Contents

Chapter 1: Introduction e e e 11
L1IWhat ISNASM? e 11
1.1.1Why Yet Another Assembler? L e e 11
112LicenceConditions e e 11
1.2 Contact Information L . 11
13Installation e e e 12
1.3.1Instaling NASM under MS-DOSorWindows 12
13.2Installing NASM under Unix oL 12
Chapter 2. RunningNASM 14
21NASM Command-LineSyntax e 14
2.1.1 The- o Option: Specifying the Output FileName 14
2.1.2The-f Option: Specifying the Output FileFormat 15
2.1.3The-1 Option: Generating aListingFile 15
214 The- EOption: Send ErrorstoaFile 15
2.15The-s Option: Send Errorstostdout 15
21.6 The-i Option: Include File Search Directories 15
2.1.7 The- p Option: Pre-IncludeaFile 16
2.1.8The-d Option: Pre-DefineaMacro 16
2.19The-u Option: UndefineaMacro 16
21.10The- e Option: PreprocessOnly 16
2.1.11 The- a Option: Don't PreprocessAtAIl 17
2.1.12 The - wOption: Enable or Disable Assembly Warnings 17
2.1.13 The NASMEnvironment Variable 17
22Quick Startfor MASM Users L e e e e e 17
22.1NASM IsCase-Sensitive Lo 17
2.2.2 NASM Requires Square Brackets For Memory References 18
2.2.3NASM Doesn't StoreVariableTypes 18
224NASM Doesmt ASSUVE o o e e e e e e 18

2.25NASM Doesn't Support Memory Models oo 19

2.2.6 Floating-Point Differences 19

2.2.7 Other Differences 19
Chapter 3: The NASM Language o v v i e e 20
3.1Layout of aNASM SourcelLine Lo 20
3.2Pseudo-Instructions L L L L e e 21
3.21DBandfriends: Declaring InitialisedData 21
3.2.2 RESB and friends: Declaring UninitialisedData 21
3.231 NCBI N: Including External Binary Files 21
324 EQU: DefiningConstants Lo e 22
3.25TI MES: Repedting InstructionsorData 22
33 Effective Addresses L L L e 22
34Constants L L L 23
BALNumericConstants e e e e 23
34.2Character Constants e e e e e e e 23
343StringConstants 24
34A4Foating-Point Constants Lo 24
BE5EXpressions L L L L L 24
351 :BitwiseOROperator e e e e e 25
3527 Bitwise XOR Operator e 25
353 & Bitwise AND Operator e e e 25
354 <<and>>: Bit Shift Operatorso 25
3.5.5+ and - : Addition and Subtraction Operators 25
35.6*,/,//,%and %6 Multiplicationand Division 25
3.5.7 Unary Operators: +,-,~andSEG 25
B6SEGandVWRT e e e 25
37Critical EXPressions e e e e e e 26
38Loca Labels e 27
Chapter 4: The NASM Preprocessor o v v v i i e e e e e e e 29
4.1Single-LineMacros o e e e e e e e e e e e e e e e e e 29
4.1.1 TheNormal Way: %gefine 29
4.1.2 Undefining macros: %undef Lo oL Lo Lo 30
4.1.3 Preprocessor Variables: %@ssi gno e 30
42 Multi-LineMacros: racro o e e e e e e e e e 30
4.2.1 Overloading Multi-LineMacroso 31

422Macro-Local Labels e e 32

4.2.3Greedy MacroParameters L L L L e 32

424 Default MacroParameters L L L o e e e e e e 33
4259%): Macro Parameter Counter L L Lo L oL o e e e 33
4.2.6 % ot at e: Rotating MacroParameterso 33
4.2.7 Concatenating Macro Parameters 000 e e e e e e 34
4.2.8 Condition CodesasMacro Parameterso 35
4.29Disabling Listing Expansiono 35
4.3 Conditional Assembly L L 36
4.3.1% f def : Testing Single-LineMacro Existence 36
432% fctx: TestingtheContextStack 36
4.3.3% f : Testing Arbitrary Numeric Expressions 36
434% fidnand% fi dni: Testing Exact Textldentity 37
435% fid, % fnum% fstr:TestingTokenTypes 37
4.3.6 %error: Reporting User-Defined Errors oo 38
4.4 Preprocessor Loops: % ep e e e e e 38
45Including Other Fileso 39
46TheContext Stack e 39
4.6.1 %push and %pop: Creating and Removing Contexts 39
46.2Context-Local Labels L 40
4.6.3 Context-Local Single-LineMacros00 40
46.4% epl : RenamingaContext 40
4.6.5 Example Use of the Context Stack: Block IFs 40
47 Standard Macros L L L e e e e 42
471 NASM MAJOR__and__NASM M NOR__:NASM Verson 42
472 FILE and__LINE_ :FileNameandLineNumber 42
4.7.3 STRUC and ENDSTRUC: Declaring Structure DataTypes 42
4.7.41 STRUC, AT and | END: Declaring Instances of Structures 43
4.75ALI GNand ALI GNB: DataAlignment 43
Chapter 5: Assembler Directives 45
5.1BI TS: Specifying Target ProcessorMode 45
5.2 SECTI ONor SEGVENT: Changing and Defining Sections 45
521The__SECT__MaCro« v v i i it e e e e e e e e 46
5.3 ABSOLUTE: Defining AbsoluteLabels 46
5.4 EXTERN: Importing Symbolsfrom Other Modules 47

5.5 GLOBAL: Exporting Symbolsto Other Modules 47

5.6 COWDON: Defining Common DataAreas v v v v v i 48

Chapter 6: Output Formats e e e e 49
6.1bi n: Flat-Form Binary Output 49
6.1.1 ORG Binary FileProgram Origin 49
6.1.2 bi n Extensionsto the SECTI ONDirective 50
6.20bj : Microsoft OMF Object Files 50
6.2.1 obj Extensionstothe SEGVENT Directive 50
6.2.2 GROUP: Defining Groupsof Segmentso 51
6.2.3 UPPERCASE: Disabling Case Sensitivity inOutput 52
6.241 MPORT: ImportingDLL Symbols, 52
6.2.5 EXPORT: Exporting DLL Symbols 52
6.2.6. . st art: Defining the Program Entry Point 53
6.2.7 obj Extensionstothe EXTERNDirective 53
6.2.8 0bj Extensionstothe COVMONDirective 53
6.3w n32: Microsoft Win32 ObjectFiles 54
6.3.1wi n32 Extensionstothe SECTI ONDirective 54
6.4 cof f : Common Object FileFormat 55
6.5el f:Linux ELFObjectFiles 55
6.5.1el f Extensionstothe SECTI ONDirective 55
6.5.2 Position-Independent Code: el f Special SymbolsandWRT 55
6.5.3el f Extensonstothe GLOBAL Directive 56
6.5.4 el f Extensionstothe COVMMON Directive 57
6.6aout :Linuxa. out ObjectFiles 57
6.7 aout b: NetBSD/FreeBSD/OpenBSD a. out ObjectFiles 57
6.8as86: Linuxas86 ObjectFiles 57
6.9r df : Relocatable Dynamic Object FileFormat 57
6.9.1 Requiring aLibrary: TheLl BRARY Directive 58
6.10dbg: Debugging Format L e 58
Chapter 7: Writing 16-bit Code (DOS, Windows3/3.1) 59
71 Producing. EXEFiles e 59
7.1.1Usingtheobj Format To Generate. EXEFiles 59
7.1.2Usingthebi n Format To Generate. EXEFiles 60
7.2Producing. COMFiles e 61
7.21Usingthebi n Format To Generate. COMFiles 61

7.2.2Usingtheobj Format To Generate. COMFiles 61

7.3Producing. SYSFiles e 62

74 Interfacingto 16-bitCPrograms Lo 62
7.4.1External Symbol Names L 62
742Memory Models L L L L L e e 63
7.4.3 Function Definitionsand FunctionCalls 63
744 AccessingDataltems L e 65
7.45c16. mac: Helper Macrosfor the 16-bitCInterface 66

7.5 Interfacingto Borland Pascal Programso 67
7.5.1ThePascal Calling Convention 67
7.5.2 Borland Pascal Segment Name Restrictions 68
753Usingcl6. mac WithPascal Programs 68

Chapter 8: Writing 32-bit Code (Unix, Win32,DJGPP) 70

8.1Interfacingto 32-bitCPrograms 70
8.1.1External Symbol Names 70
8.1.2 Function Definitionsand FunctionCalls 70
8.13AccessingDataltems Lo 72
8.1.4c32. mac: Helper Macrosfor the 32-bit C Interface 72

8.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries 73
8.2.1 Obtaining the Addressof theGOT 73
8.2.2Finding Your Local Dataltemso 74
8.2.3 Finding External and Common Dataltems 74
8.2.4 Exporting SymbolstotheLibrary User 75
8.2.5 Cdling Procedures OutsidetheLibrary 75
8.2.6 Generating theLibrary File o 76

Chapter 9: Mixing16and 32BitCode 77

0. 1MIXed-SIZEJUMPS e e e e e e e 77

9.2 Addressing Between Different-SizeSegmentso 77

9.3 Other Mixed-SizeInstructionso 78

Chapter 10: Troubleshooting 80

10.1CommonProblems L. L e 80
10.1.1 NASM Generates InefficientCodeo 80
10.1.2My JdumpsareOQutof Range L 80
10.2.30RGDoesntWork e e 80
10.1.4TIMESDoesmtWork e e 81

10.2BUGS « « o o e e e e 81

Appendix A: Intel x86 Instruction Reference Lo 83

A.1KeytoOperand Specifications 83
A.2KeytoOpcodeDescriptionso e 83

A21RegisterValues L e e 84

A22ConditionCodes e 85

A.2.3 Effective Address Encoding: ModR/MandSIB 85
A3KeytolnstructionFlags L e 86
A.4 AAA, AAS, AAM AAD: ASCII Adjustments L Lo 87
AS5ADC AddwithCarry e 87
ABGADD: AddIntegers e e 88
A7AND: Bitwise AND e e e e e 88
A.BARPL: Adjust RPL Fieldof Selector 89
A.9 BOUND: Check Array Index againstBounds 89
A10BSF,BSRBitScan e e e e e e e e e 89
ALLIBSWAP: BYtESWED . .« .« o v o o e e e e e e 89
A.12BT,BTC,BTR BTS:BitTest i i i i i e 90
A13CALL: Cal Subroutine L e e e 90
A.14 CBWCWD, CDQ CWDE: SignExtensionso 91
A15CLC CLD,CLI ,CLTS:ClearFlags« o o v i e e 91
A.16CMC: ComplementCarry Flag 91
A.17 CMOVcc: Conditional Move L. L 91
A8 CVP: ComparelIntegers e e e e 91
A.19 CVPSB, CMPSW CVPSD: Compare Strings . . . v v v v v v v v v e e e e e e 92
A.20 CMPXCHG, CMPXCH&A86: Compareand Exchange 92
A.21 CMPXCHGBB: Compare and Exchange Eight Bytes 93
A.22 CPUI D: Get CPU IdentificationCode 93
A.23DAA, DAS: Decimal Adjustments L Lo 93
A.2ADEC: Decrement Integer L L L e e e 94
A.25DI V: Unsigned Integer Divide e e 94
A26 EMMS Empty MMX State L e e e e e 94
A27ENTER: CreateStack Frame 94
A28 F2XML: Caculate 2**X-1 e e e e e 95
A.29 FABS: Floating-Point AbsoluteValueo 95
A.30 FADD, FADDP: Floating-Point Addition 95

A.31FBLD, FBSTP: BCD Floating-Point Loadand Store 95

A.32 FCHS: Floating-Point ChangeSign 95

A.33FCLEX, {FNCLEX}: Clear Floating-Point Exceptions 95
A.34 FCMOVcc: Floating-Point Conditional Move 96
A.35 FCOM FCOWP, FCOVPP, FCOM , FCOM P: Floating-Point Compare 96
A3BFCOS: CoSINE o o e e e e e e e 97
A.37 FDECSTP: Decrement Floating-Point Stack Pointer 97
A.38 FxDI Sl , FXENI : Disable and Enable Floating-Point Interrupts 97
A.39FDI V, FDI VP, FDI VR, FDI VRP: Floating-Point Division 97
A.40 FFREE: Flag Floating-Point RegisterasUnused 98
A.41Fl ADD: Floating-Point/Integer Addition 98
A.42 FI COM FI COVP: Floating-Point/Integer Compare« v v v v .. 98
A.43FI DI V, FI DI VR: Floating-Point/Integer Divison 98
A.44FI LD, FI ST, FI STP: Floating-Point/Integer Conversion 99
A.45Fl MJL: Floating-Point/Integer Multiplication 99
A.46 FI NCSTP: Increment Floating-Point Stack Pointer 99
AA7TFINIT,FNI NI T: Initidlise Floating-Point Unit 99
A .48 FI SUB: FHloating-Point/Integer Subtraction 99
A49FLD: Floating-PointLoad e 99
A50 FLDxx: Floating-Point Load Constants 100
A.51 FLDCW Load Floating-Point Control Word 100
A.52 FLDENV: Load Floating-Point Environment 100
A.53 FMUL, FMULP: Floating-Point Multiply 100
A.54 FNOP: Floating-Point No Operation v v v v v v v 100
A.55 FPATAN, FPTAN: Arctangentand Tangent 100
A.56 FPREM FPREML: Floating-Point Partial Remainder 101
A.57 FRNDI NT: Floating-Point RoundtoInteger 101
A .58 FSAVE, FRSTOR: Save/Restore Floating-Point State 101
A.59 FSCALE: Scale Floating-Point Value by Power of Two 101
A.60 FSETPM Set ProtectedMode 101
ABLESI N FSI NCCS: Sineand Cosine« . v v v v i v e e e 102
A.62 FSQRT: Floating-Point SquareRoot 102
A.63FST, FSTP: Floating-Point Store 102
A.64 FSTCW Store Floating-Point Control Word 102
A.65 FSTENV: Store Floating-Point Environment 102

A.66 FSTSW Store Floating-Point StatusWord 102

A.67 FSUB, FSUBP, FSUBR, FSUBRP: Floating-Point Subtract 103

ABBFTST: Test STO Against Zero o v v v i e e e e e e e e e 103
A.69 FUCOWKXx: Floating-Point Unordered Compare 103
A.70 FXAM ExamineClassof ValueinSTO 104
A.71 FXCH: Floating-Point Exchange 104
A.72 FXTRACT: Extract Exponent and Significand 104
A.73FYL2X, FYL2XP1: Compute Y timesLog2(X) or Log2(X+1) 104
ATZAHLT: HAt Processor o v v o e e e e e e e e e e e 104
AT751BTS: Insert BitString 104
A.761 DI V: Signed Integer Divide 105
A.771 MUL: Signed Integer Multiply 105
A78I N Inputfroml/OPort e 106
A791 NC:. IncrementInteger e e e e e 106
A.801 NSB, | NSWI NSD: Input String from1/OPort 106
A.81I NT: SoftwarelInterrupt 106
A.821 NT3,I NT1, | CEBP, | NTO1: Breakpoints 107
A.831 NTQ Interrupt if Overflow 107
A.841 NVD: InvalidateInternal Caches 107
A.851 NVLPG Invaidate TLBEntry 107
A.86| RET, | RETWI RETD: Returnfrom Interrupt 107
A87JCXZ, JECXZ: umpif CXIECX Zero v e e 108
ABBIMP:IUMP e e e e e 108
A.89Jcc: Conditional Branch Lo 108
AQLAHF: Load AHfromFags 108
A91LAR Load AccessRights L 109
A.92LDS, LES, LFS, LGS, LSS: Load Far Pointer 109
A.93LEA: Load Effective Address 109
A94LEAVE: Destroy Stack Frame Lo 109
A95LCDT, LI DT, LLDT: Load Descriptor Tables 109
A.96 LMSW Load/Store Machine StatusWordo 110
A.97 LOADALL, LOADALL286: Load Processor State 110
A.98LODSB, LODSW LODSD: LoadfromString 110
A.99 LOOP, LOOPE, LOOPZ, LOOPNE, LOOPNZ: Loop with Counter 110
A.100LSL: Load SegmentLimit 111

A101LTR Load Task Register e 111

A102 MOV: MoveData e e e e e 111

A.103 MOVD: Move Doubleword to/ffromMMX Register 112
A.104 MOVQ Move Quadword to/fromMMX Register L. 112
A.105 MOVSB, MOVSW MOVSD: Move Stringo e 112
A.106 MOVSX, MOVZX: Move Datawith Signor ZeroExtend 113
A.107 MUL: Unsigned Integer Multiplyo 113
A.108 NEG NOT: Two'sand OnesComplement 113
AJ09NOP: NoOperation o v v e e e e e e 113
ALI00OR BitwiseOR e e e 113
A.111 QUT: Output Datato I/OPort 114
A.112 QUTSB, QUTSW QUTSD: Output StringtoI/OPort 114
A.113 PACKSSDW PACKSSWB, PACKUSWB: Pack Data 115
A.114 PADDxx: MMX Packed Additiono 115
A.115 PADDSI W MMX Packed Addition to Implicit Destination 115
A.116 PAND, PANDN: MMX Bitwiss AND and AND-NOT 115
A.117 PAVEB: MMX Packed Averageo 116
A 118 PCWPxx: MMX Packed Comparison v v v v v v v e 116
A.119 PDI STI B: MMX Packed Distance and Accumulate with Implied Register 116
A.120 PMACHRI W MM X Packed Multiply and Accumulate with Rounding 116
A.121 PMADDVWD: MM X Packed Multiplyand Add 116
A.122 PMAGWN MMX Packed Magnitude 117
A.123 PMULHRW PMULHRI W MM X Packed Multiply High with Rounding 117
A.124 PMULHW PMULLW MMX Packed Multiply 117
A.125 PWccZB: MMX Packed Conditional Move 117
A.126 POP: Pop DatafromStack 117
A.127 POPAX: Pop All General-Purpose Regiisters 118
A.128 POPFx: PopFlagsRegister 118
A 129 POR MMX BitwiseOR e e e 118
A.130 PSLLX, PSRLX, PSRAX: MMX Bit Shifts 119
A.131 PSUBxXx: MMX Packed Subtraction 119
A.132 PSUBSI W MM X Packed Subtract with Saturation to Implied Destination 120
A133PUNPCKxxx:UnpackData o oo 120
A.134PUSH: PushDataonStack 120
A.135 PUSHAX: Push All General-Purpose Registers 121

A.136 PUSHFx: Push FlagsRegister 121

A.137 PXOR MMX Bitwise XOR 121

A.138 RCL, RCR: Bitwise Rotate through Carry Bit 122
A.139 RDVSR: Read Model-SpecificRegisters 122
A.140 RDPMC: Read Performance-Monitoring Counters 122
A 141 RDTSC. Read Time-Stamp Counter v v v v v v e oo 122
A.142 RET, RETF, RETN: Return from ProcedureCall 122
A.143ROL, ROR BitwiseRotate 123
A.144 RSM Resume from System-ManagementMode 123
A.145 SAHF: StoreAHtoFlags Lo 123
A.146 SAL, SAR: Bitwise Arithmetic Shifts 123
A147SALC. Set AL fromCarryFlag 124
A.148 SBB: Subtract withBorrow L 124
A.149 SCASB, SCASW SCASD: ScanString . . .« . v« v v v e e e e e 125
A.150 SETcc: Set Register from Condition 125
A.151 SCDT, SI DT, SLDT: Store Descriptor Table Pointers 125
A.152 SHL, SHR: Bitwise Logica Shifts 125
A.153 SHLD, SHRD: Bitwise Double-Precision Shifts 126
A.154 SM : System Management Interrupt L L L Lo 0oL 126
A.155 SMSW Store Machine StatusWord Lo Lo Lo 127
A.156 STC,STD, STl :SetFlags oo e e 127
A.157 STOSB, STOSW STOSD: StoreByteto String 127
A.158 STR StoreTask Register e 127
A.159 SUB: Subtract Integers e e e e e 127
A.160 TEST: Test Bits (notional bitwissAND) 128
A 161 UMOV: User MoveDatao e 128
A.162 VERR, VERW Verify Segment Readability/Writability 128
A.163WAI T: Wait for Floating-Point Processor 128
A.164 VBl NVD: Write Back and InvalidateCache 129
A.165 W\RVSR: Write Model-SpecificRegisters o0 129
A.166 XADD: Exchangeand Add s 129
A.167 XBTS: Extract BitString 129
A168 XCHG Exchange o o e e e e e 129
A.169 XLATB: Trandate ByteinLookup Table 130
A.170 XOR Bitwise ExclusiveOR 130

INndex e 131

1.1

11.1

1.1.2

1.2

Chapter 1: Introduction

What Is NASM?

The Netwide Assembler, NASM, is an 80x86 assembler designed for portability and modularity. It
supports a range of object file formats, including Linux a. out and ELF, NetBSD/FreeBSD, COFF,
Microsoft 16-bit OBJ and Win32. It will also output plain binary files. Its syntax is designed to be smple
and easy to understand, similar to Intel’s but less complex. It supports Pentium, P6 and MM X opcodes,
and has macro capability.

Why Yet Another Assembler?

The Netwide Assembler grew out of an ideaon conp. | ang. asm x86 (or possibly al t . | ang. asm
— | forget which), which was essentialy that there didn’t seem to be a good free x86-series assembler
around, and that maybe someone ought to write one.

» a86 isgood, but not free, and in particular you don’'t get any 32-bit capability until you pay. It's DOS
only, too.

e gas isfree, and ports over DOS and Unix, but it’s not very good, since it’s designed to be a back end
to gcc, which always feeds it correct code. So its error checking is minimal. Also, its syntax is
horrible, from the point of view of anyone trying to actually write anything in it. Plus you can’t write
16-bit code in it (properly).

e as86 isLinux-specific, and (my version at least) doesn’t seem to have much (or any) documentation.
« MASM isn't very good, and it's expensive, and it runs only under DOS.

e TASM is better, but still strives for MASM compatibility, which means millions of directives and tons
of red tape. And its syntax is essentialy MASM’s, with the contradictions and quirks that entails
(although it sorts out some of those by means of |deal mode). It's expensive too. And it’s DOS-only.

So here, for your coding pleasure, is NASM. At present it's still in prototype stage — we don’t promise
that it can outperform any of these assemblers. But please, please send us bug reports, fixes, helpful
information, and anything else you can get your hands on (and thanks to the many people who've done
this already! You al know who you are), and we'll improve it out of all recognition. Again.

Licence Conditions

Please see the file Li cence, supplied as part of any NASM distribution archive, for the licence
conditions under which you may use NASM.

Contact Information

The current version of NASM (since 0.98) are maintained by H. Peter Anvin, hpa@yt or. com If you
want to report a bug, please read section 10.2 first.

NASM hasaWWW pageathtt p: // www. cr yogen. coni Nasm
The original authors are e-mailable asj ul es@ar t hcor p. comand anaki n@obox. com

New releases of NASM ae wuploaded to ftp.kernel.org, sunsite.unc.edu,
ftp.simel.net and ftp. coast. net. Announcements are posted to conp. | ang. asm x86,

1.3
1.3.1

1.3.2

alt.lang.asm conp. os. | i nux. announce and conp. ar chi ves. nedos. announce (the
last oneis done automagically by uploadingtoft p. si m el . net).

If you don’t have Usenet access, or would rather be informed by e-mail when new releases come out, you
can subscribe to the nasm announce email list by sending an email containing the line
subscri be nasm announce tomaj or dono@ i nux. ker nel . org.

If you want information about NASM beta releases, please subscribe to the nasm bet a email list by

sending an email containing the line subscri be nasm beta to
maj or domo@ i nux. ker nel . org.
Installation

Installing NASM under MS-DOS or Windows

Once you’'ve obtained the DOS archive for NASM, nasnXXX. zi p (where XXX denotes the version
number of NASM contained in the archive), unpack it into its own directory (for examplec: \ nasnj.

The archive will contain four executable files: the NASM executable filesnasm exe and nasnw. exe,
and the NDISASM executable files ndi sasm exe and ndi sasnmw. exe. In each case, the file whose
name ends in wis a Win32 executable, designed to run under Windows 95 or Windows NT Intel, and the
other oneis a 16-hit DOS executable.

The only file NASM needs to run is its own executable, so copy (at least) one of nasm exe and
nasmw. exe to a directory on your PATH, or alternatively edit aut oexec. bat to add the nasm
directory to your PATH. (If you're only installing the Win32 version, you may wish to rename it to
nasm exe.)

That’s it — NASM is installed. You don't need the nasmdirectory to be present to run NASM (unless
you've added it to your PATH), so you can delete it if you need to save space; however, you may want to
keep the documentation or test programs.

If you've downloaded the DOS source archive, nasnXXXs. zi p, the nasmdirectory will also contain
the full NASM source code, and a selection of Makefiles you can (hopefully) use to rebuild your copy of
NASM from scratch. The file Readne lists the various Makefiles and which compilers they work with.

Note that the source files i nsnsa. ¢, i nsnsd. c, i nsnsi . h and i nsnsn. ¢ are automatically
generated from the master instruction table i nsns. dat by a Perl script; the file macros. ¢ is
generated from st andar d. mac by another Perl script. Although the NASM 0.98 distribution includes
these generated files, you will need to rebuild them (and hence, will need a Perl interpreter) if you change
i nsns. dat, st andar d. mac or the documentation. It is possible future source distributions may not
include these files at all. Ports of Perl for a variety of platforms, including DOS and Windows, are
available from www.cpan.org.

Installing NASM under Unix

Once you' ve obtained the Unix source archive for NASM, nasm X. XX. t ar. gz (where X. XX denotes
the version number of NASM contained in the archive), unpack it into a directory such as
/usr/1 ocal / src. Thearchive, when unpacked, will create its own subdirectory nasm X. XX.

NASM is an auto-configuring package: once you've unpacked it, cd to the directory it's been unpacked
into and type . / conf i gur e. This shell script will find the best C compiler to use for building NASM
and set up Makefiles accordingly.

Once NASM has auto-configured, you can type nake to build the nasmand ndi sasm binaries, and
then make install toinstal themin/usr/| ocal /bi n and instal the man pages nasm 1 and
ndi sasm 1 in/usr/ | ocal / man/ manl. Alternatively, you can give options such as - - pref i x to
the conf i gur e script (seethefilel NSTALL for more details), or install the programs yourself.

NASM also comes with a set of utilities for handling the RDOFF custom object-file format, which are in
the r dof f subdirectory of the NASM archive. You can build these with make rdf and install them
withmake rdf _i nstall,if youwant them.

If NASM fails to auto-configure, you may still be able to make it compile by using the fall-back Unix
makefile Makef i | e. unx. Copy or rename that file to Makef i | e and try typing neke. Thereisaso a
Makef i | e. unx fileinther dof f subdirectory.

2.1

211

Chapter 2: Running NASM

NASM Command-Line Syntax

To assemble afile, you issue acommand of the form

nasm -f <format> <fil enanme> [-0 <out put >]

For example,

nasm-f elf nyfile.asm

will assemble nyf i | e. asminto an ELF object filenyfi |l e. 0. And
nasm-f bin nyfile.asm-o nyfile.com

will assemble myfi | e. asminto araw binary filenyfil e. com

To produce a listing file, with the hex codes output from NASM displayed on the left of the original
sources, usethe - | option to give alisting file name, for example:

nasm-f coff nmyfile.asm-l nyfile.lst
To get further usage instructions from NASM, try typing
nasm - h

Thiswill aso list the available output file formats, and what they are.

If you use Linux but aren’t sure whether your systemisa. out or ELF, type

file nasm

(in the directory in which you put the NASM binary when you installed it). If it says something like
nasm ELF 32-bit LSB executable i386 (386 and up) Version 1

then your system is ELF, and you should use the option - f el f when you want NASM to produce
Linux object files. If it says

nasm Li nux/i 386 denand-paged executable (QVAG O

or something similar, your system is a. out, and you should use -f aout instead (Linux a. out
systems are considered obsolete, and are rare these days.)

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won't see any output at
all, unlessit gives error messages.

The - 0 Option: Specifying the Output File Name

NASM will normally choose the name of your output file for you; precisely how it does thisis dependent
on the object file format. For Microsoft object file formats (obj and wi n32), it will remove the . asm
extension (or whatever extension you like to use — NASM doesn’t care) from your source file name and
substitute . obj . For Unix object file formats (aout , cof f, el f and as86) it will substitute . 0. For
rdf, it will use . rdf, and for the bi n format it will simply remove the extension, so that
nyfi | e. asmproducesthe output filermyfi | e.

2.1.2

2.1.3

214

2.1.5

2.1.6

If the output file already exists, NASM will overwrite it, unless it has the same name as the input file, in
which caseit will give awarning and use nasm out asthe output file name instead.

For situations in which this behaviour is unacceptable, NASM provides the - o command-line option,
which allows you to specify your desired output file name. Y ou invoke - o by following it with the name
you wish for the output file, either with or without an intervening space. For example:

nasm -f bin programasm -o program com
nasm-f bin driver.asm-odriver.sys

The -f Option: Specifying the Output File Format

If you do not supply the - f option to NASM, it will choose an output file format for you itself. In the
distribution versions of NASM, the default is always bi n; if you’'ve compiled your own copy of NASM,
you can redefine OF_DEFAULT at compile time and choose what you want the default to be.

Like - 0, the intervening space between - f and the output file format isoptional; so-f el f and-fel f
are both valid.

A complete list of the available output file formats can be given by issuing the command nasm - h.
The -1 Option: Generating a Listing File

If you supply the - | option to NASM, followed (with the usual optional space) by a file name, NASM
will generate a source-listing file for you, in which addresses and generated code are listed on the left,
and the actual source code, with expansions of multi-line macros (except those which specifically request
no expansion in source listings: see section 4.2.9) on the right. For example:

nasm-f elf nyfile.asm-1 nyfile.lst
The - E Option: Send Errors to a File

Under MS-DOS it can be difficult (though there are ways) to redirect the standard-error output of a
program to a file. Since NASM usually produces its warning and error messages on st der r, this can
make it hard to capture the errorsif (for example) you want to load them into an editor.

NASM therefore provides the - E option, taking a filename argument which causes errorsto be sent to the
specified files rather than standard error. Therefore you can redirect the errorsinto afile by typing

nasm-E nyfile.err -f obj nmyfile.asm
The - s Option: Send Errors to st dout

The - s option redirects error messages to st dout rather than st der r, so it can be redirected under
MS-DOS. To assemblethefilenyf i | e. asmand pipe its output to the nor e program, you can type:

nasm-s -f obj nyfile.asm| nore
See also the - E option, section 2.1.4.
The -i Option: Include File Search Directories

When NASM sees the % ncl ude directive in a source file (see section 4.5), it will search for the given
file not only in the current directory, but also in any directories specified on the command line by the use
of the- i option. Therefore you can include files from a macro library, for example, by typing

nasm -ic:\macrolib\ -f obj nmyfile.asm
(Asusual, a space between - i and the path name is allowed, and optional).

NASM, in the interests of complete source-code portability, does not understand the file naming
conventions of the OS it is running on; the string you provide as an argument to the - i option will be
prepended exactly as written to the name of the include file. Therefore the trailing backslash in the above
example is necessary. Under Unix, atrailing forward slash is similarly necessary.

2.1.7

2.1.8

2.1.9

2.1.10

(Y ou can use this to your advantage, if you're really perverse, by noting that the option - i f oo will cause
% ncl ude "bar.i" tosearchforthefilef oobar.i ..)

If you want to define a standard include search path, similar to / usr /i ncl ude on Unix systems, you
should place one or more- i directivesin the NASMenvironment variable (see section 2.1.13).

For Makefile compatibility with many C compilers, this option can also be specified as- | .
The - p Option: Pre-Include a File

NASM allows you to specify files to be pre-included into your source file, by the use of the - p option. So
running

nasm nyfile.asm-p nyinc.inc

is equivalent to running nasm nyfi | e. asmand placing the directive % ncl ude "nyinc.inc" a
the start of thefile.

For consistency with the- | , - Dand - U options, this option can also be specified as - P.
The - d Option: Pre-Define a Macro

Just as the - p option gives an alternative to placing % ncl ude directives at the start of a source file, the
- d option gives an dternative to placing a%def i ne directive. Y ou could code

nasm nyfile.asm - dFOO=100
as an alternative to placing the directive
%lef i ne FOO 100

at the start of the file. You can miss off the macro value, as well: the option - dFQO is equivalent to
coding %def i ne FQOO. This form of the directive may be useful for selecting assembly-time options
which are then tested using % f def , for example - dDEBUG.

For Makefile compatibility with many C compilers, this option can aso be specified as - D.
The - u Option: Undefine a Macro

The - u option undefines a macro that would otherwise have been pre-defined, either automatically or by
a- p or - d option specified earlier on the command lines.

For example, the following command line:
nasm nyfil e.asm - dFO0O=100 - uFQO

would result in FOO not being a predefined macro in the program. This is useful to override options
specified at a different point in a Makefile.

For Makefile compatibility with many C compilers, this option can aso be specified as - U.
The - e Option: Preprocess Only

NASM allows the preprocessor to be run on its own, up to a point. Using the - e option (which requires
no arguments) will cause NASM to preprocess its input file, expand all the macro references, remove all
the comments and preprocessor directives, and print the resulting file on standard output (or save it to a
file, if the - o option is also used).

This option cannot be applied to programs which require the preprocessor to evaluate expressions which
depend on the values of symbols: so code such as

%ssign tablesize ($-tablestart)
will cause an error in preprocess-only mode.

2.1.11

2.1.12

2.1.13

2.2

221

The - a Option: Don’t Preprocess At All

If NASM is being used as the back end to a compiler, it might be desirable to suppress preprocessing
completely and assume the compiler has already done it, to save time and increase compilation speeds.
The - a option, requiring no argument, instructs NASM to replace its powerful preprocessor with a stub
preprocessor which does nothing.

The - wOption: Enable or Disable Assembly Warnings

NASM can observe many conditions during the course of assembly which are worth mentioning to the
user, but not a sufficiently severe error to justify NASM refusing to generate an output file. These
conditions are reported like errors, but come up with the word ‘warning’ before the message. Warnings
do not prevent NASM from generating an output file and returning a success status to the operating
system.

Some conditions are even less severe than that: they are only sometimes worth mentioning to the user.
Therefore NASM supports the - w command-line option, which enables or disables certain classes of
assembly warning. Such warning classes are described by a name, for example or phan- | abel s; you
can enable warnings of this class by the command-line option - w+or phan- | abel s and disable it by
-w or phan- | abel s.

The suppressible warning classes are:

e macr o- par ans covers warnings about multi-line macros being invoked with the wrong number of
parameters. This warning class is enabled by default; see section 4.2.1 for an example of why you
might want to disableit.

e orphan-1 abel s covers warnings about source lines which contain no instruction but define a label
without a trailing colon. NASM does not warn about this somewhat obscure condition by default; see
section 3.1 for an example of why you might want it to.

e nunber - overfl ow covers warnings about numeric constants which don’t fit in 32 bits (for
example, it's easy to type one too many Fs and produce Ox7f fffffff by mistake). This warning
classis enabled by default.

The NASMEnvironment Variable

If you define an environment variable called NASM the program will interpret it as a list of extra
command-line options, which are processed before the real command line. You can use this to define
standard search directories for include files, by putting - i optionsin the NASMvariable.

The value of the variable is split up at white space, so that thevalue-s -i c:\ nasml i b will be treated
as two separate options. However, that means that the value - ANAME="ny nane" won’'t do what you
might want, because it will be split at the space and the NASM command-line processing will get
confused by the two nonsensical words - dNAMVE=" ny and hane" .

To get round this, NASM provides a feature whereby, if you begin the NASM environment variable with
some character that isn’t a minus sign, then NASM will treat this character as the separator character for
options. So setting the NASM variable to the value ! - s! -i c: \ nasml i b is equivalent to setting it to
-s -ic:\nasnlib,but!-dNAVE="ny nane" will work.

Quick Start for MASM Users

If you're used to writing programs with MASM, or with TASM in MA SM-compatible (non-1deal) mode,
or with a86, this section attempts to outline the major differences between MASM’s syntax and
NASM'’s. If you're not already used to MASM, it’s probably worth skipping this section.

NASM Is Case-Sensitive

One simple difference is that NASM is case-sensitive. It makes a difference whether you call your label
f oo, Foo or FOO. If you're assembling to DOS or OS/2 . OBJ files, you can invoke the UPPERCASE

222

2.2.3

224

directive (documented in section 6.2) to ensure that al symbols exported to other code modules are
forced to be upper case; but even then, within a single module, NASM will distinguish between labels
differing only in case.

NASM Requires Square Brackets For Memory References

NASM was designed with simplicity of syntax in mind. One of the design goals of NASM is that it
should be possible, as far asis practical, for the user to look at a single line of NASM code and tell what
opcode is generated by it. You can’t do thisin MASM: if you declare, for example,

foo equ 1
bar dw 2

then the two lines of code

nov ax, f oo
nov ax, bar

generate completely different opcodes, despite having identical-looking syntaxes.

NASM avoids this undesirable situation by having a much simpler syntax for memory references. The
rule is simply that any access to the contents of a memory location requires square brackets around the
address, and any access to the address of a variable doesn’t. So an instruction of the form nov ax, f oo
will always refer to a compile-time constant, whether it's an EQU or the address of a variable; and to
access the contents of the variable bar , you must codenov ax, [bar].

This aso means that NASM has no need for MASM’s OFFSET keyword, since the MASM code
nov ax, of f set bar means exactly the same thing as NASM’s nov ax, bar . If you're trying to
get large amounts of MASM code to assemble sensibly under NASM, you can aways code
% defi ne of f set to make the preprocessor treat the OFFSET keyword as a no-op.

Thisissue is even more confusing in a86, where declaring a label with atrailing colon defines it to be a
‘label’ as opposed to a ‘variable and causes a86 to adopt NASM-style semantics, so in a86,
nov ax, var has different behaviour depending on whether var was declared as var: dw 0 (a
label) or var dw 0 (aword-size variable). NASM isvery simple by comparison: everything isalabel.

NASM, in the interests of simplicity, also does not support the hybrid syntaxes supported by MASM and
its clones, such as mov ax, t abl e[bx] , where a memory reference is denoted by one portion outside
square brackets and another portion inside. The correct syntax for the aboveisnmov ax, [t abl e+bx] .
Likewise, nov ax, es: [di] iswrongandnmov ax, [es: di] isright.

NASM Doesn’t Store Variable Types

NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM will
remember, on seeing var dw 0, that you declared var as aword-size variable, and will then be able to
fill in the ambiguity in the size of the instruction mov var, 2, NASM will deliberately remember
nothing about the symbol var except where it begins, and so you must explicitly code
nmov word [var], 2.

For this reason, NASM doesn't support the LODS, MOVS, STCS, SCAS, CWPS, I NS, or QUTS
instructions, but only supports the forms such as LODSB, MOVSW and SCASD, which explicitly specify
the size of the components of the strings being manipul ated.

NASM Doesn’t ASSUME

As part of NASM’s drive for simplicity, it also does not support the ASSUME directive. NASM will not
keep track of what values you choose to put in your segment registers, and will never automatically
generate a segment override prefix.

2.2.5

2.2.6

2.2.7

NASM Doesn’t Support Memory Models

NASM also does not have any directives to support different 16-bit memory models. The programmer has
to keep track of which functions are supposed to be called with a far call and which with a near call, and
is responsible for putting the correct form of RET instruction (RETN or RETF; NASM accepts RET itself
as an aternate form for RETN); in addition, the programmer is responsible for coding CALL FAR
instructions where necessary when calling external functions, and must also keep track of which external
variable definitions are far and which are near.

Floating-Point Differences

NASM uses different names to refer to floating-point registers from MASM: where MASM would call
them ST(0), ST(1) and so on, and a86 would call them simply 0, 1 and so on, NASM chooses to call
themst O, st 1 etc.

As of version 0.96, NASM now treats the instructions with ‘nowait’ forms in the same way as MASM-
compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was based on a
misunderstanding by the authors.

Other Differences

For historical reasons, NASM uses the keyword TWORD where MASM and compatible assemblers use
TBYTE.

NASM does not declare uninitialised storage in the same way as MASM: where a MASM programmer
might use stack db 64 dup (?), NASM requires st ack resb 64, intended to be read as
‘reserve 64 bytes'. For a limited amount of compatibility, since NASM treats ? as a valid character in
symbol names, you can code ? equ O and then writing dw ? will at least do something vaguely
useful. DUP is still not a supported syntax, however.

In addition to all of this, macros and directives work completely differently to MASM. See chapter 4 and
chapter 5 for further details.

3.1

Chapter 3: The NASM Language

Layout of a NASM Source Line

Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor directive or
an assembler directive: see chapter 4 and chapter 5) some combination of the four fields

| abel : i nstruction operands ; commrent

As usual, most of these fields are optional; the presence or absence of any combination of a label, an
instruction and a comment is alowed. Of course, the operand field is either required or forbidden by the
presence and nature of the instruction field.

NASM places no restrictions on white space within a line: labels may have white space before them, or
instructions may have no space before them, or anything. The colon after a label is also optional. (Note
that this means that if you intend to code | odsb alone on a line, and type | odab by accident, then
that’s still a valid source line which does nothing but define a label. Running NASM with the command-
line option - w+or phan- | abel s will cause it to warn you if you define alabel alone on aline without
atrailing colon.)

Valid charactersin labels are letters, numbers, _, $, #, @ ~, . , and ?. The only characters which may be
used as the first character of an identifier are letters, . (with special meaning: see section 3.8), _ and ?.
An identifier may also be prefixed with a $ to indicate that it is intended to be read as an identifier and
not a reserved word; thus, if some other module you are linking with defines a symbol called eax, you
can refer to $eax in NASM code to distinguish the symbol from the register.

The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU instructions,
MMX instructions and even undocumented instructions are all supported. The instruction may be
prefixed by LOCK, REP, REPE/REPZ or REPNE/REPNZ, in the usual way. Explicit address-size and
operand-size prefixes A16, A32, OL6 and O32 are provided — one example of their use is given in
chapter 9. You can aso use the name of a segment register as an instruction prefix: coding
es nmov [bx], ax is equivaent to coding nov [es: bx], ax. We recommend the latter syntax,
since it is consistent with other syntactic features of the language, but for instructions such as LODSB,
which has no operands and yet can require a segment override, there is no clean syntactic way to proceed
apart fromes | odsbh.

An instruction is not required to use a prefix: prefixes such as CS, A32, LOCK or REPE can appear on a
line by themselves, and NASM will just generate the prefix bytes.

In addition to actual machine instructions, NASM aso supports a number of pseudo-instructions,
described in section 3.2.

Instruction operands may take a number of forms: they can be registers, described simply by the register
name (e.g. ax, bp, ebx, cr 0: NASM does not use the gas—style syntax in which register names must
be prefixed by a %sign), or they can be effective addresses (see section 3.3), constants (section 3.4) or
expressions (section 3.5).

For floating-point instructions, NASM accepts a wide range of syntaxes. you can use two-operand forms
like MASM supports, or you can use NASM’s native single-operand forms in most cases. Details of all
forms of each supported instruction are given in appendix A. For example, you can code:

3.2

3.2.1

3.2.2

3.2.3

fadd st1l : this sets st0 := st0 + st1l
fadd stO, stl ; so does this
fadd st1,stO : this sets stl := stl1 + stO
fadd to st1l : so does this

Almost any floating-point instruction that references memory must use one of the prefixes DWORD,
QWORD or TWORD to indicate what size of memory operand it refers to.

Pseudo-Instructions

Pseudo-instructions are things which, though not real x86 machine instructions, are used in the instruction
field anyway because that's the most convenient place to put them. The current pseudo-instructions are
DB, DW DD, DQ and DT, their uninitialised counterparts RESB, RESW RESD, RESQ and REST, the
I NCBI N command, the EQU command, and the Tl MVES prefix.

DB and friends: Declaring Initialised Data

DB, DW DD, DQ and DT are used, much as in MASM, to declare initialised data in the output file. They
can be invoked in awide range of ways:

db 0x55 ; just the byte 0x55
db 0x55, 0x56, 0x57 three bytes in succession

db 'a’, 0x55 character constants are K

db "hello’, 13,10,' % SO are string constants

dw 0x1234 0x34 0x12

dw ' ab’ 0x41 0x42 (character constant)
dw " abc’ 0x41 0x42 0x43 0x00 (string)

dd 0x12345678
dd 1.234567e20

0x78 0x56 0x34 0x12

fl oati ng- poi nt const ant
dq 1.234567e20 doubl e- preci sion fl oat
dt 1.234567e20 ext ended- preci sion fl oat

DQand DT do not accept numeric constants or string constants as operands.
RESB and friends: Declaring Uninitialised Data

RESB, RESW RESD, RESQ and REST are designed to be used in the BSS section of a module: they
declare uninitialised storage space. Each takes a single operand, which is the number of bytes, words,
doublewords or whatever to reserve. As stated in section 2.2.7, NASM does not support the
MASM/TASM syntax of reserving uninitialised space by writing DW ? or similar things: thisis what it
doesinstead. The operand to a RESB—type pseudo-instruction is acritical expression: see section 3.7.

For example:

buf fer: resb 64 ; reserve 64 bytes
wordvar: resw 1 ; reserve a word
realarray resq 10 ; array of ten reals

I NCBI N: Including External Binary Files

I NCBI N is borrowed from the old Amiga assembler DevPac: it includes a binary file verbatim into the
output file. This can be handy for (for example) including graphics and sound data directly into a game
executable file. It can be called in one of these three ways:

incbin "file.dat" ; include the whole file

incbin "file.dat", 1024 ; skip the first 1024 bytes

incbin "file.dat",1024,512 ; skip the first 1024, and
; actually include at nost 512

dw ' a 0x41 Ox00 (it’s just a nunber)

3.24

3.2.5

3.3

EQU: Defining Constants

EQU defines a symbol to a given constant value: when EQU is used, the source line must contain a label.
The action of EQU is to define the given label name to the value of its (only) operand. This definition is
absolute, and cannot change later. So, for example,

nessage db 'hello, world’
nmsgl en equ $- nessage

defines nsgl en to be the constant 12. nsgl en may not then be redefined later. This is not a
preprocessor definition either: the value of nsgl en is evaluated once, using the value of $ (see section
3.5 for an explanation of $) at the point of definition, rather than being evaluated wherever it is
referenced and using the value of $ at the point of reference. Note that the operand to an EQU is also a
critical expression (section 3.7).

Tl MES: Repeating Instructions or Data

The TI MES prefix causes the instruction to be assembled multiple times. This is partly present as
NASM'’s equivalent of the DUP syntax supported by MASM—compatible assemblers, in that you can
code

zerobuf: tinmes 64 db O

or similar things; but Tl MES is more versatile than that. The argument to Tl MES is not just a numeric
constant, but a numeric expression, so you can do things like

buf fer: db 'hello, world’
ti mes 64-$+buffer db '

which will store exactly enough spaces to make the total length of buf f er up to 64. Findly, TI MES can
be applied to ordinary instructions, so you can code trivial unrolled loopsin it:

times 100 novsb

Note that there is no effective difference betweenti mes 100 resb 1 andresb 100, except that
the latter will be assembled about 100 times faster due to the internal structure of the assembler.

The operand to Tl MES, like that of EQU and those of RESB and friends, is a critical expression (section
3.7).

Note also that TI MES can’t be applied to macros: the reason for thisisthat TI MES is processed after the
macro phase, which alows the argument to Tl MES to contain expressions such as 64- $+buf f er as
above. To repeat more than one line of code, or a complex macro, use the preprocessor % ep directive.

Effective Addresses

An effective address is any operand to an instruction which references memory. Effective addresses, in
NASM, have a very smple syntax: they consist of an expression evaluating to the desired address,
enclosed in square brackets. For example:

wor dvar dw 123
nov ax, [wordvar]
nov ax, [wor dvar +1]
nov ax, [es: wor dvar +bx]

Anything not conforming to this simple system is not a valid memory reference in NASM, for example
es: wor dvar [bx] .

More complicated effective addresses, such as those involving more than one register, work in exactly the
same way:

3.4

3.4.1

3.4.2

nov eax, [ebx*2+ecx+of f set]
nov ax, [bp+di +8]

NASM is capable of doing algebra on these effective addresses, so that things which don’'t necessarily
look legal are perfectly all right:

nov eax, [ebx*5] ; assenbl es as [ebx*4+ebx]
nov eax, [| abel 1*2-1abel 2] ; ie [|abel 1+(| abel 1-1 abel 2)]

Some forms of effective address have more than one assembled form; in most such cases NASM will
generate the smallest form it can. For example, there are distinct assembled forms for the 32-bit effective
addresses [eax* 2+0] and [eax+eax], and NASM will generaly generate the latter on the grounds
that the former requires four bytesto store a zero offset.

NASM has a hinting mechanism which will cause [eax+ebx] and [ebx+eax] to generate different
opcodes; this is occasionally useful because [esi +ebp] and [ebp+esi] have different default
segment registers.

However, you can force NASM to generate an effective address in a particular form by the use of the
keywords BYTE, WORD, DWORD and NOSPLI T. If you need [eax+3] to be assembled using a double-
word offset field instead of the one byte NASM will normally generate, you can code[dwor d eax+3] .
Similarly, you can force NASM to use a byte offset for a small value which it hasn’'t seen on the first
pass (see section 3.7 for an example of such a code fragment) by using [byt e eax+offset]. As
specia cases, [byt e eax] will code [eax+0] with a byte offset of zero, and [dwor d eax] will
code it with a double-word offset of zero. The normal form, [eax] , will be coded with no offset field.

Similarly, NASM will split [eax* 2] into [eax+eax] because that allows the offset field to be absent
and space to be saved; in fact, it will also split [eax* 2+of f set] into [eax+eax+offset]. You
can combat this behaviour by the use of the NOSPLI T keyword: [nosplit eax*2] will force
[eax* 2+0] to be generated literally.

Constants
NASM understands four different types of constant: numeric, character, string and floating-point.
Numeric Constants

A numeric constant is simply a number. NASM allows you to specify numbers in a variety of number
bases, in avariety of ways. you can suffix H, Qand B for hex, octal and binary, or you can prefix Ox for
hex in the style of C, or you can prefix $ for hex in the style of Borland Pascal. Note, though, that the $
prefix does double duty as a prefix on identifiers (see section 3.1), so a hex number prefixed with a $
sign must have a digit after the $ rather than aletter.

Some examples:

nmov ax, 100 : deci mal

mov ax, 0azh ;. hex

nov ax, $0a2 ; hex again: the 0 is required
nov ax, Oxa2 ; hex yet again

nov ax, 777q ; octal

nov ax, 10010011b ; binary

Character Constants

A character constant consists of up to four characters enclosed in either single or double gquotes. The type
of quote makes no difference to NASM, except of course that surrounding the constant with single
guotes allows double quotes to appear within it and vice versa.

A character constant with more than one character will be arranged with little-endian order in mind: if
you code

3.4.3

3.4.4

3.5

nov eax, ' abcd’

then the constant generated isnot 0x61626364, but 0x64636261, so that if you were then to store the
value into memory, it would read abcd rather than dcba. This is also the sense of character constants
understood by the Pentium’s CPUI D instruction (see section A.22).

String Constants
String constants are only acceptable to some pseudo-instructions, namely the DB family and | NCBI N.

A string constant looks like a character constant, only longer. It is treated as a concatenation of
maximum-size character constants for the conditions. So the following are equivalent:

db ' hello’ ; string constant

db "h”,’e ,’1","1",”0 ; equival ent character constants
And the following are also equivalent:

dd 'ni nechars’ ; doubl eword string constant

dd 'nine’ ,’char’,’s’ : becones three doubl ewords

db ' ni nechars’,0,0,0 ; and really looks like this

Note that when used as an operand to db, a constant like ' ab’ is treated as a string constant despite
being short enough to be a character constant, because otherwise db * ab’ would have the same effect
asdb ' a’, which would be silly. Similarly, three-character or four-character constants are treated as
strings when they are operands to dw.

Floating-Point Constants

Floating-point constants are acceptable only as arguments to DD, DQ and DT. They are expressed in the
traditional form: digits, then a period, then optionally more digits, then optionally an E followed by an
exponent. The period is mandatory, so that NASM can distinguish between dd 1, which declares an
integer constant, and dd 1. O which declares a floating-point constant.

Some examples:

dd 1.2 ; an easy one
dg 1.el0 ; 10, 000, 000, 000
dqg 1.e+10 ; synonynous with 1.el0

dg 1.e-10 0. 000 000 000 1
dt 3.141592653589793238462 ; pi

NASM cannot do compile-time arithmetic on floating-point constants. This is because NASM is designed
to be portable — athough it always generates code to run on x86 processors, the assembler itself can run
on any system with an ANSI C compiler. Therefore, the assembler cannot guarantee the presence of a
floating-point unit capable of handling the Intel number formats, and so for NASM to be able to do
floating arithmetic it would have to include its own complete set of floating-point routines, which would
significantly increase the size of the assembler for very little benefit.

Expressions
Expressionsin NASM are similar in syntax to those in C.

NASM does not guarantee the size of the integers used to evaluate expressions at compile time: since
NASM can compile and run on 64-bit systems quite happily, don’'t assume that expressions are evaluated
in 32-bit registers and so try to make deliberate use of integer overflow. It might not aways work. The
only thing NASM will guarantee is what's guaranteed by ANSI C: you always have at least 32 hits to
work in.

NASM supports two specia tokens in expressions, allowing calculations to involve the current assembly
position: the $ and $$ tokens. $ evaluates to the assembly position at the beginning of the line

3.5.1

3.5.2

3.5.3

3.54

3.5.5

3.5.6

3.5.7

3.6

containing the expression; so you can code an infinite loop using JIMP $. $$ evaluates to the beginning
of the current section; so you can tell how far into the section you are by using ($- $3) .

The arithmetic operators provided by NASM are listed here, in increasing order of precedence.
| : Bitwise OR Operator

The | operator gives a bitwise OR, exactly as performed by the OR machine instruction. Bitwise OR is
the lowest-priority arithmetic operator supported by NASM.

A Bitwise XOR Operator
A provides the bitwise XOR operation.
&: Bitwise AND Operator
& provides the bitwise AND operation.
<< and >>: Bit Shift Operators

<< gives a bit-shift to the left, just asit doesin C. So 5<<3 evaluates to 5 times 8, or 40. >> gives a bit-
shift to the right; in NASM, such a shift is always unsigned, so that the bits shifted in from the left-hand
end are filled with zero rather than a sign-extension of the previous highest bit.

+ and - : Addition and Subtraction Operators
The+ and - operators do perfectly ordinary addition and subtraction.
* 1,11, %and %% Multiplication and Division

* s the multiplication operator. / and // are both division operators: / is unsigned divisonand// is
signed division. Similarly, %and %®6provide unsigned and signed modulo operators respectively.

NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo operator.

Since the % character is used extensively by the macro preprocessor, you should ensure that both the
signed and unsigned modul o operators are followed by white space wherever they appear.

Unary Operators: +, -, ~ and SEG

The highest-priority operators in NASM’s expression grammar are those which only apply to one
argument. - negates its operand, + does nothing (it's provided for symmetry with -), ~ computes the
one's complement of its operand, and SEG provides the segment address of its operand (explained in
more detail in section 3.6).

SEGand WRT

When writing large 16-bit programs, which must be split into multiple segments, it is often necessary to
be able to refer to the segment part of the address of a symbol. NASM supports the SEG operator to
perform this function.

The SEG operator returns the preferred segment base of a symbol, defined as the segment base relative to
which the offset of the symbol makes sense. So the code

nov ax, seg synbol
nov es, ax
nov bx, synbol

will load ES: BX with avalid pointer to the symbol synbol .

Things can be more complex than this: since 16-bit segments and groups may overlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one. NASM
lets you do this, by the use of the WRT (With Reference To) keyword. So you can do things like

3.7

nov ax, wei rd_seg ; weird _seg is a segnent base
nov es, ax
nov bx, synmbol wt weird_seg

toload ES: BX with adifferent, but functionally equivalent, pointer to the symbol synbol .

NASM supports far (inter-segment) calls and jumps by means of the syntax cal | segnent : of f set
where segrent and of f set both represent immediate values. So to cal a far procedure, you could
code either of

call (seg procedure): procedure
call weird_seg: (procedure wt weird_seg)

(The parentheses are included for clarity, to show the intended parsing of the above instructions. They are
not necessary in practice.)

NASM supports the syntax cal | far procedure as a synonym for the first of the above usages.
JMP worksidentically to CALL in these examples.

To declare afar pointer to a dataitem in a data segment, you must code
dw synbol, seg synbol

NASM supports no convenient synonym for this, though you can aways invent one using the macro
Processor.

Critical Expressions

A limitation of NASM is that it is a two-pass assembler; unlike TASM and others, it will always do
exactly two assembly passes. Therefore it is unable to cope with source files that are complex enough to
require three or more passes.

The first pass is used to determine the size of all the assembled code and data, so that the second pass,
when generating all the code, knows al the symbol addresses the code refers to. So one thing NASM
can’'t handle is code whose size depends on the value of a symbol declared after the code in question. For
example,

tinmes (label-$) db O
| abel : db '\Where am | ?’

The argument to Tl MES in this case could equaly legally evaluate to anything at all; NASM will reject
this example because it cannot tell the size of the Tl MES line when it first sees it. It will just as firmly
reject the slightly paradoxical code

times (label-$+1) db O
| abel : db ' NOW where am | ?’

in which any value for the TI MES argument is by definition wrong!

NASM regjects these examples by means of a concept called a critical expression, which is defined to be
an expression whose value is required to be computable in the first pass, and which must therefore
depend only on symbols defined before it. The argument to the TI MES prefix is a critical expression; for
the same reason, the arguments to the RESB family of pseudo-instructions are also critical expressions.

Critical expressions can crop up in other contexts as well: consider the following code.

nov ax, synbol 1
synbol 1 equ synbol 2
synbol 2:

On the first pass, NASM cannot determine the value of synbol 1, because synbol 1 is defined to be
equal to synmbol 2 which NASM hasn’t seen yet. On the second pass, therefore, when it encounters the

3.8

linenmov ax, symnbol 1, it is unable to generate the code for it because it still doesn’t know the value of
synbol 1. On the next line, it would see the EQU again and be able to determine the value of synbol 1,
but by then it would be too late.

NASM avoids this problem by defining the right-hand side of an EQU statement to be a critical
expression, so the definition of symbol 1 would be rejected in the first pass.

Thereisaredated issue involving forward references: consider this code fragment.

nov eax, [ebx+of f set]
of f set equ 10

NASM, on pass one, must calculate the size of the instruction mov eax, [ebx+of f set] without
knowing the value of of f set . It has no way of knowing that of f set is small enough to fit into a one-
byte offset field and that it could therefore get away with generating a shorter form of the
effective-address encoding; for all it knows, in pass one, of f set could be a symbol in the code
segment, and it might need the full four-byte form. So it is forced to compute the size of the instruction to
accommodate a four-byte address part. In pass two, having made this decision, it is now forced to honour
it and keep the instruction large, so the code generated in this case is not as small as it could have been.
This problem can be solved by defining of f set before using it, or by forcing byte size in the effective
addressby coding [byt e ebx+of fset].

Local Labels

NASM gives specia treatment to symbols beginning with a period. A label beginning with a single period
is treated as a local label, which means that it is associated with the previous non-local label. So, for
example:

| abel 1 . sone code

.1 oop ; sonme nore code
jne .loop
ret

| abel 2 ;. sone code

| oop : some nore code
jne .loop
ret

In the above code fragment, each JNE instruction jumps to the line immediately before it, because the two
definitions of . | oop are kept separate by virtue of each being associated with the previous non-local
label.

This form of local label handling is borrowed from the old Amiga assembler DevPac; however, NASM
goes one step further, in alowing access to local labels from other parts of the code. This is achieved by
means of defining a local label in terms of the previous non-loca label: the first definition of . | oop
above is really defining a symbol called | abel 1. | oop, and the second defines a symbol called
| abel 2. 1 oop. So, if you really needed to, you could write

| abel 3 ;. SOonMe nore code
: and sone nore
jmp | abel 1.1 oop

Sometimes it is useful — in a macro, for instance — to be able to define a label which can be referenced
from anywhere but which doesn’t interfere with the normal local-label mechanism. Such alabel can’t be
non-local because it would interfere with subsequent definitions of, and references to, local labels; and it
can't be local because the macro that defined it wouldn’t know the label’s full name. NASM therefore
introduces a third type of label, which is probably only useful in macro definitions: if alabel begins with
the special prefix . . @ then it does nothing to the local 1abel mechanism. So you could code

| abel 1: :a non-|ocal | abel

.l ocal: ; this is really |abell.local
.. @ oo: ; this is a special synbol
| abel 2: : anot her non-I|ocal | abel
.l ocal : ; this is really | abel 2.1ocal
jmp .. @ oo ; this will junp three lines up

NASM has the capacity to define other special symbols beginning with a double period: for example,
.. Start isused to specify the entry point in the obj output format (see section 6.2.6).

4.1
41.1

Chapter 4. The NASM Preprocessor

NASM contains a powerful macro processor, which supports conditional assembly, multi-level file
inclusion, two forms of macro (single-line and multi-line), and a ‘context stack’ mechanism for extra
macro power. Preprocessor directives al begin with a%sign.

Single-Line Macros
The Normal Way: %def i ne

Single-line macros are defined using the %aef i ne preprocessor directive. The definitions work in a
similar way to C; so you can do things like

%define ctrl Ox1F &
%lef i ne param(a, b) ((a)+(a)*(b))
nov byte [param(2, ebx)], ctrl 'D

which will expand to
nmov byte [(2)+(2)*(ebx)], Ox1F & 'D
When the expansion of a single-line macro contains tokens which invoke another macro, the expansion is
performed at invocation time, not at definition time. Thus the code
%lef i ne a(x) 1+b(x)
Y%define b(x) 2*x
nov ax, a(8)

will evaluate in the expected way to nov ax, 1+2* 8, even though the macro b wasn't defined at the
time of definition of a.

Macros defined with %def i ne are case sensitive: after ¥def i ne foo bar, only f oo will expand to
bar: Foo or FOO will not. By using % def i ne instead of %def i ne (the ‘i’ stands for ‘insensitive’)
you can define all the case variants of amacro at once, so that % def i ne f oo bar would causef oo,
Foo, FOO, f O0and so on al to expand to bar .

There is a mechanism which detects when a macro call has occurred as a result of a previous expansion of
the same macro, to guard against circular references and infinite loops. If this happens, the preprocessor
will only expand the first occurrence of the macro. Hence, if you code

%lef i ne a(x) 1+a(x)
nov ax, a(3)

the macro a(3) will expand once, becoming 1+a(3) , and will then expand no further. This behaviour
can be useful: see section 8.1 for an example of its use.

Y ou can overload single-line macros: if you write

%lef i ne foo(x) 1+x
%lef i ne foo(x,y) 1+x*y

the preprocessor will be able to handle both types of macro call, by counting the parameters you pass; so
f oo(3) will become 1+3 whereasf oo(ebx, 2) will become 1+ebx* 2. However, if you define

4.1.2

4.1.3

4.2

%define foo bar

then no other definition of f oo will be accepted: a macro with no parameters prohibits the definition of
the same name as a macro with parameters, and vice versa.

This doesn't prevent single-line macros being redefined: you can perfectly well define a macro with
%lef i ne foo bar

and then re-define it later in the same source file with

%lefine foo baz

Then everywhere the macro f 00 is invoked, it will be expanded according to the most recent definition.
Thisis particularly useful when defining single-line macros with ¥assi gn (see section 4.1.3).

You can pre-define single-line macros using the ‘-d’ option on the NASM command line: see section
2.1.8.

Undefining macros: %undef
Single-line macros can be removed with the Yandef command. For example, the following sequence:

%defi ne foo bar
%undef foo
11 11nov eax, foo

will expand to the instruction nov eax, f 00, since after Yundef the macrof oo isno longer defined.

Macros that would otherwise be pre-defined can be undefined on the command-line using the *-u’ option
on the NASM command line: see section 2.1.9.

Preprocessor Variables: %assi gn

An aternative way to define single-line macros is by means of the %assi gn command (and its case
sensitivecase-insensitive counterpart % assi gn, which differs from %assi gn in exactly the same way
that % def i ne differsfrom %gef i ne).

%assi gn is used to define single-line macros which take no parameters and have a numeric value. This
value can be specified in the form of an expression, and it will be evaluated once, when the %&assi gn
directiveis processed.

Like %def i ne, macros defined using %@assi gn can be re-defined later, so you can do things like
Y%assign i i+1
to increment the numeric value of a macro.

%assi gn is useful for controlling the termination of % ep preprocessor loops: see section 4.4 for an
example of this. Another use for %assi gn isgivenin section 7.4 and section 8.1.

The expression passed to %assi gn is a critical expression (see section 3.7), and must also evaluate to a
pure number (rather than a relocatable reference such as a code or data address, or anything involving a
register).

Multi-Line Macros: %racr o

Multi-line macros are much more like the type of macro seen in MASM and TASM: a multi-line macro
definition in NASM looks something like this.

%racro prol ogue 1
push ebp
nov ebp, esp

42.1

sub esp, %
%&ndnmacr o

This defines a C-like function prologue as a macro: so you would invoke the macro with a call such as
nmyf unc: prol ogue 12
which would expand to the three lines of code

nmyf unc: push ebp
nov ebp, esp
sub esp, 12

The number 1 after the macro name in the %racr o line defines the number of parameters the macro
pr ol ogue expects to receive. The use of %4 inside the macro definition refers to the first parameter to
the macro call. With a macro taking more than one parameter, subsequent parameters would be referred
toas %2, 98 and so on.

Multi-line macros, like single-line macros, are case-sensitive, unless you define them using the alternative
directive % macr o.

If you need to pass a comma as part of a parameter to a multi-line macro, you can do that by enclosing
the entire parameter in braces. So you could code things like

%racro silly 2

9R2: db %

%endnmacr o
silly "a', letter_a ; letter_a: db’a
silly "ab’, string_ab ; string_ab: db ’ab’
silly {13,10}, crlf cocerlf: db 13,10

Overloading Multi-Line Macros

As with single-line macros, multi-line macros can be overloaded by defining the same macro name
several times with different numbers of parameters. This time, no exception is made for macros with no
parameters at all. So you could define

%racro prol ogue 0
push ebp
nov ebp, esp

%endmacr o

to define an alternative form of the function prologue which allocates no local stack space.

Sometimes, however, you might want to ‘overload’ a machine instruction; for example, you might want
to define

%racro push 2
push %
push %2

%endnacr o

so that you could code

push ebx ; this line is not a macro call
push eax, ecx ; but this one is

Ordinarily, NASM will give awarning for the first of the above two lines, since push is now defined to
be a macro, and is being invoked with a number of parameters for which no definition has been given.
The correct code will still be generated, but the assembler will give a warning. This warning can be
disabled by the use of the - w- macr o- par ans command-line option (see section 2.1.12).

4.2.2

4.2.3

Macro-Local Labels

NASM alows you to define labels within a multi-line macro definition in such a way as to make them
local to the macro call: so calling the same macro multiple times will use a different |abel each time. Y ou
do this by prefixing 9846to the label name. So you can invent an instruction which executes a RET if the Z
flag is set by doing this:

%racro retz O
j nz %skip
ret

W ki p:

%&ndnacr o

You can call this macro as many times as you want, and every time you call it NASM will make up a
different ‘real’ name to substitute for the label %8&ki p. The names NASM invents are of the form
.. @345. ski p, where the number 2345 changes with every macro call. The . . @prefix prevents
macro-local labels from interfering with the local label mechanism, as described in section 3.8. You
should avoid defining your own labels in this form (the . . @prefix, then a number, then another period)
in case they interfere with macro-local labels.

Greedy Macro Parameters

Occasionally it is useful to define a macro which lumps its entire command line into one parameter
definition, possibly after extracting one or two smaller parameters from the front. An example might be a
macro to write atext string to afilein MS-DOS, where you might want to be able to write

witefile [fil ehandl e],"hello, world", 13, 10

NASM allows you to define the last parameter of a macro to be greedy, meaning that if you invoke the
macro with more parameters than it expects, al the spare parameters get lumped into the last defined one
along with the separating commas. So if you code:

%mcro witefile 2+
jmp %endstr
0Wstr: db %@
%Wendstr: nov dx, Wstr
nov cx, Wendstr- Westr
nov bx, %4
nov ah, 0x40
int 0x21
%&ndnmacr o

then the example call to wri t efi |l e above will work as expected: the text before the first comma,
[filehandl e], isused as the first macro parameter and expanded when % is referred to, and all the
subsequent text islumped into %2 and placed after the db.

The greedy nature of the macro isindicated to NASM by the use of the + sign after the parameter count
on the %racr o line.

If you define a greedy macro, you are effectively telling NASM how it should expand the macro given
any number of parameters from the actual number specified up to infinity; in this case, for example,
NASM now knows what to do when it seesa cal towitefil e with 2, 3, 4 or more parameters.
NASM will take this into account when overloading macros, and will not allow you to define another
formof wri t ef i | e taking 4 parameters (for example).

Of course, the above macro could have been implemented as a non-greedy macro, in which case the call
to it would have had to look like

witefile [filehandle], {"hello, world", 13, 10}

4.2.4

4.2.5

4.2.6

NASM provides both mechanisms for putting commas in macro parameters, and you choose which one
you prefer for each macro definition.

See section 5.2.1 for a better way to write the above macro.
Default Macro Parameters

NASM also allows you to define a multi-line macro with a range of allowable parameter counts. If you
do this, you can specify defaults for omitted parameters. So, for example:

%acro die 0-1 "Painful programdeath has occurred.”
witefile 2,%
mov ax, 0x4c01
int 0x21

%endmacr o

This macro (which makes use of thewr i t ef i | e macro defined in section 4.2.3) can be called with an
explicit error message, which it will display on the error output stream before exiting, or it can be called
with no parameters, in which case it will use the default error message supplied in the macro definition.

In general, you supply a minimum and maximum number of parameters for a macro of this type; the
minimum number of parameters are then required in the macro call, and then you provide defaults for the
optional ones. So if amacro definition began with the line

%racro foobar 1-3 eax, [ebx+2]

then it could be called with between one and three parameters, and %4 would always be taken from the
macro call. 92, if not specified by the macro call, would default to eax, and %3 if not specified would
default to [ebx+2] .

You may omit parameter defaults from the macro definition, in which case the parameter default is taken
to be blank. This can be useful for macros which can take a variable number of parameters, since the %9
token (see section 4.2.5) allows you to determine how many parameters were really passed to the macro
cal.

This defaulting mechanism can be combined with the greedy-parameter mechanism; so the di e macro
above could be made more powerful, and more useful, by changing the first line of the definition to

%acro die 0-1+ "Painful program death has occurred.", 13,10

The maximum parameter count can be infinite, denoted by *. In this case, of course, it is impossible to
provide afull set of default parameters. Examples of this usage are shown in section 4.2.6.

%0: Macro Parameter Counter

For a macro which can take a variable number of parameters, the parameter reference %0 will return a
numeric constant giving the number of parameters passed to the macro. This can be used as an argument
to % ep (see section 4.4) in order to iterate through al the parameters of a macro. Examples are given in
section 4.2.6.

% ot at e: Rotating Macro Parameters

Unix shell programmers will be familiar with the shi ft shell command, which allows the arguments
passed to a shell script (referenced as $1, $2 and so on) to be moved left by one place, so that the
argument previously referenced as $2 becomes available as $1, and the argument previously referenced
as$1 isno longer available at all.

NASM provides a similar mechanism, in the form of % ot at e. Asits hame suggests, it differs from the
Unix shi ft in that no parameters are lost: parameters rotated off the left end of the argument list
reappear on the right, and vice versa.

4.2.7

% ot at e is invoked with a single numeric argument (which may be an expression). The macro
parameters are rotated to the left by that many places. If the argument to % ot at e is negative, the
macro parameters are rotated to the right.

So a pair of macros to save and restore a set of registers might work as follows:

%racro nul ti push 1-*
Yep %
push %
% otate 1
%endr ep
%endmacr o

This macro invokes the PUSH instruction on each of its arguments in turn, from left to right. It begins by
pushing its first argument, %4, then invokes % ot at e to move al the arguments one place to the | eft, so
that the original second argument is now available as %d.. Repeating this procedure as many times as
there were arguments (achieved by supplying %8 as the argument to % ep) causes each argument in turn
to be pushed.

Note also the use of * as the maximum parameter count, indicating that there is no upper limit on the
number of parameters you may supply to thenul t i push macro.

It would be convenient, when using this macro, to have a POP equivaent, which didn't require the
arguments to be given in reverse order. Ideally, you would write the nul t i push macro call, then cut-
and-paste the line to where the pop needed to be done, and change the name of the caled macro to
nmul ti pop, and the macro would take care of popping the registers in the opposite order from the onein
which they were pushed.

This can be done by the following definition:

%acro nultipop 1-*
%Wep %
%Wotate -1

pop %4
%endr ep
%endmacr o

This macro begins by rotating its arguments one place to the right, so that the original last argument
appears as %d. This is then popped, and the arguments are rotated right again, so the second-to-last
argument becomes %d.. Thus the arguments are iterated through in reverse order.

Concatenating Macro Parameters

NASM can concatenate macro parameters on to other text surrounding them. This alows you to declare a
family of symbols, for example, in a macro definition. If, for example, you wanted to generate a table of
key codes along with offsets into the table, you could code something like

%acro keytab entry 2

keypos%d equ $-keytab
db %R

%endnmacr o

keyt ab:
keytab entry F1,128+1
keytab _entry F2,128+2
keytab_entry Return, 13

which would expand to

keyt ab:
keyposF1l equ $-keytab

4.2.8

4.2.9

db 128+1
keyposF2 equ $-keytab

db 128+2
keyposRet urn equ $-keytab

db 13

You can just as easily concatenate text on to the other end of a macro parameter, by writing %4.f oo.

If you need to append a digit to a macro parameter, for example defining labels f ool and f 002 when
passed the parameter f 00, you can't code %41 because that would be taken as the eleventh macro
parameter. Instead, you must code %4 1} 1, which will separate the first 1 (giving the number of the
macro parameter) from the second (literal text to be concatenated to the parameter).

This concatenation can aso be applied to other preprocessor in-line objects, such as macro-local labels
(section 4.2.2) and context-local labels (section 4.6.2). In al cases, ambiguities in syntax can be resolved
by enclosing everything after the % sign and before the litera text in braces. so 9% % oo} bar
concatenates the text bar to the end of the real name of the macro-loca label %84 oo. (This is
unnecessary, since the form NASM uses for the real names of macro-local labels means that the two
usages % % oo} bar and %84 oobar would both expand to the same thing anyway; nevertheless, the
capability isthere.)

Condition Codes as Macro Parameters

NASM can give special treatment to a macro parameter which contains a condition code. For a start, you
can refer to the macro parameter %4 by means of the aternative syntax %1, which informs NASM that
this macro parameter is supposed to contain a condition code, and will cause the preprocessor to report
an error message if the macro is called with a parameter which isnot avalid condition code.

Far more usefully, though, you can refer to the macro parameter by means of % 1, which NASM wiill
expand as the inverse condition code. So the r et z macro defined in section 4.2.2 can be replaced by a
general conditional-return macro like this:

%racro retc 1
j% 1 %skip
ret

%Wski p:

%endnacr o

This macro can now be invoked using calls like r et ¢ ne, which will cause the conditional-jump
instruction in the macro expansion to come out asJE, or r et ¢ po which will make the jump a JPE.

The %+1 macro-parameter reference is quite happy to interpret the arguments CXZ and ECXZ as valid
condition codes; however, % 1 will report an error if passed either of these, because no inverse condition
code exists.

Disabling Listing Expansion

When NASM is generating alisting file from your program, it will generally expand multi-line macros by
means of writing the macro call and then listing each line of the expansion. This allows you to see which
instructions in the macro expansion are generating what code; however, for some macros this clutters the
listing up unnecessarily.

NASM therefore provides the . nol i st qualifier, which you can include in a macro definition to inhibit
the expansion of the macro in the listing file. The . nol i st qualifier comes directly after the number of
parameters, like this;

%racro foo 1.nolist
Or like this:
%acro bar 1-5+.nolist a,b,c,d, e, f,g,h

4.3

431

4.3.2

4.3.3

Conditional Assembly

Similarly to the C preprocessor, NASM allows sections of a source file to be assembled only if certain
conditions are met. The general syntax of this feature looks like this:

% f <condi ti on>

; sone code which only appears if <condition> is net

%l i f<condition2>

; only appears if <condition> is not met but <condition2> is
%l se

; this appears if neither <condition> nor <condition2> was net
%endi f

The %l se clause is optional, asisthe %l i f clause. You can have more than one %l i f clause as
well.

% f def : Testing Single-Line Macro Existence

Beginning a conditional-assembly block with the line % f def MACRO will assemble the subsequent
code if, and only if, a single-line macro called MACRO is defined. If not, then the %el i f and %l se
blocks (if any) will be processed instead.

For example, when debugging a program, you might want to write code such as

; performsonme function
% f def DEBUG

witefile 2,"Function perfornmed successfully", 13,10
%endi f

; go and do sonething el se

Then you could use the command-line option - dDEBUG to create a version of the program which
produced debugging messages, and remove the option to generate the fina release version of the
program.

Y ou can test for a macro not being defined by using % f ndef instead of % f def . You can also test for
macro definitionsin %el i f blocksby using %el i f def and %l i f ndef .

% f ct x: Testing the Context Stack

The conditional-assembly construct % f ct x ct xnane will cause the subsequent code to be assembled
if and only if the top context on the preprocessor’s context stack has the name ct xname. As with
% f def , theinverseand %el i f forms% f nct x, %el i f ct x and %l i f nct x are also supported.

For more details of the context stack, see section 4.6. For asample use of % f ct x, see section 4.6.5.
% f : Testing Arbitrary Numeric Expressions

The conditional-assembly construct % f expr will cause the subsequent code to be assembled if and
only if the value of the numeric expression expr isnon-zero. An example of the use of thisfeatureisin
deciding when to break out of a% ep preprocessor |oop: see section 4.4 for a detailed example.

The expression given to % f , and its counterpart %€l i f , isacritical expression (see section 3.7).

% f extends the normal NASM expression syntax, by providing a set of relational operators which are
not normally available in expressions. The operators =, <, >, <=, >= and <> test equality, less-than,
greater-than, less-or-equal, greater-or-equal and not-equal respectively. The C-like forms == and ! = are
supported as alternative forms of = and <>. In addition, low-priority logical operators &&, "™ and | | are
provided, supplying logical AND, logical XOR and logical OR. These work like the C logical operators
(athough C has no logical XOR), in that they always return either 0 or 1, and treat any non-zero input as
1 (so that **, for example, returns 1 if exactly one of itsinputs is zero, and O otherwise). The relational
operators also return 1 for true and O for false.

434 % fidnand % fidni: Testing Exact Text Identity

4.3.5

The construct 9% fi dn text 1, text2 will cause the subsequent code to be assembled if and only if
text 1 and t ext 2, after expanding single-line macros, are identical pieces of text. Differences in white
space are not counted.

% fidni issmilarto% fi dn, but is case-insensitive.

For example, the following macro pushes a register or number on the stack, and allows you to treat | P as
area register:

%acro pushparam 1
%Wfidni 9%,ip

call %4 abel
%4 abel :
%l se

push %
%endi f
%&ndnacr o

Like most other % f constructs, % f i dn has a counterpart %! i f i dn, and negative forms % f ni dn
and %el i f ni dn. Similarly, % fi dni has counterparts%el i fi dni ,% f ni dni and%el i f ni dni .

% fid,%fnum% fstr: Testing Token Types

Some macros will want to perform different tasks depending on whether they are passed a number, a
string, or an identifier. For example, a string output macro might want to be able to cope with being
passed either a string constant or a pointer to an existing string.

The conditional assembly construct % f i d, taking one parameter (which may be blank), assembles the
subsequent code if and only if the first token in the parameter exists and is an identifier. % f numworks
similarly, but tests for the token being a numeric constant; % f st r testsfor it being a string.

For example, the wri t ef i | e macro defined in section 4.2.3 can be extended to take advantage of
% f st r inthefollowing fashion:

%macro witefile 2-3+

% fstr 92

jmp %Wendstr
%f 9% = 3
%Wstr: 11 db %@, 93
%l se
Wstr: 11 db %@
%endi f

%Wendstr: nmov dx, Wstr
nov cX, W®endstr-%str
%l se
11 nov dx, @
11 nov cXx, 93

%endi f
nov bx, %d
nov ah, 0x40
int 0x21
%e&ndmacr o

Thenthewr i t ef i | e macro can cope with being called in either of the following two ways:

witefile [file], strpointer, |ength
witefile [file], "hello", 13, 10

4.3.6

4.4

Inthefirst, st r poi nt er isused as the address of an aready-declared string, and | engt h isused asits
length; in the second, a string is given to the macro, which therefore declares it itself and works out the
address and length for itself.

Note the use of % f inside the % f st r : thisis to detect whether the macro was passed two arguments
(so the string would be a single string constant, and db %2 would be adequate) or more (in which case,
all but the first two would be lumped together into 98, and db %2, %3 would be required).

The usual Y&l i f XXX, % f nXXX and %&l i f nXXX versions exist for each of % fi d, % f numand
% fstr.

%er r or : Reporting User-Defined Errors

The preprocessor directive %er r or will cause NASM to report an error if it occurs in assembled code.
So if other users are going to try to assemble your source files, you can ensure that they define the right
macros by means of code like this:

% f def SOVE_MACRO

; do sone setup

%l ifdef SOVE_OTHER MACRO

; do sone different setup

%l se

%error Neither SOVE MACRO nor SOVE OTHER MACRO was defi ned.
%endi f

Then any user who fails to understand the way your code is supposed to be assembled will be quickly
warned of their mistake, rather than having to wait until the program crashes on being run and then not
knowing what went wrong.

Preprocessor Loops: % ep

NASM’s Tl MES prefix, though useful, cannot be used to invoke a multi-line macro multiple times,
because it is processed by NASM after macros have already been expanded. Therefore NASM provides
another form of loop, thistime at the preprocessor level: % ep.

The directives % ep and %&ndrep (% ep takes a numeric argument, which can be an expression;
%endr ep takes no arguments) can be used to enclose a chunk of code, which is then replicated as many
times as specified by the preprocessor:

%ssigni O

% ep 64

inc word [tabl e+2*i]
Yassign i i+1
%endr ep

This will generate a sequence of 64 | NC instructions, incrementing every word of memory from
[tabl e] to[tabl e+126] .

For more complex termination conditions, or to break out of arepeat loop part way along, you can use the
%exi t r ep directive to terminate the loop, like this:

fi bonacci :
Y%assign i O
Y%assign j 1
% ep 100
%f j > 65535
Y%exitrep
%endi f

dw |
%mssign k | +i

4.5

4.6

4.6.1

Y%assign i |

%ssign j k

%endr ep

fib_nunber equ ($-fibonacci)/2

This produces alist of all the Fibonacci numbers that will fit in 16 bits. Note that a maximum repeat count
must still be given to % ep. Thisis to prevent the possibility of NASM getting into an infinite loop in
the preprocessor, which (on multitasking or multi-user systems) would typically cause all the system
memory to be gradually used up and other applications to start crashing.

Including Other Files

Using, once again, a very similar syntax to the C preprocessor, NASM’s preprocessor lets you include
other source filesinto your code. Thisis done by the use of the % ncl ude directive:

% ncl ude "macr os. mac"

will include the contents of the file macr os. mac into the source file containing the % ncl ude
directive.

Include files are searched for in the current directory (the directory you're in when you run NASM, as
opposed to the location of the NASM executable or the location of the source file), plus any directories
specified on the NASM command lineusing the- i option.

The standard C idiom for preventing afile being included more than once is just as applicable in NASM:
if thefilemacr os. mac hastheform

% f ndef MACROS_NMAC
%lef i ne MACROS_NMAC

: now defi ne sone nacros
%endi f

then including the file more than once will not cause errors, because the second time the file is included
nothing will happen because the macro MACROS_MAC will aready be defined.

You can force afile to be included even if thereisno % ncl ude directive that explicitly includes it, by
using the - p option on the NASM command line (see section 2.1.7).

The Context Stack

Having labels that are local to a macro definition is sometimes not quite powerful enough: sometimes you
want to be able to share labels between several macro calls. An example might be a REPEAT ... UNTI L
loop, in which the expansion of the REPEAT macro would need to be able to refer to a label which the
UNTI L macro had defined. However, for such a macro you would also want to be able to nest these
loops.

NASM provides this level of power by means of a context stack. The preprocessor maintains a stack of
contexts, each of which is characterised by a name. Y ou add a new context to the stack using the %push
directive, and remove one using %pop. You can define labels that are local to a particular context on the
stack.

%push and %pop: Creating and Removing Contexts

The %push directive is used to create a new context and place it on the top of the context stack. %push
requires one argument, which is the name of the context. For example:

%ush foobar

This pushes a new context called f oobar on the stack. Y ou can have several contexts on the stack with
the same name: they can still be distinguished.

4.6.2

4.6.3

4.6.4

4.6.5

The directive %pop, requiring no arguments, removes the top context from the context stack and destroys
it, along with any labels associated with it.

Context-Local Labels

Just as the usage %84 00 defines alabel which islocal to the particular macro call in which it is used, the
usage %%f 0o is used to define alabel which islocal to the context on the top of the context stack. So the
REPEAT and UNTI L example given above could be implemented by means of

%racro repeat O
%push repeat
%$begi n:
%endnmacr o

%macro until 1
j % 1 %begin

Y%pop
%&ndnmacr o

and invoked by means of, for example,

nov cx, string
repeat

add cx, 3
scasb

until e

which would scan every fourth byte of a string in search of the bytein AL.

If you need to define, or access, labels local to the context below the top one on the stack, you can use
%% $f 00, or ¥6$$f oo for the context below that, and so on.

Context-Local Single-Line Macros

NASM dso alows you to define single-line macros which are local to a particular context, in just the
same way':

%gefi ne %l ocal mac 3

will define the single-line macro %$! ocal mac to be local to the top context on the stack. Of course,
after a subsequent %push, it can then still be accessed by the name %$$I ocal mac.

% epl : Renaming a Context

If you need to change the name of the top context on the stack (in order, for example, to have it respond
differently to % f ct x), you can execute a %pop followed by a %push; but this will have the side effect
of destroying all context-local labels and macros associated with the context that was just popped.

NASM provides the directive % epl , which replaces a context with a different name, without touching
the associated macros and labels. So you could replace the destructive code

%pop
%push newnane

with the non-destructive version % epl newnane.
Example Use of the Context Stack: Block IFs

This example makes use of amost all the context-stack features, including the conditional-assembly
construct % f ct x, toimplement ablock | F statement as a set of macros.

%macro if 1
%ush if

j% 1 %ifnot
%&ndnacr o

%racro else O
% fctx if
% epl el se
jnpp9$ifend
oI f not :
%l se
%error "expected ‘if’ before ‘else "
%endi f
%endnacr o

%racro endif O
%fctx if
9%%i f not :
%pop
%l ifctx el se
o%i f end:
%pop
%l se
%error "expected ‘if’ or ‘else’ before ‘endif’"
%endi f
%endnacr o

This code is more robust than the REPEAT and UNTI L macros given in section 4.6.2, because it uses
conditional assembly to check that the macros are issued in the right order (for example, not calling
endi f beforei f) andissuesa%er r or if they're not.

In addition, the endi f macro has to be able to cope with the two distinct cases of either directly
following an i f, or following an el se. It achieves this, again, by using conditional assembly to do
different things depending on whether the context on top of the stack isi f or el se.

The el se macro has to preserve the context on the stack, in order to have the %&$i f not referred to by
thei f macro be the same as the one defined by the endi f macro, but has to change the context’s name
so that endi f will know there was an intervening el se. It does this by the use of % epl .

A sample usage of these macros might look like:

cnp ax, bx
if ae
cnp bx, cx
if ae
nov ax, cX
el se
nov ax, bx
endi f
el se
cnp ax, cXx
if ae
nov ax, cX
endi f
endi f

The block-1 F macros handle nesting quite happily, by means of pushing another context, describing the
inner i f, on top of the one describing the outer i f; thus el se and endi f always refer to the last
unmatchedi f or el se.

4.7

4.7.1

4.7.2

4.7.3

Standard Macros

NASM defines a set of standard macros, which are already defined when it starts to process any source
file. If you really need a program to be assembled with no pre-defined macros, you can use the %€l ear
directive to empty the preprocessor of everything.

Most user-level assembler directives (see chapter 5) are implemented as macros which invoke primitive
directives; these are described in chapter 5. The rest of the standard macro set is described here.

__NASM MAJOR__and __NASM M NOR__: NASM Version
The single-line macros __NASM_MAJOR and _NASM_M NOR__ expand to the major and minor

parts of the verson number of NASM being used. So, under NASM 0.96 for example,
~_ NASM MAJOR__ would be definedtobeOand __ NASM M NOR__ would be defined as 96.

__FILE__and __LINE__: File Name and Line Number

Like the C preprocessor, NASM allows the user to find out the file name and line number containing the
current instruction. The macro __ FI LE__ expands to a string constant giving the name of the current
input file (which may change through the course of assembly if % ncl ude directives are used), and
__LINE__ expandsto a numeric constant giving the current line number in the input file.

These macros could be used, for example, to communicate debugging information to a macro, since
invoking __LI NE__ inside a macro definition (either single-line or multi-ling) will return the line
number of the macro call, rather than definition. So to determine where in a piece of code a crash is
occurring, for example, one could write aroutine sti | | her e, which is passed a line number in EAX
and outputs something like ‘line 155: still here'. You could then Write amacro

%racr o not deadyet O
push eax
mov eax, LINE
call stillhere
pop eax
%endnmacr o

and then pepper your code with callsto not deadyet until you find the crash point.

STRUC and ENDSTRUC: Declaring Structure Data Types

The core of NASM contains no intrinsic means of defining data structures; instead, the preprocessor is
sufficiently powerful that data structures can be implemented as a set of macros. The macros STRUC and
ENDSTRUC are used to define a structure data type.

STRUC takes one parameter, which is the name of the data type. This name is defined as a symbol with
the value zero, and also has the suffix _si ze appended to it and is then defined as an EQU giving the
size of the structure. Once STRUC has been issued, you are defining the structure, and should define
fields using the RESB family of pseudo-instructions, and then invoke ENDSTRUC to finish the definition.

For example, to define a structure called myt ype containing a longword, a word, a byte and a string of
bytes, you might code

struc nytype
n _long: resd 1
nm word: reswl
n byte: resb 1
nt_str: resh 32
endstruc

4.7.4

4.7.5

The above code defines six symbols: nt _| ong as 0 (the offset from the beginning of a nyt ype
structure to the longword field), nt _word as4, mt _byte as6, mt _str as7, mytype_si ze as 39,
and nyt ype itself as zero.

The reason why the structure type name is defined at zero is a side effect of allowing structures to work
with the local 1abel mechanism: if your structure members tend to have the same names in more than one
structure, you can define the above structure like this:

struc nytype

.l ong: resd 1

. wor d: resw 1

. byte: resb 1

.str: resbh 32
endstruc

This defines the offsets to the structure fields as nyt ype. | ong, nyt ype. wor d, myt ype. byt e and
nytype. str.

NASM, since it has no intrinsic structure support, does not support any form of period notation to refer to
the elements of a structure once you have one (except the above local-label notation), so code such as
nmov ax, [nystruc. nt_word] isnot valid. mt_word is aconstant just like any other constant, so
the correct syntax isnov ax, [nystruc+mt _word] ornmov ax, [mystruc+myt ype. word] .

| STRUC, AT and | END: Declaring Instances of Structures

Having defined a structure type, the next thing you typically want to do is to declare instances of that
structure in your data segment. NASM provides an easy way to do this in the | STRUC mechanism. To
declare a structure of type nyt ype in aprogram, you code something like this:

nmystruc: istruc nytype
at nm _|ong, dd 123456
at m_word, dw 1024
at m_byte, db 'x’
at m_str, db "hello, world, 13, 10, O
i end

The function of the AT macro is to make use of the Tl MES prefix to advance the assembly position to the
correct point for the specified structure field, and then to declare the specified data. Therefore the
structure fields must be declared in the same order as they were specified in the structure definition.

If the data to go in a structure field requires more than one source line to specify, the remaining source
lines can easily come after the AT line. For example:

at mt_str, db 123, 134, 145, 156, 167, 178, 189
db 190, 100, 0

Depending on personal taste, you can also omit the code part of the AT line completely, and start the
structure field on the next line:

at m_str
db 'hello, world’
db 13,10,0

ALI GNand ALI G\B: Data Alignment

The ALI GN and ALI GNB macros provides a convenient way to align code or data on a word, longword,
paragraph or other boundary. (Some assemblers call this directive EVEN.) The syntax of the ALI GN and
ALl G\B macrosis

align 4 ; align on 4-byte boundary
align 16 ; align on 16-byte boundary

align 8,db O ; pad with Os rather than NOPs
align 4,resb 1 ; align to 4 in the BSS
alignb 4 ; equivalent to previous line

Both macros require their first argument to be a power of two; they both compute the number of
additional bytes required to bring the length of the current section up to a multiple of that power of two,
and then apply the TI MES prefix to their second argument to perform the alignment.

If the second argument is not specified, the default for ALl GN is NOP, and the default for ALI G\B is
RESB 1. So if the second argument is specified, the two macros are equivalent. Normally, you can just
use ALl GNin code and data sections and ALI GNB in BSS sections, and never need the second argument
except for special purposes.

ALI GN and ALI GNB, being simple macros, perform no error checking: they cannot warn you if their first
argument fails to be a power of two, or if their second argument generates more than one byte of code. In
each of these cases they will silently do the wrong thing.

AL GN\B (or ALI GNwith a second argument of RESB 1) can be used within structure definitions:

struc mytype2
nt_byte: resb 1

alignb 2
n_word: reswl1

alignb 4
n _long: resd 1
nm _str: resb 32

endst ruc

Thiswill ensure that the structure members are sensibly aligned relative to the base of the structure.

A final caveat: ALI GN and ALl GN\B work relative to the beginning of the section, not the beginning of
the address space in the final executable. Aligning to a 16-byte boundary when the section you're in is
only guaranteed to be aligned to a 4-byte boundary, for example, is awaste of effort. Again, NASM does
not check that the section’s alignment characteristics are sensible for the use of ALI GN or ALI GN\B.

5.1

5.2

Chapter 5: Assembler Directives

NASM, though it attempts to avoid the bureaucracy of assemblers like MASM and TASM, is
nevertheless forced to support a few directives. These are described in this chapter.

NASM’s directives come in two types. user-level directivesuser-level directives and primitive
directivesprimitive directives. Typicaly, each directive has a user-level form and a primitive form. In
amost all cases, we recommend that users use the user-level forms of the directives, which are
implemented as macros which call the primitive forms.

Primitive directives are enclosed in square brackets; user-level directives are not.

In addition to the universal directives described in this chapter, each object file format can optionally
supply extra directives in order to control particular features of that file format. These format-specific
directivesformat-specific directives are documented along with the formats that implement them, in
chapter 6.

Bl TS: Specifying Target Processor Mode

The BI TS directive specifies whether NASM should generate code designed to run on a processor
operating in 16-bit mode, or code designed to run on a processor operating in 32-bit mode. The syntax is
BITS 16 0orBI TS 32.

In most cases, you should not need to use BI TS explicitly. The aout, cof f, el f and wi n32 object
formats, which are designed for use in 32-bit operating systems, all cause NASM to select 32-bit mode
by default. The obj object format allows you to specify each segment you define as either USE16 or
USE32, and NASM will set its operating mode accordingly, so the use of the Bl TS directive is once
again unnecessary.

The most likely reason for using the Bl TS directive is to write 32-bit code in a flat binary file; thisis
because the bi n output format defaults to 16-bit mode in anticipation of it being used most frequently to
write DOS . COMprograms, DOS . SYS device drivers and boot |oader software.

Y ou do not need to specify BI TS 32 merely in order to use 32-hit instructions in a 16-bit DOS program,;
if you do, the assembler will generate incorrect code because it will be writing code targeted at a 32-hit
platform, to be run on a 16-bit one.

When NASM isin Bl TS 16 state, instructions which use 32-bit data are prefixed with an 0x66 byte, and
those referring to 32-bit addresses have an Ox67 prefix. In Bl TS 32 state, the reverse is true: 32-bit
instructions require no prefixes, whereas instructions using 16-bit data need an 0x66 and those working
in 16-bit addresses need an 0x67.

The BI TS directive has an exactly equivalent primitive form, [Bl TS 16] and[BI TS 32] . The user-
level form is amacro which has no function other than to call the primitive form.

SECTI ON or SEGVENT: Changing and Defining Sections

The SECTI ON directive (SEGVENT is an exactly equivalent synonym) changes which section of the
output file the code you write will be assembled into. In some object file formats, the number and names
of sections are fixed; in others, the user may make up as many as they wish. Hence SECTI ON may

5.2.1

5.3

sometimes give an error message, or may define a new section, if you try to switch to a section that does
not (yet) exist.

The Unix object formats, and the bi n object format, all support the standardised section names . t ext ,
. dat a and . bss for the code, data and uninitialised-data sections. The obj format, by contrast, does
not recognise these section names as being special, and indeed will strip off the leading period of any
section name that has one.

The _ SECT__ Macro

The SECTI ON directive is unusua in that its user-level form functions differently from its primitive
form. The primitive form, [SECTI ON xyz], simply switches the current target section to the one
given. The user-level form, SECTI ON xyz, however first defines the single-line macro __SECT__ to
be the primitive [SECTI ON] directive which it is about to issue, and then issues it. So the user-level
directive

SECTI ON . t ext
expands to the two lines

ogefine _ SECT__ [SECTI ON .text]
[SECTTON . t ext]

Users may find it useful to make use of this in their own macros. For example, thewr i t ef i | e macro
defined in section 4.2.3 can be usefully rewritten in the following more sophisticated form:

%macro witefile 2+
[section .data]
Wstr: db %@
%Wendstr:
__SECT
mov dx, %str
nov cx, Wendstr-%Bstr
nov bx,@&
nov ah, 0x40
i nt 0x21
%endnacr o

This form of the macro, once passed a string to output, first switches temporarily to the data section of the
file, using the primitive form of the SECTI ON directive so as not to modify _ SECT__. It then declares
its string in the data section, and then invokes SECT __ to switch back to whi chever section the user
was previously working in. It thus avoids the need, in the previous version of the macro, to include a JMP
instruction to jump over the data, and also does not fail if, in a complicated OBJ format module, the user
could potentially be assembling the code in any of several separate code sections.

ABSOLUTE: Defining Absolute Labels

The ABSOLUTE directive can be thought of as an alternative form of SECTI ON: it causes the subsequent
code to be directed at no physical section, but at the hypothetical section starting at the given absolute
address. The only instructions you can use in this mode are the RESB family.

ABSOLUTE isused as follows:

absol ute 0x1A
kbuf _chr resw 1
kbuf free resw 1
kbuf resw 16

This example describes a section of the PC BIOS data area, at segment address 0x40: the above code
defineskbuf _chr tobe Ox1A, kbuf _fr ee to be 0x1C, and kbuf to be OX1E.

5.4

5.5

The user-level form of ABSOLUTE, like that of SECTI ON, redefinesthe _ SECT __ macro when it is
invoked.

STRUC and ENDSTRUC are defined as macros which use ABSOLUTE (and dlso __ SECT_).

ABSOLUTE doesn’t have to take an absolute constant as an argument: it can take an expression (actually,
a critical expression: see section 3.7) and it can be a value in a segment. For example, a TSR can re-use
its setup code as run-time BSS like this:

org 100h ; it’s a . COM program
jmp setup ; setup code cones | ast
; the resident part of the TSR goes here

set up: ;. now wite the code that installs the TSR here

absol ute setup
runtinmevarl resw 1
runti mevar2 resd 20
tsr_end:

This defines some variables ‘on top of’ the setup code, so that after the setup has finished running, the
space it took up can be re-used as data storage for the running TSR. The symbol ‘tsr_end’ can be used to
calculate the total size of the part of the TSR that needs to be made resident.

EXTERN: Importing Symbols from Other Modules

EXTERN is similar to the MASM directive EXTRN and the C keyword ext er n: it is used to declare a
symbol which is not defined anywhere in the module being assembled, but is assumed to be defined in
some other module and needs to be referred to by this one. Not every object-file format can support
external variables: the bi n format cannot.

The EXTERN directive takes as many arguments as you like. Each argument is the name of a symbol:

extern _printf
extern _sscanf, fscanf

Some object-file formats provide extra features to the EXTERN directive. In all cases, the extra features
are used by suffixing a colon to the symbol name followed by object-format specific text. For example,
the obj format allows you to declare that the default segment base of an external should be the group
dgr oup by means of the directive

extern _variable:wt dgroup

The primitive form of EXTERN differs from the user-level form only in that it can take only one argument
at atime: the support for multiple arguments is implemented at the preprocessor level.

Y ou can declare the same variable as EXTERN more than once: NASM will quietly ignore the second and
later redeclarations. Y ou can’t declare a variable as EXTERN as well as something el se, though.

GLOBAL: Exporting Symbols to Other Modules

GLOBAL isthe other end of EXTERN: if one module declares a symbol as EXTERN and refers to it, then
in order to prevent linker errors, some other module must actually define the symbol and declare it as
GLOBAL. Some assemblers use the name PUBLI Cfor this purpose.

The GLOBAL directive applying to a symbol must appear before the definition of the symbol.

GLOBAL uses the same syntax as EXTERN, except that it must refer to symbols which are defined in the
same module as the GLOBAL directive. For example:

_ gl obal _main
mai n: ;. sone code

5.6

GLOBAL, like EXTERN, allows object formats to define private extensions by means of acolon. The el f
object format, for example, lets you specify whether global dataitems are functions or data:

gl obal hashl ookup: function, hashtabl e: data
Like EXTERN, the primitive form of GLOBAL differs from the user-level form only in that it can take
only one argument at atime.

COVMMON: Defining Common Data Areas

The COVMMON directive is used to declare common variables. A common variable is much like a global
variable declared in the uninitialised data section, so that

common i ntvar 4
issimilar in function to

gl obal intvar
section .bss
i ntvar resd 1

The difference is that if more than one module defines the same common variable, then at link time those
variables will be merged, and references to i nt var in all modules will point at the same piece of
memory.

Like GLOBAL and EXTERN, COMMON supports object-format specific extensions. For example, the obj
format allows common variables to be NEAR or FAR, and the el f format alows you to specify the
alignment requirements of acommon variable:

conmon commvar 4:near ; works in OBJ
common intarray 100:4 ; works in ELF. 4 byte aligned

Once again, like EXTERN and GLOBAL, the primitive form of COVMMON differs from the user-level form
only in that it can take only one argument at atime.

6.1

6.1.1

Chapter 6: Output Formats

NASM is a portable assembler, designed to be able to compile on any ANSI C-supporting platform and
produce output to run on a variety of Intel x86 operating systems. For this reason, it has a large number
of available output formats, selected using the - f option on the NASM command line. Each of these
formats, along with its extensions to the base NASM syntax, is detailed in this chapter.

As stated in section 2.1.1, NASM chooses a default name for your output file based on the input file name
and the chosen output format. This will be generated by removing the extension (. asm . s, or whatever
you like to use) from the input file name, and substituting an extension defined by the output format. The
extensions are given with each format below.

bi n: Flat-Form Binary Output

The bi n format does not produce object files: it generates nothing in the output file except the code you
wrote. Such ‘pure binary’ files are used by MS-DOS: . COM executables and . SYS device drivers are
pure binary files. Pure binary output is also useful for operating-system and boot |oader devel opment.

bi n supports the three standardised section names . t ext, . data and . bss only. The file NASM
outputs will contain the contents of the . t ext section first, followed by the contents of the . dat a
section, aligned on a four-byte boundary. The . bss section is not stored in the output file at al, but is
assumed to appear directly after the end of the . dat a section, again aligned on a four-byte boundary.

If you specify no explicit SECTI ON directive, the code you write will be directed by default into the
. text section.

Using the bi n format puts NASM by default into 16-bit mode (see section 5.1). In order to use bi n to
write 32-bit code such as an OS kernel, you need to explicitly issuethe Bl TS 32 directive.

bi n has no default output file name extension: instead, it leaves your file name as it is once the original
extension has been removed. Thus, the default is for NASM to assemble bi npr og. asminto a binary
file called bi npr og.

ORG Binary File Program Origin

The bi n format provides an additional directive to the list given in chapter 5. ORG. The function of the
ORG directive is to specify the origin address which NASM will assume the program begins at when it is
loaded into memory.

For example, the following code will generate the longword 0x00000104:

org 0x100
dd | abel
| abel :

Unlike the ORG directive provided by MASM-compatible assemblers, which allows you to jump around
in the object file and overwrite code you have aready generated, NASM’s ORG does exactly what the
directive says: origin. Its sole function is to specify one offset which is added to all internal address
references within the file; it does not permit any of the trickery that MASM’s version does. See section
10.1.3 for further comments.

6.1.2

6.2

6.2.1

bi n Extensions to the SECTI ON Directive

The bi n output format extends the SECTI ON (or SEGVENT) directive to alow you to specify the
alignment requirements of segments. This is done by appending the ALI GN qualifier to the end of the
section-definition line. For example,

section .data align=16
switches to the section . dat a and also specifies that it must be aligned on a 16-byte boundary.

The parameter to ALI GN specifies how many low bits of the section start address must be forced to zero.
The alignment value given may be any power of two.

obj : Microsoft OMF Object Files

The obj file format (NASM calls it obj rather than onf for historical reasons) is the one produced by
MASM and TASM, which is typically fed to 16-bit DOS linkers to produce . EXE files. It is aso the
format used by OS/2.

obj provides a default output file-name extension of . obj .

obj is not exclusively a 16-bit format, though: NASM has full support for the 32-bit extensions to the
format. In particular, 32-bit obj format files are used by Borland’'s Win32 compilers, instead of using
Microsoft’s newer wi n32 object file format.

The obj format does not define any special segment names. you can call your segments anything you
like. Typical names for segmentsin obj format files are CODE, DATA and BSS.

If your source file contains code before specifying an explicit SEGVENT directive, then NASM will
invent its own segment called _ NASVDEFSEGfor you.

When you define a segment in an obj file, NASM defines the segment name as a symbol as well, so that
you can access the segment address of the segment. So, for example:

seghent data

dvar: dw 1234
segnent code

function: nov ax, data ; get segnent address of data
nov ds, ax : and nove it into DS
inc word [dvar] ; how this reference will work
ret

The obj format also enables the use of the SEG and WRT operators, so that you can write code which
doesthings like

extern foo

nov ax, seg foo ; get preferred segnent of foo
nov ds, ax

nov ax, dat a ; a different segnent

nov es, ax

nov ax, [ds: f o0] : this accesses ‘foo’

nmov [es:foo wt data],bx ; so does this

obj Extensions to the SEGVENT Directive

The obj output format extends the SEGVENT (or SECTI ON) directive to allow you to specify various
properties of the segment you are defining. This is done by appending extra qualifiers to the end of the
segment-definition line. For example,

segnent code private align=16

6.2.2

defines the segment code, but also declares it to be a private segment, and requires that the portion of it
described in this code module must be aligned on a 16-byte boundary.

The available qudifiers are:

* PRI VATE, PUBLI C, COVMON and STACK specify the combination characteristics of the segment.
PRI VATE segments do not get combined with any others by the linker; PUBLI C and STACK
segments get concatenated together at link time; and COVMON segments all get overlaid on top of each
other rather than stuck end-to-end.

e ALI GNis used, as shown above, to specify how many low bits of the segment start address must be
forced to zero. The aignment value given may be any power of two from 1 to 4096; in redlity, the
only values supported are 1, 2, 4, 16, 256 and 4096, so if 8 is specified it will be rounded up to 16, and
32, 64 and 128 will all be rounded up to 256, and so on. Note that alignment to 4096-byte boundaries
is a PharLap extension to the format and may not be supported by all linkers.

e CLASS can be used to specify the segment class; this feature indicates to the linker that segments of
the same class should be placed near each other in the output file. The class name can be any word,
e.g. CLASS=CODE.

* OVERLAY, like CLASS, is specified with an arbitrary word as an argument, and provides overlay
information to an overlay-capable linker.

» Segments can be declared as USE16 or USE32, which has the effect of recording the choice in the
object file and also ensuring that NASM’ s default assembly mode when assembling in that segment is
16-bit or 32-bit respectively.

» When writing OS/2 object files, you should declare 32-bit segments as FLAT, which causes the default
segment base for anything in the segment to be the special group FLAT, and aso defines the group if
it is not already defined.

» The obj file format also allows segments to be declared as having a pre-defined absolute segment
address, athough no linkers are currently known to make sensible use of this feature; nevertheless,
NASM dlows you to declare a segment such as SEGVENT SCREEN ABSOLUTE=0xB800 if you
need to. The ABSOLUTE and ALI GN keywords are mutually exclusive.

NASM'’s default segment attributes are PUBLI C, ALI GN=1, no class, no overlay, and USE16.
GROUP: Defining Groups of Segments

The obj format also alows segments to be grouped, so that a single segment register can be used to refer
to all the segmentsin a group. NASM therefore supplies the GROUP directive, whereby you can code

seghent data

; sone data

segnent bss

: sone uninitialised data
group dgroup data bss

which will define a group called dgr oup to contain the segments dat a and bss. Like SEGVENT,
GROUP causes the group name to be defined as a symbol, so that you can refer to a variable var in the
data segment asvar wt data or asvar wt dgroup, depending on which segment value is
currently in your segment register.

If you just refer to var , however, and var isdeclared in a segment which is part of a group, then NASM
will default to giving you the offset of var from the beginning of the group, not the segment. Therefore
SEG var , aso, will return the group base rather than the segment base.

NASM will alow a segment to be part of more than one group, but will generate awarning if you do this.
Variables declared in a segment which is part of more than one group will default to being relative to the
first group that was defined to contain the segment.

6.2.3

6.2.4

6.2.5

A group does not have to contain any segments; you can still make WRT references to a group which does
not contain the variable you are referring to. OS2, for example, defines the special group FLAT with no
segmentsin it.

UPPERCASE: Disabling Case Sensitivity in Output

Although NASM itself is case sensitive, some OMF linkers are not; therefore it can be useful for NASM
to output single-case abject files. The UPPERCASE format-specific directive causes al segment, group
and symbol names that are written to the object file to be forced to upper case just before being written.
Within a source file, NASM is still case-sensitive; but the object file can be written entirely in upper case
if desired.

UPPERCASE is used alone on aline; it requires no parameters.
| MPORT: Importing DLL Symbols

The | MPORT format-specific directive defines a symbol to be imported from a DLL, for use if you are
writing a DLL’s import library in NASM. You till need to declare the symbol as EXTERN as well as
using the | MPORT directive.

The | MPORT directive takes two required parameters, separated by white space, which are (respectively)
the name of the symbol you wish to import and the name of the library you wish to import it from. For
example:

i mport WBASt artup wsock32. dl |

A third optional parameter gives the name by which the symbol is known in the library you are importing
it from, in case this is not the same as the name you wish the symbol to be known by to your code once
you have imported it. For example:

i mport asyncsel wsock32.dl | WSAAsyncSel ect
EXPORT: Exporting DLL Symbols

The EXPORT format-specific directive defines a global symbol to be exported asaDLL symbol, for use if
you are writing a DLL in NASM. You still need to declare the symbol as GLOBAL as well as using the
EXPORT directive.

EXPORT takes one required parameter, which is the name of the symbol you wish to export, as it was
defined in your source file. An optional second parameter (separated by white space from the first) gives
the external name of the symbol: the name by which you wish the symbol to be known to programs using
the DLL. If this name isthe same as the internal name, you may |leave the second parameter off.

Further parameters can be given to define attributes of the exported symbol. These parameters, like the
second, are separated by white space. If further parameters are given, the external name must also be
specified, evenif it isthe same as the internal name. The available attributes are:

e resident indicates that the exported name is to be kept resident by the system loader. This is an
optimisation for frequently used symbolsimported by name.

* nodat a indicates that the exported symbol is a function which does not make use of any initialised
data.

e par m=NNN, where NNN is an integer, sets the number of parameter words for the case in which the
symbol isacall gate between 32-hit and 16-bit segments.

e An attribute which is just a number indicates that the symbol should be exported with an identifying
number (ordinal), and gives the desired number.

For example:

6.2.6

6.2.7

6.2.8

export nmnyfunc

export nyfunc TheReal Mor eFor mal Looki ngFunct i onNanme
export nyfunc nyfunc 1234 ; export by ordinal
export nyfunc nyfunc resident parnm=23 nodata

.. start: Defining the Program Entry Point

OMF linkers require exactly one of the object files being linked to define the program entry point, where
execution will begin when the program is run. If the object file that defines the entry point is assembled
using NASM, you specify the entry point by declaring the special symbol . . st art at the point where
you wish execution to begin.

obj Extensions to the EXTERN Directive
If you declare an external symbol with the directive
extern foo

then references such asnmov ax, f 0o will give you the offset of f 0o from its preferred segment base (as
specified in whichever module f 0o is actualy defined in). So to access the contents of f oo you will
usually need to do something like

nov ax, seg foo ; get preferred segnent base
nov es, ax ; nove it into ES
nov ax, [es: foo] ; and use offset ‘foo fromit

This is a little unwieldy, particularly if you know that an external is going to be accessible from a given
segment or group, say dgr oup. So if DS already contained dgr oup, you could simply code

nov ax,[foo wt dgroup]

However, having to type this every time you want to access f 00 can be a pain; so NASM allows you to
declaref 00 in the alternative form

extern foo:wt dgroup

This form causes NASM to pretend that the preferred segment base of f 0o isin fact dgr oup; so the
expression seg foo will now return dgroup, and the expression foo is equivaent to
foo wt dgroup.

This default-W\RT mechanism can be used to make externals appear to be relative to any group or segment
in your program. It can also be applied to common variables: see section 6.2.8.

obj Extensions to the COVMON Directive

The obj format allows common variables to be either near or far; NASM allows you to specify which
your variables should be by the use of the syntax

conmon nearvar 2:near ; ‘nearvar’ is a near common
common farvar 10:far ; and ‘farvar’ is far

Far common variables may be greater in size than 64Kb, and so the OMF specification says that they are
declared as a number of elements of a given size. So a 10-byte far common variable could be declared as
ten one-byte elements, five two-byte elements, two five-byte elements or one ten-byte element.

Some OMF linkers require the element size, as well as the variable size, to match when resolving
common variables declared in more than one module. Therefore NASM must allow you to specify the
element size on your far common variables. Thisis done by the following syntax:

common c¢_bby2 10:far 5 ; two five-byte el enents
common c_2by5 10:far 2 ; five two-byte el ements

6.3

6.3.1

If no element size is specified, the default is 1. Also, the FAR keyword is not required when an element
size is specified, since only far commons may have element sizes at al. So the above declarations could
equivalently be

common c¢_5by2 10:5 ; two five-byte el enents
common c¢_2by5 10: 2 ; five two-byte el enents

In addition to these extensions, the COMMON directive in obj also supports default-WRT specification like
EXTERN does (explained in section 6.2.7). So you can also declare things like

common foo 10:wt dgroup
common bar 16:far 2:wt data
conmon baz 24:wt data:6

w n32: Microsoft Win32 Object Files

The wi n32 output format generates Microsoft Win32 object files, suitable for passing to Microsoft
linkers such as Visual C++. Note that Borland Win32 compilers do not use this format, but use obj
instead (see section 6.2).

wi n32 provides adefault output file-name extension of . obj .

Note that although Microsoft say that Win32 object files follow the COFF (Common Object File Format)
standard, the object files produced by Microsoft Win32 compilers are not compatible with COFF linkers
such as DJGPP's, and vice versa. Thisis due to a difference of opinion over the precise semantics of PC-
relative relocations. To produce COFF files suitable for DJGPP, use NASM’s cof f output format;
conversely, the cof f format does not produce object files that Win32 linkers can generate correct output
from.

w n32 Extensions to the SECTI ON Directive

Like the obj format, wi n32 alows you to specify additional information on the SECTI ON directive
ling, to control the type and properties of sections you declare. Section types and properties are generated
automatically by NASM for the standard section names . t ext, . data and . bss, but may still be
overridden by these qualifiers.

The available qudifiers are:

e code, or equivaently t ext, defines the section to be a code section. This marks the section as
readable and executable, but not writable, and also indicates to the linker that the type of the section is
code.

e dat a and bss define the section to be a data section, analogously to code. Data sections are marked
as readable and writable, but not executable. dat a declares an initialised data section, whereas bss
declares an uninitialised data section.

* i nf o defines the section to be an informational section, which is not included in the executable file by
the linker, but may (for example) pass information to the linker. For example, declaring an i nf o-type
section called . dr ect ve causes the linker to interpret the contents of the section as command-line
options.

¢ al i gn=, used with atrailing number asin obj , gives the aignment requirements of the section. The
maximum you may specify is 64: the Win32 object file format contains no means to request a greater
section alignment than this. If alignment is not explicitly specified, the defaults are 16-byte alignment
for code sections, and 4-byte alignment for data (and BSS) sections. Informational sections get a
default alignment of 1 byte (no alignment), though the value does not matter.

The defaults assumed by NASM if you do not specify the above qualifiers are:

6.4

6.5

6.5.1

6.5.2

section .text code align=16
section .data data align=4
section .bss bss align=4

Any other section name istreated by default like . t ext .

cof f : Common Object File Format
Thecof f output type produces COFF object files suitable for linking with the DJGPP linker.
cof f provides adefault output file-name extension of . 0.

Thecof f format supports the same extensions to the SECTI ON directive aswi n32 does, except that the
al i gn qualifier and thei nf o section type are not supported.

el f: Linux ELFObject Files

The el f output format generates ELF32 (Executable and Linkable Format) object files, as used by
Linux. el f provides a default output file-name extension of . 0.

el f Extensions to the SECTI ON Directive

Liketheobj format, el f alows you to specify additional information on the SECTI ON directive line, to
control the type and properties of sections you declare. Section types and properties are generated
automatically by NASM for the standard section names . t ext, . data and . bss, but may still be
overridden by these qualifiers.

The available qudifiers are:

» al | oc defines the section to be one which is loaded into memory when the program isrun. noal | oc
definesit to be one which is not, such as an informational or comment section.

» exec defines the section to be one which should have execute permission when the program is run.
noexec definesit as one which should not.

* wite defines the section to be one which should be writable when the program is run. nowri t e
definesit as one which should not.

» progbits defines the section to be one with explicit contents stored in the object file: an ordinary
code or data section, for example, nobi t s defines the section to be one with no explicit contents
given, such as a BSS section.

e al i gn=, used with atrailing number asin obj , gives the alignment requirements of the section.
The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text proghits alloc exec nowite align=16
section .data progbits all oc noexec wite align=4
section .bss nobits all oc noexec wite align=4
section other progbits all oc noexec nowite align=1

(Any section name other than . t ext, . dat a and . bss is treated by default like ot her in the above
code.)

Position-Independent Code: el f Special Symbols and WRT

The ELF specification contains enough features to allow position-independent code (PIC) to be written,
which makes ELF shared libraries very flexible. However, it also means NASM has to be able to
generate a variety of strange relocation types in ELF object files, if it is to be an assembler which can
write PIC.

6.5.3

Since ELF does not support segment-base references, the WRT operator is not used for its normal purpose;
therefore NASM’s el f output format makes use of VWRT for a different purpose, namely the Pl C-specific
relocation types.

el f defines five special symbols which you can use as the right-hand side of the WRT operator to obtain
PIC relocation types. They are. . got pc,..gotoff,..got,..plt and.. sym Ther functions are
summarised here:

« Referring to the symbol marking the global offset table base usingwrt . . got pc will end up giving
the distance from the beginning of the current section to the global offset table.
(_GLOBAL_OFFSET_TABLE_ isthe standard symbol name used to refer to the GOT.) So you would
then need to add $$ to the result to get the real address of the GOT.

« Referring to alocation in one of your own sectionsusingwrt . . got of f will give the distance from
the beginning of the GOT to the specified location, so that adding on the address of the GOT would
give the real address of the location you wanted.

» Referring to an external or global symbol usingwrt . . got causes the linker to build an entry in the
GOT containing the address of the symbol, and the reference gives the distance from the beginning of
the GOT to the entry; so you can add on the address of the GOT, load from the resulting address, and
end up with the address of the symbol.

» Referring to a procedure nameusingwrt . . pl t causes the linker to build a procedure linkage table
entry for the symbol, and the reference gives the address of the PLT entry. You can only use thisin
contexts which would generate a PC-relative relocation normally (i.e. as the destination for CALL or
JMP), since ELF contains no relocation type to refer to PLT entries absolutely.

* Referring to a symbol name using wt .. symcauses NASM to write an ordinary relocation, but
instead of making the relocation relative to the start of the section and then adding on the offset to the
symbol, it will write a relocation record aimed directly at the symbol in question. The distinction is a
necessary one due to a peculiarity of the dynamic linker.

A fuller explanation of how to use these relocation types to write shared libraries entirely in NASM is
given in section 8.2.

el f Extensions to the GLOBAL Directive

ELF object files can contain more information about a global symbol than just its address: they can
contain the size of the symbol and its type as well. These are not merely debugger conveniences, but are
actually necessary when the program being written is a shared library. NASM therefore supports some
extensions to the GLOBAL directive, allowing you to specify these features.

You can specify whether a global variable is a function or a data object by suffixing the name with a
colon and theword f unct i on or dat a. (obj ect isasynonym for dat a.) For example:

gl obal hashl ookup: functi on, hasht abl e: dat a
exports the global symbol hashl ookup asafunction and hasht abl e as adata object.

Y ou can also specify the size of the data associated with the symbol, as a numeric expression (which may
involve labels, and even forward references) after the type specifier. Likethis:

gl obal hasht abl e: data (hasht abl e. end - hasht abl e)
hasht abl e:

db this,that,theother ; sone data here
. end:

This makes NASM automatically calculate the length of the table and place that information into the ELF
symbol table.

6.5.4

6.6

6.7

6.8

6.9

Declaring the type and size of global symbols is necessary when writing shared library code. For more
information, see section 8.2.4.

el f Extensions to the COMMON Directive

ELF aso alows you to specify alignment requirements on common variables. This is done by putting a
number (which must be a power of two) after the name and size of the common variable, separated (as
usual) by acolon. For example, an array of doublewords would benefit from 4-byte alignment:

common dwordarray 128:4

This declares the total size of the array to be 128 bytes, and requires that it be aligned on a 4-byte
boundary.

aout : Linux a. out Object Files

The aout format generates a. out object files, in the form used by early Linux systems. (These differ
from other a. out object files in that the magic number in the first four bytes of the file is different.
Also, some implementations of a. out, for example NetBSD’s, support position-independent code,
which Linux’simplementation doesn't.)

a. out provides adefault output file-name extension of . 0.

a. out isavery simple object format. It supports no special directives, no special symbols, no use of
SEG or WRT, and no extensions to any standard directives. It supports only the three standard section
names. t ext,. dataand. bss.

aout b: NetBSD/FreeBSD/OpenBSD a. out Object Files

The aout b format generates a. out object files, in the form used by the various free BSD Unix clones,
NetBSD, FreeBSD and OpenBSD. For simple abject files, this object format is exactly the same as aout

except for the magic number in the first four bytes of the file. However, the aout b format supports
position-independent code in the same way as the el f format, so you can use it to write BSD shared
libraries.

aout b provides a default output file-name extension of . o.

aout b supports no special directives, no special symbols, and only the three standard section names
.text,.data and . bss. However, it dso supports the same use of WRT as el f does, to provide
position-independent code relocation types. See section 6.5.2 for full documentation of this feature.

aout b also supports the same extensions to the G_OBAL directive as el f does: see section 6.5.3 for
documentation of this.

as86: Linux as86 Object Files

The Linux 16-bit assembler as86 has its own non-standard object file format. Although its companion
linker | d86 produces something close to ordinary a. out binaries as output, the object file format used
to communicate between as86 and | d86 isnot itself a. out .

NASM supports this format, just in case it is useful, as as86. as86 provides a default output file-name
extension of . 0.

as86 is a very simple object format (from the NASM user’s point of view). It supports no special
directives, no special symbols, no use of SEG or VRT, and no extensions to any standard directives. It
supports only the three standard section names. t ext , . dat a and. bss.

r df . Relocatable Dynamic Object File Format

Ther df output format produces RDOFF object files. RDOFF (Relocatable Dynamic Object File Format)
is a home-grown object-file format, designed alongside NASM itself and reflecting in its file format the
internal structure of the assembler.

6.9.1

6.10

RDOFF is not used by any well-known operating systems. Those writing their own systems, however,
may well wish to use RDOFF as their object format, on the grounds that it is designed primarily for
simplicity and contains very little file-header bureaucracy.

The Unix NASM archive, and the DOS archive which includes sources, both contain an r dof f
subdirectory holding a set of RDOFF utilities: an RDF linker, an RDF static-library manager, an RDF
file dump utility, and a program which will load and execute an RDF executable under Linux.

r df supports only the standard section names. t ext ,. dat a and . bss.
Requiring a Library: The LI BRARY Directive

RDOFF contains a mechanism for an object file to demand a given library to be linked to the module,
either at load time or run time. Thisis done by the LI BRARY directive, which takes one argument which
is the name of the module:

library nylib.rdl

dbg: Debugging Format

The dbg output format is not built into NASM in the default configuration. If you are building your own
NASM executable from the sources, you can define OF_DBG in out f orm h or on the compiler
command line, and obtain the dbg output format.

The dbg format does not output an object file as such; instead, it outputs a text file which contains a
complete list of al the transactions between the main body of NASM and the output-format back end
module. It is primarily intended to aid people who want to write their own output drivers, so that they can
get a clearer idea of the various requests the main program makes of the output driver, and in what order
they happen.

For ssimplefiles, one can easily use the dbg format like this:

nasm -f dbg fil enanme. asm

which will generate a diagnostic file called f i | enane. dbg. However, this will not work well on files
which were designed for a different object format, because each object format defines its own macros
(usually user-level forms of directives), and those macros will not be defined in the dbg format.
Therefore it can be useful to run NASM twice, in order to do the preprocessing with the native object
format selected:

nasm-e -f rdf -o rdfprog.i rdfprog.asm
nasm-a -f dbg rdf prog.i

This preprocessesr df pr og. asminto r df pr og. i , keeping ther df object format selected in order to
make sure RDF special directives are converted into primitive form correctly. Then the preprocessed
source is fed through the dbg format to generate the final diagnostic output.

This workaround will still typically not work for programs intended for obj format, because the obj

SEGQVENT and GROUP directives have side effects of defining the segment and group names as symboals;
dbg will not do this, so the program will not assemble. You will have to work around that by defining
the symbols yourself (using EXTERN, for example) if you really need to get a dbg trace of an
obj —specific sourcefile.

dbg accepts any section name and any directives at al, and logs them all to its output file.

7.1

7.1.1

Chapter 7: Writing 16-bit Code (DOS, Windows 3/3.1)

This chapter attempts to cover some of the common issues encountered when writing 16-bit code to run
under MS-DOS or Windows 3.x. It covers how to link programs to produce . EXE or . COMfiles, how to
write . SYS device drivers, and how to interface assembly language code with 16-bit C compilers and
with Borland Pascal.

Producing . EXE Files

Any large program written under DOS needs to be built as a . EXE file: only . EXE files have the
necessary internal structure required to span more than one 64K segment. Windows programs, also, have
to be built as. EXE files, since Windows does not support the . COMformat.

In general, you generate . EXE files by using the obj output format to produce one or more . OBJ files,
and then linking them together using a linker. However, NASM also supports the direct generation of
simple DOS . EXE files using the bi n output format (by using DB and DWto construct the . EXE file
header), and a macro package is supplied to do this. Thanks to Y ann Guidon for contributing the code for
this.

NASM may also support . EXE natively as another output format in future releases.
Using the obj Format To Generate . EXE Files
This section describes the usual method of generating . EXE files by linking . OBJ files together.

Most 16-bit programming language packages come with a suitable linker; if you have none of these, there
isafreelinker caled VAL, available in LZH archive format from x2f t p. oul u. fi . An LZH archiver
can befound at ft p. si nt el . net. There is another ‘free’ linker (though this one doesn’t come with
sources) called FREELINK, available from www. pcor ner. com A third, dj | i nk, written by DJ
Delorie, isavailable at wwv. del ori e. com

When linking severa . OBJ filesinto a. EXE file, you should ensure that exactly one of them has a start
point defined (using the . . st art specia symbol defined by the obj format: see section 6.2.6). If no
module defines a start point, the linker will not know what value to give the entry-point field in the
output file header; if more than one defines a start point, the linker will not know which value to use.

An example of a NASM source file which can be assembled to a. OBJ file and linked on its own to a
. EXE is given here. It demonstrates the basic principles of defining a stack, initialising the segment
registers, and declaring a start point. This file is also provided in the t est subdirectory of the NASM
archives, under the name obj exe. asm

segnent code

..start: nov ax, data
nmov ds, ax
nov ax, st ack
nov Ss, ax
nmov sp, st acktop

Thisinitial piece of code sets up DS to point to the data segment, and initialises SS and SP to point to the
top of the provided stack. Notice that interrupts are implicitly disabled for one instruction after a move

7.1.2

into SS, precisely for this situation, so that there's no chance of an interrupt occurring between the loads
of SS and SP and not having a stack to execute on.

Note also that the special symbol . . st art is defined at the beginning of this code, which means that
will be the entry point into the resulting executable file.

nov dx, hello
nov ah, 9
int 0x21

The above is the main program: load DS: DX with a pointer to the greeting message (hel | o isimplicitly
relative to the segment dat a, which was loaded into DS in the setup code, so the full pointer is valid),
and call the DOS print-string function.

mov ax, 0x4c00
int 0x21

This terminates the program using another DOS system call.

seghent data
hel | o: db "hello, world , 13, 10, '¥

The data segment contains the string we want to display.

segment stack stack
resb 64
st ackt op:

The above code declares a stack segment containing 64 bytes of uninitialised stack space, and points
st ackt op at the top of it. The directive segment st ack st ack defines a segment called st ack,
and also of type STACK. The latter is not necessary to the correct running of the program, but linkers are
likely to issue warnings or errorsif your program has no segment of type STACK.

The above file, when assembled into a. OBJ file, will link on its own to avalid . EXE file, which when
run will print ‘hello, world' and then exit.

Using the bi n Format To Generate . EXE Files

The . EXE file format is simple enough that it's possible to build a . EXE file by writing a pure-binary
program and sticking a 32-byte header on the front. This header is simple enough that it can be generated
using DB and DWcommands by NASM itself, so that you can use the bi n output format to directly
generate . EXE files.

Included in the NASM archives, in the ni sc subdirectory, is afile exebi n. nac of macros. It defines
three macros. EXE_begi n, EXE_st ack and EXE_end.

To produce a . EXE file using this method, you should start by using % ncl ude to load the
exebi n. mac macro package into your source file. You should then issue the EXE_begi n macro call
(which takes no arguments) to generate the file header data. Then write code as normal for the bi n
format — you can use all three standard sections . t ext , . dat a and . bss. At the end of the file you
should call the EXE_end macro (again, no arguments), which defines some symbols to mark section
sizes, and these symbols are referred to in the header code generated by EXE _begi n.

In this model, the code you end up writing starts at 0x100, just like a. COMfile—in fact, if you strip off
the 32-byte header from the resulting . EXE file, you will have a valid . COM program. All the segment
bases are the same, so you are limited to a 64K program, again just like a. COMfile. Note that an ORG
directive isissued by the EXE_begi n macro, so you should not explicitly issue one of your own.

You can't directly refer to your segment base value, unfortunately, since thiswould require arelocation in
the header, and things would get a lot more complicated. So you should get your segment base by
copying it out of CS instead.

7.2

7.2.1

7.2.2

On entry to your . EXE file, SS: SP are already set up to point to the top of a 2Kb stack. You can adjust
the default stack size of 2Kb by calling the EXE_st ack macro. For example, to change the stack size of
your program to 64 bytes, you would call EXE_st ack 64.

A sample program which generates a . EXE file in this way is given in the t est subdirectory of the
NASM archive, asbi nexe. asm

Producing . COMFiles

While large DOS programs must be written as . EXE files, small ones are often better written as . COM
files. . COMfiles are pure binary, and therefore most easily produced using the bi n output format.

Using the bi n Format To Generate . COMFiles

. COM files expect to be loaded at offset 100h into their segment (though the segment may change).
Execution then begins at 100h, i.e. right at the start of the program. So to write a . COM program, you
would create a source file looking like

org 100h
section .text
start: ; put your code here
section .data
; put data itens here
section .bss
; put uninitialised data here

The bi n format puts the . t ext section first in the file, so you can declare data or BSS items before
beginning to write code if you want to and the code will still end up at the front of the file where it
belongs.

The BSS (uninitialised data) section does not take up space in the . COMfile itself: instead, addresses of
BSS items are resolved to point at space beyond the end of the file, on the grounds that this will be free
memory when the program is run. Therefore you should not rely on your BSS being initialised to all
zeros when you run.

To assembl e the above program, you should use a command line like
nasm myprog.asm-fbin -0 nyprog.com

The bi n format would produce afile called nypr og if no explicit output file name were specified, so
you have to override it and give the desired file name.

Using the obj Format To Generate . COMFiles

If you are writing a . COM program as more than one module, you may wish to assemble several . OBJ
files and link them together into a. COMprogram. Y ou can do this, provided you have a linker capable of
outputting . COMfiles directly (TLINK does this), or alternatively a converter program such as EXE2BI N
to transform the . EXE file output from the linker into a. COMfile.

If you do this, you need to take care of several things:

» Thefirst object file containing code should start its code segment with aline like RESB 100h. Thisis
to ensure that the code begins at offset 100h relative to the beginning of the code segment, so that the
linker or converter program does not have to adjust address references within the file when generating
the . COMfile. Other assemblers use an CRG directive for this purpose, but ORGin NASM is a format-
specific directive to the bi n output format, and does not mean the same thing as it does in MASM-
compatible assemblers.

* Youdon't need to define a stack segment.

7.3

7.4

7.4.1

e All your segments should be in the same group, so that every time your code or data references a
symbol offset, al offsets are relative to the same segment base. This is because, when a. COMfileis
loaded, all the segment registers contain the same value.

Producing . SYS Files

MS-DOS device drivers — . SYS files — are pure binary files, similar to . COMfiles, except that they start
at origin zero rather than 100h. Therefore, if you are writing a device driver using the bi n format, you
do not need the ORG directive, since the default origin for bi n is zero. Similarly, if you are using obj ,
you do not need the RESB 100h at the start of your code segment.

. SYSfiles start with a header structure, containing pointers to the various routines inside the driver which
do the work. This structure should be defined at the start of the code segment, even though it is not
actually code.

For more information on the format of . SYS files, and the data which has to go in the header structure, a
list of books is given in the Frequently Asked Questions list for the newsgroup
conp. 0s. nsdosS. progr amrer .

Interfacing to 16-bit C Programs

This section covers the basics of writing assembly routines that call, or are called from, C programs. To
do this, you would typically write an assembly module asa. OBJ file, and link it with your C modules to
produce a mixed-language program.

External Symbol Names

C compilers have the convention that the names of al global symbols (functions or data) they define are
formed by prefixing an underscore to the name as it appears in the C program. So, for example, the
function a C programmer thinks of as pri ntf appears to an assembly language programmer as
_printf. This means that in your assembly programs, you can define symbols without a leading
underscore, and not have to worry about name clashes with C symboals.

If you find the underscores inconvenient, you can define macros to replace the GLOBAL and EXTERN
directives asfollows:

%racro cglobal 1
gl obal _%
%define 9d %
%&ndmacr o
%macro cextern 1
extern %
Ygdefine %4 _%
%&ndnmacr o

(These forms of the macros only take one argument at atime; a% ep construct could solvethis.)
If you then declare an external like this:

cextern printf
then the macro will expand it as

extern _printf
Y%define printf _printf

Thereafter, you can reference pri ntf asif it was a symbol, and the preprocessor will put the leading
underscore on where necessary.

The cgl obal macro works similarly. You must use cgl obal before defining the symbol in question,
but you would have had to do that anyway if you used GLOBAL.

7.4.2 Memory Models

NASM contains no mechanism to support the various C memory models directly; you have to keep track
yourself of which one you are writing for. This means you have to keep track of the following things:

7.4.3

In models using a single code segment (tiny, small and compact), functions are near. This means that
function pointers, when stored in data segments or pushed on the stack as function arguments, are 16
bits long and contain only an offset field (the CS register never changes its value, and aways gives the
segment part of the full function address), and that functions are called using ordinary near CALL
instructions and return using RETN (which, in NASM, is synonymous with RET anyway). This means
both that you should write your own routines to return with RETN, and that you should call external C
routines with near CALL instructions.

In models using more than one code segment (medium, large and huge), functions are far. This means
that function pointers are 32 bits long (consisting of a 16-bit offset followed by a 16-bit segment), and
that functions are called using CALL FAR (or CALL seg: of f set) and return using RETF. Again,
you should therefore write your own routines to return with RETF and use CALL FARto call external
routines.

In models using a single data segment (tiny, small and medium), data pointers are 16 bits long,
containing only an offset field (the DS register doesn’t change its value, and always gives the segment
part of the full data item address).

In models using more than one data segment (compact, large and huge), data pointers are 32 hits long,
consisting of a 16-bit offset followed by a 16-bit segment. You should still be careful not to modify
DS in your routines without restoring it afterwards, but ES is free for you to use to access the contents
of 32-bit data pointers you are passed.

The huge memory model allows single data items to exceed 64K in size. In all other memory models,
you can access the whole of a data item just by doing arithmetic on the offset field of the pointer you
are given, whether a segment field is present or not; in huge model, you have to be more careful of
your pointer arithmetic.

In most memory models, there is a default data segment, whose segment address is kept in DS
throughout the program. This data segment is typically the same segment as the stack, kept in SS, so
that functions' local variables (which are stored on the stack) and global data items can both be
accessed easily without changing DS. Particularly large data items are typically stored in other
segments. However, some memory models (though not the standard ones, usually) alow the
assumption that SS and DS hold the same value to be removed. Be careful about functions' local
variablesin this latter case.

In models with a single code segment, the segment is called _ TEXT, so your code segment must also go
by this name in order to be linked into the same place as the main code segment. In models with a single
data segment, or with adefault data segment, it iscalled DATA.

Function Definitions and Function Calls

The C calling convention in 16-bit programs is as follows. In the following description, the words caller
and callee are used to denote the function doing the calling and the function which gets called.

The caller pushes the function’s parameters on the stack, one after another, in reverse order (right to
left, so that the first argument specified to the function is pushed last).

The caller then executes a CALL instruction to pass control to the callee. This CALL is either near or
far depending on the memory model.

The callee receives control, and typically (although thisis not actually necessary, in functions which do
not need to access their parameters) starts by saving the value of SP in BP so asto be able to use BP as
a base pointer to find its parameters on the stack. However, the caller was probably doing this too, so

part of the calling convention states that BP must be preserved by any C function. Hence the calleg, if
it is going to set up BP as aframe pointer, must push the previous value first.

¢ The callee may then access its parameters relative to BP. The word at [BP] holds the previous value
of BP as it was pushed; the next word, at [BP+2] , holds the offset part of the return address, pushed
implicitly by CALL. In a smal-model (near) function, the parameters start after that, at [BP+4] ; ina
large-modéd (far) function, the segment part of the return address lives at [BP+4] , and the parameters
begin at [BP+6] . The leftmost parameter of the function, since it was pushed last, is accessible at this
offset from BP; the others follow, at successively greater offsets. Thus, in afunction such aspri nt f
which takes a variable number of parameters, the pushing of the parameters in reverse order means
that the function knows where to find its first parameter, which tells it the number and type of the
remaining ones.

» The callee may also wish to decrease SP further, so asto allocate space on the stack for local variables,
which will then be accessible at negative offsets from BP.

* The caleg, if it wishes to return a value to the caller, should leave the value in AL, AX or DX: AX
depending on the size of the value. Floating-point results are sometimes (depending on the compiler)
returned in STO.

« Once the calee has finished processing, it restores SP from BP if it had allocated local stack space,
then pops the previous value of BP, and returns via RETN or RETF depending on memory model.

* When the caller regains control from the callee, the function parameters are still on the stack, so it
typically adds an immediate constant to SP to remove them (instead of executing a number of slow
POP instructions). Thus, if a function is accidentally called with the wrong number of parameters due
to a prototype mismatch, the stack will still be returned to a sensible state since the caller, which
knows how many parameters it pushed, does the removing.

It is instructive to compare this calling convention with that for Pascal programs (described in section
7.5.1). Pascal has a simpler convention, since no functions have variable numbers of parameters.
Therefore the callee knows how many parameters it should have been passed, and is able to dedllocate
them from the stack itself by passing an immediate argument to the RET or RETF instruction, so the
caller does not have to do it. Also, the parameters are pushed in left-to-right order, not right-to-left,
which means that a compiler can give better guarantees about sequence points without performance
suffering.

Thus, you would define a function in C style in the following way. The following example is for small
model:

gl obal _nyfunc
_nmyfunc: push bp

nov bp, sp

sub sp, 0x40 ; 64 bytes of l|ocal stack space

nov bx, [bp+4] ; first parameter to function

; Some nore code

nov sp, bp ; undo "sub sp, 0x40" above

pop bp

ret
For alarge-model function, you would replace RET by RETF, and look for the first parameter at [BP+6]
instead of [BP+4] . Of course, if one of the parameters is a pointer, then the offsets of subsequent
parameters will change depending on the memory model as well: far pointers take up four bytes on the
stack when passed as a parameter, whereas near pointers take up two.

At the other end of the process, to call a C function from your assembly code, you would do something
like this:

7.4.4

extern _printf
; and then, further down...

push word [nyint] ; one of ny integer variables
push word nystring ; pointer into ny data segment
call _printf

add sp, byte 4 ; ‘byte’ saves space

; then those data itens...
segnent _DATA
nyi nt dw 1234
nystring db ’'This nunber -> % <- should be 1234’ ,10,0

This piece of code is the small-model assembly equivalent of the C code

int nyint = 1234;
printf("This nunber -> % <- should be 1234\ n", nyint);

In large model, the function-call code might look more like this. In this example, it is assumed that DS
aready holds the segment base of the segment _ DATA. If not, you would havetoinitidiseit first.

push word [nyint]

push word seg nystring ; Now push the segnent, and...
push word nystring ; ... offset of "nystring"
call far _printf

add sp, byte 6

The integer value still takes up one word on the stack, since large model does not affect the size of the
i nt datatype. Thefirst argument (pushed last) to pri nt f , however, is a data pointer, and therefore has
to contain a segment and offset part. The segment should be stored second in memory, and therefore
must be pushed first. (Of course, PUSH DS would have been a shorter instruction than
PUSH WORD SEG nyst ri ng, if DS was set up as the above example assumed.) Then the actual call
becomes afar call, since functions expect far calls in large model; and SP has to be increased by 6 rather
than 4 afterwards to make up for the extraword of parameters.

Accessing Data Items

To get at the contents of C variables, or to declare variables which C can access, you need only declare
the names as GLOBAL or EXTERN. (Again, the names require leading underscores, as stated in section
7.4.1.) Thus, aC variable declared asi nt i can be accessed from assembler as

extern _i
nmov ax, [_i]

And to declare your own integer variable which C programs can accessasext ern i nt j,youdo this
(making sure you are assembling in the _DATA segment, if necessary):

gl obal _j
N dw 0

To access a C array, you need to know the size of the components of the array. For example, i nt
variables are two bytes long, so if a C program declares an array asi nt a[10] , you can access a[3]
by coding nov ax, [_a+6] . (The byte offset 6 is obtained by multiplying the desired array index, 3,
by the size of the array element, 2.) The sizes of the C base types in 16-bit compilers are: 1 for char , 2
forshort andi nt,4forl ong andf | oat, and 8 for doubl e.

To access a C data structure, you need to know the offset from the base of the structure to the field you
are interested in. You can either do this by converting the C structure definition into a NASM structure
definition (using STRUC), or by calculating the one offset and using just that.

To do either of these, you should read your C compiler’s manual to find out how it organises data
structures. NASM gives no special alignment to structure members in its own STRUC macro, so you

7.4.5

have to specify alignment yourself if the C compiler generates it. Typicaly, you might find that a
structure like

struct {

char c;

int i;
} foo;
might be four bytes long rather than three, since the i nt field would be aligned to a two-byte boundary.
However, this sort of feature tends to be a configurable option in the C compiler, either using command-
line options or #pr agmna lines, so you have to find out how your own compiler doesiit.

c16. mac: Helper Macros for the 16-bit C Interface

Included in the NASM archives, in the mi sc directory, is a file c16. mac of macros. It defines three
macros. pr oc, ar g and endpr oc. These are intended to be used for C-style procedure definitions, and
they automate alot of the work involved in keeping track of the calling convention.

An example of an assembly function using the macro set is given here:

proc _near proc

Ui arg

9j arg
nmov ax, [bp + %i]
mov bx, [bp + %&j]
add ax, [bx]
endpr oc

This defines _near pr oc to be a procedure taking two arguments, the first (i) an integer and the second
(j) apointer to an integer. It returnsi + *j .

Note that the ar g macro has an EQU as the first line of its expansion, and since the label before the macro
call gets prepended to the first line of the expanded macro, the EQU works, defining %$i to be an offset
from BP. A context-local variable is used, local to the context pushed by the pr oc macro and popped by
the endpr oc macro, so that the same argument name can be used in later procedures. Of course, you
don’t have to do that.

The macro set produces code for near functions (tiny, small and compact-model code) by default. You
can have it generate far functions (medium, large and huge-model code) by means of coding
%lef i ne FARCODE. This changes the kind of return instruction generated by endpr oc, and aso
changes the starting point for the argument offsets. The macro set contains no intrinsic dependency on
whether data pointers are far or not.

ar g can take an optional parameter, giving the size of the argument. If no size is given, 2 is assumed,
sinceit islikely that many function parameters will be of typei nt .

The large-model equivalent of the above function would look like this:

%defi ne FARCODE
proc _farproc
i arg
%) arg 4
nmov ax, [bp + %&i]
mov bx, [bp + %&j]
nov es,[bp + %) + 2]
add ax, [bx]
endpr oc

This makes use of the argument to the ar g macro to define a parameter of size 4, becausej isnow afar
pointer. When we load from j , we must load a segment and an offset.

7.5

7.5.1

Interfacing to Borland Pascal Programs

Interfacing to Borland Pascal programs is similar in concept to interfacing to 16-bit C programs. The
differences are:

The leading underscore required for interfacing to C programsis not required for Pascal.

The memory model is always large: functions are far, data pointers are far, and no data item can be
more than 64K long. (Actually, some functions are near, but only those functions that are local to a
Pascal unit and never called from outside it. All assembly functions that Pascal calls, and all Pascal
functions that assembly routines are able to call, are far.) However, all static data declared in a Pascal
program goes into the default data segment, which is the one whose segment address will be in DS
when control is passed to your assembly code. The only things that do not live in the default data
segment are local variables (they live in the stack segment) and dynamically allocated variables. All
data pointers, however, are far.

The function calling convention is different — described below.
Some data types, such as strings, are stored differently.

There are restrictions on the segment names you are allowed to use — Borland Pascal will ignore code
or data declared in a segment it doesn’t like the name of. The restrictions are described below.

The Pascal Calling Convention

The 16-bit Pascal calling convention is as follows. In the following description, the words caller and
callee are used to denote the function doing the calling and the function which gets called.

The caller pushes the function’s parameters on the stack, one after another, in normal order (left to
right, so that the first argument specified to the function is pushed first).

The caller then executes afar CALL instruction to pass control to the callee.

The callee receives control, and typically (although thisis not actually necessary, in functions which do
not need to access their parameters) starts by saving the value of SP in BP so asto be able to use BP as
a base pointer to find its parameters on the stack. However, the caller was probably doing this too, so
part of the calling convention states that BP must be preserved by any function. Hence the calleg, if it
isgoing to set up BP as aframe pointer, must push the previous vauefirst.

The callee may then access its parameters relative to BP. The word at [BP] holds the previous value
of BP asit was pushed. The next word, at [BP+2] , holds the offset part of the return address, and the
next one at [BP+4] the segment part. The parameters begin at [BP+6] . The rightmost parameter of
the function, since it was pushed last, is accessible at this offset from BP; the others follow, at
successively greater offsets.

The callee may also wish to decrease SP further, so asto allocate space on the stack for local variables,
which will then be accessible at negative offsets from BP.

The callee, if it wishes to return a vaue to the caller, should leave the value in AL, AX or DX: AX
depending on the size of the value. Floating-point results are returned in STO. Results of type Real
(Borland's own custom floating-point data type, not handled directly by the FPU) are returned in
DX: BX: AX. To return a result of type St ri ng, the caller pushes a pointer to a temporary string
before pushing the parameters, and the callee places the returned string value at that location. The
pointer is not a parameter, and should not be removed from the stack by the RETF instruction.

Once the callee has finished processing, it restores SP from BP if it had allocated local stack space,
then pops the previous value of BP, and returns via RETF. It uses the form of RETF with an
immediate parameter, giving the number of bytes taken up by the parameters on the stack. This causes
the parameters to be removed from the stack as a side effect of the return instruction.

71.5.2

7.5.3

« When the caller regains control from the callee, the function parameters have aready been removed
from the stack, so it needsto do nothing further.

Thus, you would define a function in Pasca style, taking two | nt eger —type parameters, in the
following way:

gl obal nyfunc
nmyf unc: push bp

nov bp, sp

sub sp, 0x40 ; 64 bytes of local stack space
nov bx, [bp+8] ; first parameter to function
nov bx, [bp+6] ; second paraneter to function
;. SOonMe nore code

nov sp, bp ; undo "sub sp, 0x40" above

pop bp _ _

retf 4 ; total size of params is 4

At the other end of the process, to call a Pascal function from your assembly code, you would do
something like this:

extern SonmeFunc

: and then, further down...

push word seg nystring ; Now push the segnent, and...
push word nystring ; ... offset of "nystring"
push word [nyint] ; one of ny variables

call far SomeFunc

Thisis equivalent to the Pascal code

procedure SoneFunc(String: PChar; Int: |nteger);
SomeFunc(@vystring, nyint);

Borland Pascal Segment Name Restrictions

Since Borland Pascal’s interna unit file format is completely different from OBJ, it only makes a very
sketchy job of actualy reading and understanding the various information contained in areal OBJ file
when it links that in. Therefore an object file intended to be linked to a Pascal program must obey a
number of restrictions:

» Procedures and functions must be in a segment whose name is either CODE, CSEG, or something
endingin _TEXT.
* Initialised data must be in a segment whose name is either CONST or something ending in _ DATA.

* Uninitialised data must be in a segment whose name is either DATA, DSEG, or something ending in
_BSs.

« Any other segments in the object file are completely ignored. GROUP directives and segment attributes
are also ignored.

Using c16. mac With Pascal Programs

The c16. mac macro package, described in section 7.4.5, can also be used to simplify writing functions
to be caled from Pascal programs, if you code %efi ne PASCAL. This definition ensures that
functions are far (it implies FARCODE), and also causes procedure return instructions to be generated
with an operand.

Defining PASCAL does not change the code which cal culates the argument offsets; you must declare your
function’s argumentsin reverse order. For example:

%defi ne PASCAL
proc _pascal proc
%Bj arg 4
%bi arg
nmov ax, [bp + %Bi]
mov bx, [bp + %&j]
nov es,[bp + %) + 2]
add ax, [bx]
endpr oc

This defines the same routine, conceptually, as the example in section 7.4.5: it defines a function taking
two arguments, an integer and a pointer to an integer, which returns the sum of the integer and the
contents of the pointer. The only difference between this code and the large-model C version is that
PASCAL is defined instead of FARCCODE, and that the arguments are declared in reverse order.

8.1

8.1.1

8.1.2

Chapter 8: Writing 32-bit Code (Unix, Win32, DIJGPP)

This chapter attempts to cover some of the common issues involved when writing 32-bit code, to run
under Win32 or Unix, or to be linked with C code generated by a Unix-style C compiler such as DJGPP.
It covers how to write assembly code to interface with 32-bit C routines, and how to write position-
independent code for shared libraries.

Almost all 32-bit code, and in particular al code running under Win32, DJGPP or any of the PC Unix
variants, runs in flat memory model. This means that the segment registers and paging have already been
set up to give you the same 32-bit 4Gb address space no matter what segment you work relative to, and
that you should ignore al segment registers completely. When writing flat-model application code, you
never need to use a segment override or modify any segment register, and the code-section addresses you
pass to CALL and JMP live in the same address space as the data-section addresses you access your
variables by and the stack-section addresses you access local variables and procedure parameters by.
Every addressis 32 bitslong and contains only an offset part.

Interfacing to 32-bit C Programs

A lot of the discussion in section 7.4, about interfacing to 16-bit C programs, still applies when working
in 32 bits. The absence of memory models or segmentation worries simplifies things alot.

External Symbol Names

Most 32-bit C compilers share the convention used by 16-bit compilers, that the names of all global
symbols (functions or data) they define are formed by prefixing an underscore to the name as it appears
in the C program. However, not all of them do: the ELF specification states that C symbols do not have a
leading underscore on their assembly-language names.

The older Linux a. out C compiler, all Win32 compilers, DJGPP, and NetBSD and FreeBSD, al use the
leading underscore; for these compilers, the macros cext er n and cgl obal , as given in section 7.4.1,
will still work. For ELF, though, the leading underscore should not be used.

Function Definitions and Function Calls

The C calling conventionThe C calling convention in 32-bit programs is as follows. In the following
description, the words caller and callee are used to denote the function doing the calling and the function
which gets called.

« The cdler pushes the function’s parameters on the stack, one after another, in reverse order (right to
left, so that the first argument specified to the function is pushed last).

¢ The caler then executes anear CALL instruction to pass control to the callee.

» The calleereceives control, and typically (although thisis not actually necessary, in functions which do
not need to access their parameters) starts by saving the value of ESP in EBP so as to be able to use
EBP as a base pointer to find its parameters on the stack. However, the caler was probably doing this
too, so part of the calling convention states that EBP must be preserved by any C function. Hence the
caleg, if it isgoing to set up EBP as aframe pointer, must push the previous valuefirst.

¢ The calee may then access its parameters relative to EBP. The doubleword at [EBP] holds the
previous value of EBP as it was pushed; the next doubleword, at [EBP+4] , holds the return address,

pushed implicitly by CALL. The parameters start after that, at [EBP+8] . The leftmost parameter of
the function, since it was pushed last, is accessible at this offset from EBP; the others follow, at
successively greater offsets. Thus, in a function such as pri nt f which takes a variable number of
parameters, the pushing of the parameters in reverse order means that the function knows where to
find itsfirst parameter, which tells it the number and type of the remaining ones.

» The callee may also wish to decrease ESP further, so as to alocate space on the stack for local
variables, which will then be accessible at negative offsets from EBP.

* The calleg, if it wishes to return a value to the caler, should leave the value in AL, AX or EAX
depending on the size of the value. Floating-point results are typically returned in STO.

* Once the callee has finished processing, it restores ESP from EBP if it had allocated local stack space,
then pops the previous value of EBP, and returnsvia RET (equivaently, RETN).

* When the caller regains control from the callee, the function parameters are still on the stack, so it
typically adds an immediate constant to ESP to remove them (instead of executing a number of slow
POP instructions). Thus, if a function is accidentally called with the wrong number of parameters due
to a prototype mismatch, the stack will still be returned to a sensible state since the caller, which
knows how many parameters it pushed, does the removing.

There is an alternative caling convention used by Win32 programs for Windows API calls, and also for
functions called by the Windows API such as window procedures: they follow what Microsoft calls the
__stdcal | convention. This is dlightly closer to the Pascal convention, in that the callee clears the
stack by passing a parameter to the RET instruction. However, the parameters are still pushed in right-to-
left order.

Thus, you would define afunction in C stylein the following way:

gl obal _nyfunc
_nmyfunc: push ebp
nov ebp, esp

sub esp, 0x40 ; 64 bytes of local stack space
nov ebx, [ebp+8] ; first parameter to function

; sonme nore code

| eave ; nmov esp,ebp / pop ebp

ret

At the other end of the process, to call a C function from your assembly code, you would do something
likethis:

extern _printf
: and then, further down...

push dword [nyint] ; one of ny integer variables
push dword nystring ; pointer into ny data segment
call _printf

add esp, byte 8 ; ‘byte’ saves space

; then those data itens...
segnment _DATA
nyi nt dd 1234
nystring db 'This nunber -> % <- should be 1234',10,0

This piece of code is the assembly equivalent of the C code

int myint = 1234;
printf("This nunber -> % <- should be 1234\n", nyint);

8.1.3

8.1.4

Accessing Data Items

To get at the contents of C variables, or to declare variables which C can access, you need only declare
the names as GLOBAL or EXTERN. (Again, the names require leading underscores, as stated in section
8.1.1.) Thus, aC variable declared asi nt i can be accessed from assembler as

extern _i
nov eax, [_i]

And to declare your own integer variable which C programs can accessasextern int j,youdo this
(making sure you are assembling in the _DATA segment, if necessary):

gl obal _j
_ dd 0

To access a C array, you need to know the size of the components of the array. For example, i nt

variables are four bytes long, so if a C program declares an array asi nt a[10] , you can access a[3]

by coding nov ax, [_a+12] . (The byte offset 12 is obtained by multiplying the desired array index, 3,
by the size of the array element, 4.) The sizes of the C base types in 32-bit compilers are: 1 for char , 2
forshort,4forint,l ongandfl oat, and 8for doubl e. Pointers, being 32-bit addresses, are also 4
bytes long.

To access a C data structure, you need to know the offset from the base of the structure to the field you
are interested in. You can either do this by converting the C structure definition into a NASM structure
definition (using STRUC), or by calculating the one offset and using just that.

To do either of these, you should read your C compiler’s manual to find out how it organises data
structures. NASM gives no specia alignment to structure members in its own STRUC macro, so you
have to specify alignment yourself if the C compiler generates it. Typically, you might find that a
structure like

struct {

char c;

int i;
} foo;
might be eight bytes long rather than five, sincethei nt field would be aligned to a four-byte boundary.
However, this sort of feature is sometimes a configurable option in the C compiler, either using
command-line options or #pr agma lines, so you have to find out how your own compiler doesiit.

c32. mac: Helper Macros for the 32-bit C Interface

Included in the NASM archives, in the ni sc directory, is a file ¢32. mac of macros. It defines three
macros. pr oc, ar g and endpr oc. These are intended to be used for C-style procedure definitions, and
they automate alot of the work involved in keeping track of the calling convention.

An example of an assembly function using the macro set is given here:

proc _proc32

Ubi arg

%) arg
nov eax, [ebp + %&i]
nov ebx, [ebp + %&j]
add eax, [ebx]
endpr oc

Thisdefines _pr oc 32 to be a procedure taking two arguments, the first (i) an integer and the second (j)
apointer to aninteger. It returnsi + *j .

Note that the ar g macro has an EQU as the first line of its expansion, and since the |abel before the macro
call gets prepended to the first line of the expanded macro, the EQU works, defining %$i to be an offset

8.2

8.2.1

from BP. A context-local variable is used, local to the context pushed by the pr oc macro and popped by
the endpr oc macro, so that the same argument name can be used in later procedures. Of course, you
don’t have to do that.

ar g can take an optional parameter, giving the size of the argument. If no size is given, 4 is assumed,
sinceit islikely that many function parameters will be of typei nt or pointers.

Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries

ELF replaced the older a. out object file format under Linux because it contains support for
position-independent code (PIC), which makes writing shared libraries much easier. NASM supports the
ELF position-independent code features, so you can write Linux ELF shared librariesin NASM.

NetBSD, and its close cousins FreeBSD and OpenBSD, take a different approach by hacking PIC support
into the a. out format. NASM supports this as the aout b output format, so you can write BSD shared
librariesin NASM too.

The operating system loads a PIC shared library by memory-mapping the library file at an arbitrarily
chosen point in the address space of the running process. The contents of the library’s code section must
therefore not depend on whereit isloaded in memory.

Therefore, you cannot get at your variables by writing code like this:
nov eax, [myvar] 7 VARONG

Instead, the linker provides an area of memory called the global offset table, or GOT; the GOT is situated
at a constant distance from your library’s code, so if you can find out where your library isloaded (which
is typically done using a CALL and POP combination), you can obtain the address of the GOT, and you
can then load the addresses of your variables out of linker-generated entriesin the GOT.

The data section of a PIC shared library does not have these restrictions: since the data section iswritable,
it has to be copied into memory anyway rather than just paged in from the library file, so aslong asit’'s
being copied it can be relocated too. So you can put ordinary types of relocation in the data section
without too much worry (but see section 8.2.4 for a caveat).

Obtaining the Address of the GOT
Each code module in your shared library should define the GOT as an external symbol:

extern GLOBAL OFFSET_TABLE ; in ELF
extern _ GLOBAL _OFFSET TABLE ; in BSD a.out

At the beginning of any function in your shared library which plans to access your data or BSS sections,
you must first calculate the address of the GOT. This is typically done by writing the function in this
form:

func: push ebp
nov ebp, esp
push ebx
call .get _GOT
.get _GOT: pop ebx
add ebx, G.OBAL_OFFSET_TABLE +$$-.get_ _GOT wt ..gotpc
; the function body cones here
nov ebx, [ebp- 4]
nov esp, ebp
pop ebp
ret

(For BSD, again, the symbol _ GLOBAL_OFFSET_TABLE requires a second leading underscore.)

8.2.2

8.2.3

The first two lines of this function are simply the standard C prologue to set up a stack frame, and the last
three lines are standard C function epilogue. The third line, and the fourth to last line, save and restore
the EBX register, because PIC shared libraries use this register to store the address of the GOT.

The interesting bit is the CALL instruction and the following two lines. The CALL and POP combination
obtains the address of the label . get _GOT, without having to know in advance where the program was
loaded (since the CALL instruction is encoded relative to the current position). The ADD instruction
makes use of one of the specia PIC relocation types: GOTPC relocation. With the WRT . . got pc
qualifier specified, the symbol referenced (here _GLOBAL_OFFSET_TABLE , the specia symbol
assigned to the GOT) is given as an offset from the beginning of the section. (Actualy, ELF encodesit as
the offset from the operand field of the ADD instruction, but NASM simplifies this deliberately, so you do
things the same way for both ELF and BSD.) So the instruction then adds the beginning of the section, to
get the real address of the GOT, and subtracts the value of . get _GOT which it knows is in EBX.
Therefore, by the time that instruction has finished, EBX contains the address of the GOT.

If you didn’t follow that, don’'t worry: it's never necessary to obtain the address of the GOT by any other
means, So you can put those three instructions into a macro and safely ignore them:

%racro get _GOT O

cal |l %@get got
%get got: pop ebx

add ebx, GLOBAL_OFFSET TABLE +$%- %@et got wt ..gotpc
%endmacr o

Finding Your Local Data Items

Having got the GOT, you can then use it to obtain the addresses of your data items. Most variables will
reside in the sections you have declared; they can be accessed using the . . got of f specia WRT type.
The way thisworksislikethis:

| ea eax, [ebx+myvar wrt ..gotoff]

Theexpression nyvar wrt .. got of f iscalculated, when the shared library islinked, to be the offset
to the local variable myvar from the beginning of the GOT. Therefore, adding it to EBX as above will
place the real address of myvar in EAX.

If you declare variables as GLOBAL without specifying a size for them, they are shared between code
modules in the library, but do not get exported from the library to the program that loaded it. They will
still be in your ordinary data and BSS sections, so you can access them in the same way as local
variables, using the above . . got of f mechanism.

Note that due to a peculiarity of the way BSD a. out format handles this relocation type, there must be
at least one non-local symbol in the same section as the address you' re trying to access.

Finding External and Common Data Iltems

If your library needs to get at an external variable (externa to the library, not just to one of the modules
within it), you must use the . . got typeto get at it. The . . got type, instead of giving you the offset
from the GOT base to the variable, gives you the offset from the GOT base to a GOT entry containing
the address of the variable. The linker will set up this GOT entry when it builds the library, and the
dynamic linker will place the correct address in it a load time. So to obtain the address of an external
variable ext var in EAX, you would code

nov eax, [ebx+extvar wt ..got]

This loads the address of ext var out of an entry in the GOT. The linker, when it builds the shared
library, collects together every relocation of type . . got , and builds the GOT so as to ensure it has every
necessary entry present.

Common variables must also be accessed in thisway.

8.24

8.2.5

Exporting Symbols to the Library User

If you want to export symbols to the user of the library, you have to declare whether they are functions or
data, and if they are data, you have to give the size of the data item. This is because the dynamic linker
has to build procedure linkage table entries for any exported functions, and also moves exported data
items away from the library’ s data section in which they were declared.

So to export afunction to users of the library, you must use

gl obal func:function : declare it as a function
func: push ebp
. etc.

And to export a dataitem such as an array, you would have to code

gl obal array:data array.end-array ; give the size too
array: resd 128
. end:

Be careful: If you export a variable to the library user, by declaring it as GLOBAL and supplying a size,
the variable will end up living in the data section of the main program, rather than in your library’s data
section, where you declared it. So you will have to access your own global variable with the . . got

mechanism rather than . . got of f , asif it were external (which, effectively, it has become).

Equally, if you need to store the address of an exported global in one of your data sections, you can't do it
by means of the standard sort of code:

dataptr: dd global _data item ;. VARONG

NASM will interpret this code as an ordinary relocation, in which gl obal _dat a_i t emis merely an
offset from the beginning of the . dat a section (or whatever); so this reference will end up pointing at
your data section instead of at the exported global which resides elsewhere.

Instead of the above code, then, you must write
dataptr: dd global _data itemwt ..sym

which makes use of the special WRT type . . symto instruct NASM to search the symbol table for a
particular symbol at that address, rather than just relocating by section base.

Either method will work for functions: referring to one of your functions by means of
funcptr: dd ny_function

will give the user the address of the code you wrote, whereas

funcptr: dd ny_function wt ..sym

will give the address of the procedure linkage table for the function, which is where the calling program
will believe the function lives. Either addressis avalid way to call the function.

Calling Procedures Outside the Library

Calling procedures outside your shared library has to be done by means of a procedure linkage table, or
PLT. The PLT is placed at a known offset from where the library is loaded, so the library code can make
callsto the PLT in a position-independent way. Within the PLT there is code to jump to offsets contained
in the GOT, so function calls to other shared libraries or to routines in the main program can be
transparently passed off to their real destinations.

To call an external routine, you must use another special PIC relocation type, WRT . . pl t. Thisis much
easier than the GOT-based ones. you simply replace calls such as CALL pri nt f with the PLT-relative
version CALL printf WRT ..plt.

8.2.6 Generating the Library File

Having written some code modules and assembled them to . o files, you then generate your shared library
with a command such as

Id -shared -0 library.so nodul el. o nodul e2. 0 # for ELF
Id -Bshareable -o library.so nodul el.o nodule2.0 # for BSD

For ELF, if your shared library is going to reside in system directoriessuch as/ usr/libor/lib,itis
usually worth using the - sonane flag to the linker, to store the final library file name, with a version
number, into the library:

| d -shared -sonane library.so.1 -o library.so.1.2 *.0

You would then copy | i brary. so. 1. 2 into the library directory, and create | i brary. so. 1 asa
symbolic link to it.

9.1

9.2

Chapter 9: Mixing 16 and 32 Bit Code

This chapter tries to cover some of the issues, largely related to unusua forms of addressing and jump
instructions, encountered when writing operating system code such as protected-mode initialisation
routines, which require code that operates in mixed segment sizes, such as code in a 16-bit segment
trying to modify datain a 32-bit one, or jumps between different-size segments.

Mixed-Size Jumps

The most common form of mixed-size instruction is the one used when writing a 32-bit OS: having done
your setup in 16-bit mode, such as loading the kernel, you then have to boot it by switching into
protected mode and jumping to the 32-bit kernel start address. In a fully 32-bit OS, this tends to be the
only mixed-size instruction you need, since everything before it can be done in pure 16-bit code, and
everything after it can be pure 32-bit.

This jump must specify a 48-bit far address, since the target segment is a 32-bit one. However, it must be
assembled in a 16-bit segment, so just coding, for example,

jmp 0x1234: 0x56789ABC ; w ong!

will not work, since the offset part of the address will be truncated to 0X9ABC and the jump will be an
ordinary 16-bit far one.

The Linux kernel setup code gets round the inability of as86 to generate the required instruction by
coding it manually, using DB instructions. NASM can go one better than that, by actually generating the
right instruction itself. Here' s how to do it right:

jmp dword 0x1234: 0x56789ABC ; ri ght

The DWORD prefix (strictly speaking, it should come after the colon, sinceit is declaring the offset field to
be a doubleword; but NASM will accept either form, since both are unambiguous) forces the offset part
to be treated as far, in the assumption that you are deliberately writing a jump from a 16-bit segment to a
32-bit one.

Y ou can do the reverse operation, jumping from a 32-bit segment to a 16-bit one, by means of the WORD
prefix:
jmp word Ox8765:0x4321 ; 32 to 16 bit

If the WORD prefix is specified in 16-bit mode, or the DWORD prefix in 32-bit mode, they will be ignored,
since each is explicitly forcing NASM into amode it was in anyway.

Addressing Between Different-Size Segments

If your OS is mixed 16 and 32-bit, or if you are writing a DOS extender, you are likely to have to deal
with some 16-bit segments and some 32-bit ones. At some point, you will probably end up writing code
in a 16-bit segment which has to access datain a 32-bit segment, or vice versa.

If the data you are trying to access in a 32-bit segment lies within the first 64K of the segment, you may
be able to get away with using an ordinary 16-bit addressing operation for the purpose; but sooner or
later, you will want to do 32-bit addressing from 16-bit mode.

9.3

The easiest way to do this is to make sure you use a register for the address, since any effective address
containing a 32-hit register is forced to be a 32-hit address. So you can do

nov eax, offset _into_32 bit_segnment _specified_ by fs
nov dword [fs:eax], 0x11223344

Thisis fine, but slightly cumbersome (since it wastes an instruction and a register) if you already know
the precise offset you are aiming at. The x86 architecture does alow 32-hit effective addresses to specify
nothing but a 4-byte offset, so why shouldn't NASM be able to generate the best instruction for the
purpose?

It can. Asin section 9.1, you need only prefix the address with the DWORD keyword, and it will be forced
to be a 32-bit address:

mov dword [fs:dword nmy_offset], 0x11223344

Also as in section 9.1, NASM is not fussy about whether the DWORD prefix comes before or after the
segment override, so arguably a nicer-looking way to code the above instruction is

nmov dword [dword fs:nmy_offset], 0x11223344

Don't confuse the DWORD prefix outside the square brackets, which controls the size of the data stored at
the address, with the one i nsi de the square brackets which controls the length of the address itself. The
two can quite easily be different:

nov word [dword 0x12345678], 0Xx9ABC
This moves 16 bits of data to an address specified by a 32-bit offset.

You can aso specify WORD or DWORD prefixes along with the FAR prefix to indirect far jumps or calls.
For example:

call dword far [fs:word 0x4321]

Thisinstruction contains an address specified by a 16-hit offset; it loads a 48-bit far pointer from that (16-
bit segment and 32-hit offset), and calls that address.

Other Mixed-Size Instructions

The other way you might want to access data might be using the string instructions (LODSx, STOSx and
so on) or the XLATB instruction. These instructions, since they take no parameters, might seem to have
no easy way to make them perform 32-bit addressing when assembled in a 16-bit segment.

Thisis the purpose of NASM’s al6 and a32 prefixes. If you are coding LODSB in a 16-bit segment but
it is supposed to be accessing a string in a 32-bit segment, you should load the desired address into ESI
and then code

a32 | odsb

The prefix forces the addressing size to 32 bits, meaning that LODSB loads from [DS: ESI] instead of
[DS: Sl] . To access a string in a 16-bit segment when coding in a 32-bit one, the corresponding al6
prefix can be used.

The al6 and a32 prefixes can be applied to any instruction in NASM’s instruction table, but most of
them can generate all the useful forms without them. The prefixes are necessary only for instructions
with implicit addressing: CMPSx (section A.19), SCASx (section A.149), LODSx (section A.98), STOSx
(section A.157), MOVSx (section A.105), | NSx (section A.80), OUTSx (section A.112), and XLATB
(section A.169). Also, the various push and pop instructions (PUSHA and POPF as well as the more usual
PUSH and POP) can accept al6 or a32 prefixes to force a particular one of SP or ESP to be used as a
stack pointer, in case the stack segment in use is a different size from the code segment.

PUSH and POP, when applied to segment registers in 32-bit mode, also have the dightly odd behaviour
that they push and pop 4 bytes at a time, of which the top two are ignored and the bottom two give the
value of the segment register being manipulated. To force the 16-bit behaviour of segment-register push
and pop instructions, you can use the operand-size prefix 016:

016 push ss
016 push ds

This code saves a doubleword of stack space by fitting two segment registers into the space which would
normally be consumed by pushing one.

(You can aso use the 032 prefix to force the 32-bit behaviour when in 16-bit mode, but this seems less
useful.)

10.1
10.1.1

10.1.2

10.1.3

Chapter 10: Troubleshooting

This chapter describes some of the common problems that users have been known to encounter with
NASM, and answers them. It also gives instructions for reporting bugs in NASM if you find a difficulty
that isn't listed here.

Common Problems
NASM Generates Inefficient Code

| get alot of ‘bug’ reports about NASM generating inefficient, or even ‘wrong’, code on instructions such
as ADD ESP, 8. This is a deliberate design feature, connected to predictability of output: NASM, on
seeing ADD ESP, 8, will generate the form of the instruction which leaves room for a 32-bit offset. You
need to code ADD ESP, BYTE 8 if you want the space-efficient form of the instruction. This isn't a
bug: at worst it's amisfeature, and that’s a matter of opinion only.

My Jumps are Out of Range

Similarly, people complain that when they issue conditional jumps (which are SHORT by default) that try
to jump too far, NASM reports ‘ short jump out of range’ instead of making the jumps longer.

This, again, is partly a predictability issue, but in fact has a more practical reason as well. NASM has no
means of being told what type of processor the code it is generating will be run on; so it cannot decide
for itself that it should generate Jcc NEAR type instructions, because it doesn’t know that it's working
for a 386 or above. Alternatively, it could replace the out-of-range short JNE instruction with a very
short JE instruction that jumps over aJMP NEAR; thisis a sensible solution for processors below a 386,
but hardly efficient on processors which have good branch prediction and could have used JNE NEAR
instead. So, once again, it's up to the user, not the assembler, to decide what instructions should be
generated.

ORGDoesn’t Work

People writing boot sector programs in the bi n format often complain that ORG doesn’t work the way
they'd like: in order to place the OXAA55 signature word at the end of a 512-byte boot sector, people
who are used to MASM tend to code

ORG 0

: sone boot sector code
ORG 510

DW 0xAA55

Thisis not the intended use of the ORG directive in NASM, and will not work. The correct way to solve
this problem in NASM isto usethe Tl MES directive, like this:

ORG 0

: sone boot sector code
TI MES 510-(%$-%$%) DB O
DW 0xAA55

The TI MES directive will insert exactly enough zero bytes into the output to move the assembly point up
to 510. This method aso has the advantage that if you accidentaly fill your boot sector too full, NASM

10.1.4

10.2

will catch the problem at assembly time and report it, so you won't end up with a boot sector that you
have to disassemble to find out what’s wrong with it.

TI MES Doesn’t Work
The other common problem with the above code is people who write the TI MES line as
TI MES 510-$ DB O

by reasoning that $ should be a pure number, just like 510, so the difference between them is also a pure
number and can happily befed to Tl MES.

NASM is a modular assembler: the various component parts are designed to be easily separable for re-
use, so they don’'t exchange information unnecessarily. In consequence, the bi n output format, even
though it has been told by the ORG directive that the . t ext section should start at O, does not pass that
information back to the expression evauator. So from the evaluator’'s point of view, $ isn't a pure
number: it's an offset from a section base. Therefore the difference between $ and 510 is also not a pure
number, but involves a section base. Values involving section bases cannot be passed as arguments to
TI MVES.

The solution, asin the previous section, isto code the TI MES line in the form
TI MES 510-($-$$) DB O

inwhich $ and $$ are offsets from the same section base, and so their difference is a pure number. This
will solve the problem and generate sensible code.

Bugs

We have never yet released a version of NASM with any known bugs. That doesn't usualy stop there
being plenty we didn’t know about, though. Any that you find should be reported to hpa@yt or . com

Please read section 2.2 first, and don’t report the bug if it's listed in there as a deliberate feature. (If you
think the feature is badly thought out, feel free to send us reasons why you think it should be changed,
but don't just send us mail saying ‘Thisisabug’ if the documentation says we did it on purpose.) Then
read section 10.1, and don’t bother reporting the bug if it’'s listed there.

If you do report a bug, please give us all of the following information:

« What operating system you’ re running NASM under. DOS, Linux, NetBSD, Win16, Win32, VMS (I'd
be impressed), whatever.

e If you're running NASM under DOS or Win32, tell us whether you’' ve compiled your own executable
from the DOS source archive, or whether you were using the standard distribution binaries out of the
archive. If you were using a locally built executable, try to reproduce the problem using one of the
standard binaries, asthiswill make it easier for usto reproduce your problem prior to fixing it.

« Which version of NASM you're using, and exactly how you invoked it. Give us the precise command
line, and the contents of the NASMenvironment variable if any.

« Which versions of any supplementary programs you're using, and how you invoked them. If the
problem only becomes visible at link time, tell us what linker you're using, what version of it you've
got, and the exact linker command line. If the problem involves linking against object files generated
by a compiler, tell us what compiler, what version, and what command line or options you used. (If
you're compiling in an IDE, please try to reproduce the problem with the command-line version of the
compiler.)

e If a al possible, send us a NASM source file which exhibits the problem. If this causes copyright
problems (e.g. you can only reproduce the bug in restricted-distribution code) then bear in mind the
following two points: firstly, we guarantee that any source code sent to us for the purposes of
debugging NASM will be used only for the purposes of debugging NASM, and that we will delete all

our copies of it as soon as we have found and fixed the bug or bugs in question; and secondly, we
would prefer not to be mailed large chunks of code anyway. The smaller the file, the better. A three-
line sample file that does nothing useful except demonstrate the problem is much easier to work with
than a fully fledged ten-thousand-line program. (Of course, some errors do only crop up in large files,
so this may not be possible.)

A description of what the problem actualy is. ‘It doesn't work’ is not a helpful description! Please
describe exactly what is happening that shouldn't be, or what isn’t happening that should. Examples
might be: ‘NASM generates an error message saying Line 3 for an error that's actualy on Line 5';
‘NASM generates an error message that | believe it shouldn’'t be generating at all’; ‘NASM fails to
generate an error message that | believe it should be generating’; ‘the object file produced from this
source code crashes my linker’; ‘the ninth byte of the output file is 66 and | think it should be 77
instead’.

If you believe the output file from NASM to be faulty, send it to us. That allows us to determine
whether our own copy of NASM generates the same file, or whether the problem is related to
portability issues between our development platforms and yours. We can handle binary files mailed to
us as MIME attachments, uuencoded, and even BinHex. Alternatively, we may be able to provide an
FTP site you can upload the suspect files to; but mailing them is easier for us.

Any other information or data files that might be helpful. If, for example, the problem involves NASM
failing to generate an object file while TASM can generate an equivalent file without trouble, then
send us both object files, so we can see what TASM is doing differently from us.

A.l

A.2

Appendix A: Intel x86 Instruction Reference

This appendix provides a complete list of the machine instructions which NASM will assemble, and a
short description of the function of each one.

It is not intended to be exhaustive documentation on the fine details of the instructions' function, such as
which exceptions they can trigger: for such documentation, you should go to Intel’s Web site,
http://ww.intel.coni.

Instead, this appendix is intended primarily to provide documentation on the way the instructions may be
used within NASM. For example, looking up LOOP will tell you that NASM alows CX or ECX to be
specified as an optional second argument to the LOOP instruction, to enforce which of the two possible
counter registers should be used if the default is not the one desired.

The instructions are not quite listed in aphabetical order, since groups of instructions with similar
functions are lumped together in the same entry. Most of them don’t move very far from their alphabetic
position because of this.

Key to Operand Specifications
Theinstruction descriptions in this appendix specify their operands using the following notation:

* Registers: r eg8 denotes an 8-hit general purpose register, r eg1l6 denotes a 16-bit general purpose
register, and r eg32 a 32-bit one. f pur eg denotes one of the eight FPU stack registers, mmxr eg
denotes one of the eight 64-bit MMX registers, and segr eg denotes a segment register. In addition,
some registers (such as AL, DX or ECX) may be specified explicitly.

» Immediate operands: i nmdenotes a generic immediate operand. i M8, i mmL6 and i MB2 are used
when the operand is intended to be a specific size. For some of these instructions, NASM needs an
explicit specifier: for example, ADD ESP, 16 could be interpreted as either ADD r/ nB2, i nmB2 or
ADD r/nmB2,i nmB. NASM chooses the former by default, and so you must specify
ADD ESP, BYTE 16 for the latter.

« Memory references. mem denotes a generic memory reference; men8, neni6, nen82, nent4 and
menB80 are used when the operand needs to be a specific size. Again, a specifier is needed in some
cases. DEC [address] is ambiguous and will be rejected by NASM. You must specify
DEC BYTE [addr ess], DEC WORD [addr ess] or DEC DWORD [addr ess] instead.

* Restricted memory references. one form of the MOV instruction allows a memory address to be
specified without allowing the normal range of register combinations and effective address processing.
Thisis denoted by menof f s8, menof f s16 and menof f s32.

» Register or memory choices. many instructions can accept either a register or a memory reference as
an operand. r/ nB is a shorthand for r eg8/ men8; similarly r/ nil6 and r/ nB2. r/ 64 is MMX-
related, and is a shorthand for nmxr eg/ ment4.

Key to Opcode Descriptions

This appendix also provides the opcodes which NASM will generate for each form of each instruction.
The opcodes are listed in the following way:

« A hex number, such as 3F, indicates a fixed byte containing that number.

A21

A hex number followed by +r , such as C8+r , indicates that one of the operands to the instruction is a
register, and the ‘register value' of that register should be added to the hex number to produce the
generated byte. For example, EDX has register value 2, so the code C8+r , when the register operand
isEDX, generates the hex byte CA. Register values for specific registers are givenin section A.2.1.

A hex number followed by +cc, such as 40+cc, indicates that the instruction name has a condition
code suffix, and the numeric representation of the condition code should be added to the hex number
to produce the generated byte. For example, the code 40+cc, when the instruction contains the NE
condition, generates the hex byte 45. Condition codes and their numeric representations are given in
section A.2.2.

A dlash followed by a digit, such as / 2, indicates that one of the operands to the instruction is a
memory address or register (denoted memor r/ m with an optional size). Thisisto be encoded as an
effective address, with a ModR/M byte, an optional SIB byte, and an optional displacement, and the
spare (register) field of the ModR/M byte should be the digit given (which will be from 0 to 7, so it
fitsin three bits). The encoding of effective addressesis given in section A.2.3.

The code / r combines the above two: it indicates that one of the operands is a memory address or
r/ m and another is a register, and that an effective address should be generated with the spare
(register) field in the ModR/M byte being equal to the ‘register value' of the register operand. The
encoding of effective addressesis given in section A.2.3; register values are given in section A.2.1.

The codesi b, i wand i d indicate that one of the operands to the instruction is an immediate value,
and that thisisto be encoded as a byte, little-endian word or little-endian doubleword respectively.

The codesr b, rwand r d indicate that one of the operands to the instruction is an immediate value,
and that the difference between this value and the address of the end of the instruction isto be encoded
as a byte, word or doubleword respectively. Where the form rw/ r d appears, it indicates that either
rw or rd should be used according to whether assembly is being performed in BI TS 16 or
Bl TS 32 state respectively.

The codes ow and od indicate that one of the operands to the instruction is a reference to the contents
of amemory address specified as an immediate value: this encoding is used in some forms of the MOV
instruction in place of the standard effective-address mechanism. The displacement is encoded as a
word or doubleword. Again, ow' od denotes that ow or od should be chosen according to the BI TS
setting.

The codes 016 and 032 indicate that the given form of the instruction should be assembled with
operand size 16 or 32 bits. In other words, 016 indicates a66 prefix in Bl TS 32 state, but generates
no codein BI TS 16 state; and 032 indicates a 66 prefix in Bl TS 16 state but generates nothing in
BI TS 32.

The codesal6 and a32, similarly to 016 and 032, indicate the address size of the given form of the
instruction. Where this does not match the Bl TS setting, a67 prefix isrequired.

Register Values

Where an instruction requires a register value, it is already implicit in the encoding of the rest of the
instruction what type of register is intended: an 8-bit general-purpose register, a segment register, a
debug register, an MMX register, or whatever. Therefore there is no problem with registers of different
types sharing an encoding value.

The encodings for the various classes of register are:

8-bit general registers: AL is0, CL is1, DL is2, BL is3, AHis4, CHis5, DHis6, and BHis7.
16-bit genera registers: AXis0, CXis1, DXis2, BXis3,SPis4,BPis5, Sl is6,and Dl is7.

32-bit general registers. EAXis0, ECXis 1, EDXis2, EBXis3, ESPis4, EBP is5, ESI is6, and EDI
is7.

A.2.2

A.2.3

e Segment registers: ESis0, CSis1, SSis2, DSis3, FSis4, and GSisb.

» {Floating-point registers}: STO is0, ST1 is1, ST2 is2, ST3 is3, ST4 is4, ST5 is5, ST6 is 6, and
ST7is7.

¢ 64-bit MMX registers: MMD isO, MML is1, M2 is2, MMB is3, MVl is4, MVb is5, MVb is 6, and MW/
is7.

e Control registers: CR0 is0, CR2 is2, CR3 is 3, and CR4 is 4.
« Debug registers: DRO is0, DR1 is1, DR2 is2, DR3 is 3, DR6 is6, and DR7 is 7.
e Testregisters: TR3is3, TR4 is4, TR5 is5, TR6 is6, and TR7 is7.

(Note that wherever a register name contains a number, that number is also the register value for that
register.)

Condition Codes

The available condition codes are given here, along with their numeric representations as part of opcodes.
Many of these condition codes have synonyms, so several will be listed at atime.

In the following descriptions, the word ‘either’, when applied to two possible trigger conditions, is used to
mean ‘either or both'. If *either but not both’ is meant, the phrase ‘ exactly one of’ is used.

¢ QisO (trigger if the overflow flag is set); NOis 1.

« B, Cand NAE are 2 (trigger if the carry flag is set); AE, NB and NC are 3.

e Eand Z are 4 (trigger if the zero flag is set); NE and NZ are 5.

» BE and NA are 6 (trigger if either of the carry or zero flagsis set); Aand NBE are 7.

e Sis8(trigger if thesign flagisset); NSis9.

e Pand PE are 10 (trigger if the parity flag is set); NP and POare 11.

¢ L and NGE are 12 (trigger if exactly one of the sign and overflow flagsis set); GE and NL are 13.

* LE and NGare 14 (trigger if either the zero flag is set, or exactly one of the sign and overflow flagsis
set); Gand NLE are 15.

Note that in all cases, the sense of a condition code may be reversed by changing the low bit of the
numeric representation.

Effective Address Encoding: ModR/M and SIB

An effective address is encoded in up to three parts. a ModR/M byte, an optional SIB byte, and an
optional byte, word or doubleword displacement field.

The ModR/M byte consists of three fields: the nod field, ranging from O to 3, in the upper two bits of the
byte, the r / mfield, ranging from O to 7, in the lower three bits, and the spare (register) field in the
middle (bit 3 to bit 5). The spare field is not relevant to the effective address being encoded, and either
contains an extension to the instruction opcode or the register value of another operand.

The ModR/M system can be used to encode a direct register reference rather than a memory access. This
is always done by setting the nod field to 3 and the r / mfield to the register value of the register in
guestion (it must be a general-purpose register, and the size of the register must already be implicit in the
encoding of the rest of the instruction). In this case, the SIB byte and displacement field are both absent.

In 16-bit addressing mode (either BI TS 16 with no 67 prefix, or BI TS 32 with a 67 prefix), the SIB
byte is never used. The general rulesfor nod and r / m(there is an exception, given below) are:

» The nod field gives the length of the displacement field: 0 means no displacement, 1 means one byte,
and 2 means two bytes.

A.3

e The r/ mfield encodes the combination of registers to be added to the displacement to give the
accessed address: 0 means BX+SI , 1 means BX+DI , 2 means BP+SI , 3 means BP+DI , 4 means Si
only, 5means DI only, 6 means BP only, and 7 means BX only.

However, thereis a special case:

e If nod isOandr/ mis 6, the effective address encoded is not [BP] as the above rules would suggest,
but instead [di sp16] : the displacement field is present and is two bytes long, and no registers are
added to the displacement.

Therefore the effective address [BP] cannot be encoded as efficiently as[BX] ; so if you code[BP] ina
program, NASM adds a notional 8-bit zero displacement, and sets nod to 1, r/ mto 6, and the one-byte
displacement field to O.

In 32-bit addressing mode (either BI TS 16 with a 67 prefix, or BI TS 32 with no 67 prefix) the
general rules (again, there are exceptions) for mod and r / mare:

« The nod field gives the length of the displacement field: 0 means no displacement, 1 means one byte,
and 2 means four bytes.

« If only one register is to be added to the displacement, and it is not ESP, ther / mfield givesits register
value, and the SIB byte is absent. If the r/ mfield is 4 (which would encode ESP), the SIB byte is
present and gives the combination and scaling of registers to be added to the displacement.

If the SIB byte is present, it describes the combination of registers (an optional base register, and an
optional index register scaled by multiplication by 1, 2, 4 or 8) to be added to the displacement. The SIB
byte is divided into the scal e field, in the top two bits, thei ndex field in the next three, and the base
field in the bottom three. The general rules are:

* Thebase field encodes the register value of the base register.

« Thei ndex field encodes the register value of the index register, unlessit is 4, in which case no index
register is used (so ESP cannot be used as an index register).

e The scal e field encodes the multiplier by which the index register is scaled before adding it to the
base and displacement: 0 encodes a multiplier of 1, 1 encodes 2, 2 encodes 4 and 3 encodes 8.

The exceptions to the 32-bit encoding rules are:

* If mod isOandr/ mis5, the effective address encoded is not [EBP] as the above rules would suggest,
but instead [di sp32] : the displacement field is present and is four bytes long, and no registers are
added to the displacement.

e If rod isO, r/ mis4 (meaning the SIB byteis present) and base is 4, the effective address encoded is
not [EBP+i ndex] as the above rules would suggest, but instead [di sp32+i ndex]: the
displacement field is present and is four bytes long, and there is no base register (but the index register
is still processed in the normal way).

Key to Instruction Flags

Given along with each instruction in this appendix is a set of flags, denoting the type of the instruction.
Thetypes are asfollows:

- 8086, 186, 286, 386, 486, PENT and P6 denote the lowest processor type that supports the
instruction. Most instructions run on all processors above the given type; those that do not are
documented. The Pentium Il contains no additional instructions beyond the P6 (Pentium Pro); from
the point of view of itsinstruction set, it can be thought of as a P6 with MM X capability.

* CYRI X indicates that the instruction is specific to Cyrix processors, for example the extra MMX
instructions in the Cyrix extended MM X instruction set.

A4

A.5

e FPU indicates that the instruction is a floating-point one, and will only run on machines with a
coprocessor (automatically including 486D X, Pentium and above).

« MWK indicates that the instruction is an MM X one, and will run on MM X-capable Pentium processors
and the Pentium [1.

« PRI V indicates that the instruction is a protected-mode management instruction. Many of these may
only be used in protected mode, or only at privilege level zero.

« UNDOQOC indicates that the instruction is an undocumented one, and not part of the official Intel
Architecture; it may or may not be supported on any given machine.

AAA, AAS, AAM AAD: ASCII Adjustments

AAA . 37 [8086]
AAS . 3F [8086]
AAD . D5 OA [8086]
AAD i nm - D5 ib [8086]
AAM © D4 0A [8086]
AAM i mm - D4 ib [8086]

These instructions are used in conjunction with the add, subtract, multiply and divide instructions to
perform binary-coded decimal arithmetic in unpacked (one BCD digit per byte — easy to trandate to and
from ASCII, hence the instruction names) form. There are aso packed BCD instructions DAA and DAS:
see section A.23.

AAA should be used after a one-byte ADD instruction whose destination was the AL register: by means of
examining the value in the low nibble of AL and also the auxiliary carry flag AF, it determines whether
the addition has overflowed, and adjusts it (and sets the carry flag) if so. You can add long BCD strings
together by doing ADD/AAA on the low digits, then doing ADC/AAA on each subsequent digit.

AAS works similarly to AAA, but is for use after SUB instructions rather than ADD.

AAMis for use after you have multiplied two decimal digits together and left the result in AL: it divides
AL by ten and stores the quotient in AH, leaving the remainder in AL. The divisor 10 can be changed by
specifying an operand to the instruction: a particularly handy use of this is AAM 16, causing the two
nibblesin AL to be separated into AHand AL.

AAD performs the inverse operation to AAM it multiplies AH by ten, adds it to AL, and sets AH to zero.
Again, the multiplier 10 can be changed.

ADC. Add with Carry

ADC r/ n8B, reg8 ; 10 /r [8086
ADC r/ 6, regl6 ; 016 11 /r [8086
ADC r/ nB2,reg32 ; 032 11 /r [386]
ADC reg8,r/ n8 12 /r [8086
ADC regl6, r/ mL6 016 13 /r [8086
ADC reg32,r/ nB2 ; 032 13 /r [386]
ADC r/n8B, i m8 ; 80 /2 1ib [8086
ADC r/ ml6, i nml6 ; 016 81 /2 iw [8086
ADC r/ nB2,i mB2 ; 032 81 /2 id [386]
ADC r/ ml6, i 8 ; 016 83 /2 ib [8086]
ADC r/ nB2,i m8 ; 032 83 /2 ib [386]

A.6

A.7

ADC AL, i nm8 ; 14 ib [8086]
ADC AX, i ml6 ; 016 15 iw [8086]
ADC EAX, i mB2 ; 032 15 id [386]

ADC performs integer addition: it adds its two operands together, plus the value of the carry flag, and
leaves the result in its destination (first) operand. The flags are set according to the result of the
operation: in particular, the carry flag is affected and can be used by a subsequent ADC instruction.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand is
considered to be signed, and is sign-extended to the length of the first operand. In these cases, the BYTE
qualifier is necessary to force NASM to generate this form of the instruction.

To add two numbers without also adding the contents of the carry flag, use ADD (section A.6).
ADD: Add Integers

ADD r/ n8, reg8 ; 00 /r [8086
ADD r/ ml6, regl6 ;016 01 /r [8086
ADD r/ nB2,reg32 ; 032 01 /r [386]
ADD reg8,r/nB 02 /r [8086
ADD regl6, r/ mL6 ; 016 03 /r [8086
ADD reg32,r/ nB2 ; 032 03 /r [386]
ADD r/ n8, i nm8 ; 80 /0 1ib [8086
ADD r/ ml6, i nml6 ; 016 81 /0 iw [8086
ADD r/ nB2,i mB2 ; 032 81 /0 id 386]
ADD r/ ml6, i mm8 ; 016 83 /0 ib [8086]
ADD r/ B2, i m8 ; 032 83 /0 ib [386]
ADD AL, i m8 ; 04 ib [8086]
ADD AX, i ml6 ; 016 05 iw [8086]
ADD EAX, i mB2 ; 032 05 id [386]

ADD performs integer addition: it adds its two operands together, and leaves the result in its destination
(first) operand. The flags are set according to the result of the operation: in particular, the carry flag is
affected and can be used by a subsequent ADC instruction (section A.5).

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand is
considered to be signed, and is sign-extended to the length of the first operand. In these cases, the BYTE
qualifier is necessary to force NASM to generate this form of the instruction.

AND: Bitwise AND

AND r/ n8, reg8 ;20 /r [8086
AND r/ ml6, regl6 ;016 21 /r [8086
AND r/ nB2, reg32 032 21 /r [386]
AND reg8,r/ nB 22 Ir [8086
AND regl6, r/ mL6 ; 016 23 /r [8086
AND reg32, r/ n82 7 032 23 /r [386]
AND r/ n8,i m8 : 80 /4 ib [8086
AND r/ mlL6, i nil6 ;016 81 /4 iw [8086
AND r/ nB2, i mB82 ;. 032 81 /4 id [386]
AND r/ mL6, i nm8 ; 016 83 /4 ib [8086]
AND r/ nB2, i nm8 ; 032 83 /4 ib [386]

A.8

A.9

A.10

A.ll

AND AL, i nm8 ;24 ib [8086]
AND AX, i ml6 ; 016 25 iw [8086]
AND EAX, i mB2 ; 032 25 id [386]

AND performs a bitwise AND operation between its two operands (i.e. each bit of the result is 1 if and
only if the corresponding bits of the two inputs were both 1), and stores the result in the destination (first)
operand.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand is
considered to be signed, and is sign-extended to the length of the first operand. In these cases, the BYTE
qualifier is necessary to force NASM to generate this form of the instruction.

The MMX instruction PAND (see section A.116) performs the same operation on the 64-bit MMX
registers.

ARPL: Adjust RPL Field of Selector
ARPL r/ni6, regl6 ., 63 /r [286, PRI V]

ARPL expects its two word operands to be segment selectors. It adjusts the RPL (requested privilege level
— stored in the bottom two bits of the selector) field of the destination (first) operand to ensure that it is
no less (i.e. no more privileged than) the RPL field of the source operand. The zero flag is set if and only
if achange had to be made.

BOUND: Check Array Index against Bounds

BOUND regl6, nem ; 016 62 /r [186]
BOUND reg32, nem 7 032 62 /r [386]

BOUND expects its second operand to point to an area of memory containing two signed values of the
same size asitsfirst operand (i.e. two words for the 16-bit form; two doublewords for the 32-bit form). It
performs two signed comparisons: if the value in the register passed as its first operand is less than the
first of the in-memory values, or is greater than or equal to the second, it throws a BR exception.
Otherwise, it does nothing.

BSF, BSR: Bit Scan

BSF regl6, r/ nil6 ; 016 OF BC /r [386]
BSF reg32,r/ nB2 ; 032 OF BC /r [386]
BSR regl6, r/ nl6 ; 016 OF BD /r [386]
BSR reg32, r/ nB2 ; 032 OF BD /r [386]

BSF searches for a set bit in its source (second) operand, starting from the bottom, and if it finds one,
stores the index in its destination (first) operand. If no set bit is found, the contents of the destination
operand are undefined.

BSR performs the same function, but searches from the top instead, so it finds the most significant set bit.
Bit indices are from 0 (least significant) to 15 or 31 (most significant).

BSWAP: Byte Swap
BSWAP reg32 ; 032 OF C8+r [486]

BSWAP swaps the order of the four bytes of a 32-bit register: bits 0-7 exchange places with bits 24-31,
and bits 8-15 swap with bits 16-23. There is no explicit 16-bit equivalent: to byte-swap AX, BX, CX or
DX, XCHG can be used.

A.12

A.13

BT, BTC, BTR, BTS: Bit Test

BT r/ ml6, regl6 ; 016 OF A3 /r [386]
BT r/ nB2, reg32 ; 032 OF A3 /r [386]
BT r/ ml6, i mB ; 016 OF BA/4 ib [386]
BT r/nB2,i mB8 ; 032 OF BA/4 ib [386]
BTC r/ nl6, regl6 ; 016 OF BB /r [386]
BTC r/ nB2, reg32 ; 032 OF BB /r [386]
BTC r/ nl6, i nmB8 ; 016 OF BA/7 ib [386]
BTC r/ nB2,i m8B ; 032 OF BA/7 ib [386]
BTR r/ nl6, regl6 ; 016 OF B3 /r [386]
BTR r/ nB2, reg32 ; 032 OF B3 /r [386]
BTR r/ mlL6, i m8 ; 016 OF BA/6 ib [386]
BTR r/ nB2,i m8 ; 032 OF BA/6 ib [386]
BTS r/ nl6, regl6 ; 016 OF AB /r [386]
BTS r/ nB2, reg32 ; 032 OF AB /r [386]
BTS r/ nl6, i mm ; 016 OF BA /5 ib [386]
BTS r/nB2,i mm ; 032 OF BA/5 ib [386]

These instructions al test one bit of their first operand, whose index is given by the second operand, and
store the value of that bit into the carry flag. Bit indices are from 0 (least significant) to 15 or 31 (most
significant).

In addition to storing the original value of the bit into the carry flag, BTR also resets (clears) the hit in the
operand itself. BTS sets the bit, and BTC complements the bit. BT does not modify its operands.

The hit offset should be no greater than the size of the operand.
CALL: Call Subroutine

CALL imm ; E8 rwrd [8086]
CALL i mm i nmml6 ; 016 9A iwiw [8086]
CALL inmm i mB2 ; 032 9A id iw [386]
CALL FAR neml6 ; 016 FF /3 [8086]
CALL FAR nmenB2 ; 032 FF /3 [386]
CALL r/ L6 ; 016 FF /2 [8086]
CALL r/nB2 ; 032 FF /2 [386]

CALL calls a subroutine, by means of pushing the current instruction pointer (I P) and optionally CS as
well on the stack, and then jumping to a given address.

CS is pushed as well as | P if and only if the call is a far cal, i.e. a destination segment address is
specified in the instruction. The forms involving two colon-separated arguments are far calls; so are the
CALL FAR memforms.

You can choose between the two immediate far call forms (CALL i nm i mm) by the use of the WORD
and DWORD keywords: CALL WORD 0x1234: 0x5678) or CALL DWORD 0x1234: 0x56789abc.

The CALL FAR nmemforms execute a far call by loading the destination address out of memory. The
address loaded consists of 16 or 32 hits of offset (depending on the operand size), and 16 bits of segment.
The operand size may be overridden using CALL WORD FAR nemor CALL DWORD FAR nem

The CALL r/ mforms execute a near call (within the same segment), loading the destination address out
of memory or out of a register. The keyword NEAR may be specified, for clarity, in these forms, but is
not necessary. Again, operand size can be overridden using CALL WORD nemor CALL DWORD nem

As aconvenience, NASM does not require you to call afar procedure symbol by coding the cumbersome
CALL SEG routine:routine, butinstead allowsthe easier synonym CALL FAR routi ne.

A.14

A.15

A.16

A.l7

A.18

The CALL r/ m forms given above are near calls; NASM will accept the NEAR keyword (e.g.
CALL NEAR [addr ess]), eventhoughit is not strictly necessary.

CBW CWD, CDQ CWDE: Sign Extensions

CBW . 016 98 [8086]
WD © 016 99 [8086]
CDQ © 032 99 [386]
CWDE © 032 98 [386]

All these instructions sign-extend a short value into alonger one, by replicating the top bit of the original
valueto fill the extended one.

CBWextends AL into AX by repeating the top bit of AL in every bit of AH. CWD extends AX into DX: AX
by repeating the top bit of AX throughout DX. CWDE extends AX into EAX, and CDQ extends EAX into
EDX: EAX.

CLC, CLD, CLI , CLTS: Clear Flags

cLC . F8 [8086]
CLD . FC [8086]
CLI - FA [8086]
CLTS - OF 06 [286, PRI V]

These instructions clear various flags. CLC clears the carry flag; CLD clears the direction flag; CLI clears
the interrupt flag (thus disabling interrupts); and CLTS clears the task-switched (TS) flag in CRO.

To set the carry, direction, or interrupt flags, use the STC, STD and STI instructions (section A.156). To
invert the carry flag, use CMC (section A.16).

CMC. Complement Carry Flag

cve . F5 [8086]
CMC changes the value of the carry flag: if it was 0, it setsit to 1, and vice versa.
CMOVcc: Conditional Move

CMOvce regl6, r/ ml6 ; 016 OF 40+cc /r [P6]
CMOVce reg32, r/ nB2 ; 032 OF 40+cc /r [P6]

CMOV moves its source (second) operand into its destination (first) operand if the given condition code is
satisfied; otherwise it does nothing.

For alist of condition codes, see section A.2.2.

Although the CMOV instructions are flagged P6 above, they may not be supported by all Pentium Pro
processors; the CPUI D instruction (section A.22) will return a bit which indicates whether conditional
moves are supported.

CMP: Compare Integers

CWP r/ n8, reg8 ; 38 /r [8086]
CWP r/ ml6, regl6 ; 016 39 /r [8086]
CWP r/ nB2, reg32 ; 032 39 /r [386]

CWP reg8,r/nB 7 A/ [8086]
CWVP regl6, r/ ni6 ; 016 3B /r [8086]

CWP reg32,r/ nB2 ; 032 3B /r [386]

A.19

A.20

CWP r/n8,inm8 ; 80 /0 1ib [8086]
CWP r/ ml6, i 6 ; 016 81 /0 iw [8086]
CWP r/ nB2,i mB2 ; 032 81 /0 id [386]
CWVP r/ mL6, i nmB ; 016 83 /0 ib [8086]
CWP r/nB2,i m8 ; 032 83 /0 1ib [386]
CWP AL, i mB ; 3Cib [8086]
CWVP AX, i nmL6 ; 016 3D iw [8086]
CWP EAX, i mB2 ; 032 3D id [386]

CWVP performs a ‘mental’ subtraction of its second operand from its first operand, and affects the flags as
if the subtraction had taken place, but does not store the result of the subtraction anywhere.

In the forms with an 8-hit immediate second operand and a longer first operand, the second operand is
considered to be signed, and is sign-extended to the length of the first operand. In these cases, the BYTE
qualifier is necessary to force NASM to generate this form of the instruction.

CVPSB, CMPSW CMPSD:. Compare Strings

CMVPSB , A6 [8086]
CVPSW , 016 A7 [8086]
CMVPSD , 032 A7 [386]

CMPSB compares the byte at [DS: SI'] or [DS: ESI'] with the byteat [ES: DI'] or [ES: EDI |, and
sets the flags accordingly. It then increments or decrements (depending on the direction flag: increments
if theflag isclear, decrementsif itisset) SI and DI (or ESI and EDI).

The registers used are SI and DI if the address size is 16 bits, and ESI and EDI if it is 32 bits. If you
need to use an address size not equal to the current Bl TS setting, you can use an explicit al6 or a32
prefix.

The segment register used to load from [SI'] or [ESI] can be overridden by using a segment register
name as a prefix (for example, es cnpsb). The use of ES for theload from [DI | or [EDI] cannot be
overridden.

CMPSWand CMPSD work in the same way, but they compare a word or a doubleword instead of a byte,
and increment or decrement the addressing registers by 2 or 4 instead of 1.

The REPE and REPNE prefixes (equivaently, REPZ and REPNZ) may be used to repeat the instruction up
to CX (or ECX — again, the address size chooses which) times until the first unequal or equal byte is
found.

CVPXCHG, CMPXCH(A486: Compare and Exchange

CMPXCHG r/ 8, reg8 . OF BO /r [PENT]
CVPXCHG r/ ni6, r egl6 . 016 OF Bl /r [PENT]
CVPXCHG r/ B2, r eg32 032 OF Bl /r [PENT]
CVPXCH&486 r/ B, reg8 ; OF A6 /r [486, UNDCC]
CVPXCHEA486 r/ ml6, regl6 ; 016 OF A7 /r [486, UNDOC]
CVPXCHEA86 r/ B2, reg32 ; 032 OF A7 /r [486, UNDOC]

These two instructions perform exactly the same operation; however, apparently some (not all) 486
processors support it under a non-standard opcode, so NASM provides the undocumented CMPXCHGA86
form to generate the non-standard opcode.

CMPXCHG compares its destination (first) operand to the value in AL, AX or EAX (depending on the size
of the instruction). If they are equal, it copies its source (second) operand into the destination and sets the
zero flag. Otherwise, it clears the zero flag and |eaves the destination alone.

A.21

A.22

A.23

CVMPXCHG is intended to be used for atomic operations in multitasking or multiprocessor environments.
To safely update a value in shared memory, for example, you might load the value into EAX, load the
updated value into EBX, and then execute the instruction | ock cnpxchg [val ue], ebx. If val ue
has not changed since being loaded, it is updated with your desired new value, and the zero flag is set to
let you know it has worked. (The LOCK prefix prevents another processor doing anything in the middle
of this operation: it guarantees atomicity.) However, if another processor has modified the value in
between your load and your attempted store, the store does not happen, and you are notified of the failure
by acleared zero flag, so you can go round and try again.

CVPXCH@&EB: Compare and Exchange Eight Bytes
CMPXCHGBB nmem , OF C7 /1 [PENT]

Thisis alarger and more unwieldy version of CMPXCHG: it compares the 64-bit (eight-byte) value stored
a [men] with the value in EDX: EAX. If they are equal, it sets the zero flag and stores ECX: EBX into
the memory area. If they are unequal, it clears the zero flag and leaves the memory area untouched.

CPUI D: Get CPU Identification Code
CPU D . OF A2 [PENT]

CPUI D returns various information about the processor it is being executed on. It fills the four registers
EAX, EBX, ECX and EDX with information, which varies depending on the input contents of EAX.

CPUI D dso acts as a barrier to serialise instruction execution: executing the CPUI D instruction
guarantees that al the effects (memory modification, flag modification, register modification) of
previous instructions have been completed before the next instruction gets fetched.

The information returned is as follows:

« If EAX is zero on input, EAX on output holds the maximum acceptable input value of EAX, and
EBX: EDX: ECX contain the string " Genui nel nt el " (or not, if you have a clone processor). That is
to say, EBX contains " Genu" (in NASM’s own sense of character constants, described in section
3.4.2), EDX contains" i nel " and ECX contains" nt el ".

< If EAX is one on input, EAX on output contains version information about the processor, and EDX
contains a set of feature flags, showing the presence and absence of various features. For example, bit
8 isset if the CMPXCHGSB instruction (section A.21) is supported, bit 15 is set if the conditional move
instructions (section A.17 and section A.34) are supported, and bit 23 is set if MMX instructions are
supported.

e If EAX is two on input, EAX, EBX, ECX and EDX all contain information about caches and TLBs
(Tranglation Lookahead Buffers).

For more information on the data returned from CPUI D, see the documentation on Intel’ s web site.

DAA, DAS: Decimal Adjustments

DAA . 27 [8086]
DAS L 2F [8086]

These instructions are used in conjunction with the add and subtract instructions to perform binary-coded
decimal arithmetic in packed (one BCD digit per nibble) form. For the unpacked equivalents, see section
AA4.

DAA should be used after a one-byte ADD instruction whose destination was the AL register: by means of
examining the value in the AL and also the auxiliary carry flag AF, it determines whether either digit of
the addition has overflowed, and adjusts it (and sets the carry and auxiliary-carry flags) if so. You can
add long BCD strings together by doing ADD/DAA on the low two digits, then doing ADC/DAA on each
subsequent pair of digits.

A.24

A.25

A.26

A.27

DAS works similarly to DAA, but is for use after SUB instructions rather than ADD.
DEC. Decrement Integer

DEC regl6 ; 016 48+r [8086]
DEC reg32 ; 032 48+r [386]
DEC r/ nB ; FE /1 [8086]
DEC r/ L6 ; 016 FF /1 [8086]
DEC r/ nB2 ; 032 FF /1 [386]

DEC subtracts 1 from its operand. It does not affect the carry flag: to affect the carry flag, use
SUB sonet hi ng, 1 (seesection A.159). Seealso | NC (section A.79).

Dl V: Unsigned Integer Divide

DIV r/n8 . F6 /6 [8086]
DIV r/nl6 - 016 F7 /6 [8086]
DIV r/n82 - 032 F7 /6 [386]

Dl V performs unsigned integer division. The explicit operand provided is the divisor; the dividend and
destination operands are implicit, in the following way:

* For DIV r/ nB, AXisdivided by the given operand; the quotient is stored in AL and the remainder in
AH.

e For DIV r/ mL6, DX: AX is divided by the given operand; the quotient is stored in AX and the
remainder in DX.

e For DIV r/ nB2, EDX: EAX is divided by the given operand; the quotient is stored in EAX and the
remainder in EDX.

Signed integer division is performed by the | DI V instruction: see section A.76.

EMMS: Empty MMX State
EMVB ; OF 77 [PENT, MVX]

EMVES sets the FPU tag word (marking which floating-point registers are available) to al ones, meaning
al registers are available for the FPU to use. It should be used after executing MMX instructions and
before executing any subsequent floating-point operations.

ENTER: Create Stack Frame
ENTER i mm i nm - C8iwib [186]

ENTER constructs a stack frame for a high-level language procedure call. The first operand (thei win the
opcode definition above refers to the first operand) gives the amount of stack space to alocate for local
variables; the second (the i b above) gives the nesting level of the procedure (for languages like Pascal,
with nested procedures).

The function of ENTER, with anesting level of zero, is equivalent to

PUSH EBP ; or PUSH BP in 16 bits
MOV EBP, ESP ; or MOV BP, SP in 16 bits
SUB ESP, oper andl ; or SUB SP,operandl in 16 bits

This creates a stack frame with the procedure parameters accessible upwards from EBP, and local
variables accessible downwards from EBP.

With a nesting level of one, the stack frame created is 4 (or 2) bytes bigger, and the value of the final
frame pointer EBP is accessiblein memory at [EBP- 4] .

A.28

A.29

A.30

A.31

A.32

A.33

This alows ENTER, when called with a nesting level of two, to look at the stack frame described by the
previous value of EBP, find the frame pointer at offset —4 from that, and push it along with its new frame
pointer, so that when alevel-two procedure is called from within a level-one procedure, [EBP- 4] holds
the frame pointer of the most recent level-one procedure call and [EBP- 8] holds that of the most recent
level-two call. And so on, for nesting levels up to 31.

Stack frames created by ENTER can be destroyed by the LEAVE instruction: see section A.94.

F2XML: Calculate 2**X-1
EF2 XML - D9 FO [8086, FPU|

F2XML raises 2 to the power of STO, subtracts one, and stores the result back into STO. The initial
contents of STO must be a number in the range —1 to +1.

FABS: Floating-Point Absolute Value
FABS - D9 E1 [8086, FPU
FABS computes the absolute value of STO, storing the result back in STO.

FADD, FADDP: Floating-Point Addition

FADD nenB82 ; D8 /0 [8086, FPU
FADD nent4 ; DC /0 [8086, FPU
FADD f pur eg ; D8 CO+r [8086, FPU
FADD STO, f pur eg ; D8 CO+r [8086, FPU
FADD TO f pur eg ; DC CO+r [8086, FPU
FADD f pur eg, STO ; DC QO+r [8086, FPU
FADDP f pureg ; DE CO+r [8086, FPU
FADDP f pur eg, STO ;. DE CO+r [8086, FPU

FADD, given one operand, adds the operand to STO and stores the result back in STO. If the operand has
the TOmodifier, the result is stored in the register given rather than in STO.

FADDP performs the same function as FADD TO, but pops the register stack after storing the result.
The given two-operand forms are synonyms for the one-operand forms.

FBLD, FBSTP: BCD Floating-Point Load and Store

FBLD nmenB80 ; DF /4 [8086, FPU|
FBSTP nmenB80 ; DF /16 [8086, FPU|

FBLD loads an 80-hit (ten-byte) packed binary-coded decima number from the given memory address,
convertsit to areal, and pushes it on the register stack. FBSTP stores the value of STO, in packed BCD,
at the given address and then pops the register stack.

FCHS: Floating-Point Change Sign

FCHS ; D9 EO [8086, FPU
FCHS negates the number in STO: negative numbers become positive, and vice versa.
FCLEX, {FNCLEX}: Clear Floating-Point Exceptions

FCLEX ., 9B DB E2 [8086, FPU]
FNCLEX . DB E2 [8086, FPU]

A.34

A.35

FCLEX clears any floating-point exceptions which may be pending. FNCLEX does the same thing but
doesn’'t wait for previous floating-point operations (including the handling of pending exceptions) to
finish first.

FCMOVcc: Floating-Point Conditional Move

FCMOVB f pur eg ; DA CO+r [P6, FPU
FCMOVB STO, f pur eg ; DA CO+r [P6, FPU
FCMOVBE f pur eg ; DA DO+r [P6, FPU
FCMOVBE STO, f pur eg ; DA DO+r [P6, FPU]
FCMOVE f pur eg ; DA C8+r [P6, FPU
FCMOVE STO, f pur eg ;. DA C8+r [P6, FPU
FCMOVNB f pur eg ; DB CO+r [P6, FPU
FCMOVNB STO, f pur eg ; DB CO+r [P6, FPU
FCMOVNBE f pur eg ; DB DO+r [P6, FPU
FCMOVNBE STO, f pur eg ; DB DO+r [P6, FPU]
FCMOVNE f pur eg ; DB C8+r [P6, FPU
FCMOVNE STO, f pur eg ; DB C8+r [P6, FPU
FCMOVNU f pur eg ; DB D8+r [P6, FPU
FCMOVNU STO, f pur eg ; DB D8+r [P6, FPU
FCMOVU f pur eg ; DA D8+r [P6, FPU
FCMOVU STO, f pur eg ; DA D8+r [P6, FPU]

The FCMOV ingtructions perform conditional move operations: each of them moves the contents of the
given register into STO if its condition is satisfied, and does nothing if not.

The conditions are not the same as the standard condition codes used with conditional jump instructions.
The conditions B, BE, NB, NBE, E and NE are exactly as normal, but none of the other standard ones are
supported. Instead, the condition U and its counterpart NU are provided; the U condition is satisfied if the
last two floating-point numbers compared were unordered, i.e. they were not equal but neither one could
be said to be greater than the other, for example if they were NaNs. (The flag state which signals this is
the setting of the parity flag: so the U condition is notionally equivalent to PE, and NU is equivalent to
PO)

The FCMOV conditions test the main processor’s status flags, not the FPU status flags, so using FCMOV
directly after FCOMwill not work. Instead, you should either use FCOM which writes directly to the
main CPU flags word, or use FSTSWto extract the FPU flags.

Although the FCMOV instructions are flagged P6 above, they may not be supported by all Pentium Pro
processors; the CPUI D instruction (section A.22) will return a bit which indicates whether conditional
moves are supported.

FCOM FCOVP, FCOMPP, FCOM , FCOM P: Floating-Point Compare

FCOM nenB2 ; D8 /2 [8086, FPU
FCOM nenbt4 ; DC /2 [8086, FPU
FCOM f pur eg ; D8 DO+r [8086, FPU
FCOM STO, f pur eg ; DO+r [8086, FPU
FCOW nmenB2 ; /3 [8086, FPU
FCOW nent4 ; DC /3 [8086, FPU
FCOWP f pureg ; D8 D8+r [8086, FPU
FCOWP STO, f pur eg ; D8 D8+r [8086, FPU

A.36

A.37

A.38

A.39

FCOVPP - DE D9 [8086, FPU|

FCOM fpureg . DB FO+r [P6, FPU|
FCOM STO, f pur eg ; DB FO+r [P6, FPU]
FCOM P f pur eg ; DF FO+r [P6, FPU]
FCOM P STO, f pur eg ; DF FO+r [P6, FPU]

FCOM compares STO with the given operand, and sets the FPU flags accordingly. STO is treated as the
left-hand side of the comparison, so that the carry flag is set (for a ‘lessthan’ result) if STO is less than
the given operand.

FCOWP does the same as FCOM but pops the register stack afterwards. FCOVPP compares STO with ST1
and then pops the register stack twice.

FCOM and FCOM P work like the corresponding forms of FCOM and FCOMP, but write their results
directly to the CPU flags register rather than the FPU status word, so they can be immediately followed
by conditional jump or conditional move instructions.

The FCOM ingtructions differ from the FUCOM instructions (section A.69) only in the way they handle
quiet NaNs: FUCOMwill handle them silently and set the condition code flags to an ‘unordered’ result,
whereas FCOMwill generate an exception.

FCCS: Cosine
FCOS © D9 FF [386, FPU|

FCOS computes the cosine of STO (in radians), and stores the result in STO. See aso FSI NCOS (section
A.61).

FDECSTP: Decrement Floating-Point Stack Pointer

FDECSTP ; D9 F6 [8086, FPU|

FDECSTP decrements the ‘top’ field in the floating-point status word. This has the effect of rotating the
FPU register stack by one, as if the contents of ST7 had been pushed on the stack. See also FI NCSTP
(section A.46).

FxDI Sl , FXENI : Disable and Enable Floating-Point Interrupts

FDI SI : 9B DB E1 [8086, FPU
FNDI SI : DB E1 [8086, FPU)
FENI . 9B DB EO [8086, FPU|
ENENI . DB EO [8086, FPU]

FDI SI and FENI disable and enable floating-point interrupts. These instructions are only meaningful on
original 8087 processors. the 287 and above treat them as no-operation instructions.

FNDI SI and FNENI do the same thing as FDI SI and FENI respectively, but without waiting for the
floating-point processor to finish what it was doing first.

FDI V, FDI VP, FDI VR, FDI VRP: Floating-Point Division

FDI V nenB2 ; D8 /6 [8086, FPU
FDI V nent4 ; DC /6 [8086, FPU
FDI V f pureg ; D8 FO+r [8086, FPU
FDI V STO, f pur eg ; D8 FO+r [8086, FPU
FDI V TO f pureg ; DC F8+r [8086, FPU
FDI V f pureg, STO ; DC F8+r [8086, FPU

A.40

A4l

A.42

A.43

FDI VR menB2 D8 /0 [8086, FPU
FDI VR nment4 ; DC /0 [8086, FPU
FDI VR f pur eg ; D8 F8+r [8086, FPU
FDI VR STO, f pureg ; F8+r [8086, FPU
FDI VR TO f pureg ; DC FO+r [8086, FPU
FDI VR f pur eg, STO ;. DC FO+r [8086, FPU
FDI VP f pureg ; DE F8+r [8086, FPU
FDI VP f pureg, STO ; DE F8+r [8086, FPU
FDI VRP f pureg ; DE FO+r [8086, FPU
FDI VRP f pureg, STO ; DE FO+r [8086, FPU

FDI V divides STO by the given operand and stores the result back in STO, unless the TO qualifier is
given, in which case it divides the given operand by STO and stores the result in the operand.

FDI VR does the same thing, but does the division the other way up: so if TOis not given, it divides the
given operand by STO and stores the result in STO, whereas if TOis given it divides STO by its operand
and stores the result in the operand.

FDI VP operates like FDI V TO, but pops the register stack once it has finished. FDI VRP operates like
FDI VR TO, but pops the register stack once it has finished.

FFREE: Flag Floating-Point Register as Unused
FFREE f pureg ; DD CO+r [8086, FPU|
FFREE marks the given register as being empty.

FI ADD: Floating-Point/Integer Addition

FI ADD nmeni6 ; DE/O [8086, FPU
FI ADD nmenB2 ; DA/O [8086, FPU|

FI ADD adds the 16-bit or 32-bit integer stored in the given memory location to STO, storing the result in
STO.

FI COM FI COWP: Floating-Point/Integer Compare

FI COM nenil6 . DE /2 [8086, FPU]
FI COM nmen82 - DA /2 [8086, FPU]
FI COVP mentl6 . DE /3 [8086, FPU|
FI COMP nenB2 - DA /3 [8086, FPU]

FI COMcompares STO with the 16-bit or 32-bit integer stored in the given memory location, and sets the
FPU flags accordingly. FI COVP does the same, but pops the register stack afterwards.

FI DI V, FI DI VR: Floating-Point/Integer Division

FI DIV nment6 - DE /6 [8086, FPU]
FI DIV menB2 - DA /6 [8086, FPU]
FI DI VR neni6 . DE /0 [8086, FPU]
FI DI VR nenB2 . DA /0 [8086, FPU]

FI DI V divides STO by the 16-bit or 32-bit integer stored in the given memory location, and stores the
result in STO. FI DI VR does the division the other way up: it divides the integer by STO, but still stores
theresultin STO.

A.44

A.45

A.46

A.47

A.48

A.49

FI LD, FI ST, FI STP: Floating-Point/Integer Conversion

FI LD nmenml6 ; DF /0 [8086, FPU
FI LD menB2 ; DB /O [8086, FPU
FI LD nmenb4 ; DF /5 [8086, FPU
FI ST nenml6 ; DF /2 [8086, FPU
FI ST nenB2 ; DB /2 [8086, FPU
FI STP menl6 DF /3 [8086, FPU
FI STP nenB2 ; DB /3 [8086, FPU
FI STP nent4 ; DF /0 [8086, FPU

FI LD loads an integer out of a memory location, converts it to a real, and pushes it on the FPU register
stack. FI ST converts STO to an integer and stores that in memory; FI STP does the same as FI ST, but
pops the register stack afterwards.

FI MJL: Floating-Point/Integer Multiplication

FI MUL nmeni6 ; DE /1 [8086, FPU|
FI MUL nmenB2 ; DA /1 [8086, FPU

FI MUL multiplies STO by the 16-bit or 32-bit integer stored in the given memory location, and stores the
resultin STO.

FI NCSTP: Increment Floating-Point Stack Pointer
FI NCSTP ., D9 F7 [8086, FPU|

FI NCSTP increments the ‘top’ field in the floating-point status word. This has the effect of rotating the
FPU register stack by one, as if the register stack had been popped; however, unlike the popping of the
stack performed by many FPU instructions, it does not flag the new ST7 (previously STO) as empty. See
also FDECSTP (section A.37).

FI NI T, FNI NI T: Initialise Floating-Point Unit

FINIT - 9B DB E3 [8086, FPU]
FNINI T ; DB E3 [8086, FPU]

FI NI T initialises the FPU to its default state. It flags all registers as empty, though it does not actually
change their values. FNI NI T does the same, without first waiting for pending exceptions to clear.

FI SUB: Floating-Point/Integer Subtraction

FI SUB nenl6 . DE /4 [8086, FPU]
FI SUB menB2 - DA /4 [8086, FPU]
FI SUBR nemil6 - DE /5 [8086, FPU]
FI SUBR nmenB2 - DA /5 [8086, FPU]

FI SUB subtracts the 16-bit or 32-bit integer stored in the given memory location from STO, and stores
the result in STO. FI SUBR does the subtraction the other way round, i.e. it subtracts STO from the given
integer, but still storesthe result in STO.

FLD: Floating-Point Load

FLD nmenB2 ; D9 /0 [8086, FPU
FLD ment4 ; DD /O [8086, FPU|
FLD menB0 ; DB /5 [8086, FPU|
FLD f pureg D9 CO+r [8086, FPU

A.50

A.51

A.52

A.53

A.54

A.55

FLD loads a floating-point value out of the given register or memory location, and pushes it on the FPU
register stack.

FLDxx: Floating-Point Load Constants

FLD1 D9 E8 [8086, FPU|
FLDL2E D9 EA [8086, FP
FLDL2T - D9 E9 [8086, FPU
FLDLG - D9 EC [8086, FPU
FLDLN2 © D9 ED [8086, FPU
FLDPI © D9 EB [8086, FP
FLDZ D9 EE [8086, FPU

These instructions push specific standard constants on the FPU register stack. FLD1 pushes the value 1;
FLDL2E pushes the base-2 logarithm of €, FLDL2T pushes the base-2 log of 10; FLDLG2 pushes the
base-10 log of 2; FLDLN2 pushesthe base-elog of 2; FLDPI pushes pi; and FLDZ pushes zero.

FLDCW Load Floating-Point Control Word
FLDCW menil6 , D9 /5 [8086, FPU]

FLDCWiIoads a 16-bit value out of memory and stores it into the FPU control word (governing things like
the rounding maode, the precision, and the exception masks). See also FSTCW(section A.64).

FLDENV: Load Floating-Point Environment
FLDENV mem , D9 /4 [8086, FPU]

FLDENV loads the FPU operating environment (control word, status word, tag word, instruction pointer,
data pointer and last opcode) from memory. The memory area is 14 or 28 bytes long, depending on the
CPU mode at the time. See also FSTENV (section A.65).

FMUL, FMULP: Floating-Point Multlply

FMUL menB2 ; D8 /1 [8086, FPU
FMUL nment4 ; DC /1 [8086, FPU
FMUL f pureg ; D8 C8+r [8086, FPU
FMUL STO, f pur eg ; D8 C8+r [8086, FPU
FMUL TO f pureg ; DC C8+r [8086, FPU
FMJL f pureg, STO ; DC C8+r [8086, FPU
FMULP f pureg ;. DE C8+r [8086, FPU
FMULP f pureg, STO ;. DE C8+r [8086, FPU

FMUL multiplies STO by the given operand, and storesthe result in STO, unlessthe TOqualifier isusedin
which case it stores the result in the operand. FMULP performs the same operation as FMJL TO, and
then pops the register stack.

FNOP: Floating-Point No Operation

FNOP ; D9 DO [8086, FPU]
FNOP does nothing.

FPATAN, FPTAN: Arctangent and Tangent

FPATAN . D9 F3 [8086, FPU]
FPTAN . D9 F2 [8086, FPU|

A.56

A.57

A.58

A.59

A.60

FPATAN computes the arctangent, in radians, of the result of dividing ST1 by STO, stores the result in
ST1, and pops the register stack. It works like the C at an2 function, in that changing the sign of both
STO and ST1 changes the output value by pi (so it performs true rectangular-to-polar coordinate
conversion, with ST1 being the Y coordinate and STO being the X coordinate, not merely an arctangent).

FPTAN computes the tangent of the valuein STO (in radians), and stores the result back into STO.

FPREM FPREML: Floating-Point Partial Remainder

FPREM . D9 F8 [8086, FPU]
FPREML ; D9 F5 [386, FPU]

These instructions both produce the remainder obtained by dividing STO by ST1. This is calculated,
notionaly, by dividing STO by ST1, rounding the result to an integer, multiplying by ST1 again, and
computing the value which would need to be added back on to the result to get back to the origina value
in STO.

The two instructions differ in the way the notional round-to-integer operation is performed. FPREMdoes
it by rounding towards zero, so that the remainder it returns always has the same sign as the origina
value in STO; FPREML does it by rounding to the nearest integer, so that the remainder always has at
most half the magnitude of ST1.

Both instructions calculate partial remainders, meaning that they may not manage to provide the final
result, but might leave intermediate resultsin STO instead. If this happens, they will set the C2 flag in the
FPU status word; therefore, to calculate a remainder, you should repeatedly execute FPREMor FPREML
until C2 becomes clear.

FRNDI NT: Floating-Point Round to Integer
FRNDI NT , D9 FC [8086, FPU|

FRNDI NT rounds the contents of STO to an integer, according to the current rounding mode set in the
FPU control word, and stores the result back in STO.

FSAVE, FRSTOR: Save/Restore Floating-Point State

FSAVE nmem - 9B DD /6 [8086, FPU]
FNSAVE nem - DD /6 [8086, FPU]
FRSTOR nem . DD /4 [8086, FPU]

FSAVE saves the entire floating-point unit state, including all the information saved by FSTENV (section
A.65) plus the contents of all the registers, to a 94 or 108 byte area of memory (depending on the CPU
mode). FRSTOR restores the floating-point state from the same area of memory.

FNSAVE does the same as FSAVE, without first waiting for pending floating-point exceptions to clear.

FSCALE: Scale Floating-Point Value by Power of Two
FSCALE , D9 FD [8086, FPU]

FSCALE scales a number by a power of two: it rounds ST1 towards zero to obtain an integer, then
multiplies STO by two to the power of that integer, and stores the result in STO.

FSETPM Set Protected Mode

FSETPM , DB E4 [286, FPU]

This instruction initalises protected mode on the 287 floating-point coprocessor. It is only meaningful on
that processor: the 387 and above treat the instruction as a no-operation.

A.61

A.62

A.63

A.64

A.65

A.66

FSI N, FSI NCCS: Sine and Cosine

FSI N . D9 FE [386, FPU|
FSI NCOS © D9 FB [386, FPU|

FSI N calculates the sine of STO (in radians) and stores the result in STO. FSI NCOS does the same, but
then pushes the cosine of the same value on the register stack, so that the sine ends up in ST1 and the
cosinein STO. FSI NCOS isfaster than executing FSI N and FCOS (see section A.36) in succession.

FSQRT: Floating-Point Square Root

FSQRT . D9 FA [8086, FPU]
FSQRT calculates the square root of STO and stores the result in STO.

FST, FSTP: Floating-Point Stor

FST menB2 ; D9 /2 [8086, FPU
FST ment4 ; DD /2 [8086, FPU
FST fpureg ; DD DO+r [8086, FPU
FSTP nmenB2 ; D9 /3 [8086, FPU
FSTP nent4 ; DD /3 [8086, FPU
FSTP nmenB0 ; DB /O [8086, FPU
FSTP f pureg ;. DD D8+r [8086, FPU]

FST stores the value in STO into the given memory location or other FPU register. FSTP does the same,
but then pops the register stack.

FSTCW Store Floating-Point Control Word

FSTCW neni6 © 9B D9 /0 [8086, FPU|
FNSTCW ment6 - D9 /0 [8086, FPU|

FSTCWstores the FPU control word (governing things like the rounding mode, the precision, and the
exception masks) into a 2-byte memory area. See also FLDCW(section A.51).

FNSTCWdoes the same thing as FSTCW without first waiting for pending floating-point exceptions to
clear.

FSTENV: Store Floating-Point Environment

FSTENV nmem ; 9B D9 /6 [8086, FPU|
FNSTENV nmem ; D9 /6 [8086, FPU|

FSTENV stores the FPU operating environment (control word, status word, tag word, instruction pointer,
data pointer and last opcode) into memory. The memory area is 14 or 28 bytes long, depending on the
CPU mode at the time. See also FLDENV (section A.52).

FNSTENV does the same thing as FSTENV, without first waiting for pending floating-point exceptions to
clear.

FSTSW Store Floating-Point Status Word

FSTSW meni6 - 9B DD /0 [8086, FPU]
FSTSW AX - 9B DF EO [286, FPU|
FNSTSW nent6 - DD /O [8086, FPU]
FNSTSW AX ; DF EO [286, FPY|

FSTSWstores the FPU status word into AX or into a 2-byte memory area.

A.67

A.68

A.69

FNSTSWdoes the same thing as FSTSW without first waiting for pending floating-point exceptions to
clear.

FSUB, FSUBP, FSUBR, FSUBRP: Floatlng -Point Subtract

FSUB nenB2 ; /4 [8086, FPU|
FSUB nment4 ; /4 [8086, FPU

FSUB f pur eg ; EO+r [8086, FPU
FSUB STO, f pur eg ; EO+r [8086, FPU

FSUB TO f pureg X E8+r [8086, FPU]

FSUB f pureg, STO : E8+r [8086, FPU
FSUBR nenB2 : /5 [8086, FPU
FSUBR nenbt4 : /5 [8086, FPU

FSUBR f pur eg ;
FSUBR STO, f pur eg X

FSUBR TO f pureg ;
FSUBR f pur eg, STO :

FSUBP f pureg ;
FSUBP f pur eg, STO ;

FSUBRP f pur eg ; EO+r [8086, FPU
FSUBRP f pur eg, STO ; EO+r [8086, FPU

FSUB subtracts the given operand from STO and stores the result back in STO, unless the TO qualifier is
given, in which case it subtracts STO from the given operand and stores the result in the operand.

FSUBR does the same thing, but does the subtraction the other way up: so if TOis not given, it subtracts
STO from the given operand and stores the result in STO, whereas if TOis given it subtracts its operand
from STO and stores the result in the operand.

FSUBP operates like FSUB TQ, but pops the register stack once it has finished. FSUBRP operates like
FSUBR TO, but pops the register stack once it has finished.

FTST: Test STO Against Zero
FTST . D9 E4 [8086, FPU]

FTST compares STO with zero and sets the FPU flags accordingly. STO is treated as the left-hand side of
the comparison, so that a‘less-than’ result is generated if STO is negative.

FUCOWX: Floating-Point Unordered Compare

E8+r [8086, FPU
E8+r [8086, FPU

EO+r [8086, FPU
EO+r [8086, FPU

E8+r [8086, FPU
E8+r [8086, FPU

mE MR 88 88 88 B8 88 88

FUCOM f pur eg ; DD EO+r [386, FPU]
FUCOM STO, f pur eg ; DD EO+r [386, FPU]
FUCOWP f pur eg ; DD E8+r [386, FPU]
FUCOWP STO, f pur eg ; DD E8+r [386, FPU]
FUCOVPP : DA E9 [386, FPU]
FUCOM f pur eg ; DB E8+r [P6, FPU]
FUCOM STO, f pur eg ; DB E8+r [P6, FPU]
FUCOM P f pureg ; DF E8+r [P6, FPU]
FUCOM P STO, f pureg ; DF E8+r [P6, FPU]

A.70

A.71

A.72

A.73

A.74

A.75

FUCOM compares STO with the given operand, and sets the FPU flags accordingly. STO is treated as the
left-hand side of the comparison, so that the carry flag is set (for a‘lessthan’ result) if STO is less than
the given operand.

FUCQOVP does the same as FUCOM but pops the register stack afterwards. FUCOMPP compares STO with
ST1 and then pops the register stack twice.

FUCOM and FUCOM P work like the corresponding forms of FUCOM and FUCOMP, but write their
results directly to the CPU flags register rather than the FPU status word, so they can be immediately
followed by conditional jump or conditional move instructions.

The FUCOMinstructions differ from the FCOM instructions (section A.35) only in the way they handle
quiet NaNs: FUCOMwill handle them silently and set the condition code flags to an ‘unordered’ result,
whereas FCOMwill generate an exception.

FXAM Examine Class of Value in STO
FXAM © D9 E5 [8086, FPU]

FXAMsets the FPU flags C3, C2 and CO depending on the type of value stored in STO: 000 (respectively)
for an unsupported format, 001 for a NaN, 010 for a normal finite number, 011 for an infinity, 100 for a
zero, 101 for an empty register, and 110 for a denormal. It also sets the C1 flag to the sign of the number.

FXCH: Floating-Point Exchange

EXCH - D9 C9 [8086, FPU
FXCH f pur eg ; D9 C8+r [8086, FPU
FXCH f pur eg, STO ; D9 C8+r [8086, FPU]

FXCH STO, f pur eg D9 C8+r [8086, FPU]
FXCH exchanges STO with a given FPU register. The no-operand form exchanges STO with ST1.

FXTRACT: Extract Exponent and Significand
FXTRACT ; D9 F4 [8086, FPU]

FXTRACT separates the number in STO into its exponent and significand (mantissa), stores the exponent
back into STO, and then pushes the significand on the register stack (so that the significand ends up in
STO, and the exponent in ST1).

FYL2X, FYL2XP1: Compute Y times Log2(X) or Log2(X+1)

FYL2X - D9 F1 [8086, FPU]
FYL2XP1 ; D9 F9 [8086, FPU]

FYL2X multiplies ST1 by the base-2 logarithm of STO, stores the result in ST1, and pops the register
stack (so that the result endsup in STO). STO must be hon-zero and positive.

FYL2XP1 works the same way, but replacing the base-2 log of STO with that of STO plus one. Thistime,
STO must have magnitude no greater than 1 minus half the square root of two.

HLT: Halt Processor
HLT - F4 [8086]

HLT puts the processor into a halted state, where it will perform no more operations until restarted by an
interrupt or areset.

| BTS: Insert Bit String

| BTS r/ ml6, regl6 ; 016 OF A7 /r [386, UNDOC]
| BTS r/ nB2, reg32 ; 032 OF A7 /r [386, UNDOC]

A.76

A.T7

No clear documentation seems to be available for this instruction: the best I've been able to find reads
‘Takes a string of bits from the second operand and puts them in the first operand’. It is present only in
early 386 processors, and conflicts with the opcodes for CMPXCHG486. NASM supports it only for
completeness. Its counterpart is XBTS (see section A.167).

| DI V: Signed Integer Divide

IDIV r/n8 . F6 /7 [8086]
IDIV r/ni6 © 016 F7 /7 [8086]
DIV r/nB2 © 032 F7 17 [386]

| DI V performs signed integer division. The explicit operand provided is the divisor; the dividend and
destination operands are implicit, in the following way:

e Forl DIV r/ nB, AXisdivided by the given operand; the quotient is stored in AL and the remainder in
AH.

« For 1DV r/ ml6, DX: AX is divided by the given operand; the quotient is stored in AX and the
remainder in DX.

e For | DIV r/ nB82, EDX: EAX is divided by the given operand; the quotient is stored in EAX and the
remainder in EDX.

Unsigned integer division is performed by the DI V instruction: see section A.25.
| MJL: Signed Integer Multiply

I MUL r/nB ; F6 /5 [8086]
I MUL r/nl6 ; 016 F7 /5 [8086]
| MUL r/nB2 ; 032 F7 /5 [386]
| MUL regl6, r/ m6 ; 016 OF AF /r [386]
| MUL reg32, r/ nB2 ; 032 OF AF /r [386]
| ML regl6,imB ; 016 6B /r ib [286]
| ML regl6, i mil6 ; 016 69 /r iw [286]
| MJL reg32,imB ; 032 6B /r ib [386]
I ML reg32,i mB2 ; 032 69 /r id [386]
| MUL regl6, r/ nl6, i mB ;. 016 6B /r ib [286]
| MUL regl6, r/ ml6, i mml6 016 69 /r iw [286]
| MUL reg32,r/nB2,i nm8 032 6B/r ib [386]
| MUL reg32,r/ nB2,i nmB2 ; 032 69 /r id [386]

| MUL performs signed integer multiplication. For the single-operand form, the other operand and
destination are implicit, in the following way:

e Forl MJL r/n8B, AL ismultiplied by the given operand; the product is stored in AX.
e Forl MJL r/ ml6, AXismultiplied by the given operand; the product is stored in DX: AX.
e For | MJL r/ B2, EAXismultiplied by the given operand; the product is stored in EDX: EAX.

The two-operand form multiplies its two operands and stores the result in the destination (first) operand.
The three-operand form multipliesiits last two operands and stores the result in the first operand.

The two-operand form is in fact a shorthand for the three-operand form, as can be seen by examining the
opcode descriptions: in the two-operand form, the code / r takes both its register and r / mparts from the
same operand (the first one).

A.78

A.79

A.80

A.81

In the forms with an 8-bit immediate operand and another longer source operand, the immediate operand
is considered to be signed, and is sign-extended to the length of the other source operand. In these cases,
the BYTE qualifier is necessary to force NASM to generate this form of the instruction.

Unsigned integer multiplication is performed by the MUL instruction: see section A.107.
N: Input from 1/O Port

|

IN AL, i m8 . E4 ib [8086]
IN AX, i 8 © 016 E5 ib [8086]
IN EAX, i m8 © 032 E5 ib [386]
IN AL, DX . EC [8086]
I N AX, DX . 016 ED [8086]
I N EAX, DX . 032 ED [386]

I N reads a byte, word or doubleword from the specified I/O port, and stores it in the given destination
register. The port number may be specified as an immediate value if it is between 0 and 255, and
otherwise must be stored in DX. See also OQUT (section A.111).

| NC. Increment Integer

I NC regl6 ; 016 40+r [8086]
I NC reg32 ; 032 40+r [386]
INC r/n8 ; FE /O [8086]
I NC r/ nl6 ; 016 FF /0 [8086]
I NC r/ nB2 ; 032 FF /0 [386]
INC adds 1 to its operand. It does not affect the carry flag: to affect the carry flag, use

ADD sorret hi ng, 1 (see section A.6). See also DEC (section A.24).
| NSB, | NSW | NSD: Input String from I/O Port

| NSB . 6C [186]
| NSW © 016 6D [186]
| NSD © 032 6D [386]

| NSB inputs a byte from the 1/0 port specified in DX and storesit at [ES: DI'] or [ES: EDI] . It then
increments or decrements (depending on the direction flag: increments if the flag is clear, decrementsiif it
isset) DI or EDI .

Theregister used is DI if the address sizeis 16 bits, and EDI if it is 32 bits. If you need to use an address
size not equal to the current Bl TS setting, you can use an explicit a16 or a32 prefix.

Segment override prefixes have no effect for this instruction: the use of ES for the load from [DI] or
[EDI] cannot be overridden.

I NSWand | NSD work in the same way, but they input a word or a doubleword instead of a byte, and
increment or decrement the addressing register by 2 or 4 instead of 1.

The REP prefix may be used to repeat the instruction CX (or ECX — again, the address size chooses which)
times.

See d'so QUTSB, OUTSWand OQUTSD (section A.112).

| NT: Software Interrupt
I NT i 8 ; CDib [8086]
| NT causes a software interrupt through a specified vector number from 0 to 255.

The code generated by the | NT instruction is always two bytes long: athough there are short forms for
some | NT instructions, NASM does not generate them when it sees the | NT mnemonic. In order to

A.82

A.83

A.84

A.85

A.86

generate single-byte breakpoint instructions, use the | NT3 or | NT1 instructions (see section A.82)
instead.

| NT3, I NT1, | CEBP, | NTO1: Breakpoints

| NT1 . F1 [P6]
| CEBP . F1 [P6]
| NTO1 . F1 [P6]
| NT3 ;. CC [8086]

| NT1 and | NT3 are short one-byte forms of the instructions| NT 1 and | NT 3 (see section A.81). They
perform a similar function to their longer counterparts, but take up less code space. They are used as
breakpoints by debuggers.

I NT1, and its alternative synonyms | NTO1 and | CEBP, is an instruction used by in-circuit emulators
(ICEs). It is present, though not documented, on some processors down to the 286, but is only
documented for the Pentium Pro. | NT3 isthe instruction normally used as a breakpoint by debuggers.

| NT3 isnot precisely equivalent to | NT 3: the short form, sinceit is designed to be used as a breakpoint,
bypasses the normal IOPL checks in virtual-8086 mode, and also does not go through interrupt
redirection.

| NTQO Interrupt if Overflow

| NTO . CE [8086]

| NTOperformsan | NT 4 software interrupt (see section A.81) if and only if the overflow flag is set.
| NVD: Invalidate Internal Caches

| NVD . OF 08 [486]

I NVD invalidates and empties the processor’s internal caches, and causes the processor to instruct
external caches to do the same. It does not write the contents of the caches back to memory first: any
modified data held in the caches will be lost. To write the data back first, use VBl NVD (section A.164).

| NVLPG Invalidate TLB Entry
I NVLPG nem ; OF 01 /0 [486]

I NVLPG invalidates the trandation lookahead buffer (TLB) entry associated with the supplied memory
address.

| RET, | RETW | RETD: Return from Interrupt

| RET ; CF [8086]
| RETW - 016 CF [8086]
| RETD - 032 CF [386]

| RET returns from an interrupt (hardware or software) by means of popping | P (or ElI P), CS and the
flags off the stack and then continuing execution from the new CS: | P,

| RETWpops | P, CS and the flags as 2 bytes each, taking 6 bytes off the stack in total. | RETD pops El P
as 4 bytes, pops a further 4 bytes of which the top two are discarded and the bottom two go into CS, and
pops the flags as 4 bytes as well, taking 12 bytes off the stack.

| RET isashorthand for either | RETWor | RETD, depending on the default Bl TS setting at the time.

A.87

A.88

A.89

A.90

JCXZ, JECXZ: Jump if CX/ECX Zero

JCXZ i mm ; 016 E3 rb [8086]
JECXZ i mm ; 032 E3 rb [386]

JCXZ performs a short jump (with maximum range 128 bytes) if and only if the contents of the CX
register is 0. JECXZ does the same thing, but with ECX.

JMP: Jump

JMP i mm ; E9 rwird [8086]
JMP SHORT i mm ; EBrb [8086]
JVMP i nm i mml6 ; 016 EAiwiw [8086]
JMP i nm i mB2 ; 032 EAid iw [386]
JMP FAR nmem ; 016 FF /5 [8086]
JMP FAR nmem ; 032 FF /5 [386]
JWP r/ ml6 ; 016 FF /4 [8086]
JMP r/ nB2 ; 032 FF /4 [386]

JIVP jumps to a given address. The address may be specified as an absolute segment and offset, or as a
relative jump within the current segment.

JMP SHORT i mmhas a maximum range of 128 bytes, since the displacement is specified as only 8 bits,
but takes up less code space. NASM does not choose when to generate JMP SHORT for you: you must
explicitly code SHORT every time you want a short jump.

You can choose between the two immediate far jump forms (JMP i nm i m) by the use of the WORD
and DWORD keywords: JMP WORD 0x1234: 0x5678) or JMP DWORD 0x1234: 0x56789abc.

The IMP FAR nemforms execute a far jump by loading the destination address out of memory. The
address loaded consists of 16 or 32 hits of offset (depending on the operand size), and 16 bits of segment.
The operand size may be overridden using JMP WORD FAR nmemor JMP DWORD FAR nem

The JMP r / mforms execute a near jump (within the same segment), loading the destination address out
of memory or out of a register. The keyword NEAR may be specified, for clarity, in these forms, but is
not necessary. Again, operand size can be overridden using JMP WORD nemor JMP DWORD nem

As a convenience, NASM does not require you to jump to a far symbol by coding the cumbersome
JMP SEG routine: routine, butinstead allowsthe easier synonym JMP FAR rout i ne.

The CALL r/ m forms given above are near callss NASM will accept the NEAR keyword (e.g.
CALL NEAR [addr ess]), eventhoughit is not strictly necessary.

Jcc: Conditional Branch

Jcc imm ; 70+cc rb [8086]
Jcc NEAR inmm ; OF 80+cc rw'rd [386]

The conditional jump instructions execute a near (same segment) jump if and only if their conditions are
satisfied. For example, JNZ jumps only if the zero flag is not set.

The ordinary form of the instructions has only a 128-byte range; the NEAR form is a 386 extension to the
instruction set, and can span the full size of a segment. NASM will not override your choice of jump
instruction: if youwant Jcc NEAR, you have to use the NEAR keyword.

The SHORT keyword is allowed on the first form of the instruction, for clarity, but is not necessary.

LAHF: Load AH from Flags
LAHF . OF [8086]

A.91

A.92

A.93

A.94

A.95

LAHF sets the AH register according to the contents of the low byte of the flags word. See also SAHF
(section A.145).

LAR: Load Access Rights

LAR regl6, r/ nil6 ; 016 OF 02 /r [286, PRI V]
LAR reg32,r/ nB2 ; 032 OF 02 /r [286, PRI V]

LAR takes the segment selector specified by its source (second) operand, finds the corresponding segment
descriptor in the GDT or LDT, and loads the access-rights byte of the descriptor into its destination (first)
operand.

LDS, LES, LFS, LGS, LSS: Load Far Pointer

LDS regl6, nem ; 016 C5 /r [8086]
LDS reg32, nem ; 032 G5 /r [8086]
LES regl6, nem ; 016 C4 /r [8086]
LES reg32, nem ; 032 C4 I [8086]
LFS regl6, nem ; 016 OF B4 /r [386]
LFS reg32, nem ; 032 OF B4 /r [386]
LGS regl6, nem ; 016 OF B5 /r [386]
LGS reg32, nem ; 032 OF B5 /r [386]
LSS regl6, nem ; 016 OF B2 /r [386]
LSS reg32, nem ; 032 OF B2 /r [386]

These instructions load an entire far pointer (16 or 32 bits of offset, plus 16 bits of segment) out of
memory in one go. LDS, for example, loads 16 or 32 bits from the given memory address into the given
register (depending on the size of the register), then loads the next 16 bits from memory into DS. LES,
LFS, LGS and LSS work in the same way but use the other segment registers.

LEA: Load Effective Address

LEA regl6, nem ; 016 8D /r [8086]
LEA reg32, nem ; 032 8D /r [8086]

LEA, despite its syntax, does not access memory. It calculates the effective address specified by its second
operand as if it were going to load or store data from it, but instead it stores the calculated address into
the register specified by its first operand. This can be used to perform quite complex calculations (e.g.
LEA EAX, [EBX+ECX* 4+100]) in oneinstruction.

LEA, despite being a purely arithmetic instruction which accesses no memory, still requires square
brackets around its second operand, asif it were amemory reference.

LEAVE: Destroy Stack Frame
LEAVE , C9 [186]

LEAVE destroys a stack frame of the form created by the ENTER instruction (see section A.27). It is
functionally equivalent to MOV ESP, EBP followed by POP EBP (or MOV SP, BP followed by
POP BP in 16-bit mode).

LGOT, LI DT, LLDT: Load Descriptor Tables

LGDT mem . OF 01 /2 [286, PRI V]
LI DT mem . OF 01 /3 [286, PRI V]
LLDT r/ 6 © OF 00 /2 [286, PRI V]

A.96

A.97

A.98

A.99

LGDT and LI DT both take a 6-byte memory area as an operand: they load a 32-bit linear address and a
16-bit size limit from that area (in the opposite order) into the GDTR (global descriptor table register) or
IDTR (interrupt descriptor table register). These are the only instructions which directly use linear
addresses, rather than segment/offset pairs.

LLDT takes a segment selector as an operand. The processor looks up that selector in the GDT and stores
the limit and base address given there into the LDTR (local descriptor table register).

See also SGDT, Sl DT and SLDT (section A.151).

LMSW Load/Store Machine Status Word
LMBW r / niL6 - OF 01 /6 [286, PRI V]

LMSW loads the bottom four bits of the source operand into the bottom four bits of the CRO control
register (or the Machine Status Word, on 286 processors). See also SMSW/(section A.155).

LOADALL, LOADALL286: Load Processor State

LOADALL . OF 07 [386, UNDOC]
LOADALL286 . OF 05 [286, UNDOC]

Thisinstruction, in its two different-opcode forms, is apparently supported on most 286 processors, some
386 and possibly some 486. The opcode differs between the 286 and the 386.

The function of the instruction is to load all information relating to the state of the processor out of a
block of memory: on the 286, this block is located implicitly at absolute address 0x800, and on the 386
and486itisat[ES: EDI] .

LODSB, LODSW LODSD: Load from String

LODSB ; AC [8086]
LODSW ; 016 AD [8086]
LODSD ; 032 AD [386]

LODSB loads abytefrom [DS: SI'] or [DS: ESI | into AL. It then increments or decrements (depending
on the direction flag: incrementsiif the flag is clear, decrementsif itisset) SI or ESI .

Theregister used is Sl if the address sizeis 16 bits, and ESI if it is 32 bits. If you need to use an address
size not equal to the current Bl TS setting, you can use an explicit al6 or a32 prefix.

The segment register used to load from [SI'] or [ESI] can be overridden by using a segment register
name as a prefix (for example, es | odsb).

LODSWand LODSD work in the same way, but they load a word or a doubleword instead of a byte, and
increment or decrement the addressing registers by 2 or 4 instead of 1.

LOOP, LOOPE, LOOPZ, LOOPNE, LOOPNZ: Loop with Counter

LOOP i mm ; E2 rb [8086
LOOP i mm CX ; alé E2 rb [8086
LOOP i mm ECX ; a32 E2 rb [386]
LOOPE i mm ; El rb [8086
LOOPE i mm CX ; alé E1 rb [8086
LOOPE i mm ECX ; a32 E1 rb [386]
LOOPZ i mm ; E1 rb [8086
LOOPZ i mm CX ; alé E1l rb [8086
LOOPZ i mm ECX ; a32 El rb [386]
LOOPNE i mm ; EO rb [8086
LOOPNE i nm CX ; alé EO rb [8086

A.100

A.101

A.102

LOOPNE i nm ECX ; a32 E0O rb [386]
LOOPNZ i nm ; EO rb [8086]
LOOPNZ i mm CX ; alé EO rb [8086]
LOOPNZ i nm ECX ; a32 EO rb [386]

LOOP decrements its counter register (either CX or ECX — if one is not specified explicitly, the BI TS
setting dictates which is used) by one, and if the counter does not become zero as a result of this
operation, it jumps to the given label. The jJump has arange of 128 bytes.

LOCOPE (or its synonym LOOPZ) adds the additional condition that it only jumps if the counter is nonzero
and the zero flag is set. Similarly, LOOPNE (and LOOPNZ) jumps only if the counter is honzero and the
zeroflagisclear.

LSL: Load Segment Limit

LSL regl6, r/ m6 © 016 OF 03 /r [286, PRI V]
LSL reg32, r/ n82 © 032 OF 03 /r [286, PRI V]

LSL is given a segment selector in its source (second) operand; it computes the segment limit value by
loading the segment limit field from the associated segment descriptor in the GDT or LDT. (This
involves shifting left by 12 bits if the segment limit is page-granular, and not if it is byte-granular; so you
end up with a byte limit in either case.) The segment limit obtained is then loaded into the destination
(first) operand.

LTR Load Task Register

LTR r/ L6 © OF 00 /3 [286, PRI V]

LTR looks up the segment base and limit in the GDT or LDT descriptor specified by the segment selector
given asits operand, and loads them into the Task Register.

MOV: Move Data

MOV r/nB, reg8 ; 88 /r [8086
MOV r/ ml6, regl6 ; 016 89 /r [8086
MOV r/ nB2, reg32 ; 032 89 /r [386]
MOV reg8,r/ nB : 8A /T [8086
MOV regl6, r/ nil6 ; 016 8B /r [8086
MOV reg32,r/ nB2 ; 032 8B /r [386]
MOV reg8, i nmB ; BO+r ib [8086
MOV regl6, i mi6 : 016 B8+r iw [8086
MOV reg32, i mmB2 ; 032 B8+r id [386]
MV r/nB,im8 ; C6/01ib [8086
MOV r/ mil6, i mil6 ; 016 C7 /0 iw [8086
MOV r/ nB2,i mB2 ; 032 Cr /0 id [386]
MOV AL, menof f s8 ; A0 ow od [8086
MOV AX, menof f s16 ; 016 Al ow od [8086
MOV EAX, menof f s32 : 032 Al ow od [386]
MOV nenof f s8, AL A2 ow od [8086
MOV nenof f s16, AX ; 016 A3 ow od [8086
MOV nenof f s32, EAX ; 032 A3 ow od [386]
MOV r/ ml6, segreg ; 016 8C /r [8086]
MOV r/ nB2, segreg ; 032 8C /r [386]
MOV segreg, r/ nL6 ; 016 8E /r [8086]
MOV segreg, r/ n32 ; 032 8E /r [386]

A.103

A.104

A.105

MOV reg32, CRO/ 2/ 3/ 4 © OF 20 /1 [386]

MOV reg32, DRO/ 1/ 2/ 3/ 6/ 7 © OF 21 /r [386]
MOV reg32, TR3/ 4/ 5/ 6/ 7 . OF 24 /r [386]
MOV CRO/ 2/ 3/ 4, r eg32 - OF 22 /r [386]
MOV DRO/ 1/ 2/ 3/ 6/ 7, r eg32 © OF 23 /T [386]
MOV TR3/ 4/ 5/ 6/ 7, r eg32 © OF 26 /T [386]

MOV copies the contents of its source (second) operand into its destination (first) operand.

In al forms of the MOV instruction, the two operands are the same size, except for moving between a
segment register and an r / nB2 operand. These instructions are treated exactly like the corresponding
16-bit equivalent (so that, for example, MOV DS, EAX functions identically to MOV DS, AX but saves a
prefix when in 32-bit mode), except that when a segment register is moved into a 32-bit destination, the
top two bytes of the result are undefined.

MOV may not use CS as a destination.
CR4 isonly a supported register on the Pentium and above.

MOVD: Move Doubleword to/from MMX Register

MOVD mmxr eg, r/ nB2 ; OF 6E /r [PENT, MVX]
MOVD r/ nB2, rmxr eg ; OF 7TE /r [PENT, MVX]

MOVD copies 32 bits from its source (second) operand into its destination (first) operand. When the
destination is a 64-bit MM X register, the top 32 bits are set to zero.

MOVQ Move Quadword to/from MMX Register

MOVQ mmxr eg, r/ nb4 ; OF 6F /r [PENT, MVX]
MOVQ r/ nb64, nrmxr eg ; OF 7F /r [PENT, MVX]

MOVQ copies 64 bits from its source (second) operand into its destination (first) operand.

MOVSB, MOVSW MOVSD: Move String

MOVSB . A4 [8086]
MOVSW . 016 A5 [8086]
MOVSD . 032 A5 [386]

MOVSB copiesthe byteat [ES: DI] or [ES: EDI] to[DS: SI'] or [DS: ESI] . It then increments or
decrements (depending on the direction flag: incrementsif the flag is clear, decrementsiif it is set) SI and
DI (or ESI and EDI).

The registers used are SI and DI if the address size is 16 bits, and ESI and EDI if it is 32 bits. If you
need to use an address size not equal to the current Bl TS setting, you can use an explicit al6 or a32
prefix.

The segment register used to load from [SI'] or [ESI] can be overridden by using a segment register
name as a prefix (for example, es novsb). The use of ES for the storeto [DI] or [EDI] cannot be
overridden.

MOVSWand MOVSD work in the same way, but they copy a word or a doubleword instead of a byte, and
increment or decrement the addressing registers by 2 or 4 instead of 1.

The REP prefix may be used to repeat the instruction CX (or ECX — again, the address size chooses which)
times.

A.106

A.107

A.108

A.109

A.110

MOVSX, MOVZX: Move Data Wlth Sign or Zero Extend

MOVSX regl6, r/ nB ; 016 OF BE /r [386]
MOVSX reg32,r/ n8B ; 032 OF BE /r [386]
MOVSX reg32, r/ nl6 ; 032 OF BF /r [386]
MOVZX regl6, r/ nB ; 016 OF B6 /r [386]
MOVZX reg32,r/ nB ; 032 OF B6 /r [386]
MOVZX reg32,r/ mL6 ; 032 OF B7 /r [386]

MOVSX sign-extends its source (second) operand to the length of its destination (first) operand, and copies
the result into the destination operand. MOVZX does the same, but zero-extends rather than sign-
extending.

MJL: Unsigned Integer Multiply

MUL r/n8 . F6 /4 [8086]
ML r/nil6 - 016 F7 /4 [8086]
ML 1/ n82 - 032 F7 /4 [386]

MJL performs unsigned integer multiplication. The other operand to the multiplication, and the
destination operand, are implicit, in the following way:

e For MUL r/ n8B, AL ismultiplied by the given operand; the product is stored in AX.

e For MUL r/ L6, AXismultiplied by the given operand; the product is stored in DX: AX.

* For MUL r/ nB2, EAXismultiplied by the given operand; the product is stored in EDX: EAX.
Signed integer multiplication is performed by the | MUL instruction: see section A.77.

NEG NOT: Two’s and One’s Complement

NEG r/ 8 © F6 /3 [8086]
NEG r/ 6 - 016 F7 /3 [8086]
NEG r/ n82 - 032 F7 /3 [386]
NOT r/ 8 . F6 /2 [8086]
NOT r/ L6 - 016 F7 /2 [8086]
NOT r/ nB2 © 032 F7 /2 [386]

NEG replaces the contents of its operand by the two’s complement negation (invert al the bits and then
add one) of the original value. NOT, similarly, performs one’ s complement (inverts al the bits).

NOP: No Operation
NOP ;90 [8086]

NOP performs no operation. Its opcode is the same as that generated by XCHG AX, AX or
XCHG EAX, EAX (depending on the processor mode; see section A.168).

OR: Bitwise OR

CR r/n8B,reg8 ; 08 /r [8086]
OR r/ ml6, regl6 ; 016 09 /r [8086]
OR r/nB2, reg32 7 032 09 /r [386]
OR reg8,r/nB i OA [r [8086]
OR regl6, r/ m6 ; 016 0B /r [8086]
OR reg32,r/ nB2 ; 032 OB /r [386]

A.111

A.112

OR r/nB,im8 ; 80 /1 1ib [8086]
OR r/ ml6, i nmL6 ; 016 81 /1 iw [8086]
OR r/nB2,i mB2 ; 03281 /1 id [386]
OR r/ nl6, i mB ; 016 83 /1 ib [8086]
OR r/nB2,i N8 ; 032 83 /1 ib [386]
OR AL, i m8 ; 0Cib [8086]
OR AX, i mmL6 ; 016 OD iw [8086]
OR EAX, i mB2 ; 032 0D id [386]

OR performs a bitwise OR operation between its two operands (i.e. each bit of the result is 1 if and only if
at least one of the corresponding bits of the two inputs was 1), and stores the result in the destination
(first) operand.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand is
considered to be signed, and is sign-extended to the length of the first operand. In these cases, the BYTE
qualifier is necessary to force NASM to generate this form of the instruction.

The MMX instruction POR (see section A.129) performs the same operation on the 64-bit MM X registers.
QUT: Output Data to 1/0 Port

OUT i m8, AL . E6 ib [8086]
OUT i 8, AX . 016 E7 ib [8086]
OUT i m8, EAX - 032 E7 ib [386]
OUT DX, AL - EE [8086]
OUT DX, AX - 016 EF [8086]
OUT DX, EAX . 032 EF [386]

I N writes the contents of the given source register to the specified 1/O port. The port number may be
specified as an immediate value if it is between 0 and 255, and otherwise must be stored in DX. See also
I N (section A.78).

QUTSB, QUTSW QUTSD: Output String to I/O Port

OUTSB . 6E [186]
oUTSW . 016 6F [186]
OUTSD . 032 6F [386]

QUTSB loads a byte from [DS: SI'] or [DS: ESI] and writes it to the 1/0O port specified in DX. It then
increments or decrements (depending on the direction flag: increments if the flag is clear, decrementsiif it
isset) SI or ESI .

Theregister used is Sl if the address sizeis 16 bits, and ESI if it is 32 bits. If you need to use an address
size not equal to the current Bl TS setting, you can use an explicit a16 or a32 prefix.

The segment register used to load from [SI'] or [ESI] can be overridden by using a segment register
name as a prefix (for example, es out sb).

QUTSWand QUTSD work in the same way, but they output a word or a doubleword instead of a byte, and
increment or decrement the addressing registers by 2 or 4 instead of 1.

The REP prefix may be used to repeat the instruction CX (or ECX — again, the address size chooses which)
times.

A.113

A.114

A.115

A.116

PACKSSDW PACKSSWB, PACKUSWB: Pack Data

PACKSSDW nmxr eg, r/ nb4 ; OF 6B /r [PENT, MVX]
PACKSSWB mmxr eg, r/ nb4 ; OF 63 /r [PENT, MVX]
PACKUSWB mmxr eg, r/ nb4 ;. OF 67 /r [PENT, MVX]

All these instructions start by forming a notional 128-bit word by placing the source (second) operand on
the left of the destination (first) operand. PACKSSDWithen splits this 128-bit word into four doublewords,
converts each to a word, and loads them side by side into the destination register; PACKSSWB and
PACKUSWB both split the 128-bit word into eight words, converts each to a byte, and loads those side by
side into the destination register.

PACKSSDW and PACKSSWB perform signed saturation when reducing the length of numbers: if the
number is too large to fit into the reduced space, they replace it by the largest signed number (7 FFFh or
7Fh) that will fit, and if it is too small then they replace it by the smallest signed number (8000h or
80h) that will fit. PACKUSWB performs unsigned saturation: it treats its input as unsigned, and replaces it
by the largest unsigned number that will fit.

PADDx x: MMX Packed Addition

PADDB mmxr eg, r/ nb4 ; OF FC /r [PENT, MV
PADDW nmxr eg, r/ nb4 ; OF FD /r [PENT, MVX]
PADDD nmxr eg, r/ nb4 ; OF FE /r [PENT, MVX]
PADDSB mmxr eg, r/ nb4 . OF EC /r [PENT, MVX]
PADDSW mmxr eg, r/ nb4 . OF ED /r [PENT, MVK]
PADDUSB mmxr eg, r/ nb4 ; OF DC /r [PENT, MV
PADDUSW mxr eg, r/ nb4 ; OF DD /r [PENT, MVIX]

PADDxx all perform packed addition between their two 64-bit operands, storing the result in the
destination (first) operand. The PADDxB forms treat the 64-bit operands as vectors of eight bytes, and
add each byte individually; PADDx Wtreat the operands as vectors of four words, and PADDD treats its
operands as vectors of two doublewords.

PADDSB and PADDSWperform signed saturation on the sum of each pair of bytes or words: if the result
of an addition is too large or too small to fit into a signed byte or word result, it is clipped (saturated) to
the largest or smallest value which will fit. PADDUSB and PADDUSW similarly perform unsigned
saturation, clipping to OFFh or OFFFFh if the result is larger than that.

PADDSI W MMX Packed Addition to Implicit Destination
PADDSI W nmxr eg, r/ nb4 . OF 51 /r [CYRI X, MVKX]

PADDSI W specific to the Cyrix extensions to the MM X instruction set, performs the same function as
PADDSW except that the result is not placed in the register specified by the first operand, but instead in
the register whose number differs from the first operand only in the last bit. So PADDSI W MMD, M\VR
would put the result in MML, but PADDSI W MML, MVR would put the result in MVD.

PAND, PANDN: MMX Bitwise AND and AND-NOT

PAND mmxr eg, r/ nb4 . OF DB /r [PENT, MVKX]
PANDN mmxr eg, r/ n64 : OF DF /r [PENT, MVX]

PAND performs a bitwise AND operation between its two operands (i.e. each bit of the result is 1 if and
only if the corresponding bits of the two inputs were both 1), and stores the result in the destination (first)
operand.

PANDN performs the same operation, but performs a one’ s complement operation on the destination (first)
operand first.

A.117

A.118

A.119

A.120

A.121

PAVEB: MMX Packed Average
PAVEB mmxr eg, r/ nm64 . OF 50 /r [CYRI X, MVX]

PAVEB, specific to the Cyrix MM X extensions, treats its two operands as vectors of eight unsigned bytes,
and calculates the average of the corresponding bytes in the operands. The resulting vector of eight
averagesis stored in the first operand.

PCMPxx: MMX Packed Comparison

PCVPEB mmxr eg, r/ nb4 ; OF 74 |r [PENT, MVX]
PCVMPEQW mxr eg, r/ nb4 ; OF 75 /r [PENT, MVX]
PCVPEQD nmxr eg, r/ nb4 ; OF 76 /r [PENT, MVX]
PCVMPGTB nmxr eg, r/ nb4 . OF 64 /r [PENT, MVX]
PCMPGTW nmxr eg, r/ n64 . OF 65 /r [PENT, MVK]
PCVMPGTD mmxr eg, r/ nb4 : OF 66 /r [PENT, MVX]

The PCMPxx ingtructions al treat their operands as vectors of bytes, words, or doublewords;
corresponding elements of the source and destination are compared, and the corresponding element of
the destination (first) operand is set to al zeros or al ones depending on the result of the comparison.

PCIVPx x B treats the operands as vectors of eight bytes, PCMPx x Wtreats them as vectors of four words,
and PC\MPx x D as two doublewords.

PCVPEQX sets the corresponding element of the destination operand to all ones if the two elements
compared are equal; PCMPGTX sets the destination element to al ones if the element of the first
(destination) operand is greater (treated as a signed integer) than that of the second (source) operand.

PDI STI B: MMX Packed Distance and Accumulate with Implied Register
PDI STI B nmxr eg, nent4 ; OF 54 /r [CYRI X, MVKX]

PDI STI B, specific to the Cyrix MMX extensions, treats its two input operands as vectors of eight
unsigned bytes. For each byte position, it finds the absolute difference between the bytes in that position
in the two input operands, and adds that value to the byte in the same position in the implied output
register. The addition is saturated to an unsigned byte in the same way as PADDUSB.

The implied output register is found in the same way as PADDSI W(section A.115).
Note that PDI STI B cannot take aregister asits second source operand.

PMACHRI W MMX Packed Multiply and Accumulate with Rounding
PMACHRI W nmxr eg, ment4 , OF 5E /r [CYRI X, MWX]

PMACHRI Wacts amost identically to PMULHRI W(section A.123), but instead of storing its result in the
implied destination register, it adds its result, as four packed words, to the implied destination register.
No saturation is done: the addition can wrap around.

Note that PMACHRI Wcannot take aregister as its second source operand.

PMADDWD: MMX Packed Multiply and Add
PMADDWD mmxr eg, r/ nb4 ; OF F5 /r [PENT, MVX]

PMADDWD treats its two inputs as vectors of four signed words. It multiplies corresponding elements of
the two operands, giving four signed doubleword results. The top two of these are added and placed in
the top 32 hits of the destination (first) operand; the bottom two are added and placed in the bottom 32
bits.

A.122

A.123

A.124

A.125

A.126

PMAGW MMX Packed Magnitude
PMAGW nmxr eg, r/ nb4 ; OF 52 /r [CYRI X, MVKX]
PMAGW specific to the Cyrix MM X extensions, treats both its operands as vectors of four signed words. It

compares the absolute values of the words in corresponding positions, and sets each word of the
destination (first) operand to whichever of the two words in that position had the larger absolute value.

PMULHRW PMULHRI W MMX Packed Multiply High with Rounding

PMULHRW nmxr eg, r / mb4 . OF 59 /r [CYRI X, MVX]
PMULHRI W nmxr eg, r / m64 . OF 5D /r [CYRI X, MVX]

These instructions, specific to the Cyrix MM X extensions, treat their operands as vectors of four signed
words. Words in corresponding positions are multiplied, to give a 32-bit value in which bits 30 and 31
are guaranteed equal. Bits 30 to 15 of this value (bit mask Ox7FFF8000) are taken and stored in the
corresponding position of the destination operand, after first rounding the low bit (equivalent to adding
0x4000 before extracting bits 30 to 15).

For PMULHRW the destination operand is the first operand; for PMULHRI Wthe destination operand is
implied by the first operand in the manner of PADDSI W(section A.115).

PMULHW PMULLW MMX Packed Multiply

PMULHW mmxr eg, r/ nb4 . OF BE5 Ir [PENT, MVKX]
PMULLW mmxr eg, r/ nb4 . OF D5 /r [PENT, MVX]

PMULx Wtreats its two inputs as vectors of four signed words. It multiplies corresponding elements of the
two operands, giving four signed doubleword resuilts.

PMULHWthen stores the top 16 bits of each doubleword in the destination (first) operand; PMULLWstores
the bottom 16 bits of each doubleword in the destination operand.

PMvccZB: MMX Packed Conditional Move

PMWZB mmxr eg, nent4 ; OF 58 /r [CYRI X, MVKX]
PMWNZB mmxr eg, nent4 . OF BA /r [CYRI X, MVK]
PMWLZB mmxr eg, menb4 . OF 5B /r [CYRI X, MVKX]
PWGEZB mmxr eg, nent4 . OF 5C /r [CYRI X, MVKX]

These instructions, specific to the Cyrix MMX extensions, perform parallel conditional moves. The two
input operands are treated as vectors of eight bytes. Each byte of the destination (first) operand is either
written from the corresponding byte of the source (second) operand, or left alone, depending on the value
of the byte in the implied operand (specified in the same way as PADDSI W in section A.115).

PMWZB performs each move if the corresponding byte in the implied operand is zero. PMWNZB moves if
the byte is non-zero. PMWLZB moves if the byte is less than zero, and PWGEZB moves if the byte is
greater than or equal to zero.

Note that these instructions cannot take aregister as their second source operand.

POP: Pop Data from Stack

POP regl6 ; 016 58+r [8086]
POP reg32 ; 032 58+r [386]
POP r/ L6 ; 016 8F /0 [8086]
POP r/ nB2 ; 032 8F /0 [386]
POP CS ;. OF [8086, UNDOC]
POP DS ; 1F [8086]
POP ES ;07 [8086]

A.127

A.128

A.129

POP SS ;17 [8086]
POP FS , OF Al [386]
POP GS , OF A9 [386]

POP loads a value from the stack (from [SS: SP] or [SS: ESP]) and then increments the stack pointer.

The address-size attribute of the instruction determines whether SP or ESP is used as the stack pointer: to
deliberately override the default given by the Bl TS setting, you can use an al6 or a32 prefix.

The operand-size attribute of the instruction determines whether the stack pointer is incremented by 2 or
4: this means that segment register popsin Bl TS 32 mode will pop 4 bytes off the stack and discard the
upper two of them. If you need to override that, you can usean 016 or 032 prefix.

The above opcode listings give two forms for general-purpose register pop instructions: for example,
POP BX has the two forms 5B and 8F C3. NASM will always generate the shorter form when given
POP BX. NDISASM will disassemble both.

POP CS is not a documented instruction, and is not supported on any processor above the 8086 (since
they use OFh as an opcode prefix for instruction set extensions). However, at least some 8086 processors
do support it, and so NASM generatesit for completeness.

POPAX: Pop All General-Purpose Registers

POPA . 61 [186]
POPAW . 016 61 [186]
POPAD . 032 61 [386]

POPAW/pops a word from the stack into each of, successively, DI , Sl , BP, nothing (it discards a word
from the stack which was a placeholder for SP), BX, DX, CX and AX. It is intended to reverse the
operation of PUSHAW(see section A.135), but it ignores the value for SP that was pushed on the stack by
PUSHAW

POPAD pops twice as much data, and places the results in EDI , ESI , EBP, nothing (placeholder for
ESP), EBX, EDX, ECX and EAX. It reverses the operation of PUSHAD.

POPA is an aias mnemonic for either POPAWor POPAD, depending on the current Bl TS setting.
Note that the registers are popped in reverse order of their numeric valuesin opcodes (see section A.2.1).

POPFx: Pop Flags Register

POPF © 9D [186]
POPFW © 016 9D [186]
POPFD © 032 9D [386]

POPFWpops a word from the stack and stores it in the bottom 16 bits of the flags register (or the whole
flags register, on processors below a 386). POPFD pops a doubleword and stores it in the entire flags
register.

POPF is an aias mnemonic for either POPFWor POPFD, depending on the current Bl TS setting.
See also PUSHF (section A.136).

POR: MMX Bitwise OR
POR mxregq, r/ n64 . OF EB /r [PENT, MVKX]

POR performs a bitwise OR operation between its two operands (i.e. each bit of the result is 1 if and only
if at least one of the corresponding bits of the two inputs was 1), and stores the result in the destination
(first) operand.

A.130

A.131

PSLLx, PSRLx, PSRAX: MMX Blt Shifts

PSLLW mmxr eg, r/ n64 ; OF F1 /r [PENT, MVIX]
PSLLW nmxr eg, i nm8 ; OF 71 /6 ib [PENT, MVX]
PSLLD nmxr eg, r/ n64 . OF F2 /r [PENT, MVX]
PSLLD mxreg, i B . OF 72 /6 ib [PENT, MVK]
PSLLQ mmxr eg, r/ n64 . OF F3 /r [PENT, MVIX]
PSLLQ mmxr eg, i mB ; OF 73 /6 ib [PENT, MVX]
PSRAW mmxr eg, r/ nb4 ; OF E1 /r [PENT, MVIX]
PSRAW mmxr eg, i B . OF 71 /4 ib [PENT, MVX]
PSRAD mmxr eg, r/ nt4 ; OF E2 /r [PENT, MVKX]
PSRAD mxr eg, i nB . OF 72 /4 ib [PENT, MVK]
PSRLW mxr eg, r/ n64 . OF D1 /r [PENT, MVIX]
PSRLW mxr eg, i B ;s OF 71 /2 ib [PENT, MVX]
PSRLD nmxr eg, r/ n64 ; OF D2 /r [PENT, MVIX]
PSRLD nmmxr eg, i B c OF 72 /2 ib [PENT, MVX]
PSRLQ nmxr eg, r/ nb4 ;. OF D3 /r [PENT, MVX]
PSRLQ mxreg, i B ;s OF 73 /2 ib [PENT, MVK]

PSxxQ perform simple bit shifts on the 64-bit MMX registers: the destination (first) operand is shifted
left or right by the number of bits given in the source (second) operand, and the vacated bits are filled in
with zeros (for alogical shift) or copies of the original sign bit (for an arithmetic right shift).

PSxxWand PSxx D perform packed bit shifts: the destination operand is treated as a vector of four words
or two doublewords, and each element is shifted individually, so bits shifted out of one element do not
interfere with empty bits coming into the next.

PSLLx and PSRLx perform logical shifts: the vacated hits at one end of the shifted number are filled
with zeros. PSRAX performs an arithmetic right shift: the vacated bits at the top of the shifted number are
filled with copies of the original top (sign) bit.

PSUBxx: MMX Packed Subtraction

PSUBB mmxr eg, r/ nb4 ; OF F8 /r [PENT, MV
PSUBW mmxr eg, r/ n64 ; OF F9 /r [PENT, MVX]
PSUBD nmxr eg, r/ nb4 ; OF FA /r [PENT, MVX]
PSUBSB mmxr eg, r/ n64 ; OF E8 /r [PENT, MVKX]
PSUBSW mmxr eg, r/ nb4 . OF B9 /r [PENT, MVK]
PSUBUSB mmxr eg, r/ nb4 . OF D8 /r [PENT, MVIX]
PSUBUSW mxr eg, r/ nb4 ; OF DO /r [PENT, MV

PSUBxx all perform packed subtraction between their two 64-bit operands, storing the result in the
destination (first) operand. The PSUBxB forms treat the 64-bit operands as vectors of eight bytes, and
subtract each byte individually; PSUBx Wtreat the operands as vectors of four words; and PSUBD treats
its operands as vectors of two doublewords.

In all cases, the elements of the operand on the right are subtracted from the corresponding elements of
the operand on the left, not the other way round.

PSUBSB and PSUBSWperform signed saturation on the sum of each pair of bytes or words: if the result
of a subtraction istoo large or too small to fit into a signed byte or word result, it is clipped (saturated) to
the largest or smallest value which will fit. PSUBUSB and PSUBUSW similarly perform unsigned
saturation, clipping to OFFh or OFFFFh if the result is larger than that.

A.132

A.133

A.134

PSUBSI W MMX Packed Subtract with Saturation to Implied Destination
PSUBSI W nmxr eg, r/ m64 , OF 55 /r [CYRI X, MWX]

PSUBSI W specific to the Cyrix extensions to the MM X instruction set, performs the same function as
PSUBSW except that the result is not placed in the register specified by the first operand, but instead in
the implied destination register, specified as for PADDSI W(section A.115).

PUNPCKxxx: Unpack Data

PUNPCKHBW mxr eg, r/ n64 ; OF 68 /r [PENT, MVX]
PUNPCKHWD mmxr eg, r/ n64 ; OF 69 /r [PENT, MVX]
PUNPCKHDQ mmxr eg, r/ n64 ; OF 6A /r [PENT, MVX]
PUNPCKLBW mxr eg, r/ n64 ; OF 60 /r [PENT, MWX]
PUNPCKLWD mmxr eg, r/ 64 . OF 61 /r [PENT, MVK]
PUNPCKLDQ mmxr eg, r/ nb4 : OF 62 /r [PENT, MVX]

PUNPCKxx all treat their operands as vectors, and produce a new vector generated by interleaving
elements from the two inputs. The PUNPCKHxXx instructions start by throwing away the bottom half of
each input operand, and the PUNPCKLx x instructions throw away the top half.

The remaining elements, totalling 64 bits, are then interleaved into the destination, alternating elements
from the second (source) operand and the first (destination) operand: so the leftmost element in the result
always comes from the second operand, and the rightmost from the destination.

PUNPCKx BWworks a byte at atime, PUNPCKxWD a word at a time, and PUNPCKx DQ a doubleword at a
time.

So, for example, if the first operand held Ox7A6ASA4A3A2A1A0A and the second held
0x7B6B5B4B3B2B1B0B, then:

* PUNPCKHBWwWwould return 0x 7B7 A6B6 ASB5A4B4A.
e PUNPCKHWD would return 0x 7B6B7 A6 ASB4B5A4A.
* PUNPCKHDQwould return 0x 7B6B5B4B7 A6 ASA4A.
* PUNPCKLBWwould return 0x3B3A2B2A1B1A0BOA.
¢ PUNPCKLWD would return 0x3B2B3A2A1BOB1A0A.
* PUNPCKLDQwould return 0x3B2B1BOB3A2A1A0A.

PUSH: Push Data on Stack

PUSH regl6 ; 016 50+r [8086]
PUSH r eg32 ; 032 50+r [386]
PUSH r/ mL6 ; 016 FF /6 [8086]
PUSH r/ nB2 ; 032 FF /6 [386]
PUSH CS ; OE [8086]
PUSH DS ; 1E [8086]
PUSH ES ; 06 [8086]
PUSH SS ;16 [8086]
PUSH FS ; OF A0 [386]
PUSH GS ; OF A8 [386]
PUSH i 8 ; BA Db [286]
PUSH i nml6 ; 016 68 iw [286]
PUSH i m®B2 ; 032 68 id [386]

A.135

A.136

A.137

PUSH decrements the stack pointer (SP or ESP) by 2 or 4, and then storesthe given value at [SS: SP] or
[SS: ESP] .

The address-size attribute of the instruction determines whether SP or ESP is used as the stack pointer: to
deliberately override the default given by the Bl TS setting, you can use an al6 or a32 prefix.

The operand-size attribute of the instruction determines whether the stack pointer is decremented by 2 or
4: this means that segment register pushes in BI TS 32 mode will push 4 bytes on the stack, of which
the upper two are undefined. If you need to override that, you can usean 016 or 032 prefix.

The above opcode listings give two forms for general-purpose register push instructions. for example,
PUSH BX has the two forms 53 and FF F3. NASM will always generate the shorter form when given
PUSH BX. NDISASM will disassemble both.

Unlike the undocumented and barely supported POP CS, PUSH CS is a perfectly valid and sensible
instruction, supported on all processors.

The ingtruction PUSH SP may be used to distinguish an 8086 from later processors. on an 8086, the
value of SP stored is the value it has after the push instruction, whereas on later processorsit is the value
before the push instruction.

PUSHAX: Push All General-Purpose Registers

PUSHA ; 60 [186]
PUSHAD © 032 60 [386]
PUSHAW 016 60 [186]

PUSHAW)pushes, in succession, AX, CX, DX, BX, SP, BP, SI and DI on the stack, decrementing the stack
pointer by atotal of 16.

PUSHAD pushes, in succession, EAX, ECX, EDX, EBX, ESP, EBP, ESI and EDI on the stack,
decrementing the stack pointer by atotal of 32.

In both cases, the value of SP or ESP pushed is its original value, as it had before the instruction was
executed.

PUSHA is an alias mnemonic for either PUSHAWor PUSHAD, depending on the current Bl TS setting.
Note that the registers are pushed in order of their numeric values in opcodes (see section A.2.1).
See also POPA (section A.127).

PUSHFx: Push Flags Register

PUSHF ; 9C [186]
PUSHFD . 032 9C [386]
PUSHFW ; 016 9C [186]

PUSHFWpops a word from the stack and stores it in the bottom 16 bits of the flags register (or the whole
flags register, on processors below a 386). PUSHFD pops a doubleword and stores it in the entire flags
register.

PUSHF is an alias mnemonic for either PUSHFWor PUSHFD, depending on the current Bl TS setting.
See also POPF (section A.128).

PXOR: MMX Bitwise XOR

PXOR mmxr eg, r/ nb4 : OF EF /r [PENT, MVX]

PXOR performs a bitwise XOR operation between its two operands (i.e. each bit of the result is 1 if and
only if exactly one of the corresponding bits of the two inputs was 1), and stores the result in the
destination (first) operand.

A.138

A.139

A.140

A.141

A.142

RCL, RCR: Bitwise Rotate through Carry Bit

RCL r/n8,1 ; DO /2 [8086]
RCL r/n8, CL ; D2 /2 [8086]
RCL r/n8,i B8 ; G /21ib [286]
RCL r/nml6, 1 ; 0l6 D1 /2 [8086]
RCL r/ ml6, CL ; 016 D3 /2 [8086]
RCL r/ nl6, i mB ; 016 CL /2 ib [286]
RCL r/nB2,1 ; 032 D1 /2 [386]
RCL r/nB2, CL ; 032 D3 /2 [386]
RCL r/nB2,i m8 ; 032 Cl /2 ib [386]
RCR r/n8, 1 ; DO /3 [8086]
RCR r/ n8, CL ; D2 /3 [8086]
RCR r/ n8,i m8B ; CO/3ib [286]
RCR r/ ml6, 1 ; 016 D1 /3 8086]
RCR r/ ml6, CL ; 016 D3 /3 [8086]
RCR r/ nl6, i B ; 016 CL /3 ib [286]
RCR r/nB2,1 ; 032 D1 /3 [386]
RCR r/ nB2, CL ; 032 D3 /3 [386]
RCR r/ nB2,i m8B ; 032 CL /3 ib [386]

RCL and RCR perform a 9-bit, 17-bit or 33-bit bitwise rotation operation, involving the given
source/destination (first) operand and the carry bit. Thus, for example, in the operation RCR AL, 1, a9-
bit rotation is performed in which AL is shifted left by 1, the top bit of AL moves into the carry flag, and
the original value of the carry flag is placed in the low bit of AL.

The number of bits to rotate by is given by the second operand. Only the bottom five bits of the rotation
count are considered by processors above the 8086.

Y ou can force the longer (286 and upwards, beginning with a C1 byte) form of RCL f oo, 1 by using a
BYTE prefix: RCL f oo, BYTE 1. Similarly with RCR.

RDVBR: Read Model-Specific Registers
RDVBR . OF 32 [PENT]

RDIVER reads the processor M odel-Specific Register (MSR) whose index is stored in ECX, and stores the
result in EDX: EAX. See also WRVSR (section A.165).

RDPMC: Read Performance-Monitoring Counters
RDPMC ; OF 33 [P6]

RDPMC reads the processor performance-monitoring counter whose index is stored in ECX, and stores the
result in EDX: EAX.

RDTSC. Read Time-Stamp Counter
RDTSC ; OF 31 [PENT]
RDTSC reads the processor’ s time-stamp counter into EDX: EAX.

RET, RETF, RETN: Return from Procedure Call

RET ; C3 [8086]
RET i mml6 20w [8086]
RETF ; CB [8086]

RETF i nml6 . CAiw [8086]

A.143

A.144

A.145

A.146

RETN . C3 [8086]
RETN i ni6 S 2w [8086]

RET, and its exact synonym RETN, pop | P or El P from the stack and transfer control to the new address.
Optionally, if a numeric second operand is provided, they increment the stack pointer by a further
i mml6 bytes after popping the return address.

RETF executes afar return: after popping | P/El P, it then pops CS, and then increments the stack pointer
by the optional argument if present.

ROL, ROR: Bitwise Rotate

ROL r/n8, 1 ; DO /0 [8086]
ROL r/ n8, CL ; D2 /0 [8086]
ROL r/n8, i B ; GO /0ib [286]
ROL r/nml6, 1 ; 016 D1 /0 [8086]
ROL r/nl6, CL ; 016 D3 /0 [8086]
ROL r/ml6, i m®8 ; 016 CL /0 ib [286]
ROL r/nB2,1 ; 032 D1 /0 [386]
ROL r/ B2, CL ; 032 D3 /0 [386]
RCOL r/nB2,i nm8 ;7 032 CL/0ib [386]
ROR r/n8, 1 ; DO /1 [8086]
ROR r/n8, CL ; D2 /1 [8086]
ROR r/ n8, i B ; @ /1ib [286]
ROR r/ ml6, 1 ; ol6 D1 /1 [8086]
ROR r/ ml6, CL ; 016 D3 /1 8086]
ROR r/ L6, i nmB ; 016 CL /1 ib [286]
ROR r/nB2,1 ; 032 D1 /1 [386]
ROR r/ nB2, CL ; 032 D3 /1 [386]
ROR r/ nB2,i m®8 ; 032 ClL/1ib [386]

RCOL and ROR perform a bitwise rotation operation on the given source/destination (first) operand. Thus,
for example, in the operation ROR AL, 1, an 8-bit rotation is performed in which AL is shifted left by 1
and the original top bit of AL moves round into the low bit.

The number of bits to rotate by is given by the second operand. Only the bottom 3, 4 or 5 bits (depending
on the source operand size) of the rotation count are considered by processors above the 8086.

Y ou can force the longer (286 and upwards, beginning with a C1 byte) form of ROL f 0o, 1 by using a
BYTE prefix: ROL f oo, BYTE 1. Similarly with ROR.

RSM Resume from System-Management Mode

RSM ; OF AA [PENT]

RSMreturns the processor to its normal operating mode when it was in System-Management Mode.
SAHF: Store AH to Flags

SAHF . 9E [8086]

SAHF sets the low byte of the flags word according to the contents of the AH register. See also LAHF
(section A.90).

SAL, SAR: Bitwise Arithmetic Shifts

SAL r/n8,1 ; DO /4 [8086]

SAL r/n8, CL ; D2 /4 [8086]

SAL r/n8,imB8 ; QO /4 ib [286]

A.147

A.148

SAL r/ m6, 1 ; 016 D1 /4 8086]
SAL r/m6, CL ; 016 D3 /4 [8086]
SAL r/ ml6, i mB ; 016 CL /4 ib [286]
SAL r/nB2,1 ; 032 D1 /4 [386]
SAL r/nB2, CL ; 032 D3 /4 [386]
SAL r/nB2,i m8 ; 032 Cl /4 ib [386]
SAR r/nB, 1 ; DO /0 [8086]
SAR r/ n8, CL ; D2 /0 [8086]
SAR r/ 8, i mB ; GO /0ib [286]
SAR r/ ml6, 1 ; 016 D1 /0 [8086]
SAR r/ m6, CL ; 016 D3 /0 8086]
SAR r/ m6, i m8 ; 016 CL /0 ib [286]
SAR r/nB2,1 ; 032 D1 /0 [386]
SAR r/ B2, CL ; 032 D3 /0 [386]
SAR r/ nB2,i nmB8 ; 032 CL /0 ib [386]

SAL and SAR perform an arithmetic shift operation on the given source/destination (first) operand. The
vacated bits are filled with zero for SAL, and with copies of the origina high bit of the source operand
for SAR.

SAL is a synonym for SHL (see section A.152). NASM will assemble either one to the same code, but
NDISASM will always disassembl e that code as SHL.

The number of bits to shift by is given by the second operand. Only the bottom 3, 4 or 5 bits (depending
on the source operand size) of the shift count are considered by processors above the 8086.

Y ou can force the longer (286 and upwards, beginning with a C1 byte) form of SAL f oo, 1 by using a
BYTE prefix: SAL f oo, BYTE 1. Similarly with SAR.

SALC. Set AL from Carry Flag
SALC . D6 [8086, UNDOC]

SALC is an early undocumented instruction similar in concept to SETcc (section A.150). Its function is
to set AL to zero if the carry flag is clear, or to OxFF if it is set.

SBB: Subtract with Borrow

SBB r/ n8, reg8 ;18 /r [8086
SBB r/ ml6, regl6 ; 016 19 /r [8086
SBB r/ nB2, reg32 ; 032 19 /r [386]
SBB reg8,r/ n8 ;o 1A T [8086
SBB regl6, r/ nl6 ;016 1B /r [8086
SBB reg32,r/ nB2 ; 032 1B /r [386]
SBB r/ 8, i m8 ; 80 /3 1ib [8086
SBB r/ ml6, i 6 ; 016 81 /3 iw [8086
SBB r/ nB2, i B2 ; 032 81 /3 id [386]
SBB r/ mL6, i nmB ; 016 83 /3 ib [8086
SBB r/ nB2, i nmB ; 032 83 /3 ib [8086
SBB AL, i m8B ; 1Cib [8086
SBB AX, i mmL6 ; 016 1D iw [8086
SBB EAX, i B2 ; 032 1D id [386]

A.149

A.150

A.151

A.152

SBB performs integer subtraction: it subtracts its second operand, plus the value of the carry flag, from its
first, and leaves the result in its destination (first) operand. The flags are set according to the result of the
operation: in particular, the carry flag is affected and can be used by a subsequent SBB instruction.

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand is
considered to be signed, and is sign-extended to the length of the first operand. In these cases, the BYTE
qualifier is necessary to force NASM to generate this form of the instruction.

To subtract one number from another without also subtracting the contents of the carry flag, use SUB
(section A.159).

SCASB, SCASW SCASD: Scan String

SCASB . AE [8086]
SCASW . 016 AF [8086]
SCASD . 032 AF [386]

SCASB compares the byte in AL with the byte at [ES: DI] or [ES: EDI], and sets the flags
accordingly. It then increments or decrements (depending on the direction flag: increments if the flag is
clear, decrementsif it isset) DI (or EDI).

Theregister used is DI if the address size is 16 bits, and EDI if it is 32 bits. If you need to use an address
size not equal to the current Bl TS setting, you can use an explicit al6 or a32 prefix.

Segment override prefixes have no effect for this instruction: the use of ES for the load from [DI] or
[EDI] cannot be overridden.

SCASWand SCASD work in the same way, but they compare a word to AX or a doubleword to EAX
instead of abyteto AL, and increment or decrement the addressing registers by 2 or 4 instead of 1.

The REPE and REPNE prefixes (equivalently, REPZ and REPNZ) may be used to repeat the instruction up
to CX (or ECX — again, the address size chooses which) times until the first unequal or equal byte is
found.

SETcc: Set Register from Condition
SETcc r/ nB ; OF 90+cc /2 [386]
SETcc setsthe given 8-bit operand to zero if its condition is not satisfied, andto 1if itis.

SGDT, SI DT, SLDT: Store Descriptor Table Pointers

SGDT nem ; OF 01 /0 [286, PRI V]
SI DT mem . OF 01 /1 [286, PRI V]
SLDT r/ ml6 ; OF 00 /0 [286, PRI V]

SGDT and SI DT both take a 6-byte memory area as an operand: they store the contents of the GDTR
(global descriptor table register) or IDTR (interrupt descriptor table register) into that area as a 32-bit
linear address and a 16-bit size limit from that area (in that order). These are the only instructions which
directly use linear addresses, rather than segment/offset pairs.

SLDT stores the segment selector corresponding to the LDT (local descriptor table) into the given
operand.

Seealso LGDT, LI DT and LLDT (section A.95).
SHL, SHR: Bitwise Logical Shifts

SHL r/n8, 1 . DO /4 [8086]
SHL r/n8, CL - D2 /4 [8086]
SHL r/n8, i m8 . C0 /4 ib [286]
SHL r/ni6, 1 . 016 DL /4 [8086]

A.153

A.154

SHL r/ m6, CL ; 016 D3 /4 [8086]
SHL r/ ml6, i mB ; 016 CL /4 ib [286]
SHL r/nB2,1 ; 032 D1 /4 [386]
SHL r/nB2, CL ; 032 D3 /4 [386]
SHL r/nB2,i m8 ; 032 Cl /4 ib [386]
SHR r/n8, 1 ; DO /5 [8086]
SHR r/ n8, CL ; D2 /5 [8086]
SHR r/ n8, i nm8 ; GO /51ib [286]
SHR r/ ml6, 1 ; 016 D1 /5 [8086]
SHR r/ mL6, CL ; 016 D3 /5 [8086]
SHR r/ ml6, i m8 ; 016 C1L /5 1ib [286]
SHR r/ nB2, 1 ; 032 D1 /5 [386]
SHR r/ 82, CL ; 032 D3 /5 386]
SHR r/ B2, i B8 ; 032 CL /5 1ib 386]

SHL and SHR perform a logical shift operation on the given source/destination (first) operand. The
vacated bits are filled with zero.

A synonym for SHL is SAL (see section A.146). NASM will assemble either one to the same code, but
NDISASM will always disassembl e that code as SHL.

The number of bits to shift by is given by the second operand. Only the bottom 3, 4 or 5 bits (depending
on the source operand size) of the shift count are considered by processors above the 8086.

Y ou can force the longer (286 and upwards, beginning with a C1 byte) form of SHL f 0o, 1 by using a
BYTE prefix: SHL f oo, BYTE 1. Similarly with SHR.

SHLD, SHRD: Bitwise Double-Precision Shifts

SHLD r/ ml6, regl6, i mB ; 016 OF A /r ib [386]
SHLD r/ ml6, reg32,i mB ; 032 OF Md /r ib [386]
SHLD r/ L6, regl6, CL ; 016 OF A5 /r [386]
SHLD r/ L6, reg32, CL ; 032 OF A5 /r [386]
SHRD r/ mlL6, regl6, i mB ; 016 OF AC/r ib [386]
SHRD r/ nB2, reg32, i mB8 ; 032 OF AC/r ib [386]
SHRD r/ ml6, regl6, CL ; 016 OF AD /r [386]
SHRD r/ B2, reg32, CL ; 032 OF AD /r [386]

SHLD performs a double-precision left shift. It notionally places its second operand to the right of itsfirst,
then shifts the entire bit string thus generated to the left by a number of bits specified in the third
operand. It then updates only the first operand according to the result of this. The second operand is not
modified.

SHRD performs the corresponding right shift: it notionally places the second operand to the left of the
first, shifts the whole bit string right, and updates only the first operand.

For example, if EAX holds 0x01234567 and EBX holds 0x89ABCDEF, then the instruction
SHLD EAX, EBX, 4 would update EAX to hold 0x12345678. Under the same conditions,
SHRD EAX, EBX, 4 would update EAX to hold OxF0123456.

The number of bits to shift by is given by the third operand. Only the bottom 5 bits of the shift count are
considered.

SM : System Management Interrupt
SM , F1 [386, UNDOC]

A.155

A.156

A.157

A.158

A.159

Thisis an opcode apparently supported by some AMD processors (which is why it can generate the same
opcode as | NT1), and places the machine into system-management mode, a specia debugging mode.

S\MSW Store Machine Status Word

SMBW r / mL6 © OF 01 /4 [286, PRI V]

SMSWstores the bottom half of the CRO control register (or the Machine Status Word, on 286 processors)
into the destination operand. See also L MSW(section A.96).

STC, STD, STI : Set Flags

STC . F9 [8086]
STD . FD [8086]
STI . FB [8086]

These instructions set various flags. STC sets the carry flag; STD sets the direction flag; and STI setsthe
interrupt flag (thus enabling interrupts).

To clear the carry, direction, or interrupt flags, use the CLC, CLD and CLI instructions (section A.15). To
invert the carry flag, use CMC (section A.16).

STOSB, STOSW STOSD: Store Byte to String

STOSB . AA [8086]
STOSW ; 016 AB [8086]
STOSD ; 032 AB [386]

STOSB stores the byte in AL at [ES: DI] or [ES: EDI], and sets the flags accordingly. It then
increments or decrements (depending on the direction flag: increments if the flag is clear, decrementsiif it
isset) DI (or EDI).

Theregister used is DI if the address size is 16 bits, and EDI if it is 32 bits. If you need to use an address
size not equal to the current Bl TS setting, you can use an explicit al6 or a32 prefix.

Segment override prefixes have no effect for this instruction: the use of ES for the storeto [DI'] or
[EDI] cannot be overridden.

STOSWand STOSD work in the same way, but they store the word in AX or the doubleword in EAX
instead of the bytein AL, and increment or decrement the addressing registers by 2 or 4 instead of 1.

The REP prefix may be used to repeat the instruction CX (or ECX — again, the address size chooses which)
times.

STR: Store Task Register
STR r/ m6 ; OF 00 /1 [286, PRI V]
STR stores the segment selector corresponding to the contents of the Task Register into its operand.

SUB: Subtract Integers

SUB r/ n8, reg8 ; 28 Ir [8086]
SUB r/ ml6, regl6 ; 016 29 /r [8086]
SUB r/ nB2, reg32 7 032 29 /r [386]

SUB reg8,r/ nB ;v 2A [8086]
SUB regl6, r/ mL6 ; 016 2B /r [8086]

SUB reg32, r/ nB2 ; 032 2B /r [386]

A.160

A.161

A.162

A.163

SUB r/ n8, i nmB
SUB r/ ml6, i mmlL6
SUB r/ nB82,i mB2

SUB r/ m6, i B8
SUB r/ nB2,i m8

SUB AL, i m8
SUB AX, i mmL6
SUB EAX, i mB2

SUB performs integer subtraction: it subtracts its second operand from its first, and leaves the result in its
destination (first) operand. The flags are set according to the result of the operation: in particular, the

80 /5 ib
016 81 /5 i
032 81 /5 i

016 83 /5
032 83 /5

2Cib
016 2D iw
032 2D id

oo as

[8086]
[8086]
[386]
[8086]
[386]

[8086]
[8086]
[386]

carry flag is affected and can be used by a subsequent SBB instruction (section A.148).

In the forms with an 8-bit immediate second operand and a longer first operand, the second operand is
considered to be signed, and is sign-extended to the length of the first operand. In these cases, the BYTE
qualifier is necessary to force NASM to generate this form of the instruction.

TEST: Test Bits (notional bitwi

TEST r/nB, reg8
TEST r/ nl6, regl6
TEST r/ nB2,reg32

TEST r/n8,i m8
TEST r/ 6, i mi6
TEST r/nB2,i mB2

TEST AL, i m8
TEST AX, i nml6
TEST EAX, i B2

TEST performs a ‘menta’ bitwise AND of its two operands, and affects the flags as if the operation had
taken place, but does not store the result of the operation anywhere.

UMOV: User Move Data

UMDV r/ B, reg8
UMDV r/ ml6, regl6
UMDV r/ nB2, reg32

UMDV reg8,r/nB
UMDV regl6, r/ nl6
UMDV reg32, r/ nB32

This undocumented instruction is used by in-circuit emulators to access user memory (as opposed to host
memory). It is used just like an ordinary memory/register or register/register MOV instruction, but

aCCesses user space.

VERR, VERW Verify Segment Readability/Writability

VERR r/ nl6
VERW r/ mL6

VERR sets the zero flag if the segment specified by the selector in its operand can be read from at the
current privilege level. VERWsets the zero flag if the segment can be written.

S

e AND)

84 /r
016 85 /r
032 85 /r

F6 /7 ib
016 F7 /
032 F7 /

A8 ib
016 A9 iw
032 A9 id

7 1w
7 id

OF 10 /r
016 OF 11 /r
032 OF 11 /r

OF 12 /r
016 OF 13 /r
032 OF 13 /r

OF 00 /4
OF 00 /5

WAI T: Wait for Floating-Point Processor

VWAI'T

9B

[8086
[8086
[386]

[8086
[8086
[386]

[8086
[8086
[386]

[386, UNDOC]
[386, UNDOC]
[386, UNDOC]

[386, UNDOC]
[386, UNDOC]
[386, UNDOC]

[286, PRI V]
[286, PRI V]

[8086]

A.164

A.165

A.166

A.167

A.168

WAI T, on 8086 systems with a separate 8087 FPU, waits for the FPU to have finished any operation it is
engaged in before continuing main processor operations, so that (for example) an FPU store to main
memory can be guaranteed to have completed before the CPU tries to read the result back out.

On higher processors, WAI T is unnecessary for this purpose, and it has the alternative purpose of ensuring
that any pending unmasked FPU exceptions have happened before execution continues.

VBl NVD: Write Back and Invalidate Cache
VBl NVD © OF 09 [486]

VABI NVD invalidates and empties the processor’s internal caches, and causes the processor to instruct
external caches to do the same. It writes the contents of the caches back to memory first, so no data is
lost. To flush the caches quickly without bothering to write the data back first, use | NVD (section A.84).

VWRMSR: Write Model-Specific Registers
VRVBR ; OF 30 [PENT]

VRVBR writes the value in EDX: EAX to the processor Model-Specific Register (MSR) whaose index is
stored in ECX. See aso RDIVSR (section A.139).

XADD: Exchange and Add

XADD r/ n8B, reg8 ; OF CO /r [486]
XADD r/ nl6, regl6 ; 016 OF C1 /r [486]
XADD r/ nB2, reg32 ; 032 OF C1 /r [486]

XADD exchanges the values in its two operands, and then adds them together and writes the result into the
destination (first) operand. This instruction can be used with a LOCK prefix for multi-processor
synchronisation purposes.

XBTS: Extract Bit String

XBTS regl6, r/ nl6 ; 016 OF A6 /r [386, UNDOC]
XBTS reg32, r/ nB2 ; 032 OF A6 /r [386, UNDCC]

No clear documentation seems to be available for this instruction: the best I’ve been able to find reads
‘Takes a string of bits from the first operand and puts them in the second operand’. It is present only in
early 386 processors, and conflicts with the opcodes for CMPXCHG486. NASM supports it only for
completeness. Its counterpart is| BTS (see section A.75).

XCHG. Exchange

XCHG reg8,r/ nB ; 86 /r [8086]
XCHG regl6,r/n8B ; 016 87 /r [8086]
XCHG reg32,r/ n32 ; 032 87 /r [386]
XCHG r/ nB, reg8 ; 86 /r [8086]
XCHG r/ nl6, regl6 ; 016 87 /r [8086]
XCHG r/ nB2, reg32 7 032 87 Ir [386]
XCHG AX, regl6 ; 016 90+r [8086]
XCHG EAX, reg32 ; 032 90+r [386]
XCHG regl6, AX ; 016 90+r [8086]
XCHG reg32, EAX ;032 90+r [386]

XCHG exchanges the values in its two operands. It can be used with a LOCK prefix for purposes of multi-
processor synchronisation.

A.169

A.170

XCHG AX, AX or XCHG EAX, EAX (depending on the Bl TS setting) generates the opcode 90h, and so
isasynonym for NOP (section A.109).

XLATB: Translate Byte in Lookup Table
XLATB , D7 [8086]

XLATB adds the value in AL, treated as an unsigned byte, to BX or EBX, and loads the byte from the
resulting address (in the segment specified by DS) back into AL.

The base register used is BX if the address size is 16 bits, and EBX if it is 32 bits. If you need to use an
address size not equal to the current Bl TS setting, you can use an explicit al6 or a32 prefix.

The segment register used to load from [BX+AL] or [EBX+AL] can be overridden by using a segment
register name as a prefix (for example, es xl at b).

XOR: Bitwise Exclusive OR

XOR r/ 8, reg8 30 /r [8086
XOR r/ ml6, regl6 ; 016 31 /r [8086
XOR r/ B2, reg32 7 032 31 /r [386]
XOR reg8,r/ nB ;32 /r [8086
XOR regl6, r/ m6 ;016 33 /r [8086
XOR reg32,r/ nB2 ; 032 33 /r [386]
XOR r/ n8, i mB ; 80 /6 1ib [8086
XOR r/ ml6, i mm6 ; 016 81 /6 iw [8086
XOR r/ nB2, i mB2 ; 032 81 /6 id [386]
XOR r/ ml6, i nm8 ; 016 83 /6 ib [8086]
XOR r/ B2, i m8 ; 032 83 /6 ib [386]
XOR AL, i 8 ; 34 ib [8086]
XOR AX, i mmL6 ; 016 35 iw [8086]
XOR EAX, i mB2 ; 032 35id [386]

XOR performs a bitwise XOR operation between its two operands (i.e. each bit of the result is 1 if and
only if exactly one of the corresponding bits of the two inputs was 1), and stores the result in the
destination (first) operand.

In the forms with an 8-hit immediate second operand and a longer first operand, the second operand is
considered to be signed, and is sign-extended to the length of the first operand. In these cases, the BYTE
qualifier is necessary to force NASM to generate this form of the instruction.

The MMX instruction PXOR (see section A.137) performs the same operation on the 64-bit MMX
registers.

Index

I = operator

$ Here token

3 token

%operator

% and %6$ prefixes

9%®%operator

%t1 and % 1 syntax

%0 parameter count

& operator

&& operator

* operator

+ modifier

+ operator,
binary
unary

- operator,
binary
unary

. . @symbol prefix

| operator

/| operator

< operator

<< operator

<= operator

<> operator

= operator

== operator

> operator

>= operator

>> operator

? MASM syntax

~ operator

AN operator

| operator

| | operator

~ operator

- a option

27,32

alé 78,92 106, 110, 112, 114, 118, 121, 125,

127,130

a32 78,92, 106, 110, 112, 114, 118, 121, 125,

a86

AAA
AAD
AAM

127, 130
11,17,18,19
87

87

87

AAS

ABSOLUTE

ADC

ADD

addition

addressing, mixed-size

address-size prefixes

algebra

ALl GN

ALl G\B

alignment,
inbi n sections
inel f sections
inobj sections
inw n32 sections
of el f common variables

al |l oc

alt.lang.asm

ambiguity

AND

a. out,
BSD version
Linux version

aout

aout b

arg

ARPL

as86

assembler directives

assembly passes

assembly-time options

%assi gn

ASSUVE

AT

Autoconf

aut oexec. bat

bi n

binary

binary files

16-bit mode, versus 32-bit mode

bit shift

BI TS

bitwise AND

bitwise OR

bitwise XOR

43, 50,

14,
66,
11, 14,

14, 15,

45,

block IFs 40
boot |oader 49
boot sector 80
Borland,
Pascal 67
Win32 compilers 50
BOUND 89
braces,
after %sign 35
around macro parameters 31
BSD 73
BSF 89
BSR 89
. bss 49, 55, 57, 58
BSWAP 89
BT 90
BTC 90
BTR 90
BTS 90
bugs 81
BYTE 80
C cdling convention 63, 70
C symbol names 62
CALL 90
CALL FAR 26
case sensitivity 17, 29, 30, 31, 37,52
CBW 91
91
changing sections 45
character constant 21,23
circular references 29
CLASS 51
CLC 91
CLD 91
ol ear 42
CLI 91
CLTS 91
c16. nac 66, 68
c32. nac 72
CMC 91
CMOVcce 91
CwWP 91
CMPSB 92
CMPSD 92
CMPSW 92
CMPXCHG 92
CMPXCH&E 86 92
CMPXCHGEEB 93
cof f 14,55
colon 20
. COM 49, 61
command-line 14, 49
commas in macro parameters 33
COMIVON 48, 51

COVMON,
el f extensionsto
obj extensionsto
Common Object File Format
common variables
common variables,
dignmentinel f
element size
conp. ar chi ves. nsdos. announce
conp. | ang. asm x86
conp. os. | i nux. announce
conp. 0s. nsdos. pr ogr anmer
concatenating macro parameters
condition codes
condition codes as macro parameters
conditional assembly
conditional jump
conditional jumps
conditional-return macro
configure
constants
context stack
context-local labels
context-local single-line macros
control registers
counting macro parameters
CPUI D
creating contexts
critical expression

WD 91
CWDE 91
- Doption 16
- d option 16
DAA 93
DAS 93
.data 49, 55, 57, 58
_DATA 63
dat a 56
data structure 65, 72
DB 21,24
dbg 58
DD 21,24
debug registers 85
DEC 9
declaring structures 42
default macro parameters 33
default name 49
default-W\RT mechanism 53
Y%defi ne 16, 29
defining sections 45
design goals 18
DevPac 21,27
disabling listing expansion 35
DV 9

division

DJGPP

dj l'i nk

DLL symbols,
exporting
importing

DOS

DOS archive

DOS source archive

.drectve

DT

DUP

DW

DWORD

- E option

- e option
effective addresses

element size, in common variables

el f

el f shared libraries
o%elif

%l ifctx
%l i f def
%lifid
%l ifidn
%l ifidni
%l i fnct x
%l i f ndef
o%lifnid
%l i fnidn
%l i f ni dni
%l i f nnum
%l ifnstr
%l i f num
ol i fstr
%l se
e-mail

EMVE
endpr oc
%endr ep
ENDSTRUC
ENTER
environment
EQU
%error
error messages
EVEN

. EXE
EXE_begi n
EXE2BI N
exebi n. nac
exec

executable and linkable format

20, 22,27, 85

14, 55

EXE end
EXE_st ack
Y%exitrep
EXPORT
exporting symbols
expressions
extension
EXTERN

extern, obj extensionsto

-f option
FABS
FADD
FADDP
far call

far common variables

far jump
far pointer
FARCODE
FBLD
FBSTP

FDECSTP
FDI V

FDI VP
FDI VR
FDI VRP
FFREE

FI ADD

Fl COM

FlI COWP
FI DIV

FI DI VR
FI LD
__FILE__
FI MUL

FI NCSTP
FINNT

FI ST

FI STP

Fl SUB
FLAT

flat memory model
flat-form binary
FLD
FLDCW
FLDENV

FLDxx

floating-point

floating-point,
constants
registers

FMUL

FMULP

FNINI'T

FNOP

format-specific directives

forward references

FPATAN

FPREM

FPREML

FPTAN

frame pointer

FreeBSD

FreeLink

FRNDI NT

FRSTOR

FSAVE

FSCALE

FSETPM

FSI N

FSI NCOS

FSQRT

FST

FSTCW

FSTENV

FSTP

FSTSW

FSUB

FSUBP

FSUBR

FSUBRP

ftp. coast. net

ftp. kernel.org

ftp.sintel.net

FTST

FUCOMK X

function

functions,
C caling convention
Pascal calling convention

FXAM

FXCH

FxDI SI

FXENI

F2XML

FXTRACT

FYL2X

FYL2XP1

gas

gcc

100
19, 20, 21, 24

24
85
100
100
99
100
45
27
100
101
101
100
64,67, 70
57,73
59
101
101
101
101
101
102
102
102
102
102
102
102
102
103
103

general purpose register 83

GLOBAL 47
GLOBAL,

aout b extensionsto 56

el f extensionsto 56
global offset table 73
_GLOBAL_COFFSET_TABLE_ 56
.. got 56
GOT relocations 74
GOT 56, 73
..gotoff 56
GOTOFF relocations 74
.. gotpc 56
GOTPCrelocations 74
graphics 21
greedy macro parameters 32
GROUP 51
groups 25
hex 23
HLT 104
hybrid syntaxes 18
- | option 15
-i option 15
% assi gn 30
| BTS 104
| CEBP 107
% defi ne 29
| DV 105
| END 43
% f 36
% fctx 36, 40
% f def 36
% fid 37
% fidn 37
% fidni 37
% f nct x 36
% f ndef 36
% fnid 38
% f ni dn 37
% f ni dni 37
% f nnum 38
% fnstr 38
% f num 37
% fstr 37
% macr o 30
immediate operand 83
| MPORT 52
import library 52
importing symbols 47
| MUL 105
I N 106
I NC 106
| NCBI N 21,24
% ncl ude 15, 16, 39

include search path
including other files
inefficient code
infinite loop
informational section
| NSB

| NSD

| NSTALL

installing

instances of structures
I NSW

integer overflow
intel number formats
| NTO

| NVD

| NVLPG

| RET

| RETD

| RETW

| STRUC

iterating over macro parameters

Jcc
Jcc NEAR

JMP DWORD
jumps, mixed-size
-1 option

label prefix

LAHF

LI BRARY
licence

LI DT
__LINE
linker, free
Linux ELF
listing file
little-endian
LLDT
LMBW

LOADALL
LOADALL286
local |abels
LODSB

LODSD

LODSW

logical AND
logical OR

logical XOR
LOOP

LOOPE

LOCOPNE

LOOPNZ

LOOPZ

LSL

LSS

LTR

%mracr o

macro library
macro processor
macro-local labels
macr o- par ans
macros

make

makefiles

Makef il e. unx
man pages

MASM

memory models
memory operand
memory references
Microsoft OMF

ni sc subdirectory
mixed-language program
mixed-size addressing
mixed-size instruction
MMX registers
ModR/M byte
modul o operators
MoV

MOVD

MOVQ

MOVSB

MOVSD

MOVSW

MOVSX

MOVZX

MS-DOS

MS-DOS device drivers
MUL

multi-line macros
multiplication

mul t i push macro
nasm 1

11, 17, 22,50
19, 63

NASM version
__NASMDEFSEG
nasm exe

nasm - h

NASM MAJOR
__NASM M NOR__
nasm out

nasmw. exe
nasnXxXxs. zi p
nasm X. XX. tar. gz
nasnXXX. zi p

ndi sasm 1

ndi sasm exe

ndi sasnw. exe
near call

near common variables
near jump

NEG

NetBSD

new releases
noal | oc

nobits

noexec

.nol i st

NOP

NOT

‘nowait’

nowite

nunber - over f | ow
numeric constants

- 0 option

016

032

. 0BJ

obj

obj ect

octal

OF_DBG

OF _DEFAULT
OFFSET

OMF

omitted parameters
one's complement
OpenBSD

operands
operand-size prefixes
operating system, writing
operating system
operators

OR

ORG

or phan-1 abel s
0Ss/2

out

79, 118, 121
79, 118, 121

out of range, jJumps 80

output file format 15
output formats 49
QUTSB 114
ouUTSD 114
ouTsSw 114
overlapping segments 25
OVERLAY 51
overloading multi-line macros 31
overloading, single-line macros 29
- P option 16
- p option 16, 39
PACKSSDW 115
PACKSSVB 115
PACKUSV\B 115
PADDSI W 115
PADDx x 115
PAND 115
PANDN 115
paradox 26
PASCAL 68
Pascal calling convention 67
passes, assembly 26
PATH 12
PAVEB 116
PCMPx x 116
PDI STI B 116
period 27
Perl 12
perverse 16
PharLap 51
PIC 55, 57, 73
.. plt 56
PLT relocations 56, 75
plt relocations 75
PMACHRI W 116
PMADDWD 116
PMAGW 117
PMULHRI W 117
PMULHRW 117
PMULHW 117
PMULLW 117
PM/cczZB 117
%pop 39
POP 117
POPAX 118
POPFx 118
POR 118
position-independent code 55, 57, 73
precedence 25
pre-defining macros 16, 30
preferred 25
$prefix 20, 23

pre-including files 16

preprocess-only mode 16
preprocessor 16, 17, 22, 25, 29
preprocessor expressions 16
preprocessor |loops 38
preprocessor variables 30
primitive directives 45
PRI VATE 51
proc 66, 72
procedure linkage table 56, 75
processor mode 45
progbits 55
program entry point 53,59
program origin 49
pseudo-instructions 21
PSLLx 119
PSRAX 119
PSRLx 119
PSUBSI W 120
PSUBX x 119
PUBLI C 47,51
PUNPCKX X x 120
pure binary 49
%push 39
PUSH 120
PUSHAX 121
PUSHFx 121
PXOR 121
QBasic

quick start 17
QAORD 21
RCL 122
RCR 122
r df 14, 57
RDVER 122
r dof f subdirectory 13, 57,58
RDPMC 122
RDTSC 122
redirecting errors 15
register push 121
relational operators 36
Relocatable Dynamic Object File Format 57
relocations, PIC-specific 56
removing contexts 39
renaming contexts 40
% ep 22,38
repeating 22,38
% epl 40
reporting bugs 81
RESB 19, 21, 26
RESD 21
RESQ 21
REST 21
restricted memory references 83
RESW 21

RET
RETF
RETN
ROL
ROR
% ot at e
rotating macro parameters
RSM
- s option
SAHF
SAL
SALC
SAR
SBB
SCASB
SCASD
SCASW
searching for include files
__SECT__
SECTI ON
SECTI ON,
el f extensionsto
W n32 extensionsto
section alignment,
inbin
inel f
in obj
inwi n32
section, bin extensions to
SEG
SEGVENT
SEGMVENT, el f extensionsto
segment address
segment alignment,
inbin
inobj
segment names, Borland Pascal
segment override
segment registers
segments
segments, groups of
separator character
SETcc
SGDT
shared libraries
shared library
shi ft command
shift command
SHL
SHLD
SHR
SHRD
SIB byte
SI DT

signed division 25
signed modulo 25
single-line macros 29
size, of symbols 56
SLDT 125
SM 126
SMBW 127
- sonane 76
sound 21
source code 12
source-listing file 15
square brackets 18, 22
STACK 51
standard macros 42
standardised section names 46, 49, 54, 55, 57,
58
..Start 53, 59
STC 127
STD 127
stderr 15
st dout 15
STI 127
STCSB 127
STCSD 127
STOSW 127
STR 127
string constant 21
STRUC 42, 47, 65, 72
stub preprocessor 17
SUB 127
subtraction 25
sunsi te.unc. edu 11
suppressible warning 17
suppressing preprocessing 17
switching between sections 45
..sym 56
symbol sizes, specifying 56
symbol types, specifying 56
symbols,
exporting from DLLs 52
importing from DLLs 52
. SYS 49, 62
TASM 11, 17,50
TBYTE 19
TEST 128
t est subdirectory 59
test registers 85
testing arbitrary numeric expressions 36
testing exact text identity 37
testing single-line macro existence 36
testing the context stack 36
testing token types 37
. text 49, 55, 57, 58
_TEXT 63

TI VES

TLINK

trailing colon
two-pass assembler
TWORD

type, of symbols

- Uoption

- u option

uMov

unary operators
%undef
undefining macros

underscore, in C symbols

uninitialised

uninitialised storage

Unix

Unix source archive

unrolled loops
unsigned division
unsigned modulo
UPPERCASE
USE16

USE32
user-defined errors

user-level assembler directives
user-level directives

VAL

valid characters
variable types
VERR

version number of NASM

VERW
Visual C++
- woption
WAl T
warnings
VBl NVD
Win32
Windows
Windows 95
Windows NT
wite

writing operating systems
V\RVBR

WRT

WRT .. got
VRT ..gotoff
WRT .. gotpc
WRT ..plt
VWRT ..sym
WWW page

WAWW. cpan. or g

www. del ori e. com
WWW. pcor ner. com

21, 22, 26, 80, 81

XADD

XBTS

XCHG
x2ftp.oul u. fi
XLATB

XOR

129
129
129

130
130

