it can be relocated too. So you can put ordinary types of relocation in the data section
without too much worry (but see section 8.2.4 for a caveat).

8.2.1 Obtaining the Address of the GOT
Each code module in your shared library should define the GOT as an external symbol:

 extern _GLOBAL_OFFSET_TABLE_ ; in ELF
 extern __GLOBAL_OFFSET_TABLE_ ; in BSD a.out

At the beginning of any function in your shared library which plans to access your data or BSS sections,
you must first calculate the address of the GOT. This is typically done by writing the function in this
form:

func: push ebp
 mov ebp,esp
 push ebx
 call .get_GOT
.get_GOT: pop ebx
 add ebx,_GLOBAL_OFFSET_TABLE_+$$-.get_GOT wrt ..gotpc
 ; the function body comes here
 mov ebx,[ebp-4]
 mov esp,ebp
 pop ebp
 ret

(For BSD, again, the symbol _GLOBAL_OFFSET_TABLE requires a second leading underscore.)

The first two lines of this function are simply the standard C prologue to set up a stack frame, and the last
three lines are standard C function epilogue. The third line, and the fourth to last line, save and restore
the EBX register, because PIC shared libraries use this register to store the address of the GOT.

The interesting bit is the CALL instruction and the following two lines. The CALL and POP combination
obtains the address of the label .get_GOT, without having to know in advance where the program was
loaded (since the CALL instruction is encoded relative to the current position). The ADD instruction
makes use of one of the special PIC relocation types: GOTPC relocation. With the WRT ..gotpc
qualifier specified, the symbol referenced (here _GLOBAL_OFFSET_TABLE_, the special symbol
assigned to the GOT) is given as an offset from the beginning of the section. (Actually, ELF encodes it as
the offset from the operand field of the ADD instruction, but NASM simplifies this deliberately, so you do
things the same way for both ELF and BSD.) So the instruction then adds the beginning of the section, to
get the real address of the GOT, and subtracts the value of .get_GOT which it knows is in EBX.
Therefore, by the time that instruction has finished, EBX contains the address of the GOT.

If you didn’t follow that, don’t worry: it’s never necessary to obtain the address of the GOT by any other
means, so you can put those three instructions into a macro and safely ignore them:

%macro get_GOT 0
 call %%getgot
%%getgot: pop ebx
 add ebx,_GLOBAL_OFFSET_TABLE_+$$-%%getgot wrt ..gotpc
%endmacro

8.2.2 Finding Your Local Data Items
Having got the GOT, you can then use it to obtain the addresses of your data items. Most variables will
reside in the sections you have declared; they can be accessed using the ..gotoff special WRT type.
The way this works is like this:

 lea eax,[ebx+myvar wrt ..gotoff]

The expression myvar wrt ..gotoff is calculated, when the shared library is linked, to be the offset
to the local variable myvar from the beginning of the GOT. Therefore, adding it to EBX as above will
place the real address of myvar in EAX.

If you declare variables as GLOBAL without specifying a size for them, they are shared between code
modules in the library, but do not get exported from the library to the program that loaded it. They will
still be in your ordinary data and BSS sections, so you can access them in the same way as local
variables, using the above ..gotoff mechanism.

Note that due to a peculiarity of the way BSD a.out format handles this relocation type, there must be
at least one non-local symbol in the same section as the address you’re trying to access.

8.2.3 Finding External and Common Data Items
If your library needs to get at an external variable (external to the library, not just to one of the modules
within it), you must use the ..got type to get at it. The ..got type, instead of giving you the offset
from the GOT base to the variable, gives you the offset from the GOT base to a GOT entry containing
the address of the variable. The linker will set up this GOT entry when it builds the library, and the
dynamic linker will place the correct address in it at load time. So to obtain the address of an external
variable extvar in EAX, you would code

 mov eax,[ebx+extvar wrt ..got]

This loads the address of extvar out of an entry in the GOT. The linker, when it builds the shared
library, collects together every relocation of type ..got, and builds the GOT so as to ensure it has every
necessary entry present.

Common variables must also be accessed in this way.

8.2.4 Exporting Symbols to the Library User
If you want to export symbols to the user of the library, you have to declare whether they are functions or
data, and if they are data, you have to give the size of the data item. This is because the dynamic linker
has to build procedure linkage table entries for any exported functions, and also moves exported data
items away from the library’s data section in which they were declared.

So to export a function to users of the library, you must use

 global func:function ; declare it as a function
func: push ebp
 ; etc.

And to export a data item such as an array, you would have to code

 global array:data array.end-array ; give the size too
array: resd 128
.end:

Be careful: If you export a variable to the library user, by declaring it as GLOBAL and supplying a size,
the variable will end up living in the data section of the main program, rather than in your library’s data
section, where you declared it. So you will have to access your own global variable with the ..got
mechanism rather than ..gotoff, as if it were external (which, effectively, it has become).

Equally, if you need to store the address of an exported global in one of your data sections, you can’t do it
by means of the standard sort of code:

dataptr: dd global_data_item ; WRONG

NASM will interpret this code as an ordinary relocation, in which global_data_item is merely an
offset from the beginning of the .data section (or whatever); so this reference will end up pointing at
your data section instead of at the exported global which resides elsewhere.

Instead of the above code, then, you must write

dataptr: dd global_data_item wrt ..sym

which makes use of the special WRT type ..sym to instruct NASM to search the symbol table for a
particular symbol at that address, rather than just relocating by section base.

Either method will work for functions: referring to one of your functions by means of

funcptr: dd my_function

will give the user the address of the code you wrote, whereas

funcptr: dd my_function wrt ..sym

will give the address of the procedure linkage table for the function, which is where the calling program
will believe the function lives. Either address is a valid way to call the function.

8.2.5 Calling Procedures Outside the Library
Calling procedures outside your shared library has to be done by means of a procedure linkage table, or
PLT. The PLT is placed at a known offset from where the library is loaded, so the library code can make
calls to the PLT in a position-independent way. Within the PLT there is code to jump to offsets contained
in the GOT, so function calls to other shared libraries or to routines in the main program can be
transparently passed off to their real destinations.

To call an external routine, you must use another special PIC relocation type, WRT ..plt. This is much
easier than the GOT-based ones: you simply replace calls such as CALL printf with the PLT-relative
version CALL printf WRT ..plt.

8.2.6 Generating the Library File
Having written some code modules and assembled them to .o files, you then generate your shared library
with a command such as

ld -shared -o library.so module1.o module2.o # for ELF
ld -Bshareable -o library.so module1.o module2.o # for BSD

For ELF, if your shared library is going to reside in system directories such as /usr/lib or /lib, it is
usually worth using the -soname flag to the linker, to store the final library file name, with a version
number, into the library:

ld -shared -soname library.so.1 -o library.so.1.2 *.o

You would then copy library.so.1.2 into the library directory, and create library.so.1 as a
symbolic link to it.

Chapter 9: Mixing 16 and 32 Bit Code

This chapter tries to cover some of the issues, largely related to unusual forms of addressing and jump
instructions, encountered when writing operating system code such as protected-mode initialisation
routines, which require code that operates in mixed segment sizes, such as code in a 16-bit segment
trying to modify data in a 32-bit one, or jumps between different-size segments.

9.1 Mixed-Size Jumps
The most common form of mixed-size instruction is the one used when writing a 32-bit OS: having done
your setup in 16-bit mode, such as loading the kernel, you then have to boot it by switching into
protected mode and jumping to the 32-bit kernel start address. In a fully 32-bit OS, this tends to be the
only mixed-size instruction you need, since everything before it can be done in pure 16-bit code, and
everything after it can be pure 32-bit.

This jump must specify a 48-bit far address, since the target segment is a 32-bit one. However, it must be
assembled in a 16-bit segment, so just coding, for example,

 jmp 0x1234:0x56789ABC ; wrong!

will not work, since the offset part of the address will be truncated to 0x9ABC and the jump will be an
ordinary 16-bit far one.

The Linux kernel setup code gets round the inability of as86 to generate the required instruction by
coding it manually, using DB instructions. NASM can go one better than that, by actually generating the
right instruction itself. Here’s how to do it right:

 jmp dword 0x1234:0x56789ABC ; right

The DWORD prefix (strictly speaking, it should come after the colon, since it is declaring the offset field to
be a doubleword; but NASM will accept either form, since both are unambiguous) forces the offset part
to be treated as far, in the assumption that you are deliberately writing a jump from a 16-bit segment to a
32-bit one.

You can do the reverse operation, jumping from a 32-bit segment to a 16-bit one, by means of the WORD
prefix:

 jmp word 0x8765:0x4321 ; 32 to 16 bit

If the WORD prefix is specified in 16-bit mode, or the DWORD prefix in 32-bit mode, they will be ignored,
since each is explicitly forcing NASM into a mode it was in anyway.

9.2 Addressing Between Different-Size Segments
If your OS is mixed 16 and 32-bit, or if you are writing a DOS extender, you are likely to have to deal
with some 16-bit segments and some 32-bit ones. At some point, you will probably end up writing code
in a 16-bit segment which has to access data in a 32-bit segment, or vice versa.

If the data you are trying to access in a 32-bit segment lies within the first 64K of the segment, you may
be able to get away with using an ordinary 16-bit addressing operation for the purpose; but sooner or
later, you will want to do 32-bit addressing from 16-bit mode.

The easiest way to do this is to make sure you use a register for the address, since any effective address
containing a 32-bit register is forced to be a 32-bit address. So you can do

 mov eax,offset_into_32_bit_segment_specified_by_fs
 mov dword [fs:eax],0x11223344

This is fine, but slightly cumbersome (since it wastes an instruction and a register) if you already know
the precise offset you are aiming at. The x86 architecture does allow 32-bit effective addresses to specify
nothing but a 4-byte offset, so why shouldn’t NASM be able to generate the best instruction for the
purpose?

It can. As in section 9.1, you need only prefix the address with the DWORD keyword, and it will be forced
to be a 32-bit address:

 mov dword [fs:dword my_offset],0x11223344

Also as in section 9.1, NASM is not fussy about whether the DWORD prefix comes before or after the
segment override, so arguably a nicer-looking way to code the above instruction is

 mov dword [dword fs:my_offset],0x11223344

Don’t confuse the DWORD prefix outside the square brackets, which controls the size of the data stored at
the address, with the one inside the square brackets which controls the length of the address itself. The
two can quite easily be different:

 mov word [dword 0x12345678],0x9ABC

This moves 16 bits of data to an address specified by a 32-bit offset.

You can also specify WORD or DWORD prefixes along with the FAR prefix to indirect far jumps or calls.
For example:

 call dword far [fs:word 0x4321]

This instruction contains an address specified by a 16-bit offset; it loads a 48-bit far pointer from that (16-
bit segment and 32-bit offset), and calls that address.

9.3 Other Mixed-Size Instructions
The other way you might want to access data might be using the string instructions (LODSx, STOSx and
so on) or the XLATB instruction. These instructions, since they take no parameters, might seem to have
no easy way to make them perform 32-bit addressing when assembled in a 16-bit segment.

This is the purpose of NASM’s a16 and a32 prefixes. If you are coding LODSB in a 16-bit segment but
it is supposed to be accessing a string in a 32-bit segment, you should load the desired address into ESI
and then code

 a32 lodsb

The prefix forces the addressing size to 32 bits, meaning that LODSB loads from [DS:ESI] instead of
[DS:SI]. To access a string in a 16-bit segment when coding in a 32-bit one, the corresponding a16
prefix can be used.

The a16 and a32 prefixes can be applied to any instruction in NASM’s instruction table, but most of
them can generate all the useful forms without them. The prefixes are necessary only for instructions
with implicit addressing: CMPSx (section A.19), SCASx (section A.149), LODSx (section A.98), STOSx
(section A.157), MOVSx (section A.105), INSx (section A.80), OUTSx (section A.112), and XLATB
(section A.169). Also, the various push and pop instructions (PUSHA and POPF as well as the more usual
PUSH and POP) can accept a16 or a32 prefixes to force a particular one of SP or ESP to be used as a
stack pointer, in case the stack segment in use is a different size from the code segment.

PUSH and POP, when applied to segment registers in 32-bit mode, also have the slightly odd behaviour
that they push and pop 4 bytes at a time, of which the top two are ignored and the bottom two give the
value of the segment register being manipulated. To force the 16-bit behaviour of segment-register push
and pop instructions, you can use the operand-size prefix o16:

 o16 push ss
 o16 push ds

This code saves a doubleword of stack space by fitting two segment registers into the space which would
normally be consumed by pushing one.

(You can also use the o32 prefix to force the 32-bit behaviour when in 16-bit mode, but this seems less
useful.)

Chapter 10: Troubleshooting

This chapter describes some of the common problems that users have been known to encounter with
NASM, and answers them. It also gives instructions for reporting bugs in NASM if you find a difficulty
that isn’t listed here.

10.1 Common Problems
10.1.1 NASM Generates Inefficient Code

I get a lot of ‘bug’ reports about NASM generating inefficient, or even ‘wrong’, code on instructions such
as ADD ESP,8. This is a deliberate design feature, connected to predictability of output: NASM, on
seeing ADD ESP,8, will generate the form of the instruction which leaves room for a 32-bit offset. You
need to code ADD ESP,BYTE 8 if you want the space-efficient form of the instruction. This isn’t a
bug: at worst it’s a misfeature, and that’s a matter of opinion only.

10.1.2 My Jumps are Out of Range
Similarly, people complain that when they issue conditional jumps (which are SHORT by default) that try
to jump too far, NASM reports ‘short jump out of range’ instead of making the jumps longer.

This, again, is partly a predictability issue, but in fact has a more practical reason as well. NASM has no
means of being told what type of processor the code it is generating will be run on; so it cannot decide
for itself that it should generate Jcc NEAR type instructions, because it doesn’t know that it’s working
for a 386 or above. Alternatively, it could replace the out-of-range short JNE instruction with a very
short JE instruction that jumps over a JMP NEAR; this is a sensible solution for processors below a 386,
but hardly efficient on processors which have good branch prediction and could have used JNE NEAR
instead. So, once again, it’s up to the user, not the assembler, to decide what instructions should be
generated.

10.1.3 ORG Doesn’t Work
People writing boot sector programs in the bin format often complain that ORG doesn’t work the way
they’d like: in order to place the 0xAA55 signature word at the end of a 512-byte boot sector, people
who are used to MASM tend to code

 ORG 0
 ; some boot sector code
 ORG 510
 DW 0xAA55

This is not the intended use of the ORG directive in NASM, and will not work. The correct way to solve
this problem in NASM is to use the TIMES directive, like this:

 ORG 0
 ; some boot sector code
 TIMES 510-($-$$) DB 0
 DW 0xAA55

The TIMES directive will insert exactly enough zero bytes into the output to move the assembly point up
to 510. This method also has the advantage that if you accidentally fill your boot sector too full, NASM

will catch the problem at assembly time and report it, so you won’t end up with a boot sector that you
have to disassemble to find out what’s wrong with it.

10.1.4 TIMES Doesn’t Work
The other common problem with the above code is people who write the TIMES line as

 TIMES 510-$ DB 0

by reasoning that $ should be a pure number, just like 510, so the difference between them is also a pure
number and can happily be fed to TIMES.

NASM is a modular assembler: the various component parts are designed to be easily separable for re-
use, so they don’t exchange information unnecessarily. In consequence, the bin output format, even
though it has been told by the ORG directive that the .text section should start at 0, does not pass that
information back to the expression evaluator. So from the evaluator’s point of view, $ isn’t a pure
number: it’s an offset from a section base. Therefore the difference between $ and 510 is also not a pure
number, but involves a section base. Values involving section bases cannot be passed as arguments to
TIMES.

The solution, as in the previous section, is to code the TIMES line in the form

 TIMES 510-($-$$) DB 0

in which $ and $$ are offsets from the same section base, and so their difference is a pure number. This
will solve the problem and generate sensible code.

10.2 Bugs
We have never yet released a version of NASM with any known bugs. That doesn’t usually stop there
being plenty we didn’t know about, though. Any that you find should be reported to hpa@zytor.com.

Please read section 2.2 first, and don’t report the bug if it’s listed in there as a deliberate feature. (If you
think the feature is badly thought out, feel free to send us reasons why you think it should be changed,
but don’t just send us mail saying ‘This is a bug’ if the documentation says we did it on purpose.) Then
read section 10.1, and don’t bother reporting the bug if it’s listed there.

If you do report a bug, please give us all of the following information:

• What operating system you’re running NASM under. DOS, Linux, NetBSD, Win16, Win32, VMS (I’d
be impressed), whatever.

• If you’re running NASM under DOS or Win32, tell us whether you’ve compiled your own executable
from the DOS source archive, or whether you were using the standard distribution binaries out of the
archive. If you were using a locally built executable, try to reproduce the problem using one of the
standard binaries, as this will make it easier for us to reproduce your problem prior to fixing it.

• Which version of NASM you’re using, and exactly how you invoked it. Give us the precise command
line, and the contents of the NASM environment variable if any.

• Which versions of any supplementary programs you’re using, and how you invoked them. If the
problem only becomes visible at link time, tell us what linker you’re using, what version of it you’ve
got, and the exact linker command line. If the problem involves linking against object files generated
by a compiler, tell us what compiler, what version, and what command line or options you used. (If
you’re compiling in an IDE, please try to reproduce the problem with the command-line version of the
compiler.)

• If at all possible, send us a NASM source file which exhibits the problem. If this causes copyright
problems (e.g. you can only reproduce the bug in restricted-distribution code) then bear in mind the
following two points: firstly, we guarantee that any source code sent to us for the purposes of
debugging NASM will be used only for the purposes of debugging NASM, and that we will delete all

our copies of it as soon as we have found and fixed the bug or bugs in question; and secondly, we
would prefer not to be mailed large chunks of code anyway. The smaller the file, the better. A three-
line sample file that does nothing useful except demonstrate the problem is much easier to work with
than a fully fledged ten-thousand-line program. (Of course, some errors do only crop up in large files,
so this may not be possible.)

• A description of what the problem actually is. ‘It doesn’t work’ is not a helpful description! Please
describe exactly what is happening that shouldn’t be, or what isn’t happening that should. Examples
might be: ‘NASM generates an error message saying Line 3 for an error that’s actually on Line 5’;
‘NASM generates an error message that I believe it shouldn’t be generating at all’; ‘NASM fails to
generate an error message that I believe it should be generating’; ‘the object file produced from this
source code crashes my linker’; ‘the ninth byte of the output file is 66 and I think it should be 77
instead’.

• If you believe the output file from NASM to be faulty, send it to us. That allows us to determine
whether our own copy of NASM generates the same file, or whether the problem is related to
portability issues between our development platforms and yours. We can handle binary files mailed to
us as MIME attachments, uuencoded, and even BinHex. Alternatively, we may be able to provide an
FTP site you can upload the suspect files to; but mailing them is easier for us.

• Any other information or data files that might be helpful. If, for example, the problem involves NASM
failing to generate an object file while TASM can generate an equivalent file without trouble, then
send us both object files, so we can see what TASM is doing differently from us.

Appendix A: Intel x86 Instruction Reference

This appendix provides a complete list of the machine instructions which NASM will assemble, and a
short description of the function of each one.

It is not intended to be exhaustive documentation on the fine details of the instructions’ function, such as
which exceptions they can trigger: for such documentation, you should go to Intel’s Web site,
http://www.intel.com/.

Instead, this appendix is intended primarily to provide documentation on the way the instructions may be
used within NASM. For example, looking up LOOP will tell you that NASM allows CX or ECX to be
specified as an optional second argument to the LOOP instruction, to enforce which of the two possible
counter registers should be used if the default is not the one desired.

The instructions are not quite listed in alphabetical order, since groups of instructions with similar
functions are lumped together in the same entry. Most of them don’t move very far from their alphabetic
position because of this.

A.1 Key to Operand Specifications
The instruction descriptions in this appendix specify their operands using the following notation:

• Registers: reg8 denotes an 8-bit general purpose register, reg16 denotes a 16-bit general purpose
register, and reg32 a 32-bit one. fpureg denotes one of the eight FPU stack registers, mmxreg
denotes one of the eight 64-bit MMX registers, and segreg denotes a segment register. In addition,
some registers (such as AL, DX or ECX) may be specified explicitly.

• Immediate operands: imm denotes a generic immediate operand. imm8, imm16 and imm32 are used
when the operand is intended to be a specific size. For some of these instructions, NASM needs an
explicit specifier: for example, ADD ESP,16 could be interpreted as either ADD r/m32,imm32 or
ADD r/m32,imm8. NASM chooses the former by default, and so you must specify
ADD ESP,BYTE 16 for the latter.

• Memory references: mem denotes a generic memory reference; mem8, mem16, mem32, mem64 and
mem80 are used when the operand needs to be a specific size. Again, a specifier is needed in some
cases: DEC [address] is ambiguous and will be rejected by NASM. You must specify
DEC BYTE [address], DEC WORD [address] or DEC DWORD [address] instead.

• Restricted memory references: one form of the MOV instruction allows a memory address to be
specified without allowing the normal range of register combinations and effective address processing.
This is denoted by memoffs8, memoffs16 and memoffs32.

• Register or memory choices: many instructions can accept either a register or a memory reference as
an operand. r/m8 is a shorthand for reg8/mem8; similarly r/m16 and r/m32. r/m64 is MMX-
related, and is a shorthand for mmxreg/mem64.

A.2 Key to Opcode Descriptions
This appendix also provides the opcodes which NASM will generate for each form of each instruction.
The opcodes are listed in the following way:

• A hex number, such as 3F, indicates a fixed byte containing that number.

• A hex number followed by +r, such as C8+r, indicates that one of the operands to the instruction is a
register, and the ‘register value’ of that register should be added to the hex number to produce the
generated byte. For example, EDX has register value 2, so the code C8+r, when the register operand
is EDX, generates the hex byte CA. Register values for specific registers are given in section A.2.1.

• A hex number followed by +cc, such as 40+cc, indicates that the instruction name has a condition
code suffix, and the numeric representation of the condition code should be added to the hex number
to produce the generated byte. For example, the code 40+cc, when the instruction contains the NE
condition, generates the hex byte 45. Condition codes and their numeric representations are given in
section A.2.2.

• A slash followed by a digit, such as /2, indicates that one of the operands to the instruction is a
memory address or register (denoted mem or r/m, with an optional size). This is to be encoded as an
effective address, with a ModR/M byte, an optional SIB byte, and an optional displacement, and the
spare (register) field of the ModR/M byte should be the digit given (which will be from 0 to 7, so it
fits in three bits). The encoding of effective addresses is given in section A.2.3.

• The code /r combines the above two: it indicates that one of the operands is a memory address or
r/m, and another is a register, and that an effective address should be generated with the spare
(register) field in the ModR/M byte being equal to the ‘register value’ of the register operand. The
encoding of effective addresses is given in section A.2.3; register values are given in section A.2.1.

• The codes ib, iw and id indicate that one of the operands to the instruction is an immediate value,
and that this is to be encoded as a byte, little-endian word or little-endian doubleword respectively.

• The codes rb, rw and rd indicate that one of the operands to the instruction is an immediate value,
and that the difference between this value and the address of the end of the instruction is to be encoded
as a byte, word or doubleword respectively. Where the form rw/rd appears, it indicates that either
rw or rd should be used according to whether assembly is being performed in BITS 16 or
BITS 32 state respectively.

• The codes ow and od indicate that one of the operands to the instruction is a reference to the contents
of a memory address specified as an immediate value: this encoding is used in some forms of the MOV
instruction in place of the standard effective-address mechanism. The displacement is encoded as a
word or doubleword. Again, ow/od denotes that ow or od should be chosen according to the BITS
setting.

• The codes o16 and o32 indicate that the given form of the instruction should be assembled with
operand size 16 or 32 bits. In other words, o16 indicates a 66 prefix in BITS 32 state, but generates
no code in BITS 16 state; and o32 indicates a 66 prefix in BITS 16 state but generates nothing in
BITS 32.

• The codes a16 and a32, similarly to o16 and o32, indicate the address size of the given form of the
instruction. Where this does not match the BITS setting, a 67 prefix is required.

A.2.1 Register Values
Where an instruction requires a register value, it is already implicit in the encoding of the rest of the
instruction what type of register is intended: an 8-bit general-purpose register, a segment register, a
debug register, an MMX register, or whatever. Therefore there is no problem with registers of different
types sharing an encoding value.

The encodings for the various classes of register are:

• 8-bit general registers: AL is 0, CL is 1, DL is 2, BL is 3, AH is 4, CH is 5, DH is 6, and BH is 7.

• 16-bit general registers: AX is 0, CX is 1, DX is 2, BX is 3, SP is 4, BP is 5, SI is 6, and DI is 7.

• 32-bit general registers: EAX is 0, ECX is 1, EDX is 2, EBX is 3, ESP is 4, EBP is 5, ESI is 6, and EDI
is 7.

• Segment registers: ES is 0, CS is 1, SS is 2, DS is 3, FS is 4, and GS is 5.

• {Floating-point registers}: ST0 is 0, ST1 is 1, ST2 is 2, ST3 is 3, ST4 is 4, ST5 is 5, ST6 is 6, and
ST7 is 7.

• 64-bit MMX registers: MM0 is 0, MM1 is 1, MM2 is 2, MM3 is 3, MM4 is 4, MM5 is 5, MM6 is 6, and MM7
is 7.

• Control registers: CR0 is 0, CR2 is 2, CR3 is 3, and CR4 is 4.

• Debug registers: DR0 is 0, DR1 is 1, DR2 is 2, DR3 is 3, DR6 is 6, and DR7 is 7.

• Test registers: TR3 is 3, TR4 is 4, TR5 is 5, TR6 is 6, and TR7 is 7.

(Note that wherever a register name contains a number, that number is also the register value for that
register.)

A.2.2 Condition Codes
The available condition codes are given here, along with their numeric representations as part of opcodes.
Many of these condition codes have synonyms, so several will be listed at a time.

In the following descriptions, the word ‘either’, when applied to two possible trigger conditions, is used to
mean ‘either or both’. If ‘either but not both’ is meant, the phrase ‘exactly one of’ is used.

• O is 0 (trigger if the overflow flag is set); NO is 1.

• B, C and NAE are 2 (trigger if the carry flag is set); AE, NB and NC are 3.

• E and Z are 4 (trigger if the zero flag is set); NE and NZ are 5.

• BE and NA are 6 (trigger if either of the carry or zero flags is set); A and NBE are 7.

• S is 8 (trigger if the sign flag is set); NS is 9.

• P and PE are 10 (trigger if the parity flag is set); NP and PO are 11.

• L and NGE are 12 (trigger if exactly one of the sign and overflow flags is set); GE and NL are 13.

• LE and NG are 14 (trigger if either the zero flag is set, or exactly one of the sign and overflow flags is
set); G and NLE are 15.

Note that in all cases, the sense of a condition code may be reversed by changing the low bit of the
numeric representation.

A.2.3 Effective Address Encoding: ModR/M and SIB
An effective address is encoded in up to three parts: a ModR/M byte, an optional SIB byte, and an
optional byte, word or doubleword displacement field.

The ModR/M byte consists of three fields: the mod field, ranging from 0 to 3, in the upper two bits of the
byte, the r/m field, ranging from 0 to 7, in the lower three bits, and the spare (register) field in the
middle (bit 3 to bit 5). The spare field is not relevant to the effective address being encoded, and either
contains an extension to the instruction opcode or the register value of another operand.

The ModR/M system can be used to encode a direct register reference rather than a memory access. This
is always done by setting the mod field to 3 and the r/m field to the register value of the register in
question (it must be a general-purpose register, and the size of the register must already be implicit in the
encoding of the rest of the instruction). In this case, the SIB byte and displacement field are both absent.

In 16-bit addressing mode (either BITS 16 with no 67 prefix, or BITS 32 with a 67 prefix), the SIB
byte is never used. The general rules for mod and r/m (there is an exception, given below) are:

• The mod field gives the length of the displacement field: 0 means no displacement, 1 means one byte,
and 2 means two bytes.

• The r/m field encodes the combination of registers to be added to the displacement to give the
accessed address: 0 means BX+SI, 1 means BX+DI, 2 means BP+SI, 3 means BP+DI, 4 means SI
only, 5 means DI only, 6 means BP only, and 7 means BX only.

However, there is a special case:

• If mod is 0 and r/m is 6, the effective address encoded is not [BP] as the above rules would suggest,
but instead [disp16]: the displacement field is present and is two bytes long, and no registers are
added to the displacement.

Therefore the effective address [BP] cannot be encoded as efficiently as [BX]; so if you code [BP] in a
program, NASM adds a notional 8-bit zero displacement, and sets mod to 1, r/m to 6, and the one-byte
displacement field to 0.

In 32-bit addressing mode (either BITS 16 with a 67 prefix, or BITS 32 with no 67 prefix) the
general rules (again, there are exceptions) for mod and r/m are:

• The mod field gives the length of the displacement field: 0 means no displacement, 1 means one byte,
and 2 means four bytes.

• If only one register is to be added to the displacement, and it is not ESP, the r/m field gives its register
value, and the SIB byte is absent. If the r/m field is 4 (which would encode ESP), the SIB byte is
present and gives the combination and scaling of registers to be added to the displacement.

If the SIB byte is present, it describes the combination of registers (an optional base register, and an
optional index register scaled by multiplication by 1, 2, 4 or 8) to be added to the displacement. The SIB
byte is divided into the scale field, in the top two bits, the index field in the next three, and the base
field in the bottom three. The general rules are:

• The base field encodes the register value of the base register.

• The index field encodes the register value of the index register, unless it is 4, in which case no index
register is used (so ESP cannot be used as an index register).

• The scale field encodes the multiplier by which the index register is scaled before adding it to the
base and displacement: 0 encodes a multiplier of 1, 1 encodes 2, 2 encodes 4 and 3 encodes 8.

The exceptions to the 32-bit encoding rules are:

• If mod is 0 and r/m is 5, the effective address encoded is not [EBP] as the above rules would suggest,
but instead [disp32]: the displacement field is present and is four bytes long, and no registers are
added to the displacement.

• If mod is 0, r/m is 4 (meaning the SIB byte is present) and base is 4, the effective address encoded is
not [EBP+index] as the above rules would suggest, but instead [disp32+index]: the
displacement field is present and is four bytes long, and there is no base register (but the index register
is still processed in the normal way).

A.3 Key to Instruction Flags
Given along with each instruction in this appendix is a set of flags, denoting the type of the instruction.
The types are as follows:

• 8086, 186, 286, 386, 486, PENT and P6 denote the lowest processor type that supports the
instruction. Most instructions run on all processors above the given type; those that do not are
documented. The Pentium II contains no additional instructions beyond the P6 (Pentium Pro); from
the point of view of its instruction set, it can be thought of as a P6 with MMX capability.

• CYRIX indicates that the instruction is specific to Cyrix processors, for example the extra MMX
instructions in the Cyrix extended MMX instruction set.

• FPU indicates that the instruction is a floating-point one, and will only run on machines with a
coprocessor (automatically including 486DX, Pentium and above).

• MMX indicates that the instruction is an MMX one, and will run on MMX-capable Pentium processors
and the Pentium II.

• PRIV indicates that the instruction is a protected-mode management instruction. Many of these may
only be used in protected mode, or only at privilege level zero.

• UNDOC indicates that the instruction is an undocumented one, and not part of the official Intel
Architecture; it may or may not be supported on any given machine.

A.4 AAA, AAS, AAM, AAD: ASCII Adjustments
AAA ; 37 [8086]

AAS ; 3F [8086]

AAD ; D5 0A [8086]
AAD imm ; D5 ib [8086]

AAM ; D4 0A [8086]
AAM imm ; D4 ib [8086]

These instructions are used in conjunction with the add, subtract, multiply and divide instructions to
perform binary-coded decimal arithmetic in unpacked (one BCD digit per byte – easy to translate to and
from ASCII, hence the instruction names) form. There are also packed BCD instructions DAA and DAS:
see section A.23.

AAA should be used after a one-byte ADD instruction whose destination was the AL register: by means of
examining the value in the low nibble of AL and also the auxiliary carry flag AF, it determines whether
the addition has overflowed, and adjusts it (and sets the carry flag) if so. You can add long BCD strings
together by doing ADD/AAA on the low digits, then doing ADC/AAA on each subsequent digit.

AAS works similarly to AAA, but is for use after SUB instructions rather than ADD.

AAM is for use after you have multiplied two decimal digits together and left the result in AL: it divides
AL by ten and stores the quotient in AH, leaving the remainder in AL. The divisor 10 can be changed by
specifying an operand to the instruction: a particularly handy use of this is AAM 16, causing the two
nibbles in AL to be separated into AH and AL.

AAD performs the inverse operation to AAM: it multiplies AH by ten, adds it to AL, and sets AH to zero.
Again, the multiplier 10 can be changed.

A.5 ADC: Add with Carry
ADC r/m8,reg8 ; 10 /r [8086]
ADC r/m16,reg16 ; o16 11 /r [8086]
ADC r/m32,reg32 ; o32 11 /r [386]

ADC reg8,r/m8 ; 12 /r [8086]
ADC reg16,r/m16 ; o16 13 /r [8086]
ADC reg32,r/m32 ; o32 13 /r [386]

ADC r/m8,imm8 ; 80 /2 ib [8086]
ADC r/m16,imm16 ; o16 81 /2 iw [8086]
ADC r/m32,imm32 ; o32 81 /2 id [386]

ADC r/m16,imm8 ; o16 83 /2 ib [8086]
ADC r/m32,imm8 ; o32 83 /2 ib [386]

ADC AL,imm8 ; 14 ib [8086]
ADC AX,imm16 ; o16 15 iw [8086]
ADC EAX,imm32 ; o32 15 id [386]

ADC performs integer addition: it adds its two operands together, plus the value of the carry flag, and
leaves the result in its destination (first) operand. The flags are set according to the result of the
operation: in particular, the carry flag is affected and can be used by a subsequent ADC instruction.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand is
considered to be signed, and is sign-extended to the length of the first operand. In these cases, the BYTE
qualifier is necessary to force NASM to generate this form of the instruction.

To add two numbers without also adding the contents of the carry flag, use ADD (section A.6).

A.6 ADD: Add Integers
ADD r/m8,reg8 ; 00 /r [8086]
ADD r/m16,reg16 ; o16 01 /r [8086]
ADD r/m32,reg32 ; o32 01 /r [386]

ADD reg8,r/m8 ; 02 /r [8086]
ADD reg16,r/m16 ; o16 03 /r [8086]
ADD reg32,r/m32 ; o32 03 /r [386]

ADD r/m8,imm8 ; 80 /0 ib [8086]
ADD r/m16,imm16 ; o16 81 /0 iw [8086]
ADD r/m32,imm32 ; o32 81 /0 id [386]

ADD r/m16,imm8 ; o16 83 /0 ib [8086]
ADD r/m32,imm8 ; o32 83 /0 ib [386]

ADD AL,imm8 ; 04 ib [8086]
ADD AX,imm16 ; o16 05 iw [8086]
ADD EAX,imm32 ; o32 05 id [386]

ADD performs integer addition: it adds its two operands together, and leaves the result in its destination
(first) operand. The flags are set according to the result of the operation: in particular, the carry flag is
affected and can be used by a subsequent ADC instruction (section A.5).

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand is
considered to be signed, and is sign-extended to the length of the first operand. In these cases, the BYTE
qualifier is necessary to force NASM to generate this form of the instruction.

A.7 AND: Bitwise AND
AND r/m8,reg8 ; 20 /r [8086]
AND r/m16,reg16 ; o16 21 /r [8086]
AND r/m32,reg32 ; o32 21 /r [386]

AND reg8,r/m8 ; 22 /r [8086]
AND reg16,r/m16 ; o16 23 /r [8086]
AND reg32,r/m32 ; o32 23 /r [386]

AND r/m8,imm8 ; 80 /4 ib [8086]
AND r/m16,imm16 ; o16 81 /4 iw [8086]
AND r/m32,imm32 ; o32 81 /4 id [386]

AND r/m16,imm8 ; o16 83 /4 ib [8086]
AND r/m32,imm8 ; o32 83 /4 ib [386]

AND AL,imm8 ; 24 ib [8086]
AND AX,imm16 ; o16 25 iw [8086]
AND EAX,imm32 ; o32 25 id [386]

AND performs a bitwise AND operation between its two operands (i.e. each bit of the result is 1 if and
only if the corresponding bits of the two inputs were both 1), and stores the result in the destination (first)
operand.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand is
considered to be signed, and is sign-extended to the length of the first operand. In these cases, the BYTE
qualifier is necessary to force NASM to generate this form of the instruction.

The MMX instruction PAND (see section A.116) performs the same operation on the 64-bit MMX
registers.

A.8 ARPL: Adjust RPL Field of Selector
ARPL r/m16,reg16 ; 63 /r [286,PRIV]

ARPL expects its two word operands to be segment selectors. It adjusts the RPL (requested privilege level
– stored in the bottom two bits of the selector) field of the destination (first) operand to ensure that it is
no less (i.e. no more privileged than) the RPL field of the source operand. The zero flag is set if and only
if a change had to be made.

A.9 BOUND: Check Array Index against Bounds
BOUND reg16,mem ; o16 62 /r [186]
BOUND reg32,mem ; o32 62 /r [386]

BOUND expects its second operand to point to an area of memory containing two signed values of the
same size as its first operand (i.e. two words for the 16-bit form; two doublewords for the 32-bit form). It
performs two signed comparisons: if the value in the register passed as its first operand is less than the
first of the in-memory values, or is greater than or equal to the second, it throws a BR exception.
Otherwise, it does nothing.

A.10 BSF, BSR: Bit Scan
BSF reg16,r/m16 ; o16 0F BC /r [386]
BSF reg32,r/m32 ; o32 0F BC /r [386]

BSR reg16,r/m16 ; o16 0F BD /r [386]
BSR reg32,r/m32 ; o32 0F BD /r [386]

BSF searches for a set bit in its source (second) operand, starting from the bottom, and if it finds one,
stores the index in its destination (first) operand. If no set bit is found, the contents of the destination
operand are undefined.

BSR performs the same function, but searches from the top instead, so it finds the most significant set bit.

Bit indices are from 0 (least significant) to 15 or 31 (most significant).

A.11 BSWAP: Byte Swap
BSWAP reg32 ; o32 0F C8+r [486]

BSWAP swaps the order of the four bytes of a 32-bit register: bits 0-7 exchange places with bits 24-31,
and bits 8-15 swap with bits 16-23. There is no explicit 16-bit equivalent: to byte-swap AX, BX, CX or
DX, XCHG can be used.

A.12 BT, BTC, BTR, BTS: Bit Test
BT r/m16,reg16 ; o16 0F A3 /r [386]
BT r/m32,reg32 ; o32 0F A3 /r [386]
BT r/m16,imm8 ; o16 0F BA /4 ib [386]
BT r/m32,imm8 ; o32 0F BA /4 ib [386]

BTC r/m16,reg16 ; o16 0F BB /r [386]
BTC r/m32,reg32 ; o32 0F BB /r [386]
BTC r/m16,imm8 ; o16 0F BA /7 ib [386]
BTC r/m32,imm8 ; o32 0F BA /7 ib [386]

BTR r/m16,reg16 ; o16 0F B3 /r [386]
BTR r/m32,reg32 ; o32 0F B3 /r [386]
BTR r/m16,imm8 ; o16 0F BA /6 ib [386]
BTR r/m32,imm8 ; o32 0F BA /6 ib [386]

BTS r/m16,reg16 ; o16 0F AB /r [386]
BTS r/m32,reg32 ; o32 0F AB /r [386]
BTS r/m16,imm ; o16 0F BA /5 ib [386]
BTS r/m32,imm ; o32 0F BA /5 ib [386]

These instructions all test one bit of their first operand, whose index is given by the second operand, and
store the value of that bit into the carry flag. Bit indices are from 0 (least significant) to 15 or 31 (most
significant).

In addition to storing the original value of the bit into the carry flag, BTR also resets (clears) the bit in the
operand itself. BTS sets the bit, and BTC complements the bit. BT does not modify its operands.

The bit offset should be no greater than the size of the operand.

A.13 CALL: Call Subroutine
CALL imm ; E8 rw/rd [8086]
CALL imm:imm16 ; o16 9A iw iw [8086]
CALL imm:imm32 ; o32 9A id iw [386]
CALL FAR mem16 ; o16 FF /3 [8086]
CALL FAR mem32 ; o32 FF /3 [386]
CALL r/m16 ; o16 FF /2 [8086]
CALL r/m32 ; o32 FF /2 [386]

CALL calls a subroutine, by means of pushing the current instruction pointer (IP) and optionally CS as
well on the stack, and then jumping to a given address.

CS is pushed as well as IP if and only if the call is a far call, i.e. a destination segment address is
specified in the instruction. The forms involving two colon-separated arguments are far calls; so are the
CALL FAR mem forms.

You can choose between the two immediate far call forms (CALL imm:imm) by the use of the WORD
and DWORD keywords: CALL WORD 0x1234:0x5678) or CALL DWORD 0x1234:0x56789abc.

The CALL FAR mem forms execute a far call by loading the destination address out of memory. The
address loaded consists of 16 or 32 bits of offset (depending on the operand size), and 16 bits of segment.
The operand size may be overridden using CALL WORD FAR mem or CALL DWORD FAR mem.

The CALL r/m forms execute a near call (within the same segment), loading the destination address out
of memory or out of a register. The keyword NEAR may be specified, for clarity, in these forms, but is
not necessary. Again, operand size can be overridden using CALL WORD mem or CALL DWORD mem.

As a convenience, NASM does not require you to call a far procedure symbol by coding the cumbersome
CALL SEG routine:routine, but instead allows the easier synonym CALL FAR routine.

The CALL r/m forms given above are near calls; NASM will accept the NEAR keyword (e.g.
CALL NEAR [address]), even though it is not strictly necessary.

A.14 CBW, CWD, CDQ, CWDE: Sign Extensions
CBW ; o16 98 [8086]
CWD ; o16 99 [8086]
CDQ ; o32 99 [386]
CWDE ; o32 98 [386]

All these instructions sign-extend a short value into a longer one, by replicating the top bit of the original
value to fill the extended one.

CBW extends AL into AX by repeating the top bit of AL in every bit of AH. CWD extends AX into DX:AX
by repeating the top bit of AX throughout DX. CWDE extends AX into EAX, and CDQ extends EAX into
EDX:EAX.

A.15 CLC, CLD, CLI, CLTS: Clear Flags
CLC ; F8 [8086]
CLD ; FC [8086]
CLI ; FA [8086]
CLTS ; 0F 06 [286,PRIV]

These instructions clear various flags. CLC clears the carry flag; CLD clears the direction flag; CLI clears
the interrupt flag (thus disabling interrupts); and CLTS clears the task-switched (TS) flag in CR0.

To set the carry, direction, or interrupt flags, use the STC, STD and STI instructions (section A.156). To
invert the carry flag, use CMC (section A.16).

A.16 CMC: Complement Carry Flag
CMC ; F5 [8086]

CMC changes the value of the carry flag: if it was 0, it sets it to 1, and vice versa.

A.17 CMOVcc: Conditional Move
CMOVcc reg16,r/m16 ; o16 0F 40+cc /r [P6]
CMOVcc reg32,r/m32 ; o32 0F 40+cc /r [P6]

CMOV moves its source (second) operand into its destination (first) operand if the given condition code is
satisfied; otherwise it does nothing.

For a list of condition codes, see section A.2.2.

Although the CMOV instructions are flagged P6 above, they may not be supported by all Pentium Pro
processors; the CPUID instruction (section A.22) will return a bit which indicates whether conditional
moves are supported.

A.18 CMP: Compare Integers
CMP r/m8,reg8 ; 38 /r [8086]
CMP r/m16,reg16 ; o16 39 /r [8086]
CMP r/m32,reg32 ; o32 39 /r [386]

CMP reg8,r/m8 ; 3A /r [8086]
CMP reg16,r/m16 ; o16 3B /r [8086]
CMP reg32,r/m32 ; o32 3B /r [386]

CMP r/m8,imm8 ; 80 /0 ib [8086]
CMP r/m16,imm16 ; o16 81 /0 iw [8086]
CMP r/m32,imm32 ; o32 81 /0 id [386]

CMP r/m16,imm8 ; o16 83 /0 ib [8086]
CMP r/m32,imm8 ; o32 83 /0 ib [386]

CMP AL,imm8 ; 3C ib [8086]
CMP AX,imm16 ; o16 3D iw [8086]
CMP EAX,imm32 ; o32 3D id [386]

CMP performs a ‘mental’ subtraction of its second operand from its first operand, and affects the flags as
if the subtraction had taken place, but does not store the result of the subtraction anywhere.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand is
considered to be signed, and is sign-extended to the length of the first operand. In these cases, the BYTE
qualifier is necessary to force NASM to generate this form of the instruction.

A.19 CMPSB, CMPSW, CMPSD: Compare Strings
CMPSB ; A6 [8086]
CMPSW ; o16 A7 [8086]
CMPSD ; o32 A7 [386]

CMPSB compares the byte at [DS:SI] or [DS:ESI] with the byte at [ES:DI] or [ES:EDI], and
sets the flags accordingly. It then increments or decrements (depending on the direction flag: increments
if the flag is clear, decrements if it is set) SI and DI (or ESI and EDI).

The registers used are SI and DI if the address size is 16 bits, and ESI and EDI if it is 32 bits. If you
need to use an address size not equal to the current BITS setting, you can use an explicit a16 or a32
prefix.

The segment register used to load from [SI] or [ESI] can be overridden by using a segment register
name as a prefix (for example, es cmpsb). The use of ES for the load from [DI] or [EDI] cannot be
overridden.

CMPSW and CMPSD work in the same way, but they compare a word or a doubleword instead of a byte,
and increment or decrement the addressing registers by 2 or 4 instead of 1.

The REPE and REPNE prefixes (equivalently, REPZ and REPNZ) may be used to repeat the instruction up
to CX (or ECX – again, the address size chooses which) times until the first unequal or equal byte is
found.

A.20 CMPXCHG, CMPXCHG486: Compare and Exchange
CMPXCHG r/m8,reg8 ; 0F B0 /r [PENT]
CMPXCHG r/m16,reg16 ; o16 0F B1 /r [PENT]
CMPXCHG r/m32,reg32 ; o32 0F B1 /r [PENT]

CMPXCHG486 r/m8,reg8 ; 0F A6 /r [486,UNDOC]
CMPXCHG486 r/m16,reg16 ; o16 0F A7 /r [486,UNDOC]
CMPXCHG486 r/m32,reg32 ; o32 0F A7 /r [486,UNDOC]

These two instructions perform exactly the same operation; however, apparently some (not all) 486
processors support it under a non-standard opcode, so NASM provides the undocumented CMPXCHG486
form to generate the non-standard opcode.

CMPXCHG compares its destination (first) operand to the value in AL, AX or EAX (depending on the size
of the instruction). If they are equal, it copies its source (second) operand into the destination and sets the
zero flag. Otherwise, it clears the zero flag and leaves the destination alone.

CMPXCHG is intended to be used for atomic operations in multitasking or multiprocessor environments.
To safely update a value in shared memory, for example, you might load the value into EAX, load the
updated value into EBX, and then execute the instruction lock cmpxchg [value],ebx. If value
has not changed since being loaded, it is updated with your desired new value, and the zero flag is set to
let you know it has worked. (The LOCK prefix prevents another processor doing anything in the middle
of this operation: it guarantees atomicity.) However, if another processor has modified the value in
between your load and your attempted store, the store does not happen, and you are notified of the failure
by a cleared zero flag, so you can go round and try again.

A.21 CMPXCHG8B: Compare and Exchange Eight Bytes
CMPXCHG8B mem ; 0F C7 /1 [PENT]

This is a larger and more unwieldy version of CMPXCHG: it compares the 64-bit (eight-byte) value stored
at [mem] with the value in EDX:EAX. If they are equal, it sets the zero flag and stores ECX:EBX into
the memory area. If they are unequal, it clears the zero flag and leaves the memory area untouched.

A.22 CPUID: Get CPU Identification Code
CPUID ; 0F A2 [PENT]

CPUID returns various information about the processor it is being executed on. It fills the four registers
EAX, EBX, ECX and EDX with information, which varies depending on the input contents of EAX.

CPUID also acts as a barrier to serialise instruction execution: executing the CPUID instruction
guarantees that all the effects (memory modification, flag modification, register modification) of
previous instructions have been completed before the next instruction gets fetched.

The information returned is as follows:

• If EAX is zero on input, EAX on output holds the maximum acceptable input value of EAX, and
EBX:EDX:ECX contain the string "GenuineIntel" (or not, if you have a clone processor). That is
to say, EBX contains "Genu" (in NASM’s own sense of character constants, described in section
3.4.2), EDX contains "ineI" and ECX contains "ntel".

• If EAX is one on input, EAX on output contains version information about the processor, and EDX
contains a set of feature flags, showing the presence and absence of various features. For example, bit
8 is set if the CMPXCHG8B instruction (section A.21) is supported, bit 15 is set if the conditional move
instructions (section A.17 and section A.34) are supported, and bit 23 is set if MMX instructions are
supported.

• If EAX is two on input, EAX, EBX, ECX and EDX all contain information about caches and TLBs
(Translation Lookahead Buffers).

For more information on the data returned from CPUID, see the documentation on Intel’s web site.

A.23 DAA, DAS: Decimal Adjustments
DAA ; 27 [8086]
DAS ; 2F [8086]

These instructions are used in conjunction with the add and subtract instructions to perform binary-coded
decimal arithmetic in packed (one BCD digit per nibble) form. For the unpacked equivalents, see section
A.4.

DAA should be used after a one-byte ADD instruction whose destination was the AL register: by means of
examining the value in the AL and also the auxiliary carry flag AF, it determines whether either digit of
the addition has overflowed, and adjusts it (and sets the carry and auxiliary-carry flags) if so. You can
add long BCD strings together by doing ADD/DAA on the low two digits, then doing ADC/DAA on each
subsequent pair of digits.

DAS works similarly to DAA, but is for use after SUB instructions rather than ADD.

A.24 DEC: Decrement Integer
DEC reg16 ; o16 48+r [8086]
DEC reg32 ; o32 48+r [386]
DEC r/m8 ; FE /1 [8086]
DEC r/m16 ; o16 FF /1 [8086]
DEC r/m32 ; o32 FF /1 [386]

DEC subtracts 1 from its operand. It does not affect the carry flag: to affect the carry flag, use
SUB something,1 (see section A.159). See also INC (section A.79).

A.25 DIV: Unsigned Integer Divide
DIV r/m8 ; F6 /6 [8086]
DIV r/m16 ; o16 F7 /6 [8086]
DIV r/m32 ; o32 F7 /6 [386]

DIV performs unsigned integer division. The explicit operand provided is the divisor; the dividend and
destination operands are implicit, in the following way:

• For DIV r/m8, AX is divided by the given operand; the quotient is stored in AL and the remainder in
AH.

• For DIV r/m16, DX:AX is divided by the given operand; the quotient is stored in AX and the
remainder in DX.

• For DIV r/m32, EDX:EAX is divided by the given operand; the quotient is stored in EAX and the
remainder in EDX.

Signed integer division is performed by the IDIV instruction: see section A.76.

A.26 EMMS: Empty MMX State
EMMS ; 0F 77 [PENT,MMX]

EMMS sets the FPU tag word (marking which floating-point registers are available) to all ones, meaning
all registers are available for the FPU to use. It should be used after executing MMX instructions and
before executing any subsequent floating-point operations.

A.27 ENTER: Create Stack Frame
ENTER imm,imm ; C8 iw ib [186]

ENTER constructs a stack frame for a high-level language procedure call. The first operand (the iw in the
opcode definition above refers to the first operand) gives the amount of stack space to allocate for local
variables; the second (the ib above) gives the nesting level of the procedure (for languages like Pascal,
with nested procedures).

The function of ENTER, with a nesting level of zero, is equivalent to

 PUSH EBP ; or PUSH BP in 16 bits
 MOV EBP,ESP ; or MOV BP,SP in 16 bits
 SUB ESP,operand1 ; or SUB SP,operand1 in 16 bits

This creates a stack frame with the procedure parameters accessible upwards from EBP, and local
variables accessible downwards from EBP.

With a nesting level of one, the stack frame created is 4 (or 2) bytes bigger, and the value of the final
frame pointer EBP is accessible in memory at [EBP-4].

This allows ENTER, when called with a nesting level of two, to look at the stack frame described by the
previous value of EBP, find the frame pointer at offset –4 from that, and push it along with its new frame
pointer, so that when a level-two procedure is called from within a level-one procedure, [EBP-4] holds
the frame pointer of the most recent level-one procedure call and [EBP-8] holds that of the most recent
level-two call. And so on, for nesting levels up to 31.

Stack frames created by ENTER can be destroyed by the LEAVE instruction: see section A.94.

A.28 F2XM1: Calculate 2**X-1
F2XM1 ; D9 F0 [8086,FPU]

F2XM1 raises 2 to the power of ST0, subtracts one, and stores the result back into ST0. The initial
contents of ST0 must be a number in the range –1 to +1.

A.29 FABS: Floating-Point Absolute Value
FABS ; D9 E1 [8086,FPU]

FABS computes the absolute value of ST0, storing the result back in ST0.

A.30 FADD, FADDP: Floating-Point Addition
FADD mem32 ; D8 /0 [8086,FPU]
FADD mem64 ; DC /0 [8086,FPU]

FADD fpureg ; D8 C0+r [8086,FPU]
FADD ST0,fpureg ; D8 C0+r [8086,FPU]

FADD TO fpureg ; DC C0+r [8086,FPU]
FADD fpureg,ST0 ; DC C0+r [8086,FPU]

FADDP fpureg ; DE C0+r [8086,FPU]
FADDP fpureg,ST0 ; DE C0+r [8086,FPU]

FADD, given one operand, adds the operand to ST0 and stores the result back in ST0. If the operand has
the TO modifier, the result is stored in the register given rather than in ST0.

FADDP performs the same function as FADD TO, but pops the register stack after storing the result.

The given two-operand forms are synonyms for the one-operand forms.

A.31 FBLD, FBSTP: BCD Floating-Point Load and Store
FBLD mem80 ; DF /4 [8086,FPU]
FBSTP mem80 ; DF /6 [8086,FPU]

FBLD loads an 80-bit (ten-byte) packed binary-coded decimal number from the given memory address,
converts it to a real, and pushes it on the register stack. FBSTP stores the value of ST0, in packed BCD,
at the given address and then pops the register stack.

A.32 FCHS: Floating-Point Change Sign
FCHS ; D9 E0 [8086,FPU]

FCHS negates the number in ST0: negative numbers become positive, and vice versa.

A.33 FCLEX, {FNCLEX}: Clear Floating-Point Exceptions
FCLEX ; 9B DB E2 [8086,FPU]
FNCLEX ; DB E2 [8086,FPU]

FCLEX clears any floating-point exceptions which may be pending. FNCLEX does the same thing but
doesn’t wait for previous floating-point operations (including the handling of pending exceptions) to
finish first.

A.34 FCMOVcc: Floating-Point Conditional Move
FCMOVB fpureg ; DA C0+r [P6,FPU]
FCMOVB ST0,fpureg ; DA C0+r [P6,FPU]

FCMOVBE fpureg ; DA D0+r [P6,FPU]
FCMOVBE ST0,fpureg ; DA D0+r [P6,FPU]

FCMOVE fpureg ; DA C8+r [P6,FPU]
FCMOVE ST0,fpureg ; DA C8+r [P6,FPU]

FCMOVNB fpureg ; DB C0+r [P6,FPU]
FCMOVNB ST0,fpureg ; DB C0+r [P6,FPU]

FCMOVNBE fpureg ; DB D0+r [P6,FPU]
FCMOVNBE ST0,fpureg ; DB D0+r [P6,FPU]

FCMOVNE fpureg ; DB C8+r [P6,FPU]
FCMOVNE ST0,fpureg ; DB C8+r [P6,FPU]

FCMOVNU fpureg ; DB D8+r [P6,FPU]
FCMOVNU ST0,fpureg ; DB D8+r [P6,FPU]

FCMOVU fpureg ; DA D8+r [P6,FPU]
FCMOVU ST0,fpureg ; DA D8+r [P6,FPU]

The FCMOV instructions perform conditional move operations: each of them moves the contents of the
given register into ST0 if its condition is satisfied, and does nothing if not.

The conditions are not the same as the standard condition codes used with conditional jump instructions.
The conditions B, BE, NB, NBE, E and NE are exactly as normal, but none of the other standard ones are
supported. Instead, the condition U and its counterpart NU are provided; the U condition is satisfied if the
last two floating-point numbers compared were unordered, i.e. they were not equal but neither one could
be said to be greater than the other, for example if they were NaNs. (The flag state which signals this is
the setting of the parity flag: so the U condition is notionally equivalent to PE, and NU is equivalent to
PO.)

The FCMOV conditions test the main processor’s status flags, not the FPU status flags, so using FCMOV
directly after FCOM will not work. Instead, you should either use FCOMI which writes directly to the
main CPU flags word, or use FSTSW to extract the FPU flags.

Although the FCMOV instructions are flagged P6 above, they may not be supported by all Pentium Pro
processors; the CPUID instruction (section A.22) will return a bit which indicates whether conditional
moves are supported.

A.35 FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP: Floating-Point Compare
FCOM mem32 ; D8 /2 [8086,FPU]
FCOM mem64 ; DC /2 [8086,FPU]
FCOM fpureg ; D8 D0+r [8086,FPU]
FCOM ST0,fpureg ; D8 D0+r [8086,FPU]

FCOMP mem32 ; D8 /3 [8086,FPU]
FCOMP mem64 ; DC /3 [8086,FPU]
FCOMP fpureg ; D8 D8+r [8086,FPU]
FCOMP ST0,fpureg ; D8 D8+r [8086,FPU]

FCOMPP ; DE D9 [8086,FPU]

FCOMI fpureg ; DB F0+r [P6,FPU]
FCOMI ST0,fpureg ; DB F0+r [P6,FPU]

FCOMIP fpureg ; DF F0+r [P6,FPU]
FCOMIP ST0,fpureg ; DF F0+r [P6,FPU]

FCOM compares ST0 with the given operand, and sets the FPU flags accordingly. ST0 is treated as the
left-hand side of the comparison, so that the carry flag is set (for a ‘less-than’ result) if ST0 is less than
the given operand.

FCOMP does the same as FCOM, but pops the register stack afterwards. FCOMPP compares ST0 with ST1
and then pops the register stack twice.

FCOMI and FCOMIP work like the corresponding forms of FCOM and FCOMP, but write their results
directly to the CPU flags register rather than the FPU status word, so they can be immediately followed
by conditional jump or conditional move instructions.

The FCOM instructions differ from the FUCOM instructions (section A.69) only in the way they handle
quiet NaNs: FUCOM will handle them silently and set the condition code flags to an ‘unordered’ result,
whereas FCOM will generate an exception.

A.36 FCOS: Cosine
FCOS ; D9 FF [386,FPU]

FCOS computes the cosine of ST0 (in radians), and stores the result in ST0. See also FSINCOS (section
A.61).

A.37 FDECSTP: Decrement Floating-Point Stack Pointer
FDECSTP ; D9 F6 [8086,FPU]

FDECSTP decrements the ‘top’ field in the floating-point status word. This has the effect of rotating the
FPU register stack by one, as if the contents of ST7 had been pushed on the stack. See also FINCSTP
(section A.46).

A.38 FxDISI, FxENI: Disable and Enable Floating-Point Interrupts
FDISI ; 9B DB E1 [8086,FPU]
FNDISI ; DB E1 [8086,FPU]

FENI ; 9B DB E0 [8086,FPU]
FNENI ; DB E0 [8086,FPU]

FDISI and FENI disable and enable floating-point interrupts. These instructions are only meaningful on
original 8087 processors: the 287 and above treat them as no-operation instructions.

FNDISI and FNENI do the same thing as FDISI and FENI respectively, but without waiting for the
floating-point processor to finish what it was doing first.

A.39 FDIV, FDIVP, FDIVR, FDIVRP: Floating-Point Division
FDIV mem32 ; D8 /6 [8086,FPU]
FDIV mem64 ; DC /6 [8086,FPU]

FDIV fpureg ; D8 F0+r [8086,FPU]
FDIV ST0,fpureg ; D8 F0+r [8086,FPU]

FDIV TO fpureg ; DC F8+r [8086,FPU]
FDIV fpureg,ST0 ; DC F8+r [8086,FPU]

FDIVR mem32 ; D8 /0 [8086,FPU]
FDIVR mem64 ; DC /0 [8086,FPU]

FDIVR fpureg ; D8 F8+r [8086,FPU]
FDIVR ST0,fpureg ; D8 F8+r [8086,FPU]

FDIVR TO fpureg ; DC F0+r [8086,FPU]
FDIVR fpureg,ST0 ; DC F0+r [8086,FPU]

FDIVP fpureg ; DE F8+r [8086,FPU]
FDIVP fpureg,ST0 ; DE F8+r [8086,FPU]

FDIVRP fpureg ; DE F0+r [8086,FPU]
FDIVRP fpureg,ST0 ; DE F0+r [8086,FPU]

FDIV divides ST0 by the given operand and stores the result back in ST0, unless the TO qualifier is
given, in which case it divides the given operand by ST0 and stores the result in the operand.

FDIVR does the same thing, but does the division the other way up: so if TO is not given, it divides the
given operand by ST0 and stores the result in ST0, whereas if TO is given it divides ST0 by its operand
and stores the result in the operand.

FDIVP operates like FDIV TO, but pops the register stack once it has finished. FDIVRP operates like
FDIVR TO, but pops the register stack once it has finished.

A.40 FFREE: Flag Floating-Point Register as Unused
FFREE fpureg ; DD C0+r [8086,FPU]

FFREE marks the given register as being empty.

A.41 FIADD: Floating-Point/Integer Addition
FIADD mem16 ; DE /0 [8086,FPU]
FIADD mem32 ; DA /0 [8086,FPU]

FIADD adds the 16-bit or 32-bit integer stored in the given memory location to ST0, storing the result in
ST0.

A.42 FICOM, FICOMP: Floating-Point/Integer Compare
FICOM mem16 ; DE /2 [8086,FPU]
FICOM mem32 ; DA /2 [8086,FPU]

FICOMP mem16 ; DE /3 [8086,FPU]
FICOMP mem32 ; DA /3 [8086,FPU]

FICOM compares ST0 with the 16-bit or 32-bit integer stored in the given memory location, and sets the
FPU flags accordingly. FICOMP does the same, but pops the register stack afterwards.

A.43 FIDIV, FIDIVR: Floating-Point/Integer Division
FIDIV mem16 ; DE /6 [8086,FPU]
FIDIV mem32 ; DA /6 [8086,FPU]

FIDIVR mem16 ; DE /0 [8086,FPU]
FIDIVR mem32 ; DA /0 [8086,FPU]

FIDIV divides ST0 by the 16-bit or 32-bit integer stored in the given memory location, and stores the
result in ST0. FIDIVR does the division the other way up: it divides the integer by ST0, but still stores
the result in ST0.

A.44 FILD, FIST, FISTP: Floating-Point/Integer Conversion
FILD mem16 ; DF /0 [8086,FPU]
FILD mem32 ; DB /0 [8086,FPU]
FILD mem64 ; DF /5 [8086,FPU]

FIST mem16 ; DF /2 [8086,FPU]
FIST mem32 ; DB /2 [8086,FPU]

FISTP mem16 ; DF /3 [8086,FPU]
FISTP mem32 ; DB /3 [8086,FPU]
FISTP mem64 ; DF /0 [8086,FPU]

FILD loads an integer out of a memory location, converts it to a real, and pushes it on the FPU register
stack. FIST converts ST0 to an integer and stores that in memory; FISTP does the same as FIST, but
pops the register stack afterwards.

A.45 FIMUL: Floating-Point/Integer Multiplication
FIMUL mem16 ; DE /1 [8086,FPU]
FIMUL mem32 ; DA /1 [8086,FPU]

FIMUL multiplies ST0 by the 16-bit or 32-bit integer stored in the given memory location, and stores the
result in ST0.

A.46 FINCSTP: Increment Floating-Point Stack Pointer
FINCSTP ; D9 F7 [8086,FPU]

FINCSTP increments the ‘top’ field in the floating-point status word. This has the effect of rotating the
FPU register stack by one, as if the register stack had been popped; however, unlike the popping of the
stack performed by many FPU instructions, it does not flag the new ST7 (previously ST0) as empty. See
also FDECSTP (section A.37).

A.47 FINIT, FNINIT: Initialise Floating-Point Unit
FINIT ; 9B DB E3 [8086,FPU]
FNINIT ; DB E3 [8086,FPU]

FINIT initialises the FPU to its default state. It flags all registers as empty, though it does not actually
change their values. FNINIT does the same, without first waiting for pending exceptions to clear.

A.48 FISUB: Floating-Point/Integer Subtraction
FISUB mem16 ; DE /4 [8086,FPU]
FISUB mem32 ; DA /4 [8086,FPU]

FISUBR mem16 ; DE /5 [8086,FPU]
FISUBR mem32 ; DA /5 [8086,FPU]

FISUB subtracts the 16-bit or 32-bit integer stored in the given memory location from ST0, and stores
the result in ST0. FISUBR does the subtraction the other way round, i.e. it subtracts ST0 from the given
integer, but still stores the result in ST0.

A.49 FLD: Floating-Point Load
FLD mem32 ; D9 /0 [8086,FPU]
FLD mem64 ; DD /0 [8086,FPU]
FLD mem80 ; DB /5 [8086,FPU]
FLD fpureg ; D9 C0+r [8086,FPU]

FLD loads a floating-point value out of the given register or memory location, and pushes it on the FPU
register stack.

A.50 FLDxx: Floating-Point Load Constants
FLD1 ; D9 E8 [8086,FPU]
FLDL2E ; D9 EA [8086,FPU]
FLDL2T ; D9 E9 [8086,FPU]
FLDLG2 ; D9 EC [8086,FPU]
FLDLN2 ; D9 ED [8086,FPU]
FLDPI ; D9 EB [8086,FPU]
FLDZ ; D9 EE [8086,FPU]

These instructions push specific standard constants on the FPU register stack. FLD1 pushes the value 1;
FLDL2E pushes the base-2 logarithm of e; FLDL2T pushes the base-2 log of 10; FLDLG2 pushes the
base-10 log of 2; FLDLN2 pushes the base-e log of 2; FLDPI pushes pi; and FLDZ pushes zero.

A.51 FLDCW: Load Floating-Point Control Word
FLDCW mem16 ; D9 /5 [8086,FPU]

FLDCW loads a 16-bit value out of memory and stores it into the FPU control word (governing things like
the rounding mode, the precision, and the exception masks). See also FSTCW (section A.64).

A.52 FLDENV: Load Floating-Point Environment
FLDENV mem ; D9 /4 [8086,FPU]

FLDENV loads the FPU operating environment (control word, status word, tag word, instruction pointer,
data pointer and last opcode) from memory. The memory area is 14 or 28 bytes long, depending on the
CPU mode at the time. See also FSTENV (section A.65).

A.53 FMUL, FMULP: Floating-Point Multiply
FMUL mem32 ; D8 /1 [8086,FPU]
FMUL mem64 ; DC /1 [8086,FPU]

FMUL fpureg ; D8 C8+r [8086,FPU]
FMUL ST0,fpureg ; D8 C8+r [8086,FPU]

FMUL TO fpureg ; DC C8+r [8086,FPU]
FMUL fpureg,ST0 ; DC C8+r [8086,FPU]

FMULP fpureg ; DE C8+r [8086,FPU]
FMULP fpureg,ST0 ; DE C8+r [8086,FPU]

FMUL multiplies ST0 by the given operand, and stores the result in ST0, unless the TO qualifier is used in
which case it stores the result in the operand. FMULP performs the same operation as FMUL TO, and
then pops the register stack.

A.54 FNOP: Floating-Point No Operation
FNOP ; D9 D0 [8086,FPU]

FNOP does nothing.

A.55 FPATAN, FPTAN: Arctangent and Tangent
FPATAN ; D9 F3 [8086,FPU]
FPTAN ; D9 F2 [8086,FPU]

FPATAN computes the arctangent, in radians, of the result of dividing ST1 by ST0, stores the result in
ST1, and pops the register stack. It works like the C atan2 function, in that changing the sign of both
ST0 and ST1 changes the output value by pi (so it performs true rectangular-to-polar coordinate
conversion, with ST1 being the Y coordinate and ST0 being the X coordinate, not merely an arctangent).

FPTAN computes the tangent of the value in ST0 (in radians), and stores the result back into ST0.

A.56 FPREM, FPREM1: Floating-Point Partial Remainder
FPREM ; D9 F8 [8086,FPU]
FPREM1 ; D9 F5 [386,FPU]

These instructions both produce the remainder obtained by dividing ST0 by ST1. This is calculated,
notionally, by dividing ST0 by ST1, rounding the result to an integer, multiplying by ST1 again, and
computing the value which would need to be added back on to the result to get back to the original value
in ST0.

The two instructions differ in the way the notional round-to-integer operation is performed. FPREM does
it by rounding towards zero, so that the remainder it returns always has the same sign as the original
value in ST0; FPREM1 does it by rounding to the nearest integer, so that the remainder always has at
most half the magnitude of ST1.

Both instructions calculate partial remainders, meaning that they may not manage to provide the final
result, but might leave intermediate results in ST0 instead. If this happens, they will set the C2 flag in the
FPU status word; therefore, to calculate a remainder, you should repeatedly execute FPREM or FPREM1
until C2 becomes clear.

A.57 FRNDINT: Floating-Point Round to Integer
FRNDINT ; D9 FC [8086,FPU]

FRNDINT rounds the contents of ST0 to an integer, according to the current rounding mode set in the
FPU control word, and stores the result back in ST0.

A.58 FSAVE, FRSTOR: Save/Restore Floating-Point State
FSAVE mem ; 9B DD /6 [8086,FPU]
FNSAVE mem ; DD /6 [8086,FPU]

FRSTOR mem ; DD /4 [8086,FPU]

FSAVE saves the entire floating-point unit state, including all the information saved by FSTENV (section
A.65) plus the contents of all the registers, to a 94 or 108 byte area of memory (depending on the CPU
mode). FRSTOR restores the floating-point state from the same area of memory.

FNSAVE does the same as FSAVE, without first waiting for pending floating-point exceptions to clear.

A.59 FSCALE: Scale Floating-Point Value by Power of Two
FSCALE ; D9 FD [8086,FPU]

FSCALE scales a number by a power of two: it rounds ST1 towards zero to obtain an integer, then
multiplies ST0 by two to the power of that integer, and stores the result in ST0.

A.60 FSETPM: Set Protected Mode
FSETPM ; DB E4 [286,FPU]

This instruction initalises protected mode on the 287 floating-point coprocessor. It is only meaningful on
that processor: the 387 and above treat the instruction as a no-operation.

A.61 FSIN, FSINCOS: Sine and Cosine
FSIN ; D9 FE [386,FPU]
FSINCOS ; D9 FB [386,FPU]

FSIN calculates the sine of ST0 (in radians) and stores the result in ST0. FSINCOS does the same, but
then pushes the cosine of the same value on the register stack, so that the sine ends up in ST1 and the
cosine in ST0. FSINCOS is faster than executing FSIN and FCOS (see section A.36) in succession.

A.62 FSQRT: Floating-Point Square Root
FSQRT ; D9 FA [8086,FPU]

FSQRT calculates the square root of ST0 and stores the result in ST0.

A.63 FST, FSTP: Floating-Point Store
FST mem32 ; D9 /2 [8086,FPU]
FST mem64 ; DD /2 [8086,FPU]
FST fpureg ; DD D0+r [8086,FPU]

FSTP mem32 ; D9 /3 [8086,FPU]
FSTP mem64 ; DD /3 [8086,FPU]
FSTP mem80 ; DB /0 [8086,FPU]
FSTP fpureg ; DD D8+r [8086,FPU]

FST stores the value in ST0 into the given memory location or other FPU register. FSTP does the same,
but then pops the register stack.

A.64 FSTCW: Store Floating-Point Control Word
FSTCW mem16 ; 9B D9 /0 [8086,FPU]
FNSTCW mem16 ; D9 /0 [8086,FPU]

FSTCW stores the FPU control word (governing things like the rounding mode, the precision, and the
exception masks) into a 2-byte memory area. See also FLDCW (section A.51).

FNSTCW does the same thing as FSTCW, without first waiting for pending floating-point exceptions to
clear.

A.65 FSTENV: Store Floating-Point Environment
FSTENV mem ; 9B D9 /6 [8086,FPU]
FNSTENV mem ; D9 /6 [8086,FPU]

FSTENV stores the FPU operating environment (control word, status word, tag word, instruction pointer,
data pointer and last opcode) into memory. The memory area is 14 or 28 bytes long, depending on the
CPU mode at the time. See also FLDENV (section A.52).

FNSTENV does the same thing as FSTENV, without first waiting for pending floating-point exceptions to
clear.

A.66 FSTSW: Store Floating-Point Status Word
FSTSW mem16 ; 9B DD /0 [8086,FPU]
FSTSW AX ; 9B DF E0 [286,FPU]

FNSTSW mem16 ; DD /0 [8086,FPU]
FNSTSW AX ; DF E0 [286,FPU]

FSTSW stores the FPU status word into AX or into a 2-byte memory area.

FNSTSW does the same thing as FSTSW, without first waiting for pending floating-point exceptions to
clear.

A.67 FSUB, FSUBP, FSUBR, FSUBRP: Floating-Point Subtract
FSUB mem32 ; D8 /4 [8086,FPU]
FSUB mem64 ; DC /4 [8086,FPU]

FSUB fpureg ; D8 E0+r [8086,FPU]
FSUB ST0,fpureg ; D8 E0+r [8086,FPU]

FSUB TO fpureg ; DC E8+r [8086,FPU]
FSUB fpureg,ST0 ; DC E8+r [8086,FPU]

FSUBR mem32 ; D8 /5 [8086,FPU]
FSUBR mem64 ; DC /5 [8086,FPU]

FSUBR fpureg ; D8 E8+r [8086,FPU]
FSUBR ST0,fpureg ; D8 E8+r [8086,FPU]

FSUBR TO fpureg ; DC E0+r [8086,FPU]
FSUBR fpureg,ST0 ; DC E0+r [8086,FPU]

FSUBP fpureg ; DE E8+r [8086,FPU]
FSUBP fpureg,ST0 ; DE E8+r [8086,FPU]

FSUBRP fpureg ; DE E0+r [8086,FPU]
FSUBRP fpureg,ST0 ; DE E0+r [8086,FPU]

FSUB subtracts the given operand from ST0 and stores the result back in ST0, unless the TO qualifier is
given, in which case it subtracts ST0 from the given operand and stores the result in the operand.

FSUBR does the same thing, but does the subtraction the other way up: so if TO is not given, it subtracts
ST0 from the given operand and stores the result in ST0, whereas if TO is given it subtracts its operand
from ST0 and stores the result in the operand.

FSUBP operates like FSUB TO, but pops the register stack once it has finished. FSUBRP operates like
FSUBR TO, but pops the register stack once it has finished.

A.68 FTST: Test ST0 Against Zero
FTST ; D9 E4 [8086,FPU]

FTST compares ST0 with zero and sets the FPU flags accordingly. ST0 is treated as the left-hand side of
the comparison, so that a ‘less-than’ result is generated if ST0 is negative.

A.69 FUCOMxx: Floating-Point Unordered Compare
FUCOM fpureg ; DD E0+r [386,FPU]
FUCOM ST0,fpureg ; DD E0+r [386,FPU]

FUCOMP fpureg ; DD E8+r [386,FPU]
FUCOMP ST0,fpureg ; DD E8+r [386,FPU]

FUCOMPP ; DA E9 [386,FPU]

FUCOMI fpureg ; DB E8+r [P6,FPU]
FUCOMI ST0,fpureg ; DB E8+r [P6,FPU]

FUCOMIP fpureg ; DF E8+r [P6,FPU]
FUCOMIP ST0,fpureg ; DF E8+r [P6,FPU]

FUCOM compares ST0 with the given operand, and sets the FPU flags accordingly. ST0 is treated as the
left-hand side of the comparison, so that the carry flag is set (for a ‘less-than’ result) if ST0 is less than
the given operand.

FUCOMP does the same as FUCOM, but pops the register stack afterwards. FUCOMPP compares ST0 with
ST1 and then pops the register stack twice.

FUCOMI and FUCOMIP work like the corresponding forms of FUCOM and FUCOMP, but write their
results directly to the CPU flags register rather than the FPU status word, so they can be immediately
followed by conditional jump or conditional move instructions.

The FUCOM instructions differ from the FCOM instructions (section A.35) only in the way they handle
quiet NaNs: FUCOM will handle them silently and set the condition code flags to an ‘unordered’ result,
whereas FCOM will generate an exception.

A.70 FXAM: Examine Class of Value in ST0
FXAM ; D9 E5 [8086,FPU]

FXAM sets the FPU flags C3, C2 and C0 depending on the type of value stored in ST0: 000 (respectively)
for an unsupported format, 001 for a NaN, 010 for a normal finite number, 011 for an infinity, 100 for a
zero, 101 for an empty register, and 110 for a denormal. It also sets the C1 flag to the sign of the number.

A.71 FXCH: Floating-Point Exchange
FXCH ; D9 C9 [8086,FPU]
FXCH fpureg ; D9 C8+r [8086,FPU]
FXCH fpureg,ST0 ; D9 C8+r [8086,FPU]
FXCH ST0,fpureg ; D9 C8+r [8086,FPU]

FXCH exchanges ST0 with a given FPU register. The no-operand form exchanges ST0 with ST1.

A.72 FXTRACT: Extract Exponent and Significand
FXTRACT ; D9 F4 [8086,FPU]

FXTRACT separates the number in ST0 into its exponent and significand (mantissa), stores the exponent
back into ST0, and then pushes the significand on the register stack (so that the significand ends up in
ST0, and the exponent in ST1).

A.73 FYL2X, FYL2XP1: Compute Y times Log2(X) or Log2(X+1)
FYL2X ; D9 F1 [8086,FPU]
FYL2XP1 ; D9 F9 [8086,FPU]

FYL2X multiplies ST1 by the base-2 logarithm of ST0, stores the result in ST1, and pops the register
stack (so that the result ends up in ST0). ST0 must be non-zero and positive.

FYL2XP1 works the same way, but replacing the base-2 log of ST0 with that of ST0 plus one. This time,
ST0 must have magnitude no greater than 1 minus half the square root of two.

A.74 HLT: Halt Processor
HLT ; F4 [8086]

HLT puts the processor into a halted state, where it will perform no more operations until restarted by an
interrupt or a reset.

A.75 IBTS: Insert Bit String
IBTS r/m16,reg16 ; o16 0F A7 /r [386,UNDOC]
IBTS r/m32,reg32 ; o32 0F A7 /r [386,UNDOC]

No clear documentation seems to be available for this instruction: the best I’ve been able to find reads
‘Takes a string of bits from the second operand and puts them in the first operand’. It is present only in
early 386 processors, and conflicts with the opcodes for CMPXCHG486. NASM supports it only for
completeness. Its counterpart is XBTS (see section A.167).

A.76 IDIV: Signed Integer Divide
IDIV r/m8 ; F6 /7 [8086]
IDIV r/m16 ; o16 F7 /7 [8086]
IDIV r/m32 ; o32 F7 /7 [386]

IDIV performs signed integer division. The explicit operand provided is the divisor; the dividend and
destination operands are implicit, in the following way:

• For IDIV r/m8, AX is divided by the given operand; the quotient is stored in AL and the remainder in
AH.

• For IDIV r/m16, DX:AX is divided by the given operand; the quotient is stored in AX and the
remainder in DX.

• For IDIV r/m32, EDX:EAX is divided by the given operand; the quotient is stored in EAX and the
remainder in EDX.

Unsigned integer division is performed by the DIV instruction: see section A.25.

A.77 IMUL: Signed Integer Multiply
IMUL r/m8 ; F6 /5 [8086]
IMUL r/m16 ; o16 F7 /5 [8086]
IMUL r/m32 ; o32 F7 /5 [386]

IMUL reg16,r/m16 ; o16 0F AF /r [386]
IMUL reg32,r/m32 ; o32 0F AF /r [386]

IMUL reg16,imm8 ; o16 6B /r ib [286]
IMUL reg16,imm16 ; o16 69 /r iw [286]
IMUL reg32,imm8 ; o32 6B /r ib [386]
IMUL reg32,imm32 ; o32 69 /r id [386]

IMUL reg16,r/m16,imm8 ; o16 6B /r ib [286]
IMUL reg16,r/m16,imm16 ; o16 69 /r iw [286]
IMUL reg32,r/m32,imm8 ; o32 6B /r ib [386]
IMUL reg32,r/m32,imm32 ; o32 69 /r id [386]

IMUL performs signed integer multiplication. For the single-operand form, the other operand and
destination are implicit, in the following way:

• For IMUL r/m8, AL is multiplied by the given operand; the product is stored in AX.

• For IMUL r/m16, AX is multiplied by the given operand; the product is stored in DX:AX.

• For IMUL r/m32, EAX is multiplied by the given operand; the product is stored in EDX:EAX.

The two-operand form multiplies its two operands and stores the result in the destination (first) operand.
The three-operand form multiplies its last two operands and stores the result in the first operand.

The two-operand form is in fact a shorthand for the three-operand form, as can be seen by examining the
opcode descriptions: in the two-operand form, the code /r takes both its register and r/m parts from the
same operand (the first one).

In the forms with an 8-bit immediate operand and another longer source operand, the immediate operand
is considered to be signed, and is sign-extended to the length of the other source operand. In these cases,
the BYTE qualifier is necessary to force NASM to generate this form of the instruction.

Unsigned integer multiplication is performed by the MUL instruction: see section A.107.

A.78 IN: Input from I/O Port
IN AL,imm8 ; E4 ib [8086]
IN AX,imm8 ; o16 E5 ib [8086]
IN EAX,imm8 ; o32 E5 ib [386]
IN AL,DX ; EC [8086]
IN AX,DX ; o16 ED [8086]
IN EAX,DX ; o32 ED [386]

IN reads a byte, word or doubleword from the specified I/O port, and stores it in the given destination
register. The port number may be specified as an immediate value if it is between 0 and 255, and
otherwise must be stored in DX. See also OUT (section A.111).

A.79 INC: Increment Integer
INC reg16 ; o16 40+r [8086]
INC reg32 ; o32 40+r [386]
INC r/m8 ; FE /0 [8086]
INC r/m16 ; o16 FF /0 [8086]
INC r/m32 ; o32 FF /0 [386]

INC adds 1 to its operand. It does not affect the carry flag: to affect the carry flag, use
ADD something,1 (see section A.6). See also DEC (section A.24).

A.80 INSB, INSW, INSD: Input String from I/O Port
INSB ; 6C [186]
INSW ; o16 6D [186]
INSD ; o32 6D [386]

INSB inputs a byte from the I/O port specified in DX and stores it at [ES:DI] or [ES:EDI]. It then
increments or decrements (depending on the direction flag: increments if the flag is clear, decrements if it
is set) DI or EDI.

The register used is DI if the address size is 16 bits, and EDI if it is 32 bits. If you need to use an address
size not equal to the current BITS setting, you can use an explicit a16 or a32 prefix.

Segment override prefixes have no effect for this instruction: the use of ES for the load from [DI] or
[EDI] cannot be overridden.

INSW and INSD work in the same way, but they input a word or a doubleword instead of a byte, and
increment or decrement the addressing register by 2 or 4 instead of 1.

The REP prefix may be used to repeat the instruction CX (or ECX – again, the address size chooses which)
times.

See also OUTSB, OUTSW and OUTSD (section A.112).

A.81 INT: Software Interrupt
INT imm8 ; CD ib [8086]

INT causes a software interrupt through a specified vector number from 0 to 255.

The code generated by the INT instruction is always two bytes long: although there are short forms for
some INT instructions, NASM does not generate them when it sees the INT mnemonic. In order to

generate single-byte breakpoint instructions, use the INT3 or INT1 instructions (see section A.82)
instead.

A.82 INT3, INT1, ICEBP, INT01: Breakpoints
INT1 ; F1 [P6]
ICEBP ; F1 [P6]
INT01 ; F1 [P6]

INT3 ; CC [8086]

INT1 and INT3 are short one-byte forms of the instructions INT 1 and INT 3 (see section A.81). They
perform a similar function to their longer counterparts, but take up less code space. They are used as
breakpoints by debuggers.

INT1, and its alternative synonyms INT01 and ICEBP, is an instruction used by in-circuit emulators
(ICEs). It is present, though not documented, on some processors down to the 286, but is only
documented for the Pentium Pro. INT3 is the instruction normally used as a breakpoint by debuggers.

INT3 is not precisely equivalent to INT 3: the short form, since it is designed to be used as a breakpoint,
bypasses the normal IOPL checks in virtual-8086 mode, and also does not go through interrupt
redirection.

A.83 INTO: Interrupt if Overflow
INTO ; CE [8086]

INTO performs an INT 4 software interrupt (see section A.81) if and only if the overflow flag is set.

A.84 INVD: Invalidate Internal Caches
INVD ; 0F 08 [486]

INVD invalidates and empties the processor’s internal caches, and causes the processor to instruct
external caches to do the same. It does not write the contents of the caches back to memory first: any
modified data held in the caches will be lost. To write the data back first, use WBINVD (section A.164).

A.85 INVLPG: Invalidate TLB Entry
INVLPG mem ; 0F 01 /0 [486]

INVLPG invalidates the translation lookahead buffer (TLB) entry associated with the supplied memory
address.

A.86 IRET, IRETW, IRETD: Return from Interrupt
IRET ; CF [8086]
IRETW ; o16 CF [8086]
IRETD ; o32 CF [386]

IRET returns from an interrupt (hardware or software) by means of popping IP (or EIP), CS and the
flags off the stack and then continuing execution from the new CS:IP.

IRETW pops IP, CS and the flags as 2 bytes each, taking 6 bytes off the stack in total. IRETD pops EIP
as 4 bytes, pops a further 4 bytes of which the top two are discarded and the bottom two go into CS, and
pops the flags as 4 bytes as well, taking 12 bytes off the stack.

IRET is a shorthand for either IRETW or IRETD, depending on the default BITS setting at the time.

A.87 JCXZ, JECXZ: Jump if CX/ECX Zero
JCXZ imm ; o16 E3 rb [8086]
JECXZ imm ; o32 E3 rb [386]

JCXZ performs a short jump (with maximum range 128 bytes) if and only if the contents of the CX
register is 0. JECXZ does the same thing, but with ECX.

A.88 JMP: Jump
JMP imm ; E9 rw/rd [8086]
JMP SHORT imm ; EB rb [8086]
JMP imm:imm16 ; o16 EA iw iw [8086]
JMP imm:imm32 ; o32 EA id iw [386]
JMP FAR mem ; o16 FF /5 [8086]
JMP FAR mem ; o32 FF /5 [386]
JMP r/m16 ; o16 FF /4 [8086]
JMP r/m32 ; o32 FF /4 [386]

JMP jumps to a given address. The address may be specified as an absolute segment and offset, or as a
relative jump within the current segment.

JMP SHORT imm has a maximum range of 128 bytes, since the displacement is specified as only 8 bits,
but takes up less code space. NASM does not choose when to generate JMP SHORT for you: you must
explicitly code SHORT every time you want a short jump.

You can choose between the two immediate far jump forms (JMP imm:imm) by the use of the WORD
and DWORD keywords: JMP WORD 0x1234:0x5678) or JMP DWORD 0x1234:0x56789abc.

The JMP FAR mem forms execute a far jump by loading the destination address out of memory. The
address loaded consists of 16 or 32 bits of offset (depending on the operand size), and 16 bits of segment.
The operand size may be overridden using JMP WORD FAR mem or JMP DWORD FAR mem.

The JMP r/m forms execute a near jump (within the same segment), loading the destination address out
of memory or out of a register. The keyword NEAR may be specified, for clarity, in these forms, but is
not necessary. Again, operand size can be overridden using JMP WORD mem or JMP DWORD mem.

As a convenience, NASM does not require you to jump to a far symbol by coding the cumbersome
JMP SEG routine:routine, but instead allows the easier synonym JMP FAR routine.

The CALL r/m forms given above are near calls; NASM will accept the NEAR keyword (e.g.
CALL NEAR [address]), even though it is not strictly necessary.

A.89 Jcc: Conditional Branch
Jcc imm ; 70+cc rb [8086]
Jcc NEAR imm ; 0F 80+cc rw/rd [386]

The conditional jump instructions execute a near (same segment) jump if and only if their conditions are
satisfied. For example, JNZ jumps only if the zero flag is not set.

The ordinary form of the instructions has only a 128-byte range; the NEAR form is a 386 extension to the
instruction set, and can span the full size of a segment. NASM will not override your choice of jump
instruction: if you want Jcc NEAR, you have to use the NEAR keyword.

The SHORT keyword is allowed on the first form of the instruction, for clarity, but is not necessary.

A.90 LAHF: Load AH from Flags
LAHF ; 9F [8086]

LAHF sets the AH register according to the contents of the low byte of the flags word. See also SAHF
(section A.145).

A.91 LAR: Load Access Rights
LAR reg16,r/m16 ; o16 0F 02 /r [286,PRIV]
LAR reg32,r/m32 ; o32 0F 02 /r [286,PRIV]

LAR takes the segment selector specified by its source (second) operand, finds the corresponding segment
descriptor in the GDT or LDT, and loads the access-rights byte of the descriptor into its destination (first)
operand.

A.92 LDS, LES, LFS, LGS, LSS: Load Far Pointer
LDS reg16,mem ; o16 C5 /r [8086]
LDS reg32,mem ; o32 C5 /r [8086]

LES reg16,mem ; o16 C4 /r [8086]
LES reg32,mem ; o32 C4 /r [8086]

LFS reg16,mem ; o16 0F B4 /r [386]
LFS reg32,mem ; o32 0F B4 /r [386]

LGS reg16,mem ; o16 0F B5 /r [386]
LGS reg32,mem ; o32 0F B5 /r [386]

LSS reg16,mem ; o16 0F B2 /r [386]
LSS reg32,mem ; o32 0F B2 /r [386]

These instructions load an entire far pointer (16 or 32 bits of offset, plus 16 bits of segment) out of
memory in one go. LDS, for example, loads 16 or 32 bits from the given memory address into the given
register (depending on the size of the register), then loads the next 16 bits from memory into DS. LES,
LFS, LGS and LSS work in the same way but use the other segment registers.

A.93 LEA: Load Effective Address
LEA reg16,mem ; o16 8D /r [8086]
LEA reg32,mem ; o32 8D /r [8086]

LEA, despite its syntax, does not access memory. It calculates the effective address specified by its second
operand as if it were going to load or store data from it, but instead it stores the calculated address into
the register specified by its first operand. This can be used to perform quite complex calculations (e.g.
LEA EAX,[EBX+ECX*4+100]) in one instruction.

LEA, despite being a purely arithmetic instruction which accesses no memory, still requires square
brackets around its second operand, as if it were a memory reference.

A.94 LEAVE: Destroy Stack Frame
LEAVE ; C9 [186]

LEAVE destroys a stack frame of the form created by the ENTER instruction (see section A.27). It is
functionally equivalent to MOV ESP,EBP followed by POP EBP (or MOV SP,BP followed by
POP BP in 16-bit mode).

A.95 LGDT, LIDT, LLDT: Load Descriptor Tables
LGDT mem ; 0F 01 /2 [286,PRIV]
LIDT mem ; 0F 01 /3 [286,PRIV]
LLDT r/m16 ; 0F 00 /2 [286,PRIV]

LGDT and LIDT both take a 6-byte memory area as an operand: they load a 32-bit linear address and a
16-bit size limit from that area (in the opposite order) into the GDTR (global descriptor table register) or
IDTR (interrupt descriptor table register). These are the only instructions which directly use linear
addresses, rather than segment/offset pairs.

LLDT takes a segment selector as an operand. The processor looks up that selector in the GDT and stores
the limit and base address given there into the LDTR (local descriptor table register).

See also SGDT, SIDT and SLDT (section A.151).

A.96 LMSW: Load/Store Machine Status Word
LMSW r/m16 ; 0F 01 /6 [286,PRIV]

LMSW loads the bottom four bits of the source operand into the bottom four bits of the CR0 control
register (or the Machine Status Word, on 286 processors). See also SMSW (section A.155).

A.97 LOADALL, LOADALL286: Load Processor State
LOADALL ; 0F 07 [386,UNDOC]
LOADALL286 ; 0F 05 [286,UNDOC]

This instruction, in its two different-opcode forms, is apparently supported on most 286 processors, some
386 and possibly some 486. The opcode differs between the 286 and the 386.

The function of the instruction is to load all information relating to the state of the processor out of a
block of memory: on the 286, this block is located implicitly at absolute address 0x800, and on the 386
and 486 it is at [ES:EDI].

A.98 LODSB, LODSW, LODSD: Load from String
LODSB ; AC [8086]
LODSW ; o16 AD [8086]
LODSD ; o32 AD [386]

LODSB loads a byte from [DS:SI] or [DS:ESI] into AL. It then increments or decrements (depending
on the direction flag: increments if the flag is clear, decrements if it is set) SI or ESI.

The register used is SI if the address size is 16 bits, and ESI if it is 32 bits. If you need to use an address
size not equal to the current BITS setting, you can use an explicit a16 or a32 prefix.

The segment register used to load from [SI] or [ESI] can be overridden by using a segment register
name as a prefix (for example, es lodsb).

LODSW and LODSD work in the same way, but they load a word or a doubleword instead of a byte, and
increment or decrement the addressing registers by 2 or 4 instead of 1.

A.99 LOOP, LOOPE, LOOPZ, LOOPNE, LOOPNZ: Loop with Counter
LOOP imm ; E2 rb [8086]
LOOP imm,CX ; a16 E2 rb [8086]
LOOP imm,ECX ; a32 E2 rb [386]

LOOPE imm ; E1 rb [8086]
LOOPE imm,CX ; a16 E1 rb [8086]
LOOPE imm,ECX ; a32 E1 rb [386]
LOOPZ imm ; E1 rb [8086]
LOOPZ imm,CX ; a16 E1 rb [8086]
LOOPZ imm,ECX ; a32 E1 rb [386]

LOOPNE imm ; E0 rb [8086]
LOOPNE imm,CX ; a16 E0 rb [8086]

LOOPNE imm,ECX ; a32 E0 rb [386]
LOOPNZ imm ; E0 rb [8086]
LOOPNZ imm,CX ; a16 E0 rb [8086]
LOOPNZ imm,ECX ; a32 E0 rb [386]

LOOP decrements its counter register (either CX or ECX – if one is not specified explicitly, the BITS
setting dictates which is used) by one, and if the counter does not become zero as a result of this
operation, it jumps to the given label. The jump has a range of 128 bytes.

LOOPE (or its synonym LOOPZ) adds the additional condition that it only jumps if the counter is nonzero
and the zero flag is set. Similarly, LOOPNE (and LOOPNZ) jumps only if the counter is nonzero and the
zero flag is clear.

A.100 LSL: Load Segment Limit
LSL reg16,r/m16 ; o16 0F 03 /r [286,PRIV]
LSL reg32,r/m32 ; o32 0F 03 /r [286,PRIV]

LSL is given a segment selector in its source (second) operand; it computes the segment limit value by
loading the segment limit field from the associated segment descriptor in the GDT or LDT. (This
involves shifting left by 12 bits if the segment limit is page-granular, and not if it is byte-granular; so you
end up with a byte limit in either case.) The segment limit obtained is then loaded into the destination
(first) operand.

A.101 LTR: Load Task Register
LTR r/m16 ; 0F 00 /3 [286,PRIV]

LTR looks up the segment base and limit in the GDT or LDT descriptor specified by the segment selector
given as its operand, and loads them into the Task Register.

A.102 MOV: Move Data
MOV r/m8,reg8 ; 88 /r [8086]
MOV r/m16,reg16 ; o16 89 /r [8086]
MOV r/m32,reg32 ; o32 89 /r [386]
MOV reg8,r/m8 ; 8A /r [8086]
MOV reg16,r/m16 ; o16 8B /r [8086]
MOV reg32,r/m32 ; o32 8B /r [386]

MOV reg8,imm8 ; B0+r ib [8086]
MOV reg16,imm16 ; o16 B8+r iw [8086]
MOV reg32,imm32 ; o32 B8+r id [386]
MOV r/m8,imm8 ; C6 /0 ib [8086]
MOV r/m16,imm16 ; o16 C7 /0 iw [8086]
MOV r/m32,imm32 ; o32 C7 /0 id [386]

MOV AL,memoffs8 ; A0 ow/od [8086]
MOV AX,memoffs16 ; o16 A1 ow/od [8086]
MOV EAX,memoffs32 ; o32 A1 ow/od [386]
MOV memoffs8,AL ; A2 ow/od [8086]
MOV memoffs16,AX ; o16 A3 ow/od [8086]
MOV memoffs32,EAX ; o32 A3 ow/od [386]

MOV r/m16,segreg ; o16 8C /r [8086]
MOV r/m32,segreg ; o32 8C /r [386]
MOV segreg,r/m16 ; o16 8E /r [8086]
MOV segreg,r/m32 ; o32 8E /r [386]

MOV reg32,CR0/2/3/4 ; 0F 20 /r [386]
MOV reg32,DR0/1/2/3/6/7 ; 0F 21 /r [386]
MOV reg32,TR3/4/5/6/7 ; 0F 24 /r [386]
MOV CR0/2/3/4,reg32 ; 0F 22 /r [386]
MOV DR0/1/2/3/6/7,reg32 ; 0F 23 /r [386]
MOV TR3/4/5/6/7,reg32 ; 0F 26 /r [386]

MOV copies the contents of its source (second) operand into its destination (first) operand.

In all forms of the MOV instruction, the two operands are the same size, except for moving between a
segment register and an r/m32 operand. These instructions are treated exactly like the corresponding
16-bit equivalent (so that, for example, MOV DS,EAX functions identically to MOV DS,AX but saves a
prefix when in 32-bit mode), except that when a segment register is moved into a 32-bit destination, the
top two bytes of the result are undefined.

MOV may not use CS as a destination.

CR4 is only a supported register on the Pentium and above.

A.103 MOVD: Move Doubleword to/from MMX Register
MOVD mmxreg,r/m32 ; 0F 6E /r [PENT,MMX]
MOVD r/m32,mmxreg ; 0F 7E /r [PENT,MMX]

MOVD copies 32 bits from its source (second) operand into its destination (first) operand. When the
destination is a 64-bit MMX register, the top 32 bits are set to zero.

A.104 MOVQ: Move Quadword to/from MMX Register
MOVQ mmxreg,r/m64 ; 0F 6F /r [PENT,MMX]
MOVQ r/m64,mmxreg ; 0F 7F /r [PENT,MMX]

MOVQ copies 64 bits from its source (second) operand into its destination (first) operand.

A.105 MOVSB, MOVSW, MOVSD: Move String
MOVSB ; A4 [8086]
MOVSW ; o16 A5 [8086]
MOVSD ; o32 A5 [386]

MOVSB copies the byte at [ES:DI] or [ES:EDI] to [DS:SI] or [DS:ESI]. It then increments or
decrements (depending on the direction flag: increments if the flag is clear, decrements if it is set) SI and
DI (or ESI and EDI).

The registers used are SI and DI if the address size is 16 bits, and ESI and EDI if it is 32 bits. If you
need to use an address size not equal to the current BITS setting, you can use an explicit a16 or a32
prefix.

The segment register used to load from [SI] or [ESI] can be overridden by using a segment register
name as a prefix (for example, es movsb). The use of ES for the store to [DI] or [EDI] cannot be
overridden.

MOVSW and MOVSD work in the same way, but they copy a word or a doubleword instead of a byte, and
increment or decrement the addressing registers by 2 or 4 instead of 1.

The REP prefix may be used to repeat the instruction CX (or ECX – again, the address size chooses which)
times.

A.106 MOVSX, MOVZX: Move Data with Sign or Zero Extend
MOVSX reg16,r/m8 ; o16 0F BE /r [386]
MOVSX reg32,r/m8 ; o32 0F BE /r [386]
MOVSX reg32,r/m16 ; o32 0F BF /r [386]

MOVZX reg16,r/m8 ; o16 0F B6 /r [386]
MOVZX reg32,r/m8 ; o32 0F B6 /r [386]
MOVZX reg32,r/m16 ; o32 0F B7 /r [386]

MOVSX sign-extends its source (second) operand to the length of its destination (first) operand, and copies
the result into the destination operand. MOVZX does the same, but zero-extends rather than sign-
extending.

A.107 MUL: Unsigned Integer Multiply
MUL r/m8 ; F6 /4 [8086]
MUL r/m16 ; o16 F7 /4 [8086]
MUL r/m32 ; o32 F7 /4 [386]

MUL performs unsigned integer multiplication. The other operand to the multiplication, and the
destination operand, are implicit, in the following way:

• For MUL r/m8, AL is multiplied by the given operand; the product is stored in AX.

• For MUL r/m16, AX is multiplied by the given operand; the product is stored in DX:AX.

• For MUL r/m32, EAX is multiplied by the given operand; the product is stored in EDX:EAX.

Signed integer multiplication is performed by the IMUL instruction: see section A.77.

A.108 NEG, NOT: Two’s and One’s Complement
NEG r/m8 ; F6 /3 [8086]
NEG r/m16 ; o16 F7 /3 [8086]
NEG r/m32 ; o32 F7 /3 [386]

NOT r/m8 ; F6 /2 [8086]
NOT r/m16 ; o16 F7 /2 [8086]
NOT r/m32 ; o32 F7 /2 [386]

NEG replaces the contents of its operand by the two’s complement negation (invert all the bits and then
add one) of the original value. NOT, similarly, performs one’s complement (inverts all the bits).

A.109 NOP: No Operation
NOP ; 90 [8086]

NOP performs no operation. Its opcode is the same as that generated by XCHG AX,AX or
XCHG EAX,EAX (depending on the processor mode; see section A.168).

A.110 OR: Bitwise OR
OR r/m8,reg8 ; 08 /r [8086]
OR r/m16,reg16 ; o16 09 /r [8086]
OR r/m32,reg32 ; o32 09 /r [386]

OR reg8,r/m8 ; 0A /r [8086]
OR reg16,r/m16 ; o16 0B /r [8086]
OR reg32,r/m32 ; o32 0B /r [386]

OR r/m8,imm8 ; 80 /1 ib [8086]
OR r/m16,imm16 ; o16 81 /1 iw [8086]
OR r/m32,imm32 ; o32 81 /1 id [386]

OR r/m16,imm8 ; o16 83 /1 ib [8086]
OR r/m32,imm8 ; o32 83 /1 ib [386]

OR AL,imm8 ; 0C ib [8086]
OR AX,imm16 ; o16 0D iw [8086]
OR EAX,imm32 ; o32 0D id [386]

OR performs a bitwise OR operation between its two operands (i.e. each bit of the result is 1 if and only if
at least one of the corresponding bits of the two inputs was 1), and stores the result in the destination
(first) operand.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand is
considered to be signed, and is sign-extended to the length of the first operand. In these cases, the BYTE
qualifier is necessary to force NASM to generate this form of the instruction.

The MMX instruction POR (see section A.129) performs the same operation on the 64-bit MMX registers.

A.111 OUT: Output Data to I/O Port
OUT imm8,AL ; E6 ib [8086]
OUT imm8,AX ; o16 E7 ib [8086]
OUT imm8,EAX ; o32 E7 ib [386]
OUT DX,AL ; EE [8086]
OUT DX,AX ; o16 EF [8086]
OUT DX,EAX ; o32 EF [386]

IN writes the contents of the given source register to the specified I/O port. The port number may be
specified as an immediate value if it is between 0 and 255, and otherwise must be stored in DX. See also
IN (section A.78).

A.112 OUTSB, OUTSW, OUTSD: Output String to I/O Port
OUTSB ; 6E [186]

OUTSW ; o16 6F [186]

OUTSD ; o32 6F [386]

OUTSB loads a byte from [DS:SI] or [DS:ESI] and writes it to the I/O port specified in DX. It then
increments or decrements (depending on the direction flag: increments if the flag is clear, decrements if it
is set) SI or ESI.

The register used is SI if the address size is 16 bits, and ESI if it is 32 bits. If you need to use an address
size not equal to the current BITS setting, you can use an explicit a16 or a32 prefix.

The segment register used to load from [SI] or [ESI] can be overridden by using a segment register
name as a prefix (for example, es outsb).

OUTSW and OUTSD work in the same way, but they output a word or a doubleword instead of a byte, and
increment or decrement the addressing registers by 2 or 4 instead of 1.

The REP prefix may be used to repeat the instruction CX (or ECX – again, the address size chooses which)
times.

A.113 PACKSSDW, PACKSSWB, PACKUSWB: Pack Data
PACKSSDW mmxreg,r/m64 ; 0F 6B /r [PENT,MMX]
PACKSSWB mmxreg,r/m64 ; 0F 63 /r [PENT,MMX]
PACKUSWB mmxreg,r/m64 ; 0F 67 /r [PENT,MMX]

All these instructions start by forming a notional 128-bit word by placing the source (second) operand on
the left of the destination (first) operand. PACKSSDW then splits this 128-bit word into four doublewords,
converts each to a word, and loads them side by side into the destination register; PACKSSWB and
PACKUSWB both split the 128-bit word into eight words, converts each to a byte, and loads those side by
side into the destination register.

PACKSSDW and PACKSSWB perform signed saturation when reducing the length of numbers: if the
number is too large to fit into the reduced space, they replace it by the largest signed number (7FFFh or
7Fh) that will fit, and if it is too small then they replace it by the smallest signed number (8000h or
80h) that will fit. PACKUSWB performs unsigned saturation: it treats its input as unsigned, and replaces it
by the largest unsigned number that will fit.

A.114 PADDxx: MMX Packed Addition
PADDB mmxreg,r/m64 ; 0F FC /r [PENT,MMX]
PADDW mmxreg,r/m64 ; 0F FD /r [PENT,MMX]
PADDD mmxreg,r/m64 ; 0F FE /r [PENT,MMX]

PADDSB mmxreg,r/m64 ; 0F EC /r [PENT,MMX]
PADDSW mmxreg,r/m64 ; 0F ED /r [PENT,MMX]

PADDUSB mmxreg,r/m64 ; 0F DC /r [PENT,MMX]
PADDUSW mmxreg,r/m64 ; 0F DD /r [PENT,MMX]

PADDxx all perform packed addition between their two 64-bit operands, storing the result in the
destination (first) operand. The PADDxB forms treat the 64-bit operands as vectors of eight bytes, and
add each byte individually; PADDxW treat the operands as vectors of four words; and PADDD treats its
operands as vectors of two doublewords.

PADDSB and PADDSW perform signed saturation on the sum of each pair of bytes or words: if the result
of an addition is too large or too small to fit into a signed byte or word result, it is clipped (saturated) to
the largest or smallest value which will fit. PADDUSB and PADDUSW similarly perform unsigned
saturation, clipping to 0FFh or 0FFFFh if the result is larger than that.

A.115 PADDSIW: MMX Packed Addition to Implicit Destination
PADDSIW mmxreg,r/m64 ; 0F 51 /r [CYRIX,MMX]

PADDSIW, specific to the Cyrix extensions to the MMX instruction set, performs the same function as
PADDSW, except that the result is not placed in the register specified by the first operand, but instead in
the register whose number differs from the first operand only in the last bit. So PADDSIW MM0,MM2
would put the result in MM1, but PADDSIW MM1,MM2 would put the result in MM0.

A.116 PAND, PANDN: MMX Bitwise AND and AND-NOT
PAND mmxreg,r/m64 ; 0F DB /r [PENT,MMX]
PANDN mmxreg,r/m64 ; 0F DF /r [PENT,MMX]

PAND performs a bitwise AND operation between its two operands (i.e. each bit of the result is 1 if and
only if the corresponding bits of the two inputs were both 1), and stores the result in the destination (first)
operand.

PANDN performs the same operation, but performs a one’s complement operation on the destination (first)
operand first.

A.117 PAVEB: MMX Packed Average
PAVEB mmxreg,r/m64 ; 0F 50 /r [CYRIX,MMX]

PAVEB, specific to the Cyrix MMX extensions, treats its two operands as vectors of eight unsigned bytes,
and calculates the average of the corresponding bytes in the operands. The resulting vector of eight
averages is stored in the first operand.

A.118 PCMPxx: MMX Packed Comparison
PCMPEQB mmxreg,r/m64 ; 0F 74 /r [PENT,MMX]
PCMPEQW mmxreg,r/m64 ; 0F 75 /r [PENT,MMX]
PCMPEQD mmxreg,r/m64 ; 0F 76 /r [PENT,MMX]

PCMPGTB mmxreg,r/m64 ; 0F 64 /r [PENT,MMX]
PCMPGTW mmxreg,r/m64 ; 0F 65 /r [PENT,MMX]
PCMPGTD mmxreg,r/m64 ; 0F 66 /r [PENT,MMX]

The PCMPxx instructions all treat their operands as vectors of bytes, words, or doublewords;
corresponding elements of the source and destination are compared, and the corresponding element of
the destination (first) operand is set to all zeros or all ones depending on the result of the comparison.

PCMPxxB treats the operands as vectors of eight bytes, PCMPxxW treats them as vectors of four words,
and PCMPxxD as two doublewords.

PCMPEQx sets the corresponding element of the destination operand to all ones if the two elements
compared are equal; PCMPGTx sets the destination element to all ones if the element of the first
(destination) operand is greater (treated as a signed integer) than that of the second (source) operand.

A.119 PDISTIB: MMX Packed Distance and Accumulate with Implied Register
PDISTIB mmxreg,mem64 ; 0F 54 /r [CYRIX,MMX]

PDISTIB, specific to the Cyrix MMX extensions, treats its two input operands as vectors of eight
unsigned bytes. For each byte position, it finds the absolute difference between the bytes in that position
in the two input operands, and adds that value to the byte in the same position in the implied output
register. The addition is saturated to an unsigned byte in the same way as PADDUSB.

The implied output register is found in the same way as PADDSIW (section A.115).

Note that PDISTIB cannot take a register as its second source operand.

A.120 PMACHRIW: MMX Packed Multiply and Accumulate with Rounding
PMACHRIW mmxreg,mem64 ; 0F 5E /r [CYRIX,MMX]

PMACHRIW acts almost identically to PMULHRIW (section A.123), but instead of storing its result in the
implied destination register, it adds its result, as four packed words, to the implied destination register.
No saturation is done: the addition can wrap around.

Note that PMACHRIW cannot take a register as its second source operand.

A.121 PMADDWD: MMX Packed Multiply and Add
PMADDWD mmxreg,r/m64 ; 0F F5 /r [PENT,MMX]

PMADDWD treats its two inputs as vectors of four signed words. It multiplies corresponding elements of
the two operands, giving four signed doubleword results. The top two of these are added and placed in
the top 32 bits of the destination (first) operand; the bottom two are added and placed in the bottom 32
bits.

A.122 PMAGW: MMX Packed Magnitude
PMAGW mmxreg,r/m64 ; 0F 52 /r [CYRIX,MMX]

PMAGW, specific to the Cyrix MMX extensions, treats both its operands as vectors of four signed words. It
compares the absolute values of the words in corresponding positions, and sets each word of the
destination (first) operand to whichever of the two words in that position had the larger absolute value.

A.123 PMULHRW, PMULHRIW: MMX Packed Multiply High with Rounding
PMULHRW mmxreg,r/m64 ; 0F 59 /r [CYRIX,MMX]
PMULHRIW mmxreg,r/m64 ; 0F 5D /r [CYRIX,MMX]

These instructions, specific to the Cyrix MMX extensions, treat their operands as vectors of four signed
words. Words in corresponding positions are multiplied, to give a 32-bit value in which bits 30 and 31
are guaranteed equal. Bits 30 to 15 of this value (bit mask 0x7FFF8000) are taken and stored in the
corresponding position of the destination operand, after first rounding the low bit (equivalent to adding
0x4000 before extracting bits 30 to 15).

For PMULHRW, the destination operand is the first operand; for PMULHRIW the destination operand is
implied by the first operand in the manner of PADDSIW (section A.115).

A.124 PMULHW, PMULLW: MMX Packed Multiply
PMULHW mmxreg,r/m64 ; 0F E5 /r [PENT,MMX]
PMULLW mmxreg,r/m64 ; 0F D5 /r [PENT,MMX]

PMULxW treats its two inputs as vectors of four signed words. It multiplies corresponding elements of the
two operands, giving four signed doubleword results.

PMULHW then stores the top 16 bits of each doubleword in the destination (first) operand; PMULLW stores
the bottom 16 bits of each doubleword in the destination operand.

A.125 PMVccZB: MMX Packed Conditional Move
PMVZB mmxreg,mem64 ; 0F 58 /r [CYRIX,MMX]
PMVNZB mmxreg,mem64 ; 0F 5A /r [CYRIX,MMX]
PMVLZB mmxreg,mem64 ; 0F 5B /r [CYRIX,MMX]
PMVGEZB mmxreg,mem64 ; 0F 5C /r [CYRIX,MMX]

These instructions, specific to the Cyrix MMX extensions, perform parallel conditional moves. The two
input operands are treated as vectors of eight bytes. Each byte of the destination (first) operand is either
written from the corresponding byte of the source (second) operand, or left alone, depending on the value
of the byte in the implied operand (specified in the same way as PADDSIW, in section A.115).

PMVZB performs each move if the corresponding byte in the implied operand is zero. PMVNZB moves if
the byte is non-zero. PMVLZB moves if the byte is less than zero, and PMVGEZB moves if the byte is
greater than or equal to zero.

Note that these instructions cannot take a register as their second source operand.

A.126 POP: Pop Data from Stack
POP reg16 ; o16 58+r [8086]
POP reg32 ; o32 58+r [386]

POP r/m16 ; o16 8F /0 [8086]
POP r/m32 ; o32 8F /0 [386]

POP CS ; 0F [8086,UNDOC]
POP DS ; 1F [8086]
POP ES ; 07 [8086]

POP SS ; 17 [8086]
POP FS ; 0F A1 [386]
POP GS ; 0F A9 [386]

POP loads a value from the stack (from [SS:SP] or [SS:ESP]) and then increments the stack pointer.

The address-size attribute of the instruction determines whether SP or ESP is used as the stack pointer: to
deliberately override the default given by the BITS setting, you can use an a16 or a32 prefix.

The operand-size attribute of the instruction determines whether the stack pointer is incremented by 2 or
4: this means that segment register pops in BITS 32 mode will pop 4 bytes off the stack and discard the
upper two of them. If you need to override that, you can use an o16 or o32 prefix.

The above opcode listings give two forms for general-purpose register pop instructions: for example,
POP BX has the two forms 5B and 8F C3. NASM will always generate the shorter form when given
POP BX. NDISASM will disassemble both.

POP CS is not a documented instruction, and is not supported on any processor above the 8086 (since
they use 0Fh as an opcode prefix for instruction set extensions). However, at least some 8086 processors
do support it, and so NASM generates it for completeness.

A.127 POPAx: Pop All General-Purpose Registers
POPA ; 61 [186]
POPAW ; o16 61 [186]
POPAD ; o32 61 [386]

POPAW pops a word from the stack into each of, successively, DI, SI, BP, nothing (it discards a word
from the stack which was a placeholder for SP), BX, DX, CX and AX. It is intended to reverse the
operation of PUSHAW (see section A.135), but it ignores the value for SP that was pushed on the stack by
PUSHAW.

POPAD pops twice as much data, and places the results in EDI, ESI, EBP, nothing (placeholder for
ESP), EBX, EDX, ECX and EAX. It reverses the operation of PUSHAD.

POPA is an alias mnemonic for either POPAW or POPAD, depending on the current BITS setting.

Note that the registers are popped in reverse order of their numeric values in opcodes (see section A.2.1).

A.128 POPFx: Pop Flags Register
POPF ; 9D [186]
POPFW ; o16 9D [186]
POPFD ; o32 9D [386]

POPFW pops a word from the stack and stores it in the bottom 16 bits of the flags register (or the whole
flags register, on processors below a 386). POPFD pops a doubleword and stores it in the entire flags
register.

POPF is an alias mnemonic for either POPFW or POPFD, depending on the current BITS setting.

See also PUSHF (section A.136).

A.129 POR: MMX Bitwise OR
POR mmxreg,r/m64 ; 0F EB /r [PENT,MMX]

POR performs a bitwise OR operation between its two operands (i.e. each bit of the result is 1 if and only
if at least one of the corresponding bits of the two inputs was 1), and stores the result in the destination
(first) operand.

A.130 PSLLx, PSRLx, PSRAx: MMX Bit Shifts
PSLLW mmxreg,r/m64 ; 0F F1 /r [PENT,MMX]
PSLLW mmxreg,imm8 ; 0F 71 /6 ib [PENT,MMX]

PSLLD mmxreg,r/m64 ; 0F F2 /r [PENT,MMX]
PSLLD mmxreg,imm8 ; 0F 72 /6 ib [PENT,MMX]

PSLLQ mmxreg,r/m64 ; 0F F3 /r [PENT,MMX]
PSLLQ mmxreg,imm8 ; 0F 73 /6 ib [PENT,MMX]

PSRAW mmxreg,r/m64 ; 0F E1 /r [PENT,MMX]
PSRAW mmxreg,imm8 ; 0F 71 /4 ib [PENT,MMX]

PSRAD mmxreg,r/m64 ; 0F E2 /r [PENT,MMX]
PSRAD mmxreg,imm8 ; 0F 72 /4 ib [PENT,MMX]

PSRLW mmxreg,r/m64 ; 0F D1 /r [PENT,MMX]
PSRLW mmxreg,imm8 ; 0F 71 /2 ib [PENT,MMX]

PSRLD mmxreg,r/m64 ; 0F D2 /r [PENT,MMX]
PSRLD mmxreg,imm8 ; 0F 72 /2 ib [PENT,MMX]

PSRLQ mmxreg,r/m64 ; 0F D3 /r [PENT,MMX]
PSRLQ mmxreg,imm8 ; 0F 73 /2 ib [PENT,MMX]

PSxxQ perform simple bit shifts on the 64-bit MMX registers: the destination (first) operand is shifted
left or right by the number of bits given in the source (second) operand, and the vacated bits are filled in
with zeros (for a logical shift) or copies of the original sign bit (for an arithmetic right shift).

PSxxW and PSxxD perform packed bit shifts: the destination operand is treated as a vector of four words
or two doublewords, and each element is shifted individually, so bits shifted out of one element do not
interfere with empty bits coming into the next.

PSLLx and PSRLx perform logical shifts: the vacated bits at one end of the shifted number are filled
with zeros. PSRAx performs an arithmetic right shift: the vacated bits at the top of the shifted number are
filled with copies of the original top (sign) bit.

A.131 PSUBxx: MMX Packed Subtraction
PSUBB mmxreg,r/m64 ; 0F F8 /r [PENT,MMX]
PSUBW mmxreg,r/m64 ; 0F F9 /r [PENT,MMX]
PSUBD mmxreg,r/m64 ; 0F FA /r [PENT,MMX]

PSUBSB mmxreg,r/m64 ; 0F E8 /r [PENT,MMX]
PSUBSW mmxreg,r/m64 ; 0F E9 /r [PENT,MMX]

PSUBUSB mmxreg,r/m64 ; 0F D8 /r [PENT,MMX]
PSUBUSW mmxreg,r/m64 ; 0F D9 /r [PENT,MMX]

PSUBxx all perform packed subtraction between their two 64-bit operands, storing the result in the
destination (first) operand. The PSUBxB forms treat the 64-bit operands as vectors of eight bytes, and
subtract each byte individually; PSUBxW treat the operands as vectors of four words; and PSUBD treats
its operands as vectors of two doublewords.

In all cases, the elements of the operand on the right are subtracted from the corresponding elements of
the operand on the left, not the other way round.

PSUBSB and PSUBSW perform signed saturation on the sum of each pair of bytes or words: if the result
of a subtraction is too large or too small to fit into a signed byte or word result, it is clipped (saturated) to
the largest or smallest value which will fit. PSUBUSB and PSUBUSW similarly perform unsigned
saturation, clipping to 0FFh or 0FFFFh if the result is larger than that.

A.132 PSUBSIW: MMX Packed Subtract with Saturation to Implied Destination
PSUBSIW mmxreg,r/m64 ; 0F 55 /r [CYRIX,MMX]

PSUBSIW, specific to the Cyrix extensions to the MMX instruction set, performs the same function as
PSUBSW, except that the result is not placed in the register specified by the first operand, but instead in
the implied destination register, specified as for PADDSIW (section A.115).

A.133 PUNPCKxxx: Unpack Data
PUNPCKHBW mmxreg,r/m64 ; 0F 68 /r [PENT,MMX]
PUNPCKHWD mmxreg,r/m64 ; 0F 69 /r [PENT,MMX]
PUNPCKHDQ mmxreg,r/m64 ; 0F 6A /r [PENT,MMX]

PUNPCKLBW mmxreg,r/m64 ; 0F 60 /r [PENT,MMX]
PUNPCKLWD mmxreg,r/m64 ; 0F 61 /r [PENT,MMX]
PUNPCKLDQ mmxreg,r/m64 ; 0F 62 /r [PENT,MMX]

PUNPCKxx all treat their operands as vectors, and produce a new vector generated by interleaving
elements from the two inputs. The PUNPCKHxx instructions start by throwing away the bottom half of
each input operand, and the PUNPCKLxx instructions throw away the top half.

The remaining elements, totalling 64 bits, are then interleaved into the destination, alternating elements
from the second (source) operand and the first (destination) operand: so the leftmost element in the result
always comes from the second operand, and the rightmost from the destination.

PUNPCKxBW works a byte at a time, PUNPCKxWD a word at a time, and PUNPCKxDQ a doubleword at a
time.

So, for example, if the first operand held 0x7A6A5A4A3A2A1A0A and the second held
0x7B6B5B4B3B2B1B0B, then:

• PUNPCKHBW would return 0x7B7A6B6A5B5A4B4A.

• PUNPCKHWD would return 0x7B6B7A6A5B4B5A4A.

• PUNPCKHDQ would return 0x7B6B5B4B7A6A5A4A.

• PUNPCKLBW would return 0x3B3A2B2A1B1A0B0A.

• PUNPCKLWD would return 0x3B2B3A2A1B0B1A0A.

• PUNPCKLDQ would return 0x3B2B1B0B3A2A1A0A.

A.134 PUSH: Push Data on Stack
PUSH reg16 ; o16 50+r [8086]
PUSH reg32 ; o32 50+r [386]

PUSH r/m16 ; o16 FF /6 [8086]
PUSH r/m32 ; o32 FF /6 [386]

PUSH CS ; 0E [8086]
PUSH DS ; 1E [8086]
PUSH ES ; 06 [8086]
PUSH SS ; 16 [8086]
PUSH FS ; 0F A0 [386]
PUSH GS ; 0F A8 [386]

PUSH imm8 ; 6A ib [286]
PUSH imm16 ; o16 68 iw [286]
PUSH imm32 ; o32 68 id [386]

PUSH decrements the stack pointer (SP or ESP) by 2 or 4, and then stores the given value at [SS:SP] or
[SS:ESP].

The address-size attribute of the instruction determines whether SP or ESP is used as the stack pointer: to
deliberately override the default given by the BITS setting, you can use an a16 or a32 prefix.

The operand-size attribute of the instruction determines whether the stack pointer is decremented by 2 or
4: this means that segment register pushes in BITS 32 mode will push 4 bytes on the stack, of which
the upper two are undefined. If you need to override that, you can use an o16 or o32 prefix.

The above opcode listings give two forms for general-purpose register push instructions: for example,
PUSH BX has the two forms 53 and FF F3. NASM will always generate the shorter form when given
PUSH BX. NDISASM will disassemble both.

Unlike the undocumented and barely supported POP CS, PUSH CS is a perfectly valid and sensible
instruction, supported on all processors.

The instruction PUSH SP may be used to distinguish an 8086 from later processors: on an 8086, the
value of SP stored is the value it has after the push instruction, whereas on later processors it is the value
before the push instruction.

A.135 PUSHAx: Push All General-Purpose Registers
PUSHA ; 60 [186]
PUSHAD ; o32 60 [386]
PUSHAW ; o16 60 [186]

PUSHAW pushes, in succession, AX, CX, DX, BX, SP, BP, SI and DI on the stack, decrementing the stack
pointer by a total of 16.

PUSHAD pushes, in succession, EAX, ECX, EDX, EBX, ESP, EBP, ESI and EDI on the stack,
decrementing the stack pointer by a total of 32.

In both cases, the value of SP or ESP pushed is its original value, as it had before the instruction was
executed.

PUSHA is an alias mnemonic for either PUSHAW or PUSHAD, depending on the current BITS setting.

Note that the registers are pushed in order of their numeric values in opcodes (see section A.2.1).

See also POPA (section A.127).

A.136 PUSHFx: Push Flags Register
PUSHF ; 9C [186]
PUSHFD ; o32 9C [386]
PUSHFW ; o16 9C [186]

PUSHFW pops a word from the stack and stores it in the bottom 16 bits of the flags register (or the whole
flags register, on processors below a 386). PUSHFD pops a doubleword and stores it in the entire flags
register.

PUSHF is an alias mnemonic for either PUSHFW or PUSHFD, depending on the current BITS setting.

See also POPF (section A.128).

A.137 PXOR: MMX Bitwise XOR
PXOR mmxreg,r/m64 ; 0F EF /r [PENT,MMX]

PXOR performs a bitwise XOR operation between its two operands (i.e. each bit of the result is 1 if and
only if exactly one of the corresponding bits of the two inputs was 1), and stores the result in the
destination (first) operand.

A.138 RCL, RCR: Bitwise Rotate through Carry Bit
RCL r/m8,1 ; D0 /2 [8086]
RCL r/m8,CL ; D2 /2 [8086]
RCL r/m8,imm8 ; C0 /2 ib [286]
RCL r/m16,1 ; o16 D1 /2 [8086]
RCL r/m16,CL ; o16 D3 /2 [8086]
RCL r/m16,imm8 ; o16 C1 /2 ib [286]
RCL r/m32,1 ; o32 D1 /2 [386]
RCL r/m32,CL ; o32 D3 /2 [386]
RCL r/m32,imm8 ; o32 C1 /2 ib [386]

RCR r/m8,1 ; D0 /3 [8086]
RCR r/m8,CL ; D2 /3 [8086]
RCR r/m8,imm8 ; C0 /3 ib [286]
RCR r/m16,1 ; o16 D1 /3 [8086]
RCR r/m16,CL ; o16 D3 /3 [8086]
RCR r/m16,imm8 ; o16 C1 /3 ib [286]
RCR r/m32,1 ; o32 D1 /3 [386]
RCR r/m32,CL ; o32 D3 /3 [386]
RCR r/m32,imm8 ; o32 C1 /3 ib [386]

RCL and RCR perform a 9-bit, 17-bit or 33-bit bitwise rotation operation, involving the given
source/destination (first) operand and the carry bit. Thus, for example, in the operation RCR AL,1, a 9-
bit rotation is performed in which AL is shifted left by 1, the top bit of AL moves into the carry flag, and
the original value of the carry flag is placed in the low bit of AL.

The number of bits to rotate by is given by the second operand. Only the bottom five bits of the rotation
count are considered by processors above the 8086.

You can force the longer (286 and upwards, beginning with a C1 byte) form of RCL foo,1 by using a
BYTE prefix: RCL foo,BYTE 1. Similarly with RCR.

A.139 RDMSR: Read Model-Specific Registers
RDMSR ; 0F 32 [PENT]

RDMSR reads the processor Model-Specific Register (MSR) whose index is stored in ECX, and stores the
result in EDX:EAX. See also WRMSR (section A.165).

A.140 RDPMC: Read Performance-Monitoring Counters
RDPMC ; 0F 33 [P6]

RDPMC reads the processor performance-monitoring counter whose index is stored in ECX, and stores the
result in EDX:EAX.

A.141 RDTSC: Read Time-Stamp Counter
RDTSC ; 0F 31 [PENT]

RDTSC reads the processor’s time-stamp counter into EDX:EAX.

A.142 RET, RETF, RETN: Return from Procedure Call
RET ; C3 [8086]
RET imm16 ; C2 iw [8086]

RETF ; CB [8086]
RETF imm16 ; CA iw [8086]

RETN ; C3 [8086]
RETN imm16 ; C2 iw [8086]

RET, and its exact synonym RETN, pop IP or EIP from the stack and transfer control to the new address.
Optionally, if a numeric second operand is provided, they increment the stack pointer by a further
imm16 bytes after popping the return address.

RETF executes a far return: after popping IP/EIP, it then pops CS, and then increments the stack pointer
by the optional argument if present.

A.143 ROL, ROR: Bitwise Rotate
ROL r/m8,1 ; D0 /0 [8086]
ROL r/m8,CL ; D2 /0 [8086]
ROL r/m8,imm8 ; C0 /0 ib [286]
ROL r/m16,1 ; o16 D1 /0 [8086]
ROL r/m16,CL ; o16 D3 /0 [8086]
ROL r/m16,imm8 ; o16 C1 /0 ib [286]
ROL r/m32,1 ; o32 D1 /0 [386]
ROL r/m32,CL ; o32 D3 /0 [386]
ROL r/m32,imm8 ; o32 C1 /0 ib [386]

ROR r/m8,1 ; D0 /1 [8086]
ROR r/m8,CL ; D2 /1 [8086]
ROR r/m8,imm8 ; C0 /1 ib [286]
ROR r/m16,1 ; o16 D1 /1 [8086]
ROR r/m16,CL ; o16 D3 /1 [8086]
ROR r/m16,imm8 ; o16 C1 /1 ib [286]
ROR r/m32,1 ; o32 D1 /1 [386]
ROR r/m32,CL ; o32 D3 /1 [386]
ROR r/m32,imm8 ; o32 C1 /1 ib [386]

ROL and ROR perform a bitwise rotation operation on the given source/destination (first) operand. Thus,
for example, in the operation ROR AL,1, an 8-bit rotation is performed in which AL is shifted left by 1
and the original top bit of AL moves round into the low bit.

The number of bits to rotate by is given by the second operand. Only the bottom 3, 4 or 5 bits (depending
on the source operand size) of the rotation count are considered by processors above the 8086.

You can force the longer (286 and upwards, beginning with a C1 byte) form of ROL foo,1 by using a
BYTE prefix: ROL foo,BYTE 1. Similarly with ROR.

A.144 RSM: Resume from System-Management Mode
RSM ; 0F AA [PENT]

RSM returns the processor to its normal operating mode when it was in System-Management Mode.

A.145 SAHF: Store AH to Flags
SAHF ; 9E [8086]

SAHF sets the low byte of the flags word according to the contents of the AH register. See also LAHF
(section A.90).

A.146 SAL, SAR: Bitwise Arithmetic Shifts
SAL r/m8,1 ; D0 /4 [8086]
SAL r/m8,CL ; D2 /4 [8086]
SAL r/m8,imm8 ; C0 /4 ib [286]

SAL r/m16,1 ; o16 D1 /4 [8086]
SAL r/m16,CL ; o16 D3 /4 [8086]
SAL r/m16,imm8 ; o16 C1 /4 ib [286]
SAL r/m32,1 ; o32 D1 /4 [386]
SAL r/m32,CL ; o32 D3 /4 [386]
SAL r/m32,imm8 ; o32 C1 /4 ib [386]

SAR r/m8,1 ; D0 /0 [8086]
SAR r/m8,CL ; D2 /0 [8086]
SAR r/m8,imm8 ; C0 /0 ib [286]
SAR r/m16,1 ; o16 D1 /0 [8086]
SAR r/m16,CL ; o16 D3 /0 [8086]
SAR r/m16,imm8 ; o16 C1 /0 ib [286]
SAR r/m32,1 ; o32 D1 /0 [386]
SAR r/m32,CL ; o32 D3 /0 [386]
SAR r/m32,imm8 ; o32 C1 /0 ib [386]

SAL and SAR perform an arithmetic shift operation on the given source/destination (first) operand. The
vacated bits are filled with zero for SAL, and with copies of the original high bit of the source operand
for SAR.

SAL is a synonym for SHL (see section A.152). NASM will assemble either one to the same code, but
NDISASM will always disassemble that code as SHL.

The number of bits to shift by is given by the second operand. Only the bottom 3, 4 or 5 bits (depending
on the source operand size) of the shift count are considered by processors above the 8086.

You can force the longer (286 and upwards, beginning with a C1 byte) form of SAL foo,1 by using a
BYTE prefix: SAL foo,BYTE 1. Similarly with SAR.

A.147 SALC: Set AL from Carry Flag
SALC ; D6 [8086,UNDOC]

SALC is an early undocumented instruction similar in concept to SETcc (section A.150). Its function is
to set AL to zero if the carry flag is clear, or to 0xFF if it is set.

A.148 SBB: Subtract with Borrow
SBB r/m8,reg8 ; 18 /r [8086]
SBB r/m16,reg16 ; o16 19 /r [8086]
SBB r/m32,reg32 ; o32 19 /r [386]

SBB reg8,r/m8 ; 1A /r [8086]
SBB reg16,r/m16 ; o16 1B /r [8086]
SBB reg32,r/m32 ; o32 1B /r [386]

SBB r/m8,imm8 ; 80 /3 ib [8086]
SBB r/m16,imm16 ; o16 81 /3 iw [8086]
SBB r/m32,imm32 ; o32 81 /3 id [386]

SBB r/m16,imm8 ; o16 83 /3 ib [8086]
SBB r/m32,imm8 ; o32 83 /3 ib [8086]

SBB AL,imm8 ; 1C ib [8086]
SBB AX,imm16 ; o16 1D iw [8086]
SBB EAX,imm32 ; o32 1D id [386]

SBB performs integer subtraction: it subtracts its second operand, plus the value of the carry flag, from its
first, and leaves the result in its destination (first) operand. The flags are set according to the result of the
operation: in particular, the carry flag is affected and can be used by a subsequent SBB instruction.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand is
considered to be signed, and is sign-extended to the length of the first operand. In these cases, the BYTE
qualifier is necessary to force NASM to generate this form of the instruction.

To subtract one number from another without also subtracting the contents of the carry flag, use SUB
(section A.159).

A.149 SCASB, SCASW, SCASD: Scan String
SCASB ; AE [8086]
SCASW ; o16 AF [8086]
SCASD ; o32 AF [386]

SCASB compares the byte in AL with the byte at [ES:DI] or [ES:EDI], and sets the flags
accordingly. It then increments or decrements (depending on the direction flag: increments if the flag is
clear, decrements if it is set) DI (or EDI).

The register used is DI if the address size is 16 bits, and EDI if it is 32 bits. If you need to use an address
size not equal to the current BITS setting, you can use an explicit a16 or a32 prefix.

Segment override prefixes have no effect for this instruction: the use of ES for the load from [DI] or
[EDI] cannot be overridden.

SCASW and SCASD work in the same way, but they compare a word to AX or a doubleword to EAX
instead of a byte to AL, and increment or decrement the addressing registers by 2 or 4 instead of 1.

The REPE and REPNE prefixes (equivalently, REPZ and REPNZ) may be used to repeat the instruction up
to CX (or ECX – again, the address size chooses which) times until the first unequal or equal byte is
found.

A.150 SETcc: Set Register from Condition
SETcc r/m8 ; 0F 90+cc /2 [386]

SETcc sets the given 8-bit operand to zero if its condition is not satisfied, and to 1 if it is.

A.151 SGDT, SIDT, SLDT: Store Descriptor Table Pointers
SGDT mem ; 0F 01 /0 [286,PRIV]
SIDT mem ; 0F 01 /1 [286,PRIV]
SLDT r/m16 ; 0F 00 /0 [286,PRIV]

SGDT and SIDT both take a 6-byte memory area as an operand: they store the contents of the GDTR
(global descriptor table register) or IDTR (interrupt descriptor table register) into that area as a 32-bit
linear address and a 16-bit size limit from that area (in that order). These are the only instructions which
directly use linear addresses, rather than segment/offset pairs.

SLDT stores the segment selector corresponding to the LDT (local descriptor table) into the given
operand.

See also LGDT, LIDT and LLDT (section A.95).

A.152 SHL, SHR: Bitwise Logical Shifts
SHL r/m8,1 ; D0 /4 [8086]
SHL r/m8,CL ; D2 /4 [8086]
SHL r/m8,imm8 ; C0 /4 ib [286]
SHL r/m16,1 ; o16 D1 /4 [8086]

SHL r/m16,CL ; o16 D3 /4 [8086]
SHL r/m16,imm8 ; o16 C1 /4 ib [286]
SHL r/m32,1 ; o32 D1 /4 [386]
SHL r/m32,CL ; o32 D3 /4 [386]
SHL r/m32,imm8 ; o32 C1 /4 ib [386]

SHR r/m8,1 ; D0 /5 [8086]
SHR r/m8,CL ; D2 /5 [8086]
SHR r/m8,imm8 ; C0 /5 ib [286]
SHR r/m16,1 ; o16 D1 /5 [8086]
SHR r/m16,CL ; o16 D3 /5 [8086]
SHR r/m16,imm8 ; o16 C1 /5 ib [286]
SHR r/m32,1 ; o32 D1 /5 [386]
SHR r/m32,CL ; o32 D3 /5 [386]
SHR r/m32,imm8 ; o32 C1 /5 ib [386]

SHL and SHR perform a logical shift operation on the given source/destination (first) operand. The
vacated bits are filled with zero.

A synonym for SHL is SAL (see section A.146). NASM will assemble either one to the same code, but
NDISASM will always disassemble that code as SHL.

The number of bits to shift by is given by the second operand. Only the bottom 3, 4 or 5 bits (depending
on the source operand size) of the shift count are considered by processors above the 8086.

You can force the longer (286 and upwards, beginning with a C1 byte) form of SHL foo,1 by using a
BYTE prefix: SHL foo,BYTE 1. Similarly with SHR.

A.153 SHLD, SHRD: Bitwise Double-Precision Shifts
SHLD r/m16,reg16,imm8 ; o16 0F A4 /r ib [386]
SHLD r/m16,reg32,imm8 ; o32 0F A4 /r ib [386]
SHLD r/m16,reg16,CL ; o16 0F A5 /r [386]
SHLD r/m16,reg32,CL ; o32 0F A5 /r [386]

SHRD r/m16,reg16,imm8 ; o16 0F AC /r ib [386]
SHRD r/m32,reg32,imm8 ; o32 0F AC /r ib [386]
SHRD r/m16,reg16,CL ; o16 0F AD /r [386]
SHRD r/m32,reg32,CL ; o32 0F AD /r [386]

SHLD performs a double-precision left shift. It notionally places its second operand to the right of its first,
then shifts the entire bit string thus generated to the left by a number of bits specified in the third
operand. It then updates only the first operand according to the result of this. The second operand is not
modified.

SHRD performs the corresponding right shift: it notionally places the second operand to the left of the
first, shifts the whole bit string right, and updates only the first operand.

For example, if EAX holds 0x01234567 and EBX holds 0x89ABCDEF, then the instruction
SHLD EAX,EBX,4 would update EAX to hold 0x12345678. Under the same conditions,
SHRD EAX,EBX,4 would update EAX to hold 0xF0123456.

The number of bits to shift by is given by the third operand. Only the bottom 5 bits of the shift count are
considered.

A.154 SMI: System Management Interrupt
SMI ; F1 [386,UNDOC]

This is an opcode apparently supported by some AMD processors (which is why it can generate the same
opcode as INT1), and places the machine into system-management mode, a special debugging mode.

A.155 SMSW: Store Machine Status Word
SMSW r/m16 ; 0F 01 /4 [286,PRIV]

SMSW stores the bottom half of the CR0 control register (or the Machine Status Word, on 286 processors)
into the destination operand. See also LMSW (section A.96).

A.156 STC, STD, STI: Set Flags
STC ; F9 [8086]
STD ; FD [8086]
STI ; FB [8086]

These instructions set various flags. STC sets the carry flag; STD sets the direction flag; and STI sets the
interrupt flag (thus enabling interrupts).

To clear the carry, direction, or interrupt flags, use the CLC, CLD and CLI instructions (section A.15). To
invert the carry flag, use CMC (section A.16).

A.157 STOSB, STOSW, STOSD: Store Byte to String
STOSB ; AA [8086]
STOSW ; o16 AB [8086]
STOSD ; o32 AB [386]

STOSB stores the byte in AL at [ES:DI] or [ES:EDI], and sets the flags accordingly. It then
increments or decrements (depending on the direction flag: increments if the flag is clear, decrements if it
is set) DI (or EDI).

The register used is DI if the address size is 16 bits, and EDI if it is 32 bits. If you need to use an address
size not equal to the current BITS setting, you can use an explicit a16 or a32 prefix.

Segment override prefixes have no effect for this instruction: the use of ES for the store to [DI] or
[EDI] cannot be overridden.

STOSW and STOSD work in the same way, but they store the word in AX or the doubleword in EAX
instead of the byte in AL, and increment or decrement the addressing registers by 2 or 4 instead of 1.

The REP prefix may be used to repeat the instruction CX (or ECX – again, the address size chooses which)
times.

A.158 STR: Store Task Register
STR r/m16 ; 0F 00 /1 [286,PRIV]

STR stores the segment selector corresponding to the contents of the Task Register into its operand.

A.159 SUB: Subtract Integers
SUB r/m8,reg8 ; 28 /r [8086]
SUB r/m16,reg16 ; o16 29 /r [8086]
SUB r/m32,reg32 ; o32 29 /r [386]

SUB reg8,r/m8 ; 2A /r [8086]
SUB reg16,r/m16 ; o16 2B /r [8086]
SUB reg32,r/m32 ; o32 2B /r [386]

SUB r/m8,imm8 ; 80 /5 ib [8086]
SUB r/m16,imm16 ; o16 81 /5 iw [8086]
SUB r/m32,imm32 ; o32 81 /5 id [386]

SUB r/m16,imm8 ; o16 83 /5 ib [8086]
SUB r/m32,imm8 ; o32 83 /5 ib [386]

SUB AL,imm8 ; 2C ib [8086]
SUB AX,imm16 ; o16 2D iw [8086]
SUB EAX,imm32 ; o32 2D id [386]

SUB performs integer subtraction: it subtracts its second operand from its first, and leaves the result in its
destination (first) operand. The flags are set according to the result of the operation: in particular, the
carry flag is affected and can be used by a subsequent SBB instruction (section A.148).

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand is
considered to be signed, and is sign-extended to the length of the first operand. In these cases, the BYTE
qualifier is necessary to force NASM to generate this form of the instruction.

A.160 TEST: Test Bits (notional bitwise AND)
TEST r/m8,reg8 ; 84 /r [8086]
TEST r/m16,reg16 ; o16 85 /r [8086]
TEST r/m32,reg32 ; o32 85 /r [386]

TEST r/m8,imm8 ; F6 /7 ib [8086]
TEST r/m16,imm16 ; o16 F7 /7 iw [8086]
TEST r/m32,imm32 ; o32 F7 /7 id [386]

TEST AL,imm8 ; A8 ib [8086]
TEST AX,imm16 ; o16 A9 iw [8086]
TEST EAX,imm32 ; o32 A9 id [386]

TEST performs a ‘mental’ bitwise AND of its two operands, and affects the flags as if the operation had
taken place, but does not store the result of the operation anywhere.

A.161 UMOV: User Move Data
UMOV r/m8,reg8 ; 0F 10 /r [386,UNDOC]
UMOV r/m16,reg16 ; o16 0F 11 /r [386,UNDOC]
UMOV r/m32,reg32 ; o32 0F 11 /r [386,UNDOC]

UMOV reg8,r/m8 ; 0F 12 /r [386,UNDOC]
UMOV reg16,r/m16 ; o16 0F 13 /r [386,UNDOC]
UMOV reg32,r/m32 ; o32 0F 13 /r [386,UNDOC]

This undocumented instruction is used by in-circuit emulators to access user memory (as opposed to host
memory). It is used just like an ordinary memory/register or register/register MOV instruction, but
accesses user space.

A.162 VERR, VERW: Verify Segment Readability/Writability
VERR r/m16 ; 0F 00 /4 [286,PRIV]

VERW r/m16 ; 0F 00 /5 [286,PRIV]

VERR sets the zero flag if the segment specified by the selector in its operand can be read from at the
current privilege level. VERW sets the zero flag if the segment can be written.

A.163 WAIT: Wait for Floating-Point Processor
WAIT ; 9B [8086]

WAIT, on 8086 systems with a separate 8087 FPU, waits for the FPU to have finished any operation it is
engaged in before continuing main processor operations, so that (for example) an FPU store to main
memory can be guaranteed to have completed before the CPU tries to read the result back out.

On higher processors, WAIT is unnecessary for this purpose, and it has the alternative purpose of ensuring
that any pending unmasked FPU exceptions have happened before execution continues.

A.164 WBINVD: Write Back and Invalidate Cache
WBINVD ; 0F 09 [486]

WBINVD invalidates and empties the processor’s internal caches, and causes the processor to instruct
external caches to do the same. It writes the contents of the caches back to memory first, so no data is
lost. To flush the caches quickly without bothering to write the data back first, use INVD (section A.84).

A.165 WRMSR: Write Model-Specific Registers
WRMSR ; 0F 30 [PENT]

WRMSR writes the value in EDX:EAX to the processor Model-Specific Register (MSR) whose index is
stored in ECX. See also RDMSR (section A.139).

A.166 XADD: Exchange and Add
XADD r/m8,reg8 ; 0F C0 /r [486]
XADD r/m16,reg16 ; o16 0F C1 /r [486]
XADD r/m32,reg32 ; o32 0F C1 /r [486]

XADD exchanges the values in its two operands, and then adds them together and writes the result into the
destination (first) operand. This instruction can be used with a LOCK prefix for multi-processor
synchronisation purposes.

A.167 XBTS: Extract Bit String
XBTS reg16,r/m16 ; o16 0F A6 /r [386,UNDOC]
XBTS reg32,r/m32 ; o32 0F A6 /r [386,UNDOC]

No clear documentation seems to be available for this instruction: the best I’ve been able to find reads
‘Takes a string of bits from the first operand and puts them in the second operand’. It is present only in
early 386 processors, and conflicts with the opcodes for CMPXCHG486. NASM supports it only for
completeness. Its counterpart is IBTS (see section A.75).

A.168 XCHG: Exchange
XCHG reg8,r/m8 ; 86 /r [8086]
XCHG reg16,r/m8 ; o16 87 /r [8086]
XCHG reg32,r/m32 ; o32 87 /r [386]

XCHG r/m8,reg8 ; 86 /r [8086]
XCHG r/m16,reg16 ; o16 87 /r [8086]
XCHG r/m32,reg32 ; o32 87 /r [386]

XCHG AX,reg16 ; o16 90+r [8086]
XCHG EAX,reg32 ; o32 90+r [386]
XCHG reg16,AX ; o16 90+r [8086]
XCHG reg32,EAX ; o32 90+r [386]

XCHG exchanges the values in its two operands. It can be used with a LOCK prefix for purposes of multi-
processor synchronisation.

XCHG AX,AX or XCHG EAX,EAX (depending on the BITS setting) generates the opcode 90h, and so
is a synonym for NOP (section A.109).

A.169 XLATB: Translate Byte in Lookup Table
XLATB ; D7 [8086]

XLATB adds the value in AL, treated as an unsigned byte, to BX or EBX, and loads the byte from the
resulting address (in the segment specified by DS) back into AL.

The base register used is BX if the address size is 16 bits, and EBX if it is 32 bits. If you need to use an
address size not equal to the current BITS setting, you can use an explicit a16 or a32 prefix.

The segment register used to load from [BX+AL] or [EBX+AL] can be overridden by using a segment
register name as a prefix (for example, es xlatb).

A.170 XOR: Bitwise Exclusive OR
XOR r/m8,reg8 ; 30 /r [8086]
XOR r/m16,reg16 ; o16 31 /r [8086]
XOR r/m32,reg32 ; o32 31 /r [386]

XOR reg8,r/m8 ; 32 /r [8086]
XOR reg16,r/m16 ; o16 33 /r [8086]
XOR reg32,r/m32 ; o32 33 /r [386]

XOR r/m8,imm8 ; 80 /6 ib [8086]
XOR r/m16,imm16 ; o16 81 /6 iw [8086]
XOR r/m32,imm32 ; o32 81 /6 id [386]

XOR r/m16,imm8 ; o16 83 /6 ib [8086]
XOR r/m32,imm8 ; o32 83 /6 ib [386]

XOR AL,imm8 ; 34 ib [8086]
XOR AX,imm16 ; o16 35 iw [8086]
XOR EAX,imm32 ; o32 35 id [386]

XOR performs a bitwise XOR operation between its two operands (i.e. each bit of the result is 1 if and
only if exactly one of the corresponding bits of the two inputs was 1), and stores the result in the
destination (first) operand.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand is
considered to be signed, and is sign-extended to the length of the first operand. In these cases, the BYTE
qualifier is necessary to force NASM to generate this form of the instruction.

The MMX instruction PXOR (see section A.137) performs the same operation on the 64-bit MMX
registers.

Index

!= operator 36
$ Here token 24
$$ token 24, 56
% operator 25
%$ and %$$ prefixes 40
%% operator 25, 32
%+1 and %-1 syntax 35
%0 parameter count 33
& operator 25
&& operator 36
* operator 25
+ modifier 32
+ operator,

 binary 25
 unary 25

- operator,
 binary 25
 unary 25

..@ symbol prefix 27, 32
/ operator 25
// operator 25
< operator 36
<< operator 25
<= operator 36
<> operator 36
= operator 36
== operator 36
> operator 36
>= operator 36
>> operator 25
? MASM syntax 21
^ operator 25
^^ operator 36
| operator 25
|| operator 36
~ operator 25
-a option 17
a16 78, 92, 106, 110, 112, 114, 118, 121, 125,

 127, 130
a32 78, 92, 106, 110, 112, 114, 118, 121, 125,

 127, 130
a86 11, 17, 18, 19
AAA 87
AAD 87
AAM 87

AAS 87
ABSOLUTE 46, 51
ADC 87
ADD 88
addition 25
addressing, mixed-size 77
address-size prefixes 20
algebra 23
ALIGN 43, 50, 51
ALIGNB 43
alignment,

 in bin sections 50
 in elf sections 55
 in obj sections 51
 in win32 sections 54
 of elf common variables 57

alloc 55
alt.lang.asm 11
ambiguity 18
AND 88
a.out,

 BSD version 57
 Linux version 57

aout 14, 57
aoutb 57, 73
arg 66, 72
ARPL 89
as86 11, 14, 57
assembler directives 45
assembly passes 26
assembly-time options 16
%assign 30
ASSUME 18
AT 43
Autoconf 12
autoexec.bat 12
bin 14, 15, 49
binary 23
binary files 21
16-bit mode, versus 32-bit mode 45
bit shift 25
BITS 45, 49
bitwise AND 25
bitwise OR 25
bitwise XOR 25

block IFs 40
boot loader 49
boot sector 80
Borland,

 Pascal 67
 Win32 compilers 50

BOUND 89
braces,

 after % sign 35
 around macro parameters 31

BSD 73
BSF 89
BSR 89
.bss 49, 55, 57, 58
BSWAP 89
BT 90
BTC 90
BTR 90
BTS 90
bugs 81
BYTE 80
C calling convention 63, 70
C symbol names 62
CALL 90
CALL FAR 26
case sensitivity 17, 29, 30, 31, 37, 52
CBW 91
CDQ 91
changing sections 45
character constant 21, 23
circular references 29
CLASS 51
CLC 91
CLD 91
%clear 42
CLI 91
CLTS 91
c16.mac 66, 68
c32.mac 72
CMC 91
CMOVcc 91
CMP 91
CMPSB 92
CMPSD 92
CMPSW 92
CMPXCHG 92
CMPXCHG486 92
CMPXCHG8B 93
coff 14, 55
colon 20
.COM 49, 61
command-line 14, 49
commas in macro parameters 33
COMMON 48, 51

COMMON,
 elf extensions to 57
 obj extensions to 53

Common Object File Format 55
common variables 48
common variables,

 alignment in elf 57
 element size 53

comp.archives.msdos.announce 12
comp.lang.asm.x86 11
comp.os.linux.announce 12
comp.os.msdos.programmer 62
concatenating macro parameters 34
condition codes 85
condition codes as macro parameters 35
conditional assembly 36
conditional jump 108
conditional jumps 80
conditional-return macro 35
configure 12
constants 23
context stack 39, 40
context-local labels 40
context-local single-line macros 40
control registers 85
counting macro parameters 33
CPUID 24, 93
creating contexts 39
critical expression 21, 22, 26, 30, 47
CWD 91
CWDE 91
-D option 16
-d option 16
DAA 93
DAS 93
.data 49, 55, 57, 58
_DATA 63
data 56
data structure 65, 72
DB 21, 24
dbg 58
DD 21, 24
debug registers 85
DEC 94
declaring structures 42
default macro parameters 33
default name 49
default-WRT mechanism 53
%define 16, 29
defining sections 45
design goals 18
DevPac 21, 27
disabling listing expansion 35
DIV 94

division 25
DJGPP 55, 70
djlink 59
DLL symbols,

 exporting 52
 importing 52

DOS 12, 15
DOS archive 12
DOS source archive 12
DQ 21, 24
.drectve 54
DT 21, 24
DUP 19, 22
DW 21, 24
DWORD 21
-E option 15
-e option 16
effective addresses 20, 22, 27, 85
element size, in common variables 53
elf 14, 55
elf shared libraries 55
%elif 36
%elifctx 36
%elifdef 36
%elifid 38
%elifidn 37
%elifidni 37
%elifnctx 36
%elifndef 36
%elifnid 38
%elifnidn 37
%elifnidni 37
%elifnnum 38
%elifnstr 38
%elifnum 38
%elifstr 38
%else 36
e-mail 11, 12
EMMS 94
endproc 66, 72
%endrep 38
ENDSTRUC 42, 47
ENTER 94
environment 17
EQU 21, 22, 27
%error 38
error messages 15
EVEN 43
.EXE 50, 59
EXE_begin 60
EXE2BIN 61
exebin.mac 60
exec 55
executable and linkable format 55

EXE_end 60
EXE_stack 60
%exitrep 38
EXPORT 52
exporting symbols 47
expressions 16, 24
extension 14, 49
EXTERN 47
extern, obj extensions to 53
-f option 15, 49
FABS 95
FADD 95
FADDP 95
far call 19, 90
far common variables 53
far jump 108
far pointer 26
FARCODE 66, 68
FBLD 95
FBSTP 95
FCHS 95
FCLEX 95
FCMOVcc 96
FCOM 96
FCOMI 96
FCOMIP 96
FCOMP 96
FCOMPP 96
FCOS 97
FDECSTP 97
FDIV 97
FDIVP 97
FDIVR 97
FDIVRP 97
FFREE 98
FIADD 98
FICOM 98
FICOMP 98
FIDIV 98
FIDIVR 98
FILD 99
__FILE__ 42
FIMUL 99
FINCSTP 99
FINIT 99
FIST 99
FISTP 99
FISUB 99
FLAT 51
flat memory model 70
flat-form binary 49
FLD 99
FLDCW 100
FLDENV 100

FLDxx 100
floating-point 19, 20, 21, 24
floating-point,

 constants 24
 registers 85

FMUL 100
FMULP 100
FNINIT 99
FNOP 100
format-specific directives 45
forward references 27
FPATAN 100
FPREM 101
FPREM1 101
FPTAN 100
frame pointer 64, 67, 70
FreeBSD 57, 73
FreeLink 59
FRNDINT 101
FRSTOR 101
FSAVE 101
FSCALE 101
FSETPM 101
FSIN 102
FSINCOS 102
FSQRT 102
FST 102
FSTCW 102
FSTENV 102
FSTP 102
FSTSW 102
FSUB 103
FSUBP 103
FSUBR 103
FSUBRP 103
ftp.coast.net 11
ftp.kernel.org 11
ftp.simtel.net 11, 59
FTST 103
FUCOMxx 103
function 56
functions,

 C calling convention 63, 70
 Pascal calling convention 67

FXAM 104
FXCH 104
FxDISI 97
FxENI 97
F2XM1 95
FXTRACT 104
FYL2X 104
FYL2XP1 104
gas 11
gcc 11

general purpose register 83
GLOBAL 47
GLOBAL,

 aoutb extensions to 56
 elf extensions to 56

global offset table 73
_GLOBAL_OFFSET_TABLE_ 56
..got 56
GOT relocations 74
GOT 56, 73
..gotoff 56
GOTOFF relocations 74
..gotpc 56
GOTPC relocations 74
graphics 21
greedy macro parameters 32
GROUP 51
groups 25
hex 23
HLT 104
hybrid syntaxes 18
-I option 15
-i option 15
%iassign 30
IBTS 104
ICEBP 107
%idefine 29
IDIV 105
IEND 43
%if 36
%ifctx 36, 40
%ifdef 36
%ifid 37
%ifidn 37
%ifidni 37
%ifnctx 36
%ifndef 36
%ifnid 38
%ifnidn 37
%ifnidni 37
%ifnnum 38
%ifnstr 38
%ifnum 37
%ifstr 37
%imacro 30
immediate operand 83
IMPORT 52
import library 52
importing symbols 47
IMUL 105
IN 106
INC 106
INCBIN 21, 24
%include 15, 16, 39

include search path 16
including other files 39
inefficient code 80
infinite loop 25
informational section 54
INSB 106
INSD 106
INSTALL 12
installing 12
instances of structures 43
INSW 106
INT 106
INT01 107
INT1 107
INT3 107
integer overflow 24
intel number formats 24
INTO 107
INVD 107
INVLPG 107
IRET 107
IRETD 107
IRETW 107
ISTRUC 43
iterating over macro parameters 34
Jcc 108
Jcc NEAR 80
JCXZ 108
JECXZ 108
JMP 108
JMP DWORD 77
jumps, mixed-size 77
-l option 15
label prefix 27
LAHF 108
LAR 109
ld86 57
LDS 109
LEA 109
LEAVE 109
LES 109
LFS 109
LGDT 109
LGS 109
LIBRARY 58
licence 11
LIDT 109
__LINE__ 42
linker, free 59
Linux ELF 55
listing file 15
little-endian 23
LLDT 109
LMSW 110

LOADALL 110
LOADALL286 110
local labels 27
LODSB 110
LODSD 110
LODSW 110
logical AND 36
logical OR 36
logical XOR 36
LOOP 110
LOOPE 110
LOOPNE 110
LOOPNZ 110
LOOPZ 110
LSL 111
LSS 109
LTR 111
%macro 30
macro library 15
macro processor 29
macro-local labels 32
macro-params 17
macros 22
make 12
makefiles 12
Makefile.unx 13
man pages 12
MASM 11, 17, 22, 50
memory models 19, 63
memory operand 21
memory references 18, 22, 83
Microsoft OMF 50
misc subdirectory 60, 66, 72
mixed-language program 62
mixed-size addressing 77
mixed-size instruction 77
MMX registers 85
ModR/M byte 84, 85
modulo operators 25
MOV 111
MOVD 112
MOVQ 112
MOVSB 112
MOVSD 112
MOVSW 112
MOVSX 113
MOVZX 113
MS-DOS 49
MS-DOS device drivers 62
MUL 113
multi-line macros 17, 30
multiplication 25
multipush macro 34
nasm.1 12

NASM version 42
__NASMDEFSEG 50
nasm.exe 12
nasm -h 15
__NASM_MAJOR__ 42
__NASM_MINOR__ 42
nasm.out 15
nasmw.exe 12
nasmXXXs.zip 12
nasm-X.XX.tar.gz 12
nasmXXX.zip 12
ndisasm.1 12
ndisasm.exe 12
ndisasmw.exe 12
near call 19, 90
near common variables 53
near jump 108
NEG 113
NetBSD 57, 73
new releases 11
noalloc 55
nobits 55
noexec 55
.nolist 35
NOP 113
NOT 113
‘nowait’ 19
nowrite 55
number-overflow 17
numeric constants 21, 23
-o option 14
o16 79, 118, 121
o32 79, 118, 121
.OBJ 59
obj 14, 50
object 56
octal 23
OF_DBG 58
OF_DEFAULT 15
OFFSET 18
OMF 50
omitted parameters 33
one’s complement 25
OpenBSD 57, 73
operands 20
operand-size prefixes 20
operating system, writing 77
operating system 49
operators 25
OR 113
ORG 49, 61, 80
orphan-labels 17, 20
OS/2 50, 51
OUT 114

out of range, jumps 80
output file format 15
output formats 49
OUTSB 114
OUTSD 114
OUTSW 114
overlapping segments 25
OVERLAY 51
overloading multi-line macros 31
overloading, single-line macros 29
-P option 16
-p option 16, 39
PACKSSDW 115
PACKSSWB 115
PACKUSWB 115
PADDSIW 115
PADDxx 115
PAND 115
PANDN 115
paradox 26
PASCAL 68
Pascal calling convention 67
passes, assembly 26
PATH 12
PAVEB 116
PCMPxx 116
PDISTIB 116
period 27
Perl 12
perverse 16
PharLap 51
PIC 55, 57, 73
..plt 56
PLT relocations 56, 75
plt relocations 75
PMACHRIW 116
PMADDWD 116
PMAGW 117
PMULHRIW 117
PMULHRW 117
PMULHW 117
PMULLW 117
PMVccZB 117
%pop 39
POP 117
POPAx 118
POPFx 118
POR 118
position-independent code 55, 57, 73
precedence 25
pre-defining macros 16, 30
preferred 25
$prefix 20, 23
pre-including files 16

preprocess-only mode 16
preprocessor 16, 17, 22, 25, 29
preprocessor expressions 16
preprocessor loops 38
preprocessor variables 30
primitive directives 45
PRIVATE 51
proc 66, 72
procedure linkage table 56, 75
processor mode 45
progbits 55
program entry point 53, 59
program origin 49
pseudo-instructions 21
PSLLx 119
PSRAx 119
PSRLx 119
PSUBSIW 120
PSUBxx 119
PUBLIC 47, 51
PUNPCKxxx 120
pure binary 49
%push 39
PUSH 120
PUSHAx 121
PUSHFx 121
PXOR 121
QBasic
quick start 17
QWORD 21
RCL 122
RCR 122
rdf 14, 57
RDMSR 122
rdoff subdirectory 13, 57, 58
RDPMC 122
RDTSC 122
redirecting errors 15
register push 121
relational operators 36
Relocatable Dynamic Object File Format 57
relocations, PIC-specific 56
removing contexts 39
renaming contexts 40
%rep 22, 38
repeating 22, 38
%repl 40
reporting bugs 81
RESB 19, 21, 26
RESD 21
RESQ 21
REST 21
restricted memory references 83
RESW 21

RET 122
RETF 122
RETN 122
ROL 123
ROR 123
%rotate 33
rotating macro parameters 33
RSM 123
-s option 15
SAHF 123
SAL 123
SALC 124
SAR 123
SBB 124
SCASB 125
SCASD 125
SCASW 125
searching for include files 39
__SECT__ 46, 47
SECTION 45
SECTION,

 elf extensions to 55
 win32 extensions to 54

section alignment,
 in bin 50
 in elf 55
 in obj 51
 in win32 54

section, bin extensions to 50
SEG 25, 50
SEGMENT 45
SEGMENT, elf extensions to 50
segment address 25
segment alignment,

 in bin 50
 in obj 51

segment names, Borland Pascal 68
segment override 18, 20
segment registers 85
segments 25
segments, groups of 51
separator character 17
SETcc 125
SGDT 125
shared libraries 57, 73
shared library 56
shift command
shift command 33
SHL 125
SHLD 126
SHR 125
SHRD 126
SIB byte 84, 85
SIDT 125

signed division 25
signed modulo 25
single-line macros 29
size, of symbols 56
SLDT 125
SMI 126
SMSW 127
-soname 76
sound 21
source code 12
source-listing file 15
square brackets 18, 22
STACK 51
standard macros 42
standardised section names 46, 49, 54, 55, 57,

 58
..start 53, 59
STC 127
STD 127
stderr 15
stdout 15
STI 127
STOSB 127
STOSD 127
STOSW 127
STR 127
string constant 21
STRUC 42, 47, 65, 72
stub preprocessor 17
SUB 127
subtraction 25
sunsite.unc.edu 11
suppressible warning 17
suppressing preprocessing 17
switching between sections 45
..sym 56
symbol sizes, specifying 56
symbol types, specifying 56
symbols,

 exporting from DLLs 52
 importing from DLLs 52

.SYS 49, 62
TASM 11, 17, 50
TBYTE 19
TEST 128
test subdirectory 59
test registers 85
testing arbitrary numeric expressions 36
testing exact text identity 37
testing single-line macro existence 36
testing the context stack 36
testing token types 37
.text 49, 55, 57, 58
_TEXT 63

TIMES 21, 22, 26, 80, 81
TLINK 61
trailing colon 20
two-pass assembler 26
TWORD 19, 21
type, of symbols 56
-U option 16
-u option 16
UMOV 128
unary operators 25
%undef 16, 30
undefining macros 16
underscore, in C symbols 62
uninitialised 21
uninitialised storage 19
Unix 12
Unix source archive 12
unrolled loops 22
unsigned division 25
unsigned modulo 25
UPPERCASE 17, 52
USE16 51
USE32 51
user-defined errors 38
user-level assembler directives 42
user-level directives 45
VAL 59
valid characters 20
variable types 18
VERR 128
version number of NASM 42
VERW 128
Visual C++ 54
-w option 17
WAIT 128
warnings 17
WBINVD 129
Win32 12, 14, 50, 54, 70
Windows 59
Windows 95 12
Windows NT 12
write 55
writing operating systems 77
WRMSR 129
WRT 25, 50, 55, 57
WRT ..got 74
WRT ..gotoff 74
WRT ..gotpc 74
WRT ..plt 75
WRT ..sym 75
WWW page 11
www.cpan.org 12
www.delorie.com 59
www.pcorner.com 59

XADD 129
XBTS 129
XCHG 129
x2ftp.oulu.fi 59
XLATB 130
XOR 130

